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1. IntroductionAccording to the classical uniformization theorem, every smooth Riemannian sur-face Z homeomorphic to the 2-sphere is conformally di�eomorphic to S2 (the unitsphere in R3 equipped with the Riemannian metric induced by the ambient Euclid-ean metric). The availability of a similar uniformization procedure for spheres with a\generalized conformal structure" is highly desirable, in particular in connection withThurston's hyperbolization conjecture. This was addressed by Cannon in his combi-natorial Riemann mapping theorem [7]. He considers topological surfaces equippedwith a sequence of \shinglings"|a combinatorial structure that leads to a notionof approximate conformal moduli of rings. He then �nds conditions that imply theexistence of coordinate systems on the surface that relate these combinatorial modulito classical analytic moduli in the plane.In this paper we develop a uniformization theory for a di�erent type of generalizedconformal structure. We start with a metric space Z homeomorphic to S2 and ask forconditions under which Z can be mapped onto S2 by a quasisymmetric homeomor-phism. The class of quasisymmetries is an appropriate analog of conformal1 mappingsin a metric space context. Quasisymmetric homeomorphisms also arise in the theoryof Gromov hyperbolic metric spaces|quasi-isometries between Gromov hyperbolicspaces induce quasisymmetric boundary homeomorphisms. Our setup has the advan-tage that we can exploit recent notions and methods from Analysis on metric spaces.Our main result, Theorem 11.1, gives a necessary and su�cient condition for Z to bequasisymmetrically equivalent to S2. Since the formulation of this theorem requiressome preparation, we postpone stating it until Section 11 (see Corollary 11.4 for amore accessible special case). In this introduction we formulate two consequences ofour methods that are easier to state. The �rst result answers a question of Heinonenand Semmes a�rmatively (cf. [16], Question 3, and the discussion in [28], Section 8)and was the original motivation for this paper.�Supported by a Heisenberg fellowship of the Deutsche Forschungsgemeinschaft.ySupported by NSF grant DMS-9972047.1A homeomorphism between compact Riemannian manifolds is quasisymmetric i� it is quasicon-formal. There seems to be no hope of a general existence theory for conformal mappings beyondthe Riemannian setting: by any reasonable de�nition, two norms on R2 de�ne locally conformallyequivalent metrics i� the corresponding normed spaces are isometric.1



Theorem 1.1. Let Z be an Ahlfors 2-regular metric space homeomorphic to S2. ThenZ is quasisymmetric to S2 if and only if Z is linearly locally contractible.We recall that a metric space Z is Ahlfors Q-regular if there is a constant C > 0 suchthat the Q-dimensional Hausdor� measure HQ of every open r-ball B(a; r) satis�esC�1rQ � HQ(B(a; r)) � CrQ;when 0 < r � diam(Z). A metric space is linearly locally contractible if there is aconstant C such that every small ball is contractible inside a ball whose radius is Ctimes larger; for closed surfaces linear local contractibility is equivalent to linear localconnectedness, see Section 2.The statement of Theorem 1.1 is quantitative in a sense that will be explainedbelow (see the comment after the proof of Theorem 1.1 in Section 10).The problem considered here is just a special case of the general problem ofcharacterizing a metric space Z up to quasisymmetry. Particularly interesting arethe cases when Z is Rn or the standard sphere Sn. Quasisymmetric characterizationsof R and S1 have been given by Tukia and V�ais�al�a [33]. If n � 3 then results bySemmes [27] show that natural conditions which one might expect to imply that ametric space is quasisymmetric to Sn (or Rn), are in fact insu�cient; at present thesecases look intractable.A result similar to Theorem 1.1 has been proved by Semmes [24] under the ad-ditional assumption that Z is a smooth Riemannian surface. The hypothesis of 2-regularity in the theorem is essential. A metric 2-sphere containing an open setbilipschitz equivalent to the unit disk B(0; 1) � R2 with the metricd�((x1; y1); (x2; y2)) = jx1 � x2j+ jy1 � y2j�;where 0 < � < 1, will never be quasisymmetrically homeomorphic to S2, see [31, 36].We also mention that the construction of Laakso [17] provides examples of Ahlfors2-regular, linearly locally contractible 2-spheres which are not bilipschitz homeomor-phic to S2; this shows that one cannot replace the word \quasisymmetric" with \bilip-schitz" in the statement of the theorem. Finally we point out that the n-dimensionalanalog of Theorem 1.1 is false for n > 2 according to the results by Semmes [27]: forn > 2 there are linearly locally contractible and n-regular metric n-spheres which arenot quasisymmetric to the standard n-sphere. However, if an n-regular n-sphere ad-mits an appropriately large group of symmetries, then it must be quasisymmetricallyhomeomorphic to the standard n-sphere, see [2].Theorem 1.1 is closely related to a theorem of Semmes [26] which shows thatan Ahlfors n-regular metric space that is a linearly locally contractible topologicaln-manifold satis�es a (1; 1)-Poincar�e inequality (see Section 7) and hence has niceanalytic properties. His result shows in particular that a 2-sphere as in our theoremsatis�es a Poincar�e inequality. We will not use this result, since it does not substan-tially simplify our arguments, and in fact our theorem together with a result by Tyson[34] gives a di�erent way to establish a Poincar�e inequality in our case. Our methodscould also easily be adapted to show this directly.From an analytic perspective it is interesting to consider metric spaces that satisfyPoincar�e inequalities by assumption (cf. [15, 26, 12, 3, 4, 18]). For an AhlforsQ-regular2



metric space a (1; Q)-Poincar�e inequality is equivalent to the Q-Loewner property asintroduced by Heinonen and Koskela [15], see Section 7. It turns out that in dimension2, this is a very restrictive condition:Theorem 1.2. Let Q � 2 and Z be an Ahlfors Q-regular metric space homeomorphicto S2. If Z is Q-Loewner, then Q = 2 and Z is quasisymmetric to S2.By the result of Semmes [26] the space Z will actually satisfy a (1; 1)-Poincar�e in-equality.The analog of Theorem 1.2 in higher dimensions is false|one has the examplesof Semmes cited above. Also, the standard Carnot metric on the 3-sphere is Ahlfors4-regular and 4-Loewner. In view of these examples one can summarize Theorem 1.2by saying that there are no exotic geometric structures on S2 that are analyticallynice.Another source of examples of Ahlfors regular, linearly locally contractible metricspheres is the theory of Gromov hyperbolic groups. The boundary @1G of a hyper-bolic group G has a natural family of Ahlfors regular metrics which are quasisym-metric to one another by the identity homeomorphism. When @1G is homeomorphicto a sphere, then these metrics are all linearly locally contractible. Cannon [7] hasconjectured that when @1G is homeomorphic to S2, then G admits a discrete, cocom-pact, and isometric action on hyperbolic 3-space H 3 . This conjecture is a major pieceof Thurston's hyperbolization conjecture for 3-manifolds2. By a theorem of Sullivan[30] Cannon's conjecture is equivalent to the following conjecture:Conjecture 1.3. If G is a hyperbolic group and @1G is homeomorphic to S2, then@1G (equipped with one of the metrics mentioned above) is quasisymmetric to S2.It is an interesting problem (especially in view of Theorem 1.2) to �nd additionalassumptions on the hyperbolic group G wich imply that @1G is quasisymmetricto a space with \nice" analytic properties, i.e., to a Q-regular metric space with a(1; Q)-Poincar�e inequality. A natural question is whether this is always true if @1Gis connected and has no local cut points. By work of Bestvina-Mess, Bowditch,and Swarup, this last property of @1G is equivalent to the property that the Gromovhyperbolic groupG is non-elementary and none of its �nite index subgroups (includingitself) virtually splits over a virtually cyclic group.Recently, M. Bourdon and H. Pajot answered this question in the negative [5]:they found examples of in�nite hyperbolic groups G such that @1G is connected andhas no local cut points, but such that @1G is not quasisymmetric to any Q-regularmetric space satisfying a (1; Q)-Poincar�e inequality.We now turn to the problem of �nding necessary and su�cient conditions for ametric space to be quasisymmetric to S2. It follows easily from the de�nitions thata compact metric space Z which is quasisymmetric to a doubling (respectively lin-early locally contractible) metric space is itself doubling (respectively linearly locallycontractible). Therefore any metric space quasisymmetric to a standard sphere is2The Hyperbolization Conjecture is part of the full Geometrization Conjecture. It says that aclosed, irreducible, aspherical 3-manifold admits a hyperbolic structure provided its fundamentalgroup does not contain a copy of Z�Z. 3



doubling and linearly locally contractible. In Section 10 we give two di�erent nec-essary and su�cient conditions for a metric 2-sphere to be quasisymmetric to S2,Theorems 10.1 and 10.4. Roughly speaking, Theorem 10.4 says that a doubling, lin-early locally contractible metric 2-sphere Z is quasisymmetric to S2 if and only ifthe following condition is true. If one considers a sequence of �ner and �ner \graphapproximations" of Z, then the corresponding combinatorial moduli of any pair ofcontinua (E; F ) are small provided the relative distance �(E; F ) as de�ned in (2.9)is big. Theorem 10.1 is similar, except that one assumes instead that if the moduliof the pair (E; F ) are small then the relative distance �(E; F ) is big. We refer thereader to Section 10 for the precise statements of these two theorems.The problem of �nding necessary and su�cient conditions for a metric sphere tobe quasisymmetric to S2 has some features in common with Cannon's work [7] on thecombinatorial Riemann mapping theorem. We will discuss this in Section 11. In thissection we prove Theorem 11.1 which is an improvement of Theorem 10.4. One canuse Theorem 11.1 to verify that certain self-similar examples are quasisymmetric toS2. We also formulate another necessary and su�cient condition in Corollary 11.4;readers may �nd the statement of Corollary 11.4 more accessible than Theorems 10.1,10.4, and 11.1, as it does not rely on the language of K-approximations.We now outline the proofs of Theorems 1.1 and 1.2.The �rst step is to use the linear local contractibility to produce an embeddedgraph with controlled geometry which approximates our space Z on a given scale.This can actually be done for any doubling, linearly locally connected metric space.If Z is a topological 2-sphere, then we can obtain a graph approximation which is, inaddition, the 1-skeleton of a triangulation. In the second step we apply a uniformiza-tion procedure. We invoke the circle packing theorem of Andreev-Koebe-Thurston,which ensures that every triangulation of the 2-sphere is combinatorially equivalentto the triangulation dual to some circle packing, and then map each vertex of thegraph to the center of the associated circle. In this way we get a mapping f from thevertex set of our approximating graph to the sphere3. The way to think about themap is that it provides a coarse conformal change of the metric: the scale attached toa given vertex of the graph approximation is changed to the scale given by the radiusof the corresponding disk in the circle packing. The third step is to show that (aftersuitably normalizing the circle packing) the mapping f has controlled quasisymmet-ric distortion. Since in some sense f changes the metric conformally, we control itsquasisymmetric distortion (in fact it is the quasi-M�obius distortion which enters morenaturally) via modulus estimates. There are two main ingredients in our implemen-tation of this idea|the Ferrand cross-ratio (cf. [19, 4]), which mediates between thequasisymmetric distortion and the \conformal" distortion, and a modulus compari-son proposition which allows one to relate (under suitable conditions) the 2-modulusof a pair of continua E; F � Z with the combinatorial 2-modulus of their discreteapproximations in the approximating graph. In the �nal step we take a sequence ofgraph approximations at �ner and �ner scales, and apply Arzel�a-Ascoli to see that3Alternatively, one can use the classical uniformization theorem to produce such a map. To dothis, one endows the sphere with a piecewise 
at metric so that each 2-simplex of the topologicaltriangulation is isometric to an equilateral Euclidean triangle with side length 1. Such a piecewise
at metric de�nes a 
at Riemannian surface with isolated conical singularities, and one can thenapply the classical uniformization theorem to get a map from this Riemann surface to S2.4



the corresponding mappings subconverge to a quasisymmetric homeomorphism fromZ to S2.We suggest that readers who are unfamiliar with modulus arguments read the ba-sic de�nitions in Sections 2, 3, 7, and Proposition 9.1. The proposition is a simpli�edversion of later arguments which bound quasi-M�obius distortion.Contents1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Cross-ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Quasi-M�obius maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Approximations of metric spaces . . . . . . . . . . . . . . . . . . . . . 135 Circle packings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 Construction of good graphs . . . . . . . . . . . . . . . . . . . . . . . 187 Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 K-approximations and modulus comparison . . . . . . . . . . . . . . 259 The Ferrand cross-ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 3010 The proofs of Theorems 1.1 and 1.2 . . . . . . . . . . . . . . . . . . . 3711 Asymptotic conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 4012 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512. Cross-ratiosWe use the notation N = f1; 2; 3; : : :g, N0 = f0; 1; 2; : : :g, R+ = (0;1), and R+0 =[0;1).Let (Z; d) be a metric space. We denote by BZ(a; r) and by �BZ(a; r) the openand closed ball in Z centered at a 2 Z of radius r > 0, respectively. We drop thesubscript Z if the space Z is understood.The cross-ratio, [z1; z2; z3; z4], of a four-tuple of distinct points (z1; z2; z3; z4) in Zis the quantity [z1; z2; z3; z4] := d(z1; z3)d(z2; z4)d(z1; z4)d(z2; z3) :Note that[z1; z2; z3; z4] = [z2; z1; z3; z4]�1 = [z1; z2; z4; z3]�1 = [z3; z4; z1; z2]: (2.1)It is convenient to have a quantity that is quantitatively equivalent to the cross-ratio and has a geometrically more transparent meaning. Let a _ b := maxfa; bg anda ^ b := minfa; bg for a; b 2 R. If (z1; z2; z3; z4) is a four-tuple of distinct points in Zde�ne hz1; z2; z3; z4i := d(z1; z3) ^ d(z2; z4)d(z1; z4) ^ d(z2; z3) : (2.2)Then the following is true. 5



Lemma 2.3. Let (Z; d) be a metric space and �0(t) = 3(t _ pt) for t > 0. Then forevery four-tuple (z1; z2; z3; z4) of distinct points in Z we havehz1; z2; z3; z4i � �0([z1; z2; z3; z4]): (2.4)Proof. Suppose there is a four-tuple (z1; z2; z3; z4) for which the left hand side in (2.4)exceeds the right hand side. Let t0 = [z1; z2; z3; z4]. We may assume d(z1; z3) �d(z2; z4). Then d(z1; z4) � d(z1; z3) + d(z3; z2) + d(z2; z4)� 2d(z2; z4) + d(z2; z3):Similarly, d(z2; z3) � 2d(z2; z4) + d(z1; z4), and so by our assumption we haved(z1; z4) _ d(z2; z3) � 2d(z2; z4) + d(z1; z4) ^ d(z2; z3)� �2 + 1�0(t0)� d(z2; z4):Hence,t0 = [z1; z2; z3; z4] = d(z1; z3)d(z2; z4)(d(z1; z4) ^ d(z2; z3))(d(z1; z4) _ d(z2; z3))� d(z1; z3)�0(t0)(d(z1; z4) ^ d(z2; z3))(1 + 2�0(t0)) � �0(t0)21 + 2�0(t0) > t0:This is a contradiction.Using the symmetry properties (2.1) for the cross-ratio which are also true forthe modi�ed cross-ratio de�ned in (2.2), we obtain an inequality as in (2.4) withthe roles of the cross-ratios reversed and the function �0 replaced by the functiont 7! 1=��10 (1=t). In particular, we conclude that [z1; z2; z3; z4] is small if and onlyif hz1; z2; z3; z4i is small, where the quantitative dependence is given by universalfunctions.A metric space (Z; d) is called �-linearly locally contractible where � � 1, if everyball B(a; r) in Z with 0 < r � diam(Z)=� is contractible inside B(a; �r), i.e., thereexists a continuous map H : B(a; r)� [0; 1]! B(a; �r) such that H(�; 0) is the iden-tity on B(a; r) and H(�; 1) is a constant map. The space is called linearly locallycontractible, if it is �-linearly locally contractible for some � � 1. Similar languagewill be employed for other notions that depend on numerical parameters.A metric space (Z; d) is called �-LLC for � � 1 (LLC stands for linearly locallyconnected) if the following two conditions are satis�ed:(�-LLC1) If B(a; r) is a ball in Z and x; y 2 B(a; r), then there exists a continuumE � B(a; �r) containing x and y.(�-LLC2) If B(a; r) is a ball in Z and x; y 2 Z n B(a; r), then there exists a con-tinuum E � Z nB(a; r=�) containing x and y.We remind the reader that a continuum is a compact connected set consisting ofmore than one point.Linear local contractibility implies the LLC condition for compact connected topo-logical n-manifolds, and is equivalent to it when n = 2:6



