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Furthermore, given any quasi-isometry � ��! Nil � X, there is a quasi-isometryL ��! X so that the diagram � p���! L�??y ��??yNil �X �2���! X (1.2)commutes up to bounded error. In particular, H is undistorted2 in �.When Nil is the trivial group then � is a �nite extension of a uniform lattice inIsom(X), and when Nil ' Rk then H is virtually abelian of rank k by [Gro81b,Pan83]. The case when X is the hyperbolic plane and Nil ' R is due to Rie�el[Rie93].We further re�ne Theorem 1.1 when Nil ' Rn .Theorem 1.2 Let X be as in Theorem 1.1. Then any �nitely generated group �quasi-isometric to Rn �X contains a �nite index subgroup �1 � � which is a centralextension of the form 1 �! Zn �! �1 �! L1 �! 1 (1.3)where L1 is a �nite extension of a lattice in Isom(X).In general, one cannot arrange that the group L1 is a lattice in Isom(X) ratherthan a �nite extension of a lattice. Examples of Raghunathan [Rag84] show that thisis impossible in general even when n = 0.Theorem 1.2 raises the question of which central extensions (1.3) are quasi-isometricto E n �X. Theorem 1.4 below gives a homological answer to this.De�nition 1.3 An extension 1 ! K ! G p! Q ! 1 of �nitely generated groupsis quasi-isometrically trivial if there is a quasi-isometry G �! K � Q so that thediagram G p���! Q�??y idQ??yK �Q �2���! Q (1.4)commutes up to bounded error.The central extension (1.3) is quasi-isometrically trivial by the second part ofTheorem 1.1. The next result gives a general characterisation of quasi-isometricallytrivial extensions.2The inclusion of H in � is biLipschitz with respect to the word metrics.2



Theorem 1.4 (See section 7 for the de�nition of L1 cohomology for CW complexes.)Let 1! Zn ! G! Q! 1 (1.5)be a central extension of �nitely generated groups, and let � 2 H2(Q;Zn) be theassociated cohomology class. Let K be a CW-complex with �nite 1-skeleton which is anEilenberg-Maclane space for Q, and identify � with a class in H2(K;Zn) ' H2(Q;Zn).Then the extension (1.5) is quasi-isometrically trivial i� � is in the image of thehomomorphism H2L1(K;Zn) ! H2(K;Zn), and any lift �̂ 2 H2L1(K;Zn) of � pullsback to zero in H2L1( ~K;Zn), where ~K denotes the universal cover of K.Remark. Using bounded cohomology instead of L1 cohomology, Gersten [Ger92]gave a su�cient condition for a central extension by Z to be quasi-isometric to atrivial extension.An earlier version of this paper was posted on the AMS preprint server in October1996.We gratefully acknowledge support by the RiP-program at the MathematischesForschungsinstitut Oberwolfach.Contents1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Projecting quasi-actions to the factors . . . . . . . . . . . . . . . . . 54 Straightening cocompact quasi-actions on irreducible symmetric spaces 55 A Growth estimate for small elements in nondiscrete cocompact sub-groups of Isom(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75.1 Parabolic isometries of symmetric spaces . . . . . . . . . . . . 75.2 The growth estimate . . . . . . . . . . . . . . . . . . . . . . . 76 Proof Theorem 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Proof of Theorem 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Geometry of central extensions by Zn . . . . . . . . . . . . . . . . . . 12Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 PreliminariesIn this section we recall some basic de�nitions and notation. See [Gro93] for morediscussion and background.De�nition 2.1 A map f : X �! Y between metric spaces is an (L;A) quasi-isometry if for every x1; x2 2 XL�1d(x1; x2) + A � d(x1; x2) � Ld(x1; x2) + A;and for every y 2 Y we have d(y; f(X)) < A. Two quasi-isometries f1; f2 : X �! Yare equivalent if d(f1; f2) <1. 3



If � is a �nitely generated group, then any two word metrics on � are biLipschitzto one another by id� : �! �. We will implicitly endow our �nitely generated groupswith word metrics.De�nition 2.2 An (L;A)-quasi-action of a group � on a metric space Z is a map� : � � Z ! Z so that �(
