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Abstract

We counsider discrete cocompact isometric actions G A X where X is a
locally compact Hadamard space!, and G belongs to a class of groups (“ad-
missible groups”) which includes fundamental groups of 3-dimensional graph
manifolds. We identify invariants (“geometric data”) of the action p which de-
termine, and are determined by, the equivariant homeomorphism type of the
action G af’%p O0soX of G on the ideal boundary of X. Moreover, if G A X;
are two actions with the same geometric data and ¢ : X; — X, is a G-
equivariant quasi-isometry, then for every geodesic ray v; : [0,00) — X,
there is a geodesic ray 7, : [0,00) — X, (unique up to equivalence) so that
limy o0 +dx, (@ © 71(t),72([0,00))) = 0. This work was inspired by (and an-
swers) a question of Gromov in [Gro93, p. 136].

1. Introduction

As a consequence of the Morse lemma on quasi-geodesics, geodesic flows are especially
simple and well understood in the Gromov hyperbolic case:

a. If ¢ : My — My is a homotopy equivalence between closed negatively curved
manifolds, then there is an orbit equivalence ¢ : SM; — SM; between the unit sphere
bundles, which covers ¢ up to homotopy [Gro76].

b. If G is a hyperbolic group, G A X;is a discrete, cocompact, isometric action
on a Hadamard space X; for + = 1, 2, and ¢ : X; — X, is a G-equivariant quasi-
isometry, then ® maps each geodesic vy C X; to a subset at uniformly bounded
Hausdorft distance from a geodesic 75 C Xo. Moreover, ® induces an equivariant
homeomorphism Oy ® : 05, X] — 0xo Xy between ideal boundaries, [Gro87].
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IFollowing [Bal95] we will refer to C AT(0) spaces (complete, simply connected length spaces
with nonpositive curvature in the sense of Alexandrov) as Hadamard spaces.



c. When G A X is a discrete, cocompact action of a hyperbolic group on a

Hadamard space X, then the induced action G 8f°'§p Oso X of G on the boundary of X
is a finitely presented dynamical system, [Gro87, CDP90)].

Naturally one may ask if properties b and ¢ hold without the assumption of Gromov
hyperbolicity. It turns out that they do not: one can readily produce examples of
pairs of discrete, cocompact, isometric actions G ~ X1, G ~ Xy where G-equivariant
quasi-isometries X; — X3 do not induce boundary homeomorphisms? (this was ob-
served independently by Ruane [Rua96]). In [Gro93] Gromov asked whether two
actions G ~ X; induce G-equivariantly homeomorphic boundary actions G ™~ 0,,.X;.
The answer to this is also no: S. Buyalo [Buy98] and the authors independently found
pairs of actions which induce inequivalent boundary actions®. Finally, we remark that
the boundary action G ~ 0, X is finitely presented if and only if G is hyperbolic?.

In this paper we examine actions G ~ X where G belongs to a class of groups
which generalize fundamental groups of 3-dimensional graph manifolds. We develop a
kind of “coding” for geodesic rays in X, which allows us to understand the boundary
action G N 0, X and the Tits metric on J,,.X. Before stating our main result in
complete generality, we first formulate it for nonpositively curved 3-dimensional graph
manifolds.

By the theorem of [Sch86], when M is a 3-dimensional graph manifold with a non-
positively curved Riemannian metric, then A has the following structure. There is
a collection My, ... , M of compact nonpositively curved 3-manifolds with nonempty
totally geodesic boundary (the geometric Seifert components of M), and Seifert fi-
brations M; 25 N; where the metric on M; has local product structure compatible
with the fibration p;, and the N; are nonpositively curved orbifolds; M is obtained
from the disjoint union II; M; by gluing boundary components isometrically in pairs
via gluing isometries which are incompatible with the boundary fiberings. In what
follows we will only consider graph manifolds whose Seifert fibered components have
orientable fiber. Note that for each 1 < i < k, the universal cover of M; is isometric
to a Riemannian product N; x R; the action of m(M;) on M, preserves this product
structure and so there is an induced action of 71 (M;) on the R factor by translations.
Hence we get a homomorphism 7; : 71 (M;) — R for each i. We may also define a class
function MLS; : m(M;) — R} by taking the minimum of the displacement function
for the induced action 7 (M;) ~ Ny, i.e. MLS;(g) = inf{dy (9v,7) |z € N;}; this
corresponds to the marked length spectrum of the nonpositively curved orbifold ;.

Now suppose M and M’ are graph manifolds as above, and f : M — M'is a
homotopy equivalence. Embedded incompressible tori in Haken manifolds are deter-
mined up to isotopy by their fundamental groups up to conjugacy [Lau74], so we may
assume after isotoping f that it is a homeomorphism which induces homeomorphisms

2Let M; and M, be closed surfaces with nonpositive curvature, and let N; and N, be the
Riemannian products N; := M; x S'. Suppose fo : My — M, is a homotopy equivalence, f :=
fo x idg1 : Ny — Ns is the corresponding map between the N;’s, and f : Ny — Ns is a lift of f to a
map between the universal covers. Then it turns out that f extends continuously to up to the ideal
boundary 0., V; if and only if fy is homotopic to a homothety.

3Boundaries can even fail to be (non-equivariantly) homeomorphic: [CK] describes a pair of
homeomorphic nonpositively curved 2-complexes whose universal covers have nonhomeomorphic
boundary (see also [Wil]).

“The action G ~ 0, X is expansive if and only if G is hyperbolic.



fi + M; — M from the Seifert components of M to the Seifert components of M’
(and hence isomorphisms on the corresponding fundamental groups). We may then
use the maps f; to compare the invariants 7;, 7, and M LS;, M LS..

Theorem 1.1. The following are equivalent:

1. The functions MLS; and 7; are preserved up to scale by f;: fort =1,...,k
there are constants a; and b; so that MLS; = a; f*(MLS}) and ; = b; f*(7}).

2. Any lift f: M — M' of f extends continuously to a map f : M U 9ugM —
MU 0y M' between the standard compactifications.

3. If f: M — M’ is any lift of f, then f maps geodesic rays to geodesic rays, up
to uniform sublinear error: there is a function 0 : Ry — Ry with lim, ., 8(r) = 0 so
that if v : [0,00) — M is a unit speed geodesic ray, then there is a ray ' : [0, 00) — M’
where d(f o y(t),~'([0,00))) < (1 +1)8(t).

4. If we identify m (M) with 7 (M') via f, then the induced boundary actions
T (M) ~ OsgM and m (M) ~ 0 M' are equivariantly homeomorphic (by a unique
equivariant homeomorphism,).

If 1 holds and in addition the constants a; and b; are independent of i, then the unique
equivariant homeomorphism Oso M — OsxoM' in 4 is an isometry with respect to Tits
metrics.

In general (see Lemma 6.2) the structure of (M) forces the a;’s and b;’s in
condition 1 to satisfy #{ay,...,ax,b1,... b} < 2, and except in special circum-
stances they all coincide. The condition MLS; = a;f*(MLS!) means that the ho-
motopy equivalence N; — N/ induced by f; preserves the marked length spectrum
of the nonpositively curved orbifolds up to the scale factor a;. Although closed non-
positively curved surfaces with the same marked length spectrum are isometric by
[Cro90, Ota90, CFF92], compact nonpositively curved surfaces with geodesic bound-
ary can have the same marked length spectrum without being isometric:

Example 1.2. Let N be a pair of pants with a (constant curvature —1) hyperbolic
metric where the boundary components are geodesics with length L, and let {c, ¢2} C
N be the fixed point set of the order 3 isometry of N. If L is sufficiently large (so
that N looks like a bikini) then a closed geodesic in N cannot pass near {cy, ¢y }. This
means that one can change the metric near {c;, c;} without disturbing the marked
length spectrum of N. Note that one can modify this example slightly so that the
metric is flat in a neighborhood of the boundary geodesics.

Suppose M is a nonpositively curved graph manifold with a Seifert component M;
isometric to NV x S, where N is as in the example. One can change the metric on the
N factor as in example 1.2 to get a Riemannian manifold M’ so that the conditions
of Theorem 1.1 hold (with f = id), but M’ is not isometric to M.

In section 8 we give an example to show that the uniform sublinear divergence
estimate in condition 3 cannot be improved to a bounded distance estimate as in the
Gromov hyperbolic case.

We now sketch some of the main points in the proof of Theorem 1.1.

First consider a single nonpositively curved graph manifold M with geometric
Seifert components My, ..., M. The universal cover M; is isometric to N; Xx R — a



nonpositively curved 3-manifold with a countable collection of totally geodesic bound-
ary components isometric to E2. The universal cover M of M is tiled by a countable
collection of copies of the universal covers M; for i = 1,...k; we call these subsets
vertex spaces. We refer to boundary components of vertex spaces as edge spaces. Two
vertex spaces are either disjoint, or intersect along an edge space. Let 1" be the inci-
dence graph for the collection of vertex spaces: 1" is the graph which has one vertex for
each vertex space, and an edge joining two vertices whenever the corresponding vertex
spaces intersect. 7' is isomorphic to the Bass-Serre tree of the graph of groups asso-
ciated with the decomposition II; M; — M (see section 2.5). If v € V := Vertex(T)
(resp. e € F := Edge(T)) we will use the notation M, (resp. M) for the vertex
space (resp. edge space) associated with v (resp. e); and we let M, ~ N, x R be
the Riemannian product decomposition of M,. It is not difficult to check (Lemma
3.23) that if G, := Stabilizer(M,) C G = m,(M), then the center Z(G,) of G, is
isomorphic to Z, and the fixed point set of Z(G,) in 0xM is just s M,; similarly, if
M, is an edge space then the fixed point set of Z> ~ G, := Stabilizer(M,) C G in
Do M is O M,.

Let p € M be an interior point of a vertex space, pick € € d.,M, and let p€
denote the geodesic ray starting at p which is asymptotic to £. The ray p€ encounters
a (possibly finite) sequence of vertex and edge spaces called the itinerary of pf. The
convexity of vertex and edge spaces forces the itinerary vy, e, vy, €s,... of p& to be
the sequence of successive vertices and edges of a geodesic segment or ray in 7. In
order to understand the rays with itinerary vy, 1, vy, €, ..., we construct a piecewise
flat complex 7" — a template — in M as follows. First let vi C M be a shortest
geodes1c from M to Me for + > 0, and let vy be a shortest path from p € Mv0
to M,,. For i > 0 deﬁne 8 C M,, to be the flat strip which is the union of the
geodesics in M, »; Which are parallel to the R-factor of M, »; and which pass through ;.
We define 7 to be the union of the edge spaces {M,,} with the strips {S;}; then 7T is
a Hadamard space with respect to the induced path metric. A key technical step in
the proof of Theorem 1.1 is Theorem 5.1, which shows that for any geodesic ray pC
in the Hadamard space 7, there is a unique geodesic ray p(’ in M with the property
that for all = € pC,

dM(JI,p_C') S e(dT(ffap))(l + dT(CL’,p))

for some function # : [0, 00) — [0, 00) with lim, ,,, #(r) = 0 which is independent of
the choice of itinerary. Using Theorem 5.1 one finds that the set of boundary points
¢ € DsoM for which the ray pC has a given infinite itinerary vy, ey, . . . is homeomorphic
to the set boundary points ¢’ € T so that the T-ray p(’ passes through M., for every i.
One sees (Proposition 7.3) that the latter is either a single point or is homeomorph1c
to a closed interval, depending on the geometry of 7~ (which depends, in turn, on the
choice of itinerary and the geometry of M).

