
MEAN CURVATURE FLOW WITH SURGERY

ROBERT HASLHOFER AND BRUCE KLEINER

Abstract. We give a new proof for the existence of mean cur-
vature flow with surgery of 2-convex hypersurfaces in RN , as an-
nounced in [HK13a]. Our proof works for all N ≥ 3, including
mean convex surfaces in R3. We also derive a priori estimates for
a more general class of flows in a local and flexible setting.

Contents

1. Introduction 2

1.1. Background 2

1.2. Overview 2

1.3. A priori estimates 4

1.4. Existence theory 6

2. A priori estimates for flows with surgeries 9

2.1. Basic properties of (α, δ)-flows 9

2.2. Local curvature estimate 11

2.3. Convexity estimate 15

2.4. Global curvature estimate 16

3. Ancient solutions and standard solutions 19

3.1. Structure of uniformly 2-convex ancient α-Andrews flows 19

3.2. The standard surgery solution 22

4. Existence of mean curvature flow with surgery 24

4.1. The canonical neighborhood theorem 24

4.2. Existence of (α, δ,H)-flows 26

4.3. Further properties 29

Date: April 30, 2015.
B.K. was supported by NSF grant DMS-1105656.

1



2 ROBERT HASLHOFER AND BRUCE KLEINER

Appendix A. One-sided minimization 31

References 33

1. Introduction

1.1. Background. Mean curvature flow, like Ricci flow and harmonic
map heat flow, develops singularities, and understanding them is a cen-
tral problem in geometric analysis. In the last decades several meth-
ods have been developed to contiunue the flow beyond the first singular
time: Brakke flow [Bra78], level set flow [ES91, CGG91], and mean cur-
vature flow with surgery [HS09]; these have different advantages and
are to some extent complementary. Mean curvature flow with surgery
gives more refined control on the topology of the evolving manifold,
and can also be used to give smooth approximations to weak solutions
[Hea13, Lau13]; moreover, it has the nice feature that the entire dis-
cussion takes place in the framework of smooth differential geometry.

Roughly speaking, the idea of surgery is to continue the flow through
singularities by cutting along necks, gluing in caps, and continuing the
flow of the pieces; components of known geometry and topology are
discarded. Huisken and Sinestrari successfully implemented this idea
for the mean curvature flow of 2-convex hypersurfaces in RN (N ≥ 4),
i.e. for hypersurfaces where the sum of the smallest two principal
curvatures is positive. As in the construction of 3d Ricci flow with
surgery by Perelman [Per02, Per03] (see also [Ham97, KL08, MT07,
CZ06, BBB+10]), this required considerable technical virtuosity, and
was the culmination of a series of long papers [HS99a, HS99b, HS09].

1.2. Overview. The purpose of the present paper is to give a new
proof for the existence of mean curvature flow with surgery for 2-convex
hypersurfaces in RN (N ≥ 3), as announced in [HK13a]. The main
focus is on shortness, brevity and simplicity. Moreover, our proof works
for mean convex surfaces in R3, which was left as an open problem
after [HS09], and recently solved also by Brendle-Huisken [BH13], see
Remark 1.28. Furthermore, anticipating future applications, we derive
our a priori estimates in a completely local and very flexible setting.

Our new approach to surgery is motivated by our paper [HK13a],
where we gave a streamlined treatment of White’s theory of mean con-
vex level set (Brakke) flow [Whi00, Whi03, Whi11], based on the beau-
tiful noncollapsing result of Andrews [And12]: Given any α > 0, the
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condition that each boundary point of a mean convex domain admits
interior and exterior balls of radius α/H(p) is preserved under the flow.

We formulate the existence theory for a class of flows that we call
(α, δ,H)-flows. The parametersα = (α, β, γ) measure certain geometric
quantities of the initial domain (α-Andrews, λ1 + λ2 ≥ βH, H ≤ γ),
the parameter δ measures the quality of the surgery-necks, and the
three curvature-scales H = (Htrig, Hneck, Hth) are used to specify more
precisely when and how surgeries are performed, see Definition 1.17.

Our main existence result, Theorem 1.21, proves the existence of
an (α, δ,H)-flow for any 2-convex initial domain with parameters α.
It is complemented by a canonical neighborhood theorem, Theorem
1.22, which gives a precise geometric description of the regions of high
curvature. Other geometric, topological and analytic conclusions follow
immediately, see Corollary 1.25, Corollary 1.26, and Proposition 1.27.

The key for our existence proof are new a priori estimates for mean
curvature flow with surgery. We formulate our a priori estimates for a
more general class of flows that we call (α, δ)-flows. They are concate-
nations of smooth α-Andrews flows, where at finitely many times: (1)
some surgeries are performed on δ-necks of comparable scales; and/or
(2) some connected components are discarded, see Definiton 1.3.

Our three main a priori estimates for (α, δ)-flows are a local curva-
ture estimate (Theorem 1.6), a convexity estimate (Theorem 1.8), and
a global curvature estimate (Theorem 1.10). These estimates generalize
to (α, δ)-flows our main estimates for α-Andrews flows from [HK13a].
The presence of surgeries makes the proof of the local curvature es-
timate significantly more delicate and requires many new ideas, see
Section 2. In the proof of the convexity estimate and the global cur-
vature estimate, we then follow closely the scheme from our previous
paper [HK13a], highlighting the new steps necessitated by surgeries.

Broadly speaking, once the a-priori estimates are established, the
canonical neighborhood theorem follows from a short argument by con-
tradiction, see Section 4.1, and the main existence result follows from a
relatively short continuity argument, see Section 4.2 (strictly speaking,
we also need certain structural results for ancient solutions and the
evolution of standard caps, but their proofs are easy; see Section 3).

Finally, we point out that the notion of (α, δ)-flows is considerably
more flexible than the one of (α, δ,H)-flows. To a certain extent this
additional flexibility is needed for locality, see Remark 1.5. It also
makes the class of flows larger, and thus the a priori estimates stronger.
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1.3. A priori estimates. We will now discuss our a priori estimates
for (α, δ)-flows. We start by recalling the simpler notion of α-Andrews
flows, which was the framework for our estimates in [HK13a].

Definition 1.1 (c.f. [And12] and [HK13a, Def. 1.1]). Let α > 0. A
smooth α-Andrews flow {Kt ⊆ U}t∈I in an open set U ⊆ RN over a
time interval I ⊆ R is a smooth family of mean convex domains moving
by mean curvature flow, such that for every p ∈ ∂Kt the two closed
balls B̄int and B̄ext that are tangent at p and have radius α

H(p)
satisfy

B̄int ∩ U ⊆ Kt and B̄ext ∩ U ⊆ U \ Int(Kt), respectively.

Convention 1.2. We now fix a factor µ ∈ [1,∞), quantifying the
notion of surgeries at comparable scales, for the class of all flows under
consideration. Note however, that we do not fix any absolute scale.

Definition 1.3. An (α, δ)-flow K is a collection of finitely many smooth
α-Andrews flows {Ki

t ⊆ U}t∈[ti−1,ti] (i = 1, . . . , k; t0 < . . . < tk) in an
open set U ⊆ RN (see Definition 1.1), such that:

(1) for each i = 1, . . . , k−1, the final time slices of some collection of
disjoint strong δ-necks1 are replaced by pairs of standard caps as
described in Definition 2.4, giving a domain K]

ti ⊆ Ki
ti

=: K−ti .

(2) the initial time slice of the next flow, Ki+1
ti =: K+

ti , is obtained

from K]
ti by discarding some connected components.

(3) there exists s] = s](K) > 0, which depends on K, such that all
necks in item (1) have radius s ∈ [µ−1/2s], µ

1/2s]].

Remark 1.4. To avoid confusion, we emphasize that the word ‘some’
allows for the empty set, i.e. some of the inclusions K+

ti ⊆ K]
ti ⊆ K−ti

could actually be equalities. In other words, there can be some times
ti where effectively only one of the steps (1) or (2) is carried out. Also,
the flow can become extinct, i.e. we allow the possibility that Ki+1

ti = ∅.
Remark 1.5. At first sight, the possibility that some connected compo-
nents can be discarded whenever someone wants might seem arbitrary,
but in fact this flexibility is crucial for obtaining local estimates. For
example, imagine the situation that {Lt ⊂ RN}t∈I is a mean curvature
flow with surgery in RN (technically an (α, δ,H)-flow), and that we
want to prove local estimates in an open set U ⊂ RN , i.e. estimates
for the (α, δ)-flow {Kt = Lt ∩ U ⊆ U}t∈I′ , on some interval I ′ ⊆ I. It
can of course happen that there is a surgery in Lt on a neck outside
U that disconnects Lt into two connected components. According to
the standard procedure, the component of high curvature, which has

1More precisely, we only require that their final time-slices are disjoint in U .
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known geometry and topology, is then discarded. Viewed from U one
cannot see the neck and thus one observes a component being discarded
seemingly on a whim.

We will now state our three main a priori estimates for (α, δ)-flows.
We say that an (α, δ)-flow is defined in a parabolic ball P (p, t, r) =
B(p, r) × (t − r2, t] if it is defined in an open set U ⊇ B(p, r) and for
all t′ ∈ (t− r2, t]. Our first main estimate gives curvature control on a
whole parabolic ball, from a mean curvature bound at a single point.

Theorem 1.6 (Local curvature estimate). There exist δ̄ = δ̄(α) > 0,
ρ = ρ(α) > 0 and C` = C`(α) < ∞ (` = 0, 1, 2, . . .) with the following
property. If K is an (α, δ)-flow (δ ≤ δ̄) in a parabolic ball P (p, t, r)
centered at a boundary point p ∈ ∂Kt with H(p, t) ≤ r−1, then

(1.7) sup
P (p,t,ρr)∩∂K

|∇`A| ≤ C`r
−1−`.

Second, we have the convexity estimate for (α, δ)-flows.

Theorem 1.8 (Convexity estimate). For all ε > 0, there exist δ̄ =
δ̄(α) > 0 and η = η(ε, α) < ∞ with the following property. If K is an
(α, δ)-flow (δ ≤ δ̄) defined in a parabolic ball P (p, t, η r) centered at a
boundary point p ∈ ∂Kt with H(p, t) ≤ r−1, then

(1.9) λ1(p, t) ≥ −εr−1.

Theorem 1.8 says that a boundary point (p, t) in an (α, δ)-flow has
almost positive definite second fundamental form as long as the flow
has had a chance to evolve over a portion of space-time which is large
compared with the scale given by H(p, t). In particular, it implies that
ancient (α, δ)-flows in RN have nonnegative second fundamental form.

Third, we have the global curvature estimate for (α, δ)-flows.