Lemma 2.5. Suppose Z a metric space which is a compact connected topological n-manifold. Then:(i) If Z is �-linearly locally contractible, then Z is �0-LLC for each �0 > �.(ii) If n = 2 and Z is LLC, then Z is linearly locally contractible. The linear localcontractibility constant depends on Z and not just on the LLC constant.Proof. (i) We �rst verify the LLC1 condition. If a 2 Z, and r > diam(Z)=�, thenB(a; �r) = Z, so in this case the �-LLC1 condition follows from the connectednessof Z. If r � diam(Z)=�, then the inclusion i : B(a; r) ! B(a; �r) is homotopic to aconstant map. Hence it induces the zero homomorphism on reduced 0-dimensionalhomology, which means that �-LLC1 holds.Let �0 > �. To see that �0-LLC2 holds, we have to show that if B(a; r0) � Z is aball with Z nB(a; r0) 6= ;, then the inclusion i : Z nB(a; r0)! Z nB(a; r0=�0) inducesthe zero homomorphism~H0(Z nB(a; r0)) 0! ~H0(Z nB(a; r0=�0)) (2.6)for reduced singular homology with coe�cients in Z2. Note that Z n B(a; r0) 6= ;implies r0 � diam(Z). Moreover, we can �nd 0 < r < r0 close enough to r0 such that�B(a; r0=�0) � B(a; r=�). Let K1 := �B(a; r0=�0) and K2 := �B(a; r). Then K1 and K2are compact, and we have B(a; r0=�0) � K1 � K2 � B(a; r0). So in order to show(2.6), it is enough to show that the inclusion i : Z n K2 ! Z n K1 induces the zerohomomorphism ~H0(Z nK2) 0! ~H0(Z nK1): (2.7)It follows from the path connectedness of Z and the long exact sequence for singularhomology that the natural map @ : H1(Z;Z n Ki) ! ~H0(Z n Ki) is surjective fori 2 f1; 2g. Hence (2.7) is true, if the inclusion i : (Z;Z nK2) ! (Z;Z nK1) inducesthe zero homomorphism H1(Z;Z nK2) 0! H1(Z;Z nK1): (2.8)Now duality [29, Theorem 17, p. 296] shows that for each compact subset K � Z wehave an isomorphism H1(Z;Z nK) ' �Hn�1(K), where �H� denotes �Cech cohomologywith coe�cients in Z2. This isomorphism is natural, and hence compatible withinclusions. Since K1 � B(a; r=�) � B(a; r) � K2 and r < r0 � diam(Z), it followsfrom our assumptions that K1 contracts to a point inside K2. Hence the inclusioni : K1 ! K2 induces the zero homomorphism �Hn�1(K2) 0! �Hn�1(K1): Therefore,(2.8) holds which implies (2.6) as we have seen.(ii) Suppose Z is �-LLC. It is enough to show that the inclusion i : B(a; r) !B(a; �r) is homotopic to a constant map, if r > 0 is su�ciently small independent ofa 2 Z. Since Z is a compact 2-manifold, every su�ciently small ball lies precompactlyin an open subset of Z homeomorphic to R2 . So without loss of generality we mayassume that the sets U := B(a; r) and V := B(a; �r) are bounded and open subsetsof R2 with U � V . Now �-LLC1 implies that U lies in a single component of7



V . So in order to show that U is contractible inside V , it is enough to show thateach component 
 of U is contained in a simply connected (and hence contractible)subregion of V .The condition �-LLC2 implies that R2 n V lies in one, namely the unboundedcomponent of R2 n U . It follows in particular that if 
 is a Jordan curve in U , thenthe interior region I(
) of 
 is contained in V .A well-known fact from plane topology is that every bounded region 
 can bewritten as an nondecreasing union 
 = S1i=0
i, where 
i is a region with �
i � 
whose boundary consists of �nitely many disjoint Jordan curves. One of the boundarycomponents 
i of 
i is a Jordan curve whose interior I(
i) contains 
i. Now if 
is a component of U , then 
i � 
 � U , and so I(
i) � V as we have seen. Hence
 � S1i=0 I(
i) � V lies in the union of a nondecreasing sequence of Jordan subregionsof V . This union is a simply connected subregion of V containing 
.In view of the lemma we prefer to work with the weaker LLC condition insteadof linear local contractibility in the following.If E and F are continua in Z we denote by�(E; F ) := dist(E; F )diam(E) ^ diam(F ) (2.9)the relative distance of E and F .Lemma 2.10. Suppose (Z; d) is �-LLC. Then there exist functions �1; �2 : R+ ! R+depending only on � with the following properties. Suppose � > 0 and (z1; z2; z3; z4)is a four-tuple of distinct points in Z.(i) If [z1; z2; z3; z4] < �1(�), then there exist continua E; F � Z with z1; z3 2 E,z2; z4 2 F and �(E; F ) � 1=�.(ii) If there exist continua E; F � Z with z1; z3 2 E, z2; z4 2 F and �(E; F ) �1=�2(�), then [z1; z2; z3; z4] < �.As the proof will show, the function �2 can actually be chosen as a numericalfunction independent of �.Proof. We have to show that [z1; z2; z3; z4] is small if and only if there exist twocontinua with large relative distance containing fz1; z3g and fz2; z4g, respectively.Suppose s = [z1; z2; z3; z4] is small. Then by Lemma 2.3 the quantityt := hz1; z2; z3; z4i = d(z1; z3) ^ d(z2; z4)d(z1; z4) ^ d(z2; z3) : (2.11)is small, quantitatively. We may assume t < 1 and r := d(z1; z3) � d(z2; z4). SinceZ is �-LLC and z1; z3 2 B(z1; 2r), there exists a continuum E connecting z1 and z3in B(z1; 2�r). Let R := r(1=t � 1) > 0. Then d(z1; z4) � r=t > R and d(z1; z2) �d(z2; z3)� d(z1; z3) � r(1=t� 1) = R: Thus z2; z4 are in the complement of B(z1; R),and so there exists a continuum F connecting z2 and z4 in Z n B(z1; R=�). For therelative distance of E and F we get�(E; F ) = dist(E; F )diam(E) ^ diam(F ) � R=�� 2�r4�r > 1=(4�2t)� 1;8



which is uniformly large if s and so t are small.Now suppose that there exist continua E; F � Z with with z1; z3 2 E and z2; z4 2F for which �(E; F ) is large. Sincehz1; z2; z3; z4i = d(z1; z3) ^ d(z2; z4)d(z1; z4) ^ d(z2; z3) � diam(E) ^ diam(F )dist(E; F ) = 1=�(E; F );we conclude from Lemma 2.3 that [z1; z2; z3; z4] is uniformly small.In the proof of this lemma we used for the �rst time the expression \If A is small,then B is small, quantitatively." This and similar language will be very convenient inthe following, but it requires some explanation. By this expression we mean that aninequality B � 	(A) for the quantities A and B holds, where 	 is a positive functionwith 	(t) ! 0 if t ! 0 that depends only on the data. The data are some ambientparameters associated to the given space, function, etc. In the proof above the dataconsisted just of the parameter � in the LLC-condition for Z.3. Quasi-M�obius mapsLet � : R+0 ! R+0 be a homeomorphism, i.e., a strictly increasing nonnegative functionwith �(0) = 0 and limt!1 �(t) =1, and let f : X ! Y be an injective map betweenmetric spaces (X; dX) and (Y; dY ). The map f is an �-quasi-M�obius map if for everyfour-tuple (x1; x2; x3; x4) of distinct points in X, we have[f(x1); f(x2); f(x3); f(x4)] � �([x1; x2; x3; x4]):Note that by exchanging the roles of x1 and x2, one gets the lower bound�([x1; x2; x3; x4]�1)�1 � [f(x1); f(x2); f(x3); f(x4)]:Hence the inverse f�1 : f(X)! X is also quasi-M�obius.Another way to express the condition that f is quasi-M�obius is to say that thecross-ratio [x1; x2; x3; x4] of a four-tuple of distinct points is small if and only if thecross-ratio [f(x1); f(x2); f(x3); f(x4)] is small, quantitatively. This is easy to verifyusing the symmetry properties (2.1) of cross-ratios.The map f is �-quasisymmetric ifdY (f(x1); f(x2))dY (f(x1); f(x3)) � ��dX(x1; x2)dX(x1; x3)�for every triple (x1; x2; x3) of distinct points in X. Again it is easy to see that theinverse map f�1 : f(X) ! X is also quasisymmetric. Two metric spaces X andY are called quasisymmetric, if there exists a homeomorphism f : X ! Y that isquasisymmetric.Intuitively, a quasisymmetry is a map between metric spaces that maps balls toroundish objects that can be trapped between two balls whose radius ratio is boundedby a �xed constant. Based on this it is easy to see the quasisymmetric invariance ofproperties like linear local contractibility or linear local connectivity.We list some properties of quasi-M�obius and quasisymmetric maps (cf. [35]):9



(1) Quasi-M�obius and quasisymmetric maps are homeomorphisms onto their im-ages.(2) The post-composition of an �1-quasi-M�obius map with an �2-quasi-M�obius mapis an �2 � �1-quasi-M�obius map.(3) An �-quasisymmetric map is ~�-quasi-M�obius with ~� depending only on �.Conversely, every quasi-M�obius map between bounded spaces is quasisymmetric. Thisstatement is not quantitative in general, but we have:(4) Suppose (X; dX) and (Y; dY ) are bounded metric spaces, f : X ! Y is �-quasi-M�obius, and � � 1. Suppose (x1; x2; x3) and (y1; y2; y3) are triples of dis-tinct points in X and Y , respectively, such that f(xi) = yi for i 2 f1; 2; 3g,dX(xi; xj) � diam(X)=� and dY (yi; yj) � diam(Y )=� for i; j 2 f1; 2; 3g, i 6= j.Then f is ~�-quasisymmetric with ~� depending only on � and �.(5) An �-quasisymmetric map from a dense subset A of a metric space X into acomplete metric space Y has a unique extension to an �-quasisymmetric mapon X.We will need the following convergence property of quasi-M�obius maps which westate as a separate lemma.Lemma 3.1. Suppose (X; dX) and (Y; dY ) are compact metric spaces, and fk : Dk !Y for k 2 N is an �-quasi-M�obius map de�ned on a subset Dk of X. Supposelimk!1 supx2X dist(x;Dk) = 0and that for k 2 N there exist triples (xk1; xk2; xk3) and (yk1 ; yk2 ; yk3) of points in Dk � Xand Y , respectively, such that f(xki ) = yki , k 2 N, i 2 f1; 2; 3g,inffdX(xki ; xkj ) : k 2 N; i; j 2 f1; 2; 3g; i 6= jg > 0and inffdY (yki ; ykj ) : k 2 N ; i; j 2 f1; 2; 3g; i 6= jg > 0:Then the sequence (fk) subconverges uniformly to an �-quasi-M�obius map f : X ! Y ,i.e. there exists an increasing sequence (kn) in N such thatlimn!1 supx2Dkn dY (f(x); fkn(x)) = 0:The assumptions imply that the functions fk are equicontinuous (cf. [35, Thm.2.1]). The proof of the lemma then follows from standard arguments, and we leavethe details to the reader.Lemma 3.2. Suppose (X; dX) and (Y; dY ) are metric spaces, and f : X ! Y is an �-quasi-M�obius map. Then there exists a function �: R+ ! R+ with limt!1 �(t) =1depending only on � such that the following statement holds.If E; F � X are disjoint continua, then�(f(E); f(F )) � �(�(E; F )):10



If f is surjective, and we apply the lemma to the inverse map f�1, we get a similarinequality with the roles of sets and images sets reversed. These inequalities say thatthe relative distance of two continua is large if and only if the relative distance of theimage sets under a quasi-M�obius map is large, quantitatively.Since every quasisymmetric map is also quasi-M�obius, this last statement is alsotrue for quasisymmetric maps.Proof. Let E 0 := f(E) and F 0 := f(F ). Then E 0 and F 0 are continua. Hence thereexist points y1 2 E 0 and y3 2 F 0 with dY (y1; y3) = dist(E 0; F 0). Moreover, we can�nd points y4 2 E 0 and y2 2 F 0 with dY (y1; y4) � diam(E 0)=2 and dY (y2; y3) �diam(F 0)=2. Then �(E 0; F 0) � 2hy1; y2; y3; y4i:On the other hand, if xi := f�1(yi), then�(E; F ) � hx1; x2; x3; x4iby the very de�nition of these quantities.Now if �(E; F ) is large, then hx1; x2; x3; x4i is at least as large. Since f is �-quasi-M�obius it follows from Lemma 2.3 that hy1; y2; y3; y4i and hence �(E 0; F 0) are large,quantitatively.A metric space (Z; d) is called weakly �-uniformly perfect, � > 1, if for everya 2 Z and 0 < r � diam(Z) the following is true: if the ball �B(a; r=�) contains apoint distinct from a, then B(a; r) n �B(a; r=�) 6= ;.This condition essentially says that at each point a 2 Z the space is uniformlyperfect in the usual sense above the scale at which there exist points di�erent froma. Note that every connected metric space, or more generally, every dense set in aconnected metric space is weakly �-uniformly perfect for � > 2.A metric space (Z; d) is called C0-doubling, C0 � 1, if every ball of radius r > 0can be covered by at most C0 balls of radius r=2. A set A � Z is called �-separated,� > 0, if d(x; y) � � for x; y 2 A, x 6= y. Later we will use the fact that for every � > 0there exists an �-separated set A � Z that is maximal (with respect to inclusion).This follows from Zorn's lemma.If Z is C0-doubling, and A � Z is an �-separated set in a ball of radius r > 0, thenthe cardinality of A is bounded by a number only depending on C0 and the ratio r=�.Lemma 3.3. Suppose (X; dX) and (Y; dY ) are metric spaces, and f : X ! Y is abijection. Suppose that X is weakly �-uniformly perfect, Y is C0-doubling, and thereexists a function �0 : R+ ! R+ such that[f(x1); f(x2); f(x3); f(x4)] < �0(�)) [x1; x2; x3; x4] < �; (3.4)whenever � > 0 and (x1; x2; x3; x4) is a four-tuple of distinct points in X. Then f is�-quasi-M�obius with � depending only on �, C0, and �0.As we remarked above, a bijection is quasi-M�obius if it has the property that across-ratio of four points is small if and only if the cross-ratio of the image points issmall, quantitatively. The lemma says that for suitable spaces this equivalence, whichconsists of implications in two directions, can be replaced by one of these implications.11



Proof. We have to show that for every � > 0 there exists � = �(�; �; C0; �0) > 0 suchthat [x1; x2; x3; x4] < � ) [f(x1); f(x2); f(x3); f(x4)] < �; (3.5)whenever (x1; x2; x3; x4) is a four-tuple of distinct points in X. By Lemma 2.3, forthis purpose it is enough to show the following: if � 2 (0; 1] and (x1; x2; x3; x4) isa four-tuple of distinct points in X with hx1; x2; x3; x4i < � and hy1; y2; y3; y4i � �,where yi = f(xi), i 2 f1; 2; 3; 4g, then we obtain a contradiction if � is smaller thana positive number depending on �, �, C0, and �0.We may assume that s := dX(x1; x3) � dX(x2; x4). Lett := minfdY (yi; yj) : i 2 f1; 3g; j 2 f2; 4gg: (3.6)Then dY (yi; yj) � �t for i; j 2 f1; 2; 3; 4g; i 6= j: (3.7)We have thatdiam(X) � minfdX(xi; xj) : i 2 f1; 3g; j 2 f2; 4gg� dX(x1; x4) ^ dX(x2; x3)� dX(x1; x3) � (1=� � 1)s:Since we may assume that (1=� � 1) > �2, we can choose N 2 N such that�2N < (1=� � 1) � �2N+2: (3.8)Since X is weakly �-uniformly perfect, x3 2 �B(x1; s) and �2Ns < diam(X), thereexist points zi 2 X for i 2 f1; : : : ; Ng such thatzi 2 B(x1; �2is) n �B(x1; �2i�1s):Then dX(zi; x1) _ dX(zi; x3) � (�2i + 1)s for i 2 f1; : : : ; Ngand dX(zi; zj) � �2j�2(�� 1)s for i; j 2 f1; : : : ; Ng; i < j:It follows that hzi; p; zj; qi � c(�) > 0;whenever i; j 2 f1; : : : ; Ng, i 6= j, p 2 fx1; x3g and q 2 fx2; x4g. By our hypothesesand Lemma 2.3 there exists c1 2 (0; 1] depending only on �0 and � such thathf(zi); u; f(zj); vi � c1 > 0; (3.9)whenever i; j 2 f1; : : : ; Ng, i 6= j, u 2 fy1; y3g, and v 2 fy2; y4g.We claim that dY (f(zi); f(zj)) � c1�t=3 =: c2t (3.10)12



for i; j 2 f1; : : : ; Ng, i 6= j. For otherwise, by (3.7) we can pick u 2 fy1; y3g andv 2 fy2; y4g such that dist(ff(zi); f(zj)g; fu; vg) � t�=3and we get a contradiction to (3.9).Choose u0 2 fy1; y3g and v0 2 fy2; y4g such that dY (u0; v0) = t. Then at mostone of the points f(zi) can lie outside �B(u0; c3t) where c3 = 1+1=c1. For if this weretrue for f(zi) and f(zj), i 6= j, then again we get a contradiction to (3.9) with u = u0and v = v0.The doubling property of Y now shows that the number of points in �B(u0; c3t)which are (c2t)-separated is bounded by a constant C depending only on C0, c2 =c2(�; �; �0) and c3 = c3(�; �; �0). Hence N � 1 � C. By (3.8) this leads to a contradic-tion if � is smaller than a constant depending on �, �, C0, and �0.4. Approximations of metric spacesSuppose G is a graph with vertex set V . We assume that there are no loops in G, i.e.,no vertex is connected to itself by an edge, and that two arbitrary distinct verticesare not connected by more than one edge. If v1; v2 2 V are connected by an edge orare identical we write v1 � v2. The combinatorial structure of the graph is completelydetermined by the vertex set V and this re
exive and symmetric relation �. Hencewe will write G = (V;�).A chain is a sequence x1; : : : ; xn of vertices with x1 � x2 � � � � � xn. It connectstwo subsets A � V and B � V if x1 2 A and xn 2 B.If x; y 2 V we let kG(x; y) 2 N0 [ f1g be the combinatorial distance of x andy, i.e., kG(x; y) + 1 is the smallest cardinality #M of a chain M connecting x andy. If G is connected, then (V; kG) is a metric space, and we de�ne BG(v; r) := fu 2V : kG(u; v) < rg and �BG(v; r) := fu 2 V : kG(u; v) � rg for v 2 V and r > 0. Wedrop the subscript G if the graph under consideration is understood. The cardinalityof the set fu 2 V : kG(u; v) = 1g is the valence of v 2 V . The valence of G is thesupremum of the valences over all vertices in G.Now let (Z; d) be a metric space. We consider quadruples A = (G; p; r;U), whereG = (V;�) is a graph with vertex set V , p : V ! Z, r : V ! R+ and U = fUv : v 2 V gis an open cover of Z indexed by the set V . We let pv := p(v) and rv := r(v) forv 2 V . Let N�(U) := fz 2 Z : dist(z; U) < �gfor U � Z and � > 0, and de�ne the L-star of v 2 V with respect to A for L > 0 asA-StL(v) :=[fUu : u 2 V; k(u; v) < Lg:We simply write StL(v), if no confusion can arise. We call A a K-approximation ofZ, K � 1, if the following conditions are satis�ed:(1) Every vertex of G has valence at most K.(2) B(pv; rv) � Uv � B(pv; Krv) for v 2 V .13



