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Abstract

We determine the structure of finitely generated groups which are quasi-isometric
to symmetric spaces of noncompact type, allowing Euclidean de Rham factors.
If X is a symmetric space of noncompact type with no Euclidean de Rham fac-
tor, and I is a finitely generated group quasi-isometric to the product EF x X
then there is an exact sequence 1 - H — ' -+ L — 1 where H contains a
finite index copy of Z¥ and L is a uniform lattice in the isometry group of X. !

1 Introduction

If X is a symmetric space with no Euclidean de Rham factor, then any finitely
generated group I' quasi-isometric to X is a finite extension of a uniform lattice in
Isom(X). This result is a direct corollary of the main results of [KILe97b] together
with earlier work in the rank 1 cases [Tuk88, Gro8la, Hin90, Pan89, Ga92, CJ94],
and was first announced in June 1994 at MSRI, and in [KlLe97al. This result does
not extend to symmetric spaces with a nontrivial Euclidean factor: it was observed
by Epstein, Gersten, and Mess that any extension of a Fuchsian group by Z is quasi-
isometric to H? xR, and such extensions are typically not finite extensions of lattices in
Isom(H? x R). In this paper we treat the case of groups quasi-isometric to symmetric
spaces with a Euclidean de Rham factor.

Theorem 1.1 Let X be a symmetric space of noncompact type with no Euclidean
de Rham factor, and let Nil be a simply connected nilpotent Lie group equipped with
a left-invariant Riemannian metric. Suppose I is a finitely generated group quasi-
1sometric to Nil x X. Then there is an exact sequence

l1—H—T-5%L—1 (1.1)

where H 1s a finitely generated group quasi-isometric to Nil and L is a uniform
lattice in the isometry group of X, and this sequence is unique up to isomorphism.
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Furthermore, given any quasi-isometry T’ %y Nil x X, there is a quasi-isometry
L% X so that the diagram

r s r

¢l &l (1.2)

Nilx X —25 X

commutes up to bounded error. In particular, H is undistorted® in L.

When Nil is the trivial group then I' is a finite extension of a uniform lattice in
Isom(X), and when Nil ~ RF then H is virtually abelian of rank k by [Gro81b,
Pan83]. The case when X is the hyperbolic plane and Nil ~ R is due to Rieffel
[Rie93].

We further refine Theorem 1.1 when Nil ~ R™.

Theorem 1.2 Let X be as in Theorem 1.1. Then any finitely generated group I’
quasi-isometric to R® x X contains a finite index subgroup I'y C I' which is a central
extension of the form

1—72"—T) — L —1 (1.3)

where Ly is a finite extension of a lattice in Isom(X).

In general, one cannot arrange that the group L; is a lattice in Isom(X) rather
than a finite extension of a lattice. Examples of Raghunathan [Rag84| show that this
is impossible in general even when n = 0.

Theorem 1.2 raises the question of which central extensions (1.3) are quasi-isometric
to E® x X. Theorem 1.4 below gives a homological answer to this.

Definition 1.3 An extension 1 - K — G 5 Q — 1 of finitely generated groups

s quasi-isometrically trivial if there is a quasi-isometry G % K x Q@ so that the
diagram

G —2-Q
¢l idQl (1.4)
KxQ 25 Q

commutes up to bounded error.

The central extension (1.3) is quasi-isometrically trivial by the second part of
Theorem 1.1. The next result gives a general characterisation of quasi-isometrically
trivial extensions.

2The inclusion of H in I is biLipschitz with respect to the word metrics.
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Theorem 1.4 (See section 7 for the definition of L cohomology for CW complezes.)
Let

172" —=-G—-Q—1 (1.5)

be a central extension of finitely generated groups, and let o € H?*(Q;Z") be the
associated cohomology class. Let K be a CW-complex with finite 1-skeleton which is an
Eilenberg-Maclane space for Q, and identify o with a class in H*(K; Z") ~ H*(Q; Z").
Then the extension (1.5) is quasi-isometrically trivial iff « is in the image of the
homomorphism H?.(K;Z") — H*(K;Z"), and any lift & € H?.(K;Z") of a pulls
back to zero in H?.(K;Z"), where K denotes the universal cover of K.

Remark. Using bounded cohomology instead of L cohomology, Gersten [Ger92]
gave a sufficient condition for a central extension by Z to be quasi-isometric to a
trivial extension.

An earlier version of this paper was posted on the AMS preprint server in October
1996.

We gratefully acknowledge support by the RiP-program at the Mathematisches
Forschungsinstitut Oberwolfach.
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2 Preliminaries

In this section we recall some basic definitions and notation. See [Gro93| for more
discussion and background.