; �) : Z ! Z is an (L;A) quasi-isometry for every 
 2 �,d(�(
1; �(
2; z)); �(
1
2; z)) < A for every 
1; 
2 2 �, z 2 Z, and d(�(e; z); z) < A forevery z 2 Z.We will denote the self-map �(
; �) : Z ! Z by �(
). � is discrete if for any pointz 2 Z and any radius R > 0, the set of all 
 2 � such that �(
; z) is contained in theball BR(z) is �nite. � is cobounded if Z coincides with a �nite tubular neighborhoodof the \orbit" �(�)z � Z for every z. If � is a discrete cobounded quasi-action ofa �nitely generated group � on a geodesic metric space Z, it follows easily that themap �! Z given by 
 7! �(
; z) is a quasi-isometry for every z 2 Z.De�nition 2.3 Two quasi-actions � and �0 are equivalent if there exists a constantD so that d(�(
); �0(
) < D for all 
 2 �.De�nition 2.4 Let � and �0 be a quasi-actions of � on Z and Z 0 respectively, andlet � : Z ! Z 0 be a quasi-isometry . Then � is quasi-isometrically conjugate to�0 via � if there is a D so that d(� � �(
); �0(
) � �) < D for all 
 2 �.Lemma 2.5 (cf [Gro87, 8.2.K]) Let X be a Hadamard manifold of dimension � 2with sectional curvature � K < 0, and let @1X denote the geometric boundary ofX with the cone topology. Recall that every quasi-isometry � : X �! X induces aboundary homeomorphism @1� : @1X ! @1X.1. If � : � � X ! X is a quasi-action on X, then � is discrete (respectivelycobounded) i� @1� acts properly discontinuously (respectively cocompactly) onthe space of distinct triples in @1X.2. Given (L;A) there is a D so that if �k,  are (L;A) quasi-isometries, then@1�k converges uniformly to @1 i� lim supd(�kx;  x) < D for every x 2 X.In particular, if �1; �2 : X �! X are (L;A) quasi-isometries with the sameboundary mappings, then d(�1; �2) < D.Proof. Let @3X � @1X � @1X � @1X denote the subspace of distinct triples. Theuniform negative curvature of X implies that there is a D0 depending only on K suchthat(a) For every x 2 X there is a triple (�1; �2; �3) 2 @3X such that d(x; �i�j) < D0 forevery 1 � i 6= j � 3, where �i�j denotes the geodesic with ideal endpoints �i, �j.Moreover for every C the set f(�1; �2; �3) j d(x; �i�j) < C for all 1 � i 6= j � 3g hascompact closure in @3X.and(b) For every (�1; �2; �3) 2 @3X there is a point x 2 X so that d(x; �i�j) < D0 for each1 � i 6= j � 3. And for every C there is a C 0 depending only on C and K so thatfx 2 X j d(x; �i�j) < C for every 1 � i 6= j � 3g has diameter < C 0.1 and 2 follow easily from this. �4



3 Projecting quasi-actions to the factorsLet Nil and X be as in Theorem 1.1 and decompose X into irreducible factors:X = lYi=1Xi (3.1)Suppose � is a quasi-action of the �nitely generated group � on Nil�X. We denoteby p : Nil�X ! X the canonical projection. By applying [KlLe97b, Theorem 1.1.2]3to each quasi-isometry �(
) we construct quasi-actions �i of � on Xi so thatd(p � �(
); kYi=1 �i(
) � p) < Dfor all 
 2 � and some positive constant D.4 Straightening cocompact quasi-actions on irreducible sym-metric spacesThe following result is a direct consequence of [Pan89, Th�eor�eme 1] and [KlLe97b,Theorem 1.1.3].Fact 4.1 Let X be an irreducible symmetric space other than a real or complex hy-perbolic space. Then every quasi-action on X is equivalent to an isometric action.Proof. Let � be a quasi-action of a group � on X. By the results just cited, thereis an isometry ��(
) at �nite distance from the quasi-isometry �(
) for every 
 2 �.This isometry is unique and its distance from �(
