Groups quasi-isometric to symmetric spaces

Bruce Kleiner*and Bernhard Leeb ${ }^{\ddagger}$

November 10, 1998

Abstract

We determine the structure of finitely generated groups which are quasi-isometric to symmetric spaces of noncompact type, allowing Euclidean de Rham factors. If X is a symmetric space of noncompact type with no Euclidean de Rham factor, and Γ is a finitely generated group quasi-isometric to the product $\mathbb{E}^{k} \times X$, then there is an exact sequence $1 \rightarrow H \rightarrow \Gamma \rightarrow L \rightarrow 1$ where H contains a finite index copy of \mathbb{Z}^{k} and L is a uniform lattice in the isometry group of $X .{ }^{1}$

1 Introduction

If X is a symmetric space with no Euclidean de Rham factor, then any finitely generated group Γ quasi-isometric to X is a finite extension of a uniform lattice in $\operatorname{Isom}(X)$. This result is a direct corollary of the main results of [KlLe97b] together with earlier work in the rank 1 cases [Tuk88, Gro81a, Hin90, Pan89, Ga92, CJ94], and was first announced in June 1994 at MSRI, and in [KlLe97a]. This result does not extend to symmetric spaces with a nontrivial Euclidean factor: it was observed by Epstein, Gersten, and Mess that any extension of a Fuchsian group by \mathbb{Z} is quasiisometric to $\mathbb{H}^{2} \times \mathbb{R}$, and such extensions are typically not finite extensions of lattices in $\operatorname{Isom}\left(\mathbb{H}^{2} \times \mathbb{R}\right)$. In this paper we treat the case of groups quasi-isometric to symmetric spaces with a Euclidean de Rham factor.

Theorem 1.1 Let X be a symmetric space of noncompact type with no Euclidean de Rham factor, and let Nil be a simply connected nilpotent Lie group equipped with a left-invariant Riemannian metric. Suppose Γ is a finitely generated group quasiisometric to Nil $\times X$. Then there is an exact sequence

$$
\begin{equation*}
1 \longrightarrow H \longrightarrow \Gamma \xrightarrow{p} L \longrightarrow 1 \tag{1.1}
\end{equation*}
$$

where H is a finitely generated group quasi-isometric to $N i l$ and L is a uniform lattice in the isometry group of X, and this sequence is unique up to isomorphism.

[^0]Furthermore, given any quasi-isometry $\Gamma \xrightarrow{\phi}$ Nil $\times X$, there is a quasi-isometry $L \xrightarrow{\bar{\phi}} X$ so that the diagram

commutes up to bounded error. In particular, H is undistorted ${ }^{2}$ in Γ.
When $N i l$ is the trivial group then Γ is a finite extension of a uniform lattice in $\operatorname{Isom}(X)$, and when $N i l \simeq \mathbb{R}^{k}$ then H is virtually abelian of rank k by [Gro81b, Pan83]. The case when X is the hyperbolic plane and $N i l \simeq \mathbb{R}$ is due to Rieffel [Rie93].

We further refine Theorem 1.1 when $N i l \simeq \mathbb{R}^{n}$.
Theorem 1.2 Let X be as in Theorem 1.1. Then any finitely generated group Γ quasi-isometric to $\mathbb{R}^{n} \times X$ contains a finite index subgroup $\Gamma_{1} \subset \Gamma$ which is a central extension of the form

$$
\begin{equation*}
1 \longrightarrow \mathbb{Z}^{n} \longrightarrow \Gamma_{1} \longrightarrow L_{1} \longrightarrow 1 \tag{1.3}
\end{equation*}
$$

where L_{1} is a finite extension of a lattice in $\operatorname{Isom}(X)$.
In general, one cannot arrange that the group L_{1} is a lattice in $\operatorname{Isom}(X)$ rather than a finite extension of a lattice. Examples of Raghunathan [Rag84] show that this is impossible in general even when $n=0$.

Theorem 1.2 raises the question of which central extensions (1.3) are quasi-isometric to $\mathbb{E}^{n} \times X$. Theorem 1.4 below gives a homological answer to this.

Definition 1.3 An extension $1 \rightarrow K \rightarrow G \xrightarrow{p} Q \rightarrow 1$ of finitely generated groups is quasi-isometrically trivial if there is a quasi-isometry $G \xrightarrow{\phi} K \times Q$ so that the diagram

commutes up to bounded error.

The central extension (1.3) is quasi-isometrically trivial by the second part of Theorem 1.1. The next result gives a general characterisation of quasi-isometrically trivial extensions.

[^1]Theorem 1.4 (See section 7 for the definition of L^{∞} cohomology for $C W$ complexes.) Let

$$
\begin{equation*}
1 \rightarrow \mathbb{Z}^{n} \rightarrow G \rightarrow Q \rightarrow 1 \tag{1.5}
\end{equation*}
$$

be a central extension of finitely generated groups, and let $\alpha \in H^{2}\left(Q ; \mathbb{Z}^{n}\right)$ be the associated cohomology class. Let K be a $C W$-complex with finite 1-skeleton which is an Eilenberg-Maclane space for Q, and identify α with a class in $H^{2}\left(K ; \mathbb{Z}^{n}\right) \simeq H^{2}\left(Q ; \mathbb{Z}^{n}\right)$. Then the extension (1.5) is quasi-isometrically trivial iff α is in the image of the homomorphism $H_{L^{\infty}}^{2}\left(K ; \mathbb{Z}^{n}\right) \rightarrow H^{2}\left(K ; \mathbb{Z}^{n}\right)$, and any lift $\hat{\alpha} \in H_{L^{\infty}}^{2}\left(K ; \mathbb{Z}^{n}\right)$ of α pulls back to zero in $H_{L^{\infty}}^{2}\left(\tilde{K} ; \mathbb{Z}^{n}\right)$, where \tilde{K} denotes the universal cover of K.

Remark. Using bounded cohomology instead of L^{∞} cohomology, Gersten [Ger92] gave a sufficient condition for a central extension by \mathbb{Z} to be quasi-isometric to a trivial extension.

An earlier version of this paper was posted on the AMS preprint server in October 1996.

We gratefully acknowledge support by the RiP-program at the Mathematisches Forschungsinstitut Oberwolfach.

Contents

1 Introduction 1
2 Preliminaries 3
3 Projecting quasi-actions to the factors 5
4 Straightening cocompact quasi-actions on irreducible symmetric spaces 5
5 A Growth estimate for small elements in nondiscrete cocompact sub- groups of $\operatorname{Isom}(X)$ 7
5.1 Parabolic isometries of symmetric spaces 7
5.2 The growth estimate 7
6 Proof Theorem 1.1 10
7 Proof of Theorem 1.2 10
8 Geometry of central extensions by \mathbb{Z}^{n} 12
Bibliography 15

2 Preliminaries

In this section we recall some basic definitions and notation. See [Gro93] for more discussion and background.

Definition 2.1 A map $f: X \longrightarrow Y$ between metric spaces is an (L, A) quasiisometry if for every $x_{1}, x_{2} \in X$

$$
L^{-1} d\left(x_{1}, x_{2}\right)+A \leq d\left(x_{1}, x_{2}\right) \leq L d\left(x_{1}, x_{2}\right)+A,
$$

and for every $y \in Y$ we have $d(y, f(X))<A$. Two quasi-isometries $f_{1}, f_{2}: X \longrightarrow Y$ are equivalent if $d\left(f_{1}, f_{2}\right)<\infty$.

If Γ is a finitely generated group, then any two word metrics on Γ are biLipschitz to one another by $i d_{\Gamma}: \Gamma \rightarrow \Gamma$. We will implicitly endow our finitely generated groups with word metrics.

Definition 2.2 An (L, A)-quasi-action of a group Γ on a metric space Z is a map $\rho: \Gamma \times Z \rightarrow Z$ so that $\rho(\gamma, \cdot): Z \rightarrow Z$ is an (L, A) quasi-isometry for every $\gamma \in \Gamma$, $d\left(\rho\left(\gamma_{1}, \rho\left(\gamma_{2}, z\right)\right), \rho\left(\gamma_{1} \gamma_{2}, z\right)\right)<A$ for every $\gamma_{1}, \gamma_{2} \in \Gamma, z \in Z$, and $d(\rho(e, z), z)<A$ for every $z \in Z$.