We now consider a second nonpositively curved 3-manifold M’, and use primes
to denote the vertex spaces, edge spaces, etc for M’. Let f : M — M' be a home-
omorphism as in Theorem 1.1, and identify the deck groups G := w1 (M) =~ m(M')
via a lift f of f. Then f maps vertex (resp. edge) spaces of M homeomorphically
to vertex (resp. edge) spaces of M’, so we may use f to identify the incidence tree
T' with T. Suppose ¢ : OuoM — doM' is a G-equivariant homeomorphism. Using
the remarks about fixed point sets made above, it follows that ¢(aoon) = 3ooM{,



and ¢(0,0M,) = 600]\;[:3 for every v € V and every e € E. Also, if p € M,,
and vy, €, v1, €y, ... is an infinite itinerary, then ¢(S) = S’ where S C O M and
S’ C DM’ are the subsets corresponding to the itinerary vy, e1, v, €s, ... (Corollary
5.28); in particular, either S and S’ are both points or they are both intervals. By
considering all possible infinite itineraries and exploiting this correlation, we are able
to see (section 7) that the invariants M LS;, M LS| and 7;, 7/ must agree as in condi-
tion 1 of Theorem 1.1. Conversely, if condition 1 holds and p € M, one shows (section
6) that for each itinerary the corresponding templates in M and M’ have sufficiently
similar geometry that their geodesics are “similar”; and this implies that f extends
to the compactifications as in 2 of Theorem 1.1.

Our main result generalizes Theorem 1.1 and applies to admissible groups, a class
of (fundamental groups of) graphs of groups, see section 3.1 for the precise definition.
When an admissible group G acts discretely and cocompactly on a Hadamard space
X then we associate geometric data to each vertex group G, C G consisting of a class
function MLS, : G, — R" and a homomorphism 7, : G,, — R (see section 3.2).

Theorem 1.3. Let G ~ X be a discrete, cocompact, isometric action of an admis-
sible group on a Hadamard space X. Then for every vertex v, MLS, and T, are
determined up to scale factors a, and b, by the topological conjugacy class of the
boundary action G ™~ 05X, and vice-versa. If G ~ X' is another such action, then
the following are equivalent:

1. G~ X and G ~ X' have the same geometric data up to scale.

2. G-equivariant quasi-isometries X — X' extend canonically to the compactifi-
cations X U O0p X — X' U 0,0 X".

3. The boundary actions G ™ 05X and G ™~ 0, X' are G-equivariantly homeo-
morphic (by a unique® G-equivariant homeomorphism,).

4. If f: X — X' is a G-equivariant quasi-isometry, then there is a function
0 : R, — Ry with lim,,0(r) = 0 so that for every unit speed geodesic ray -y :
[0,00) = X there is a ray 7' : [0,00) = X" with d(f o (), (t)) < (1 +t)6(¢t).

Furthermore, if there is a single scale factor s so that MLS! = sMLS, and T, =
sT, for every vertex v, then the unique G-equivariant homeomorphism Ose X — Oso X'
15 an 1sometry with respect to the Tits metrics.

The authors proved theorem 1.3 while attempting to digest the negative answer
to Gromov’s question about boundary actions. A key factor in our example was the
(unanticipated) presence of intervals in the Tits boundary. After the examples and
their properties had been announced, similar structure was found in other manifolds,
[HS98]. The paper [BS] also contains some discussion of the Tits boundary of universal
covers of nonpositively curved graph manifolds.

Open questions. The results in this paper raise a number of questions. First of
all, for each group G one may ask for a generalization of Theorem 1.3, where the

°It follows from the methods of [Bal95, IIL.3] that if G ~ X is a cocompact isometric action on
a Hadamard space, g € G is an axial isometry, and 7, C is an axis for g which does not bound a
flat half plane, then the orbit of 0.7 C 0 X under the action G ™~ 0, X is dense in 0., X. Hence
the set of points in 0., X which are the unique attracting fixed point of some element of G is dense
in 0, X. Any G-equivariant homeomorphism 0, X — 0., X must fix this dense set pointwise, and
must therefore be the identity. The uniqueness statement follows immediately from this.



geometric data MLS, and 7, are replaced with suitable substitutes. Our methods
actually yield more information about the behavior of geodesics than is stated in
Theorem 1.3 alone. We are able to give a good description of all the geodesic rays
in the Hadamard space X in terms of concrete geometric information; it seems likely
that other classes of groups are amenable to a similar treatment. The fundamental
groups of the real-analytic manifolds considered in [HS98] are natural candidates for
this, as they have structure similar to graph manifold groups. Here are two other
questions:

1. What determines the (non-equivariant) homeomorphism type of 0, X, when
X is a Hadamard space with an action G ~ X by an admissible group G?

2. Does part 4 of Theorem 1.3 have an analog where rays are replaced by complete
geodesics? This seems within reach.
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2. Preliminaries
2.1. Coarse geometry

Let X and X' be metric spaces, and let ® : X — X' be a map.
Definition 2.1. 1. ® is (L, A)-Lipschitz if for all z1,z, € X,

d(®(xy), ®(x2)) < Ld(xq,25) + A.

® is coarse Lipschitz if it is (L, A)-Lipschitz for some L, A > 0.
2. @ is an (L, A)-quasi-isometric embedding if it is (L, A)-Lipschitz and for all
X1, Ty € X,
d(®(z1), ®(xy)) > L d(x1,29) — A.

The constants (L, A) will often be suppressed. A quasi-geodesic (respectively seg-
ment/ray) is a quasi-isometric embedding ® : R — X (respectively ® : [a,b] — X,
® : [0,00) = X). We sometimes refer to the image of a quasi-geodesic as a quasi-
geodesic.

3. @ is an (L, A)-quasi-isometry if it is an (L, A)-quasi-isometric embedding and
for all 2’ € X', d(a2', ®(X)) < A.

4. ® is a D-Hausdorff approzimation if it is a (1, D)-quasi-isometry.

We will use the following well-known lemma:

Lemma 2.2. If G ~ X is a discrete, cocompact, isometric action of a group G on
a length space X, then there is a G-equivariant quasi-isometry @ : Cayley(G) — X,
where Cayley(G) is any Cayley graph of G.

2.2. Hadamard spaces

We refer the reader to [Bal95] for the material recalled here.

Geodesics and the boundary. Let X be a locally compact Hadamard space. If
p, ¢ € X then pg C X denotes the segment from p to ¢. If p,z,y € X and p & {z,y},
then Zp(x, y) (respectively Z,(x,y)) denotes the comparison angle (respectively angle)
of the triangle Apxy at p. We will use 0,,X to denote the set of asymptote classes of
geodesic rays in X, with the cone topology. If p € X and & € 0,,X, then p& denotes
the ray leaving p in the asymptote class of £&. X := X U 0,X denotes the usual
compactification: a sequence z; € X converges if and only if for any basepoint p € X
the sequence of geodesic segments/rays px; converges in the compact open topology.
We denote the Tits angle between &1,& € 0,X by Zr(&1,&2), and OrX denotes the
underlying set of 0, X equipped with the Tits angle metric (which usually induces a
topology different from the one defined above). The metric space 0y X is a CAT'(1)
space with respect to this metric. When &, & € 90X and £y (&, &) < 7 then there is

a segment between & and & in Or X, which we denote by & & C 0rX. This segment
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is the limit set in X of any sequence of segments z¥z% where 2z tends to infinity
along a ray asymptotic to . We will not use the Tits path metric. We recall that
Ox and Op behave nicely with respect to products: 0, (X7 X X3) = 05X1 0 0 Xo
and 07 (X7 x Xy) = 04 X5 0 9 X, where in the first case o represents the topological
join and in the second the -metric join. We will use this in the case where X, = R.

We will let Ng(C) be the closed metric tubular neighborhood of radius R of a
subset C' C X. A closed convex subset C' C X is also a locally compact Hadamard
space as is Nz(C'), since it is also convex.

Standard comparison arguments show the following.

Lemma 2.3. Let X be a locally compact Hadamard space, and let C'C X be a closed
convex subset. Then for any R > 0, £ € 0,oNgC, and z € C we have z£,, C C. In
particular, OsC' = O NC'.

One consequence is:

Lemma 2.4. Let X be a locally compact Hadamard space, and let C C X be a closed
convez subset. If p € X, & € 050X, and § — &oo, &N C # 0 for all i, then either
Plac NC # D or £ € 05C.

Proof. Pick x; € p&;NC. If liminf d(x;, p) < oo then a subsequence of x; converges to
Too € C N pés. On the other hand, if lim inf d(x;, p) = oo then for some subsequence
pT; — p€s. By the convexity of Ngz(C), p€ C Ng(C) for R = d(p,C) and hence
Lemma 2.3 yields the result. O

Lemma 2.5. Let ® : X — X' be a quasi-isometric embedding, and assume there is
a point x € X and a function 0 : Ry — Ry with lim,_, 0(r) = 0 so that for every
y e X, z €Ty, we have

dx (B(2), B(@)B(y)) < (1 + dy(z,2))0(dx (2, z)). (2.6)

Then there is a unique extension ® : X — X' of ® which is continuous at 0, X, and
Ox® = (§|a « 18 a topological embedding.

Proof. Let ® be an (L, A)—quasi isometric embedding, and £ € 0,X, and y, € X
be such that Zg; converges to z€. By the convergence we can choose R, — 00 so
that for all & > n we have d(yg,z) > R, and yp, = 7y N S(z, R,) C Ni(z€).
Note that the point on & closest to yg, lies in £([R, — 1, R, + 1]), hence by the
triangle inequality d(ygn, yim) < 4 for k,I > n. Using (2.6), for every k > n choose
Yrn € ()P (yx) with dx (Y, P(Ykn)) < (1 + R,)0(R,). Then for every k,l > n we
have dx/(P(ykn), ®(yin)) < 4L+ A, and so dx: (Y, ¥1,) < 2(1 + R,)0(R,) + 4L + A.
This, along with the fact that d(®(z),y},) > L7'R, — A — (1 + R,)0(R,), forces
Z¢($)(yfm,yl’n) to zero as n — o0o. This in turn forces ®(z)P(yx) to converge to a
ray ®(z)®(€) since for each R > 0 we have for large enough £ that the sequence
{®(2)®(yx) N S(P(x), R)} is Cauchy and hence converges. This proves that ® has a

unique extension ® : X — X' which is continuous at 0,,.X. The map 0,,® := <i>|8 X
clearly has the property that for all £ € 0,X and all y € z¢,

d(@(y), 2(2)0x2(€)) < (1 +d(x,y))0(d(z,y)). (2.7)

oo



When &, & € 0,,X are distinct, the rays z€; diverge linearly, and hence ®(z€;) and
®(z&,) diverge linearly since ® is a quasi isometric embedding. Now if Oy, ®(£)) =
D50 ®(&2) then (2.7) would imply that ®(z€,) and ®(x&,) would each diverge sublin-
early from ®(x)0,®(£;) and hence diverge sublinearly from each other. Thus we
conclude that 0., P(&1) # 05P(&2). O

2.3. Groups acting on Hadamard spaces.

Let X be a Hadamard space. We denote the displacement function of an isometry
g: X — X by dg, and the infimum of d, by d,. When g is axial, we let Minset(g)
denote the convex subset where d, attains its minimum. We recall that Minset(g)
splits as a metric product C' x R where C' is convex and g acts trivially on the C'
factor and by translation on the R factor.

Let G ~ X be a discrete, cocompact, isometric action of a group G on a
Hadamard space X. If H C G is a subgroup isomorphic to Z*, we let Minset(H) :=
NnegMinset(h). We recall that Minset(H) = NpesMinset(h) for any generating
set S C H, and that Minset(H) splits isometrically as a metric product C' x EF so
that H acts trivially on the C factor, and as a translation lattice on the EF factor.
The centralizer Z(H,G) of H in G preserves 0, for every h € H, and hence also
Minset(H). If S C H is a finite generating set, then the function >, o5 : X — R
descends to a proper function on X/Z(H,G); in particular, Minset(H)/Z(H,G) is
compact.