Theorem 1.10 (Global curvature estimate). For all Λ < ∞, there
exist δ̄ = δ̄(α) > 0, η = η(α,Λ) < ∞ and C` = C`(α,Λ) < ∞
(` = 0, 1, 2, . . .) with the following property. If K is an (α, δ)-flow
(δ ≤ δ̄) in a parabolic ball P (p, t, η r) centered at a boundary point
p ∈ ∂Kt with H(p, t) ≤ r−1, then

(1.11) sup
P (p,t,Λr)∩∂K′

|∇`A| ≤ C`r
−1−`,

where K′ denotes the (α, δ)-flow in P (p, t,Λr) that is obtained from
K via restricting to B(p,Λr) and discarding the connected components
that do not contain p.



6 ROBERT HASLHOFER AND BRUCE KLEINER

Remark 1.12. Theorem 1.10 quickly implies (and immediately follows
from) a global convergence result, Corollary 2.30.

Remark 1.13. Only normalizing the curvature at the basepoint one
cannot get curvature control for other connected components. An in-
teresting feature, that shows up later in the proof of the canonical
neighborhood theorem for (α, δ,H)-flows (Section 4.1), is that the An-
drews condition in combination with the degeneration of the surgery
parameters provides a mechanism to clear out other components.

Remark 1.14. Our a priori estimates are local and thus also apply if
mean convexity and the Andrews condition only hold locally around
a singularity. This seems to be very useful if one wants to implement
surgery for generic mean curvature flow, c.f. [CM12, CIM13, CM13].

1.4. Existence theory. We now turn to the discussion of the exis-
tence theory. Our construction only depends on a few parameters of
the initial domain, which is always assumed to be 2-convex.

Definition 1.15 (Controlled initial condition). Let α = (α, β, γ) ∈
(0, N − 2) × (0, 1

N−2
) × (0,∞). A smooth compact domain K0 ⊂ RN

is called an α-controlled initial condition, if it satisfies the α-Andrews
condition and the inequalities λ1 + λ2 ≥ βH and H ≤ γ.

Remark 1.16. Note that every smooth compact 2-convex domain is a
controlled initial condition for some parameters α, β, γ > 0.

For us, a mean curvature flow with surgery is a (α, δ)-flow with
(α, β, γ)-controlled initial data, subject to the following additional con-
ditions. First, the flow is β-uniformly 2-convex, i.e. λ1 + λ2 ≥ βH.
Besides the neck-quality δ > 0, we have three curvature-scales Htrig >
Hneck > Hth > 1, to which we refer as the trigger-, neck- and thick-
curvature. The surgeries are done at times t when the maximum of the
mean curvature hits Htrig. They are performed on a minimal disjoint
collection of solid δ-necks of curvature Hneck that separate the trigger
part {H = Htrig} from the thick part {H ≤ Hth} in K−t , and the high
curvature components are discarded. Finally, we impose the condition
that surgeries are done more and more precisely, if the surgery-necks
happen to be rounder and rounder. We call our flows with surgery
(α, δ,H)-flows, and the precise definition is as follows.

Definition 1.17. An (α, δ,H)-flow, H = (Hth, Hneck, Htrig), is an (α, δ)-
flow {Kt ⊂ RN}t≥0 (see Definition 1.3) with λ1 + λ2 ≥ βH, and with
α = (α, β, γ)-controlled initial condition K0 ⊂ RN (see Definition 1.15)
such that
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(1) H ≤ Htrig everywhere, and surgery and/or discarding occurs
precisely at times t when H = Htrig somewhere.

(2) The collection of necks in item (1) of Definition 1.3 is a minimal
collection of solid δ-necks of curvature Hneck which separate the
set {H = Htrig} from {H ≤ Hth} in the domain K−t .

(3) K+
t is obtained from K]

t by discarding precisely those connected
components with H > Hth everywhere. In particular, of each
pair of facing surgery caps precisely one is discarded.

(4) If a strong δ-neck from item (2) also is a strong δ̂-neck for some

δ̂ < δ, then property (4) of Definition 2.4 also holds with δ̂
instead of δ.

Remark 1.18. To avoid confusion, we emphasize again that the collec-
tion of necks in item (2) can be empty. Indeed, the simplest example
of an (α, δ,H)-flow is the evolution of a round ball K0 = B̄N , which
just shrinks self-similarly until H reaches Htrig, and then is discarded.

Remark 1.19. By comparison every (α, δ,H)-flow becomes extinct after
some finite time T , i.e. satisfies Kt = ∅ for all t > T .

Remark 1.20. We point out that our definition of (α, δ,H)-flows does
not include a canonical neighborhood property. Instead, we will prove
that the canonical neighborhood property is consequence of the global
convergence result (Corollary 2.30), see Theorem 1.22.

Our main existence theorem is the following.

Theorem 1.21 (Existence of mean curvature flow with surgery). There
are constants δ = δ(α) > 0 and Θ(δ) = Θ(α, δ) < ∞ (δ ≤ δ̄) with the
following significance. If δ ≤ δ̄ and H = (Htrig, Hneck, Hth) are positive
numbers with Htrig/Hneck, Hneck/Hth, Hneck ≥ Θ(δ), then there exists an
(α, δ,H)-flow {Kt}t∈[0,∞) for every α-controlled initial condition K0.

Theorem 1.21 enables us to evolve any smooth compact 2-convex do-
main by mean curvature flow with surgery. More generally, it also en-
ables us evolve (finite- or infinite-dimensional) families of α-controlled
initial domains simultaneously, with uniform estimates.

Our existence theorem (Theorem 1.21) is complemented by the fol-
lowing canonical neighborhood theorem (we use the terminology of
Perelman [Per03], but our canonical neighborhoods are different), which
gives precise geometric information about the regions of high curvature.

Theorem 1.22 (Canonical neighborhood theorem). For all ε > 0,
there exist δ = δ(α) > 0, Hcan(ε) = Hcan(α, ε) < ∞ and Θε(δ) =
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Θε(α, δ) < ∞ (δ ≤ δ̄) with the following significance. If δ ≤ δ and
K is an (α, δ,H)-flow with Htrig/Hneck, Hneck/Hth ≥ Θε(δ), then any
(p, t) ∈ ∂K with H(p, t) ≥ Hcan(ε) is ε-close to either (a) a β-uniformly
2-convex ancient α-Andrews flow, or (b) the evolution of a standard cap
preceded by the evolution of a round cylinder.

Remark 1.23. The structure of uniformly 2-convex ancient α-Andrews
flows and the standard solution are discussed in Section 3.

Remark 1.24. In practice, one can first choose ε > 0 small enough, and
then Htrig/Hneck, Hneck/Hth, Hneck ≥ max{Θε(δ),Θ(δ)} (δ ≤ δ̄) and
Hth ≥ Hcan(ε), where δ̄ = min{δ̄1.21, δ̄1.22}, so that both the existence
result (Theorem 1.21) and the canonical neighborhood property at any
point with H(p, t) ≥ Hcan(ε) (Theorem 1.22) are applicable.

In particular, (α, δ,H)-flows imply a decomposition of the initial do-
mains into balls D̄N and solid tori D̄N−1 × S1.

Corollary 1.25 (Discarded components). For ε > 0 small enough,
for any (α, δ,H)-flow with Htrig/Hneck, Hneck/Hth ≥ Θε(δ) (δ ≤ δ̄) and
Hth ≥ Hcan(ε), where Θε(δ), δ̄ and Hcan(ε) are from Theorem 1.22, all
discarded components are diffeomorphic to D̄N or D̄N−1 × S1.

Corollary 1.26. Any smooth compact 2-convex domain in RN is dif-
feomorphic to a connected sum of finitely many solid tori D̄N−1 × S1.

Finally, by the work of Lauer [Lau13] we see that sequences of flows
with surgery converge to the level set flow [ES91, CGG91], if the initial
domain is kept fixed and the thick curvatures tend to infinity.

Proposition 1.27 (Convergence to level set flow). There exists δ̄ > 0
such that if Kj = {Kj

t }t∈[0,∞) is a sequence of (α, δj,Hj)-flows (δj ≤ δ̄)

starting at a fixed initial domain K0, with Hj
th →∞, then Kj Hausdorff

converges in RN × [0,∞) to K, the level set flow of K0.

Proposition 1.27 enables us to approximate level set flows with α-
controlled initial conditions by (α, δ,H)-flows. In fact, this approxima-
tion works uniformly for families of α-controlled initial conditions.

Remark 1.28. We have announced our new construction of mean cur-
vature flow with surgery in April 2013, see [HK13a]. In September
2013, Brendle and Huisken posted a very interesting preprint [BH13],
where they also solved the case N = 3, by combining the work of
Huisken-Sinestrari [HS09], the local curvature estimate from our pre-
vious paper [HK13a], and Brendle’s estimate for the inscribed radius
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[Bre13a]. Although Brendle’s estimate is not needed at all for our ap-
proach to surgery, we have written a note [HK13b] giving a shorter
proof of it. Also, Brendle’s interesting variant of the monotonicity for-
mula [Bre13b] is somewhat related to Claim 2.17 in the present paper.

Organization of the paper. In Section 2, we prove our a priori estimates
for (α, δ)-flows. In Section 3, we prove some results for ancient solutions
and standard solutions, that are needed later. In Section 4, we prove
the canonical neighborhood theorem and the main existence theorem.

2. A priori estimates for flows with surgeries

Our a priori estimates hold for flows in any open U ⊆ RN . Working
locally necessitates a number of extra technicalities in the definitions
and proofs; readers focussing on the global case can assume U = RN .

2.1. Basic properties of (α, δ)-flows. We will now discuss some ba-
sic properties of (α, δ)-flows (Definition 1.3). We start by defining what
it means to replace a neck by caps, making explicit the constants that
are involved; this notion is used in item (1) of Definition 1.3.

Convention 2.1. In the following, µ < ∞, C` < ∞ (` = 0, 1, 2, . . .)
and δ′(δ) with δ′ decreasing to zero as δ ↘ 0, are fixed but arbitrary.
Strictly speaking, the specification of µ, C` and δ′(δ) is part of the
definition of an (α, δ)-flow. Other constants may depend on µ, C`
and δ′(δ), but for brevity we suppress that in the notation. Also,
Γ ∈ [10,∞) denotes a constant to be fixed later (Convention 2.11).

Definition 2.2 (Standard cap). A standard cap is a smooth convex
domain Kst ⊂ RN that coincides with a solid round half-cylinder of
radius 1 outside a ball of radius 10.