We will denote the self-map $\rho(\gamma, \cdot): Z \rightarrow Z$ by $\rho(\gamma) . \rho$ is discrete if for any point $z \in Z$ and any radius $R>0$, the set of all $\gamma \in \Gamma$ such that $\rho(\gamma, z)$ is contained in the ball $B_{R}(z)$ is finite. ρ is cobounded if Z coincides with a finite tubular neighborhood of the "orbit" $\rho(\Gamma) z \subset Z$ for every z. If ρ is a discrete cobounded quasi-action of a finitely generated group Γ on a geodesic metric space Z, it follows easily that the map $\Gamma \rightarrow Z$ given by $\gamma \mapsto \rho(\gamma, z)$ is a quasi-isometry for every $z \in Z$.

Definition 2.3 Two quasi-actions ρ and ρ^{\prime} are equivalent if there exists a constant D so that $d\left(\rho(\gamma), \rho^{\prime}(\gamma)<D\right.$ for all $\gamma \in \Gamma$.

Definition 2.4 Let ρ and ρ^{\prime} be a quasi-actions of Γ on Z and Z^{\prime} respectively, and let $\phi: Z \rightarrow Z^{\prime}$ be a quasi-isometry. Then ρ is quasi-isometrically conjugate to ρ^{\prime} via ϕ if there is a D so that $d\left(\phi \circ \rho(\gamma), \rho^{\prime}(\gamma) \circ \phi\right)<D$ for all $\gamma \in \Gamma$.

Lemma 2.5 (cf [Gro87, 8.2.K]) Let X be a Hadamard manifold of dimension ≥ 2 with sectional curvature $\leq K<0$, and let $\partial_{\infty} X$ denote the geometric boundary of X with the cone topology. Recall that every quasi-isometry $\Phi: X \longrightarrow X$ induces a boundary homeomorphism $\partial_{\infty} \Phi: \partial_{\infty} X \rightarrow \partial_{\infty} X$.

1. If $\rho: \Gamma \times X \rightarrow X$ is a quasi-action on X, then ρ is discrete (respectively cobounded) iff $\partial_{\infty} \phi$ acts properly discontinuously (respectively cocompactly) on the space of distinct triples in $\partial_{\infty} X$.
2. Given (L, A) there is a D so that if ϕ_{k}, ψ are (L, A) quasi-isometries, then $\partial_{\infty} \phi_{k}$ converges uniformly to $\partial_{\infty} \psi$ iff $\lim \sup d\left(\phi_{k} x, \psi x\right)<D$ for every $x \in X$. In particular, if $\phi_{1}, \phi_{2}: X \longrightarrow X$ are (L, A) quasi-isometries with the same boundary mappings, then $d\left(\phi_{1}, \phi_{2}\right)<D$.

Proof. Let $\partial^{3} X \subset \partial_{\infty} X \times \partial_{\infty} X \times \partial_{\infty} X$ denote the subspace of distinct triples. The uniform negative curvature of X implies that there is a D_{0} depending only on K such that
(a) For every $x \in X$ there is a triple $\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \partial^{3} X$ such that $d\left(x, \overline{\xi_{i} \xi_{j}}\right)<D_{0}$ for every $1 \leq i \neq j \leq 3$, where $\overline{\xi_{i} \xi_{j}}$ denotes the geodesic with ideal endpoints ξ_{i}, ξ_{j}. Moreover for every C the set $\left\{\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \mid d\left(x, \overline{\xi_{i} \xi_{j}}\right)<C\right.$ for all $\left.1 \leq i \neq j \leq 3\right\}$ has compact closure in $\partial^{3} X$.
and
(b) For every $\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \partial^{3} X$ there is a point $x \in X$ so that $d\left(x, \overline{\xi_{i} \xi_{j}}\right)<D_{0}$ for each $1 \leq i \neq j \leq 3$. And for every C there is a C^{\prime} depending only on C and K so that $\left\{x \in X \mid d\left(x, \overline{\xi_{i} \xi_{j}}\right)<C\right.$ for every $\left.1 \leq i \neq j \leq 3\right\}$ has diameter $<C^{\prime}$.

1 and 2 follow easily from this.

3 Projecting quasi-actions to the factors

Let Nil and X be as in Theorem 1.1 and decompose X into irreducible factors:

$$
\begin{equation*}
X=\prod_{i=1}^{l} X_{i} \tag{3.1}
\end{equation*}
$$

Suppose ρ is a quasi-action of the finitely generated group Γ on $N i l \times X$. We denote by $p: N i l \times X \rightarrow X$ the canonical projection. By applying [KlLe97b, Theorem 1.1.2] ${ }^{3}$ to each quasi-isometry $\rho(\gamma)$ we construct quasi-actions ρ_{i} of Γ on X_{i} so that

$$
d\left(p \circ \rho(\gamma), \prod_{i=1}^{k} \rho_{i}(\gamma) \circ p\right)<D
$$

for all $\gamma \in \Gamma$ and some positive constant D.

4 Straightening cocompact quasi-actions on irreducible symmetric spaces

The following result is a direct consequence of [Pan89, Théorème 1] and [KlLe97b, Theorem 1.1.3].

Fact 4.1 Let X be an irreducible symmetric space other than a real or complex hyperbolic space. Then every quasi-action on X is equivalent to an isometric action.

Proof. Let ρ be a quasi-action of a group Γ on X. By the results just cited, there is an isometry $\bar{\rho}(\gamma)$ at finite distance from the quasi-isometry $\rho(\gamma)$ for every $\gamma \in \Gamma$. This isometry is unique and its distance from $\rho(\gamma)$ is uniformly bounded ${ }^{4}$ in terms of the constants of the quasi-action. So $\bar{\rho}$ is an isometric action equivalent to ρ.

We recall that the real and complex hyperbolic spaces of all dimensions admit quasi-isometries which are not equivalent to isometries [Pan89].

Fact 4.2 Any cobounded quasi-action ρ on a real or complex hyperbolic space is quasiisometrically conjugate to an isometric action.

This result is proven in [Tuk88] in the real-hyperbolic case. Using Pansu's theory of Carnot differentiability one can carry out Tukia's arguments for all rank-one symmetric spaces other than hyperbolic plane, cf. [Pan89, sec. 11]. Another proof for the complex-hyperbolic case can be found in [Chow96].

Fact 4.3 Let ρ be a cobounded quasi-action of a group Γ on \mathbb{H}^{2}. Then ρ is quasiisometrically conjugate to a cocompact isometric action of Γ on \mathbb{H}^{2}.

[^2]Proof. We recall that every quasi-isometry $\phi: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$ induces a quasi-symmetric homeomorphism $\partial_{\infty} \phi: \partial_{\infty} \mathbb{H}^{2} \rightarrow \partial_{\infty} \mathbb{H}^{2}$, see [TuVa82]; moreover the quasi-symmetry constant of $\partial_{\infty} \phi$ can be estimated in terms of the quasi-isometry constants of ϕ. Since equivalent quasi-isometries yield the same boundary homeomorphism, every quasiaction ρ on \mathbb{H}^{2} induces a genuine action $\partial_{\infty} \rho$ on $\partial_{\infty} \mathbb{H}^{2}$ by uniformly quasi-symmetric homeomorphisms.