2.4. Gromov hyperbolic groups and spaces

For background on the material in this section see [Gro87], [GdIH90], and [CDP90].
Some standard facts that we will use: If a Gromov hyperbolic group G acts cocom-
pactly on a Hadamard space X then (since X is then quasi-isometric to Cayley(G)
and Gromov hyperbolicity is a quasi isometry invariant) X is Gromov hyperbolic (i.e.
d-hyperbolic for some §). Further 0,, X is homeomorphic to 05 G, and all infinite or-
der elements g € GG are axial. The Tits metric 97X is the discrete metric with any
two distinct points having distance .

In this section we make use of the Morse lemma for quasi-geodesic segments (see
[Gro87, CDP90)):

Lemma 2.8. (Morse Lemma) Given 6 > 0, L > 0 and A > 0 there is a constant
C = C(0,L,A) such that if v1 and o are (L, A)-quasi-geodesic segments with the
same endpoints sitting in a d-hyperbolic space, then their Hausdorff distance satisfies
dH(71772) <C.

Two geodesics v, and 7, in a Hadamard space X are parallel if they stay a bounded
distance apart. The parallel set P(y) C X of a geodesic 7 is the union of all geodesics
parallel to 7. By the flat strip theorem, P(7) is a convex subset of X, and is isometric
to O, xR where C, C X is convex. A bounded convex set C' always contains a unique
circumcenter: the center of the smallest metric ball containing C'.

Lemma 2.9. Let X be a d-hyperbolic Hadamard space. Then



1. If v C X is a geodesic and P(y) ~ C, xR is its parallel set, then Diam(C.,,) < 6.
In particular P(7) contains a canonical geodesic z x R C C., x R where z € C,, is the

circumcenter of C.,.

2. If v1, 72 C X are geodesics, x; € y;, then v, UT1Z3 U o is 20-quasi-conver®.

3. Suppose 1, 2 C X are geodesics with Osy1 N Osoye = 0, and let n a minimal
geodesic segment between vy, and 2. Then any geodesic segment running from v, to
Y2 will pass within distance D = D(v1,72) of both endpoints of n; when d(v1,v2) > 46
then we may take D = 29.

Proof. 1 follows from the fact that a d-hyperbolic Euclidean strip has width at most
0. 2 and 3 follow from repeated application of the J-thinness property of geodesic
triangles. 0

In the following lemma is a slight variation on results from [Gro87]. It shows that
discrete isometric actions on Gromov hyperbolic spaces behave like free group actions
on trees.

Lemma 2.10. Let X be a d-hyperbolic Hadamard space, and let x € X. Suppose
(9:)iez s a periodic sequence of axial isometries of X with period k (i.e. givx = g; for
all i; and in particular gy = g, and g_1 = gk_1), and let the attracting (respectively
repelling) fized point of g; be & € 0, X (respectively & € 05X ). If for every i we
have & # &'y, then there are constants L, A, N, and D with the following property.

1. If (my)iez is a sequence with m; > N, then the broken geodesic with vertices

m—i —m—sy

v = (g gy ) (%), vy = gy (%), o = K, v = gg0 (%), va = (957091 ) (%), - -
(2.11)

is an (L, A) quasi-geodesic, and

1+l—-1

|d(Ui,Ui+l) — Z mjdgj| <ID (212)
Jj=t

mE—1

2. If (m;)iez is a sequence with m; > N and period k, then g == g™ ... g,
15 an azial isometry with an axis v within Hausdorff distance D of the g-invariant
broken geodesic with vertices (2.11), and the minimal displacement of g satisfies

16, — (mgSy + . .. +mp_16,,_,)| < D. (2.13)

Furthermore, as my — oo (respectively my_1 — o0), the attracting (respectively
repelling) fized point of g tends to & (respectively &, | ).

Proof. Since & # ;EH for all 7 € Z, there are constants Ly, A;, and Ny, so that when
my > Ny then for any ¢ the broken geodesic with vertices g; ™~ (%), *, g, 1% is an
(L1, Ay) quasi-geodesic segment. Let (m;);cz be a sequence, and let 7 : R — X be the

broken geodesic with vertices (2.11). By the local characterization of quasi-geodesics
given in [CDP90, Chapitre 3], we get constants L = L(Ly, A1,0), A = A(Ly, Ay, 9),

6A subset Z C X is C-quasi-convex if for all z, y € Z we have Ty C N¢(Z).
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and Ny = No(Lq, A1, 6,{gi}icz) > N1 so that 1 is an (L, A) quasi-geodesic provided
m; > N, for all 7.

We now assume that m; > N, for all .. By the Morse lemma there is a D; =
D (L, A, ) so that there is a geodesic at Hausdorff distance at most D; from n(R),
and any geodesic v C X with 0,7 = 0xn has Hausdorff distance at most D; from 7.
Fix such a geodesic v C X, and for each ¢« € Z let w; € v be the point in 7 nearest
v;. By the triangle inequality we have

|d(Ui, Ui—l—l) — d(wz, wi+1)| S 2D1 (214)

Choose ¢; = ¢1(x, {g;}) so that the distance from % to the nearest axis of g; is less
than ¢q; then for all i € Z

|d(Ui, Ui—l—l) — mz591| = |d(*, gzml (*)) — mz591| < 2¢;. (215)

Since for each i, the broken segment with vertices v;_1, v;, v;11 is an (Ly, A1) quasi-
geodesic, the Morse Lemma gives

d(Ui_l, Ui—l—l) Z d(Ui_l, Ui) + d(Ui, Ui-l—l) — 2D1 (216)
This gives
d(wi_l, wi—i—l) Z d(wi_l, U)l) + d(wz, wi-l—l) — 8D1 (217)

Therefore there is an N = N(x,{¢;}) > Ny so that if m; > N then w; lies between
w;—1 and w;1; for all 2. So when m; > N we have

JHl-1 jH+i-1
|d(vi, vig) — Z m oy, | < 2D1 + |d(w;, wity) Z 1m0y, |
j=i
jl—1
<2Dy+ ) ld(wy, wi) — mydy, | < 2Dy (1+ 1) + 2ley. (2.18)
Jj=t

We now set D := (2k + 4)D; + 2kc;, and note that we have proved 1. When the
sequence (m;) has period k, m; > N for all i, and g := ¢ ... g, """, then we may take
7 to be an axis for g. We have §, = d(wy, wy), and (2.13) follows from (2.18). The
last assertion follows immediately from the fact that as my — oo and my_; — oo, the

segments gy (x) and xg, "}* ' (x) converge to the rays % and %, respectively. [

Lemma 2.19. Let G A X be a discrete, cocompact isometric action of a hyperbolic
group G on a Hadamard space X. There is a constant D = D(J, p) so that for every
x1, 29 € X there is a g € G and an axis 7y for g with d(x;,7y) < D fori = 1,2, and
d(g(z1),z9) < D.

Proof. If G is elementary, then either G is finite (in which case the result holds
trivially) or there is a hyperbolic element g € G with an axis v so that X = Ng(v)
for some R; this implies 2 in this case. So we may assume that G is nonelementary,
and hence G does not fix any £ € 0,,X.

11



Pick « € X and a finite generating set ¥ C G. Fix oy € X, let X' = {0 }U{o0y|o €
¥}, and let C(X') = min{d(%, 0'(x))|0’ € X}.

We note that by the cocompactness of the action it is sufficient to prove the
theorem when z; is ; for then (with a larger D) if g;(z;) is near * (within the
diameter of the fundamental domain) and ¢ is the solution for x and g¢;(z2) then
g1 'gg1 works for x; and x, (since g; ' (v,) is an axis for g; 'gg).

Claim. There are constants Ly, Ay such that for all g € G, there is a o' € X' so that
the broken geodesic with vertices (go')™1)(x), %, (go’)(%) is an (L, A1)-quasi-geodesic.
Proof of claim. If not, there is a sequence gy € G with d(gi(x),*) — o0, so that
for every o’ € ¥’ the broken geodesic with vertices (gro’) 1) (%), %, (gro’)(%) is not a
(k, k)-quasi-geodesic. This clearly implies that after passing to a subsequence (which
works for all 0’), the segments x[(gro’)(%)], *x[(gro’) 71 (%)] converge to some ray *£(o”).
But since d(gx(*), (gro’) (%)) < C(X') we see (g)(x) converges to £(o), so &(0') = &
is independent of ¢’. The fact that (gro’)1(x) converges to £ tells us (by applying
o' to the sequence) that g;'(x) converges to o’(£) = ¢ which is again independent
of the choice of ¢'. Thus o'(§) = £ for all o' € X, and hence for every o € ¥,
o(€') = (o00)oy H(€') = €, which is a contradiction. O
Proof of Lemma 2.19 continued. By the claim and an application of [CDP90, Chapitre
3] as in the proof of Lemma 2.10, we see that there are constants L, A, and D; so
that if ¢ € G and d(g(x),*) > D;, then there is a 0/ € ¥’ so that the broken
geodesic with i vertex (go’)!(x) is an (L, A)-quasi-geodesic. By the Morse Lemma
and Lemma 2.9, (go’) has an axis at distance < Dy(L, A,0) from * and (go’)(*).
Since d((go') (%), g(*)) = d(o'(x),*) < C(X'), the lemma clearly follows. O

Lemma 2.20. Consider two discrete, cocompact, isometric actions G A X, G A
X" where X and X' are 6-hyperbolic Hadamard spaces. Assume that the minimum
displacement of any g € G in X is the same as the minimal displacement in X'. Then
any G-equivariant (L, A)-quasi-isometry ® : X — X' maps unit speed geodesics y to
within D = D(L, A, 6, p, p') of a unit speed geodesic ', that is d(®(v(t)),~'(t)) < D.

Proof. By the Morse lemma on quasi-geodesics, it suffices to show that ® is a D, =
D (L, A, 6, p, p') Hausdorff approximation. Let Ds = max{Dy(6, p), D4(0, p")} where
the D,’s come from Lemma 2.19. For 1,25 € X (resp. ®(z1), P(x) € X') let g € G
(resp ¢' € G) be the elements guaranteed by Lemma 2.19. Since z; is D5 close to an
axis of g we know that 2D5+6, > d(x1, g(z1)) > 0, and hence 3D5+6, > d(xq,x2) >
0y — Ds. Now

d(P(z1), D(2)) > d(® (1), P(9(1))) — d(P(g(z1)), D(22)) >
>0, — LDs — A >d(zy,22) — (L+3)D; — A

and similarly
d(z1,22) > d(x1, g (21)) — d(g'(z1), x2) >

> 6y — LDy — A > d(®(r1), &(22)) — (L +3)Ds — A.
Hence we can take Dy = (L + 3)D5 + A. O
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Lemma 2.21. LetG A X bea discrete, cocompact isometric action on a 6-Hyperbolic
Hadamard space X.

1. If {y4lg € S C G} is a collection of distinct azis of distinct elements g € G
such that {84} is bounded then {v,} forms a discrete set of geodesics.

2. If two azxial elements g1, 92 € G have a common fized point in OxX then they
have a common axis (i.e. they have both fized points in common).

Proof. Assume some sequence 7y, converges to a geodesic v and let « € 7 then the
boundedness of {J,,} says that there is a C' such that d(%, g;(x)) < C but this cannot
be true for infinitely many distinct g;.

To see the second statement we can assume that the attracting and repelling
fixed points satisfy & = & and & # & (the other cases are similar). In this case
{g7"g29%} are distinct since they have distinct fixed point sets {£;", 977 (€5)} in 00 X
while the axes converge (after taking a subsequence) to an axis of g;. But again there
is a C such that d(, g; *g29%(x)) < C giving the desired contradiction.

