
BULLETIN (New Series) OF THEAMERICAN MATHEMATICAL SOCIETYVolume 00, Number 0, Xxxx XXXX, Pages 000{000S 0273-0979(XX)0000-0BALLMANN, BRIDSON-HAEFLIGER, EBERLEINBRUCE KLEINERThe study of nonpositively curved spaces goes back to the discoveryof hyperbolic space, the work of Hadamard around 1900, and Car-tan's work in the 20's. These spaces play a signi�cant role in manyareas: Lie group theory, combinatorial and geometric group theory,dynamical systems, harmonic maps and vanishing theorems, geometrictopology, Kleinian group theory, and Teichm�uller theory. In some ofthese contexts {for instance in dynamics and in harmonic map theory{ nonpositive curvature turns out to be the right condition to makethings work smoothly, while in others such as Lie theory, 3-manifoldtopology, and Teichm�uller theory, the basic objects of study happento be nonpositively curved spaces. With so many closely related in-terdependent �elds, nonpositive curvature has been a very active topicin the last twenty years. To get an idea of the scope of the activity,consider some of the highlights:Harmonic maps: [Cor92, GS92, KS93, MSY93]3-manifolds and Kleinian groups: [MS84, Gab92, CJ94, Ota96,Ota98, Min99, Min94, Can93, McM96, Kap01, Gab97, GMT]Structure theory and rigidity: [BS87, BBE85, BBS85, EH90, BB95,Lee97].High dimensional topology: [FH81, FJ93, CGM90].Hyperbolic groups, quasi-conformal geometry/analysis: [Gro87,Pan89, Sel95, RS94, BM91, Bow98a, Bow98b, BP99, BP00, HK98].Geometric/combinatorial group theory: [Gro87, DJ91, CD95,BM97, KL97a, KL97b].Dynamics: [Cro90, Ota90, BCG95, BFK98]One point of view which has been quite in
uential in recent years isthat it is fruitful to work with \synthetic" conditions which are equiva-lent to nonpositive sectional curvature in the Riemannian case, ratherthan sectional curvature itself. Though this idea (and the analog forspaces with lower curvature bounds) goes back to A. D. Alexandrov, itwas Gromov [Gro87] who brought it to the attention of a much widerReceived by the editors March 11, 2001. c
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audience in the 80's. The most popular alternate condition is a trianglecomparison inequality which says that \su�ciently small geodesic tri-angles are at least as thin as corresponding Euclidean triangles". Theprecise version runs as follows. We say that a metric space X is aHadamard space or CAT (0) space1 if1. X is complete;2. Every two points in X are joined by a geodesic segment (a pathwhose length equals the distance between its endpoints);3. Whenever x; y; z 2 X, x0; y0; z0 2 R2 are isometric triples (dX(x; y) =dR2(x0; y0); dX(y; z) = dR2(y0; z0); dX(z; x) = dR2(z0; x0)), w lies ona geodesic segment joining y to z, and w0 is the correspondingpoint on the Euclidean segment y0z0 (dR2(w0; y0) = dX(w; y)), thendX(w; x) � dR2(w0; x0).We say that a metric space Z is an Alexandrov space with nonpositivecurvature, or simply a nonpositively curved space, if for every z 2 Zthere is an r > 0 so that the closed ball B(z; r) is a Hadamard spacewith respect to the induced metric. Work of Cartan [Car88] impliesthat a Riemannian manifold has nonpositive sectional curvature i� itde�nes an Alexandrov space with nonpositive curvature. A Riemann-ian manifold is a Hadamard space i� it is a Hadamard manifold (acomplete, simply connected manifold with nonpositive sectional curva-ture).Working with Alexandrov spaces rather than nonpositively curvedmanifolds has several advantages. Most of the foundational materialcarries over to the more general setting with only minor modi�cations,and the proofs, which are no longer allowed to use objects that de-pend on smooth structure (the Levi-Civita connection, Jacobi �elds),sometimes become simpler. In this more general context one still hasa tangent cone associated with each point of a Hadamard space X,and a \tangent cone at in�nity" { the Tits cone CTX (named afterJacques Tits); these tangent cones are Hadamard spaces, and theyplay a leading role in the theory. The Tits cone is almost never (iso-metric to) a Riemannian manifold, even when X itself is a Riemannianmanifold. Many important examples of Hadamard spaces, especiallyexamples from geometric group theory, are non-Riemannian. For in-stance simplicial trees (and more generally R-trees), and Euclidean andhyperbolic Tits buildings. A connected �nite 2-complex built by glu-ing together Euclidean triangles along their edges de�nes a space with1The letters C, A, and T stand for Cartan, Alexandrov, and Toponogov. Theterm Hadamard space was introduced in [Bal95], since Hadamard spaces are gener-alizations of Hadamard manifolds.