Let $\bar{\Gamma}$ be the quotient of Γ by the kernel of the action $\partial_{\infty} \rho$, and let $\pi: \Gamma \rightarrow \bar{\Gamma}$ be the canonical epimorphism. If two elements $\gamma_{1}, \gamma_{2} \in \Gamma$ have the same boundary map then $d\left(\rho\left(\gamma_{1}\right), \rho\left(\gamma_{2}\right)\right)$ is uniformly bounded by Lemma 2.5 . Hence we may obtain a quasi-action $\bar{\rho}$ of $\bar{\Gamma}$ on \mathbb{H}^{2} by choosing $\gamma \in \pi^{-1}(\bar{\gamma})$ for each $\bar{\gamma} \in \bar{\Gamma}$, and setting $\bar{\rho}(\bar{\gamma})=\rho(\gamma)$. If $\bar{\tau}$ is an isometric action of $\bar{\Gamma}$ on \mathbb{H}^{2} and $\phi: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$ quasi-isometrically conjugates $\bar{\rho}$ into $\bar{\tau}$, then ϕ will quasi-isometrically conjugate ρ into the isometric action $\tau: \Gamma \times \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$ given by $\tau(\gamma)=\bar{\tau}(\pi(\gamma))$. Hence it suffices to treat the case when $\bar{\Gamma}=\Gamma$, and so we will assume that $\partial_{\infty} \rho$ is an effective action.

Lemma 4.4 The quasi-action ρ is discrete if and only if the action $\partial_{\infty} \rho$ on $\partial_{\infty} \mathbb{H}^{2}$ is discrete in the compact-open topology.

Proof. Suppose $\partial_{\infty} \rho$ is discrete, and let $\left(\gamma_{i}\right)$ be a sequence in Γ so that $\rho\left(\gamma_{i}\right)$ maps a point $p \in \mathbb{H}^{2}$ into a fixed ball $B_{R}(p)$. Then by a selection argument we may assume - after passing to a subsequence if necessary - that there is a quasi-isometry $\phi: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$ so that for every $q \in \mathbb{H}^{2}$ we have $\lim \sup _{i} d\left(\rho\left(\gamma_{i}\right)(q), \phi(q)\right)<D$ for some D. Hence the boundary maps $\partial_{\infty} \rho\left(\gamma_{i}\right)$ converge to $\partial_{\infty} \phi$, and so the sequence $\partial_{\infty} \rho\left(\gamma_{i}\right)$ is eventually constant. Since ρ is effective we conclude that γ_{i} is eventually constant. Therefore ρ is a discrete quasi-action.

If ρ is a discrete quasi-action on \mathbb{H}^{2}, then $\partial_{\infty} \rho$ is discrete by Lemma 2.5.

Proof of 4.3 continued.

Case 1: $\partial_{\infty} \rho$ is discrete. In this case, ρ is a discrete convergence group action (Lemma 2.5) and by the work of [CJ94, Ga92], there is a discrete isometric action τ of Γ on \mathbb{H}^{2} so that $\partial_{\infty} \rho$ is topologically conjugate to $\partial_{\infty} \tau$. Since ρ is cobounded, $\partial_{\infty} \rho$ acts cocompactly on the set of distinct triples of points in $\partial_{\infty} \mathbb{H}^{2}$ (lemma 2.5); therefore $\partial_{\infty} \tau$ also acts cocompactly on the space of triples and so τ is a discrete, cocompact, isometric action of Γ on \mathbb{H}^{2}. We now have two discrete, cobounded, quasi-actions of Γ on \mathbb{H}^{2}, so they are quasi-isometrically conjugate by some quasi-isometry $\psi: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$.

Case 2: $\partial_{\infty} \rho$ is nondiscrete. By [Hin90, Theorem 4], $\partial_{\infty} \rho$ is quasi-symmetrically conjugate to $\partial_{\infty} \tau$, where τ is an isometric action on \mathbb{H}^{2}. The conjugating quasisymmetric homeomorphism is the boundary of a quasi-isometry $\psi: \mathbb{H}^{2} \rightarrow \mathbb{H}^{2}$, [TuVa82], which quasi-isometrically conjugates $\partial_{\infty} \rho$ into the isometric action action τ. Applying Lemma 2.5 again, we conclude that τ is cocompact.
subsection 3 , and facts $4.1,4.2$ and 4.3 imply:
Corollary 4.5 Let X be a symmetric space of noncompact type without Euclidean factor. Then any cobounded quasi-action on X is quasi-isometrically conjugate to a cocompact isometric action on X.

5 A Growth estimate for small elements in nondiscrete cocompact subgroups of $\operatorname{Isom}(X)$

5.1 Parabolic isometries of symmetric spaces

Let X be a symmetric space of noncompact type, and let $G=\operatorname{Isom}(X)$.

An isometry $g \in G$ is semisimple if its displacement function δ_{g} attains its infimum and parabolic otherwise.

Lemma 5.1 Let $A \subset G$ be a finitely generated abelian group all of whose nontrivial elements are parabolic. Then A has a fixed point at infinity.

Proof. Recall that the nearest point projection to a closed convex subset is well-defined and distance non-increasing. This implies that if C is a non-empty A-invariant closed convex set, then for all displacement functions $\delta_{a}, a \in A$, we have $\inf \delta_{a}=\left.\inf \delta_{a}\right|_{C}$. Hence for all $n \in \mathbb{N}$, the intersubsection of the sublevel sets $\left\{p \mid \delta_{a_{i}}(p) \leq \inf \delta_{a_{i}}+1 / n\right\}$ is non-empty and contains a point p_{n}. We have $\delta_{a_{i}}\left(p_{n}\right) \rightarrow \inf \delta_{a_{i}}$ for all a_{i}, and since the isometries a_{i} are parabolic the sequence $\left\{p_{n}\right\}$ subconverges to an ideal boundary point $\xi \in \partial_{\infty} X$. It follows that the a_{i} fix ξ.

Lemma 5.2 Let $a_{1}, \ldots, a_{k} \in \operatorname{Isom}(X)$ be commuting parabolic isometries. Then there is a sequence of isometries $\left\{g_{n}\right\} \subset G$ so that for every i the sequence $g_{n} a_{i} g_{n}^{-1}$ subconverges to a semisimple isometry \bar{a}_{i}.

Proof. From the proof of the previous lemma, there is a sequence of points $\left\{p_{n}\right\} \subset X$ converging to an ideal point ξ so that $\delta_{a_{i}}\left(p_{n}\right) \rightarrow \inf \delta_{a_{i}}$ for all a_{i}. Pick isometries $g_{n} \in G$ such that $g_{n} \cdot p_{n}=p_{0}$. The conjugates $g_{n} a_{i} g_{n}^{-1}$ have the same infimum displacement as a_{i}. Since

$$
\delta_{g_{n} a_{i} g_{n}^{-1}}\left(p_{0}\right)=\delta_{a_{i}}\left(p_{n}\right) \rightarrow \inf \delta_{a_{i}},
$$

the $g_{n} a_{i} g_{n}^{-1}$ subconverge to a semisimple isometry.
We call an isometry $g \neq e$ purely parabolic ${ }^{5}$ if the identity is the only semisimple element in $\overline{A d_{G}(G) \cdot g}$.

5.2 The growth estimate

Proposition 5.3 Let X be a symmetric space of noncompact type with no Euclidean de Rham factors. Let $\Gamma \subset G=\operatorname{Isom}(X)$ be a finitely generated, nondiscrete, cocompact subgroup. Let $U \subset \operatorname{Isom}(X)$ be a neighborhood of the identity, and set

$$
f(k):=\#\left\{g \in \Gamma:|g|_{\Gamma}<k, g \in U\right\}
$$

where $|\cdot|_{\Gamma}$ denotes a word norm on Γ. Then f grows faster than any polynomial, i.e. for every $d>0 \lim \sup _{k \rightarrow \infty} \frac{f(k)}{k^{d}}=\infty$.

[^3]Proof. Let $\bar{\Gamma}^{o}$ denote the identity component of the closure of Γ in G.
Case 1: $\bar{\Gamma}^{o}$ is nilpotent. Let A be the last non-trivial subgroup in the derived series of $\bar{\Gamma}^{o}$. Then $A \subset \bar{\Gamma}$ is a connected abelian subgroup of positive dimension, A is normal in $\bar{\Gamma}$, and $\Gamma \cap A$ is dense in A.