(3) If u � v for u; v 2 V , then Uu \Uv 6= ;, and K�1ru � rv � Krv. If Uu \Uv 6= ;for u; v 2 V , then k(u; v) < K.(4) Nrv=K(Uv) � StK(v) for v 2 V .(5) If v 2 V , z1; z2 2 Uv, then there is a path 
 in Z connecting z1 to z2 so that
 � StK(v).The point pv should be thought of as a basepoint of Uv. By condition (2) we canthink of the number rv as the \local scale" associated with v. Condition (3) says thatthe local scale only changes by a bounded factor if we move to a neighbor of a vertex,and that the incidence pattern of the cover U resembles the incidence pattern of thevertices in G, quantitatively. Condition (4) means that we can thicken up a set Uv bya �xed amount comparable to the local scale by passing to the K-star of v. Finally,condition (5) allows us to connect any two points in Uv by a path contained in theK-star of v.We point out some immediate consequences of the conditions (1){(5):(6) If Z is connected, then G is connected; this follows from (3).(7) The multiplicity of U is bounded by a constant C = C(K): if Uv1 \ : : :\Uvn 6= ;then fv1; : : : ; vng � B(v1; K) by (3), and #B(v1; K) � C = C(K) by (1).Similarly, it can be shown that for �xed L > 0, the multiplicity of the coverfStL(v) : v 2 V g is bounded by a number C = C(K;L).(8) For the curve 
 in (5) we have diam(
) � Crv with C = C(K); this followsfrom (2) and (3).The mesh size of the K-approximation A is de�ned to bemesh(A) := supv2V rv:The next lemma shows that K-approximations behave well under quasisymmetricmaps.Lemma 4.1. Suppose (X; dX) and (Y; dY ) are connected metric spaces, and f : X !Y is an �-quasisymmetric homeomorphism. Suppose K � 1 and A = ((V;�); p; r;U)is a K-approximation of X. Assume thatmesh(A) < diam(X)=2: (4.2)For v 2 V de�ne p0v := f(pv), U 0v := f(Uv) andr0v := inffdY (f(x); p0v) : x 2 X; dX(x; pv) � rvg: (4.3)Let U 0 = fU 0v : v 2 V g: Then A0 = ((V;�); p0; r0;U 0) is a K 0-approximation of Y withK 0 depending only on K and �.
14



We emphasize that the underlying graphs of A and A0 are the same.Note that by condition (4.2) the set in (4.3) over which the in�mum is taken isnonempty. The continuity of f�1 implies that r0v is positive. The number r0v is roughlythe diameter of U 0v. Up to multiplicative constants, it is essentially the only possiblechoice for r0v. Our particular de�nition guarantees BY (p0v; r0v) � f(BX(pv; rv)) �f(Uv) = U 0v.Up to this ambiguity in the choice of r0v, the K 0-approximation A0 is canonicallydetermined by A and the map f . In this sense we can say that A0 is the \image" ofA under f .Proof. We denote image points under f by a prime, i.e., x0 = f(x) for x 2 X. Wealso denote by K1; K2; : : : positive constants that can be chosen only to depend on �and K.Since X is connected and the complement of BX(pv; rv) is nonempty, for everyv 2 V we can choose a point xv 2 X with with dX(xv; pv) = rv. The quasisymmetryof f implies r0v � dY (x0v; p0v) � K1r0v:If x 2 X and dX(x; pv) < Krv thendY (x0; p0v) < dY (x0v; p0v)�(K) � K2r0v:This and the de�nition of r0v showBY (p0v; r0v) � f(BX(pv; rv)) � f(Uv) = U 0v � f(BX(pv; Krv)) � BY (p0v; K2r0v): (4.4)If u � v, then Uu \ Uv 6= ; and ru � Krv. In particular,dX(pu; pv) � K(ru + rv) � K3rvand dX(xu; pv) � dX(xu; pu) + dX(pu; pv) � ru +K3rv � K4rv:Hence r0u � dY (x0u; p0u) � dY (p0u; p0v) + dY (x0u; p0v)� dY (x0v; p0v)(�(K3) + �(K4)) � K5r0v: (4.5)Suppose z 2 Uv. Since dY (x0v; p0v) � r0v, there exists y 2 fpv; xvg such thatdY (y0; z0) � r0v=2. Then dX(y; z) � 2Krv. If now x 2 X is an arbitrary point withdX(x; z) � rv=K, thenr0v � 2dY (y0; z0) � 2dY (x0; z0)�(2K2) � K6dY (x0; z0):This implies thatBY (z0; r0v=K6) � f(BX(z; rv=K)) � f(A-StK(v)) = A0-StK(v) for z 2 Uv: (4.6)The assertion now follows from the fact that A is a K-approximation and (4.4){(4.6). 15



Lemma 4.7. Suppose (Z; d) is a connected metric space and ((V;�); p; r;U) is a K-approximation of Z. Suppose L � K and W � V is a maximal set of combinatoriallyL-separated vertices. Then M = p(W ) � Z is weakly �-uniformly perfect with �depending only on L and K.Proof. Note that property (3) of a K-approximation impliesK�k(u;v) � r(u)r(v) � Kk(u;v) for u; v 2 V:Since d(p(u); p(v)) � K(r(u) + r(v)) whenever u; v 2 V with u � v, we obtaind(p(u); p(v)) � 2r(u)k(u; v)K1+k(u;v) for u; v 2 V:Let � = 16L2K4+4L. Suppose w0; w1 2 W such that for z0 = p(w0) and z1 = p(w1)we have that z0 6= z1 and z1 2 �B(z0; r=�), where 0 < r � diam(M) � diam(Z).We claim that B(z0; r) n �B(z0; r=�) contains a point in M . Since w0 6= w1 we havek(w0; w1) � L � K and so Uw0 \ Uw1 = ; by property (3) of a K-approximation.This implies r(w0) � d(z0; z1) � r=�: (4.8)Since � > 4 there exist points in Z outside B(z0; r=p�). The connectedness of Zthen implies that there actually exists z 2 Z with d(z0; z) = r=p�. Since U is a coverof Z, we have z 2 Uv for some v 2 V . Thenr(v) � Kr=p�: (4.9)For otherwise, dist(z0; Uv) � d(z0; z) = r=p� < r(v)=K;and so z0 2 Nr(v)=K(Uv) � StK(v). This implies k(w0; v) � 2K which leads tor(w0) � K�2Kr(v) � K1�2Kr=p� > r=�;contradicting (4.8).Since W is a maximal L-separated set in V , there exists w2 2 W such thatk(w2; v) < L. Let z2 = p(w2) 2 M . We claim that d(z2; z0) > r=�. Otherwise,d(z2; z0) � r=�. If w2 6= w0, then similarly as above we conclude r(w2) � r=�. Butby (4.8) this is also true if w2 = w0. Hence we get in this caser=p� = d(z0; z) � d(z0; z2) + d(z2; p(v)) + d(p(v); z)� r=�+ r(w2)2LKL+1 +Kr(v)� r=�+ (2LKL+1 +KL+1)r(w2)� (1 + 2LKL+1 +KL+1)r=� < rp�;which is a contradiction.Moreover, by (4.9)d(z0; z2) � d(z0; z) + d(z; p(v)) + d(p(v); z2)� r=p� +Kr(v) + 2LKL+1r(v)� (1 +K2 + 2LKL+2)r=p� < r:This shows that the point z2 2 M is contained in B(z0; r) n �B(z0; r=�).16



5. Circle packingsIn Sections 5 and 6 we will consider embeddings of a graph G in a metric space Z.In this context we will regard G = (V;�) as a topological space by choosing a unitinterval I := [0; 1] for each two-element set fu; vg � V with u � v, where we let theendpoints of I correspond to u and v. We then glue these intervals together wheneverendpoints of intervals correspond to the same vertex in V . An embedding of G into Zis then just a map of this topological space into Z which is a homeomorphism ontoits image.If the graph G is embedded in Z we will identify G with its image under theembedding. This image is viewed as a subset of Z with certain points and arcsdistinguished as vertices and edges, respectively, so that their incidence pattern is thesame as the incidence pattern of the graph. In this case we will write G = (V;E),where V is the set of vertices and E is the set of edges of G.Suppose the graph G is combinatorially equivalent to the 1-skeleton of a trian-gulation T of a topological 2-sphere. By the Andreev-Koebe-Thurston circle packingtheorem (cf. for example [20]) the graph G can be realized as the incidence graph ofa circle packing. This means the following. Let G = (V;�). Then there is a family Cof pairwise disjoint open spherical disks Cv, v 2 V , in S2 such that �Cu \ �Cv 6= ; foru; v 2 V if and only if u � v.We can always assume that the circle packing is normalized. By this we mean thatamong the centers of the disks of the circle packing, there are three normalizing pointswhich lie on a great circle of S2 and are equally spaced. A normalization of a circlepacking can always be achieved by replacing the original circles by their images undera suitably chosen M�obius transformation. To see this note that the boundary circlesof three distinct disks D1; D2; D3 determine distinct hyperbolic planes H1; H2; H3in hyperbolic three-space H 3 (as viewed in the unit ball model). It is easy to seethat there exists a point z0 2 H 3 that minimizes the sum of the (signed) hyperbolicdistances to the planes Hi. The unit vectors in the tangent space Tz0H 3 of H 3 at z0determined by the directions from z0 to the planesHi will then lie in a two-dimensionalsubspace of Tz0H 3 and form an equilateral triangle. If we move the point z0 to thecenter of the unit ball by a M�obius transformation g, the centers of the image disksg(D1); g(D2); g(D3) will then be equally spaced points on a great circle.In a normalized circle packing all disks are smaller than hemispheres. In particular,if two di�erent disks in the packing have a common boundary point, then there isa unique geodesic joining the centers. If we join the centers of adjacent disks in thecircle packing in this way, then we get an embedding of G on the sphere. The closuresof the complementary regions of this embedded graph are closed spherical triangles� forming a triangulation T 0 of S2 combinatorially equivalent to T . If v 2 V let p(v)be the center of the disk Cv corresponding to v, and let r(v) be the spherical radiusof Cv. Let Uv be the interior of the union of all triangles � 2 T 0 having p(v) as avertex. Then Uv is open, starlike with respect to p(v) and contains Cv. Moreover,the sets Uv, v 2 V , form a cover U of S2.Given these de�nitions we claim:Lemma 5.1. Suppose G is combinatorially equivalent to a 1-skeleton of a triangu-lation of S2, and C is a normalized circle packing realizing G. Then (G; p; r;U) is a17



K-approximation of S2 with K depending only on the valence of G.Proof. It is a well-known fact that for a circle packing of Euclidean circles the ratio ofthe radii of two adjacent disks in the packing is bounded by a constant depending onlyon the number of neighbors of (one of) these disks (this is called the \Ring Lemma";cf. [23]). For a packing of spherical circles a similar statement is true if no disk inthe packing is larger than a hemisphere, in particular if the packing is normalized. Inother words, if u; v 2 V and u � v, then C�1 � ru=rv � C with C depending onlyon the valence of G. Choosing K suitably depending on the valence of G, it is easyto see that the conditions (1){(5) of a K-approximation are true for (G; p; r;U). Weomit the details.6. Construction of good graphsIn this section we will work with a modi�cation of the LLC1-condition for a metricspace (Z; d):(�-]LLC1) If x; y 2 Z, x 6= y, then there exists an arc 
 with endpoints x and ysuch that diam(
) � �d(x; y):Here � � 1. Obviously, �-]LLC1 implies (1 + 2�)-LLC1. A similar quantitativeimplication in the other direction will not be true in general, unless Z is locally\nice". For example, if Z is locally Euclidean, then a simple covering argumentshows that �-LLC1 implies 3�-]LLC1. So for topological manifolds LLC1 and ]LLC1are quantitatively equivalent.Lemma 6.1. Suppose (Z; d) is a metric space which is C0-doubling and �-]LLC1. Let0 < r � diam(Z) and suppose A � Z is a maximal r-separated set. Then there existsa connected graph � = (V;E) which is embedded in Z and has the following properties:(i) The valence of � is bounded by K.(ii) The vertex set V contains A.(iii) If u; v 2 A with d(u; v) < 2r, then � contains an edge path 
 joining u and vwith diam(
) � Kr. Each edge in � belongs to one of these paths 
.(iv) For all balls B(a; r) � Z we have #(B(a; r) \ V ) � K.Here the constant K � 1 depends only on C0 and �.Implicit in this statement is that � satis�es our standing assumptions on graphs;namely, every edge in � has two distinct vertices as endpoints, and two distinctvertices are connected by at most one edge.Note that (iii) implies diam(e) � Kr for e 2 E. It follows from (iv) and thedoubling property of Z that a ball of radius R in Z meets at most C vertices or edgesof �, where C is a number depending only on C0, K and R=r.18



Proof. For all two-element subsets fu; vg � A with d(u; v) < 2r choose an arc � withendpoints u; v and diam(�) � 2�r. Let A be the family of arcs thus obtained.We claim that there exists N = N(C0; �) 2 N such that A can be written as adisjoint union A = A1 [ � � � [ AN , where each of the subfamilies Ai has the propertythat if �; �0 2 Ai are two distinct arcs, thendist(�; �0) > 8�r: (6.2)To see that this can be done, note �rst that since Z is C0-doubling there existsN1 = N1(C0; �) 2 N such that#( �B(a; 12�r) \ A) < N1 for a 2 Z:Hence if � 2 A, then#f�0 2 A : dist(�; �0) � 8�rg < N1(N1 � 1)=2: (6.3)Let N = N1(N1� 1)=2. An argument using Zorn's lemma and (6.3) shows that thereexists a labeling of the arcs in A by the numbers 1; : : : ; N such that no two distinctarcs �; �0 2 A with dist(�; �0) � 8�r have the same label. If we de�ne Ai to be theset of all arcs with label i, we get the desired decomposition A = A1 [ � � � [ AN .Since Z is doubling, there exists N2 = N2(C0; �) 2 N such that each arc in A canbe covered by at most N2 open balls of radius r. Now de�ne graphs �i = (Vi; Ei) fori = 1; : : : ; N inductively as follows. The graphs �i will be embedded in Z, their edgeswill have diameter bounded by 2�r and we will haveMi := maxa2Z #fe 2 Ei : e \ B(a; r) 6= ;g � (2N2 + 4)i: (6.4)Let �1 be the union of the arcs in A1, where we consider these arcs as the edges of�1 and the set of their endpoints as the set of vertices. Note that by (6.2) the graph�1 is embedded in Z and by the choice of the arcs in A the diameter of each edgewill be bounded by 2�r. Moreover, each ball B(a; r) can only meet at most one arcin A1, so (6.4) is true for i = 1.Suppose �i�1 has been constructed. We consider an arbitrary arc � 2 Ai and willmodify it to obtain an arc with the same endpoints such that for each edge e 2 Ei�1the set � \ e is connected. Note �rst that the number of edges in Ei�1 that � meetsis bounded by N2Mi�1, and in particular �nite. This follows from the de�nition ofN2 and Mi�1.Let e1; : : : ; ek 2 Ei�1 be the edges that meet �. Assume inductively that we havemodi�ed � into an arc (also called � by abuse of notation) such thatthe sets � \ e1; : : : ; � \ ej�1 are connected. (6.5)Let 
 be the smallest (possibly degenerate) subarc of � which contains � \ ej. Thenthe endpoints of 
 are contained in ej, and � n 
 is disjoint from ej. Replace 
 � �by the subarc of ej which has the same endpoints as 
. This new curve � is an arcand the set �\ ej is connected. Since the edges in Ei�1 are nonoverlapping (i.e., theyhave disjoint interiors), the statement (6.5) is still true for the new arc � (some of19



the intersections in (6.5) may have become empty) and there are no new edges that� meets. After at most k modi�cations, the arc � will have the same endpoints asbefore, and will have a subdivision into nonoverlapping subarcs which consists of thesets � \ e for e 2 Ei�1 and their complementary subarcs. Hence � is subdivided intoat most 2k+1 � 2N2Mi�1+1 subarcs which all have diameter bounded by 2�r. Notethat the endpoints of these subarcs will always belong to the original arc �. Hencethe diameter of the new arc � will be bounded by 2�r+supe2Ei�1 diam(e) � 4�r. Let~Ai be the set of the new arcs �. Then for any two distinct arcs in ~Ai we havedist(�; �0) > 2�r: (6.6)The graph �i = (Vi; Ei) is now obtained from �i�1 and the set of modi�ed arcs~Ai as follows. If for e 2 Ei�1 there exists � 2 ~Ai which meets e, subdivide e byintroducing new vertices into at most three new edges such that e \ � becomes avertex or an edge. Every edge e 2 Ei�1 is subdivided at most once, since it cannotmeet two distinct arcs in ~Ai by (6.6). To this graph obtained by subdividing someof the edges of �i�1, we add the edges and vertices from the subdivision of the arcs� 2 ~Ai. Obviously, �i is embedded in Z and all its edges have diameter bounded by2�r. It can be shown inductively that �i has the property that every edge in �i hastwo distinct vertices as endpoints, and that two distinct vertices are connected by atmost one edge.If B(a; r) is an arbitrary ball, then an edge e 2 Ei meetingB(a; r) is either a subsetof an edge in Ei�1 meeting B(a; r) or it is an edge obtained from the subdivision ofsome arc � 2 ~Ai. By (6.6) all these latter edges lie on the same arc �. HenceMi � 3Mi�1 + 2N2Mi�1 + 1 � (2N2 + 4)i:Now let � = �N . Then the underlying set of � is equal to the union of the arcsin A1 [ ~A2 [ � � � [ ~AN . This shows (ii) and (iii). These conditions imply that � isconnected. Suppose v is a vertex of �. If an edge e has a vertex v as an endpoint,then e \B(v; r) 6= ;. From (6.4) it follows that the number of edges with endpoint vis bounded by MN which gives (i). Finally, (iv) follows from (6.4) and#(B(a; r) \ V ) � 2#fe 2 E : e \B(a; r) 6= ;g:Proposition 6.7. Suppose (Z; d) is a metric space homeomorphic to S2. If (Z; d)is C0-doubling and �-LLC, then for given 0 < r � diam(Z) and any maximal r-separated set A � Z there exists an embedded graph G = (V;E) which is the 1-skeletonof a triangulation T of Z such that:(i) The valence of G is bounded by K.(ii) The vertex set V of G contains A.(iii) If e 2 E, then diam(e) < Kr. If u; v 2 V and d(u; v) < 2r, then kG(u; v) < K.(iv) For all balls B(a; r) � Z we have #(B(a; r) \ V ) � K.20