nonpositive curvature i� each vertex link, when endowed with the an-gle metric, is a graph with no cycles of length < 2�; this constructionalready gives an abundance of interesting examples and is importantin the theory of small cancellation groups.The books under review have several common themes. All three basetheir development on the geometry of geodesics and distance functions,and, for the most part, they work toward results which apply to a broadclass of nonpositively curved spaces rather than focussing on specialclasses of spaces. The basic object of study is a Hadamard space Xwith an isometric group action � � X ! X; one typically gets suchan action by taking the deck group action for the universal covering ofa nonpositively curved space. Under appropriate conditions one getsa strong relationship between algebraic structure in � (abelian sub-groups, product structure, centralizers) and geometric structure in X(
at convex subspaces, product structure, convex subspaces with Eu-clidean factors). Results of this type go back to [GW71, LY72, Ebe82].The proofs depend crucially on the fact that the curvature is allowedto be zero, i.e. 
at subspaces are allowed; in fact many of the moststriking results in the subject rely on rigid behavior associated with
at subspaces. Another key isssue in the books is the global behaviorof geodesics; this comes into play in three closely related guises { thegeodesic 
ow GX, the boundary at in�nity and the Tits boundary. Thegeodesic 
ow GZ of a metric space Z is the set of unit speed locallygeodesic paths in Z, topologized by uniform convergence on compactsubsets, and equipped with the R-action R�GZ ! GZ de�ned by pre-composition with translation in R. (When Z is a complete Riemannianmanifold the R-action R � GZ ! GZ is equivalent to the usual geo-desic 
ow R�SZ ! SZ on the unit tangent bundle SZ.) The geodesic
ow of a complete nonpositively curved space Z relates directly withthe fundamental group: each periodic orbit of the 
ow determines anontrivial conjugacy class in the fundamental group, and two periodicorbits determine distinct conjugacy classes unless the correspondingmaps S1 ! M bound a locally isometric map S1 � [0; L] ! M of a
at cylinder into M . If X is a Hadamard space, then one can use theasymptotic behavior of geodesics to de�ne a boundary at in�nity @1Xas follows. One says that two unit speed geodesic rays �1 : [0;1)! Xand �2 : [0;1) ! X are asymptotic if the distance dX(�1(t); �2(t))is bounded independent of t. The relation of being asymptotic is anequivalence relation on the set of unit speed rays. As a set, the bound-ary at in�nity @1X is the collection of asymptote classes of unit speedgeodesic rays; to de�ne a topology on this set, one observes that @1X



can be identi�ed with the set of unit speed rays leaving any given base-point p 2 X, and the latter has a natural topology { the topologyof uniform convergence on compact sets; �nally one veri�es that thetopology this induces on @1X is independent of the choice of basepointp. When X is an n-dimensional Hadamard manifold @1X is homeo-morphic to Sn�1. The isometry group of X has an induced action on@1X by homeomorphisms. When ��X ! X is the deck group actionfor the universal covering of a compact nonpositively curved space Z,the induced action � � @1X ! @1X is one of the key tools for ana-lyzing the geodesic 
ow of Z and the structure of �. It is also used inthe proof of rigidity theorems like [Mos73, BCG95, Pan89, BP00]. Tode�ne the Tits boundary of a Hadamard space, one starts with the set@1X, and de�nes the distance between the asymptote classes of twounit speed rays �1 and �2 to be the \asymptotic angle of divergence",i.e. 2 arcsin(�2) where � := limt!1 1t d(�1(t); �2(t)) (this limit always ex-ists for unit speed rays in Hadamard spaces, and depends only on theasymptote classes of the rays). This distance function (which is calledthe Tits angle metric) usually de�nes a di�erent topology on the set@1X than the one mentioned above { the topology usually does nothave a countable basis; the metric space it de�nes is denoted @TX. TheTits boundary @TX registers asymptotically Euclidean structure in X:Euclidean subspaces F k � X produce round spheres Sk�1 � @TX, andunder mild assumptions a partial converse holds.A common objective of the books by Ballmann and Eberlein is therank rigidity theorem. This is a structure theorem for complete, �nitevolume, nonpositively curved Riemannian manifoldsM , and is the cen-terpiece of the theory2. It says that if ~M = X0 � X1 � : : :Xk is thede Rham decomposition of the universal cover of M (X0 is the Eu-clidean factor), then each Xi is either an irreducible symmetric spaceof noncompact type of rank at least two, or else it contains a geo-desic which does not bound a 
at half plane (a subset isometric tof(x; y) 2 R2 j y � 0g) in Xi. The theorem was �rst proved in this pre-cise form in [EH90], slightly extending the results in the earlier papers[Bal85, BBE85, BBS85, BS87]. The theorem, when combined with ear-lier work [Bal82], has many implications (for manifolds M as above)with no other known proofs: periodic orbits of the geodesic 
ow aredense (when the fundamental group is �nitely generated); �1(M) con-tains nonabelian free groups unless M is a compact 
at manifold; thenumber of distinct primitive free homotopy classes of maps S1 ! M2The actual statement is somewhat more general than this; I have only statedthe �nite volume case for simplicity.