O

2.5. Graphs of groups and their Bass-Serre trees

For the remainder of the paper, all group actions on simplicial trees will be assumed
to be simplicial actions which do not invert edges, and geodesic segments/rays in
simplicial trees will be unions of edges.

References for the material in this section are [Ser80, SW79, DD89].

Definition 2.22. A graph of groups is a connected graph G together with a group
G, labeling each o € Vertex(G) U Edge(G), and a monomorphism G, — G, for each
pair (e, v) consisting of an oriented edge e entering a vertex v. An isomorphism of
two graphs of groups is an isomorphism of labeled graphs which is compatible with
edge monomorphisms.

Let G A T be an action of a group G on a simplicial tree . We can define an
associated graph of groups G as follows. We let the graph underlying G be G/T. For
each 0 € Vertex(G) U Edge(G) we may label o with the stabilizer of a lift 6 C T
of 0. An for each pair (e,v), where e C T/G is an oriented edge with terminus
v € T/G, we can define an edge monomorphism G, — G, by composing the inclusion
Ge = G: = Gy (g0 € T is the terminus of €) with the isomorphism G, — G; = G,
induced by conjugation by ¢g='. We refer to this as the graph of groups associated
with the action G N T.

Lemma 2.23. If G is a graph of groups, then there is a group G, a simplicial tree T,
and an action G A T so that:

1. If G is the graph of groups associated with the action G A T, then G ~G.

2. If G' A T' is another action on a stmplicial tree satisfying 1, then there is an
isomorphism G' ~ G so that the actions p and p' become simplicially isomorphic.

The (isomorphism class of the) group G is the fundamental group of G, and the tree
T (or really the action G A T) is called the Bass-Serre tree of G. We note that if
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v is a vertex of T" and G, is its stabilizer, then the G,-orbits of Link(v) correspond
bijectively to the elements of Link(t) where o € G is the corresponding vertex of
G/T ~ G, and the stabilizer of £ € Link(v) is just G, where e is the edge associated
with £.

Let G be a graph of groups and let € be an edge of G with endpoints ¥; and 7s.
We let G’ be the graph of groups determined by €. The fundamental group of G’ is a
free product with amalgamation if € is embedded in G and an HNN extension if € is
a loop. Choose a lift e = 7795 C T of € to the Bass-Serre tree 7. We may identify G,
with G, and G with G, in a fashion compatible with the edge inclusions Gz — G5,,
G. — G,,. When é is a loop we may choose t € G = 7,(G) so that t(v;) = vy and the

composition G, — Gy, t%l G, agrees with the edge monomorphism G, — G,,. Set
G := (Gy,,Gy,) when € is embedded and set G’ := (G,,,t) when € is a loop. Then
the orbit 7" := G'(e) C T is a G'-invariant subtree of 7', and the action G’ ~ T" is
the Bass-Serre action for G'. When é is embedded we choose subsets ¥; C G, which
intersect each right coset of G, exactly once; then any g € G’ can be written uniquely
in the form

S1 ... SgT (2.24)

where r € G,, s; € G, and the s;’s belong alternately to ¥; and 5. The combinato-
rial distance from the edge g(e) to e is k and e; = s1 ... s;(e) is the sequence of edges
along the path from e to g(e). When € is a loop, we choose a cross-section X C G,
(respectively ¥ ) of the right cosets of G, (respectively t~'G.t). Then any g € G’
can be written uniquely in the form

St 89t L stk (2.25)

where for: =1,... k, ¢, = £1, 5, € X, r € G,,, and if s5; € G then ¢;_; = —¢;.

3. Graphs of groups and the structure of Hadamard spaces
on which they act

3.1. Admissible groups and actions

Definition 3.1. A graph of groups G is admissible if

1. G is a finite graph with at least one edge.

2. Each vertex group G, has center Z(G,) ~ Z, H, := G,/ Z(G,) is a nonelemen-
tary hyperbolic group, and every edge subgroup G, is isomorphic to Z2.

3. Let ey, es be distinct directed edges entering a vertex v, and for ¢ = 1,2 let
K; C G, be the image of the edge homomorphism Gei — Gy. Then for every g € G,,
gK,¢7" is not commensurable with K5, and for every g € G, — K;, gK;g~' is not
commensurable with K;.

4. For every edge group G, if o; : G, — G,, are the edge monomorphisms, then
the subgroup generated by a;*(Z(G,,)) and o5 '(Z(G,,)) has finite index in G, ~ Z2.
A group G is admissible if it is the fundamental group of an admissible graph of
groups.
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Let G be the fundamental group of an admissible graph of groups G, and let
G ~ T be the action of G on the associated Bass-Serre tree. We let V := Vertex(T)
and E := Edge(T) denote the vertex and edge sets of 7', and when 0 € VU E we let
G, C G denote corresponding stabilizer. Properties 1-4 of definition 3.1 imply:

Lemma 3.2. 1. T is an unbounded tree with infinite valence at each vertex, and G
acts on T with quotient G.

2. Each vertex group G, has center Z(G,) ~ Z, H, := G,/Z(G,) is a nonele-
mentary hyperbolic group, and every edge subgroup G, is isomorphic to Z>.

3. If ey, eq are distinct edges emanating from v € V., then Ge, is not commensu-
rable with Ge,. In particular, Z(G,) C G., since g € Z(G,,) implies Go, = ¢Ge.g7 ' =
Gge, forcing ge; = e;, i.e. g € Go,.

4. If e € E has endpoints vy, va € V', then (Z(G,,) U Z(Gy,)) C G generates a
finite index subgroup of G..

Most of the time we will work with the action G ~ T and ignore the graph of
groups that produced it.

Examples of admissible groups:

1. (Graph manifolds) Let M be a 3-dimensional nonpositively curved graph man-
ifold as in Theorem 1.1, and let M;, : = 1,...k be the geometric Seifert components
of M. Let G be the graph of groups which has one vertex labeled with 7 (M;) for
each i, and an edge labeled by Z? for each pair of totally geodesic boundary tori in
the disjoint union U; M; which are glued to form M. The edge monomorphisms come
from the two different embeddings of a gluing torus into Seifert components.

2. (Torus complexes) Let Tp, 11, T» be flat two-dimensional tori. For i = 1,2, we
choose primitive closed geodesics a; C Ty and b; C T; with length(a;) = length(b;),
and we glue 7; to 1y by identifying a; with b; isometrically. We assume that a; and
ay lie in distinct free homotopy classes, and intersect at an angle o € (0, 5]. Let G be
the graph of groups associated with the decomposition (7o U T) I (T U Ty) — UT;.
Note that Ty U T} is homeomorphic to S* x (S* A SY), so m(Ty UT;) = Z x F, where
F3 is the free group on two generators.

Lemma 3.3. 1. If ey, ex € E are distinct edges incident to v € V', then Z(G,) ~ 7Z
s a finite index subgroup of G, N Ge,. In particular Ge, N Ge, >~ Z.

2. If v1,v9 € V are the endpoints of an edge e € E, then Z(G,,)NZ(G,,) = {id}.

Proof. Note that G, N G, has infinite index in each G,,, for otherwise the G, ~ Z?
would be commensurable, contradicting 3 of Lemma 3.2. Thus G., N G, ~ Z. Also
by 3 of Lemma 3.2 we have Z(G,) C G, NG,,, so both are rank 1 free abelian groups
and 1 follows.

2 follows immediately from 4 of Lemma 3.2, since the Z(G,,) are rank 1 subgroups
of G, ~ Z* which generate a finite index subgroup of G.. O
Lemma 3.4. If v;, vo € V, then

1. If d(vy,v3) > 2 then G, NG, = {id}.

2. If d(vy,v9) = 2 and v € V is the vertex between them, then Z(G,) is a finite
index subgroup of G,, N Gy,.
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3. If d(vy,v2) =1, then G, N G,, = G, where e = T103.

Proof. We will prove the assertions in reverse order. Part 3 is immediate since the
action G ~ T does not invert edges, see section 2.5. To prove 2 we let e; be the
edge between v; and v. Clearly G,, NGy, = G¢, NG, which by Lemma 3.3 contains
Z(G,) as a subgroup of finite index. To prove 1, let e, e, ey € E be three consecutive
edges of the segment 7777, and let wy, wy € V be the endpoints of e. Then by
1 of Lemma 3.3, Z(Gy,) (~ Z) has finite index in G., N G, (~ Z), so we have
(Ge, NG) N (GeNG,) = 0 since otherwise Z(G,, ) U Z(G,,) would generate a cyclic
group in G, (=~ Z?*) contradicting 4 of Lemma 3.2. Since

Gy, NGy, C (Ge, NGe) N (Ge N Gey)

1 follows. O

Lemma 3.5. Forv €V, the fized point set of Z(G,) is the closed star Star(v). For
e € E, the fixed point set of G, is e. In particular, for any o € VUE, G, leaves no

point in 0T fized. Further, if Star(v) is invariant under Z(G,) then o € Star(v).

Proof. Fix a vertex v. Since Z(G,) C G, for all e in the star it is clear that the closed
star is in the fixed point set of Z(G,). On the other hand 1 of Lemma 3.4 says we
need only consider vertices v; such that d(v,v;) = 2. Let w be the vertex between v
and vy. Now 2 of Lemma 3.4 says that Z(G,,) is a finite index subgroup of G, N G,,,
while 2 of Lemma 3.3 says that Z(G,) N Z(G,) = 0. Thus Z(G,) N G,, =0 and the
first statement follows.

For an edge e = vy the first part (since G,, C G,) says that the fixed point set
of G, is contained in Star(v,) N Star(vy) = e. So the second statement follows.

The last two statements follow from the first two. O

Lemma 3.6. If v € V then the centralizer of Z(G,) in G is just G,. If e € E the
centralizer of G, in G 1s G,.

Proof. By Lemma 3.5, the fixed point set of Z(G,) in T is just the closed star of v
in 7. Hence any g € G which commutes with Z(G,) must take the star of v to itself
and hence fix v.

If e € F and e = U105, then a finite index subgroup G, is generated by Z(G,,) U
Z(Gy,)- So the centralizer of G, in G is a subgroup of the intersection of the central-
izers of Z(G,,) and Z(G,,), i.e. G,, NG, which is G, itself. O

Lemma 3.7. (Uniqueness of decomposition) Let G ~ T and G' ~ 1" be the Bass-

Serre actions assoctated with two admissible graphs of groups, and suppose G %G s
an isomorphism. Then after identifying G with G' via ¢, the trees T and T" become
G-equivariantly isomorphic.

Proof. We will use primes to denote the vertex and edge set of 7. Pick v € V.

Claim: G, fizes a unique vertex in T'. Let g € Z(G,) be a generator. If Fiz(g,T")
is empty, then ¢ translates a unique geodesic v C 1", and since ¢ € Z(G,) the
whole vertex group G, must preserve v, and act on it by translations. The signed
translation distance yields a homomorphism G, — Z with nontrivial kernel. But then
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Ker(G, — Z) fixes 7 pointwise, which contradicts 1 of Lemma 3.4. Consequently
Fix(g,T') is nonempty, and by 1 of Lemma 3.4 this is a subcomplex of 7" with
diameter at most 2. So G, must fix the center of Fiz(g,T"). It can fix nothing more,
since no edge stabilizer can contain the nonabelian GG,. Thus we have proved the
claim.

Now consider the G-equivariant map f : V' — V' which assigns to each v € V' the
unique vertex in 7" fixed by G,; and define a map f': V' — V by reversing the roles
of T'and T". For allv € V', G, fixes f'o f(v), so we must have f'o f(v) = v; similar
reasoning applies to f o f’, and we see that f and f’ are inverses. The maps f and f’
are adjacency preserving since two vertices are adjacent iff their stabilizers intersect
in a subgroup isomorphic to Z2. It is now straightforward to see that f defines a
G-equivariant isomorphism 7" — T". O

Lemma 3.7 justifies use of the phrase “G A T is the Bass-Serre tree of the
admissible group G.”