Definition 2.1 A map f : X — Y between metric spaces is an (L, A) quasi-
isometry if for every xi,x, € X
Lild(l'l, xg) + A S d(ib'l, xg) S Ld(xl,l‘g) + A,

and for every y € Y we have d(y, f(X)) < A. Two quasi-isometries fi, fo: X — Y
are equivalent if d(f1, f2) < 0.



If I' is a finitely generated group, then any two word metrics on ' are biLipschitz
to one another by idp : [' — I'. We will implicitly endow our finitely generated groups
with word metrics.

Definition 2.2 An (L, A)-quasi-action of a group I' on a metric space Z is a map
p: U X Z — Z sothat p(vy,-) : Z — Z is an (L, A) quasi-isometry for every v € T,

A(p( 1, (12, 2))2 (112, 2)) < A for every 11,7 €T, 2 € Z, and d(ple, ), 2) < A for
every z € 4.

We will denote the self-map p(v,-) : Z — Z by p(7). pis discrete if for any point
z € Z and any radius R > 0, the set of all v € I" such that p(7, 2) is contained in the
ball Bg(%) is finite. p is cobounded if Z coincides with a finite tubular neighborhood
of the “orbit” p(I')z C Z for every z. If p is a discrete cobounded quasi-action of
a finitely generated group I' on a geodesic metric space Z, it follows easily that the
map [' — Z given by 7 — p(7, 2) is a quasi-isometry for every z € Z.

Definition 2.3 Two quasi-actions p and p' are equivalent if there exists a constant
D so that d(p(v), p'(7) < D for all v € T.

Definition 2.4 Let p and p' be a quasi-actions of I' on Z and Z' respectively, and
let ¢ : Z — Z' be a quasi-isometry . Then p is quasi-isometrically conjugate to
p' via ¢ if there is a D so that d(¢ o p(7), p' () o ¢) < D for all v € T.

Lemma 2.5 (c¢f [Gro87, 8.2.K]) Let X be a Hadamard manifold of dimension > 2
with sectional curvature < K < 0, and let 0,,X denote the geometric boundary of
X with the cone topology. Recall that every quasi-isometry ® : X — X induces a
boundary homeomorphism Oy® : 050 X — 05 X.

1. If p: ' x X — X is a quasi-action on X, then p is discrete (respectively
cobounded) iff Ox¢ acts properly discontinuously (respectively cocompactly) on
the space of distinct triples in Oso X .

2. Given (L, A) there is a D so that if ¢x, ¢ are (L, A) quasi-isometries, then
Oso®r converges uniformly to Oxt) iff limsup d(¢gx, Yz) < D for every x € X.
In particular, if ¢1,¢2 + X — X are (L, A) quasi-isometries with the same
boundary mappings, then d(¢1, o) < D.

Proof. Let 03X C 05X X 05X X 05X denote the subspace of distinct triples. The
uniform negative curvature of X implies that there is a Dy depending only on K such
that

(a) For every o € X there is a triple (&, &, &) € 9°X such that d(z,&E;) < D, for
every 1 < i # j < 3, where ¢; denotes the geodesic with ideal endpoints &;, ;.
Moreover for every C the set {(&1,&,&) | d(z,&&) < C for all 1 <i# j < 3} has
compact closure in 9°X.

and

(b) For every (&,&,&) € 02X there is a point x € X so that d(z, &) < Dy for each
1 <i# j <3. And for every C there is a C' depending only on C' and K so that
{v € X |d(z,&&;) < C for every 1 < i # j < 3} has diameter < C'.

1 and 2 follow easily from this. 0




3 Projecting quasi-actions to the factors

Let Nil and X be as in Theorem 1.1 and decompose X into irreducible factors:

X = HXi (3.1)

Suppose p is a quasi-action of the finitely generated group I' on Nil x X. We denote
by p : Nil x X — X the canonical projection. By applying [KILe97b, Theorem 1.1.2°
to each quasi-isometry p(y) we construct quasi-actions p; of I on X; so that

d(po p(7), [[ pi(v) op) < D

=1

for all v € " and some positive constant D.

4 Straightening cocompact quasi-actions on irreducible sym-
metric spaces

The following result is a direct consequence of [Pan89, Théoreme 1] and [KI1Le97b,
Theorem 1.1.3].

Fact 4.1 Let X be an irreducible symmetric space other than a real or complex hy-
perbolic space. Then every quasi-action on X s equivalent to an isometric action.