Definition 2.3 (Strong δ-neck). We say that an (α, δ)-flow K = {Kt ⊆
U}t∈I has a strong δ-neck with center p and radius s at time t0 ∈ I, if
{s−1 · (Kt0+s2t − p)}t∈(−1,0] is δ-close in Cb1/δc in BU

1/δ × (−1, 0] to the

evolution of a solid round cylinder D̄N−1 × R with radius 1 at t = 0,
where BU

1/δ = s−1 · ((B(p, s/δ) ∩ U)− p) ⊆ B(0, 1/δ) ⊂ RN .

Definition 2.4 (Replacing a δ-neck by standard caps). We say that the
final time slice of a strong δ-neck (δ ≤ 1

10Γ
) with center p and radius s is

replaced by a pair of standard caps, if the pre-surgery domain K− ⊆ U
is replaced by a post-surgery domain K] ⊆ K− such that:

(1) the modification takes places inside a ball B = B(p, 5Γs).
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(2) there are bounds for the second fundamental form and its deriva-
tives:

sup
∂K]∩B

|∇`A| ≤ C`s
−1−` (` = 0, 1, 2, . . .).

(3) if B ⊆ U , then for every point p] ∈ ∂K] ∩ B with λ1(p]) < 0,
there is a point p− ∈ ∂K− ∩B with λ1

H
(p−) ≤ λ1

H
(p]).

(4) if B(p, 10Γs) ⊆ U , then s−1 · (K]− p) is δ′(δ)-close in B(0, 10Γ)
to a pair of disjoint standard caps, that are at distance Γ from
the origin (see Convention 2.1 and Definition 2.2).

Proposition 2.5 (Spatial separation of surgeries). For every ζ < ∞,
there are constants δ̄ = δ̄(ζ) > 0 and η = η(ζ) <∞ with the following
property. If K is an (α, δ)-flow (δ ≤ δ̄), p is the center of a surgery
neck of radius s, and K is defined in an open set that contains the ball
B(p, ηs), then are no other surgeries in B(p, ζs).

Proof. Let p′ be the center of another surgery neck. If the surgery
occurs at the same time t′ = t, then by disjointness of the collection
of δ-necks in B(p, ηs), we get d(p, p′) ≥ min{δ−1, η}s. If t′ > t, then
by monotonicity of sets we have Kt′ ⊆ Kt, and we also know that Kt

is close to a pair of standard caps near p. Since a δ-neck can only be
contained in a standard cap when the center is far away from the tip,
we obtain that d(p, p′) ≥ 1

2
µ−1 min{δ−1, η}s for η large and δ small

enough. Finally, if t′ < t, we can apply the same argument with the
roles of p and p′ reversed. The assertion follows. �

Definition 2.6 (Points modified by surgery). We say that an open set

B contains points modified by surgery at time t if (K−t \K
]
t ) ∩B 6= ∅.

Proposition 2.7 (Forward estimate after surgery). For all α > 0,
there exist ε = ε(α) > 0, C = C(α) < ∞ and δ̄ = δ̄(α) > 0 with
the following property. If K as an (α, δ)-flow (δ ≤ δ̄), and r ≤ s and
t1 < t2 are such the flow is defined in B(p, r)× [t1, t2], with some point
in B(p, r) modified by a surgery at scale s at time t1, but no points in
B(p, r) modified by surgeries for t ∈ (t1, t2], then

(2.8) sup
∂Kt∩B(p,r/2)

|A| ≤ Cr−1 on [t1,min{t1 + (εr)2, t2}].

Proof. By Definition 2.4 and the Andrews-condition we have uniformly
controlled geometry in B(p, r) at time t1 (the curvature bounds follow

from item (2) for ∂K]
t1∩B(p, r), and from being part of a strong δ-neck
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at other points). Thus, the assertion follows from the pseudolocality
theorem for the mean curvature flow, see e.g. [CY07, Thm. 7.5].2 �

Proposition 2.9 (One-sided minimization). There exist δ̄ > 0 and
Γ0 < ∞ with the following property. If K is an (α, δ)-flow (δ ≤ δ̄) in
an open set U , with cap separation parameter Γ ≥ Γ0 and surgeries at
scales between µ−1s and s, and if B̄ ⊂ U is a closed ball with d(B̄,RN \
U) ≥ 20Γs, then

(2.10) |∂Kt1 ∩ B̄| ≤ |∂K ′ ∩ B̄|
for every smooth comparison domain K ′ that agrees with Kt1 outside
B̄ and satisfies Kt1 ⊆ K ′ ⊆ Kt0 for some t0 < t1.

Proof. This follows using the geometric measure theory argument in
[Whi00, Sec. 3] and [Hea13, Sec. 5]; in Appendix A we give a detailed
exposition, and also an alternative elementary argument. �

Convention 2.11. We now fix a constant Γ ≥ max{Γ0, 10}, where Γ0

is from Proposition 2.9, that is also large enough such that there are
constants ω < 1 and δ̄ > 0 with

(2.12) |∂K+ ∩B| ≤ ω|∂K− ∩B|,
for every surgery on a δ-neck (δ ≤ δ̄) with B = B(p, 5Γs) ⊆ U .

2.2. Local curvature estimate. We will now prove Theorem 1.6.
Since the proof is somewhat involved, we first give a detailed outline.

Outline of the proof. Arguing by contradiction, we get a sequence of
flows on larger and larger parabolic balls where the curvature goes to
zero at the basepoint but blows up at some nearby point. We first split
off the two easy cases that there are no nearby surgeries (Case 1) or
surgeries at macroscopic scales (Case 2), which can be dealt with by
applying the local curvature estimate from our previous paper [HK13a,
Thm. 1.8] and the forward estimate after surgeries (Proposition 2.7),
respectively. The core of the proof is then to rule out surgeries at mi-
croscopic scales (Case 3). We do this as follows: At a surgery neck the
value of the Huisken density is close to the value of the cylinder. How-
ever, since the mean curvature at the basepoint goes to zero, using a
halfspace convergence argument (Claim 2.24) and one-sided minimiza-
tion (Proposition 2.9), we can show that the Huisken density is close
to 1 further back in time. Finally, analyzing the contributions from
surgeries in different regimes, c.f. (2.18), we prove that the cumulative

2Note that dropping connected components has the good sign in Huisken’s mono-
tonicity inequality. Thus, their proof of pseudolocality goes through in our setting.
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error in Huisken’s monotonicity inequality due to surgeries goes to zero
(Claim 2.17), and conclude that microscopic surgeries cannot occur.

Proof of Theorem 1.6. As in [HK13a, Sec. 2], we will first prove (1.7)
under the admissibility assumption that some time slice Kt̄ contains
B(p, r). Assume towards a contradiction that there exists a sequence
Kj of admissible (α, j−1)-flows in P (0, 0, j) with H(0, 0) ≤ j−1, but
such that

(2.13) sup
P (0,0,j−2)

|A| ≥ j2.

Case 1: there are no points modified by surgeries in P (0, 0, j−1), for
infinitely many j. In this case, we can apply the local curvature esti-
mate from our previous paper [HK13a, Thm. 1.8, Rmk. 2.12] (see also
Remark 2.25 below for an alternative proof). For large j this gives a
contradiction with (2.13).

Case 2: there is a point in P (0, 0, j−1) modified by a surgery at scale
sj ≥ µε−1j−1, for infinitely many j, where ε is the constant from

Proposition 2.7. Let tj1 be the largest t ∈ (−j−2, 0] such that there
is a point in B(0, ε−1j−1) modified by a surgery. Using j−1-closeness
to a strong neck we get curvature estimates prior to tj1, and using
Proposition 2.7 we get curvature estimates after tj1. For large j this
gives a contradiction with (2.13).

Case 3: there is a point in P (0, 0, j−1) modified by a surgery, and all
surgeries are at scale sj ≤ µ2ε−1j−1, for large j. We will show that
this case actually cannot occur. Suppressing j in the notation, let x0

be the center of neck coming from a surgery in P (0, 0, j−1), at time t

and scale s. Let t0 = t+ s2

2(N−2)
, and consider the Huisken density

(2.14) Θ(τ) =

∫
∂Kt0−τ

θσX0
dA,

based at X0 = (x0, t0). Here, the integrand θσX0
is the backwards heat

kernel times a suitable cutoff function at scale σ � 1 (as always, we
tacitly assume that j is large enough), namely
(2.15)

θσX0
(x, t) = (4π(t0 − t))−(N−1)/2e

− |x−x0|
2

4(t0−t) (1− |x−x0|
2+2(N−1)(t−t0)

σ2 )3
+.

Note that for small backwards time, say τ = s2, we have

(2.16) lim inf
j→∞

Θ(s2) ≥ ΘN−1 > 1,
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where ΘN−1 is the density of the cylinder D̄N−1 × R. Recall that
by Huisken’s monotonicity inequality, see e.g. [Eck04, Prop. 4.17]
or [HK13a, App. B], the function Θ(τ) is monotone if there are no
surgeries (throwing away connected components has the good sign).

Claim 2.17. The cumulative error in Huisken’s monotonicity inequal-
ity due to surgeries between τ = s2 and τ = 1 goes to zero as j →∞.

Proof. Let ε > 0, and write σt =
√
σ2 − 2(N − 1)(t− t0). We say that

a surgery center xi at time ti is in the nonoscillating regime, if

(2.18) (a) s|xi−x0|
|ti−t0| < ε and (b) ||xi − x0| − σti | > ε−1s.

If ε is sufficiently small, then the change of the Huisken density due to
any surgery (xi, ti) in the nonoscillating regime has the good sign, i.e.

(2.19)

∫
∂K]

ti
∩Bi

θσX0
dA ≤

∫
∂K−ti

∩Bi
θσX0

dA.

where Bi = B(xi, 5Γsi). Indeed, this follows from the fact that area
decreases by a definite factor under surgery, see (2.12), and the ob-
servation that we can make the ratio between supx∈Bi θ

σ
X0

(x, ti) and
infx∈Bi θ

σ
X0

(x, ti) as close to 1 as we want, by choosing ε small enough.