3.2. Vertex spaces, edge spaces, and geometric data for admissible actions

Definition 3.8. We say that G A X is an admissible action if G is an admissible
group, X is a Hadamard space, and the action is discrete, cocompact, and isometric.

For the remainder of this section G ~ X will be a fixed admissible action. In
particular, all constants depend on G ~ X (i.e. the group G, the Riemannian
manifold X, and the action) in addition to other explicitly mentioned quantities. By
Lemma 3.7 there is an essentially unique admissible graph of groups associated with
G, and we will let G ~ T be the corresponding Bass-Serre tree.

We refer the reader to section 2.3 for properties of Minsets that we use here.
For each v € V we let Y, := Minset(Z(G,)) = Ngez(a,) Minset(g) (this will be
the Minset of a generator), and for every e € E we let Y, := Minset(G,) =
Ngea. Minset(g).

Minset(«) is a convex subset of X, invariant under the centralizer of «, which is
a metric product of R with a Hadamard space. If a belongs to a group of isometries
that acts cocompactly on X then the centralizer of « acts cocompactly on Minset(«)
(see section 2.3). Thus Y, is the product of R with a Hadamard space Y,. Z(G,) acts
by translation on the R factor and the induced action of H, on Y, is discrete and
cocompact. Y, is the product of R? with a compact Hadamard space Y,, and G, = Z?
acts by translations on the R? factor (section 2.3).

Note that the assignments v — Y, and e — Y, are G-equivariant with respect to
the natural G actions. The minimal displacement of a generator of Z(G,) is the same
as that of a generator of Z(Gyw)) = gZ(Gy)g ' By the finiteness of G there is a
number C' such that for all v € V' the minimal displacement of a generator of Z(G,)
is less than C.

Definition 3.9. Let G A X be an admissible action, and let T" be the Bass-Serre
tree for G. For each v € V we choose a generator ¢, € Z(G,) in a G-equivariant
way. We have an isometric splitting Y, ~ Y, x R, which is preserved by G,. The
choice of generator (, defines an orientation of the R factor of Y,. We have a map
MLS, : G, — R, which assigns to each g € GG, the minimum displacement of the
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induced isometry Y, — Y,. MLS, descends to G,/Z(G,) ~ H, since Z(G,) acts
trivially on Y,. We define a homomorphism 7, : G, — R by sending ¢ € G,, to the
signed distance that g translates the R factor of ¥, ~ Y, x R. The collections of
functions M LS, and 7, constitute the geometric data of the action. Both M LS, and
T, descend to functions of the vertex groups of the graph of groups G defining G; we
will sometimes find it more convenient to think of the geometric data in this way.

We remark that it follows from the discreteness of the action H, ~ Y, that ¢ € G,
then MLS,(g) = 0 iff g projects to an element of finite order in H,.

Lemma 3.10. The collections {Y, }vev and {Y.}eep are locally finite. More precisely,
for every R there is an N so that if x € X then there are at most N elements o € VUE
so that Y, N B(x, R) # 0.

Proof. Suppose v € V and p € Y,. Then p has displacement < C under the generators
of Z(G,). Therefore if p € B(z, R), then z has displacement < 2R 4 C under the
generators of Z(G,). But there are only finitely many g € G with d(g-z,z) < 2R+C;
since Z(Gy,) N Z(G,,) = {e} when vy # vy, the local finiteness of {Y,},cy follows.
Similar reasoning proves the local finiteness of {Y.}.cp. The fact that N can be
chosen independent of x follows from the cocompactness of the G action. 0

The lemma implies that for any D, the collection of D-tubular neighborhoods of
the Y’s is locally finite. We also have the following consequences:

Lemma 3.11. For every D there are only finitely many pairs (o, 02) € (VU E) X
(VUE) — modulo the diagonal action of G — with Np(Y,,) N Np(Yy,) # 0.

Proof. By the finiteness of [V U E]/G we need only show that for fixed o there are
only finitely many oo modulo G, such that Np(Y,) N Np(Y,,) # 0. This follows
from Lemma 3.10, since G, acts cocompactly on Np(Y,) and hence for some g € G,
Np(Yy) N (Np(Yyo,)) intersects a fixed ball. O

Lemma 3.12. For oy, 00 € VU E, Gy, N G,, acts cocompactly on the intersection
Np(Ys )ONp(Y,,). Thus, in particular, the diameter of Np (Y, )NNp(Ys,)/[Go NGy, ]
15 uniformly bounded by a function of D.

Proof. This follows from the local finiteness of the family {Y,},cvup and the dis-
creteness of the cocompact action G ~ X. Pick D > 0 and 01,00 € VUE. If
x € Np(Y,,) N Np(Y,,), we may choose a sequence gy € G,, such that gx(zy) — 2o
for some xo, € Np(Y5,). Then gi(o2) lies in a finite subset of VUE (since gx(Np(Ys,))
intersects some ball B(z., R) for all k) so after passing to a subsequence if necessary
we may assume that gyo, is constant. Then g, 'gr € Go, N Gy, and (g, 'gx) (1) —
91 H(so). Thus G,, NG, acts cocompactly. The second statement now follows from
Lemma 3.11.

O

Lemma 3.13. For every D there is a D' (depending only on D) such that if o € VUE
separates oy € VU E from 0o € VUE, then Np(Yy,) N Np(Y,,) C Np(Y,). In
particular, if Ty and Ty are the closures of distinct connected components of T — o
then

[Uscry Np(Y5)] N [Uscr, Np(Y5)] C Npi(Yo).
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Proof. Pick D > 0. Suppose (01,09,0) is a triple with o;, 0 € V U E, o separates
oy from oy in T, and Np(Y;,) N Np(Y,,) # 0. Then G,, N G,, C G, and G,, N G,
acts cocompactly on Np(Y,,) N Np(Y,,) by Lemma 3.12; hence d(Y,,-) is bounded
on Np(Y,,) N Np(Y,,). By Lemma 3.11 there are only finitely many such triples
(01,02,0) modulo G, so the lemma follows. a

Definition 3.14. Since G acts cocompactly on X we can now fix a D so that
Upev Np(Yy) = Uee Np(Ye) = X. We define X, := Np(Y,) for all v € V. Let D'
denote the constant in the previous lemma, D" = max (D, D'), and set X, := Np»(Ye)
for all e € E. We will refer to the X,’s and X,’s as vertexr spaces and edge spaces
respectively.

We note that Lemma 2.3 implies that for any 0 € V U E we have 0, X, = 0,Y,.
We summarize the properties of vertex and edge spaces:

Lemma 3.15. There is a constant Cy with the following property.

1. UUEVXU - UeGEXe = X.

2. If e € E and Ty and Ty are the distinct connected components of T — Int(é),
then [Uyer, Xo]| — Xe and [Uyer, X)) — Xe are disjoint closed and open subsets of X — X
and Ueer, Xe — Ney (Xe) and Ueer, Xe — N¢, (Xe) are disjoint closed and open subsets
of X — N¢, (Xoe).

3. If o1, 00 € VUE and X,, N X,, # 0 then dp(oy,09) < Ci.

Proof. 1 and 2 follow from the definition of vertex/edge spaces and Lemma 3.13. By
Lemma 3.11 we can choose C] so that 3 holds. O

Corollary 3.16. For any v € V, 0rX, is isometric to the metric suspension of an
uncountable discrete space, and for every e € E, 0rX, s isometric to a standard
circle. Pick vy, vo € V.

1. If d(vy,v9) > 2, then 07X, N OrX,, = 0.

2. If d(vy,v9) = 2 and v is the vertex in between vy and vy, then 0pX,, NOrX,, =
Ory where v C Y, is a geodesic of the form {p} xR C Y, xR =Y, i.e. 90X, NOrX,,
15 the pair of suspension points of OrX,.

3. If d(vy,v9) = 1, then 0pX,, NOrX,, = 0rX, ~ S, where e := v105.

Proof. Since Y, ~ Y, x R, we have 0;X, = 0rY, = ¥(9rY,), and since Y, admits a
discrete cocompact action by the non-elementary hyperbolic group H, := G,/Z(G,),
OrY, is a discrete set with the cardinality of R. Foralle € E, Y, ~ Y, x R?> where Y,
is compact, so 0r X, = 0rY, ~ 0rR?, and the latter is the standard circle.

Pick vy, vy € V, and choose R large enough that Z := Ng(X,,) N Ng(X,,) # 0.
Then 0rX,, NOrX,, = 0rZ. The lemma now follows from Lemmas 3.4 and 3.12. O

Lemma 3.17. There is a constant Cy with the following property. Suppose v, v' € V,
el,...,en € E are the consecutive edges of the segment vv' C T, v € X, andy € X,.
Then for 1 < i <n we can find points z; € Ty such that

1. d(zi,Xei) < 02
2. For all1 <1< j<mn we have d(z;,z) < d(z;,x).
3. For every p € X we have #{z; € B(p,1)} < Cs.
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Proof. Pick v, v € V, x € X,, and y € X,. Suppose ¢ € E and let 17 and T3
be the two connected components of T'— Int(é). If Ty N N¢,(X:) = 0 (hence in
particular Zg N X; = () then by the first part of 2 of Lemma 3.15, Ty is contained in
one of the two disjoint open sets (Uec Xe) — Ney (Xg) for i =1 or i = 2. It follows
that Ty N N¢, (X,) is nonempty for every 1 < i < n. Let w; € Ty be the point in
Ty N N¢, (Xe,) closest to x. Let z; = wy, and let z; be the element of {w;,...,w,}
closest to x. So we have either z; = w;, or z; = wy for some 7' > i. In the latter
case Tz; C Uqcr X, (hence in particular z; = wy € UgcpX,) where T" C T is the
component of 7' — Int(e;) containing e;, so by Lemma 3.13 we have z; € Np/(X,,)
where D" depends only on C;. If p € X and z; € B(p,1), then X, N B(p,1+D") # 0
and thus Y., N B(p, 1+ D'+ D") # () so by Lemma 3.10 we have #{z; € B(p,1)} < N
where N depends only on D'. Setting Cy := max{D’, N}, the lemma follows. O

3.3. Itineraries

Our next objective is to associate an itinerary to any ray pé C X which is not
contained in a finite tubular neighborhood of a single vertex space; the itinerary of p&
is a ray in T which (roughly speaking) records the sequence of vertex spaces visited

by p¢.

Let p: X — V C T be a G-equivariant coarse Lipschitz map from the Hadamard
space X to the vertex set of the tree 1" with the property that for every x € X we
have x € X,(;). Such a p may be constructed as follows. Let ¥ C X be a set theoretic
cross-section for the free action G ~ X; define py : ¥ — T' so that o € X, () for
every o € Y, and then extend py to an equivariant map X — 7. Let L be such that
Nop(Y,,) N Nop(Y,) # O implies d(vy,vy) < L, which exists by Corollary 3.11. In
particular if d(z,y) < 2D then d(p(z), p(y)) < L. In general, by dividing Ty into less
than % + 1 segments of length less than 2D and adding the previous estimates we

see that p will be coarse Lipschitz; i.e. d(p(z), p(y)) < 55 d(z,y) + L.

Lemma 3.18. If v : [0,00) — X is a geodesic, then poy : [0,00) — T has the
bounded backtracking property’.

Proof. Let e € E be an edge in T, and let T}, T, C T be the connected components
of T'— Int(e). Suppose poy(t;) € Ty, and poy(t2) € Ty — N, (), where ty > t;. By
Lemma 3.13 we have

[UveTle] N [UveTsz] C Xe.