Here the constant K � 1 depends only on C0 and �.Note that (iii) implies: If u; v 2 V and d(u; v) � Lr, then we have kG(u; v) �C(L;K;C0; �).Since G is embedded in Z, the vertices and edges of G are subsets of Z. For v 2 Vlet p(v) := v, r(v) := r and Uv := BZ(v;Kr). Then U := fUv : v 2 V g is a cover ofZ. Hence under the above assumptions we immediately have:Corollary 6.8. (G; p; r;U) is a K 0-approximation of Z, where K 0 depends only on �and C0.Corollary 6.9. Suppose Z is a metric space homeomorphic to S2. If Z is C0-doublingand �-LLC, then there exist K � 1 only depending on C0 and � and a sequenceAk = (Gk; pk; rk;Uk) of K-approximations of Z, whose graphs Gk = (Vk; Ek) are1-skeletons of triangulations Tk of Z and for whichlimk!1mesh(Ak) = 0:Proof. This follows immediately from Corollary 6.8 if we apply Proposition 6.7 for amaximal (1=k)-separated set Ak.Proof of Proposition 6.7. First we claim that every (continuous) loop � : S1 ! Zsuch that �(S1) � B(p; R) for some p 2 Z and R > 0 is null-homotopic in B(p; �R).For this note that since Z is �-LLC, the compact set A = Z nB(p; �R) is containedin a component of Z n �(S1). Since Z is homeomorphic to S2 it follows that � isnull-homotopic in Z n A = B(p; �R).Since Z is a topological manifold and �-LLC, it is �0-]LLC with �0 = 3�. Let�1 = (V1; E1) be a graph embedded in Z that satis�es the conditions (i){(iv) of Lemma6.1 with some constant K 0 depending on the data of Z. The idea for constructing Gis to subdivide the components of Z n�1 into triangles. For this to result in a graph asdesired, we have to bound the diameter of such a component. We need two lemmas.Lemma 6.10. Given a continuous map f0 : S1 ! Z, there is a continuous mapf1 : S1 ! �1 � Z and a homotopy f0 � f1 so that the tracks of the homotopy havediameter bounded by C1r where C1 depends only on C0 and �.Proof. Since A � V is a maximal r-separated set, we have dist(z; A) < r for allz 2 Z. Since f0(S1) is compact, for some r0 2 (0; r) we have dist(f0(�); A) < r0 for all� 2 S1. Since f0 is uniformly continuous, we can �nd a �nite set S � S1 containingat least two points such that if J � S1 � S is a maximal complementary arc, thendiam(f0(J)) < r � r0. For each � 2 S we can �nd a point f1(�) 2 A such thatd(f0(�); f1(�)) < r0. Let J � S1� S be a maximal complementary arc and supposeits endpoints are �; � 0 2 S. Then dist(f1(�); f1(� 0)) < 2r and so by property (iii) of�1 we can extend f1 continuously to �J such that f1( �J) is a path in �1 of diameter atmost K 0r. If we extend f1 in this way to all such arcs �J , then we get a continuousmap f1 : S1 ! �1.We build a homotopy H : S1� I ! Z (where I = [0; 1]) from f0 to f1 as follows.We set H(�; 0) = f0(�) and H(�; 1) = f1(�) for all � 2 S1. For each � 2 S, de�neHjf�g�I to be a path connecting f0(�) to f1(�) of diameter bounded by �0r = 3�r. We21



have de�ned H on (S1�f0; 1g)[ (S� I). If J � S1�S is a maximal complementaryarc, then we can extend H to �J � I so that the image of this set is contained in aball of radius Cr where C = C(C0; �). Here we use the fact that the boundary of the\square" �J�I is mapped into a ball of radius R = (3�+K 0+1)r and this loop is null-homotopic in a ball with the same center and radius �R. It follows that the trackst 7! H(�; t) of the homotopy have diameter bounded by C1r with C1 = C1(C0; �).Lemma 6.11. The diameter of each connected component of Z n �1 is bounded byC2r where C2 depends only on C0 and �.Proof. We have to show that if C2 is large enough depending on the data, then theset �1 separates every point p 2 Z n�1 from every point q 2 Z n�1 outside B(p; C2r).Indeed, with the notation of the last lemma we can choose C2 = 4+ 2C1. To see thisnote �rst that M := �B(p; 12(C2 + 1)r) nB(p; 12(C2 � 1)r)separates p from q. Using the fact that Z is homeomorphic to S2, it is easy to seethat there is a Jordan curve in an arbitrarily small neighborhood of M separating pfrom q. In particular, there exists a loop f0 : S1 ! Z such thatf0(S1) � B(p; 12(C2 + 2)r) n �B(p; 12(C2 � 2)r)and the winding number of f0 with respect to p di�ers from the winding number of f0with respect to q. By the previous lemma we can �nd a loop f1 : S1 ! �1 homotopicto f0 such that the tracks of the homotopy stay insideB(p; 12(C2 + 2 + 2C1)r) n �B(p; 12(C2 � 2� 2C1)r) � B(p; C2r) n fpg:In particular, the winding number of f1 with respect to p will still be di�erent fromthe winding number of f1 with respect to q. Hence f1(S1) also separates p from q,and so does �1 � f1(S1).Since �1 is connected, a component 
 of Z n�1 is a simply connected region whoseboundary @
 is a �nite union of edges in �1. Note that by the previous lemma, thenumber of these edges is bounded by a number depending only on the data of Z.Now de�ne a new graph �2 = (V2; E2) as follows: Subdivide the edges of �1 bychoosing for each edge a point in its interior. Moreover for each component 
 ofZ n �1 choose a point in its interior. These points together with the set V1 form thevertex set V2 of �2. The edges of �2 consist of the arcs obtained by the subdivisionof the edges in �1 and new edges obtained as follows for each component 
 of Z n�1.The vertices in V2 on the boundary of 
 can be brought into a natural cyclic orderv1; : : : ; vN ; vN+1 = v1, possibly with repetitions, such that successive vertices areadjacent, i.e., endpoints of an arc obtained from the subdivision of the edges in �1.Note that each vertex can occur at most twice in this given cyclic order. Hence N isbounded by a number depending only on the data. Since 
 is simply connected, wecan connect the vertex v chosen in the interior of 
 with each of the vertices vi by anarc ei such that ei n fvig � 
 and such that two of these arcs have only the point vin common.The graph �2 is embedded in Z, and has complementary regions whose closuresare topological triangles, i.e., there are exactly three di�erent vertices and edges in22



successive order on the boundary of such a region. One of these vertices is a vertexcontained in Z n �1, one will be in the interior of an edge e 2 E1 and one vertex willbe also a vertex of �1. In particular, the components of Z n �2 are Jordan regions.In general, the set of these triangles which are the closures of components of Z n �2will not be a triangulation of Z, because it may happen that two such triangles havethe same vertex set without being identical. This situation arises from componentsof Z n �1 which are not Jordan regions.De�ne a graph G = (V;E) obtained from �2 in the same way as �2 was obtainedfrom �1. Then the closures of the complementary components of Z nG are topologicaltriangles which triangulate Z so that the 1-skeleton of this triangulation is G. Theother desired properties of G follow immediately from the previous lemma and theproperties of �1.7. ModulusSuppose (Z; d; �) is a metric measure space, i.e., d is a complete metric and � a Borelmeasure on Z. Moreover, we assume that � is locally �nite and has dense support.The space (Z; d; �) is called (Ahlfors) Q-regular, Q > 0, if the measure � satis�esC�1RQ � �(B(a; R)) � CRQ (7.1)for each open ball B(a; R) of radius 0 < R � diam(Z) and for some constant C � 1independent of the ball. The numbers Q and C are called the data of Z. If (7.1) istrue for some measure �, then a similar inequality holds for Q-dimensional Hausdor�measure HQ. Hence, if in a Q-regular space the measure is not speci�ed, then weassume that the underlying measure � is the Hausdor� measure HQ.Let U � Z be an open set. We call a Borel function � : U ! [0;1] an uppergradient of a function u : U ! R ifju(x)� u(y)j � Z
 � ds;whenever x; y 2 U and 
 is a recti�able path joining x and y in U . Here integrationis with respect to arclength on 
.Suppose B = B(a; r) is an open ball in Z. If � > 0 we let �B := B(a; �r).Moreover, if u : B ! R is a locally integrable function on B, we denote by uB theaverage of u over B, i.e., uB = 1�(B) ZB u d�:The metric measure space is said to satisfy a (1; Q)-Poincar�e inequality, where Q � 1,if there exist constants C > 0 and � � 1 such that1�(B) ZB ju� uBj d� � C(diam(B))� 1�(�B) Z�B �Q d��1=Q ;whenever B is an open ball in Z, the function u is locally integrable on �Z, and � isan upper gradient of u on �B. 23



A density (on Z) is a Borel function � : Z ! [0;1]. A density � is called admissiblefor a path family � in Z, if Z
 � ds � 1for each recti�able path 
 2 �. Here integration is with respect to arclength on 
. IfQ � 1, the Q-modulus of a family � of paths in Z is the numberModQ(�) = inf Z �Q d�; (7.2)where the in�mum is taken over all densities � : Z ! [0;1] that are admissible for�. If E and F are (nondegenerate) continua in Z, we let ModQ(E; F ) denote theQ-modulus of the family of paths in Z connecting E and F .Suppose Z is a recti�ably connected metric measure space. Then Z is called aQ-Loewner space, Q � 1, if there exists a positive decreasing function 	: R+ ! R+such that ModQ(E; F ) � 	(�(E; F )) (7.3)whenever E and F are disjoint continua in Z. Recall that �(E; F ) is the relativedistance of E and F as de�ned in (2.9). The number Q and the function 	 are thedata of the Loewner space Z.The Loewner condition was introduced in [15] and quanti�es the idea that a spacehas many recti�able curves. According to Thm. 5.7 and Thm. 5.12 in [15] a properQ-regular metric space Z satis�es a (1; Q)-Poincar�e inequality if and only if Z isQ-Loewner (note that the assumption of '-convexity in [15, Thm. 5.7] is unneces-sary, since a proper Q-regular metric space satisfying a (1; Q)-Poincar�e inequality isquasiconvex [12, Appendix]).We will use the following fact about Loewner spaces.Proposition 7.4. Suppose (Z; d; �) is a Q-regular Q-Loewner space, Q > 1. Thenthere exist constants � � 1 and C > 0 depending only on the data of Z with thefollowing property.If z 2 Z, s > 0, and Y1; Y2 � Z are continua with Yi\B(z; s) 6= ; and diam(Yi) �s=4 for i 2 f1; 2g, then for every Borel function � : Z ! [0;1] there exists a recti�ablepath � in Z joining Y1 and Y2 such thatZ� � ds � C �ZB(z;�s) �Q d��1=Q :We will skip the proof of this proposition which is very similar to the proof of Lem.3.17 in [15]. Essentially, the result is true because the relative distance of Y1 and Y2 isbounded by a �xed constant. Hence the regularity and the Loewner condition implythat if � is large enough depending on the data, then the modulus of the family ofpaths inside B(z; �s) joining Y1 and Y2 is bigger than a constant.Suppose G = (V;�) is a graph, and A;B are subsets of V . We will de�ne thecombinatorial Q-modulus modGQ(A;B) of the pair A and B as follows. Call a weight24



function w : V ! [0;1] admissible for the pair A and B, ifnXi=1 w(xi) � 1;whenever x1; : : : ; xn is chain connecting A and B.Now let modGQ(A;B) = infXv2V w(v)Q;where the in�mum is taken over all weights w that are admissible for A and B. Notethat modGQ(A;B) � 1 if A \B 6= ;. We drop the superscript G in modGQ(A;B) if thegraph G is understood.If A � V and s > 0 we denote by Ns(A) the s-neighborhood of A, i.e., the set ofall u 2 V for which there exists a 2 A with kG(a; u) < s.If we want to estimate the Q-modulus of the pair (A;B), then the following lemmawill allow us to change the sets A and B with quantitative control.Lemma 7.5. Suppose G = (V;�) is a graph with valence bounded by d0 � 1. Forevery Q � 1 and s > 0 there exists a number C = C(d0; s; Q) with the followingproperty: If A;B;A0; B0 � V , A0 � Ns(A), and B0 � Ns(B), thenmodQ(A0; B0) � CmodQ(A;B):Proof. Note that if w is admissible for A and B, then ~w : V ! [0;1] de�ned by~w(v) = Xu2B(v;s)w(u) for v 2 Vis admissible for (A0; B0). Moreover, since the valence of G is bounded by d0, it followsthat each ball B(v; s) has a cardinality bounded by a constant depending only on sand d0. It follows that Xv2V ~w(v)Q � CXv2V w(v)Q;with C = C(s; d0; Q). The lemma follows.8. K-approximations and modulus comparisonIn this section we relate the Q-modulus on a metric space to the Q-modulus on thegraph of a K-approximation. Results of this general nature are well-known. The(minor) novelty here is that the local scales may vary from point to point.Let (Z; d) be a metric space. Throughout this section A = (G; p; r;U) will be aK-approximation of Z with graph G = (V;�). For each subset E � Z we de�neVE := fv 2 V j Uv \ E 6= ;g. Note that VE � V depends on A, but we suppress thisdependence in our notation. If 
 : J ! Z is a path, we will denote the image set 
(J)also by 
 for simplicity.
25



Proposition 8.1. Let (Z; d; �) be a Q-regular metric measure space, Q � 1, and letA be a K-approximation of Z. Then there exists a constant C � 1 depending onlyon K and the data of Z with the following property:If E; F � Z are continua and if dist(VE; VF ) � 4K, thenModQ(E; F ) � CmodQ(VE; VF ): (8.2)Proof. Let w : V ! [0;1] be an admissible function for the pair (VE; VF ): if v1 �� � � � vk is a chain in V with v1 2 VE and vk 2 VF , then Pki=1w(vi) � 1. De�ne~w : V ! [0;1] by the formula ~w(v) = Xu2B(v;K)w(u);and � :=Xv2V � ~w(v)rv ��StK(v) ;where �Y denotes the characteristic function of Y � Z.Mass bound for �. The cover fStK(v) : v 2 V g has controlled overlap depending onK and there exists a constant C = C(K) such that StK(v) � B(pv; Crv) for v 2 V .Moreover, Z is Q-regular and every K-ball in V has cardinality controlled by C(K).So we have that ZZ �Q d� . Xv2V ZZ � ~w(v)rv �StK(v)�Q d�. Xv2V ~w(v)Q .Xv2V w(v)Q: (8.3)
Admissibility of �. Now let 
 : J ! Z be a recti�able path connecting E to F . Since Uis a cover of the path 
, there exists a set W = fv1; : : : ; vkg in V such that 
\Uvi 6= ;for i 2 f1; : : : ; kg, Uvi \ Uvi+1 6= ; for i 2 f1; : : : ; k � 1g, and v1 2 VE and vk 2 VF .The combinatorial distance of vi and vi+1 is less than K. Hence there exists a chainA in V connecting VE and VF satisfying W � A � NK(W ).For each v 2 W , let Jv := 
�1(StK(v)) and 
v := 
jJv . Then the de�nition of �gives �(
(t)) � ~w(v)=rv for t 2 Jv:By our assumption that dist(VE; VF ) � 4K the path 
 is not contained in any K-star of a vertex. For if 
 � StK(u), then there exist u1; u2 2 V with k(u1; u) < K,k(u2; u) < K, Uv1\Uu1 6= ;, and Uvk\Uu2 6= ;. Then k(v1; u1) < K and k(vk; u2) < Kwhich implies dist(VE; VF ) � k(v1; vk) < 4K.Since 
 is not contained in any K-star of a vertex, we have that if a set Uv meets 
,then length(
\StK(v)) � rv=K by condition (4) of aK-approximation. In particular,for each v 2 W we have length(
v) � rv=K, and so26