Lemma 5.4 For every $\delta \in(0,1)$ there is a $\gamma \in \Gamma$ such that all eigenvalues of the automorphism $\left.A d_{G}(\gamma)\right|_{A}: A \rightarrow A$ have absolute value $<\delta$.

Proof. See section 5.1 for terminology.
Step 1: A contains no semisimple isometries other than e. Otherwise we can consider the intersection C of the minimum sets for the displacement functions δ_{a} where a runs through all semisimple elements in $A . C$ is a nonempty convex subset of X which splits metrically as $C \cong \mathbb{E}^{k} \times Y$. The flats $\mathbb{E}^{k} \times\{y\}$ are the minimal flats preserved by all semisimple elements in A. Since Γ normalises A it follows that C is Γ-invariant. The cocompactness of Γ implies that $C=X$ and $k=0$ because X has no Euclidean factor. This means that the semisimple elements in A fix all points, a contradiction. Step 2: All non-trivial isometries in A are purely parabolic. If $a \in A, a \neq e$, is not purely parabolic then there is a sequence of isometries g_{n} so that $g_{n} a g_{n}^{-1}$ converges to a semisimple isometry $\bar{a} \neq e$. We can uniformly approximate the g_{n} by elements in Γ, i.e. there exist $\gamma_{n} \in \Gamma$ and a bounded sequence $k_{n} \in G$ subconverging to $k \in G$ so that $\gamma_{n}=k_{n} g_{n}$. Then $\gamma_{n} a \gamma_{n}^{-1}=k_{n} g_{n} a g_{n}^{-1} k_{n}^{-1}$ subconverges to the non-trivial semisimple element $k \bar{a} k^{-1}$. This contradicts step 1 .
Step 3: Pick a basis $\left\{a_{1}, \ldots, a_{k}\right\}$ for $A \simeq \mathbb{R}^{k}$. By Lemma 5.2 there exist elements $g_{n} \in G$ so that $g_{n} a_{i} g_{n}^{-1} \rightarrow e$ for all a_{i}. We approximate the g_{n} as above by γ_{n} so that the sequence $\gamma_{n} g_{n}^{-1}$ is bounded. Then $\gamma_{n} a_{i} \gamma_{n}^{-1} \rightarrow e$ for all a_{i}. The lemma follows by setting $\gamma=\gamma_{n}$ for sufficiently large n.

Proof of case 1 continued. By Lemma 5.4, there is a $\gamma \in \Gamma, \gamma \neq e$, and a norm $\|\cdot\|_{A}$ on A such that for all $a \in A$ we have

$$
\left\|\gamma a \gamma^{-1}\right\|_{A}<\frac{1}{2}\|a\|_{A} .
$$

Consider a neighborhood U of e in G. Let $r>0$ be small enough so that $\{a \in A$: $\left.\|a\|_{A}<r\right\} \subset U$ and pick $\alpha \in \Gamma \cap A$ with $\|\alpha\|_{A}<r / 2$. Then the elements

$$
\gamma_{\epsilon_{0} \ldots \epsilon_{n-1}}=\alpha^{\epsilon_{0}} \cdot\left(\gamma \alpha \gamma^{-1}\right)^{\epsilon_{1}} \cdots \cdots\left(\gamma^{n-1} \alpha \gamma^{1-n}\right)^{\epsilon_{n-1}}
$$

for $\epsilon_{i} \in\{0,1\}$ are 2^{n} pairwise distinct elements contained in $\Gamma \cap U$ with word norm $\left|\gamma_{\epsilon_{0} \ldots \epsilon_{n-1}}\right|_{\Gamma}<n^{2}\left(|\alpha|_{\Gamma}+|\gamma|_{\Gamma}\right)$. This implies superpolynomial growth of f.

Case 2: $\bar{\Gamma}^{o}$ is not nilpotent. Define an increasing sequence (the upper central series) of nilpotent Lie subgroups $Z_{i} \subset \bar{\Gamma}^{o}$ inductively as follows: Set $Z_{0}=\{e\}$ and let Z_{i+1} be the inverse image in $\bar{\Gamma}^{o}$ of the center in $\bar{\Gamma}^{o} / Z_{i}$. The dimension of Z_{i} stabilizes and we choose k so that $\operatorname{dim} Z_{k}$ is maximal. Then the center of $\bar{\Gamma} / Z_{k}$ is discrete and, since $\bar{\Gamma}^{o}$ is not nilpotent, we have $\operatorname{dim} Z_{k}<\operatorname{dim} \bar{\Gamma}$. Proposition 5.3 now follows by applying the next lemma with $H=\bar{\Gamma}$ and $H_{1}=Z_{k}$.

Lemma 5.5 Let H be a Lie group, let $H_{1} \triangleleft H$ be a closed normal subgroup so that $\bar{H}:=H / H_{1}$ is a positive dimensional Lie group with discrete center, and suppose $\Gamma \subset H$ is a dense, finitely generated subgroup. If U is any neighborhood of e in H, then the function $f(k):=\#\left\{g \in \Gamma:|g|_{\Gamma} \leq k, g \in U\right\}$ grows superpolynomially.

Proof. The idea of the proof is to use the contracting property of commutators to produce a sequence $\left\{\alpha_{k}\right\}$ in $H \cap \Gamma$ which converges exponentially to the identity. The word norm $\left|\alpha_{k}\right|_{\Gamma}$ grows exponentially with k, but the number of elements of $\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle$ in U also grows exponentially with k; by comparing growth exponents we find that f grows superpolynomially.

Fix $M \in \mathbb{N}$, a positive real number $\epsilon<1 / 3$ and some left-invariant Riemannian metric on H. Since the differential of the commutator map $\left(h, h^{\prime}\right) \mapsto\left[h, h^{\prime}\right]$ vanishes at (e, e) we can find a neighborhood V of e in H such that:

$$
\begin{equation*}
h, h^{\prime} \in V \quad \Longrightarrow \quad\left[h, h^{\prime}\right] \in V \quad \text { and } \quad d\left(\left[h, h^{\prime}\right], e\right)<\frac{1}{2 M} d(h, e) \tag{5.1}
\end{equation*}
$$

Since the differential of the k-th power $h \mapsto h^{k}$ at e is $k \cdot i d_{T_{e} H}$ for all $k \in \mathbb{Z}$, we can furthermore achieve that, whenever $1 \leq k, k^{\prime} \leq M$ and $h, h^{k}, h^{k^{\prime}} \in V$, then

$$
\begin{equation*}
d\left(h^{k}, h^{k^{\prime}}\right) \geq\left(\left|k-k^{\prime}\right|-\epsilon\right) \cdot d(h, e) \tag{5.2}
\end{equation*}
$$

By our assumption, there exist finitely many elements $\gamma_{1}, \ldots, \gamma_{m} \in \Gamma \cap V$ such that the centralizers $Z_{\bar{H}}\left(\bar{\gamma}_{j}\right)$ of their images in \bar{H} have discrete intersubsection. We construct an infinite sequence of elements $\alpha_{i} \in(\Gamma \cap V) \backslash H_{1}$ by picking $\alpha_{0} \in V$ arbitrarily and setting $\alpha_{i+1}=\left[\alpha_{i}, h_{j(i)}\right] \notin H_{1}$ for suitably chosen $1 \leq j(i) \leq m$. Then

$$
\begin{equation*}
0<d\left(\alpha_{i+1}, e\right)<\frac{1}{2 M} d\left(\alpha_{i}, e\right) \tag{5.3}
\end{equation*}
$$

by (5.1).
Sublemma 5.6 Pick $n_{0} \in \mathbb{N}$. The M^{n} elements

$$
\begin{equation*}
\gamma_{\epsilon_{1} \ldots \epsilon_{n}}=\alpha_{n_{0}+1}^{\epsilon_{1}} \cdots \alpha_{n_{0}+n}^{\epsilon_{n}} \quad \epsilon_{i} \in\{0, \ldots, M-1\} \tag{5.4}
\end{equation*}
$$

are distinct.
Proof. Assume that $\gamma_{\epsilon_{1} \ldots \epsilon_{n}}=\gamma_{\epsilon_{1}^{\prime} \ldots \epsilon_{n}^{\prime}}, \epsilon_{l} \neq \epsilon_{l}^{\prime}$ and $\epsilon_{i}=\epsilon_{i}^{\prime}$ for all $i<l$. Then

$$
\alpha_{n_{0}+l}^{\epsilon_{l}-\epsilon_{l}^{\prime}}=\alpha_{n_{0}+l+1}^{\epsilon_{l+1}^{\prime}-\epsilon_{l+1}} \cdots \alpha_{n_{0}+n}^{\epsilon_{n}^{\prime}-\epsilon_{n}} .
$$