) is uniformly bounded4 in terms ofthe constants of the quasi-action. So �� is an isometric action equivalent to �. �We recall that the real and complex hyperbolic spaces of all dimensions admitquasi-isometries which are not equivalent to isometries [Pan89].Fact 4.2 Any cobounded quasi-action � on a real or complex hyperbolic space is quasi-isometrically conjugate to an isometric action.This result is proven in [Tuk88] in the real-hyperbolic case. Using Pansu's theoryof Carnot di�erentiability one can carry out Tukia's arguments for all rank-one sym-metric spaces other than hyperbolic plane, cf. [Pan89, sec. 11]. Another proof for thecomplex-hyperbolic case can be found in [Chow96].Fact 4.3 Let � be a cobounded quasi-action of a group � on H 2 . Then � is quasi-isometrically conjugate to a cocompact isometric action of � on H 2 .3Although Theorem 1.1.2 is only formulated in the case that Nil ' Rn , the same proof works ingeneral provided one uses [Pan83] to conclude that all asymptotic cones of Nil are homeomorphicto Rk where k = Dim(Nil).4The uniformity in the rank one case follows from Lemma 2.5.5



Proof. We recall that every quasi-isometry � : H 2 ! H 2 induces a quasi-symmetrichomeomorphism @1� : @1H 2 ! @1H 2 , see [TuVa82]; moreover the quasi-symmetryconstant of @1� can be estimated in terms of the quasi-isometry constants of �. Sinceequivalent quasi-isometries yield the same boundary homeomorphism, every quasi-action � on H 2 induces a genuine action @1� on @1H 2 by uniformly quasi-symmetrichomeomorphisms.Let �� be the quotient of � by the kernel of the action @1�, and let � : � ! ��be the canonical epimorphism. If two elements 
1; 
2 2 � have the same boundarymap then d(�(
1); �(
2)) is uniformly bounded by Lemma 2.5. Hence we may obtaina quasi-action �� of �� on H 2 by choosing 
 2 ��1(�
) for each �
 2 ��, and setting��(�
) = �(
). If �� is an isometric action of �� on H 2 and � : H 2 ! H 2 quasi-isometricallyconjugates �� into �� , then � will quasi-isometrically conjugate � into the isometricaction � : �� H 2 ! H 2 given by �(
) = ��(�(
)). Hence it su�ces to treat the casewhen �� = �, and so we will assume that @1� is an e�ective action.Lemma 4.4 The quasi-action � is discrete if and only if the action @1� on @1H 2 isdiscrete in the compact-open topology.Proof. Suppose @1� is discrete, and let (
i) be a sequence in � so that �(
i) mapsa point p 2 H 2 into a �xed ball BR(p). Then by a selection argument we mayassume { after passing to a subsequence if necessary { that there is a quasi-isometry� : H 2 ! H 2 so that for every q 2 H 2 we have lim supi d(�(
i)(q); �(q)) < D for someD. Hence the boundary maps @1�(
i) converge to @1�, and so the sequence @1�(
i)is eventually constant. Since � is e�ective we conclude that 
i is eventually constant.Therefore � is a discrete quasi-action.If � is a discrete quasi-action on H 2 , then @1� is discrete by Lemma 2.5. �Proof of 4.3 continued.Case 1: @1� is discrete. In this case, � is a discrete convergence group action (Lemma2.5) and by the work of [CJ94, Ga92], there is a discrete isometric action � of � onH 2 so that @1� is topologically conjugate to @1� . Since � is cobounded, @1� actscocompactly on the set of distinct triples of points in @1H 2 (lemma 2.5); therefore@1� also acts cocompactly on the space of triples and so � is a discrete, cocompact,isometric action of � on H 2 . We now have two discrete, cobounded, quasi-actions of �on H 2 , so they are quasi-isometrically conjugate by some quasi-isometry  : H 2 ! H 2 .Case 2: @1� is nondiscrete. By [Hin90, Theorem 4], @1� is quasi-symmetricallyconjugate to @1� , where � is an isometric action on H 2 . The conjugating quasi-symmetric homeomorphism is the boundary of a quasi-isometry  : H 2 ! H 2 ,[TuVa82], which quasi-isometrically conjugates @1� into the isometric action action� . Applying Lemma 2.5 again, we conclude that � is cocompact. �subsection 3, and facts 4.1, 4.2 and 4.3 imply:Corollary 4.5 Let X be a symmetric space of noncompact type without Euclideanfactor. Then any cobounded quasi-action on X is quasi-isometrically conjugate to acocompact isometric action on X. 6