Proof. Let p be a quasi-action of a group I' on X. By the results just cited, there
is an isometry p(y) at finite distance from the quasi-isometry p(vy) for every v € I.
This isometry is unique and its distance from p(7) is uniformly bounded* in terms of
the constants of the quasi-action. So p is an isometric action equivalent to p. 4

We recall that the real and complex hyperbolic spaces of all dimensions admit
quasi-isometries which are not equivalent to isometries [Pang89].

Fact 4.2 Any cobounded quasi-action p on a real or complex hyperbolic space is quasi-
wsometrically conjugate to an isometric action.

This result is proven in [Tuk88] in the real-hyperbolic case. Using Pansu’s theory
of Carnot differentiability one can carry out Tukia’s arguments for all rank-one sym-
metric spaces other than hyperbolic plane, cf. [Pan89, sec. 11]. Another proof for the
complex-hyperbolic case can be found in [Chow96].

Fact 4.3 Let p be a cobounded quasi-action of a group I' on H2. Then p is quasi-
isometrically conjugate to a cocompact isometric action of I' on H?.

3 Although Theorem 1.1.2 is only formulated in the case that Nil ~ R", the same proof works in
general provided one uses [Pan83] to conclude that all asymptotic cones of Nil are homeomorphic
to R¥ where k = Dim(Nil).

4The uniformity in the rank one case follows from Lemma 2.5.



Proof. We recall that every quasi-isometry ¢ : H2 — H? induces a quasi-symmetric
homeomorphism 0y¢ : O H? — 0,,H?, see [TuVa82]; moreover the quasi-symmetry
constant of 0,,¢ can be estimated in terms of the quasi-isometry constants of ¢. Since
equivalent quasi-isometries yield the same boundary homeomorphism, every quasi-
action p on H? induces a genuine action O, p on Oy H? by uniformly quasi-symmetric
homeomorphisms.

Let [ be the quotient of I' by the kernel of the action dp, and let 7 : ' — T
be the canonical epimorphism. If two elements v;,7, € [' have the same boundary
map then d(p(71), p(72)) is uniformly bounded by Lemma 2.5. Hence we may obtain
a quasi-action p of ' on H? by choosing v € 7 (¥) for each ¥ € T', and setting
p(7) = p(v). If 7 is an isometric action of ' on H? and ¢ : H? — H? quasi-isometrically
conjugates p into 7, then ¢ will quasi-isometrically conjugate p into the isometric
action 7 : I' x H? — H? given by 7(v) = 7(7(7)). Hence it suffices to treat the case
when [' = I, and so we will assume that O, p is an effective action.

Lemma 4.4 The quasi-action p is discrete if and only if the action Osp on O H2 is
discrete in the compact-open topology.

Proof. Suppose Oxp is discrete, and let (7;) be a sequence in I' so that p(7;) maps
a point p € H? into a fixed ball Bg(p). Then by a selection argument we may
assume — after passing to a subsequence if necessary — that there is a quasi-isometry
¢ : H? — H so that for every ¢ € H* we have lim sup, d(p(7:)(q), #(q)) < D for some
D. Hence the boundary maps 0 p(7;) converge to 05 ¢, and so the sequence 0o p(7;)
is eventually constant. Since p is effective we conclude that v; is eventually constant.
Therefore p is a discrete quasi-action.

If p is a discrete quasi-action on H?, then O, p is discrete by Lemma 2.5. 4
Proof of 4.3 continued.

Case 1: Oxp is discrete. In this case, p is a discrete convergence group action (Lemma
2.5) and by the work of [CJ94, Ga92|, there is a discrete isometric action 7 of I' on
H? so that O p is topologically conjugate to O, 7. Since p is cobounded, Oy p acts
cocompactly on the set of distinct triples of points in d,,H? (lemma 2.5); therefore
0T also acts cocompactly on the space of triples and so 7 is a discrete, cocompact,
isometric action of I" on H2. We now have two discrete, cobounded, quasi-actions of I'
on H2, so they are quasi-isometrically conjugate by some quasi-isometry ¢ : H? — HZ2.

Case 2: Oxop is nondiscrete. By [Hin90, Theorem 4], 0,p is quasi-symmetrically
conjugate to 0,7, where 7 is an isometric action on H?. The conjugating quasi-
symmetric homeomorphism is the boundary of a quasi-isometry ¢ : H? — HZ2,
[TuVa82], which quasi-isometrically conjugates 0, p into the isometric action action
7. Applying Lemma 2.5 again, we conclude that 7 is cocompact. O

subsection 3, and facts 4.1, 4.2 and 4.3 imply:

Corollary 4.5 Let X be a symmetric space of noncompact type without Euclidean
factor. Then any cobounded quasi-action on X 1s quasi-tsometrically conjugate to a
cocompact isometric action on X.