On the other hand $(5.2,5.3)$ and the triangle inequality imply

$$
d\left(\alpha_{n_{0}+l+1}^{\epsilon_{l+1}^{\prime}-\epsilon_{l+1}} \cdots \alpha_{n_{0}+n}^{\epsilon_{n}^{\prime}-\epsilon_{n}}, e\right)<M \cdot \sum_{j=1}^{\infty} \frac{1}{(2 M)^{j}} \cdot d\left(\alpha_{n_{0}+l}, e\right)<\frac{1}{2} d\left(\alpha_{n_{0}+l}, e\right)<d\left(\alpha_{n_{0}+l}^{\epsilon_{l}-\epsilon_{l}^{\prime}}, e\right),
$$

a contradiction.
To complete the proof of the lemma, we observe that the elements (5.4) have word norm $\left|\gamma_{\epsilon_{1} \ldots \epsilon_{n}}\right|_{\Gamma} \leq \operatorname{const}\left(n_{0}\right) \cdot 2^{n}$ and are contained in U if n_{0} is sufficiently large. This shows that $f(k)$ grows polynomially of order at least $\frac{\log (M)}{\log (2)}$ for all M, hence the claim.

6 Proof Theorem 1.1

Let $\rho_{0}: \Gamma \times \Gamma \rightarrow \Gamma$ be the isometric action of Γ on itself by left translation, and let $\phi: \Gamma \rightarrow$ Nil $\times X$ be a quasi-isometry. Then there is a quasi-action ρ of Γ on Nil $\times X$ such that ϕ quasi-isometrically conjugates ρ_{0} into ρ. According to section $3, \rho$ projects (up to bounded error) to a cobounded quasi-action $\bar{\rho}$ of Γ on $X . \bar{\rho}$ is quasi-isometrically conjugate to a cocompact isometric action $\hat{\rho}$, cf. Corollary 4.5. Pick $x \in X, y \in$ Nil $\times\{x\}$, and $R>0$. Since the quasi-action ρ covers $\bar{\rho}$, we know that for all $\gamma \in \Gamma$ with $\hat{\rho}(\gamma) \cdot x \in B_{R}(x)$, the distance $d(\rho(\gamma) \cdot y, N i l \times\{x\})$ is uniformly bounded. The map $\Gamma \rightarrow$ Nil $\times X$ given by $g \mapsto \rho(\gamma) \cdot y$ being a quasi-isometry, we conclude that the function

$$
\begin{equation*}
N(k):=\#\left\{\left.\gamma \in \Gamma| | \gamma\right|_{\Gamma}<k, \hat{\rho}(\gamma) \cdot x \in B_{R}(x)\right\} \tag{6.1}
\end{equation*}
$$

grows at most as fast as the volume of balls in $N i l$, i.e. it is $<C k^{d}$ for some $C, d \in \mathbb{R}$. Proposition 5.3 implies that $L:=\hat{\rho}(\Gamma)$ is a discrete subgroup in $\operatorname{Isom}(X)$ and hence a uniform lattice. The kernel H of the action $\hat{\rho}$ is then a finitely generated group quasiisometric to the fiber Nil, since it clearly (quasi)-acts discretely and coboundedly on the fiber.

To see that the sequence (1.1) is unique up to isomorphism, let

$$
1 \rightarrow H^{\prime} \rightarrow \Gamma \xrightarrow{p^{\prime}} L^{\prime} \rightarrow 1
$$

be an exact sequence with $L^{\prime} \subset \operatorname{Isom}(X)$ a uniform lattice and H^{\prime} a group quasiisometric to Nil. Then by [Gro81b, Pan83] H^{\prime} is a virtually nilpotent group. Now if $\Gamma \xrightarrow{f} \Gamma$ is an isomorphism then $p^{\prime}(H) \subset L^{\prime}$ is a normal, finitely generated, virtually nilpotent subgroup; it follows that $p^{\prime}(f(H))$ is trivial. Similarly $p\left(f^{-1}\left(H^{\prime}\right)\right)$ is trivial and we conclude that f induces an isomorphism of the two exact sequences.

We now prove the last statement of Theorem 1.1. When we restrict $\bar{\rho}$ to H we get a quasi-action which is equivalent to the trivial action of H on X. Hence $\bar{\rho}$ induces a quasi-action η of $L=\Gamma / H$ on X, which is discrete and cobounded. The action η_{0} of L on itself by left translations is also discrete and cobounded, so $g \mapsto \eta(g)\left(\pi_{2}(\phi(e))\right)$ defines a quasi-isometry $L \xrightarrow{\bar{\phi}} X$. It follows that the diagram

commutes up to bounded error since ϕ quasi-isometrically conjugates ρ_{0} into ρ, ρ projects to $\bar{\rho}$, and $d(\bar{\rho}(\gamma H), \eta(\gamma H))$ is uniformly bounded (independent of γ).

7 Proof of Theorem 1.2

Overview. If Γ is quasi-isometric to $\mathbb{R}^{n} \times X$ where X is a symmetric space with no Euclidean de Rham factor, then by Theorem 1.1, Γ fits into an exact sequence (1.1)
where H is an undistorted virtually \mathbb{Z}^{n} subgroup. We will use the undistortedness of H to pass to a finite index subgroup of Γ which is a central extension, cf. [Ger91].

If S is a subset of a group G, we will use the notation $Z(S, G)$ to denote the centralizer of S in G, and $Z(G)$ to denote the center of G.
Proof of Theorem 1.2. By Theorem 1.1 we get an exact sequence

$$
1 \longrightarrow H \longrightarrow \Gamma \xrightarrow{p} L \longrightarrow 1
$$

where H is a finitely generated group quasi-isometric to \mathbb{Z}^{n}, and $L \subset \operatorname{Isom}(X)$ is a uniform lattice. Applying the second part of the theorem we can get a quasi-isometry $\Gamma \xrightarrow{f} \mathbb{Z}^{n} \times L$ so that

commutes up to bounded error. Clearly $f(H) \subset \mathbb{Z}^{n} \times L$ has finite Hausdorff distance from $\mathbb{Z}^{n} \times\{e\} \subset \mathbb{Z}^{n} \times L$, so H is undistorted ${ }^{6}$ in Γ. By [Gro81b, Pan83] that H contains a finite index copy of \mathbb{Z}^{n}.

Next we will identify a finite index abelian subgroup of H which is normal in Γ. Let T be the subgroup of "translations" in H, i.e.

$$
\begin{equation*}
T=\{h \in H \mid[H: Z(h, H)]<\infty\} . \tag{7.2}
\end{equation*}
$$

Clearly T is a characteristic subgroup of H, and has finite index in H; in particular T is finitely generated. Note that $Z(T)$, the center of T, has finite index in T since if $T=\left\langle t_{1}, \ldots, t_{k}\right\rangle$, then $Z(T)=\cap_{i} Z\left(t_{i}, T\right)$ is a finite intersection of finite index subgroups of T. Hence $Z(T)$ is a finitely generated abelian group of the form $\mathbb{Z}^{n} \oplus A$ where A is a finite abelian group. Note $Z(T)$ is normal in Γ since it is characteristic in H, and H is normal in Γ.

Lemma 7.1 The centralizer of $Z(T)$ in $\Gamma, Z(Z(T), \Gamma)$, has finite index in Γ.

The proof uses properties of translation numbers, see [Gro81a, pp. 189-191]. The paper [Ger91] uses a similar setup.