5 A Growth estimate for small elements in nondiscrete co-compact subgroups of Isom(X)5.1 Parabolic isometries of symmetric spacesLet X be a symmetric space of noncompact type, and let G = Isom(X).An isometry g 2 G is semisimple if its displacement function �g attains itsin�mum and parabolic otherwise.Lemma 5.1 Let A � G be a �nitely generated abelian group all of whose nontrivialelements are parabolic. Then A has a �xed point at in�nity.Proof. Recall that the nearest point projection to a closed convex subset is well-de�nedand distance non-increasing. This implies that if C is a non-empty A-invariant closedconvex set, then for all displacement functions �a, a 2 A, we have inf �a = inf �ajC .Hence for all n 2 N , the intersubsection of the sublevel sets fp j �ai(p) � inf �ai+1=ngis non-empty and contains a point pn. We have �ai(pn)! inf �ai for all ai, and sincethe isometries ai are parabolic the sequence fpng subconverges to an ideal boundarypoint � 2 @1X. It follows that the ai �x �. �Lemma 5.2 Let a1; : : : ; ak 2 Isom(X) be commuting parabolic isometries. Thenthere is a sequence of isometries fgng � G so that for every i the sequence gnaig�1nsubconverges to a semisimple isometry �ai.Proof. From the proof of the previous lemma, there is a sequence of points fpng � Xconverging to an ideal point � so that �ai(pn) ! inf �ai for all ai. Pick isometriesgn 2 G such that gn � pn = p0. The conjugates gnaig�1n have the same in�mumdisplacement as ai. Since �gnaig�1n (p0) = �ai(pn)! inf �ai ;the gnaig�1n subconverge to a semisimple isometry. �We call an isometry g 6= e purely parabolic5 if the identity is the only semisimpleelement in AdG(G) � g.5.2 The growth estimateProposition 5.3 Let X be a symmetric space of noncompact type with no Euclideande Rham factors. Let � � G = Isom(X) be a �nitely generated, nondiscrete, cocom-pact subgroup. Let U � Isom(X) be a neighborhood of the identity, and setf(k) := #fg 2 � : jgj� < k, g 2 Ug;where j � j� denotes a word norm on �. Then f grows faster than any polynomial, i.e.for every d > 0 lim supk!1 f(k)kd =1.5This is a geometric way of de�ning unipotent isometries.7



Proof. Let ��o denote the identity component of the closure of � in G.Case 1: ��o is nilpotent. Let A be the last non-trivial subgroup in the derived series of��o. Then A � �� is a connected abelian subgroup of positive dimension, A is normalin ��, and � \ A is dense in A.Lemma 5.4 For every � 2 (0; 1) there is a 
 2 � such that all eigenvalues of theautomorphism AdG(
)jA : A! A have absolute value < �.Proof. See section 5.1 for terminology.Step 1: A contains no semisimple isometries other than e. Otherwise we can considerthe intersection C of the minimum sets for the displacement functions �a where a runsthrough all semisimple elements in A. C is a nonempty convex subset of X whichsplits metrically as C �= E k�Y . The 
ats E k�fyg are the minimal 
ats preserved byall semisimple elements in A. Since � normalises A it follows that C is �-invariant.The cocompactness of � implies that C = X and k = 0 because X has no Euclideanfactor. This means that the semisimple elements in A �x all points, a contradiction.Step 2: All non-trivial isometries in A are purely parabolic. If a 2 A, a 6= e, is notpurely parabolic then there is a sequence of isometries gn so that gnag�1n converges toa semisimple isometry �a 6= e. We can uniformly approximate the gn by elements in �,i.e. there exist 
n 2 � and a bounded sequence kn 2 G subconverging to k 2 G so that
n = kngn. Then 
na
�1n = kngnag�1n k�1n subconverges to the non-trivial semisimpleelement k�ak�1. This contradicts step 1.Step 3: Pick a basis fa1; : : : ; akg for A ' Rk . By Lemma 5.2 there exist elementsgn 2 G so that gnaig�1n ! e for all ai. We approximate the gn as above by 
n so thatthe sequence 
ng�1n is bounded. Then 
nai
�1n ! e for all ai. The lemma follows bysetting 
 = 
n for su�ciently large n. �Proof of case 1 continued. By Lemma 5.4, there is a 
 2 �, 
 6= e, and a norm k � kAon A such that for all a 2 A we havek