Z
v � ds & � ~w(v)rv � length(
v) & ~w(v):Hence Xv2W Z
v � ds &Xv2W ~w(v) & Xv2NK(W )w(v) � 1;since NK(W ) contains the chain A connecting VE and VF and w is admissible. Thesets StK(v) and hence the sets Jv � J for v 2 W have controlled overlap dependingon K, giving Z
 � ds &Xv2W Z
v � ds & 1: (8.4)Combining (8.3) with (8.4) we getModQ(E; F ) . modQ(VE; VF ):It is an interesting question when an inequality like (8.2) holds in the oppositedirection. We will not need such a result for the proof of our theorems, but wewill nevertheless explore this question, because it illuminates the general picture. Inorder to get the desired inequality, we have to add an analytic assumption on Z toour hypotheses. It su�ces to assume that Z is a Q-regular Q-Loewner space, but asthe next proposition shows it is enough that a Loewner type condition holds locallyon the scale of our K-approximation A.Proposition 8.5. Let (Z; d; �) be a Q-regular metric measure space, Q � 1, and letA be a K-approximation of Z.Suppose that there exist constants c1; C1 > 0 with the following property: Letv 2 V , z 2 Uv, and 0 < s � c1rv. If Y1; Y2 � Z are continua with Yi \ B(z; s) 6= ;and diam(Yi) � s=4 for i 2 f1; 2g, then for every Borel function � : Z ! [0;1] thereexists a recti�able path � connecting Y1 and Y2 such thatZ� � ds � C1�ZStK(v) �Q d��1=Q : (8.6)Then there exists a constant C � 1 depending only on K, the data of Z, and theconstants associated to the analytic condition (8.6) with the following property:If E; F � Z are continua not contained in any set St2K(v) for v 2 V , thenmodQ(VE; VF ) � CModQ(E; F ): (8.7)Note that by Proposition 7.4 and by the properties of a K-approximation everyQ-regular Q-Loewner space Z with Q > 1 satis�es the analytic condition (8.6) withappropriate constants depending only on K and the data of Z. So Proposition 8.1and Proposition 8.5 together imply the following corollary.27



Corollary 8.8. Let Z be a Q-regular Q-Loewner space, Q > 1, and let A be a K-approximation of Z. Then there exists a constant C � 1 depending only on K andthe data of Z with the following property:If E; F � Z are continua not contained in any (2K)-star and if dist(VE; VF ) �4K, then C�1ModQ(E; F ) � modQ(VE; VF ) � CModQ(E; F ): (8.9)Proof of Proposition 8.5. Let � : Z ! [0;1] be an admissible Borel function for thepair (E; F ), i.e. Z
 � ds � 1for any recti�able path 
 joining E with F . De�ne w : V ! [0;1] byw(v) := �ZSt3K(v) �Q d��1=Q :Mass bound for w. Since the numbers #B(v; 3K) for v 2 V and the multiplicity ofthe cover U are bounded by a constant depending only on K, we haveXv2V w(v)Q � Xv2V Xu2B(v;3K) ZUu �Q d�. Xv2V ZUv �Q d� (8.10). ZZ �Q d�:Admissibility of w. This step in the proof is modelled on arguments from [15], andis based on repeated application of our analytic condition. We use this near a singleset Uv to prove that under our assumptions we have:Lemma 8.11. Suppose v 2 V , and Y1; Y2 � Z are continua with Yi \ StK(v) 6= ;,and diam(Yi) � c0rv, where c0 > 0. Then there is a recti�able path � connecting Y1and Y2 such that Z� � ds � Cw(v); (8.12)where C > 0 depends only on c0, K, and the data of Z.Proof. Pick z1; z2 2 StK(v) so that zi 2 Yi \ StK(v). Applying condition (5) of aK-approximation repeatedly, we �nd a path 
 joining z1 to z2 so that 
 � St2K(v).Let s := (c0 ^ c1) minu2B(v;2K) r(u) ' r(v);28



where c1 is the constant in the hypothesis of Proposition 8.5. Since Z is Q-regular,it is doubling. Moreover, s ' r(v) and diam(
) . r(v). Hence the cardinality of amaximal (s=2)-separated set on 
 is bounded by a number depending only on the data.Since 
 is connected, we can �nd an appropriate subset x1; : : : ; xN of such a maximalset such that d(z1; x1) < s, d(z2; xN ) < s, and d(xi�1; xi) < s for i 2 f2; : : : ; Ng,where N 2 N is bounded by a number depending only on the data.Now let �1 := Y1 and �N+1 := Y2. Then diam(�1) ^ diam(�N+1) � s=4 by ourassumptions. If N � 2, we have diam(
) � s=2 and so in addition we can �ndcontinua �i � 
 with xi 2 �i � B(xi; s) and diam(�i) � s=4 for i 2 f2; : : : ; Ng.Now xi 2 
 � St2K(v) and so xi 2 Uui for some ui 2 V with k(ui; v) < 2K. Thenby de�nition of s we have s � c1rui. Hence we can inductively �nd recti�able paths�1; : : : ; �N such that �i joins �1 [ �1 [ � � � [ �i�1 and �i+1, andZ�i � ds . �ZStK(ui) �Q d��1=Q � �ZSt3K(v) �Q d��1=Q = w(v): (8.13)This follows from an application of our analytic assumption to the ball B(xi; s) andthe pair �1[ �1 [ � � �[ �i�1 and �i+1. Note that �i+1 meets B(xi; s). The same is truefor the set �1 [ �1 [ � � � [ �i�1, since it meets �i by induction hypothesis. The union�1 [ : : : [ �N contains a recti�able path � connecting Y1 and Y2 withZ� � ds . Nw(v) ' w(v):Now suppose v1; : : : ; vk are the vertices of a chain in G joining VE to VF . ThenUv1 \ E 6= ;, Uvk \ F 6= ;, and Uvi�1 \ Uvi 6= ; for i 2 f2; : : : ; kg. Set �1 := E,�k+1 := F , and for i 2 f2; : : : ; kg let �i be a continuum with �i � StK(vi�1)\StK(vi)and diam(�i) � (rvi�1 ^ rvi)=(2K) � (rvi�1 _ rvi)=(2K2):These sets exist by condition (4) of a K-approximation and the fact that the com-plement of any K-star contains elements of E and F and is thus nonempty.We can inductively �nd recti�able paths �1; : : : ; �k withZ�i � ds � C1w(vi)so that �i joins �1[�1[: : :[�i�1 to �i+1. Here C1 depends only onK and the data of Z.This follows from an application of Lemma 8.11 with v = vi, Y1 := �1[�1[ : : :[�i�1,Y2 := �i+1, and a constant c0 only depending on K. Indeed, note that Y2 meetsStK(vi), and diam(Y2) � rvi=(2K2). The set Y1 = �1 [ �1 [ : : : [ �i�1 also meetsStK(vi), since it meets �i by induction hypothesis. Moreover, since E = �1 � Y1 andE is not contained in any (2K)-star, condition (4) of a K-approximation shows thatwe have diam(Y1) � c(K)rvi, where c(K) > 0 depends on K only.The union �1 [ : : : [ �k will contain a recti�able path � joining E to F with1 � Z� � ds � C1 kXi=1 w(vi):29



Therefore C1w is an admissible test function for (VE; VF ). Hence by (8.10)modQ(VE; VF ) . ModQ(E; F ):This completes the proof of Proposition 8.5.9. The Ferrand cross-ratioIf a map quantitatively distorts the modulus of path families, then in some situations itfollows that the map is quasi-M�obius. A result of this type is the following proposition,which illustrates the importance of the concept of a Loewner space (cf. Remark 4.25in [15], where a related result is mentioned without proof.)Proposition 9.1. Let X and Y be metric spaces, f : X ! Y a homeomorphism, andQ > 1. Suppose X is a Q-regular Q-Loewner space, Y is Q-regular and LLC, andthat there exists a constant K > 0 such thatModQ(�) � KModQ(f(�)) (9.2)for every family � of paths in X.Then f is �-quasi-M�obius with � depending only on K and the data of X and Y .Here f(�) is the family of all paths f � 
 with 
 2 �.Proof. Being a Loewner space, X is �-LLC with � depending on the data of X, andin particular connected. Moreover, Y is C0-doubling with C0 depending only on thedata of Y . So by Lemma 3.3 it is enough to show that if (x1; x2; x3; x4) is a four-tupleof distinct points in X with [y1; y2; y3; y4] small, where yi = f(xi), then [x1; x2; x3; x4]is small, quantitatively.Now if [y1; y2; y3; y4] is small, then by Lemma 2.10 we can �nd continua E 0; F 0 � Ywith y1; y3 2 E 0, and y2; y4 2 F 0 such that �(E 0; F 0) is large, quantitatively. Let �0 bethe family of all paths in Y joining E 0 and F 0, and let � be the family of all paths inX joining E := f�1(E 0) and F := f�1(F 0). Then �0 = f(�) and so by our hypotheseswe have ModQ(E; F ) = ModQ(�) � KModQ(�0) = KModQ(E 0; F 0):Since Y is Q-regular, we have thatModQ(E 0; F 0) . 1(log(1 + �(E 0; F 0))Q�1 :This is a standard fact following from the upper mass bound for the Hausdor� measurein Y . It can be be established similarly as Proposition 9.9 below. Hence if �(E 0; F 0)is large, then ModQ(E 0; F 0) and ModQ(E; F ) are small, quantitatively. But in aLoewner space, we have �(�(E; F )) � ModQ(E; F );where �: R+ ! R+ is a positive decreasing function. It follows that �(E; F ) islarge, quantitatively. Finally, by Lemma 2.10 again, this means that for the pointsx1; x3 2 E and x2; x4 2 F we have that [x1; x2; x3; x4] is small, quantitatively.30



We will actually not use this proposition, but rather corresponding discrete ver-sions of this result (the closest discrete analog is Proposition 9.8). We includedProposition 9.1 to clarify the basic idea.The relevant point in the preceding proof was that the cross-ratio of four pointscan be quantitatively controlled by an appropriate modulus. So suppose X is a metricmeasure space and let (x1; x2; x3; x4) be a four-tuple of distinct points. For Q � 1de�ne the Ferrand cross-ratio of the four points to be[x1; x2; x3; x4]Q = inf ModQ(E; F ); (9.3)where the in�mum is taken over all continua E; F � X with x1; x3 2 E and x2; x4 2 F .Using Lemma 2.10, it is not hard to see that if X is a Q-regular Q-Loewnerspace, then the cross-ratio [x1; x2; x3; x4] is small if and only if the Ferrand cross-ratio[x1; x2; x3; x4]Q is small. Moreover, if X is only LLC and Q-regular, then at least oneof these implication holds. Namely, if [x1; x2; x3; x4] is small, then [x1; x2; x3; x4]Q issmall. The purpose of this section is to establish similar results for vertices in a graphcoming from a K-approximation.Assume Q � 1 is �xed and let G = (V;�) be a connected graph. Imitatingthe de�nition of the Ferrand cross-ratio in a metric measure space Z, we de�ne theFerrand cross-ratio of a four-tuple (v1; v2; v3; v4) of distinct points in V by[v1; v2; v3; v4]GQ = inf modGQ(A;B);where the in�mum is taken over all chains A;B � V with v1; v3 2 A and v2; v4 2 B.The superscript G will be dropped, if no confusion can arise.Proposition 9.4. Let Z be a metric space which is LLC, let A = (G; p; r;U) be aK-approximation of Z, and Q � 1. Suppose that there exist a number L > 0 and afunction 	: R+ ! (0;1] with limt!1	(t) = 0 such thatmodQ(VE; VF ) � 	(�(E; F )); (9.5)whenever E; F � Z are continua not contained in any L-star.Then there exists a function � : R+ ! R+ depending only on K, L, Q, 	 and thedata of Z with the following property:If � > 0 and (v1; v2; v3; v4) is an arbitrary four-tuple of vertices in G such thatk(vi; vj) � 2(K + L) for i 6= j, then we have[p(v1); p(v2); p(v3); p(v4)] < �(�)) [v1; v2; v3; v4]Q < �:We will see below (cf. Proposition 9.9) that if Z is LLC and Q0-regular withQ0 � Q, then condition (9.5) is satis�ed with L = K and some function 	 onlydepending on K and the data of Z (and not on A).Proof. Let pi = p(vi) for i 2 f1; : : : ; 4g. Our assumption on the combinatorial sepa-ration of the vertices vi and properties (2) and (3) of a K-approximation imply thatthe points pi are distinct. Hence [p1; p2; p3; p4] is well-de�ned.We have to show that if k(vi; vj) � 2(K + L) for i 6= j and [p1; p2; p3; p4] is small,then [v1; v2; v3; v4]Q is small, quantitatively. If [p1; p2; p3; p4] is small, then by Lemma31



2.10 there exist continua E and F with p1; p3 2 E, p2; p4 2 F and �(E; F ) large,quantitatively. Since E is a continuum, we can �nd a chain A � NK(VE) connectingv1; v3 2 VE. Similarly, we can �nd a chain B � NK(VF ) connecting v2; v4 2 VF .Lemma 7.5 implies that there exists a constant C = C(K) such thatmodQ(A;B) � CmodQ(VE; VF ):The set E � fp1; p3g is not contained in the L-star of any v 2 V . For if E �StL(v), then there exist u1; u2 2 V with k(v; u1) < L, k(v; u2) < L, p1 2 Uu1 , andp3 2 Uu2. But then p1 2 Uu1 \ Uv1 which implies k(v1; u1) < K by property (3)of a K-approximation. Similarly, k(v3; u2) < K. Putting these inequalities togetherwe get k(v1; v3) < 2(K + L) which contradicts our assumption on the combinatorialseparation of the vertices vi. In the same way we see that F cannot be contained inany L-star either. Now from our assumption we obtain[v1; v2; v3; v4]Q � modQ(A;B) . modQ(VE; VF ) � 	(�(E; F )):Since �(E; F ) is large and 	(t) ! 0 as t ! 1, this implies that [v1; v2; v3; v4]Q issmall, quantitatively.Proposition 9.6. Let Z be a metric space, let A = (G; p; r;U) be a K-approximationof Z, and Q � 1. Suppose that there exist a number M > 0 and a decreasing positivefunction �: R+ ! R+ such that�(�(E; F )) � modQ(VE; VF ); (9.7)whenever E; F � Z are continua with dist(VE; VF ) � M:Then there exists a function � : R+ ! R+ depending only on K, M , Q, and �with the following property:If � > 0 and (v1; v2; v3; v4) is an arbitrary four-tuple of vertices in G such thatk(vi; vj) � K for i 6= j, then we have:[v1; v2; v3; v4]Q < �(�)) [p(v1); p(v2); p(v3); p(v4)] < �:It follows from Proposition 8.1 that if Z is a Q-regular Q-Loewner space, thencondition (9.7) is satis�ed with M = 4K and some function � depending only on Kand the data of Z (and not on A).Proof. Let pi = p(vi) for i 2 f1; : : : ; 4g. Our assumption on the combinatorial sep-aration of the vertices vi implies that the points pi are distinct and [p1; p2; p3; p4] iswell-de�ned.If [v1; v2; v3; v4]Q is small, then there exist chains A;B in G with v1; v3 2 A andv2; v4 2 B for which modQ(A;B) is small, quantitatively.We may assume dist(A;B) � M + 4K. Otherwise, A0 = NM+4K(A) and B0 =NM+4K(B) have nonempty intersection which by Lemma 7.5 leads to1 � modQ(A0; B0) � C(K;M;Q)modQ(A;B):Since A is a chain connecting v1 and v3, there are elements ui in A with u1 = v1 �� � � � un = v3. Then Uui \Uui+1 6= ; and we can �nd a path 
i � StK(ui)[ StK(ui+1)32



connecting p(ui) and p(ui+1) for i 2 f1; : : : ; n� 1g. The union E = 
1 [ � � � [ 
n�1 isa continuum joining p1 and p3 withE � n[i=1 StK(ui):If u 2 VE, then Uu \ Uw 6= ; for some w 2 NK(A). Hence VE � N2K(A). Acontinuum F in Z connecting p2 and p4 with VF � N2K(B) can be constructed in thesame way. Then dist(VE; VF ) � dist(A;B) � 4K � M and so from our hypothesesand Lemma 7.5 we conclude�(�(E; F )) � modQ(VE; VF ) . modQ(A;B):Since modQ(A;B) is small, we see that �(E; F ) is large, quantitatively. Lemma 2.10implies that [p1; p2; p3; p4] is small, quantitatively.Now we can prove a discrete version of Proposition 9.1.Proposition 9.8. Let Q � 1, and let X and Y be metric spaces with K-approxi-mations A = (G; p; r;U) and A0 = (G; p0; r0;U 0), respectively, whose underlying graphG = (V;�) is the same. Suppose X is connected, and X and A satisfy condition(9.7) for some M > 0 and some function �. Suppose Y is LLC and doubling, andY and A0 satisfy condition (9.5) for some L > 0 and some function 	. AssumeW � V is a maximal set of vertices with mutual combinatorial distance at least s,where s � 2(K + L). Let A = p(W ), B = p0(W ) and de�nef : A! B; x 7! p0(p�1(x)):Then f is �-quasi-M�obius with � depending only on K, Q, L, M , s, �, 	, andthe data of Y (i.e., the parameters in the LLC and doubling conditions).Since the concept of modulus on a graph is independent of the concept of a K-approximation, the analog of (9.2) in this proposition is the assumption that theunderlying graphs of A and A0 are equal.By the remarks following Propositions 9.4 and 9.6, this proposition can be appliedif A and A0 are K-approximations of a Q-regular Q-Loewner space X with Q > 1and of a Q0-regular space Y with Q0 � Q, respectively. This special case correspondsto the situation in Proposition 9.1.Proof. By properties (2) and (3) of a K-approximation, the restrictions p0jW andpjW are injective. Hence f is well-de�ned and a bijection.By Lemma 4.7 the set A is weakly �-uniformly perfect with � depending onlyon s and K. Since Y is doubling, the subset B is also doubling, quantitatively.Hence by Lemma 3.3, in order to establish that f is uniformly quasi-M�obius itis enough to show that if (x1; x2; x3; x4) is a four-tuple of distinct points in A,and [f(x1); f(x2); f(x3); f(x4)] is small, then [x1; x2; x3; x4] is small, quantitatively.To see this let vi = p�1(xi) = p0�1(f(xi)). Then Proposition 9.4 shows that if[f(x1); f(x2); f(x3); f(x4)] is small, then [v1; v2; v3; v4]Q is also small quantitatively.This in turn implies by Proposition 9.6 that [x1; x2; x3; x4] is small, quantitatively.As already mentioned, condition (9.5) is true if Q > 1 and Z is Q0-regular withQ0 � Q. This is proved in the following proposition.33