5 A Growth estimate for small elements in nondiscrete co-
compact subgroups of Isom(X)

5.1 Parabolic isometries of symmetric spaces

Let X be a symmetric space of noncompact type, and let G = I'som(X).

An isometry g € G is semisimple if its displacement function J, attains its
infimum and parabolic otherwise.

Lemma 5.1 Let A C G be a finitely generated abelian group all of whose nontrivial
elements are parabolic. Then A has a fixed point at infinity.

Proof. Recall that the nearest point projection to a closed convex subset is well-defined
and distance non-increasing. This implies that if C' is a non-empty A-invariant closed
convex set, then for all displacement functions d,, a € A, we have inf§, = inf 6a|c.
Hence for all n € N, the intersubsection of the sublevel sets {p | d,, (p) < infd,, +1/n}
is non-empty and contains a point p,. We have d,, (p,) — inf d,, for all a;, and since
the isometries a; are parabolic the sequence {p,} subconverges to an ideal boundary
point £ € 0, X. It follows that the a; fix . O

Lemma 5.2 Let aq,...,a, € Isom(X) be commuting parabolic isometries. Then
there is a sequence of isometries {g,} C G so that for every i the sequence gnaiggl
subconverges to a semisimple isometry a;.

Proof. From the proof of the previous lemma, there is a sequence of points {p,} C X
converging to an ideal point £ so that d,,(p,) — infd,, for all a;. Pick isometries
gn € G such that ¢, - p, = po. The conjugates g,a;g,' have the same infimum
displacement as a;. Since

6gnaig;1 (p[)) = 60,1' (pn) — lnf 6‘11' ,

the g,a;g, ' subconverge to a semisimple isometry. O

We call an isometry g # e purely parabolic® if the identity is the only semisimple
element in Adg(G) - g.

5.2 The growth estimate

Proposition 5.3 Let X be a symmetric space of noncompact type with no Euclidean
de Rham factors. Let I' C G = Isom(X) be a finitely generated, nondiscrete, cocom-
pact subgroup. Let U C Isom(X) be a neighborhood of the identity, and set

flk) =#{g el :|glr <k, g€ U},

where |- | denotes a word norm on I'. Then f grows faster than any polynomial, i.e.

for every d > 0 lim supy,_, o, % = 00.

>This is a geometric way of defining unipotent isometries.
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Proof. Let T'° denote the identity component of the closure of I' in G.

Case 1: [ s nilpotent. Let A be the last non-trivial subgroup in the derived series of
I'°. Then A C I is a connected abelian subgroup of positive dimension, A is normal
in I', and ' N A is dense in A.

Lemma 5.4 For every § € (0,1) there is a v € T' such that all eigenvalues of the
automorphism Adg(7y) |A : A — A have absolute value < 6.

Proof. See section 5.1 for terminology.

Step 1: A contains no semisimple isometries other than e. Otherwise we can consider
the intersection C' of the minimum sets for the displacement functions ¢, where a runs
through all semisimple elements in A. C' is a nonempty convex subset of X which
splits metrically as C =2 EF x Y. The flats EF x {y} are the minimal flats preserved by
all semisimple elements in A. Since I' normalises A it follows that C is I'-invariant.
The cocompactness of I implies that C' = X and k£ = 0 because X has no Euclidean
factor. This means that the semisimple elements in A fix all points, a contradiction.

Step 2: All non-trivial isometries in A are purely parabolic. If a € A, a # e, is not
purely parabolic then there is a sequence of isometries g,, so that g,ag,! converges to
a semisimple isometry a # e. We can uniformly approximate the g, by elements in [,
i.e. there exist v, € I' and a bounded sequence k,, € G subconverging to k € G so that
Yo = kngn. Then v,av,' = kngnag, 1k, subconverges to the non-trivial semisimple
element kak—!. This contradicts step 1.

Step 3: Pick a basis {ai,...,a;} for A ~ R¥. By Lemma 5.2 there exist elements
gn € G so that g,a;g,* — e for all ;. We approximate the g, as above by =, so that
the sequence ,g,! is bounded. Then v,a;7,' — e for all a;. The lemma follows by
setting v = v, for sufficiently large n. O

Proof of case 1 continued. By Lemma 5.4, there isa vy € I', 7 # ¢, and a norm || - || 4
on A such that for all a € A we have

B 1
lyay ™4 < Sllalla.