We next estimate the cumulative error due to the surgeries (xi, ti) vi-
olating (a). Taking into account Proposition 2.5, it suffices to estimate
the sum

(2.20)
∑
i

1

τ
(N−1)/2
i

e−|xi−x0|
2/5τiAi,

where τi = t0 − ti and Ai is the area of the region modified by the
surgery. Here, we used that |x− x0|2 ≥ 4

5
|xi − x0|2 for x in the region

around xi modified by surgery, for j large. To estimate (2.20), we first

pull out a factor e−|xi−x0|
2/10τi . Using Proposition 2.5 again, we observe

that (for j large enough) the minimum of |xi−x0|
2

10τi
+ N−1

2
log τi over τi

under the constraint τi ≤ s|xi−x0|
ε

is attained at τi = s|xi−x0|
ε

. Thus
(2.21)∑

i

1

τ
(N−1)/2
i

e
− |xi−x0|

2

5τi Ai ≤ δj
∑
i

(
ε

s|xi − x0|

)(N−1)/2

e−
ε|xi−x0|

10s Ai,

where δj := supi e
−|xi−x0|2/10τi goes to zero as j →∞, since

(2.22)
|xi − x0|2

τi
=
s|xi − x0|

τi

|xi − x0|
s

≥ εζj →∞,
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again by Proposition 2.5. Since the regions modified by surgeries are
separated by a large multiple of s by Proposition 2.5, and have area
comparable to sN−1 by Definition 2.4, the sum on the right hand side
of (2.21) can be uniformly estimated by a multiple of

(2.23)

∫ ∞
s

1

(sR)(N−1)/2
e−R/sRN−2dR =

∫ ∞
1

u(N−3)/2e−udu <∞.

Thus, the cumulative error due to surgeries violating (a) goes to zero
as j →∞.

Finally, observing that θσX0
(x, t) ≤ s3 in the relevant region, the

cumulative error due to the surgeries violating (b) can be estimated by
a multiple of s3(σ

s
)NsN−1 → 0 (j →∞). This proves the claim. �

Claim 2.24. After rotating coordinates, the sequence Kj converges in
the pointed Hausdorff topology on RN × (−∞, 0] to the static halfspace
{xN ≤ 0} × (−∞, 0], and similarly for the complements.

Proof. We rotate coordinates such that the outward unit normal of Kj
0

at (0, 0) is eN . Since H(0, 0) ≤ j−1, the Andrews condition implies in
particular that every compact subset of the lower half plane {xN < 0} is
contained in Kj

0 for j large enough. The proof is now almost verbatim
as the one of [HK13a, Claim 2.4], taking into account the following
caveat. In our previous proof we used comparison from the interior
with the mean curvature evolution of a ball B̄d

R. In general, interior
comparison can fail for (α, δ)-flows, since there can be jumps due to
surgeries and thrown away components. However, in our situation the
radius of the comparison ball is much larger than the surgery scale
sj → 0. Thus, the comparison ball must be disjoint from any region
modified by surgeries, since any such region is contained in a long and
thin neck. Since the comparison ball contains the origin, it cannot be
contained in a discarded component either. �

Finishing the discussion of Case 3, it follows from the halfspace con-
vergence (Claim 2.24) and the one-sided minimization (Proposition 2.9)
that at τ = 1 the value of the Huisken density is close to 1; together
with the almost monotonicity (Claim 2.17) this contradicts (2.16).

Finally, the admissibility assumption can be removed as in [HK13a,
App. D],3 and replacing ρ by ρ/2, the bounds for the derivatives of A
follow from standard interior estimates. �

3Readers focussing on the admissible version of the estimate can skip this step.
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Remark 2.25. A simple nonsurgical variant of the argument in Case 3
gives an alternative proof of [HK13a, Thm. 1.8, Rmk. 2.12]. Namely,
given a contradictory sequence Kj as at the beginning of the proof of
Theorem 1.6, select points Xj ∈ ∂Kj ∩ P (0, 0, 1/2) such that Qj =
|A|(Xj) ≥ j2 and supP (Xj ,jQ

−1
j )|A| ≤ 2Qj. Then, the Huisken density

ΘXj based at Xj satisfies lim infj→∞ΘXj(Q
−2
j ) > 1. Arguing as in Case

3, for τ = 1 we are as close as we want to a halfspace; together with
the one-sided minimization, this contradicts monotonicity.

2.3. Convexity estimate. Using the local curvature estimate (Theo-
rem 1.6), we can now prove the convexity estimate (Theorem 1.8). The
idea is, as in [HK13a, Proof of Thm. 1.8], to consider a contradictory
sequence and to pass to a local limit such that λ1

H
attains a negative

minimum, contradicting the strict maximum principle. To make this
idea work in the presence of surgeries, we have to choose the sequence
very carefully, using in particular item (3) of Definition 2.4.

Proof. Fix α, and let δ = δ(α) > 0 small enough to justify the appli-
cation of Theorem 1.6 and of the properties of Definition 2.4 in the ar-
gument below. The α-Andrews condition implies that for every ε ≥ 1

α
,

we can find an η <∞ such that the assertion holds. Let ε0 ≤ 1
α

be the
infimum of the ε’s for which this is possible, and suppose ε0 > 0.

It follows that there is a sequence {Kj} of (α, δj)-flows, δj ≤ δ̄, in
P (0, 0, j) such that H(0, 0) ≤ 1, but λ1(0, 0)→ −ε0 as j →∞. By the
choice of ε0, it follows that H(0, 0)→ 1 as j →∞, since otherwise we
could parabolically scale our sequence and get a new sequence where
H(0, 0) ≤ 1, but λ1(0, 0) tends to something strictly smaller than −ε0.

Let ρ = ρ(α) be the quantity from the local curvature estimate
(Theorem 1.6). Then there are uniform bounds on A and its space-time
derivatives in P (0, 0, ρ/2). Suppose there is no r > 0 such that the flow
is unmodified by surgeries in P (0, 0, r) after passing to a subsequence.
In view of the bounds on spacetime derivatives of curvature, we may
assume, after translating and parabolic rescaling (by a factors tending
to 1 as j → ∞), that t = 0 is a surgery time, and that (0, 0) lies in

∂K]
0 ∩ B(p, 5Γs), c.f. Definition 2.4. The radius of the surgery neck

is comparable to one, again by Definition 2.4. Thus, by item (3) of
Definition 2.4, after passing to some point at controlled distance in the
presurgery manifold, and parabolically rescaling by factors of controlled
size, we may assume that (0, 0) lies in the presurgery manifold ∂K−0 ,
H(0, 0) = 1, and λ1(0, 0)→ −ε0. After modifying the sequence in this
way, the argument can now be concluded as in [HK13a, Proof of Thm.
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1.8]. Namely, using Proposition 2.5 and Theorem 1.6 we get a smooth
mean curvature flow K∞ in some parabolic ball P (0, 0, r) such that the
ratio λ1

H
attains a negative minimum −ε0 at (0, 0); this contradicts the

strict maximum principle. �

2.4. Global curvature estimate. The global convergence theorem
from our previous paper ([HK13a, Thm. 1.12]) was based on the local
curvature estimate and the convexity estimate. Having established
the local curvature estimate and the convexity estimate for (α, δ)-flows
(Theorem 1.6 and Theorem 1.8), we will now show that our previous
global convergence argument goes through with minor adjustments.

Proof of Theorem 1.10. We choose δ̄ = δ̄(α) > 0 small enough such
that the estimates from the previous sections apply. Suppose towards
a contradiction, that there is a sequence Kj of (α, δj)-flows (δj ≤ δ̄) in
P (0, 0, ηj), with ηj →∞ and H(0, 0) ≤ 1, such that

(2.26) lim
j→∞

sup
P (0,0,Λ)∩∂K′j

|A| =∞,

for some Λ < ∞, where K′j denotes the (α, δj)-flow whose time slices
are given by the connected component of Kt ∩B(0,Λ) containing 0.

We can assume that there is some R <∞ such that P (0, 0, R) con-
tains surgeries of Kj for large j, since otherwise [HK13a, Thm. 1.12,
Rmk. 3.5] gives a contradiction with (2.26). Also, it must be the case
that the surgery scales sj = s](Kj) (see Definition 1.3) satisfy

(2.27) lim sup
j→∞

sj <∞,

since otherwise Proposition 2.7 forwards in time and the strong δj-neck
assumption backwards in time, c.f. Case 2 of the proof of Theorem 1.6,
gives curvature bounds contradicting again (2.26).

After these preliminary reductions and observations, the proof is now
verbatim as in [HK13a, Proof of Thm. 1.12], apart from some obvious
changes in wording, like replacing α-Andrews flow by (α, δ)-flow, and
from three minor modifications which we will carefully discuss now.

Modification 1: Instead of the nonsurgical version of the local curvature
estimate [HK13a, Thm 1.8] and the convexity estimate [HK13a, Thm
1.10] we of course use the versions for (α, δ)-flows established in the
present paper, Theorem 1.6 and Theorem 1.8, respectively.

Modification 2: The final paragraph of [HK13a, Proof of Thm. 1.12,

Step 2] needs to be expanded, since the (α, δ)-flow K̂∞ might contain
surgeries in P (q1, 0, r). If some neighborhood of q1 is unmodified by
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surgeries at t = 0 (Definition 2.6), our previous argument applies.

Otherwise, recall that K̂∞ arises as smooth limit of (α, δ)-flows K̂j.
After passing to a subsequence, we may assume that the surgery scales
s](K̂j) converge to a limit s, which must be comparable to H−1(q1, 0),
by Theorem 1.6 and Definition 2.4. Let q′1 be a point on the radial
segment in the cone X1 connecting q1 and the tip, such that H(q′1, 0)�
H(q1, 0). Since all surgeries are done at comparable scales (Definition
1.3), Theorem 1.6 implies that for some r′ > 0, the intersection X1 ∩
B(q′1, r

′) can be extended to a smooth (α, δ)-flow K̂′∞ without surgeries
in P (q′1, 0, r

′), and our previous argument applies.

Modification 3: In [HK13a, Proof of Thm. 1.12, Step 7] compari-
son with large enough spheres containing the origin is still legitimate,
thanks to (2.27) and 0 ∈ Xj

R,t, c.f. the proof of Claim 2.24. Thus, as
in [HK13a, (3.4)] we obtain the estimate

(2.28) lim
j→∞

 sup
∂Xj

R,t

H

 ≤ f(R, t)

for some continuous function f (at surgery times the estimate holds
both for the pre- and post-surgery domain); this contradicts (2.26).

Finally, the curvature bounds for the derivatives of the second fun-
damental form follow from standard interior estimates. �

As mentioned in the introduction, the global curvature estimate
(Theorem 1.10) enables us to smoothly pass to global limits. It can
happen that the limit contains infinitely many surgeries, but we do get
a bound for the number of surgeries contained in any compact set.

Definition 2.29 (Generalized (α, δ)-flow). A generalized (α, δ)-flow is
a family of closed sets in RN that is an (α, δ)-flow when restricted to
any open set U ⊂ RN with compact closure.

Corollary 2.30 (Global convergence). There exists δ̄ = δ̄(α) > 0 with
the following property. If Kj is a sequence of (α, δj)-flows, δj ≤ δ̄,
in P (pj, tj, ηjH

−1(pj, tj)) with ηj → ∞, then, after passing to a sub-

sequence, the (α, δ)-flows K̂j that are obtained from Kj by parabolic
rescaling (p, t) 7→ (H(pj, tj)(p − pj), H

2(pj, tj)(t − tj)), restricting to
B(0,Λj) for a suitable sequence Λj →∞, and discarding the connected
components that don’t contain the origin, converge smoothly and glob-
ally to a limit K∞ = {K∞t ⊂ RN}t∈(−∞,0], which is a generalized (α, δ)-
flow with convex time slices.
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In Corollary 2.30 the precise meaning of convergence is as follows.