Definition 7.2 Let G be a finitely generated group, and let $|\cdot|_{G}$ be a word norm on G. Then the translation length of $g \in G$ is

$$
\delta_{G}(g):=\lim _{k \rightarrow \infty} \frac{\left|g^{k}\right|_{G}}{k}
$$

The limit exists since $k \mapsto\left|g^{k}\right|_{G}$ is a subadditive function.

[^4]The translation length is conjugacy invariant, vanishes on torsion elements, and changes by at most a bounded factor if one passes to a different word metric. If a homomorphism $H \rightarrow G$ of finitely generated groups is a quasi-isometric embedding then the pullback of δ_{G} to H is equivalent to δ_{H}.

Proof of Lemma 7.1. We know that $Z(T)$ is undistorted in Γ since $Z(T)$ has finite index in H and H is undistorted in Γ. Hence δ_{Γ} restricts to a function on $Z(T)$ which is equivalent to $\delta_{Z(T)}$. The latter function clearly factors through the homomorphism $Z(T) \rightarrow \mathbb{Z}^{n}$ whose kernel is the torsion subgroup $A \subset Z(T)$. Hence $\delta_{Z(T)}: Z(T) \rightarrow \mathbb{R}$ is a proper function on $Z(T)$ which is invariant under conjugacy by elements of Γ. Therefore the action of Γ on $Z(T)$ by conjugacy factors through a finite group, and we conclude that $Z(Z(T), \Gamma)$ has finite index in Γ.

Proof of Theorem 1.2 concluded. Let $\Gamma_{1}:=Z(Z(T), \Gamma)$, let $H_{1} \subseteq Z(T) \subseteq \Gamma_{1} \cap H$ be a finite index subgroup of $Z(T)$ isomorphic to \mathbb{Z}^{n}, and set $L_{1}:=\Gamma_{1} / H_{1}$. Then clearly L_{1} is a finite extension of a uniform lattice in $\operatorname{Isom}(X)$, and hence

$$
1 \rightarrow H_{1} \rightarrow \Gamma_{1} \rightarrow L_{1} \rightarrow 1
$$

is an exact sequence as in (1.3).

8 Geometry of central extensions by \mathbb{Z}^{n}

The objective of this section is Proposition 8.2, which provides criteria for recognizing quasi-isometrically trivial central extensions.

Definition 8.1 Let X be a $C W$-complex. A cellular k-cochain $\alpha \in C^{k}\left(X ; \mathbb{Z}^{n}\right)$ is bounded if its values on the k-cells of X are uniformly bounded. The collection of bounded cochains forms a subcomplex $C_{L^{\infty}}^{*}\left(X ; \mathbb{Z}^{n}\right)$ of $C^{*}\left(X ; \mathbb{Z}^{n}\right)$, and its cohomology is $H_{L^{\infty}}^{*}\left(X ; \mathbb{Z}^{n}\right)$.

Note that the homomorphism $H_{L^{\infty}}^{i}\left(X ; \mathbb{Z}^{n}\right) \rightarrow H^{i}\left(X ; \mathbb{Z}^{n}\right)$ is surjective if X has a finite i-skeleton, and injective if X has a finite $i-1$-skeleton.

If G is a finitely generated group, then we may find a CW-complex X with finite 1skeleton which is an Eilenberg-Maclane space for G. We will be interested in elements of $H^{2}\left(G ; \mathbb{Z}^{n}\right)$ in the image of the monomorphism $H_{L^{\infty}}^{2}\left(X ; \mathbb{Z}^{n}\right) \rightarrow H^{2}\left(X ; \mathbb{Z}^{n}\right)$ whose lift to $H_{L^{\infty}}^{2}\left(X ; \mathbb{Z}^{n}\right)$ lies in the kernel of the pullback homomorphism $H_{L^{\infty}}^{2}\left(X ; \mathbb{Z}^{n}\right) \rightarrow$ $H_{L^{\infty}}^{2}\left(\tilde{X} ; \mathbb{Z}^{n}\right)$. Note that the subgroup of $H^{2}\left(G ; \mathbb{Z}^{n}\right)$ defined this way is independent of the choice of X; for if X_{1} and X_{2} are two Eilenberg-Maclane spaces for G with finite 1 -skeleton, then we can find a cellular homotopy equivalence $X_{1} \xrightarrow{f} X_{2}$, and this will induce a G-equivariant map $C_{L^{\infty}}^{1}\left(\tilde{X}_{2} ; \mathbb{Z}^{n}\right) \rightarrow C_{L^{\infty}}^{1}\left(\tilde{X}_{1} ; \mathbb{Z}^{n}\right)$.

Proposition 8.2 Let

$$
\begin{equation*}
1 \rightarrow \mathbb{Z}^{n} \xrightarrow{i} G \xrightarrow{p} Q \rightarrow 1 \tag{8.1}
\end{equation*}
$$

be a central extension of finitely generated groups. Then the following are equivalent:

1. The extension is quasi-isometrically trivial, i.e. there is a quasi-isometry $G \xrightarrow{f}$ $\mathbb{Z}^{n} \times Q$ so that the diagram

commutes up to bounded error.
2. There is a Lipschitz section $s: Q \rightarrow G$ of p.
3. If K is an Eilenberg-Maclane space for Q, and K has a finite 1-skeleton, then the cohomology class in $H^{2}\left(K ; \mathbb{Z}^{n}\right)$ associated with the central extension (8.1) is an L^{∞} class which lies in the kernel of the pullback to the universal cover $H_{L^{\infty}}^{2}\left(K ; \mathbb{Z}^{n}\right) \rightarrow$ $H_{L^{\infty}}^{2}\left(\tilde{K} ; \mathbb{Z}^{n}\right)$.

Proof. $(1 \Longrightarrow 2)$. Suppose f makes diagram (8.2) commute up to bounded error, and let f^{-1} be a quasi-inverse ${ }^{7}$ for f. Define $s_{0}: Q \rightarrow G$ to be the composition $Q \rightarrow\{e\} \times Q \rightarrow \mathbb{Z}^{n} \times Q \xrightarrow{f^{-1}} G$. The approximate commutativity of (8.2) implies that $d\left(p \circ s_{0}, i d_{Q}\right)<\infty$. Define a section $s: Q \rightarrow G$ of p by letting $s(q)$ be a point in $p^{-1}(q)$ closest to $s_{0}(q)$, for all $q \in Q$. By Lemma 8.3 below, we have $d\left(s, s_{0}\right)<\infty$, and so s is Lipschitz since s_{0} is Lipschitz and $d\left(q_{1}, q_{2}\right) \geq 1$ for distinct elements $q_{1}, q_{2} \in Q$.

Lemma 8.3 If $H \triangleleft G$ are finitely generated groups, then the coset distance metric on G / H is equivalent ${ }^{8}$ to any word metric on G / H.

Proof. Let $\Sigma \subset G$ be a symmetric finite generating set, and let $\bar{\Sigma} \subset G / H$ be the image of Σ under $G \rightarrow G / H$. Then there is a canonical 1-Lipschitz map between the Cayley graphs $\operatorname{Cay}(G, \Sigma)$ and $\operatorname{Cay}(G / H, \bar{\Sigma})$. Paths in $\operatorname{Cay}(G / H, \bar{\Sigma})$ can be lifted to paths in $\operatorname{Cay}(G, \Sigma)$ of the same length which join the corresponding cosets of H.
$(2 \Longrightarrow 1)$. If $s: Q \rightarrow G$ is a Lipschitz section of p, we may define a map $\pi_{\mathbb{Z}^{n}}: G \rightarrow \mathbb{Z}^{n}$ by the formula $\pi_{\mathbb{Z}^{n}}(g) s(p(g))=g$, i.e. $\pi_{\mathbb{Z}^{n}}$ is the unique map $G \rightarrow \mathbb{Z}^{n}$ which sends $s(Q)$ to $e \in \mathbb{Z}^{n}$, and which is equivariant with respect to left translation by elements of \mathbb{Z}^{n}.