Consider a neighborhood U of e in G. Let r > 0 be small enough so that {a € A :
|a]|a < r} C U and pick a € ' A with ||a]|4 < r/2. Then the elements

Vegueny = 00+ (yay )% (" eyt )
for ¢; € {0,1} are 2" pairwise distinct elements contained in I' N U with word norm
Yeoen_ It < n%(Jalr + |7|r). This implies superpolynomial growth of f.

Case 2: I'° is not nilpotent. Define an increasing sequence (the upper central series)
of nilpotent Lie subgroups Z; C ['* inductively as follows: Set Z; = {e} and let Z;,
be the inverse image in ['° of the center in f“’/Zi. The dimension of Z; stabilizes and
we choose k so that dim Z;, is maximal. Then the center of f/Zk is discrete and, since
['? is not nilpotent, we have dim Z; < dimI'. Proposition 5.3 now follows by applying
the next lemma with H =" and H, = Z;. O



Lemma 5.5 Let H be a Lie group, let Hy << H be a closed normal subgroup so that
H := H/H, is a positive dimensional Lie group with discrete center, and suppose
[' C H is a dense, finitely generated subgroup. If U is any neighborhood of e in H,
then the function f(k) :=#{g €T :|g|r <k, g € U} grows superpolynomially.

Proof. The idea of the proof is to use the contracting property of commutators to
produce a sequence {«y} in H N " which converges exponentially to the identity.
The word norm |oy|r grows exponentially with £, but the number of elements of
(v, ... ,04) in U also grows exponentially with k; by comparing growth exponents
we find that f grows superpolynomially.

Fix M € N, a positive real number € < 1/3 and some left-invariant Riemannian
metric on H. Since the differential of the commutator map (h, h') — [h, h'] vanishes
at (e,e) we can find a neighborhood V of e in H such that:

W eV —  [hi]eV wdd@ﬁ%@<iﬂw@ (5.1)

Since the differential of the k-th power h — h¥ at e is k - idg, g for all k € Z, we can
furthermore achieve that, whenever 1 < k, k' < M and h, h*,h* € V, then

d(h*, hF) > (|k — k| — €) - d(h,e) (5.2)

By our assumption, there exist finitely many elements 7, ..., v, € I'NV such that the
centralizers Zp (7;) of their images in H have discrete intersubsection. We construct
an infinite sequence of elements «; € (I' N V') \ H; by picking ay € V arbitrarily and
setting a1 = [y, hj)] € H, for suitably chosen 1 < j(i) < m. Then

Ld(ai, e) (5.3)

0< d(aH_l,e) < i

by (5.1).

Sublemma 5.6 Pick ny € N. The M" elements

Teren = 05210_'_1 T O‘fz%-i—n ¢ €1{0,...,M -1} (5.4)
are distinct.

Proof. Assume that v, ., = Ve .., €& # € and ¢ = ¢ for all i <. Then

€—€ €y €+l ae’n—en
no+l — “Tno+l+1 no+n -

On the other hand (5.2,5.3) and the triangle inequality imply

€r—€

€, 1—€ 1
d( I+1 €141 an0+l7 ) < id(anoﬂ,e) < d(an0+l;€)7

ano—l—l-i-l o n0+n , €

a contradiction. O

To complete the proof of the lemma, we observe that the elements (5.4) have
word norm |y, ., |r < const(ng) - 2" and are contained in U if ng is sufficiently large.
This shows that f(k) grows polynomially of order at least log(( )) for all M, hence the
claim. =




6 Proof Theorem 1.1

Let pp : I' x I' — I be the isometric action of I' on itself by left translation, and
let ¢ : ' = Nil x X be a quasi-isometry. Then there is a quasi-action p of [ on
Nil x X such that ¢ quasi-isometrically conjugates py into p. According to section
3, p projects (up to bounded error) to a cobounded quasi-action p of I" on X. p
is quasi-isometrically conjugate to a cocompact isometric action p, cf. Corollary 4.5.
Pick z € X, y € Nil x {z}, and R > 0. Since the quasi-action p covers p, we know
that for all v € T with p()-z € Bg(z), the distance d(p(7y)-y, Nil x {z}) is uniformly
bounded. The map I' — Nil x X given by g — p(7) - y being a quasi-isometry, we
conclude that the function

N(k) :==#{y €T | [v[r <k, p(7) - & € Br(z)} (6.1)

grows at most as fast as the volume of balls in Nil, i.e. it is < C'k? for some C, d € R.
Proposition 5.3 implies that L := p(I") is a discrete subgroup in /som(X) and hence a
uniform lattice. The kernel H of the action p is then a finitely generated group quasi-
isometric to the fiber Nil, since it clearly (quasi)-acts discretely and coboundedly on
the fiber.