a
�1kA < 12kakA:Consider a neighborhood U of e in G. Let r > 0 be small enough so that fa 2 A :kakA < rg � U and pick � 2 � \ A with k�kA < r=2. Then the elements
�0:::�n�1 = ��0 � (
�
�1)�1 � � � � � (
n�1�
1�n)�n�1for �i 2 f0; 1g are 2n pairwise distinct elements contained in � \ U with word normj
�0:::�n�1 j� < n2(j�j� + j
j�). This implies superpolynomial growth of f .Case 2: ��o is not nilpotent. De�ne an increasing sequence (the upper central series)of nilpotent Lie subgroups Zi � ��o inductively as follows: Set Z0 = feg and let Zi+1be the inverse image in ��o of the center in ��o=Zi. The dimension of Zi stabilizes andwe choose k so that dimZk is maximal. Then the center of ��=Zk is discrete and, since��o is not nilpotent, we have dimZk < dim ��. Proposition 5.3 now follows by applyingthe next lemma with H = �� and H1 = Zk. �8



Lemma 5.5 Let H be a Lie group, let H1 �H be a closed normal subgroup so that�H := H=H1 is a positive dimensional Lie group with discrete center, and suppose� � H is a dense, �nitely generated subgroup. If U is any neighborhood of e in H,then the function f(k) := #fg 2 � : jgj� � k, g 2 Ug grows superpolynomially.Proof. The idea of the proof is to use the contracting property of commutators toproduce a sequence f�kg in H \ � which converges exponentially to the identity.The word norm j�kj� grows exponentially with k, but the number of elements ofh�1; : : : ; �ki in U also grows exponentially with k; by comparing growth exponentswe �nd that f grows superpolynomially.Fix M 2 N , a positive real number � < 1=3 and some left-invariant Riemannianmetric on H. Since the di�erential of the commutator map (h; h0) 7! [h; h0] vanishesat (e; e) we can �nd a neighborhood V of e in H such that:h; h0 2 V =) [h; h0] 2 V and d([h; h0]; e) < 12Md(h; e) (5.1)Since the di�erential of the k-th power h 7! hk at e is k � idTeH for all k 2 Z, we canfurthermore achieve that, whenever 1 � k; k0 �M and h; hk; hk0 2 V , thend(hk; hk0) � (jk � k0j � �) � d(h; e) (5.2)By our assumption, there exist �nitely many elements 
1; : : : ; 
m 2 �\V such that thecentralizers Z �H(�
j) of their images in �H have discrete intersubsection. We constructan in�nite sequence of elements �i 2 (� \ V ) nH1 by picking �0 2 V arbitrarily andsetting �i+1 = [�i; hj(i)] 62 H1 for suitably chosen 1 � j(i) � m. Then0 < d(�i+1; e) < 12Md(�i; e) (5.3)by (5.1).Sublemma 5.6 Pick n0 2 N. The Mn elements
�1:::�n = ��1n0+1 � � ���nn0+n �i 2 f0; : : : ;M � 1g (5.4)are distinct.Proof. Assume that 
�1:::�n = 
�01:::�0n, �l 6= �0l and �i = �0i for all i < l. Then��l��0ln0+l = ��0l+1��l+1n0+l+1 � � ���0n��nn0+n :On the other hand (5.2,5.3) and the triangle inequality implyd(��0l+1��l+1n0+l+1 � � ���0n��nn0+n ; e) < M � 1Xj=1 1(2M)j � d(�n0+l; e) < 12d(�n0+l; e) < d(��l��0ln0+l ; e);a contradiction. �To complete the proof of the lemma, we observe that the elements (5.4) haveword norm j
�1:::�n j� � const(n0) � 2n and are contained in U if n0 is su�ciently large.This shows that f(k) grows polynomially of order at least log(M)log(2) for allM , hence theclaim. �9



6 Proof Theorem 1.1Let �0 : � � � ! � be the isometric action of � on itself by left translation, andlet � : � ! Nil � X be a quasi-isometry. Then there is a quasi-action � of � onNil � X such that � quasi-isometrically conjugates �0 into �. According to section3, � projects (up to bounded error) to a cobounded quasi-action �� of � on X. ��is quasi-isometrically conjugate to a cocompact isometric action �̂, cf. Corollary 4.5.Pick x 2 X, y 2 Nil � fxg, and R > 0. Since the quasi-action � covers ��, we knowthat for all 
 2 � with �̂(
) �x 2 BR(x), the distance d(�(
) �y;Nil�fxg) is uniformlybounded. The map � ! Nil � X given by g 7! �(
) � y being a quasi-isometry, weconclude that the functionN(k) := #f
 2 � j j
j� < k, �̂(