Lemma $8.4 \pi_{\mathbb{Z}^{n}}$ is Lipschitz.

Proof. Note that if $g_{1}, g_{2} \in G, h \in \mathbb{Z}^{n}$, and $g_{2}=g_{1} h$, then $\pi_{\mathbb{Z}^{n}}\left(g_{2}\right)=\pi_{\mathbb{Z}^{n}}\left(g_{1}\right) h$, so $d_{\mathbb{Z}^{n}}\left(\pi_{\mathbb{Z}^{n}}\left(g_{1}\right), \pi_{\mathbb{Z}^{n}}\left(g_{2}\right)\right)=d_{\mathbb{Z}^{n}}(e, h)$. The properness of the distance function $d_{\mathbb{Z}^{n}}(\cdot, e)$ implies that there is a function $\delta: \mathbb{N} \rightarrow \mathbb{N}$ so that for all $h \in \mathbb{Z}^{n}$,

$$
\begin{equation*}
d_{\mathbb{Z}^{n}}(h, e) \leq \delta\left(d_{G}(h, e)\right) \tag{8.3}
\end{equation*}
$$

To prove Lemma 8.4, it suffices to find an L such that $d_{\mathbb{Z}^{n}}\left(\pi_{\mathbb{Z}^{n}}\left(g_{1}\right), \pi_{\mathbb{Z}^{n}}\left(g_{2}\right)\right) \leq L$ whenever $d_{G}\left(g_{1}, g_{2}\right)=1$. Consider the unique $g_{3} \in g_{1} \mathbb{Z}^{n}$ which satisfies $\pi_{\mathbb{Z}^{n}}\left(g_{3}\right)=$

[^5]$\pi_{\mathbb{Z}^{n}}\left(g_{2}\right)$, i.e. $g_{3} \in g_{1} \mathbb{Z}^{n} \cap\left(\pi_{\mathbb{Z}^{n}}\left(g_{2}\right) s(Q)\right)$. Then $d_{G}\left(g_{3}, g_{2}\right) \leq C$ for some constant C because the composition $s \circ p$ is Lipschitz. Applying triangle inequalities and (8.3), we get
\[

$$
\begin{gathered}
d_{\mathbb{Z}^{n}}\left(\pi_{\mathbb{Z}^{n}}\left(g_{1}\right), \pi_{\mathbb{Z}^{n}}\left(g_{2}\right)\right)=d_{\mathbb{Z}^{n}}\left(\pi_{\mathbb{Z}^{n}}\left(g_{1}\right), \pi_{\mathbb{Z}^{n}}\left(g_{3}\right)\right) \\
\leq \delta\left(d_{G}\left(g_{1}, g_{3}\right)\right) \leq \delta(1+C) .
\end{gathered}
$$
\]

To finish the proof that $(2 \Longrightarrow 1)$, note that we have a bijection $\hat{f}: \mathbb{Z}^{n} \times Q \rightarrow G$ given by $\hat{f}(h, q)=h s(q)$. \hat{f} is clearly $\operatorname{Lip}(s)$-Lipschitz in the Q direction. That \hat{f} is Lipschitz in the \mathbb{Z}^{n} direction follows from the fact that \mathbb{Z}^{n} is a central subgroup of G :

$$
\begin{aligned}
& d_{G}\left(\hat{f}\left(h_{1}, q\right), \hat{f}\left(h_{2}, q\right)\right)=d_{G}\left(h_{1} s(q), h_{2} s(q)\right) \\
= & d_{G}\left(h_{1} h_{2}^{-1}, e\right) \leq d_{\mathbb{Z}^{n}}\left(h_{1} h_{2}^{-1}, e\right)=d_{\mathbb{Z}^{n}}\left(h_{1}, h_{2}\right) .
\end{aligned}
$$

Letting $f=\hat{f}^{-1}$, we see that $f=\left(\pi_{\mathbb{Z}^{n}}, p\right)$ is a biLipschitz bijection.
$(2 \Longleftrightarrow 3)$. This follows from the obstruction theoretic interpretation of the characteristic class of the extension. Let K be a CW complex with finite 1 -skeleton and one vertex, and which is an Eilenberg-Maclane space for Q. Let $P \rightarrow K$ be a principal T^{n}-bundle with characteristic class $[\alpha] \in H^{2}\left(K ; \mathbb{Z}^{n}\right)$, so that the exact homotopy sequence $\pi_{1}\left(T^{n}\right) \rightarrow \pi_{1}(P) \rightarrow \pi_{1}(K)$ for the fibration $P \rightarrow K$ is isomorphic to (8.1). Let $\sigma: \operatorname{Skel}_{1}(K) \rightarrow P$ be a section of P over the 1 -skeleton of K. In the fiber over the point $S k e l_{0}(K)$, choose a bouquet of n circles with vertex at $\sigma\left(\operatorname{Skel}_{0}(K)\right.$), which gives a standard basis for the fundamental group of the fiber. Let $M \subset P$ be the 1-complex consisting of the union of this bouquet of circles with the bouquet $\sigma\left(\operatorname{Skel}_{1}(K)\right) \subset P$.

Let $\hat{P} \rightarrow \tilde{K}$ be the pullback of the bundle $P \rightarrow K$ under the covering projection $\tilde{K} \rightarrow K$, let $\hat{\sigma}: \operatorname{Skel}_{1}(\tilde{K}) \rightarrow \hat{P}$ be the pullback of σ, and let $\hat{M} \subset \hat{P}$ be the inverse image of M under the covering $\hat{P} \rightarrow P$. Finally, let $\tilde{P} \rightarrow \hat{P}$ be the universal covering, and let $\tilde{M} \subset \tilde{P}$ be the inverse image of \hat{M} under $\tilde{P} \rightarrow \hat{P}$. Note that if we put path metrics on $\operatorname{Skel}_{1}(\tilde{K})$ and \tilde{M}, then the projection map $\operatorname{Skel}_{0}(\tilde{M}) \rightarrow \operatorname{Skel}_{0}(\tilde{K})$ is naturally biLipschitz equivalent to $G \xrightarrow{p} Q$.

Now suppose 3 holds, and that $\alpha \in C_{L^{\infty}}^{2}\left(K ; \mathbb{Z}^{n}\right) \subset C^{2}\left(K ; \mathbb{Z}^{n}\right)$. We may assume that our section $\sigma: \operatorname{Skel}_{1}(K) \rightarrow P$ was chosen so that the associated cellular obstruction cocycle is α. Then $\hat{\alpha}$, the image of α under the map $C_{L^{\infty}}^{2}\left(K ; \mathbb{Z}^{n}\right) \rightarrow C_{L^{\infty}}^{2}\left(\tilde{K} ; \mathbb{Z}^{n}\right)$, is the obstruction cocycle for $\hat{\sigma}: \operatorname{Skel}_{1}(\tilde{K}) \rightarrow \hat{P}$. By assumption, $\hat{\alpha}=\delta \theta$ for some $\theta \in C_{L^{\infty}}^{1}\left(\tilde{K} ; \mathbb{Z}^{n}\right)$. Hence we may modify $\hat{\sigma}$ using θ to get a new section $\hat{\sigma}_{1}: \operatorname{Skel}_{1}(\tilde{K}) \rightarrow \hat{P}$ with trivial obstruction cocycle. In particular, if $\tilde{P} \rightarrow \hat{P}$ is the universal covering map, then $\hat{\sigma}_{1}$ lifts to a section $\tilde{\sigma}: \operatorname{Skel}_{1}(\tilde{K}) \rightarrow \tilde{P}$ of the \mathbb{R}-bundle $\tilde{P} \rightarrow \tilde{K}$. The fact that θ is an L^{∞}-cochain implies that $\tilde{\sigma}$ restricts to a 1 -Lipschitz map from $\operatorname{Skel}_{0}(\tilde{K})$ to $\operatorname{Skel}_{0}(\tilde{M})$. Since the projection $\operatorname{Skel}_{0}(\tilde{M}) \rightarrow \operatorname{Skel}_{0}(\tilde{K})$ is biLipschitz equivalent to $G \rightarrow Q$, we get a Lipschitz section of p, so 2 holds.