having representatives with length at most L grows exponentially withL, unless M is 
at; the geodesic 
ow of M has a dense orbit unless theuniversal cover ~M splits as a Riemannian product or is an irreduciblesymmetric space of rank at least two. Preparations for the proof of therank rigidity theorem occupy a good fraction of both volumes.Ballmann's book is by far the shortest of the three, and runs un-der 100 pages (even including the 15 page appendix by Misha Brin).The reader is assumed to have some familiarity with basic concepts ofRiemannian geometry { geodesics, Jacobi �elds, sectional curvature,and comparison theorems. The �rst two chapters cover the basic factsabout nonpositively curved spaces, like the Cartan-Hadamard theorem,Busemann functions, the boundary at in�nity, the Tits boundary, andthe classi�cation of isometries. Chapter III (\Weak hyperbolicity") isbased on the author's paper [Bal82]; it shows that if ��X ! X is anisometric action on a locally compact Hadamard space and there is ageodesic 
 � X which does not bound a 
at half plane, then, provided��X ! X satis�es the \duality condition" (this will hold if ��X ! Xis the deck group action for the universal covering of a compact Rie-mannian manifold), then X behaves in many respects like a space withnegative curvature. Chapter III also shows that the Dirichlet problemat in�nity is solvable for actions � � X ! X as above. Chapter IVproves the rank rigidity theorem. There is an appendix by Misha Brinwhich proves the ergodicity of geodesic 
ows of compact Riemannianmanifolds with strictly negative curvature. This book packs an amazingamount of material into 100 pages without compromising readability.Anyone who wants to learn a proof of rank rigidity with a minimal timecommitment, or anyone looking for a concise discussion of Hadamardspace geometry should �nd this book rewarding.Eberlein covers much of the same ground as Ballmann (though heworks with Riemannian manifolds rather than Alexandrov spaces), aswell as several other topics. Overall his treatment is much more de-tailed, and his style is more expansive. The prerequisites are the sameRiemannian geometry that Ballmann requires plus some Lie group the-ory; everything is reviewed in the �rst chapter. He has an extensivediscussion of symmetric spaces of noncompact type which ties togethernotions from Lie theory and geometry. Aside from their importancein the rank rigidity theorem (not to mention their importance in Liegroup theory), symmetric spaces o�er intricate examples illustratingall the general theory of Hadamard spaces. To my knowledge there isno comparable treatment available in the literature { this will be veryvaluable to anyone working in the �eld. Eberlein also proves part of



the Mostow rigidity theorem { the cases where one can avoid the quasi-conformal geometry in rank 1 { following Mostow's original proof; thiswas part of his motivation for the detailed discussion of symmetricspace geometry. In the penultimate chapter he collects consequencesof rank rigidity and Mostow rigidity. This book has already become astandard reference for nonpositively curved manifolds. It would be agood source for a second or third year graduate course on nonpositivecurvature.Compared to the other two authors, Bridson and Hae
iger cover abroad swath of terrain, treating the foundations for many di�erent top-ics instead of working toward a small number of di�cult theorems. Thebook is written so as to be accessible to �rst year graduate students { noRiemannian geometry or Lie group theory is required. The treatmentof Alexandrov spaces is much more extensive than Ballmann's, andruns over 300 pages. Here they have interspersed material on Gromov-Hausdor� convergence, ultralimits, quasi-isometries and quasi-isometryinvariants. There is a section on the geometry of the symmetric spacefor GL(n;R); this serves to introduce the reader to the ideas by wayof examples and does not attempt a systematic treatment. The thirdpart of the book has chapters on Gromov hyperbolicity, nonpositivecurvature and group theory, and complexes of groups/orbifolds. Themain objective of the last two chapters is the theorem (due to Hae
iger)that, roughly speaking, an orbifold is developable (i.e. can be obtainedas the quotient orbifold for a group action) provided it admits a non-positively curved structure. The proof is similar to the proof of theCartan-Hadamard theorem. This book will be a useful reference forAlexandrov space geometry. The exposition has a gentle pace, makingit very suitable for a reading course in geometric group theory.The subject has advanced tremendously in recent years, yet manyfundamental questions remain. I would like to close with three well-known open problems:� The 
at closing problem. If Z is a compact nonpositively curvedspace, and the universal cover ~Z contains a subset isometric toR2 , does the fundamental group �1(Z) contain a copy of Z2? Thisis known only when Z is a 3-dimensional Riemannian manifold,or a Riemannian manifold with a real analytic metric. It is openfor �nite 2-complexes built from Euclidean squares.� Rank rigidity for singular spaces. Is there a version of rank rigid-ity for compact nonpositively curved spaces? For example, if Z iscompact, nonpositively curved, and has extendible geodesics (ev-ery locally geodesic segment can be extended to a locally geodesic
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