To see that the sequence (1.1) is unique up to isomorphism, let
l1-H -I' 51 -1
be an exact sequence with L' C Isom(X) a uniform lattice and H' a group quasi-

isometric to Nil. Then by [Gro81b, Pan83] H' is a virtually nilpotent group. Now if

I L Iis an isomorphism then p’'(H) C L' is a normal, finitely generated, virtually
nilpotent subgroup; it follows that p'(f(H)) is trivial. Similarly p(f~*(H')) is trivial
and we conclude that f induces an isomorphism of the two exact sequences.

We now prove the last statement of Theorem 1.1. When we restrict p to H we get
a quasi-action which is equivalent to the trivial action of H on X. Hence p induces a
quasi-action 7 of L = I'/H on X, which is discrete and cobounded. The action 7 of
L on itself by left translations is also discrete and cobounded, so g — 1n(g)(m2(¢(e)))

defines a quasi-isometry L % X. It follows that the diagram

r —rsr

d{ Jﬁl (6.2)
Nilx X 2+ X

commutes up to bounded error since ¢ quasi-isometrically conjugates py into p, p
projects to p, and d(p(vH),n(vH)) is uniformly bounded (independent of 7). O

7 Proof of Theorem 1.2

Overview. If ' is quasi-isometric to R” x X where X is a symmetric space with no
Euclidean de Rham factor, then by Theorem 1.1, I fits into an exact sequence (1.1)
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where H is an undistorted virtually Z" subgroup. We will use the undistortedness of
H to pass to a finite index subgroup of I' which is a central extension, cf. [Ger91].

If S is a subset of a group G, we will use the notation Z(S,G) to denote the
centralizer of S in G, and Z (@) to denote the center of G.

Proof of Theorem 1.2. By Theorem 1.1 we get an exact sequence
l1—H—I %L1

where H is a finitely generated group quasi-isometric to Z", and L C Isom(X) is a
uniform lattice. Applying the second part of the theorem we can get a quasi-isometry

FLZ”XLsothat

r 2L

fl idl (7.1)

Zhx L —2— L

commutes up to bounded error. Clearly f(H) C Z™ x L has finite Hausdorff distance
from Z" x {e} C Z" x L, so H is undistorted® in I". By [Gro81b, Pan83] that H
contains a finite index copy of Z".

Next we will identify a finite index abelian subgroup of H which is normal in I'.
Let T be the subgroup of “translations” in H, i.e.

T={heH|[H:Z(h H)<x}. (7.2)

Clearly T is a characteristic subgroup of H, and has finite index in H; in particular
T is finitely generated. Note that Z(T'), the center of T, has finite index in T since
if T = (t1,...,tg), then Z(T) = M;Z(t;,T) is a finite intersection of finite index
subgroups of 7. Hence Z(T') is a finitely generated abelian group of the form Z" @ A
where A is a finite abelian group. Note Z(7") is normal in I since it is characteristic
in H, and H is normal in T".

Lemma 7.1 The centralizer of Z(T) in U, Z(Z(T),T'), has finite index in L.

The proof uses properties of translation numbers, see [Gro81la, pp. 189-191]. The
paper [Ger91] uses a similar setup.

Definition 7.2 Let G be a finitely generated group, and let |- |c be a word norm on
G. Then the translation length of g € G is

5 — 1 |9k|G
olo) = T

The limit exists since k — |g*|g is a subadditive function.

6 A finitely generated subgroup of a finitely generated group is undistorted if the inclusion homo-
morphism is a quasi-isometric embedding.
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The translation length is conjugacy invariant, vanishes on torsion elements, and
changes by at most a bounded factor if one passes to a different word metric. If
a homomorphism H — G of finitely generated groups is a quasi-isometric embedding
then the pullback of dg to H is equivalent to dp.

Proof of Lemma 7.1. We know that Z(7') is undistorted in I' since Z(7') has finite
index in H and H is undistorted in I'. Hence dp restricts to a function on Z(7') which
is equivalent to dz(7). The latter function clearly factors through the homomorphism
Z(T) — Z"™ whose kernel is the torsion subgroup A C Z(T'). Hence 65y : Z(T) — R
is a proper function on Z(7') which is invariant under conjugacy by elements of T.
Therefore the action of I on Z(7') by conjugacy factors through a finite group, and
we conclude that Z(Z(T'),T') has finite index in T'. O

Proof of Theorem 1.2 concluded. Let Iy := Z(Z(T),T"), let Hy C Z(T) C 'y N H be
a finite index subgroup of Z(T') isomorphic to Z", and set L, := I'y/H;. Then clearly
L, is a finite extension of a uniform lattice in Isom(X), and hence

1->H —-I'1—>L —>1

is an exact sequence as in (1.3).