) � x 2 BR(x)g (6.1)grows at most as fast as the volume of balls in Nil, i.e. it is < Ckd for some C; d 2 R.Proposition 5.3 implies that L := �̂(�) is a discrete subgroup in Isom(X) and hence auniform lattice. The kernel H of the action �̂ is then a �nitely generated group quasi-isometric to the �ber Nil, since it clearly (quasi)-acts discretely and coboundedly onthe �ber.To see that the sequence (1.1) is unique up to isomorphism, let1! H 0 ! � p0! L0 ! 1be an exact sequence with L0 � Isom(X) a uniform lattice and H 0 a group quasi-isometric to Nil. Then by [Gro81b, Pan83] H 0 is a virtually nilpotent group. Now if� f! � is an isomorphism then p0(H) � L0 is a normal, �nitely generated, virtuallynilpotent subgroup; it follows that p0(f(H)) is trivial. Similarly p(f�1(H 0)) is trivialand we conclude that f induces an isomorphism of the two exact sequences.We now prove the last statement of Theorem 1.1. When we restrict �� to H we geta quasi-action which is equivalent to the trivial action of H on X. Hence �� induces aquasi-action � of L = �=H on X, which is discrete and cobounded. The action �0 ofL on itself by left translations is also discrete and cobounded, so g 7! �(g)(�2(�(e)))de�nes a quasi-isometry L ��! X. It follows that the diagram� p���! L�??y ��??yNil �X �2���! X (6.2)commutes up to bounded error since � quasi-isometrically conjugates �0 into �, �projects to ��, and d(��(
H); �(
H)) is uniformly bounded (independent of 
). �7 Proof of Theorem 1.2Overview. If � is quasi-isometric to Rn �X where X is a symmetric space with noEuclidean de Rham factor, then by Theorem 1.1, � �ts into an exact sequence (1.1)10



where H is an undistorted virtually Zn subgroup. We will use the undistortedness ofH to pass to a �nite index subgroup of � which is a central extension, cf. [Ger91].If S is a subset of a group G, we will use the notation Z(S;G) to denote thecentralizer of S in G, and Z(G) to denote the center of G.Proof of Theorem 1.2. By Theorem 1.1 we get an exact sequence1 �! H �! � p�! L �! 1where H is a �nitely generated group quasi-isometric to Zn, and L � Isom(X) is auniform lattice. Applying the second part of the theorem we can get a quasi-isometry� f�! Zn� L so that � p���! Lf??y id??yZn� L �2���! L (7.1)commutes up to bounded error. Clearly f(H) � Zn�L has �nite Hausdor� distancefrom Zn � feg � Zn � L, so H is undistorted6 in �. By [Gro81b, Pan83] that Hcontains a �nite index copy of Zn.Next we will identify a �nite index abelian subgroup of H which is normal in �.Let T be the subgroup of \translations" in H, i.e.T = fh 2 H j [H : Z(h;H)] <1g: (7.2)Clearly T is a characteristic subgroup of H, and has �nite index in H; in particularT is �nitely generated. Note that Z(T ), the center of T , has �nite index in T sinceif T = ht1; : : : ; tki, then Z(T ) = \iZ(ti; T ) is a �nite intersection of �nite indexsubgroups of T . Hence Z(T ) is a �nitely generated abelian group of the form Zn�Awhere A is a �nite abelian group. Note Z(T ) is normal in � since it is characteristicin H, and H is normal in �.Lemma 7.1 The centralizer of Z(T ) in �, Z(Z(T );�), has �nite index in �.The proof uses properties of translation numbers, see [Gro81a, pp. 189-191]. Thepaper [Ger91] uses a similar setup.De�nition 7.2 Let G be a �nitely generated group, and let j � jG be a word norm onG. Then the translation length of g 2 G is�G(g) := limk!1 jgkjGk :The limit exists since k 7! jgkjG is a subadditive function.6A �nitely generated subgroup of a �nitely generated group is undistorted if the inclusion homo-morphism is a quasi-isometric embedding. 11