Proposition 9.9. Suppose Q > 1 and let (Z; d; �) be a metric measure space whichis LLC and Q0-regular for some Q0 � Q. Let A = (G; p; r;U) be a K-approximationof Z. Then there exists a function 	: R+ ! (0;1] with limt!1	(t) = 0 dependingonly on K, Q and the data of Z such thatmodQ(VE; VF ) � 	(�(E; F )); (9.10)whenever E; F � Z are continua not contained in any K-star.Proof. We may assume �(E; F ) � 2 and R := diam(E) � diam(F ). Fix z0 2 E.Since A is a K-approximation, we have thatjd(z0; p(u))� d(z0; p(v))j � C1r(u) for u; v 2 V; u � v; (9.11)where C1 = C1(K). If d(z0; p(v)) < r(v) for some v 2 V , then Uv \ E 6= ;. Hencer(v) � C2diam(E), where C2 = C2(K) > 0, because E is not contained in StK(v).Therefore, there exists C3 = C3(K) > 0 such thatr(v) � C3(R + d(z0; p(v))) for v 2 V: (9.12)Together with (9.11) this shows that there exists C4 = C4(K) � 1 such thatC�14 � R + d(z0; p(v))R + d(z0; p(u)) � C4 for u; v 2 V; u � v: (9.13)Now de�ne w : V ! R+ as follows. Letw(v) = r(v)log(�(E; F ))(R+ d(z0; p(v)))if 0 � d(z0; p(v)) � R�(E; F ) and let w(v) = 0 otherwise. There exists N 2 N suchthat 2N�1 � �(E; F ) < 2N : (9.14)Let Bi := B(z0; 2iR) for i 2 f0; : : : ; Ng and let B�1 := ;. By property (2) of a K-approximation and by (9.12) there exist C5 > 0 depending only on the data such thatUv � B(z0; C52iR) whenever v 2 V and p(v) 2 Bi. Using (9.12) and the Q0-regularityof � we obtain for the total mass of wXv2V w(v)Q � NXi=0 Xp(v)2BinBi�1w(v)Q. 1(log�(E; F ))Q NXi=0 Xp(v)2BinBi�1 r(v)Q0(R + d(z0; p(v)))Q0. 1(log�(E; F ))Q NXi=0 Xp(v)2Bi �(Uv)2iQ0RQ0. 1(log�(E; F ))Q NXi=0 �(B(z0; C52iR))2iQ0RQ0. N + 1(log�(E; F ))Q . 1(log�(E; F ))Q�1 :34



In the last inequality we used (9.14) and the fact �(E; F ) � 2.On the other hand, let u1 � � � � � un be an arbitrary chain with u1 2 VE andun 2 VF . Let di := R + d(z0; p(ui)), i 2 f1; : : : ; ng. Then there is a largest numberk 2 N , k � n, such that d(z0; p(ui)) � R�(E; F ) = dist(E; F ) for i 2 f1; : : : ; kg.We claim dk & R�(E; F ). For otherwise, d(z0; p(uk)) < dk << R�(E; F ). Ifk = n this implies r(uk) ' diam(Uuk) & R�(E; F ), because Uuk then meets F andcontains p(uk), which is close to E. But r(uk) & R�(E; F ) is also true if k < n,because then by (9.11) we have r(uk) & jdk+1 � dkj ' d(z0; p(uk+1)) > R�(E; F ).Now the inequalities d(z0; p(uk)) << R�(E; F ) and r(uk) & R�(E; F ) are in-compatible if �(E; F ) is larger than a constant depending on the data, which wemay assume. For in this case E � Nr(uk)=K(Uuk) � StK(uk) which is a contradiction.Note that since r(v) . diam(E) for v 2 VE, we have d1 . R. Hence log(dk=d1) &log�(E; F ), and by using (9.11) and (9.13) we arrive atnXi=1 w(vi) � 1log�(E; F ) kXi=1 r(ui)di& 1log�(E; F ) k�1Xi=1 jdi+1 � dijdi ^ di+1� 1log�(E; F ) k�1Xi=1 Z di+1di dss= log(dk=d1)log�(E; F ) & 1:This and the mass bound for w showmodQ(VE; VF ) . 1(log�(E; F ))Q�1 :The assertion follows from this and Q > 1.In the previous proof we used (9.12) in the second of the inequalities used to derivethe mass bound for w. If we do not use (9.12), then the proof actually showsmodQ(VE; VF ) � � mesh(A)diam(E) ^ diam(F )�Q�Q0 C(log�(E; F ))Q�1 ; (9.15)where C is a constant depending only on K, Q and the data of Z. This inequalitywill be useful in the proof of Theorem 1.2.The goal in the proofs of Theorems 1.1 and 1.2 is the construction of a quasisym-metric map between two spaces. Based on Proposition 9.8 one can prove a generalresult in this direction if one considers K-approximations of the spaces with meshsize tending to zero.Proposition 9.16. Let Q;K;K 0 � 1, and let (X; dX) and (Y; dY ) be compact metricspaces. Assume that Ak = (Gk; pk; rk;Uk) and A0k = (Gk; p0k; r0k;U 0k) for k 2 N areK-approximations of X and K 0-approximations of Y , respectively, whose underlyinggraphs Gk = (V k;�) are the same. 35



Suppose that X is connected, and that there existM > 0 and some function � suchthat X and Ak for k 2 N satisfy condition (9.7). Suppose Y is LLC and doubling,and that there exist L > 0 and some function 	 such that Y and A0k for k 2 N satisfycondition (9.5).Finally, suppose that there exist � > 0 and vertices vk1 ; vk2 ; vk3 2 V k for k 2 N suchthat dX(pk(vki ); pk(vkj )) � �diam(X) and dY (p0k(vki ); p0k(vkj )) � �diam(Y )for k 2 N, i; j 2 f1; 2; 3g, i 6= j.If limk!1mesh(Ak) = 0, then there exists an �1-quasisymmetric map f : X ! Y ,where �1 depends only on the data.If limk!1mesh(A0k) = 0, then there exists an �2-quasisymmetric map g : Y ! X,where �2 depends only on the data.The data here consist of K, K 0, L, M , Q, �, the functions � and 	, and theLLC and the doubling constants of Y . Note that we do not claim that f or g aresurjective. If both mesh(A0k)! 0 and mesh(A0k)! 0, then the maps f and g can beconstructed so that they are inverse to each other. In this case the spaces X and Yare quasisymmetrically equivalent.The natural question arises what the relation of the conditions mesh(Ak) ! 0and mesh(A0k) ! 0 is. We will later see (cf. Proposition 11.7) that even underslightly weaker assumptions mesh(A0k) ! 0 actually implies mesh(Ak) ! 0. Theother direction is less clear.We will apply this proposition in the case that X and Y are topological 2-spheres.In this case f and g are forced to be surjective, since a sphere can not be embeddedinto a proper subset of an another sphere of the same dimension (this fact easilyfollows from invariance of domain).Proof. Increasing K or K 0 to K _K 0, we may assume K = K 0.If mesh(Ak) ! 0 or mesh(A0k) ! 0, then the mutual combinatorial distance ofthe vertices vk1 ; vk2 ; vk3 becomes arbitrarily large as k !1. So if k is su�ciently large,k � k0 say, then there exists a maximal (2K+2L)-separated set Wk � V k containingvk1 ; vk2 ; vk3 . Assume k � k0 for the rest of the proof.Let Ak := pk(Wk), Bk := p0k(Wk) and fk : Ak ! Bk, x 7! p0k(p�1k (x)). Then byProposition 9.8, the maps fk are ~�1-quasi-M�obius with ~�1 depending on the data (andnot on k). Hence the inverse maps gk = f�1k : Bk ! Ak are ~�2-quasi-M�obius with ~�2depending on the data. Moreover, let xki := p(vki ) and yki := p0k(vki ) for i 2 f1; 2; 3g.Then dX(xki ; xkj ) � �diam(X) and dY (yki ; ykj ) � �diam(Y ) for i; j 2 f1; 2; 3g, i 6= j,and we have fk(xki ) = yki and gk(yki ) = xki .Every vertex v 2 V k has combinatorial distance at most 2K + 2L to the set Wk.Moreover, the sets Uv, v 2 V k; form a cover of X. It follows from the properties of aK-approximation that every point in X lies within distance C(K;L)mesh(Ak) of theset Ak. So if mesh(Ak)! 0, then supx2X dist(x;Ak)! 0 as k !1. In this case themaps fk subconverge to an ~�1-quasi-M�obius map f : X ! Y by Lemma 3.1.Passing to appropriate subsequences we may assume that xki ! xi 2 X andyki ! yi 2 Y as k !1, and f(xi) = yi for i 2 f1; 2; 3g. Then dX(xi; xj) � �diam(X)and dX(yi; yj) � �diam(Y ) for i; j 2 f1; 2; 3g, i 6= j. It follows from remark (4) in36



Section 3 that f is a �1-quasisymmetric with �1 depending on � and ~�1, and henceonly on the data.If mesh(A0k) ! 0, then by considering the maps gk one can construct an �2-quasisymmetric map g : Y ! X with �2 depending on the data in a similar way.If both mesh(Ak)! 0 and mesh(A0k)! 0, then we �rst �nd a subsequence (fkl)l2Nof the sequence fk converging to a map f . Then a subsequence of the sequence (gkl)l2Nwill converge to a map g. Then f and g will be quasisymmetries as desired, and wehave in addition that f and g are inverse to each other.10. The proofs of Theorems 1.1 and 1.2We will derive our Theorems 1.1 and 1.2 from more general theorems that give nec-essary and su�cient conditions for a metric 2-sphere to be quasisymmetric to S2. InTheorems 10.1 and 10.4 we will assume that Z is linearly locally connected and dou-bling. These conditions are necessary for Z to be quasisymmetric to S2. Moreover,by Corollary 6.9, a sequence of K-approximations as speci�ed always exists underthese necessary a priori assumptions.Theorem 10.1. Let Z be metric space homeomorphic to S2 which is linearly locallyconnected and doubling. Suppose K � 1 and Ak = (Gk; pk; rk;Uk) for k 2 N areK-approximations of Z whose graphs Gk = (V k;�) are combinatorially equivalent to1-skeletons of triangulations Tk of S2 and for whichlimk!1mesh(Ak) = 0: (10.2)Suppose there exist numbers Q � 2, k0 2 N, M > 0, and a positive decreasing function�: R+ ! R+ satisfying the following property:If k � k0 and E; F � Z are continua with dist(V kE ; V kF ) �M , then�(�(E; F )) � modGkQ (V kE ; V kF ): (10.3)Then there exists an �-quasisymmetric homeomorphism f : Z ! S2 with � dependingonly on the data.Conversely, if Z is quasisymmetric to S2, then condition (10.3) for the givensequence Ak is satis�ed for Q = 2, some numbers k0 2 N, M > 0, and an appropriatefunction �.The data in the �rst part of the theorem are Q, K, M , �, and the LLC anddoubling constants of Z.Proof. Fix a triple (z1; z2; z3) of distinct points in Z such that d(zi; zj) � diam(Z)=2for i; j 2 f1; 2; 3g, i 6= j. Since mesh(Ak)! 0, for su�ciently large k, say k � k1 � k0,we can �nd vki 2 V k such that for xki := pk(vki ) we have d(zi; xki ) < diam(Z)=8 fori 2 f1; 2; 3g. Then d(xki ; xkj ) � diam(Z)=4 for i; j 2 f1; 2; 3g, i 6= j. Assume k � k1for the rest of the proof.The triangulation Tk can be realized as a circle packing on S2 (Section 5). We nor-malize the circle packing so that the vertices vk1 ; vk2 ; vk3 correspond to points y1; y2; y337



in S2 equally spaced on some great circle. The circle packings induce canonical K 0-approximations A0k = (Gk; p0k; r0k;U 0k) of S2, where K 0 depends only on the valence ofGk and hence only on K. Then p0k(vki ) = yi and so the vertices vki satisfy the conditionin Proposition 9.16, where � is a numerical constant.Since S2 is LLC and 2-regular, andQ � 2, we see by Proposition 9.9 that condition(9.5) is true for the space S2 and the K 0-approximations A0k with L = K 0 and auniform function 	 independent of k. Therefore, the hypotheses of Proposition 9.16are satis�ed for X = Z, Y = S2 and our sequence of approximations. We concludethat there exists an �-quasisymmetry f : Z ! S2 where � depends only on the data.Since Z is a topological sphere, this embedding has to be surjective and is hence ahomeomorphism.Conversely, assume that there exists an �-quasisymmetry f : Z ! S2. Since (10.2)implies the condition (4.2) in Lemma 4.1 for su�ciently large k, say for k � k0, wecan use the quasisymmetric images of the K-approximations Ak as in Lemma 4.1 toobtain K 0-approximations A0k = (Gk; p0k; r0k;U 0k) of S2. Here K 0 depends only on Kand �.Since S2 is a 2-regular 2-Loewner space, by Proposition 8.1 condition (9.7) is truefor the space S2 and the K 0-approximations A0k with Q = 2, the constant M = 4K 0and a function �0 independent of k.Now let k � k0, and suppose that E; F � Z are continua such that dist(V kE ; V kE ) �M . The underlying graphs ofAk andA0k are the same. Moreover, the combinatorics ofthe covers Uk and U 0k correspond under the mapping f . This shows that for E 0 = f(E)and F 0 = f(F ) we have V kE = V kE0, V kF = V kF 0, and dist(V kE ; V kF ) = dist(V kE0; V kF 0) �M; where the sets V kE , et cetera, are interpreted with respect to the appropriateapproximations. Hence we get�0(�(E 0; F 0)) � modGk2 (V kE0; V kF 0) = modGk2 (V kE ; V kF ):Condition (10.3) for an appropriate function � independent of k will follow from this,if we can show that �(E; F ) is large if and only if �(E 0; F 0) is large, quantitatively.But this last statement follows from the quasisymmetry of f and the discussion afterLemma 3.2.As an immediate application of this theorem we get a proof of Theorem 1.2.Proof of Theorem 1.2. Suppose Z is Q-regular and Q-Loewner for Q � 2.Then Z is LLC and doubling. Corollary 6.9 shows that there exist K � 1 and asequence of K-approximations Ak = (Gk; pk; rk;Uk) whose graphs Gk = (V k;�) arecombinatorially equivalent to 1-skeletons of triangulations Tk of Z and for which (10.2)is true. Now the Q-regularity of Z, Proposition 8.1, and the Q-Loewner property ofZ show that condition (9.7) is true for the K-approximations Ak withM = 4K and afunction � independent of k. Theorem 10.1 implies that there exists a quasisymmetrichomeomorphism f : Z ! S2. A result by Tyson [34] shows that if a Q-regular Q-Loewner space is quasisymmetrically mapped onto a Q0-regular space, then Q0 � Q.But S2 is 2-regular, and so we can apply this for Q0 = 2 and get 2 � Q. Since alsoQ � Q0 = 2 by assumption, we must have Q = 2. The proof of Theorem 1.2 iscomplete.It may be worthwhile to point out that in the previous proof an argument can begiven that avoids invoking Tyson's theorem.38