8 Geometry of central extensions by Z"

The objective of this section is Proposition 8.2, which provides criteria for recognizing
quasi-isometrically trivial central extensions.

Definition 8.1 Let X be a CW-compler. A cellular k-cochain o € C*(X;Z") is
bounded if its values on the k-cells of X are uniformly bounded. The collection of
bounded cochains forms a subcomplex Co(X;Z"™) of C*(X;Z"), and its cohomology
is Hj oo (X;Z7).

Note that the homomorphism H}. (X;Z") — H'(X;Z") is surjective if X has a
finite i-skeleton, and injective if X has a finite ¢ — 1-skeleton.

If G is a finitely generated group, then we may find a CW-complex X with finite 1-
skeleton which is an Eilenberg-Maclane space for G. We will be interested in elements
of H*(G;Z") in the image of the monomorphism H?.(X;Z") — H?*(X;Z") whose
lift to H7(X;Z") lies in the kernel of the pullback homomorphism H7. (X;Z") —
H?..(X;7Z"). Note that the subgroup of H?(G; Z") defined this way is independent, of
the choice of X; for if X; and X, are two Eilenberg-Maclane spaces for G with finite

1-skeleton, then we can find a cellular homotopy equivalence X; EN X5, and this will
induce a G-equivariant map C} . (X2;Z") — Cleo(X1;Z").

Proposition 8.2 Let
152" 535 Q-1 (8.1)
be a central extension of finitely generated groups. Then the following are equivalent:
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1. The extension is quasi-isometrically trivial, i.e. there is a quasi-isometry G EAN
Z" x @ so that the diagram

G 25

fl idl (82)
7" x Q SRCEN Q
commutes up to bounded error.

2. There is a Lipschitz section s : Q — G of p.

3. If K is an Filenberg-Maclane space for ), and K has a finite 1-skeleton, then
the cohomology class in H*(K;Z") associated with the central extension (8.1) is an
L% class which lies in the kernel of the pullback to the universal cover H? o (K; Z") —
H?.(K;Z").

Proof. (1 = 2). Suppose f makes diagram (8.2) commute up to bounded error,
and let f~! be a quasi-inverse’ for f. Define so : Q — G to be the composition
Q—{efxQ—-2Z"xQ IS G. The approximate commutativity of (8.2) implies that
d(posy,idg) < co. Define a section s : Q — G of p by letting s(¢) be a point in p~*(q)
closest to so(q), for all ¢ € Q). By Lemma 8.3 below, we have d(s, sg) < oo, and so s
is Lipschitz since sy is Lipschitz and d(q;,g2) > 1 for distinct elements ¢;, ¢» € Q.

Lemma 8.3 If H <« G are finitely generated groups, then the coset distance metric
on G/H is equivalent® to any word metric on G/H.

Proof. Let ¥ C G be a symmetric finite generating set, and let ¥ C G/H be the
image of ¥ under G — G/H. Then there is a canonical 1-Lipschitz map between the
Cayley graphs Cay(G,Y) and Cay(G/H,Y). Paths in Cay(G/H,Y) can be lifted to
paths in Cay(G, X) of the same length which join the corresponding cosets of H. [

(2= 1). If s : Q — G is a Lipschitz section of p, we may define a map 7yn : G — Z"
by the formula 74.(g)s(p(g)) = ¢, i.e. mzn is the unique map G — Z" which sends
s(Q) to e € Z", and which is equivariant with respect to left translation by elements
of Z".

Lemma 8.4 7. is Lipschitz.

Proof. Note that if g1, go € G, h € Z", and go = ¢g1h, then mz:(g2) = 7za(g1)h, so
dgn(m7(g1), Tz7(g2)) = dzn(e, h). The properness of the distance function dz(-,e)
implies that there is a function ¢ : N — N so that for all h € Z",

dyn(hy€) < 8(dg(h, e)). (8.3)

To prove Lemma 8.4, it suffices to find an L such that dyn(7yn(g1), m2n(92)) < L
whenever dg(g1,92) = 1. Consider the unique g3 € ¢;Z" which satisfies myn(g3) =

Td(f=' o f,idg) and d(f o f~',idznx¢) are both finite.
8The two metrics have uniformly bounded ratio.
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mzn(g2), 1.e. g3 € 1Z" N (mzn(g92)s(Q)). Then dg(gs, g2) < C for some constant C
because the composition s o p is Lipschitz. Applying triangle inequalities and (8.3),
we get

dzn(mz0(91), Tz (92)) = dzn(Tz0(91), T20(93))

< d(da(g1,93)) <6(1+C).