Therefore there is a t3 € [t1,t2) such that v(t3) € X.. Since d(po y(t2),e) > C4, the
choice of C and lemma 3.15 implies that v(t,) € X.. Hence the convexity of X, gives
vY([t2,00)) € X — X, which forces p o y([ty, 00)) C Tp. This property clearly implies
uniformly bounded backtracking. O

Lemma 3.19. If v:[0,00) = X is a geodesic ray, then one of the following holds:

1. pory:[0,00) = T is unbounded, and p o y([0,00)) lies in a uniform tubular
neighborhood of a unique geodesic ray, T, in T starting at p(y(0)). The geodesic 7
intersects X, for all but finitely many edges e of 7.

TA map c:[0,00) — T has the bounded backtracking property if for every r € (0,00) there is an
r" € (0,00) such that if t; < 2, and d(c(t1),c(t2)) > ', then d(c(t), c(t1)) > r for every t > ts.
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2. pory :[0,00) = T is bounded, and vy eventually lies in Np/(Y,) (where D'
comes from Definition 3.14) for some v € V. In this case there is a subcomplex
T, C T defined by the property that for each simplex o in T, o € T, if and only if
v s asymptotic to X, . The possibilities for T, are: a single vertex v € V, a single

edge e € E along with its vertices, or the closed star Star(v) for some v € V.

Proof. Pick v € V. By the convexity of N (Y,), either v is eventually contained
in Np/(Y,), or v is eventually contained in X — Np/(Y,). In the latter case p o~y
eventually remains in a unique component of T'— v, by Lemma 3.13.

If for every v € V the ray ~ eventually lies in X — Np(Y,), then clearly p o~ is
unbounded and hence it must lie within uniform distance of a ray in T" by the bounded
backtracking property. So we may assume that 7 is eventually contained in Np/(Y)
for some v € V. We note that if e € T, then any vertex v’ of e must also be in T,
since Y, C Y. Alsoif v,¢" € V and d(v,v") > 2 then part 1 of Lemma 3.4 along with
Lemma 3.12 says that for any K, Nx X, N N X, is compact so v & Nxg X, N Ng X,
and hence at most one of v and v’ can be in T7,.

If there are vertices v; and v in 7, with d(vi,v2) = 2 and v is the vertex be-
tween them then part 1 of Lemma 3.4 along with Lemma 3.12 says that Z(G,) acts
cocompactly on Ng X, N NgX,, which contains 7 for some K, and hence there is a
K’ such that for all ¢ > 0 there is a g, € Z(G,) such that d(y(t), g:(7(0)) < K’ and
hence 7 stays a distance at most K’ + d(v(0),Y,) from a geodesic in the R direction
of Y, =Y, x R (since Z(G,) translates the R direction). Thus for every e with v
as a vertex we have v is asymptotic to a geodesic in Y, and hence e € T,. Thus
Star(v) C T,. But since vertices in T, are at most distance 2 apart we see that
Star(v) = T.,.

The only cases left for T, are the two mentioned and the case of two vertices a
unit distance apart. But in the final case a similar argument shows that if e is the
edge between them then ~ stays a bounded distance from Y, and hence e must also
be in T,. O

Definition 3.20. Let v be a geodesic ray in X. If case 1 of Lemma 3.19 applies then
we will say that v has itinerary 7, and otherwise we say that the itinerary of = is
the subtree T, C T described in case 2 of the lemma. In either case we denote the
itinerary of v by Z(7).

One immediate consequence of the proof of Lemma 3.19 is

Corollary 3.21. IfZ(v) = Star(v) then v is asymptotic to either the positive or the
negative R direction in the decomposition Y, =Y, x R.

Lemma 3.22. If p&, pof C X are asymptotic geodesic rays, then either both Z(
and Z(px€) are finite subtrees, in which case they agree, or both Z(p:€) and Z(

are rays, in which case 0L(p1€) = L(p2€). In other words, (pi€) is a ray in T
if and only if Z(p2£) is a ray in T asymptotic to Z(pi).

pig)
p2§)

Proof. p & lies in a tubular neighborhood of some Y}, if and only if po€ does, thus the
case where Z(p;§) (or Z(p2€)) is finite follows. Thus p,¢ has itinerary a ray 7 if and
only if po& has itinerary 7o for some ray 7» C 7. But the sets p(p;€) and p(p§) are
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at finite Hausdorft distance from one another since p is coarse Lipschitz; hence the 7;
are asymptotic. ]

By the lemma we have a well-defined G-equivariant map from 0,,X to the union
O U (finite subsets of T')

which assigns to each & € 0,X either 0,,Z(pf), p € X if Z(p€) is a ray or Z(pf)
otherwise; we will also denote this map by Z. If n € 0,1, we use 97X to denote
the corresponding subset: 97X = Z !(n) C 0,X. We will say that 07X is trivial
if 07 X is a point or nontrivial otherwise; (in the latter case we will see that 07 X is
homeomorphic to a closed interval and is in fact an interval in the Tits metric.).

In particular 0 X = (Uyey 0s0Xy) U (Upea, 70%LX), where U,ey 05X, is disjoint
from U,co, 707 X.

The cone topology and Tits metric on 0, X, = 0xYy = 0o (Y, X R) is described
in sections 2.2 and 2.4. We see that in the cone topology 0, X, is just the suspension
¥(0xH,) and is independent of the metric on X. The Tits metric is just the metric
suspension of the discrete metric.

We now study the dynamics of the action of G on 0, X.

Lemma 3.23. 1. For every v € V, the fized point set of Z(Gy) in 0xX 1S 0xXy;
this set is homeomorphic to the suspension of 0., H, where H, is the nonelementary
hyperbolic group G,/Z(G,).

2. For every e € E, Fix(G,, 050X ) = 0o Xe which is homeomorphic to a circle.

Proof. Let € € 0, X be fixed by Z(G,) and p € Y,. If Z(p€) is a ray then by Lemma
3.22 0,,Z(p€) is fixed by Z(G,). But this can not happen since by Lemma 3.5 Z(G,)
leaves no point in d,7T fixed. So Z(pf) is a finite subtree which by Lemma 3.22
is invariant under Z(G,). Thus by Lemma 3.19 and Lemma 3.5 v € Z(p€). Thus

pE C Y, and hence & € 0,,X, = 05Y,. On the other hand geodesics rays pé in Y, are
translated by a fixed amount by elements g € G, so g(pf) is asymptotic to p& and
so £ is fixed by g. The rest of part 1 follows from sections 2.2 and 2.4 as above.

Let £ be fixed by G, and p € Y,.. Again since G, leaves no point in 0,,1" fixed, by
Lemma 3.5 Z(p€) is a finite subtree that is invariant under G, and hence by Lemma
3.19 and Lemma 3.5 must contain e. Hence we see p€ C Y, and € € 0,Y, = 0xoXe.
Again, since G, acts by translations on Y,, we see that if £ € 0,,X, = 0,Y, then
it is left fixed by G,.. Since Y, = R? x Y, where Y, is compact, 0Y, = 0,.R? i
homeomorphic to a circle. D

4. Templates and the behavior of their geodesics
4.1. Templates

In this section we study “Templates”. These are piecewise Euclidean Hadamard
spaces (which can be embedded in R*) which approximate certain subspaces of the
spaces we are studying, and carry much of the information about the spaces at infinity.
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A template is a Hadamard space T obtained from a disjoint collection of Euclid-
ean planes {W }wewan, (called walls) and directed Euclidean strips® {S}sestrip, by
isometric gluing? subject to the following conditions:

1. The boundary geodesics of each strip & € Stripr, which we will refer to as
singular geodesics, are glued isometrically to distinct walls in Wall.

2. Each wall W € Wally is glued to at most two strips, and the gluing lines are
not parallel.

3. T is connected.

One can think of 7 as sitting in R? so that its walls are parallel planes and the strips
meet the walls orthogonally. Two walls Wi, Wy € Wally are adjacent if there is
a strip S € Stripr with SN W; # (. The incidence graph Graph(T) of T — the
graph with vertex set Wallr and one edge for each pair of incident walls — is a graph
isomorphic to a connected subcomplex of R with the usual triangulation (where the
vertices are the integers). A wall is an interior wall if it is incident to two strips, and a
strip is an interior strip if it is incident to two interior walls; Wall3- and Strips- denote
the interior walls and strips respectively. For every interior wall W € WallG we have
a distinguished point oy := W NS NSy, where S; € Stripr, i = 1, 2, are the strips
incident to W. Let Stm’p? be the collection of oriented interior strips; an orientation
of a strip § € Stripr combines with the direction of S to give an orientation of the
interval factor of S ~ R x [, and also an ordering of the two incident walls. We can
define a function € : Stripy — R as follows: if W_, W, are incident to ST € Strip}
and W_ < W, with respect to the ordering defined by S¥, then ¢(S*) € R is defined
to be the signed distance that oy, lies “above” ow_ in the strip S*. We also have a
strip width function [ : Stripy — (0,00) and an angle function a : Wall§ — (0, )
which give the angle between the oriented lines W N S; where &, S; are incident to
W.

We will sometimes enumerate the consecutive walls and strips of 7 so that Wallr =
{Wi}ta<cicy and Stripy = {S;}a<ico—1 Where a € {—00,0} and b € NU {co}. We then
define L; :=W;NS;_1fora+1<i<band Ly :=W;NS; fora<i<b-—1.

An equivalence between two templates 7; and 75 is an isometry ¢ : 77 — T
which respects strip directions. Two templates are equivalent if and only if there is
an incidence preserving bijection Wally U Stripr, — Wally, U Stripr, which respects
the functions [,¢, and a. We will call a template uniform if there isa § > 8 > 0
so that the angle function o : Wally — (0,7) satisfies 7 — 3 > a > (3, and if
the strip widths are bounded away from zero. We are mostly interested in uniform
templates. A template T is full if Graph(T) ~ R, half it Graph(T) ~ Ry, and finite
if |[Wallr| < oo.

If W € WallF and S;, S, are the incident strips, then the oriented lines W N &;
and W N S, divide the plane W into four sectors which we call Quarter Planes and
which we label as Qr, Qrr, Qrrr, and Qpy as usual. If we are given a choice Qw
of quarter planes in W for each W € Wallr then there is an isometric immersion
D : [UwewaurQw] U [Usestrip,S] — R? (the development) which takes any geodesic
ray 7 C T such that yNW C Qw, to a Euclidean ray (see Figure 3 in section 7.2 for
an example of the developement of a special kind of template).

8A direction for a strip S is an orientation for its R-factor S ~ R x I.
In general one may also have to complete the resulting quotient space to get a Hadamard space.
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When 7 is a half template we will be primarily interested in geodesic rays v C T
that start at a given base point and intersect all but finitely many walls of 7. From the
separation properties of walls it is clear that such a ray intersects the walls W € Wallr
in order. We let 02T (resp. 07T) denote the corresponding subset of 0,7 (resp.
OrT). In section 7.1 we will show that 07°7 is isometric to either a point, in which
case 7 is called trivial, or an interval of length < 7.

Remark 4.1. One can show directly that any two half templates such that corre-
sponding angles agree, and both corresponding strip widths and displacements differ
by a bounded amount will have 0%’s with the same Tits length. We will only need a
weaker version (that will follow from Theorem 5.1) in this paper so we will not digress
to prove it here.

4.2. Templates associated with itineraries in 1’

We now return to the setting of our paper: G is an admissible group with a discrete
cocompact isometric action on a Hadamard space X. We now want to associate a
template with each geodesic segment/ray in 7'; these templates capture the asymp-
totic geometry of geodesic segments/rays in X which pass near the corresponding
edge spaces.