Suppose Z is Q-regular Q-Loewner space and f : Z ! S2 a quasisymmetric home-omorphism. Let Ak be a sequence of K-approximations of Z with underlying graphsGk = (V k;�) such that limk!1mesh(Ak) = 0. Let A0k be the K 0-approximation ofS2 obtained as the image of Ak under f . Then limk!1mesh(A0k) = 0. Let E; F � Zbe two disjoint continua and E 0 := f(E), F 0 := f(F ). Then by Proposition 8.1 andby the remark following the proof of Proposition 9.9 we have for su�ciently large k�(�(E; F )) � ModQ(E; F ) . modGkQ (V kE ; V kF ) = modGkQ (V kE0; V kF 0). � mesh(A0k)diam(E 0) ^ diam(F 0)�Q�2 1(log�(E 0; F 0))Q�1 :Here � is a positive function provided by the Q-Loewner property of Z. Moreover,the multiplicative constants implicit in this inequality are independent of E, F and k.Note that the additional assumptions on the combinatorial separation in Propositions8.1 and 9.9 are true for our continua if k is su�ciently large. If Q > 2 then the lastterm in the inequality tends to zero, since the mesh size tends to zero. But this isimpossible, since the �rst term is independent of k and positive. Hence Q = 2.Theorem 10.4. Let Z be metric space homeomorphic to S2 which is linearly locallyconnected and doubling. Suppose K � 1 and Ak = (Gk; pk; rk;Uk) for k 2 N areK-approximations of Z whose graphs Gk = (V k;�) are combinatorially equivalent to1-skeletons of triangulations Tk of S2 and for whichlimk!1mesh(Ak) = 0: (10.5)Suppose that there exist numbers k0 2 N, L > 0, and a function 	: R+ ! (0;1]with limt!1	(t) = 0 satisfying the following property:If k � k0 and E; F � Z are continua not contained in any L-star of Ak, thenmodGk2 (V kE ; V kF ) � 	(�(E; F )): (10.6)Then there exists an �-quasisymmetric homeomorphism g : Z ! S2 with � depend-ing only on the data.Conversely, if Z is quasisymmetric to S2, then condition (10.6) for the givensequence Ak is satis�ed for some numbers k0 2 N, L > 0, and an appropriate function	. The data in the �rst part of the theorem are K, L, 	, and the LLC and doublingconstants of Z.Proof. The proof of this theorem is very similar to the proof of Theorem 10.1. For thesu�ciency part note again that the triangulation Tk can be realized as a normalizedcircle packing on S2. The circle packings induce canonical K 0-approximations A0k =(Gk; p0k; r0k;U 0k) of S2, where K 0 depends only on K.As in the proof of Theorem 10.1, for su�ciently large k we can �nd verticesvk1 ; vk2 ; vk3 2 V k satisfying the condition in Proposition 9.16 where � > 0 is a numericalconstant. Since S2 is 2-regular and 2-Loewner, Proposition 8.1 implies that condition(9.7) is true for the space S2 and the K 0-approximations A0k with M = 4K 0 and afunction � independent of k. 39



It follows that the hypotheses of Proposition 9.16 are satis�ed for X = S2 andthe K 0-approximations A0k and Y = Z and the K-approximations Ak. (Note thatthe roles of Ak and A0k in this proof and in Proposition 9.16 are reversed). Sincemesh(Ak) ! 0 it follows that there exists an �-quasisymmetry g : Z ! S2 where �depends only on the data. Again g has to be a homeomorphism.For the converse assume that there exists an �-quasisymmetry g : Z ! S2. Againfor su�ciently large k we obtain K 0-approximations A0k of S2 with K 0 = K 0(�;K)as the quasisymmetric images under g of the K-approximations Ak. The sphere S2is 2-regular, so by Proposition 9.9 we have condition (9.5) for Q = 2, L := K 0 andan appropriate function 	0 independent of k. Now suppose E; F are continua notcontained in any L-star with respect to Ak. We have A0k-StL(v) = g(Ak-StL(v)).This implies that E 0 = g(E) and F 0 = g(F ) are not contained in any L-star withrespect to A0k. HencemodGk2 (V kE ; V kF ) = modGk2 (V kE0; V kF 0) � 	0(�(E 0; F 0)):Now �(E 0; F 0) is large if and only if �(E; F ) is large, quantitatively. Hence condition(10.6) follows with L = K 0, and an appropriate function 	 independent of k.Proof of Theorem 1.1. As we remarked in the introduction, only the su�ciencypart of Theorem 1.1 demands a proof. Since linear local contractibility implies linearlocal connectivity quantitatively for topological 2-spheres, we can assume that Z isLLC. We will show that there exists an �-quasisymmetric homeomorphism g : Z !S2, where � depends only on the data. Here we call the LLC constant, and theconstant that enters the condition for 2-regularity (where � = H2) the data of Z.Note that Z is doubling with a constant only depending on the data. Corollary6.9 shows that there exist K � 1 depending on the data and a sequence of K-approximations Ak = (Gk; pk; rk;Uk) whose graphs Gk = (V k;�) are combinatoriallyequivalent to 1-skeletons of triangulations Tk of Z and for which condition (10.5) istrue. Since Z is LLC and 2-regular, Proposition 9.9 shows that the condition (10.6) istrue for L = K and an appropriate function 	 depending on the data. Now Theorem10.4 shows that there exists a �-quasisymmetric homeomorphism g : Z ! S2, where� depends only on the data.Theorem 1.1 is quantitative as the proof above shows. Namely, if Z is a metricspace homeomorphic to S2 that is Ahlfors 2-regular and LLC, then there exists an�-quasisymmetric homeomorphism g : Z ! S2, where � depends only on the data,i.e., the constants in the Ahlfors 2-regularity and the LLC conditions. Conversely,if Z is a metric space for which there exists an �-quasisymmetric homeomorphismg : Z ! S2, then Z is �-LLC with � only depending on �.11. Asymptotic conditionsCannon's paper [7] provides a framework that allows one to speak of modulus forsubsets of a topological space. A shingling S of a topological space Z is a locally�nite cover consisting of compact connected subsets of Z. When Z is homeomorphicto S2 and R � Z is an annulus, Cannon de�nes invariants M(S; R) and m(S; R)which are combinatorial analogs for the classical moduli of annuli. He then studies a40



sequence of shinglings Sj of Z with mesh size tending to zero. His main theorem|thecombinatorial Riemann mapping theorem|is a necessary and su�cient condition forthe existence of a homeomorphism f : Z ! S2 such that for every annulus R � Z,the moduli M(Sj ; R) and m(Sj; R) agree with the standard 2-modulus of f(R) towithin a �xed multiplicative factor, for su�ciently large j.The combinatorial Riemann mapping theorem is similar in spirit to Theorems 10.1and 10.4: all three results give necessary and su�cient conditions for a \conformally
avored" structure on the 2-sphere to be equivalent to the standard structure moduloa homeomorphism.Any of these theorems can be used to give necessary and su�cient conditionsfor a Gromov hyperbolic group to admit a discrete, cocompact, and isometric actionon hyperbolic space H 3 . The paper [11] uses [7] and [30, Corollary, p. 468] to givesuch conditions; the conditions in [11] are in turn applied in [10]. Our Theorems10.1 or 10.4 can be combined directly with Sullivan's theorem. The point here isthat the action G y @1G of a non-elementary hyperbolic group on its boundary isby uniformly quasi-M�obius homeomorphisms, and if one conjugates this action bya quasisymmetric homeomorphism @1G ! S2, the resulting action G y S2 is alsouniformly quasi-M�obius, in particular uniformly quasiconformal, so that [30] may beapplied.On the other hand, there are signi�cant di�erences between our approach andCannon's approach. Cannon's hypotheses and conclusions do not involve metric in-formation, and only relate to the limiting behavior of the combinatorial moduli. Incontrast, Theorems 10.1 and 10.4 hypothesize inequalities between relative distance(which is metric based) and combinatorial modulus which hold uniformly for everyK-approximation in the given sequence; and they assert that the metric space isquasisymmetric to S2, which is a metric conclusion.The interesting parts of Theorems 10.1 and 10.4 are the su�cient conditions.An upper bound for a modulus is easier to establish than a lower bound, becausefor a lower bound an inequality for the total mass of all admissible test functionshas to be shown whereas an upper bound already follows from a mass bound forone test function. In this respect, Theorem 10.4 seems to be more useful, becauseits hypotheses require upper modulus bounds. In view of Cannon's work it seemsworthwhile to �nd a su�cient condition in the spirit of Theorem 10.4 that works withan asymptotic condition for the graph modulus as in (10.6). The following theoremprovides such a result where we further weaken the requirements for which sets Eand F an asymptotic modulus inequality has to hold.Theorem 11.1. Let Z be a metric space homeomorphic to S2 which is linearly locallyconnected and doubling. Suppose K � 1, and Ak = (Gk; pk; rk;Uk) for k 2 N are K-approximations of Z whose graphs Gk = (V k;�) are combinatorially equivalent to1-skeletons of triangulations Tk of S2 and for whichlimk!1mesh(Ak) = 0: (11.2)Suppose there exist numbers C > 0 and � > 1 with the following property: IfB = B(a; r) and �B = B(a; �r) are balls in Z, then we havelim supk!1 modGk2 (V kB ; V kZn�B) < C: (11.3)41



Then there exists an �-quasisymmetric homeomorphism g : Z ! S2 with � dependingonly on the data.Conversely, if Z is quasisymmetric to S2, then there exist C > 0 and � > 1 suchthat condition (11.3) is satis�ed for the given sequence Ak.The data are K, C, �, the LLC constant, and the doubling constant.If B is a ball in Z and � > 1, let A be the \annulus" A = �B nB. The 2-modulusof A can be de�ned as the 2-modulus of the path family � joining the disjoint setsB and Z n �B. The appropriate combinatorial version of this modulus with respectto the K-approximation Ak is modGk2 (V kB ; V kZn�B) which appears in (11.3). So thisinequality essentially says that the combinatorial analog of the 2-modulus of A isasymptotically bounded above by a �xed constant.We now formulate a version of Theorem 11.1 which does depend on the languageof K-approximations.Corollary 11.4. Let Z be a doubling, linearly locally connected metric space home-omorphic to S2. Suppose rk > 0 for k 2 N and limk!1 rk = 0, and for each k 2 N,V̂k � Z is a maximal rk-separated set. We let Ĝk be the incidence graph of the coverfB(v; rk)gv2V̂k , and for each subset A � Z we set V̂ kA := fv 2 V̂k : A \ B(v; rk) 6= ;g.Then Z is quasisymmetric to S2 if and only if there exist constants C > 0 and � > 1with the following property: if B = B(a; r) and �B = B(a; �r) are balls in Z, thenwe have lim supk!1 modĜk2 (V̂ kB ; V̂ k�B) < C:Proof. We give a proof, omitting some technical details.By applying Proposition 6.7 to the rk-separated subset V̂k � Z, one obtainsa K-approximation Ak = (Gk; pk; rk;Uk), where Gk = (Vk;�) and V̂k � Vk. Itfollows readily from properties (iii){(iv) of Proposition 6.7 that there are constantsC1; C2 > 0 independent of k such that for all k the inclusion V̂k ! Vk is C1-bilipschitzonto its image (with respect to the combinatorial distances in the graphs Ĝk and Gkrespectively), and every v 2 Vk is within combinatorial distance at most C2 from avertex in V̂k. Using this and the fact that the graphs Ĝk and Gk have uniformlybounded valence, one easily checks that for all pairs of subsets E; F � Z, the quan-tities lim supk!1modGk2 (V kE ; V kF ) and lim supk!1modĜk2 (V̂ kE ; V̂ kF ) are quantitativelyequivalent. Hence the corollary reduces to Theorem 11.1.In order to prove Theorem 11.1 we have to revisit some of the material in Sec-tion 9 and prove asymptotic versions. The next proposition should be compared withProposition 9.4.Proposition 11.5. Let Z be a locally compact metric space which is �-LLC, � � 1.Suppose K � 1, and Ak = (Gk; pk; rk;Uk) for k 2 N are K-approximations of Z withgraphs Gk = (V k;�). Assume that mesh(Ak)! 0 as k!1.Let Q � 1, and suppose that there exists a function 	: R+ ! (0;1] withlimt!1	(t) = 0 such thatlim supk!1 modGkQ (V kE ; V kF ) � 	(�(E; F )); (11.6)42



whenever E; F � Z are disjoint continua.Then there exists a function � : R+0 ! [0;1] with limt!0 �(t) = �(0) = 0 depend-ing only on K, Q, 	 and the data of Z with the following property:Suppose (z1; z2; z3; z4) is a four-tuple of points in Z with fz1; z3g \ fz2; z4g = ;,and assume that for k 2 N and i 2 f1; 2; 3; 4g we have vertices vki 2 V k such thatpk(vki )! zi for k !1, i 2 f1; 2; 3; 4g. Thenlim supk!1 [vk1 ; vk2 ; vk3 ; vk4 ]GkQ � �([z1; z2; z3; z4]):We want to allow the possibility z1 = z3 or z2 = z4 here. In this case we set[z1; z2; z3; z4] = 0, which is a consistent extension of the de�nition of the cross-ratio.Note that [vk1 ; vk2 ; vk3 ; vk4 ]GkQ is a cross-ratio with respect to Gk. The proposition saysthat if [z1; z2; z3; z4] is small, then [vk1 ; vk2 ; vk3 ; vk4 ]GkQ is asymptotically small, quantita-tively.Proof. If [z1; z2; z3; z4] is small, then by Lemma 2.10 there exist continua E 0 andF 0 with z1; z3 2 E, z2; z4 2 F and �(E 0; F 0) large, quantitatively. If z1 = z3 orz2 = z4 then �(E 0; F 0) can be made arbitrarily large. Since Z is locally compact andLLC and hence locally connected, we can �nd compact connected neighborhoods Eand F of E 0 and F 0, respectively, such that �(E; F ) is large, quantitatively. Sincemesh(Ak) ! 0 we will have pk(vk1) 2 Uvk1 \ E and pk(vk3 ) 2 Uvk3 \ E for large k. Inparticular, vk1 ; vk3 2 V kE . Similarly, vk2 ; vk4 2 V kF for large k. The rest of the proof nowproceeds as the proof of Proposition 9.4. For large k we can �nd chains Ak � NK(V kE )connecting vk1 ; vk3 and chains Bk � NK(V kF ) connecting vk2 ; vk4 . Then by Lemma 7.5we have [vk1 ; vk2 ; vk3 ; vk4 ]GkQ � modGkQ (Ak; Bk) � C(K)modGkQ (V kE ; V kF ):So our assumptions implylim supk!1 [vk1 ; vk2 ; vk2 ; vk3 ]GkQ � C(K)	(�(E; F )):Since �(E; F ) is large and 	(t) ! 0 as t ! 1 we get the desired quantitativeconclusion.The following proposition corresponds to one of the parts of Proposition 9.16. Wehave replaced condition (9.5) by the asymptotic condition (11.6).Proposition 11.7. Let Q;K;K 0 � 1, and let (X; dY ) and (Y; dY ) be compact metricspaces. Assume that Ak = (Gk; pk; rk;Uk) and A0k = (Gk; p0k; r0k;U 0k) for k 2 N areK-approximations of X and K 0-approximations of Y , respectively, whose underlyinggraphs Gk = (V k;�) are the same.Suppose X is connected, and there exist M > 0 and some function � such that Xand Ak for k 2 N satisfy condition (9.7). Suppose Y is LLC and doubling, and Yand A0k satisfy condition (11.6) for some function 	.Suppose that there are vertices vk1 ; vk2 ; vk3 2 V k for k 2 N such that for someconstant � > 0 we havedX(pk(vki ); pk(vkj )) � �diam(X) and dY (p0k(vki ); p0k(vkj )) � �diam(Y )43



for k 2 N, i; j 2 f1; 2; 3g, i 6= j.If limk!1mesh(A0k) = 0, then there exists an �-quasisymmetric map f : X ! Y ,where � depends only on the data.The data here consist of K, K 0, Q, M , �, the functions � and 	, and the LLCand the doubling constants of Y .In the proof we will show that mesh(Ak) ! 0. Since condition (9.5) is strongerthan condition (11.6), this justi�es the remark after Proposition 9.16. Namely, thatthat under the assumptions of this proposition we have that mesh(A0k) ! 0 impliesmesh(Ak)! 0.Proof. 1. In this proof we will call distortion functions those functions � : R+0 ![0;1] for which �(t) ! �(0) = 0 as t ! 0. We will �rst establish the existenceof a distortion function �1 depending on the data with the following property. Ifz1; z3 2 X, w1; w3 2 Y , uk1; uk3 2 V k for k 2 N , and pk(uki ) ! zi and p0k(uki ) ! wi ask !1 for i 2 f1; 3g, thendX(z1; z3)diam(X) � �1�dY (w1; w3)diam(Y ) � : (11.8)To prove this we may assume dY (w1; w3) < (�=3)diam(Y ). Hence if wki := p0k(uki )for i 2 f1; 3g we have dY (wk1 ; wk3) < (�=3)diam(Y ) for large k. For such k therewill be at least two among the vertices vk1 ; vk2 ; vk3 , call them uk2 and uk4, such that wehave dist(fwk1 ; wk3g; fwk2 ; wk4g) � (�=3)diam(Y ), where we set wki = p0k(uki ) also fori 2 f2; 4g. Then for large k we obtain[wk1 ; wk2 ; wk3 ; wk4 ] � C(�)dY (wk1 ; wk3)diam(Y ) :We may assume that we have limits wk2 ! w2 and wk4 ! w4 for k ! 1. Thenfw1; w3g \ fw2; w4g = ;, and so Proposition 11.5 and the previous inequality showthat there exist distortion functions �2 and �3 depending on the data such thatlim supk!1 [uk1; uk2; uk3; uk4]GkQ � �2([w1; w2; w3; w4]) � �3�dY (w1; w3)diam(Y ) � :Since mesh(A0k) ! 0 as k ! 1 and among the points w1; w2; w3; w4 only w1and w3 can be identical, the combinatorial separation of any two of the verticesuk1; uk2; uk3; uk4 becomes arbitrarily large as k ! 1 with the possible exception of uk1and uk3. We make the momentary extra assumption that the combinatorial separationof uk1 and uk3 is at least K for large k. Let zki = pk(uki ). Note that dX(zk2 ; zk4 ) �(�=2)diam(X) for large k by choice of uk2 and uk4. Then from Proposition 9.6 we inferthat for su�ciently large kdX(zk1 ; zk3 )diam(X) � C(�)[zk1 ; zk2 ; zk3 ; zk4 ] � �4([uk1; uk2; uk3; uk4]GkQ );where �4 is a distortion function depending on the data. Letting k tend to in�nity, theclaim (11.8) follows under the additional assumption on the combinatorial separationof uk1 and uk3. 44