The translation length is conjugacy invariant, vanishes on torsion elements, andchanges by at most a bounded factor if one passes to a di�erent word metric. Ifa homomorphism H ! G of �nitely generated groups is a quasi-isometric embeddingthen the pullback of �G to H is equivalent to �H .Proof of Lemma 7.1. We know that Z(T ) is undistorted in � since Z(T ) has �niteindex in H and H is undistorted in �. Hence �� restricts to a function on Z(T ) whichis equivalent to �Z(T ). The latter function clearly factors through the homomorphismZ(T )! Zn whose kernel is the torsion subgroup A � Z(T ). Hence �Z(T ) : Z(T )! Ris a proper function on Z(T ) which is invariant under conjugacy by elements of �.Therefore the action of � on Z(T ) by conjugacy factors through a �nite group, andwe conclude that Z(Z(T );�) has �nite index in �. �Proof of Theorem 1.2 concluded. Let �1 := Z(Z(T );�), let H1 � Z(T ) � �1 \H bea �nite index subgroup of Z(T ) isomorphic to Zn, and set L1 := �1=H1. Then clearlyL1 is a �nite extension of a uniform lattice in Isom(X), and hence1! H1 ! �1 ! L1 ! 1is an exact sequence as in (1.3). �8 Geometry of central extensions by ZnThe objective of this section is Proposition 8.2, which provides criteria for recognizingquasi-isometrically trivial central extensions.De�nition 8.1 Let X be a CW-complex. A cellular k-cochain � 2 Ck(X;Zn) isbounded if its values on the k-cells of X are uniformly bounded. The collection ofbounded cochains forms a subcomplex C�L1(X;Zn) of C�(X;Zn), and its cohomologyis H�L1(X;Zn).Note that the homomorphism H iL1(X;Zn) ! H i(X;Zn) is surjective if X has a�nite i-skeleton, and injective if X has a �nite i� 1-skeleton.If G is a �nitely generated group, then we may �nd a CW-complex X with �nite 1-skeleton which is an Eilenberg-Maclane space for G. We will be interested in elementsof H2(G;Zn) in the image of the monomorphism H2L1(X;Zn) ! H2(X;Zn) whoselift to H2L1(X;Zn) lies in the kernel of the pullback homomorphism H2L1(X;Zn) !H2L1( ~X;Zn). Note that the subgroup of H2(G;Zn) de�ned this way is independent ofthe choice of X; for if X1 and X2 are two Eilenberg-Maclane spaces for G with �nite1-skeleton, then we can �nd a cellular homotopy equivalence X1 f! X2, and this willinduce a G-equivariant map C1L1( ~X2;Zn)! C1L1( ~X1;Zn).Proposition 8.2 Let 1! Zn i! G p! Q! 1 (8.1)be a central extension of �nitely generated groups. Then the following are equivalent:12



1. The extension is quasi-isometrically trivial, i.e. there is a quasi-isometry G f�!Zn �Q so that the diagram G p���! Qf??y id??yZn�Q �Q���! Q (8.2)commutes up to bounded error.2. There is a Lipschitz section s : Q! G of p.3. If K is an Eilenberg-Maclane space for Q, and K has a �nite 1-skeleton, thenthe cohomology class in H2(K;Zn) associated with the central extension (8.1) is anL1 class which lies in the kernel of the pullback to the universal cover H2L1(K;Zn)!H2L1( ~K;Zn).Proof. (1 =) 2). Suppose f makes diagram (8.2) commute up to bounded error,and let f�1 be a quasi-inverse7 for f . De�ne s0 : Q ! G to be the compositionQ! feg�Q! Zn�Q f�1! G. The approximate commutativity of (8.2) implies thatd(p�s0; idQ) <1. De�ne a section s : Q! G of p by letting s(q) be a point in p�1(q)closest to s0(q), for all q 2 Q. By Lemma 8.3 below, we have d(s; s0) <1, and so sis Lipschitz since s0 is Lipschitz and d(q1; q2) � 1 for distinct elements q1; q2 2 Q.Lemma 8.3 If H C G are �nitely generated groups, then the coset distance metricon G=H is equivalent8 to any word metric on G=H.Proof. Let � � G be a symmetric �nite generating set, and let �� � G=H be theimage of � under G! G=H. Then there is a canonical 1-Lipschitz map between theCayley graphs Cay(G;�) and Cay(G=H; ��). Paths in Cay(G=H; ��) can be lifted topaths in Cay(G;�) of the same length which join the corresponding cosets of H. �(2 =) 1). If s : Q! G is a Lipschitz section of p, we may de�ne a map �Zn : G! Znby the formula �Zn(g)s(p(g)) = g, i.e. �Zn is the unique map G ! Zn which sendss(Q) to e 2 Zn, and which is equivariant with respect to left translation by elementsof Zn.Lemma 8.4 �Zn is Lipschitz.Proof. Note that if g1; g2 2 G, h 2 Zn, and g2 = g1h, then �Zn(g2) = �Zn(g1)h, sodZn(�Zn(g1); �Zn(g2)) = dZn(e; h). The properness of the distance function dZn(�; e)implies that there is a function � : N ! N so that for all h 2 Zn,dZn(h; e) � �(dG(h; e)): (8.3)To prove Lemma 8.4, it su�ces to �nd an L such that dZn(�Zn(g1); �Zn(g2)) � Lwhenever dG(g1; g2) = 1. Consider the unique g3 2 g1Zn which satis�es �Zn(g3) =7d(f�1 � f; idG) and d(f � f�1; idZn�Q) are both �nite.8The two metrics have uniformly bounded ratio.13