We first choose, in a G-equivariant way, a plane F, C Y, for each edge e € E.
Then for every pair of adjacent edges e, es we choose, again equivariantly, a minimal
geodesic from F,, to F,,; by the convexity of Y, = Y, x R, v := e; N ey, this geodesic
determines a Euclidean strip'® S,, ¢, := 7e, ¢, X R for some geodesic segment v, o, C
Y,; note that S,, ., N F,, is an axis of Z(G,). Hence if e, €1, e2 € E, e;Ne=v; €V
are distinct vertices, then the angle between the geodesics S, . N Fe and S, . N Fe
is bounded away from zero (since only finitely many angles show up). We also note

that Definition 3.14 tells us that dy(F,, X.) is bounded by D" + Diam(Y,) which,
since there are only finitely many e up to the action of GG, is uniformly bounded.

The significance of the strips S, ¢, can be seen in the next two lemmas.

Lemma 4.2. There is a constant C3 so that if e, = vy and e; = Uy are adjacent
edges, then X, US,, ¢, UX,, and X, US,, ., UX,, are Cs-quasi-convex.

Proof. Since the Hausdorff distance dg(Xg, F;) is uniformly bounded for ¢ € E, it
suffices to show that there is a constant C' so that the unions F, U S,, ., U F,, are
C-quasi-convex for all pairs of adjacent edges. But if ey, es € E are adjacent then
Fo USe, e, UF,, CY, ~ Y, xR, and we are reduced to showing that Fel UYer 60 UF82 -
Y, is uniformly quasi-convex, where F, is the image of F, under the projection
Y, ~ Y, x R —Y,. This follows from Lemma 2.9. This gives the first statement.

The interesting part of the second statement is when we consider 7y when x € X,
and y € X,,. In this case Lemma 3.17 gives us 2; € N¢, X,, and 29 € N¢, X, on 7y.
Now the first statement along with the convexity of N, pr(X,,) (note z; € Ng, X, C
Ne,+prXy,) yields the second statement.

O

108, ¢, may have width zero.
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Lemma 4.3. There is a constant Cy so that if ey, ... e, € E is a geodesic edge path
win T with initial vertex vy and terminal vertex v,,, then

Z = Xe U8 e UXeyU.. .UXe,  USe, e UXe,

and

Z'=X, U8, UX,U...UX, _,US

€n—1,€n

UX,,

€n—1

are C'y-quasi-conver.

Proof. Pick x, y € Z. We may assume without loss of generality that 2 € X, US,, ., U
Xe, C X, wherev =ejNeg,and y € X, | US,, |, UXe, C Xy where v' = e,_1Ne,.
Applying Lemma 3.17 we get points z; € Ty N Ne, (X,,) for 2 < i < n — 1, with
d(z,z) < d(zj,x) when @ < j. If Cy := Cy + C3, then by Lemma 4.2 we have
T2Z3 C Ney(Xe, USe, e, U Xe,), Zizir: C Ny (Xe, USe UXe,,) fori=2,...n-1,
and Z,—19 C Ng, (Xe, , USe, e, UXe,).

We omit the proof that Z’ is quasi-convex, as it is similar. O

i5€i+1

Lemma 4.3 suggests that we will understand the geodesic geometry of X if the
geometry of the sets Z (as in the lemma) can be easily modeled. To this end, we
“approximate” Z with a template.

Definition 4.4. Suppose v C T is a geodesic segment or ray. Let 7 be a template
with walls {W }wewau, and strips {S}sesiip,, let f: Wally — E be an adjacency
preserving bijection between the walls of 7 and the edges of y, and let ¢ : T — X be
a (not necessarily continuous) map. Then the triple (T, f, ¢) is a K-template for
if for all W € Wally we have ¢(W) C Ng(Xfw)) and Xyary C Ng(p(W)) and the
following conditions are met for every & € Stripr.

1. Width(S) > 1.
2. If §is incident to Wy, Wy € Wallr and z, y € Wy U S U W, then we have

ldx(p(z), o(y)) — dr(x,y)| < K and if v, : [0,1] = Ty and 72 : [0,1] — ¢(z)¢(y) are
constant speed parameterizations, then d(¢ o v, (t),v2(t)) < K for all ¢t € [0, 1].

3. If Wi, W, € Wally are adjacent to S then the Hausdorff distance dg ((X v, U
Sf(W]_),f(W2) U Xf(W2)), ¢(W1 usSu Wg)) < K.

Often when the value of K is not relevant we will refer to the triple (7, f, ¢) as a
template for v, by which we mean a K-template for some K.

Let 7' be another template such that the angles on corresponding walls agree with
those of 7" and such that the other data (strip widths and displacements) differ from
T by a bounded amount. Then there is a natural (discontinuous) map F : 7' — T
which is an isometry on each wall and simply stretches the width of the strips. It is
easy to check that using ¢’ = ¢ o F' that we get a K’ template (77, f, ) for v (see
step 3 of the proof of Lemma 7.14).

For a suitably large K we describe a construction that gives a K-template for
any geodesic segment or geodesic ray v C 7. We will refer to these K-templates
as standard K-templates. We begin with a disjoint collection of walls W, and an
isometry ¢, : W, — F, for each edge e C . For every pair e, ¢’ of adjacent edges
of v, we let SA'e,e/ be a strip which is isometric to S, C X if Width(S..) > 1, and

~

isometric to R x [0, 1] otherwise; we let ¢, : Seer — Se e be an affine map which
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respects product structure (¢, is an isometry if Width(S.) > 1 and compresses
the interval otherwise). We construct 7 by gluing the strips and walls so that the
maps ¢, and ¢, descend to continuous maps on the quotient.

The above construction yields

Lemma 4.5. There is a constant K = K(X) such that for every geodesic segment
or ray, v C T, there is a K-template for .

There is a 3 = [(X) > 0 such that for any K-template the angle function « :
Wally — (0,7) satisfies 0 < f<a<7m—f<m.

Proof. We check that each condition of Definition 4.4 holds for the standard template
described above, for sufficiently large K.

First, since dy(F, X.) is uniformly bounded and Fyuy = ¢(W) for every W €
Wally, we have (W) C Nk (Xywy) and Xyuwy C Ni(o(W)) for all W € Wally for
large enough K.

Conditions 1 and 3 follow immediately from the description of standard templates.

We now verify condition 2. Pick adjacent walls W, W' € Wallr and set e := f (W),
e == f(W'), and v := ene’. Recall that F,US, ,UF, C Y, and Y, splits isometrically
as Y, = Y, x R where Y, is Gromov hyperbolic. Furthermore, ¢ induces a map
W, U S’e,e: UWe — FoUS, e UF, which is compatible with the product structure.
Hence condition 2 follows from part 3 of Lemma 2.9 (and triangle inequalities) when
d(F,, F.,) > 46 (where ¢ is the maximum of the hyperbolicity constants of the Y,’s);
modulo G there are only finitely many cases when d(F,, F,/) < 40 (Lemma 3.11), and

each of these is also settled by part 3 of Lemma 2.9.

For any K template (7, f, ¢) for a v containing an interior edge e = v’v we claim
that the wall W with f(W) = e will have the same angle, up to taking supplements
(i.e. « might be replaced by m — «), as the angle a between the R factors of Y, =
Yy xRand Y, =Y, x Rin Y, = Y, NY,. The fact that these angles are positive
and the finiteness of edges modulo G will yield the result. We note that « is the Tits
angle between the R factors.

To see this we first note that Property 2 of Definition 4.4 says that the angle for IV,
i.e. the angle between the gluing lines L' and L, is the same as the comparison angle
limy 00 Zp(0)B(L'(t)), ¢(L(t)). Also Property 2 of Definition 4.4 says that there are
geodesic rays o = lim;_, o, p@(L(t;)) where t; — oo and p € Y,. Since ¢(W) C Ny X,
we see that ¢(L) C NxX, and hence e € Z(0). Now if we let ¢’ be the other edge
incident to v in y then the intersection of the wall f~!(¢’) with the strip between W
and f~(€'), is a line parallel to L and hence, again by 2 of Definition 4.4, ¢(L) stays
in a uniform neighborhood of X so ¢ € Z(0). but e, e € Z(o) implies by Lemma
3.19 that Z(o) = Star(v) and hence by Corollary 3.21 any such o is asymptotic to
the R factor of Y, = Y, x R. Since p € Y, C Y, o is a half line of such an R and we
assume without loss of generality that it points in the positive direction. A similar
argument works for ¢(L'). Thus Z(L', L) = lim; o Zs@oyd(L'(t)), 6(L(t)) < . Also
the same arguments applied to —L' and L yield Z(—L', L) =< m — . Thus we get
equality and the result.

O

The next proposition and Proposition 4.8 are technical results that compare tem-
plate geometry with ambient geometry.
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Proposition 4.6. Suppose K > 0. There is a constant Cs depending only on K and
the geometry of X with the following property. Suppose v C T is a geodesic segment
or geodesic ray in T with i'™ edge e;, and set Z := [Uecy Xe]U[UeercrSeer]- If (T, [, d)
is a K-template for v, and x, y € Z, then there is a continuous map o : Ty — T so
that

1. d(¢po a,id|ﬁ) < (s
2. For all p, q € Ty we have

dx(p,q) — kCs < dr(a(p),a(g)) < length(al ) < dx(p,q) + kCs  (47)

where the segment a(p)a(q) C T intersects at most k — 1 strips and walls in T. In
particular there are constants (L, A) depending only on K and X so that ¢ is an
(L, A) quasi-isometric embedding for every K-template (T, f, ).

Proof. By the standard properties of Hadamard spaces we may reduce to the case that
€Y, US,, o C Xy, (vz =e,Ney)andy € Sey e, UYe C Xy, since the original z and
y are within a bounded distance of such. Let W; := f~1(e;) € Wallr fore; 1 <i<n
the edges between v, and v,. We may apply Lemma 3.17 to the pair , y obtaining
points z; € Ty. We let 290 = x and z,,; = y. After making a small perturbation of
the z;’s if necessary, we may assume that they satisfy dx(z;, ) < d(zj, ) when ¢ < j.
For 1 <i <npick w; € T with w; € W; C T with d(z;, ¢(w;)) < 1+inf{d(z;, ¢(w)) |
w € W;} < Cy+ 1. By Definition 4.4 part 3 we can also choose wy € Wy US U W,
and such that dx(z,¢(wy)) < K and similarly choose w,+;. Now define a by the
condition that a(z;) = w;, and « is a constant speed geodesic on the segment Z;z;; ;.

Proof of 1. Apply Definition 4.4 to see that the constant speed parameterization
[0,1] = ¢(w;)P(w;11) is at uniformly bounded distance from the composition of the
constant speed parameterization [0,1] — ww;;; C T with ¢ : T — X. Since
d(¢(w;), z;) is uniformly bounded, we know that the constant speed parameterizations
[0,1] = ¢(w;)P(w;y1) and [0, 1] — Z;Z;1 are also at uniformly bounded distance from
one another, so there is a constant ¢; depending on K so that d(¢ o a, zd|@) < .

Proof of 2. Assume p € Z;77%; — 2,1 and ¢ € ZjZy1 — 2y for j < j'. By
Definition 4.4 we have, for ¢, = 2¢; + K

length(a] ) = dx(p, )| < e

|length(a ) —dx(2i,ziy1)| < co forevery i =1,...n—1

ZiZi+1
length(al,_) = dx(z, )| < ez

Hence there is a ¢35 = ¢3(K) so that

length(ogg) = length(a| )+ .+ length(a|m)
J

pzj
< dx(p,zj) + .-+ dx(z,0) + (' = j +2)e
S dX(p; Q) + kCQ.
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To prove the remaining inequality of (4.7) we break up the 7-geodesic a(p)a(q) into
at most k subsegments w;u;;1 so that each subsegment lies in W, US; UW,; for some
i. Then by definition 4.4 we have |dx(¢(u;), p(uir1)) — dy(ui, uipr)| < K so

dx(p,q) < 2¢1 +dx (¢ o a(p), ¢ oalq))

<2+ ) d($(w), $ui))
< 2¢1 + ke + dr(a(p), a(q))
<dr(a(p),alq)) + kcs.

where ¢35 := 2¢; + 3.