2. In order to establish the general case of (11.8), we �rst show that mesh(Ak)! 0as k ! 1. Arguing by contradiction and passing to a subsequence if necessary, wemay assume there there exists � > 0 and ak1 2 V k with rk(ak1) � � > 0 for k 2 N . Sincethe mesh size of A0k tends to 0, the cardinality of Gk tends to in�nity. Moreover, Gk isconnected and its valence is uniformly bounded. Thus, for su�ciently large k we can�nd a vertex ak3 2 V k with K � kGk(ak1; ak3) � 2K. Then Uak1 \Uak3 = ; and it followsdX(pk(ak1); pk(ak3)) � rk(ak1) � �: Letting xki := pk(aki ) and yki := p0k(aki ) and passing tosubsequences, we may assume that xki ! xi and yki ! yi for k !1, i 2 f1; 3g. ThendX(x1; x3) � � > 0. On the other hand, y1 = y3, since the combinatorial distance ofak1 and ak3 is uniformly bounded by choice of ak3, and the mesh size of A0k tends tozero. But the combinatorial distance of ak1 and ak3 was at least K for large k, so wecan apply (11.8) and get a contradiction.3. Once we know that the mesh size of Ak tends to zero, we can verify (11.8)without the additional assumption on the combinatorial separation of uk1 and uk3. Forif z1 = z3, then there is nothing to prove. If z1 6= z3, then the combinatorial distanceof uk1 and uk3 becomes arbitrarily large, since mesh(Ak)! 0 as k !1.4. Let A be a countable dense subset of X. For z 2 A and k 2 N we can �nduk(z) 2 V k with z 2 Uuk(z). Since mesh(Ak)! 0, we have pk(uk(z))! z as k !1,z 2 A. De�ne fk(z) := p0k(uk(z)). By passing to successive subsequences and takinga �nal \diagonal subsequence" we may assume that the countably many sequences(fk(z))k2N, z 2 A, converge, fk(z) ! f(z) say, as k ! 1. From (11.8) and thisde�nition of f , we get (11.8) for arbitrary z1; z3 2 A and w1 = f(z1) and w3 = f(z3).In particular, f : A! Y is injective.5. We claim that the map f is ~�-quasi-M�obius with ~� only depending on thedata. To see this note that as a dense subset of connected metric space, the set A isweakly �0-uniformly perfect with a �xed constant, �0 = 3 say. Since Y is doubling,the subset f(A) is also doubling, quantitatively. Hence by Lemma 3.3, in order toestablish that f is uniformly quasi-M�obius it is enough to show that if (x1; x2; x3; x4)is a four-tuple of distinct points in A, and [f(x1); f(x2); f(x3); f(x4)] is small, then[x1; x2; x3; x4] is small, quantitatively. By de�nition of f , we can �nd uki 2 V k suchxi 2 Uuki and p0k(uki )! yi := f(xi) for k !1, i 2 f1; : : : ; 4g. Then Proposition 11.5shows that if [y1; y2; y3; y4] is small, then lim supk!1[uk1; uk2; uk3; uk4]GkQ is also small,quantitatively. Since the points yi are distinct, the combinatorial separation of thevertices uki is arbitrarily large for k ! 1. This implies by Proposition 9.6 that[pk(uk1); pk(uk2); pk(uk3); pk(uk4)] for large k is small, quantitatively. Passing to the limitwe conclude that[x1; x2; x3; x4] = limk!1 [pk(uk1); pk(uk2); pk(uk3); pk(uk4)]is small, quantitatively.6. There are points z1; z2; z3 in A whose mutual distance is at least diam(X)=4.The estimate (11.8) and the de�nition of f show that the mutual distance of thepoints f(z1); f(z2); f(z3) is bounded below by cdiam(Y ), where c > 0 is a constantdepending on the data. Hence f : A ! Y is �-quasisymmetric with � depending onthe data. Since A is dense and Y is compact, there is a unique extension of f to an�-quasisymmetric map on X (cf. (5) in Section 3). Calling this map also f , we getthe desired quasisymmetry. 45



Proof of Theorem 11.1. To prove su�ciency, we want to apply Proposition 11.7 forQ = 2, X = S2 and Y = Z. As in the proof of Theorem 10.1 one can realize thetriangulations Tk as normalized circle packings. The circle packings induce canonicalK 0-approximationsA0k = (Gk; p0k; r0k;U 0k) of S2, where K 0 depends only on K. Again asin the proof of Theorem 10.1 we can use suitable normalizations so that for su�cientlylarge k we can �nd vertices vk1 ; vk2 ; vk3 2 V k satisfying the condition in Proposition11.7 where � > 0 is a numerical constant. Since S2 is 2-regular and 2-Loewner,Proposition 8.1 implies that condition (9.7) is true for the space X = S2 and theK 0-approximations A0k with M = 4K 0 and a function � independent of k.Since mesh(Ak)! 0 the only thing that remains to be veri�ed is that with Y = Z,the K-approximations Ak satisfy the asymptotic condition (11.6) for some function	 depending on the data.To see that this is true, let E and F be arbitrary disjoint continua. We haveto show that the combinatorial modulus modGk2 (V kE ; V kE ) for large k is small if therelative distance of E and F is large, quantitatively.We may assume diam(E) � diam(F ). Pick a 2 E, let r = 2diam(E) and Bi :=B(a; �2i�2r) for i 2 N . Then E � B1 and Bi � �Bi � �2Bi = Bi+1 for i 2 N . LetN be the largest integer such that r�2N�1 < dist(E; F ). Note that N is large if andonly if �(E; F ) is large, quantitatively. ThenE � B1 � �B1 � �2B1 = B2 � �B2 � : : : � BN � �BN � Z n F:Since mesh(Ak) ! 0, there exists k1 2 N such that if k � k1 and v 2 V k�Bi forsome i 2 f1; : : : ; N � 1g, then v =2 V kZnBi+1. For suppose v 2 V k�Bi \ V kZnBi+1. ThenUv \ �Bi 6= ; and Uv \ (Z n Bi+1) 6= ;. Hence 2Krv � diam(Uv) � �2i(1� 1=�)r �(1� 1=�)r: This is impossible if mesh(Ak) is small enough.By our hypothesis we can �nd k2 2 N such that for k � k2 hypothesis andi 2 f1; : : : ; Ng we have modGk2 (V kBi ; V kZn�Bi) < C. Consider a �xed K-approximationAk for k � k3 := k1 _ k2. To simplify notation we drop the sub- or superscript k.By our assumption on k, there exists a weight wi : V ! [0;1) which is admissiblefor the pair (VBi; VZn�Bi) and satis�esXv2V wi(v)2 < C:De�ne w(v) := supi2f1;:::;Ngwi(v) for v 2 V . ThenXv2V w(v)2 � NXi=1Xv2V wi(v)2 � NC: (11.9)Now let v1 � � � � � vl be a chain connecting VE and VF . For i 2 f1; : : : ; Ng let mi bethe largest index with vmi 2 VBi . Since v1 2 VE � VBi the number mi is well de�ned.Moreover, mi � mi+1. Let m0i be the smallest index � mi with vm0i 2 VZn�Bi. Notethat m0i is well de�ned since vl 2 VF � VZn�Bi. Then vmi � � � � � vm0i is a chainconnecting VBi and VZn�Bi and we obtain from the admissibility of wim0iX�=mi wi(v�) � 1:46



We claim that the index sets fmi; : : : ; m0ig for i 2 f1; : : : ; Ng are pairwise disjoint.To see this let i 2 f1; : : : ; N � 1g and j := m0i. Assume mi < m0i. Then vj�1 =2 VZn�Biby de�nition of m0i. This means Uvj�1 � �Bi. Then ; 6= Uvj�1 \ Uvj � �Bi \ Uvj ,and so vj 2 V�Bi . This is also true if m0i = mi. By our assumption on k and thechoice of k1, we have vj =2 VZnBi+1 which implies j < l and Uvj � Bi+1. Therefore,we have that ; 6= Uvj \ Uvj+1 � Bi+1 \ Uvj+1 . Thus vj+1 2 VBi+1 and we concludemi+1 � j + 1 > m0i. The claim follows from this and we getlX�=1 w(v�) � NXi=1 m0iX�=miwi(v�) � N:We conclude that w=N is admissible for the pair (VE; VF ), and so by (11.9) we havemod2(VE; VF ) � C=N:Returning to the usual notation, this means that modGk2 (V kE ; V kF ) is small for k � k3,if �(E; F ) is large, quantitatively.Proposition 11.7 now shows that there exists an ~�-quasisymmetric map f : S2 ! Z,where ~� depends only on the data. This map has to be a homeomorphism. Its inversemap will be an �-quasisymmetric homeomorphism g : Z ! S2, where � depends onlyon the data.Conversely, suppose that Z is quasisymmetric to S2. Assume that Z is �0-LLC,where �0 > 1. By Theorem 10.4 condition (10.6) will be satis�ed for L > 0, k0 2 N ,and a suitable function 	. We can �nd t0 > 0 and C > 0 such that 	(t) < C fort � t0. Let � := (2t0 + 1)�20 > 1. Suppose B = B(a; r) is a ball in Z. From �0-LLC1 it follows that there exists a continuum E with B � E � �B(a; �0r). Moreover,assume that Z n �B 6= ;. Then �0-LLC2 implies that there exists a continuum Fwith Z n �B � F � Z nB(a; �r=�0). We have �(E; F ) � (�� �20)=(2�20) = t0. Sincemesh(Ak) ! 0, we have that E and F are not contained in any L-star of Ak forsu�ciently large k. It follows that for large k we havemodGk2 (V kB ; V kZn�B) � modGk2 (V kE ; V kF ) < C:If Z n �B = ;, then modGk2 (V kB ; V kZn�B) = 0 by de�nition of the modulus. In any casewe see that condition (11.3) is satis�ed.12. Concluding remarks(1) Theorems similar to Theorem 1.1 are true for more general surfaces. In the casewhen Z is homeomorphic to R2 the following statement holds:Let Z be an Ahlfors 2-regular complete metric space homeomorphic to R2 . ThenZ is quasisymmetric to R2 (equipped with the standard Euclidean metric) if and onlyif Z is linearly locally connected.(2) Theorem 1.1 can be used to give a canonical model for 2-regular 2-spheres that arelinearly locally contractible. To make this precise we remind the reader of the conceptof a deformation of a metric space (Z; d) by a metric doubling measure. Suppose �47



is a Borel measure on Z. The measure is called doubling if there exists a constantC � 1 such that �(B(a; 2r)) � C�(B(a; r));whenever a 2 Z and r > 0. If x; y 2 Z let Bxy := B(x; d(x; y)) [ B(y; d(x; y)):Suppose Q � 1 is �xed. Then we introduce a function ��(x; y) := �(Bx;y)1=Q. Themeasure � is called a metric doubling measure (with exponent Q) if �� is a metric upto a bounded multiplicative constant, i.e., there exists a metric � on Z and a constantC � 1 such that (1=C)�(x; y) � ��(x; y) � C�(x; y) for x; y 2 Z:Suppose � is a metric doubling measure. As long as an ambiguity caused by amultiplicative constant is harmless, the distance function �� is as good as a metricand we can talk about the metric space (Z; ��) and quasisymmetric maps of thisspace etc. It is easy to see that the \metric space" (Z; ��) is Ahlfors Q-regular andquasisymmetric to (Z; d) by the identity map.If Z = Sn and Q = n � 2, then every metric doubling measure � is absolutelycontinuous with respect to spherical measure �n, i.e., there exists a measurable weightw : Sn ! [0;1] such that d� = w d�n. The weight is an A1-weight. Weights thatarise from metric doubling measures in this way are called strong A1-weights.Theorem 1.1 now implies the following statement:A metric 2-sphere (Z; d) is Ahlfors 2-regular and linearly locally contractible if andonly if (Z; d) is bilipschitz to a space (S2; ��), where � is a metric doubling measureon S2 with exponent Q = 2.Indeed, if (Z; d) is Ahlfors 2-regular and linearly locally contractible, then thereexists a quasisymmetric homeomorphism f : S2 ! Z by Theorem 1.1. De�ne themeasure � on S2 as the pull-back of H2 by f . So �(E) = H2(f(E)) for a Borel setE � S2. Using the fact that f is quasisymmetric and that Z is 2-regular, it easy tosee that � is doubling. Moreover, we have ��(x; y) ' d(f(x); f(y)) for x; y 2 S2. Thisshows that � is a metric doubling measure, and that f : (S2; ��)! (Z; d) is bilipschitz.Conversely, if � is a metric doubling measure on S2 with exponent Q = 2, then(S2; ��) is 2-regular. Hence (Z; d) is also 2-regular, because this property is preservedunder bilipschitz maps. Since (Z; d) is bilipschitz to (S2; ��) and the latter space isquasisymmetric to S2 by the identity map, the spaces (Z; d) and S2 are quasisymmet-ric. Linear local contractibility is invariant under quasisymmetries, and since S2 hasthis property, so does (Z; d).(3) A necessary condition for a metric 2-sphere Z to be bilipschitz to S2 is that Z is2-regular and linearly locally contractible. By the result in (2) a space satisfying thesenecessary conditions is bilipschitz to a space (S2; ��), where � is a metric doublingmeasure on S2 with exponent 2. So the problem of characterizing S2 up to bilipschitzequivalence is reduced to the question which of the spaces (S2; ��) are bilipschitz toS2. This question is related to the Jacobian problem for quasiconformal mappings onS2 as follows. If f : S2 ! S2 is a quasiconformal map, we denote by Jf its Jacobian(determinant). The Jacobian problem for quasiconformal maps asks for a character-ization of the weights w : S2 ! [0;1] for which there exists a quasiconformal map48



f : S2 ! S2 such that(1=C)Jf(x) � w(x) � CJf(x) for �2-a.e. x 2 S2;where C is a constant independent of x. A necessary and su�cient condition for aweight w to be comparable to a Jacobian of a quasiconformal map is that w is astrong A1-weight, i.e., the measure � de�ned by d� = w d�2 is a metric doublingmeasure, and that (S2; ��) is bilipschitzly equivalent to S2 (cf. [25]).From this we see that the Jacobian problem for quasiconformal mappings on S2is equivalent with the problem of characterizing S2 up to bilipschitz equivalence.(4) The usefulness of Theorem 11.1 depends on whether one can verify its hypothesesin concrete situations. There are some interesting fractal spaces of Hausdor� dimen-sion greater than 2 where this can be done. For example, consider the space Z � R3obtained as follows. The space Z will be the limit of a sequence of two-dimensionalcell complexes Zn. Each Zn consists of a union of congruent oriented squares. Theorientation of each square is visualized by specifying which of the two directionsperpendicular to the square is considered as normal. The sets Zn are inductively con-structed as follows. The cell complex Z0 is the boundary of the unit cube I3 � R3 ,where the 2-cells are the six squares forming the faces of Z0. We orient the squares ofZ0 by assigning to them the normal pointing outward I3. Now Zn+1 is obtained fromZn by modifying each of the oriented squares S forming Zn as follows. SubdivideS into 25 congruent subsquares with the induced orientation. (Actually any �xednumber (2k + 1)2 with k � 2 could be taken here. In the case k = 1 there are someproblems with overlaps in the inductive construction.) On the \central" subsquareS 0 of S place an appropriately sized cube C in the normal direction so that one of thefaces of C agrees with S 0. The face squares of C are oriented so that their normalspoint outward C. The desired modi�cation of S is now obtained by replacing the\central" subsquare S 0 of S by the oriented faces of C di�erent from S 0 and keepingall other oriented subsquares. In this way each square of Zn leads to 24 + 5 = 29squares of Zn+1. The limit set Z is equipped with the ambient metric of R3 . It canbe shown that Z is homeomorphic to S2 and Q-regular for some Q > 2. Using thesymmetry properties of Z and Theorem 11.1, one can show: Z is quasisymmetric toS2. An independent proof of this fact based on the dynamics of rational functions isdue to D. Meyer [21].We hope to explore applications of Theorem 11.1 more systematically in the future.References[1] A. F. Beardon and K. Stephenson, The uniformization theorem for circlepackings, Indiana Univ. Math. J., 39 (1990), pp. 1383{1425.[2] M. Bonk and B. Kleiner, Rigidity for quasi-M�obius group actions. Preprint,2001.[3] M. Bourdon and H. Pajot, Poincar�e inequalities and quasiconformal struc-ture on the boundary of some hyperbolic buildings, Proc. Amer. Math. Soc., 127(1999), pp. 2315{2324. 49
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