Definition 2.31 (Smooth convergence). LetKj be a sequence of (α, δj)-
flows, δj ≤ δ̄, with connected time slices, normalized such thatH(0, 0) =
1, and defined in P (0, 0,Λj) with Λj → ∞, and let K∞ = {K∞t ⊂
RN}t∈(−∞,0] be a generalized (α, δ)-flow (Definition 2.29). We say that
Kj converges to K∞ smoothly and globally, if Kj converges smoothly
to K∞ away from the regions modified by surgeries, and if near every
point p ∈ K∞,−t∞ that that is modified by a surgery at time t∞ the fol-
lowing condition is satisfied. There exists a sequence of surgery times
tj → t∞ in Kj such that if we consider the forward and backward

portions Kj+ = {Kj
t+tj − p}t≥0+ and Kj− = {Kj

t+tj − p}t≤0− , and like-

wise K∞± , then Kj± converges smoothly to K∞± in a forward respectively
backward parabolic neighborhood P±(0, 0, ε), for some ε > 0.

Proof of Corollary 2.30. Let δ̄ = δ̄(α) > 0 small enough such that the
previous estimates apply. Let Kj be a sequence of (α, δj)-flows (δj ≤ δ̄)
in P (0, 0, ηj) (ηj → ∞) with H(0, 0) = 1. Choose Λj → ∞ slowly
enough such that the conclusion of Theorem 1.10 holds for the flow
K′j, that is obtained from Kj by restricting to B(0,Λj) and discarding
the connected components that don’t contain the origin. We want to
find a subsequence of K′j that converges smoothly and globally.

We can assume that there is some R <∞ such that P (0, 0, R) con-
tains surgeries of Kj for large j, since otherwise [HK13a, Thm. 1.12,
Rmk. 3.5] allows us to pass to a smooth limit. Also, it must be the case
that the surgery scales sj = s](Kj) (see Definition 1.3) satisfy (2.27)
since otherwise Proposition 2.7 gives a contradiction with H(0, 0) = 1.

For each positive integer k, by Theorem 1.10, inequality (2.27), and
Proposition 2.5, the parabolic ball P (0, 0, k) contains at most some con-
trolled number N j

k of surgeries of K′j, and their necks are of controlled

size. After passing to a subsequence, we can assume that N j
k equals

some fixed number Nk, that the surgery times converge to some limiting
surgery times given by a set Tk ⊂ (−∞, 0] with at most Nk elements,
and that the (pre and post) surgery time slices converge smoothly.
Let Q ⊂ (−∞, 0] be a countable dense set that is disjoint from ∪kTk.
Arguing as in [HK13a, Proof of Thm. 1.12, Step 7], after passing to
a subsequence there are convex sets K∞t such that the domains Xj

R,t

converge smoothly to K∞t ∩ B(0, R) as j →∞, for all R <∞ and all
t ∈ Q. Finally, putting everything together, namely the convergence
at a dense set of times, the convergence at the surgery times, Theorem
1.10, Proposition 2.5 and the Andrews-condition, it follows that there
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exists a generalized (α, δ)-flow K∞ such that K′j → K∞ smoothly and
globally, where the meaning of convergence is as in Definition 2.31. �

3. Ancient solutions and standard solutions

We will now prove some structural results for uniformly 2-convex
ancient α-Andrews flows, and results for the evolution of standard caps.
These results will be used later in the blowup analysis in Section 4.

3.1. Structure of uniformly 2-convex ancient α-Andrews flows.
In this section, we consider smooth ancient α-Andrews flows {Kt ⊂
RN}t∈(−∞,T ), that are β-uniformly 2-convex, i.e. λ1 + λ2 ≥ βH for
some fixed β > 0. Examples to keep in mind are the cylinder, the bowl
soliton [AW94], the sphere and the Angenent ovals [Whi03, HH13].

We recall that ancient α-Andrews flows are always convex [HK13a,
Cor. 2.15], and in fact automatically smooth until they become extinct
[HK13a, Thm. 1.14]. We will now discuss two structural results that
are more specific to the uniformly 2-convex case. First, non ε-neck
points are at controlled distance from one another, unless the time
slice is compact and the points approximately realize the diameter.

Proposition 3.1 (Non-neck points). For all ε1, ε2 > 0 there exists
R = R(ε1, ε2, α, β) < ∞, such that if K is a β-uniformly 2-convex
ancient α-Andrews flow and p1, p2 ∈ ∂Kt are not strong ε1-neck points,
then at least one of the following holds:

(1) maxiH(pi)d(p1, p2) < R.
(2) diamKt ≤ (1 + ε2)d(p1, p2).

Second, as suggested by the bowl soliton, non-compact non-cylindrical
solutions have a single cylindrical end in a precise quantitative sense.

Proposition 3.2 (Quantitative one-endedness). For all ε1, ε2 > 0
there exists R = R(ε1, ε2, α, β) < ∞, such that if K is a β-uniformly
2-convex non-compact ancient α-Andrews flow and p ∈ ∂Kt is not
a strong ε1-neck point, then for any R > R, there exists a strong
ε2-neck point q ∈ ∂Kt ∩ S(p,RH−1(p, t)) such that the intersection
Kt ∩S(p,RH−1(p, t)) is contained in the ε2H

−1(q, t) neighborhood of a
cross-sectional disc of the solid ε2-neck at q.

For the proofs we need the following two lemmas.
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Lemma 3.3. If K is a uniformly 2-convex ancient α-Andrews flow that
becomes extinct at a finite time T <∞, then the final time slice KT is
a convex set of dimension at most 1.4

Proof of Lemma 3.3. This follows immediately by combining [HK13a,
Thm. 1.14] and [HK13a, Refinement of Thm. 1.15].5 �

Lemma 3.4. Suppose {Kj} is a sequence of β-uniformly 2-convex an-
cient α-Andrews flows, for which the time-slices Kj

0 Hausdorff-converge
to a 1-dimensional convex set K∞ containing p as an interior point.
Then for any δ > 0, any sequence of points pj ∈ ∂Kj

0 with pj → p
consists of strong δ-neck points for large j.

Remark 3.5. We point out that K∞ can be strictly smaller than the
final time slice K∞0 of the space-time Hausdorff limit Kj → K∞. For
example, if Kj is a blowdown sequence of the bowl soliton centered at
the tip (0, 0), then K∞ is a half-line, but K∞0 is the whole line (since
the limit K∞ is a shrinking cylinder that becomes extinct at time 0).

Proof of Lemma 3.4. We have H(pj) → ∞ as j → ∞, for otherwise
K∞ would be a domain with nonempty interior. Choose x± ∈ K∞ such
that p lies in the interior of the segment x−x+, and choose x±j ∈ K

j
tj

such that x±j → x±. The segments x−j pj and pjx
+
j are contained in Kj

tj

by convexity, and the angle between them converges to π. Parabolically
rescaling to normalize H(pj) and passing to a limit [HK13a, Thm.
1.12], we obtain an ancient uniformly 2-convex α-Andrews flow K that
contains a line. Using [HK13a, Lemma 3.14] it follows that K is a
round cylindrical flow. Thus pj is a strong δ-neck point for large j. �

Proof of Proposition 3.1. Assume towards a contradiction that there
are a sequence {Kj} of β-uniformly 2-convex ancient α-Andrews flows,
and sequences of points pj1, p

j
2 ∈ K

j
0 which are not strong ε1-neck points,

such that maxiH(pji )d(pj1, p
j
2) → ∞, and diamK0 > (1 + ε2)d(pj1, p

j
2)

for all j. Rescaling so that d(pj1, p
j
2) = 1 we get maxiH(pji )→∞. After

passing to a subsequence, we may assume that pji → p∞i for i = 1, 2,

and that K̂j converges, by [HK13a, Thm 1.14], to an ancient α-Andrews

flow K̂∞ which goes extinct at T = 0, where diam K̂∞ ≥ 1 + ε2. By
Lemma 3.3, at least one of the points p∞1 , p

∞
2 must be an interior point.

Thus, Lemma 3.4 gives a contradiction to the assumption that {pj1, p
j
2}

are not strong ε1-neck points. �

4Conjecturally, KT is either a point or the entire real line, c.f. [Whi03].
5It is of course possible to phrase this argument entirely in the smooth setting.
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Proof of Proposition 3.2. Assume towards a contradiction that there
are a sequence {Kj} of β-uniformly 2-convex non-compact ancient α-
Andrews flows, and a sequence Rj → ∞, such that (0, 0) ∈ ∂Kj

0 is

not a strong ε1-neck point, H(0, 0) = 1, and ∂Kj
0 ∩ S(0, Rj) does not

contain any point with the asserted property.

By non-compactness and convexity there is a ray in Kj
0 starting at

the origin. Let xj be the point where the ray intersects S(0, Rj), and

let qj be a point in Kj
0 ∩ S(0, Rj) with maximal distance from xj; thus

we have qj ∈ ∂Kj
0 . We claim that

d(xj ,qj)

Rj
→ 0; indeed, this follows

by rescaling by R−1
j and passing to a limit [HK13a, Thm 1.14], and

using the fact that the limit K∞ of the time zero slices is non-compact,
convex, and 1-dimensional (since it is contained in K∞0 , the time zero
slice of the space-time limit K∞, which is at most 1-dimensional by
Lemma 3.3). Using Lemma 3.4, we see that 0 must be an endpoint,
and thus that K∞ is a ray starting at 0.

After shifting xj to the origin, parabolically rescaling by d(xj, qj)
−1,

and passing to a subsequence, we obtain a new sequence K̂j which
strongly Hausdorff converges to an ancient α-Andrews flow K̂∞. Note
that K̂∞0 must actually be smooth, since a convex set of dimension 1

cannot contain 2 perpendicular segments. Since K̂∞ contains a line and
is uniformly 2-convex, it must be a round cylindrical flow, c.f. the proof
of Proposition 3.1. Moreover, (S(0, Rj), xj) converges after rescaling by
d(xj, qj)

−1 to a hyperplane orthogonal to the axis of the cylinder, and
we get a contradiction. �

Remark 3.6. The proof of Proposition 3.2 also works if the assumption
that the flow is noncompact is replaced by the assumption that there
exists a point in Kt with distance from p at least (1 + ε)R.