�Zn(g2), i.e. g3 2 g1Zn \ (�Zn(g2)s(Q)). Then dG(g3; g2) � C for some constant Cbecause the composition s � p is Lipschitz. Applying triangle inequalities and (8.3),we get dZn(�Zn(g1); �Zn(g2)) = dZn(�Zn(g1); �Zn(g3))� �(dG(g1; g3)) � �(1 + C): �To �nish the proof that (2 =) 1), note that we have a bijection f̂ : Zn �Q! Ggiven by f̂(h; q) = hs(q). f̂ is clearly Lip(s)-Lipschitz in the Q direction. That f̂ isLipschitz in the Zn direction follows from the fact that Zn is a central subgroup of G:dG(f̂(h1; q); f̂(h2; q)) = dG(h1s(q); h2s(q))= dG(h1h�12 ; e) � dZn(h1h�12 ; e) = dZn(h1; h2):Letting f = f̂�1, we see that f = (�Zn; p) is a biLipschitz bijection.(2 () 3). This follows from the obstruction theoretic interpretation of the charac-teristic class of the extension. Let K be a CW complex with �nite 1-skeleton and onevertex, and which is an Eilenberg-Maclane space for Q. Let P ! K be a principalT n-bundle with characteristic class [�] 2 H2(K;Zn), so that the exact homotopy se-quence �1(T n)! �1(P )! �1(K) for the �bration P ! K is isomorphic to (8.1). Let� : Skel1(K) ! P be a section of P over the 1-skeleton of K. In the �ber over thepoint Skel0(K), choose a bouquet of n circles with vertex at �(Skel0(K)), which givesa standard basis for the fundamental group of the �ber. LetM � P be the 1-complexconsisting of the union of this bouquet of circles with the bouquet �(Skel1(K)) � P .Let P̂ ! ~K be the pullback of the bundle P ! K under the covering projection~K ! K, let �̂ : Skel1( ~K) ! P̂ be the pullback of �, and let M̂ � P̂ be the inverseimage ofM under the covering P̂ ! P . Finally, let ~P ! P̂ be the universal covering,and let ~M � ~P be the inverse image of M̂ under ~P ! P̂ . Note that if we putpath metrics on Skel1( ~K) and ~M , then the projection map Skel0( ~M)! Skel0( ~K) isnaturally biLipschitz equivalent to G p! Q.Now suppose 3 holds, and that � 2 C2L1(K;Zn) � C2(K;Zn). We may assumethat our section � : Skel1(K)! P was chosen so that the associated cellular obstruc-tion cocycle is �. Then �̂, the image of � under the map C2L1(K;Zn)! C2L1( ~K;Zn),is the obstruction cocycle for �̂ : Skel1( ~K) ! P̂ . By assumption, �̂ = �� forsome � 2 C1L1( ~K;Zn). Hence we may modify �̂ using � to get a new section�̂1 : Skel1( ~K) ! P̂ with trivial obstruction cocycle. In particular, if ~P ! P̂ is theuniversal covering map, then �̂1 lifts to a section ~� : Skel1( ~K)! ~P of the R-bundle~P ! ~K. The fact that � is an L1-cochain implies that ~� restricts to a 1-Lipschitzmap from Skel0( ~K) to Skel0( ~M). Since the projection Skel0( ~M) ! Skel0( ~K) isbiLipschitz equivalent to G! Q, we get a Lipschitz section of p, so 2 holds.Conversely, suppose 2 holds. Then we get a Lipschitz section � : Skel0( ~K) !Skel0( ~M) of the projection Skel0( ~M) ! Skel0( ~K). We may extend � to a section~� : Skel1( ~K)! ~P , and let �̂1 : Skel1( ~K)! P̂ be the composition of ~� with ~P ! P̂ .Lemma 8.5 �̂1 is obtained from �̂ by applying a bounded cochain � 2 C1L1( ~K;Zn).14



Proof. If e is a closed 1-cell in Skel1( ~K), we want to show that the �xed endpointhomotopy classes of the two sections �̂je : e! P̂ and �̂1je : e! P̂ (as maps into theinverse image of e in P̂ ) agree up to bounded error. If 
 : [0; 1]! e is a characteristicmap for e, lift the path �̂ � 
 : [0; 1]! M̂ � P̂ to a path ~
 : [0; 1]! ~M � ~P startingat ~� � 
(0). Thend ~M(~
(1); ~� � 
(0)) � d ~M(~
(1); ~
(0)) + d ~M(~
(0); ~� � (1))= 1 + d ~M(�(
(0)); �(
(1)))� 1 + L�where L� is the Lipschitz constant of � . But then ~
(1) = (~� �
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