Conversely, suppose 2 holds. Then we get a Lipschitz section $\tau: S k e l_{0}(\tilde{K}) \rightarrow$ $\operatorname{Skel}_{0}(\tilde{M})$ of the projection $\operatorname{Skel}_{0}(\tilde{M}) \rightarrow \operatorname{Skel}_{0}(\tilde{K})$. We may extend τ to a section $\tilde{\sigma}: \operatorname{Skel}_{1}(\tilde{K}) \rightarrow \tilde{P}$, and let $\hat{\sigma}_{1}: \operatorname{Skel}_{1}(\tilde{K}) \rightarrow \hat{P}$ be the composition of $\tilde{\sigma}$ with $\tilde{P} \rightarrow \hat{P}$.

Lemma 8.5 $\hat{\sigma}_{1}$ is obtained from $\hat{\sigma}$ by applying a bounded cochain $\theta \in C_{L^{\infty}}^{1}\left(\tilde{K} ; \mathbb{Z}^{n}\right)$.

Proof. If e is a closed 1-cell in $\operatorname{Skel}_{1}(\tilde{K})$, we want to show that the fixed endpoint homotopy classes of the two sections $\left.\hat{\sigma}\right|_{e}: e \rightarrow \hat{P}$ and $\left.\hat{\sigma}_{1}\right|_{e}: e \rightarrow \hat{P}$ (as maps into the inverse image of e in \hat{P}) agree up to bounded error. If $\gamma:[0,1] \rightarrow e$ is a characteristic map for e, lift the path $\hat{\sigma} \circ \gamma:[0,1] \rightarrow \hat{M} \subset \hat{P}$ to a path $\tilde{\gamma}:[0,1] \rightarrow \tilde{M} \subset \tilde{P}$ starting at $\tilde{\sigma} \circ \gamma(0)$. Then

$$
\begin{gathered}
d_{\tilde{M}}(\tilde{\gamma}(1), \tilde{\sigma} \circ \gamma(0)) \leq d_{\tilde{M}}(\tilde{\gamma}(1), \tilde{\gamma}(0))+d_{\tilde{M}}(\tilde{\gamma}(0), \tilde{\sigma} \circ(1)) \\
=1+d_{\tilde{M}}(\tau(\gamma(0)), \tau(\gamma(1))) \\
\leq 1+L_{\tau}
\end{gathered}
$$

where L_{τ} is the Lipschitz constant of τ. But then $\tilde{\gamma}(1)=(\tilde{\sigma} \circ \gamma(1)) h$ for some $h \in \mathbb{Z}^{n}$, and we can bound $d_{\mathbb{Z}^{n}}(h, e)$ by a constant C depending on L_{τ}, cf. (8.3). In other words, the fixed endpoint homotopy classes of $\left.\hat{\sigma}\right|_{e}$ and $\left.\hat{\sigma}_{1}\right|_{e}$ (as maps from e to the inverse image of e in \hat{P}) differ by some $h \in \mathbb{Z}^{n}$ where $\|h\|_{\mathbb{Z}^{n}}<C$.

It follows that 3 holds. This completes the proof of Proposition 8.2.

References

[CJ94] A. Casson and D. Jungreis, Convergence groups and Seifert fibered 3manifolds, Inv. Math. 118 no. 3 (1994), 441-456.
[Chow96] R. Chow, Groups quasi-isometric to complex hyperbolic space, Trans. AMS, 348 (1996), no. 5, pp. 1757-1769.
[Esk96] A. Eskin, Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces, J. AMS, 11, (1998), no. 2, 321-361.
[Ga92] D. Gabai, Convergence groups are Fuchsian groups, Ann. Math. 136 no. 3 (1992), 447-510.
[Ger92] S. Gersten, Bounded cocycles and combings of groups, Int. J. Alg. Comp., 2, (1992), no. 3, 307-326.
[Ger91] S. Gersten, H. Short, Rational subgroups of biautomatic groups, Ann. of Math., (2), 134, (1991), no. 1, 125-158.
[GDH90] E. Ghys, P. de la Harpe, Sur les groupes hyperboliques d'apres Mikhael Gromov, Progress in Mathematics, 83, Birkhäuser.
[Gro93] M. Gromov, Asymptotic invariants for infinite groups, in: Geometric group theory, London Math. Soc. lecture note series 182, 1993.
[Gro81a] M. Gromov, Hyperbolic manifolds, groups, and actions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference, 183-213, Ann. of Math. Stud. 97.
[Gro81b] M. Gromov, Groups of polynomial growth and expanding maps, Publ. IHES, 53 (1981), pp. 53-73.
[Gro87] M. Gromov, Hyperbolic groups, 75-263, In: Essays in group theory, MSRI Publ. 8, Springer, 1987.
[Hin90] A. Hinkkanen, The structure of certain quasi-symmetric groups, Mem. Amer. Math. Soc., 83, (1990), no. 422, 1-83.
[KaLe96] M. Kapovich and B. Leeb, Quasi-isometries preserve the geometric decomposition of Haken manifolds, Invent. Math., 128, (1997), no. 2, 393-416.
[KlLe97a] B. Kleiner and B. Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, C. R. Acad. Sci. Paris, 324, (1997), no. 6, 639-643.
[KlLe97b] B. Kleiner and B. Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Publ. IHES, No. 86, (1997), 115-197.
[Pan83] P. Pansu, Croissance des boules et des géodésiques fermées dans les nilvariétés, Erg. Thy. Dyn. Sys., 3, (1983), no. 3, 415-445.
[Pan89] P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symetriques de rang un, Ann. of Math., 129 (1989), 1-60.
[Rag84] M. S. Ragunathan, Torsion in cocompact lattices in coverings of $\operatorname{Spin}(2, n)$, Math. Ann., 266, (1984), no. 4, 403-419.
[Rie93] E. Rieffel, Groups coarse quasi-isometric to $\mathbb{H}^{2} \times \mathbb{R}$, PhD Thesis, UCLA, 1993.
[Sch95] R. Schwartz, The quasi-isometry classification of rank one lattices, Publ. of IHES, vol. 82 (1995) 133-168.
[Tuk88] P. Tukia, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988), 1-54.
[TuVa82] P. Tukia, J. Väisälä, Quasiconformal extension from dimension n to $n+1$, Ann. Math., 115, (1982), 331-348.

Bruce Kleiner
Department of Mathematics
University of Utah
Salt Lake City, UT 84112-0090
bkleiner@math.utah.edu
Bernhard Leeb
Department of Mathematics
University of Mainz
leeb@Mathematik.Uni-Mainz.DE

[^0]: *Supported by a Sloan foundation fellowship, and NSF grants DMS-95-05175 and DMS-96-26911. ${ }^{\ddagger}$ Supported by SFB 256 (Bonn).
 ${ }^{1} 1991$ Mathematics Subject Classification: 20F32, 53C35, 53C21

[^1]: ${ }^{2}$ The inclusion of H in Γ is biLipschitz with respect to the word metrics.

[^2]: ${ }^{3}$ Although Theorem 1.1.2 is only formulated in the case that $N i l \simeq \mathbb{R}^{n}$, the same proof works in general provided one uses [Pan83] to conclude that all asymptotic cones of Nil are homeomorphic to \mathbb{R}^{k} where $k=\operatorname{Dim}(N i l)$.
 ${ }^{4}$ The uniformity in the rank one case follows from Lemma 2.5.

[^3]: ${ }^{5}$ This is a geometric way of defining unipotent isometries.

[^4]: ${ }^{6}$ A finitely generated subgroup of a finitely generated group is undistorted if the inclusion homomorphism is a quasi-isometric embedding.

[^5]: ${ }^{7} d\left(f^{-1} \circ f, i d_{G}\right)$ and $d\left(f \circ f^{-1}, i d_{\mathbb{Z}^{n} \times Q}\right)$ are both finite.
 ${ }^{8}$ The two metrics have uniformly bounded ratio.