To see the quasi-isometry property of ¢, let o',y € T, x = ¢(2'), y = ¢(y'), and
let @ be the map defined above where we choose wy = z and wy = y (i.e a(z) = 2’
and a(y) = y'). Now 4.7 applied to p = z and ¢ = y along with k£ < dy(2',y') + 1
(since strips have width at least 1) and & < constidx (p, q) + consts (as in the proof of
the coarse lipschitz property of p - see section 3.3) yields the quasi-isometry property
of ¢. This completes the proof of Proposition 4.6. O

Proposition 4.8. Pick K > 0. There is a constant Cy = C4(K,X) so that the
following holds. If (T, f, ¢) is a K-template for v CT, and x, y € T, then there is a
continuous map « : Ty — X where

1. d(a,¢|w) < Cs.
2. For all p, q € Ty we have

dr(p,q) — kCs < dx(a(p), a(q)) < length(a| ) < dr(p,q) + kCs (4.9)

pq
where the segment pqg C T intersects at most (k — 1) strips and walls in T.
Proof. This is similar to the proof of Proposition 4.6, so we omit it. 0
Corollary 4.10. If (T, f, ¢) is a K-template and Cs = Cg(K) is the constant from
Proposition 4.8, then for any x, y € T we have

dr(z,y) — kCs < dx(o(x), p(y)) < dr(x,y) + kCs

where Ty C T meets at most k — 1 strips and walls.

5. Shadowing

In this section we show that geodesic segments in a K-template are sublinearly shad-
owed by ambient geodesic segments, and vice-versa.

Theorem 5.1 (Shadowing). There is a function 0 : R, — R, depending on K
and the geometry of X (sometimes denoted 0x k) with limg_, 0(R) = 0 so that if

(T, f,¢) is a K-template for a geodesic segment/ray v C T, then the following hold.
1. Ifx,yeT, z€Ty and R = d(z,x), then d(¢(z), d(x)o(y)) < (1 + R)O(R).

2. If v,y €T, z€ ¢p(x)d(y) and R :=d(z, ¢(z)) then d(z,4(Ty)) < (1+ R)O(R).
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3. Let T :=T U0xT and X := X U0,X be the usual compactifications. Then
there is a unique topological embedding Oso® : OseT — 050X S0 that

¢=0pU0xp:T =X

is continuous at every & € 0T C T.
4. The image of Oxo¢ is

[UWEWallT(aoon(W))] U [ac?ooo’yX]a

and when 7y is a ray with Oy = 1 then 0xp(0XT) = 0L X (see section 3.3 for the
definition of 071X ).

d. 8oo¢|8oo7. :0XT — 01X s an isometric embedding with respect to the Tits
metric. =

The proof of the theorem breaks up into two pieces. We first show in Proposition
5.6 that a geodesic segment (in a template or in X) running through a sequence of
consecutive walls has to be “close” to any point p which lies close to sufficiently many
walls in the sequence. We then show in Theorem 5.7 that a segment in a template
(resp. in X') which doesn’t meet too many walls (i.e. encounters at most Const log R
walls in the segment pz, d(p,x) = R) is well shadowed by a geodesic segment in X
(resp. in the template). These two arguments are combined in section 5.3 to prove
Theorem 5.1.

5.1. Paths in a template which are close to a cluster of walls

We begin with a result about templates. It estimates the excess length of a path
n which connects two walls W, W' while remaining outside a ball which intersects
W, W', and all walls between them.

Proposition 5.2. Let T be a template with angle function o : Wally — (0,7) sat-
isfying 0 < 0 < a <7 — [ < 7w. Then there are positive constants Ny = Nyi(f3),
(N1 =~ %}, Cy = Ci(B), and Cy = Cy(B) with the following property. Let
Wigs -« s Wh, € Wallr be a sequence of consecutive walls, and suppose W;NB(p, R) #
0 for somep € T, R > 0 and every ng < i < ny. Then for any R' > N\R and any
path ¢ :[0,1] = T — B(p, R') with ¢(0) € W,,, and ¢(1) € W, we have

length(c) = dr(c(0),¢(1)) + Ci(n —no — Cy) R
Proof. Let S; be the strip incident to W; and W;y; for ¢ = ny,... ,n; — 1, set L, =

SiiNW;fori=ng+1,...ny, and set L := SN W, fori =ng,... ,n; — L.
We prove the proposition with the help of some lemmas.

Lemma 5.3. There is a constant ¢; = % so that if p € T and d(p,W;) < R for
j=1%x1 then d(p,0;) < c1R.

Proof. By joining T;_1p to px;;; for appropriate choices of x;_; € W;_; and x;1; €
Wiy1 we get a path v : [0,1] — T of length at most 2R joining W;_; to Wi,.
Therefore there is a segment [a,b] C [0,1] with y(a) € L; and v(b) € L;. So

d(p,0;) < R+ min(d(y(a), 0;),d(y(b), 0;))
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d(v(a), 7(b))

<R+
2sin(5)

S ClR.

RSy

0
We now define Ny := max(2cy, [3] + 2).

Consider a path n: [0,1] — T — B(p, R') where R’ > Ny R. The ball B(p, R') C
T is convex, so clearly 7 — B(p, R') is complete and locally compact with respect
to the induced path metric. Therefore we may assume that ¢ is a constant speed
minimizing path from ¢(0) to ¢(1) in 7 — B(p, R'). Since B(p, R') is a convex subset
of the Hadamard space T, the nearest point projection 7 — B(p, R') is distance non

increasing; it follows that the set ¢ *(B(p, R')) is either empty or a closed subinterval

[a,b] C [0, 1]. c|[0 a and c|[b ) are constant speed geodesic segments in the Hadamard

space T, and since R’ > ¢ R these segments lie in 7 — {0;}n,<i<n, by Lemma 5.3.
Lemma 5.4.
c([0,a]) € [URp Wil U [Upe S
and
c([b,1]) C (U

i=ni1—N1

VVz] U [Utn:lgll—lei] ’

Proof. We prove the first assertion; the proof of the second is similar. If the lemma
were false, we would have ¢(t) € S,,4+n, for some t € [0,a]. Therefore ¢([0,t]) must
cross every strip S; for ng < i@ < ng + Ny, and for every ng < ¢ < ng + Ny it
must enter W; through L. and exit through L. Since ¢([0,qa]) is disjoint from
{0i}no<i<cn, there is a flat convex strip ¥ C 7T containing ¢([0,a]) in its interior.
Using Y we can define co-orientations for the segments ¢([0, a]) NS; and ¢([0, a]) NW;
for ng < i < ng + Ny. If two of the origins o; € W; for nyg < i < ng + N; lie on
opposite sides of the corresponding segments ¢([0, a]) N W; with respect to the co-
orientations then the geodesic between them (of length less than 2¢; R by lemma 5.3)
will intersect ¢(]0, a]) and hence d(o;, ¢([0,a])) < ¢1 R for some ny < i < ng + Ny, and
thus d(p, ¢([0,a]) < 2¢;R. But this cannot happen since d(p, ¢([0,a]) > R’ > 2¢,R.
Thus all the origins 0; € W; for ng < ¢ < ng + N; lie on the same side of the
corresponding segments ¢([0, a]) N W; with respect to the co-orientations. It follows
that the angle between ¢([0,a]) and L; increases by at least § each time ¢([0, al)
passes through a wall. Hence (N — 1)§ < , contradicting the definition of N;. O

Proof of Proposition 5.2 concluded. Let [a',b'] C [a,b] C [0, 1] be the inverse image of

(U Wil U (U T 1Sy

under ¢. We know that ¢([a, 0]) remains in the sphere S(p, R') while it passes through
all the walls W; for ng + N7 < ¢ < n; — N;. So for every ng + Ny < i < n; — Ny,
c([a’,¥]) joins L; to L} outside B(p, R') D B(0;, R'— ¢ R). Hence length(c([d’,b']) >
B(R —c1R)(ni—ng— (2N1+2)) > 2R/ (n; —ng— (2N, +2)) while dr(c(a), c(v')) < 2R’
so length(cla’,V]) > dr(c(d), c(t')) + Z(n1 — ng — (2N1 + 2) — %)R' and hence

length(c) Z dT(C(O), C(l)) + Cl (’ﬂl — Ny — CQ)R,

where C, C5 depend only on . O

30



Corollary 5.5. Let T, Ny, Cy, Co, Wiy, ... . Wy, p, R be as in Proposition 5.2.
If ny — nyg > Cy, then any geodesic segment from W, to W,, must pass through
B(p, N1R).

The result corresponding to Corollary 5.5 in the space X is:

Proposition 5.6. There are constants Ny = No(X), Ry = Ry(X) with the following
property. If n > Ny, e1,...e, € E are the consecutive edges of a geodesic segment,
v, in the tree T, p € X, R > Ry, and X., N B(p, R) # 0 for 1 <i < n; then for any
C >0, and any segment Ty C X with TyN Ne(Xe,) # 0 fori =1 and i = n, we have
Ty N B(p, NoR +2C) # 0.

Proof. Let ey,... ,e,, p, X, be as in the statement of the proposition. If zy N
Ne(Xe,) # 0 for i = 1 and i = n, then we have 7o € X, and yp € X,, with
d(x,TY),d(yo,Ty) < C. By convexity of the distance function dx it suffices to show
that ZTogo N B(p, NoR) # 0.

Let K and /8 be as in Lemma 4.5 and (7, f,¢) be a K template for v whose
angles are bounded by (. Let « : Toyy — T be the map guaranteed by Proposition
4.6. So Length(a) < d(xo,yo) + nCs. By part 3 of definition 4.4 there is a p' € T be
such that d(p, ¢(p')) < R+ K and hence (since X, C Ngop(W;)) d(o(p), (W) <
2R + 2K. Since, by Proposition 4.6, ¢ is an (L, A)-quasi isometric embedding we
have B(p', R2) N W; # 0 for Ry = L(2R + 2K ) + A. We will choose Ry and N, large
enough so that for n > N, and R > Ry we will have nC5; < Cy(n — C3) N, Ry for
the Ny(8), C1(B) and Cy(B) of Proposition 5.2. Thus Proposition 5.2 forces « to
intersect B(p', N1 Rz). So we conclude (again using Proposition 4.6) that d(Zyyg, p) <
Cs+d(p(),o(p'))+ R+ K < Cs5+ LN Ry+ A+ R+ K. The proposition now follows
by taking N, and Ry large enough. O

5.2. Paths with small length distortion

Proposition 5.7. Pick M > 0 and o € (3,1]. Then there is a constant C = C(M, o)
so that if 1 < A< B, n:[A B] - X is a (not necessarily continuous) map to a
Hadamard space X, and for all A <t <ty < B we have

|dx (n(t1),1(t2)) — (b2 — 1) | < M (1 + l09(i—j)) (5-8)

then
d(n(t),z) < C(1+1t) (5.9)

where z € n(A)n(B) is the point with d(z,n(A4)) = L2d(n(A),n(B)). Similarly, if

= 4
A>1andn: A 00) = X satisfies (5.8) for all A < t; < ty, then there is a unique
unit speed geodesic ray v : [A,00) — X with v(A) = n(A) such that

dx (n(t),7(t)) < C(1+17)

for all t € [A, 00).
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Proof. First note that we may assume that A = 1, since the map n; : [1, B—A+1] —
X given by n,(t) := n(t + A — 1) will satisfy the hypotheses of the proposition, and
the conclusion of the proposition applied to 7; will imply (5.9) for 7.

Step 1: When 1 < sy < 55 < 251 < B and s, is sufficiently large then the
comparison angle Z,1y(n(s1),n(s2)) < Const sy .
We will make use of the following lemma that follows from standard comparison