O

To finish the proof that (2 = 1), note that we have a bijection f:ZnxQ — G
given by f(h,q) = hs(q). f is clearly Lip(s)-Lipschitz in the @ direction. That f is
Lipschitz in the Z™ direction follows from the fact that Z" is a central subgroup of G:

da(f(h,q), f(ha, @) = da(has(q), has(q))
= dc;(hth_l, 6) S dZn(hth_I, 6) = dZn(hl, h,g)
Letting f = f !, we see that f = (myn,p) is a biLipschitz bijection.

(2 <= 3). This follows from the obstruction theoretic interpretation of the charac-
teristic class of the extension. Let K be a CW complex with finite 1-skeleton and one
vertex, and which is an Eilenberg-Maclane space for ). Let P — K be a principal
T"-bundle with characteristic class [a] € H?(K;Z"), so that the exact homotopy se-
quence 71 (T™) — m(P) — 7 (K) for the fibration P — K is isomorphic to (8.1). Let
o : Skel;(K) — P be a section of P over the 1-skeleton of K. In the fiber over the
point Skely(K), choose a bouquet of n circles with vertex at o(Skelo(K)), which gives
a standard basis for the fundamental group of the fiber. Let M C P be the 1-complex
consisting of the union of this bouquet of circles with the bouquet o(Skel;(K)) C P.

Let P — K be the pullback of the bundle P — K under the covering projection
K — K, let 6 : Skel,(K) — P be the pullback of o, and let M C P be the inverse
image of M under the covering P — P. Finally, let P — P be the universal covering,
and let M C P be the inverse image of M under P — P. Note that if we put
path metrics on Skel; (K) and M, then the projection map Skely(M) — Skely(K) is
naturally biLipschitz equivalent to G 5 Q.

Now suppose 3 holds, and that a € C?.(K;Z") C C*(K;Z"). We may assume
that our section o : Skel;(K) — P was chosen so that the associated cellular obstruc-
tion cocycle is ov. Then @, the image of & under the map Cfu (K;Z") — Ctu (K; Z7),
is the obstruction cocycle for 6 : Skel;(K) — P. By assumption, & = 06 for
some f € C’loo(K Z"). Hence we may modify & using 6 to get a new section

: Skely(K) — P with trivial obstruction cocycle. In particular, if P — P is the
unlversal covering map, then &, lifts to a section & : Skel;(K) — P of the R-bundle
P — K. The fact that 0 is an L™®-cochain implies that & restricts to a 1-Lipschitz
map from Skely(K) to Skely(M). Since the projection Skelo(M) — Skelo(K) is
biLipschitz equivalent to G — @), we get a Lipschitz section of p, so 2 holds.

Conversely, suppose 2 holds. Then we get a Lipschitz section 7 : Skely(K) —
Skely(M) of the projection Skely(M) — Skely(K). We may extend 7 to a section
& : Skel,(K) — P, and let &, : Skel,(K) — P be the composition of & with P — P.

Lemma 8.5 6, is obtained from & by applying a bounded cochain 0 € Cloo(f(; ).
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Proof. If e is a closed 1-cell in Skel,(K), we want to show that the fixed endpoint
homotopy classes of the two sections 6|8 e — P and 6, |8 ‘e — P (as maps into the

inverse image of e in P) agree up to bounded error. If v : [0, 1] — e is a characteristic
map for e, lift the path 6o~ :[0,1] = M C P to a path 5 :[0,1] — M C P starting
at & o7(0). Then

dy (7(1),0079(0)) < dj (7(1),7(0)) 4+ d i (7(0), 5 o (1))
=1+ dy(7((0)),7(v(1)))
<1+L;

where L, is the Lipschitz constant of 7. But then ¥(1) = (6 0~(1))h for some h € Z",
and we can bound dyn(h,e) by a constant C' depending on L., cf. (8.3). In other

words, the fixed endpoint homotopy classes of 6|e and &, |8 (as maps from e to the

inverse image of e in P) differ by some h € Z" where ||h||z» < C. O
It follows that 3 holds. This completes the proof of Proposition 8.2. O
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