For later use (namely for the proof of Claim 4.6), we also prove that
the ratio between intrinsic and extrinsic distance is controlled.

Proposition 3.7 (Intrinsic distance). For every R < ∞, there is an
L = L(R,α) < ∞ such that for every ancient α-Andrews flow K and
every point (p, t) ∈ ∂Kt, any point x ∈ ∂Kt ∩ B(p,RH−1(p, t)) can be
joined to p by a path in ∂Kt of length at most LH−1(p, t).

Proof. If not, there is a sequence Kj of ancient α-Andrews flows with
H(0, 0) = 1, and a sequence of points xj ∈ ∂Kj

0 ∩B(0, R) that cannot

be joined to 0 by a path in ∂Kj
0 of length at most j. By [HK13a, Thm.

1.12] we can pass to a subsequential limit K∞ with convex (in particular
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connected) time slices. Since K∞0 cannot be a slab, the boundary ∂K∞0
is also connected, which gives a contradiction for j large enough. �

3.2. The standard surgery solution. We will first consider stan-
dard caps Kst as in Definition 2.2, that are α-Andrews and β-uniformly
2-convex for some values α = α(Kst), β = β(Kst) > 0. Afterwards, we
will construct a particular model of Kst that is suitable for surgeries.

Proposition 3.8. Let Kst be a standard cap as in Definition 2.2, with
α = α(Kst), β = β(Kst) > 0. There is a unique mean curvature flow
{Kt}t∈[0,1/2(N−2)) starting at Kst. It has the following properties:

(1) It is α-Andrews, convex, and β-uniformly 2-convex.
(2) There are continuous increasing functions H,H : [0, 1

2(N−2)
)→

R+ with H(t) → ∞ as t → 1
2(N−2)

such that H(t) ≤ H(p, t) ≤
H(t) for all p ∈ ∂Kt and t ∈ [0, 1

2(N−2)
).

(3) For every ε > 0 and τ < 1
2(N−2)

there exists an R = R(ε, τ) <∞
such that outside B(0, R) the flow {Kt}t∈[0,τ ] is ε-close to the
evolution of the solid round unit cylinder D̄N−1 × R.

(4) For every ε > 0, there exists a τ = τ(ε) < 1
2(N−2)

such that

every point (p, t) ∈ ∂Kt with t ≥ τ is ε-close to a β-uniformly
2-convex ancient α-Andrews flow.

Proof. The argument is closely related to the one for Ricci flow [Per03,
KL08, MT07], so we will give a brief, but complete, treatment.

Existence and uniqueness of a smooth solution on a maximal time
interval [0, T ) with bounded curvature on compact subintervals follows
from standard theory, see e.g. [EH91, Thm. 4.2], [CY07, Thm. 1.1].
Moreover, since A = Aij evolves by ∂tA = ∆A+ |A|2A, it follows from
the tensor-maximum principle, see e.g. [CCG+08, Thm. 12.34], that
convexity and β-uniform 2-convexity are preserved along the flow.

Assume (3) fails for some ε > 0, τ < T . Since we have uniform
curvature bounds on [0, τ ], we can pass to smooth limits. Thus, as a
pointed limit around a suitable sequence of points going to infinity we
get a mean curvature flow with bounded curvature that starts from a
round cylinder, but is not ε-close to the standard evolution of the round
cylinder; this contradicts uniqueness of the evolution of the cylinder.

Next, we recall from [ALM13, Thm. 2] that the quantities Z, Z
introduced there, satisfy the evolution inequalities

(3.9) ∂tZ ≥ ∆Z + |A|2Z, ∂tZ ≤ ∆Z + |A|2Z
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in the viscosity sense. Arguing as in [ALM13, Cor. 3], it follows that
the α-Andrews condition is preserved;6 this completes the proof of (1).

Assume T is strictly less than 1
2(N−2)

. Then, since we have shown that

(3) holds for τ < T , by the local curvature estimate [HK13a, Thm. 1.8,
Rem. 2.10], we obtain uniform bounds on the curvature near infinity;
hence the curvature has to blow up inside some compact set. Select a
sequence of points (pj, tj) with Qj = H(pj, tj) → ∞ and H ≤ 2Qj on
P (pj, tj, jQ

−1
j ). By convexity and since the curvature stays bounded

outside some compact set, the time slices Ktj contain some cones based

at pj with a definite lower bound on the cone angle. Rescaling by Q−1
j

and passing to a limit, we obtain an ancient α-Andrews flow with
nonvanishing asymptotic volume ratio; this contradicts [HK13a, Rem.
1.20]. Thus T = 1

2(N−2)
.

Since the solution is contained in a shrinking cylinder that becomes
extinct at T = 1

2(N−2)
, the Andrews condition implies that the curva-

ture must blow up everywhere as t→ 1
2(N−2)

, i.e. we get (2).

Assertion (4) follows from (2) and the global convergence theorem
[HK13a, Thm. 1.12].

Suppose {K ′t}t∈[0,T ′) is any smooth mean curvature flow starting at
Kst, without any a priori bound on curvature. Let t1 ≤ min{T ′, 1

2(N−2)
}

be the supremum of the numbers t such that K′ coincides with K con-
structed above. If t1 < min{T ′, 1

2(N−2)
}, then K̂t1 = Kt1 , and by pseu-

dolocality [CY07, Thm. 7.5] the curvature of K′ is bounded uniformly
for a time interval [t1, t2) for some t2 > t1, contradicting the unique-
ness theorem. Thus we obtain a unique solution without the bounded
curvature assumption. �

Proposition 3.10 (Existence of a suitable standard cap). Given any
α = (α, β, γ) ∈ (0, N − 2) × (0, 1

N−2
) × (0,∞), there exist Kst ⊂ RN ,

αst > α, βst > β, and δ̄ > 0 (all depending on α) with the following
properties:

(1) Kst is a standard cap (see Definition 2.2)
(2) Kst is αst-Andrews and βst-uniformly 2-convex.
(3) If δ ≤ δ̄, then it is possible to do surgery such that all properties

in Definition 2.4 hold, and such that in addition the α-Andrews
condition and the β-uniform 2-convexity are preserved.

6Since we already know that the solution is asymptotically cylindrical, there is
no subtle part at all about localizing the maximum principle.
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Proof. We can take Kst a smooth convex domain that is a small pertur-
bation of a solid half cylinder with a half ball attached. This obviously
satisfies (1) and (2). Let {Nt} be a strong δ-neck with optimal quality
δ small enough. Since the neck is strong by assumption, by standard
interior estimates we get uniform bounds for all derivatives of the cur-
vatures. It is then clear, that we can cut along the final time slice
of the neck and glue in two copies of Kst such that item (1), (2) and
(4) of Definition 2.4 hold, and such that the α-Andrews condition and
the β-uniform 2-convexity are preserved also. The only somewhat non-
obvious point is item (3) of Definition 2.4, but as observed by Hamilton
[Ham97] (see also [KL08, Sec. 72] or [HS09, p. 155]) this can be ensured
by bending the cylinder slightly inwards. �

4. Existence of mean curvature flow with surgery

We keep the parameters α = (α, β, γ) fixed for this section.

4.1. The canonical neighborhood theorem. In the proof of our
main existence result, Theorem 1.21, we will consider sequences of flows
where the H-parameters degenerate suitably. We will now prove the
following crucial self-improvement phenomenon: If the surgeries are
done on necks, where we a priori only know that they have at least
some small but fixed quality δ̄, then the degeneration of the other
parameters actually forces them to be more and more precise. In fact,
this is just a reformulation of the canonical neighborhood theorem.

Theorem 4.1 (Self-improvement of necks). There exists a constant
δ̄ = δ̄(α) > 0 with the following property. If Kj is a sequence of
(α, δj,Hj)-flows (δj ≤ δ̄) with Hj

trig/H
j
neck, H

j
neck/H

j
th → ∞, and if

(pj, tj) ∈ ∂Kj is a sequence of points with H(pj, tj) → ∞, then af-
ter parabolic rescaling to normalize H at (pj, tj) and passing to a sub-
sequence we have smooth convergence to either (a) a β-uniformly 2-
convex ancient α-Andrews flow, or (b) the evolution of a standard
surgery cap preceded by the evolution of a round cylindrical flow.7

Remark 4.2. Note that Theorem 4.1 is equivalent to Theorem 1.22.

Outline of the proof. The proof amounts to classifying the limits, whose
existence is guaranteed by the global convergence result (Corollary
2.30). If the limit doesn’t contain surgeries, then it must be a β-
uniformly 2-convex ancient α-Andrews flow. If the limit contains a

7In case (b), the meaning of smooth convergence is as in Definition 2.31; also,
the notion of ε-closeness in Theorem 1.22 should be interpreted accordingly.
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surgery, then we argue, using in particular part (2) of Definition 1.17,
the assumption that the curvature ratios degenerate, and the global
curvature estimate (Theorem 1.10), that the limit must contain a line.
It is then easy to conclude that there is in fact only one surgery, and
that the limit must have the structure as claimed. Finally, we observe
that potential other connected components get cleared out.

Proof. Let δ̄ = δ̄(α) > 0 small enough such that the estimates from the
previous sections apply. Since the initial domain has principal curva-
tures bounded by γ/α, the curvature remains bounded for a definite

amount of time. Thus, the rescaled flows K̂j are defined on parabolic
balls P (0, 0, ηj) with ηj → ∞ as j → ∞. By Corollary 2.30, after
passing to a subsequence and discarding connected components that
don’t contain the origin, K̂j → K̂ smoothly and globally, where the
limit K̂ is a generalized (α, δ̄)-flow with convex – and thus in particular
connected – time slices.

If K̂ doesn’t contain surgeries, then it is a β-uniformly 2-convex
ancient α-Andrews flow. Otherwise, let T ∈ (−∞, 0] be a surgery time

and let N̂ ⊂ K̂−T be a surgery neck of quality δ̄ sitting in the backward
time slice.

Claim 4.3. K̂−T \ N̂ has two unbounded components.

Proof of Claim 4.3. Note that N̂ is the limit of some solid δ̄-necks N̂ j

in the approximators K̂j. By part (2) of Definition 1.17, we can find

a curve γj in the approximator connecting {H = Ĥtrig} and {H ≤
Ĥth}, such that it passes through N̂ j but avoids all other δ̄-necks of
the disjoint collection. We can assume that the curve γj enters and

leaves N̂ j exactly once (if this isn’t already the case, we can look at
the earliest entry point and the latest exit point and change γj for

intermediate times to a curve within N̂ j). Note furthermore that γj
must intersect each of the two boundary discs of the cylinder exactly
once (since otherwise we could modify it within N̂ j into a curve avoiding
all necks completely, contradicting the minimal separation property).

Let xj be the center of N̂ j. By the global curvature estimate (Theorem
1.10), for every Λ <∞ we have

(4.4) Ĥ(x)/Ĥneck ≤ C(Λ) <∞ whenever d(x, xj) ≤ ΛĤ−1
neck.

By the Andrews condition and the local curvature estimate (Theorem
1.6), we also have a lower bound

(4.5) Ĥ(x)/Ĥneck ≥ c(Λ) > 0 whenever d(x, xj) ≤ ΛĤ−1
neck.
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SinceHj
trig/H

j
neck, H

j
neck/H

j
th →∞, given any Λ <∞, for j large enough

the curve γj must start and end outside B(xj,ΛĤ
−1
neck). Thus, K̂−T \ N̂

has at least two unbounded components. Since K̂−T is connected, K̂−T \
N̂ must have exactly two components. �

Since K̂−T has two ends (see Claim 4.3), it contains a line, and by
monotonicity of sets all prior time slices contain this line also. At each
fixed time the convex set splits off an R-factor, and thus there cannot
be any other surgeries. It follows that K̂ is a round cylindrical flow for
t < T (c.f. the proof of Lemma 3.4). Similarly, by the uniqueness of

the standard solution (see Proposition 3.8), K̂ must be the evolution
of the standard cap for t > T .

Finally, arguing as in [HK13a, Proof of Cor. 2.15] it follows that

potential other connected components are cleared out, i.e. K̂j → K̂
smoothly and globally without the need of discarding connected com-
ponents that don’t contain the origin. �

4.2. Existence of (α, δ,H)-flows. We can now prove our main exis-
tence theorem for mean curvature flow with surgery, Theorem 1.21.

Outline of the proof. We assume towards a contradiction that we have
a sequence Kj of flows with degenerating H-parameters that can be
defined only on some finite maximal time intervals [0, Tj]. For j large,
to obtain a contradiction, we want to argue that we can perform surgery
and thus continue the flow beyond Tj. This amounts to finding suitable
collection of δ-necks. To this end, we first prove Claim 4.6 which shows
that the thick and the trigger part in Kj

Tj
can be separated by a union

of balls centered at boundary points with H(p) = Hneck and radius
comparable to H−1

neck. We then consider a minimal collection of balls
with the separation property and prove that their centers are actually
centers of strong δ̂-necks for any δ̂, see Claim 4.7. It is then easy to
conclude the proof.

Proof of Theorem 1.21. Let δ̄ = δ̄(α) > 0 small enough such that all
previous estimates and also the argument in the last line of the present
proof apply. By the maximum principle, the α-Andrews condition and
β-uniform 2-convexity are preserved along smooth mean curvature flow
[And12, Hui84]. We assume towards a contradiction that for some
δ ≤ δ there is no constant Θ(δ) < ∞ such that the assertion of the
theorem holds. Then there is a sequence Kj of (α, δ,Hj)-flows with
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Hj
trig/H

j
neck, H

j
neck/H

j
th, H

j
neck → ∞, that can only be defined on a fi-

nite maximal time interval Ij. If some Ij were a half-open interval

[0, Tj), then the fact that H ≤ Hj
trig would allow us to pass to a limit

as t → Tj, so that [0, Tj) is not maximal; therefore Ij = [0, Tj] for
some Tj < ∞. Moreover, it must be the case that we cannot find a

minimal collection of strong δ-necks in Kj
Tj

as required by the defini-

tion of an (α, δ,Hj)-flow (Definition 1.17), since otherwise we could cut
along them (Proposition 3.10) and run smooth MCF for a short time,
contradicting the maximality of Tj.

8 Therefore our goal is to produce
such a collection for large j, to obtain a contradiction.

Let Ij be the set of points p ∈ ∂Kj
Tj

with H(p) > Hj
neck, and let Jj

be the set of points p ∈ ∂Kj
Tj

with H(p) = Hj
neck.

Claim 4.6 (Separation property). There is a constant C = C(α) ∈
(2N,∞), such that the union Vj =

⋃
p∈Jj B(p, CH−1(p)), for j large

enough, separates {H = Hj
trig} from {H ≤ Hj

th} in the domain Kj
Tj

.

Proof of Claim 4.6. We suppress j in the notation. Fix C ∈ (2N,∞) to
be determined later, and let U =

⋃
p∈I B(p, 2NH−1(p)). To establish

the claim, it suffices to prove that U \ V is open and closed in KT \ V .
Indeed, for j large enough we have (c.f. (4.4) and (4.5)) that {H =
Htrig} ⊆ U \ V and {H ≤ Hth} ⊆ KT \ (U ∪ V ). Thus, once we
know that U \ V ⊆ KT \ V is open and closed, it follows that the sets
{H = Htrig} and {H ≤ Hth} lie in two different components of KT \V .

Starting with the obvious part, the set U is open since it is a union
of open sets. Thus, U \ V = U ∩ (KT \ V ) is open in KT \ V .

Suppose now x ∈ U \ V lies in the closure of U \ V ⊆ KT \ V .
We want to show that x ∈ U \ V . There are sequences {xk} ⊂ U ,
{pk} ⊂ {H > Hneck} such that xk → x and xk ∈ B(pk, 2NH

−1(pk)).
Passing to subsequences, we may assume that pk → p. Then H(p) ≥
Hneck. If H(p) = Hneck, then x ∈ B(p, CH−1(p)) ⊆ V since C > 2N ; a

contradiction to the assumption that x ∈ U \ V ⊆ KT \ V . Hence we
have H(p) > Hneck. Let y ∈ ∂KT be a point nearest x. Then d(y, x) ≤
(N − 1)H−1(y), in particular x ∈ B(y, 2NH−1(y)). If H(y) > Hneck,
we obtain that x ∈ U and thus that x ∈ U \ V , what we wanted to
show. If H(y) = Hneck, we obtain x ∈ V ; a contradiction.

8In particular, if {H(·, Tj) ≤ Hj
th} = ∅ everything is discarded at t = Tj , and

thus the flow can be continued forever as empty flow, contradicting maximality.
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Finally, let us rule out the remaining case H(y) < Hneck. Since y is a
boundary point nearest to x, we have d(y, p) ≤ 2d(x, p) ≤ 4NH−1(p).
Thus, by Proposition 3.7, Proposition 3.8 and Theorem 4.1 there is
a C1 = C1(α) < ∞ such that, for j large enough, y and p lie in the
same connected component of B(p, C1H

−1(p)) ∩ ∂KT . Since H(y) <
Hneck < H(p), there is a z ∈ B(p, C1H

−1(p))∩∂KT with H(z) = Hneck.
Note that d(z, x) ≤ d(z, p) + d(p, x) ≤ (C1 + 2N)H−1(p), and thus

H(z)d(z, x) ≤ (C1 + 2N)H(z)
H(p)

≤ C, for some C = C(α) < ∞ by

Theorem 1.10. This shows x ∈ B(z, CH−1(z)) ⊆ V ; a contradiction.
�

Let Ĵj ⊆ Jj be a minimal (and thus finite) subset such that the
union of balls ∪p∈ĴjB(p, CH−1(p)) has the separation property.

Claim 4.7 (Strong neck point property). Given any δ̂ > 0, for j large

enough all points in Ĵj are strong δ̂-neck points.

Proof of Claim 4.7. Suppose that for all j one of the points pj ∈ Jj is

not a strong δ̂-neck. By Theorem 4.1, parabolically rescaling to make
H(pj, Tj) = 1 and passing to a subsequence K̂j, we get a limit ancient

(α, δ)-flow K̂ with basepoint (p, t) = (0, 0) ∈ ∂K̂ that is either (a)
a β-uniformly 2-convex ancient α-solution, or (b) an evolution of the
standard surgery cap preceded by a round shrinking cylinder. In case
(a), since the balls separate and the curvature ratios tend to infinity,

the limit K̂ is clearly non-compact. Consider a δ̂-neck N̂ at a point
q at t = 0 provided by Proposition 3.2. Here we chose q far enough
away to ensure that N̂ and B(p, 2C) are disjoint. This neck N̂ is the

limit of some δ̂-necks N̂ j in the approximators. As in the proof of
Claim 4.3, let γj be a curve in the approximators that connects the
trigger and the thick part and passes through B(pj, C), but avoids
all other balls from the minimal collection of separating balls. Always
assuming j is large enough, we can short circuit γj inside N̂ j. After this
modification, γj misses B(pj, C). It also still misses all other balls from

our minimal collection, unless N̂ j itself intersects a ball B′ = B(p′j, C)
for some p′j ∈ Jj\{pj}. This however is impossible, because in this case
one of the complementary components would have uniformly bounded
diameter. Thus, we get a contradiction with the separation property
of Ĵj. Finally, in case (b), by Proposition 3.8 we get a contradiction
similar to the one in case (a). �
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By Claim 4.7, for large j, every p ∈ Ĵj is a strong δ-neck point.
These necks are disjoint for large j, since otherwise again by Claim 4.7
two intersecting δ-necks would lie in a single δ̂-neck for δ̂ � δ, which is
impossible by minimality of Jj. Thus, we have a minimal collection of
disjoint strong δ-necks with the separation property (since C(α) > 2N
and δ̄ is small enough); this gives the desired contradiction. �

4.3. Further properties. Finally, for convenience of the reader we
explain how Corollaries 1.25, 1.26 and Proposition 1.27 are obtained
as easy consequences (in fact, the proof of Proposition 1.27 could have
been given right after stating the axioms of an (α, δ,H)-flow).

Proof of Corollary 1.25. Fix ε1 = ε1(N) � 1 such that the gluing
argument below works (Claim 4.8). Fix ε̄� min{ε1, R

−1
1 , R−1

2 }, where
Ri = R(ε1/2, ε1/2, α, β) are the constants from Proposition 3.1 and
Proposition 3.2, respectively, and let R3 = R3(ε̄, τ(ε̄)) be the constant
from Proposition 3.8. We will prove that the corollary holds for any
ε� min{ε̄, R−1

3 }.
Let C be a discarded component, and consider the (possibly empty)

set I ⊆ ∂C of ε1-neck points.

Claim 4.8. There is a set N , I ⊆ N ⊆ C, such that for each q ∈ N
there is a point p ∈ I with d(p, q) ≤ 100H−1(p), and such that either
N = C ∼= D̄N−1 × S1 or N ( C and each component of N has the
topology of D̄N−1 × I, for some open interval I.

Proof of Claim 4.8. Let I ′ ⊆ ∂C be a maximal collection of ε1-neck
points such that for any pair p, q ∈ I ′ the separation between them
is at least 50 min{H−1(p), H−1(q)}. Note that each p ∈ I ′, being an
ε1-neck point for ε1 small, comes with a cylindrical neighborhood of
length much longer than 50H−1(p). Following this cylinder in each
direction, we see that there are 0, 1 or 2 neighboring points p′ ∈ I ′,
where by neighboring point we mean a point of I ′ closest to p in a
direction of the cylinder and at distance at most 110H−1(p). Let Cp
be the open core of a neck at p going say 75% of the distance towards
each neighboring point (and going say 10H−1(p) in directions without
neighboring point), and let N = ∪p∈I′Cp. By construction, the set N is
built by gluing together necks with intersection multiplicities at most
2 and substantial overlap. Since ε1 is small enough, it follows that the
connected components of N must be either D̄N−1 × S1 or D̄N−1 × I.
Since C is connected, this implies the claim. �
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If N = C, then C has the topology of D̄N−1 × S1, and we are done.
If N = ∅ then, always assuming ε is sufficiently small, it follows from
Theorem 1.22, Proposition 3.1 and Proposition 3.8, that C is modeled
on a compact ancient α-solution of controlled geometry, and thus that
is has the topology of D̄N . Assume now ∅ ( N ( C, and let N ′ ⊆ N
be a component of maximal diameter.

We first consider the case diamN ′ ≤ 10RH−1(p) for some ε1-neck
point p ∈ I∩N ′, where R = max{R1, R2}. If the ε-model at p provided
by Theorem 1.22 were the cylinder, then the connected component of I
containing p would have diameter larger than 1

ε
H−1(p), contradicting

the assumption that diamN ′ � 1
ε
H−1(p) and I ⊆ N . If the ε-model at

p were a noncompact α-solution or a compact α-solution with diameter
much larger than RH−1(p), then we could apply Proposition 3.2 (see
also Remark 3.6) at a point p′ ∈ ∂N ′ ∩ ∂C, which by definition is
not in I and has curvature comparable to p by Theorem 1.10, and
would again get, c.f. Claim 4.8, a much longer ε1-neck at controlled
distance, contradicting the assumption that N ′ is maximal. If the ε-
model at p were a standard solution, Proposition 3.8 would give a
similar contradiction. Thus, the ε-model at p must be a compact α-
solution of controlled size, and thus C has the topology of D̄N .

Let us now consider the remaining case that diamN ′ > 10RH−1(p)
for all ε1-neck points p ∈ I ∩N ′. Since for each q ∈ N there is a point
p ∈ I with d(p, q) ≤ 100H−1(p) and since ε1 is small, it follows that

(4.9) diamN ′ > 9RH−1(p)

actually holds for all points p ∈ N ′ ∩ ∂C. Select points p± ∈ ∂N ′ ∩ ∂C
on the boundary circles of the neck N ′. By definition we have p± /∈ I.
We now apply Theorem 1.22, Proposition 3.2 and Proposition 3.8 with
center p±. If we are not in case (3) of Proposition 3.8, then we get
caps C± with cylindrical collars of length say R = 2R. By (4.9) the
caps are disjoint, and since R = 2R their collars intersect N ′ with
substantial overlap. Thus, the conclusion is that C has the topology of
a ball D̄N . Finally, if we are in case (3) of Proposition 3.8, then we see
that actually diamN ′ � max{R1, R2, R3}H−1(p) and thus the above
argument applies. �

Proof of Corollary 1.26. Let K0 be a smooth compact 2-convex domain
in RN . By Remark 1.16 it is α-controlled for some α. We choose
constants as in Remark 1.24. By Theorem 1.21 there exists an (α, δ,H)-
flow K = {Kt}t∈[0,∞) starting at K0. Since K becomes extinct in finite
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time (Remark 1.19), by Corollary 1.25 it provides a decomposition of
K0 into a finite connected sum of solid tori D̄N−1×S1, as claimed. �

Proof of Proposition 1.27. It suffices to prove the following claim:

Claim 4.10 (c.f. [Lau13, Prop. 2.2]). For every r > 0 there is a j0 <
∞, such that if j ≥ j0, t is a surgery time of Kj, and B(p, r) ⊆ Kj,−

t ,
then B(p, r) ⊆ Kj,+

t .

Proof. Since B(p, r) ⊆ Kj,−
t clearly doesn’t fit into a very thin and long

neck, c.f. Definition 2.4, we must have B(p, r) ⊆ Kj,]
t , provided δ̄ << 1

and j is sufficiently large. If B(p, r) was contained in a discarded
component, then we could find a boundary point with H ≤ (N−1)r−1.
However, by Definition 1.17 the discarded components have H > Hj

th

everywhere. Thus, B(p, r) ⊆ Kj,+
t for j large enough. �

As explained in [Lau13], the corollary now follows easily. �

Remark 4.11. The same argument applies to more general (α, δ)-flows
Kj = {Kj

t ⊂ RN}t∈[0,∞) with fixed α-controlled initial condition K0,
assuming only that s](Kj) → 0, δ ≤ δ̄ � 1, and that the minimum of
the mean curvature of the discarded components goes to infinity.

Appendix A. One-sided minimization

Detailed proof of Proposition 2.9. For convenience of the reader, we
now explain the details of the argument of White [Whi00, Sec. 3] and
Head [Hea13, Sec. 5]. Let Kt0 , Kt1 and B̄ be as in the statement of the
proposition. If t1 is a surgery time, we first consider the case that Kt1

is interpreted as K−t1 . By standard weak compactness and weak lower
semicontinuity of perimeter, there is a set X ⊂ RN that minimizes the
perimeter (in the following ∂ stands for the reduced boundary)

(A.1) PerB̄(X) = |∂X ∩ B̄|,
among all sets of locally finite perimeter satisfying

(A.2) Kt1 ⊆ X ⊆ Kt0 and X \ B̄ = Kt1 \ B̄.
We consider the support of X, which is the closed set

(A.3) spt(X) = {x ∈ RN | |B(x, r) ∩X| > 0 for all r > 0} .
We have to show that spt(X) ⊆ Kt1 . Let t̄ ∈ [t0, t1] be the supremum
of the times t ∈ [t0, t1] such that spt(X) ⊆ K−t . Since ∩t<t̄K−t = K−t̄ ,
we have spt(X) ⊆ K−t̄ . Thus we are done if t̄ = t1, so we assume
towards a contradiction that t̄ < t1.
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The idea is now to consider suitable mean convex domains D ⊂ RN

with spt(X) ⊆ D (or at least such that spt(X)∩B(x, r) ⊆ D∩B(x, r))
and to obtain a contradiction with the ‘maximum principle’ at any
point x ∈ spt(X) where ∂D and ∂X touch. To make this rigorous we
use the following standard fact from geometric measure theory:

Lemma A.4. Suppose D ⊂ RN is a domain with smooth boundary,
x ∈ ∂D \K−t1 is a boundary point at which the mean curvature of ∂D
is strictly positive, and that for some r > 0 we have the inclusions

spt(X) ∩B(x, r) ⊆ D ∩B(x, r) ⊆ B̄ ∩B(x, r) .

Then x 6∈ spt(X).

Proof. If x ∈ spt(X), then since the open set B(x, r) \ D lies in
RN \ spt(X), it follows that x belongs to the support of the perimeter
measure PerB̄(X). Using a slight deformation of ∂D, one can construct
a foliation of a neighborhood of x by mean convex hypersurfaces, such
that one of the leaves has strict one-sided exterior contact with D at x.
Using a strictly area decreasing deformation one gets a contradiction
to the fact that X is minimizing. �

For every x ∈ ∂B̄ \K−t1 , we may apply Lemma A.4 with D = B̄ to
conclude that x 6∈ spt(X). Similarly, for every x ∈ ∂K−t̄ \ ∂K

−
t1 , we

may apply the lemma with D = K−t̄ , to conclude that x 6∈ spt(X). If
t̄ is not a surgery time, this contradicts the maximality of t̄ < t1.

If t̄ is a surgery time, consider the post-surgery domain K]
t̄ ⊆ K−t̄

(see Definition 1.3). Suppose p is the center of a surgery neck at time t̄

and scale s such that B(p, 5Γs)∩ (K−t̄ \K
]
t̄ )∩ B̄ 6= ∅. Suppose spt(X)∩

B(p, 10s) 6= ∅. Since spt(X) ⊆ K−t̄ , when Γ is sufficiently large, we may
find a mean convex surface (e.g. a slight deformation of the catenoid)
that has 1-sided contact with spt(X) at some point x ∈ B(p,Γs)∩(K−t̄ \
K]
t̄ ). By assumption we have x ∈ B̄, and as argued above, we have

x ∈ B. Then Lemma A.4 gives a contradiction. Therefore spt(X) ∩
B(p, 10s) = ∅. By one-sided contact with halfspaces (Lemma A.4) and

almost convexity of the caps, we get that K]
t̄ must be contained in thin

neighborhoods of the caps. Since these thin neighborhoods are foliated
by mean convex sets, namely the level sets of the distance function, we
conclude that spt(X) ⊆ K]

t̄ , again by Lemma A.4. It follows from the
minimality of X that spt(X) ∩C = ∅ for any connected component C

of K]
t̄ which is thrown away to form K+

t̄ . Thus spt(X) ⊆ K+
t̄ . Finally,

since t̄ < t1, by Lemma A.4 we get that spt(X) ∩ ∂K+
t̄ = ∅. Since
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Kt → K+
t̄ as t→ t̄+, it follows that spt(X) ⊆ K−t for some t > t̄. This

contradicts the definition of t̄, and we are done.

A similar argument applies if Kt1 is interpreted as K]
t1 or K+

t1 , except
that in the case that t̄ = t1, one repeats the above argument once more
to see that spt(X) ⊆ K]

t1 respectively spt(X) ⊆ K+
t1 . �

Remark A.5 (Elementary argument). We now sketch an alternative
and more elementary argument. By [HK13a, Rmk 2.6] it is enough to
construct a vector field X with divX ≥ 0, |X| ≤ 1 and X equal to
the outward unit normal on ∂Kt. In the case without surgeries and
discarded components, such a vector field is given by the outward unit
normal of the mean convex foliation. In our case, the vector field given
by the outward unit normal might not be defined everywhere, so we
have to extend it. We can take care of the discarded pieces by defining
X as the negative gradient of the distance to the boundary.9 We can
take care of the surgeries, by interpolating between the vector field
of the cylinder and the vector field of the cap, using a slowly varying
cutoff function along the axis of the cylinder. Due to the formula

(A.6) div(ϕ1X1 + ϕ2X2)

= ϕ1div(X1) + ϕ2div(X2) + 〈∇ϕ1, X1〉+ 〈∇ϕ2, X2〉,

we can do this preserving positive divergence, provided the cap sepa-
ration parameter Γ is large enough.
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