
The geodesic 
ow of a nonpositively curved graphmanifoldChristopher B. Croke�Bruce KleineryNovember 21, 1999AbstractWe consider discrete cocompact isometric actions G �y X where X is alocally compact Hadamard space1, and G belongs to a class of groups (\ad-missible groups") which includes fundamental groups of 3-dimensional graphmanifolds. We identify invariants (\geometric data") of the action � which de-termine, and are determined by, the equivariant homeomorphism type of theaction G @1�y @1X of G on the ideal boundary of X. Moreover, if G �iy Xiare two actions with the same geometric data and � : X1 ! X2 is a G-equivariant quasi-isometry, then for every geodesic ray 
1 : [0;1) ! X1,there is a geodesic ray 
2 : [0;1) ! X2 (unique up to equivalence) so thatlimt!1 1t dX2(� � 
1(t); 
2([0;1))) = 0. This work was inspired by (and an-swers) a question of Gromov in [Gro93, p. 136].1. IntroductionAs a consequence of the Morse lemma on quasi-geodesics, geodesic 
ows are especiallysimple and well understood in the Gromov hyperbolic case :a. If � : M1 ! M2 is a homotopy equivalence between closed negatively curvedmanifolds, then there is an orbit equivalence �̂ : SM1 ! SM2 between the unit spherebundles, which covers � up to homotopy [Gro76].b. If G is a hyperbolic group, G �iy Xi is a discrete, cocompact, isometric actionon a Hadamard space Xi for i = 1; 2, and � : X1 ! X2 is a G-equivariant quasi-isometry, then � maps each geodesic 
1 � X1 to a subset at uniformly boundedHausdor� distance from a geodesic 
2 � X2. Moreover, � induces an equivarianthomeomorphism @1� : @1X1 ! @1X2 between ideal boundaries, [Gro87].�Supported by NSF grants DMS-95-05175 DMS-96-26-232 and DMS 99-71749.ySupported by a Sloan Foundation Fellowship, and NSF grants DMS-95-05175, DMS-96-26911,DMS-9022140.1Following [Bal95] we will refer to CAT (0) spaces (complete, simply connected length spaceswith nonpositive curvature in the sense of Alexandrov) as Hadamard spaces.1



c. When G �y X is a discrete, cocompact action of a hyperbolic group on aHadamard space X, then the induced action G @1�y @1X of G on the boundary of Xis a �nitely presented dynamical system, [Gro87, CDP90].Naturally one may ask if properties b and c hold without the assumption of Gromovhyperbolicity. It turns out that they do not: one can readily produce examples ofpairs of discrete, cocompact, isometric actions Gy X1, Gy X2 where G-equivariantquasi-isometries X1 ! X2 do not induce boundary homeomorphisms2 (this was ob-served independently by Ruane [Rua96]). In [Gro93] Gromov asked whether twoactions Gy Xi induce G-equivariantly homeomorphic boundary actions Gy @1Xi.The answer to this is also no: S. Buyalo [Buy98] and the authors independently foundpairs of actions which induce inequivalent boundary actions3. Finally, we remark thatthe boundary action Gy @1X is �nitely presented if and only if G is hyperbolic4.In this paper we examine actions G y X where G belongs to a class of groupswhich generalize fundamental groups of 3-dimensional graph manifolds. We develop akind of \coding" for geodesic rays in X, which allows us to understand the boundaryaction G y @1X and the Tits metric on @1X. Before stating our main result incomplete generality, we �rst formulate it for nonpositively curved 3-dimensional graphmanifolds.By the theorem of [Sch86], whenM is a 3-dimensional graph manifold with a non-positively curved Riemannian metric, then M has the following structure. There isa collectionM1; : : : ;Mk of compact nonpositively curved 3-manifolds with nonemptytotally geodesic boundary (the geometric Seifert components of M), and Seifert �-brations Mi pi! Ni where the metric on Mi has local product structure compatiblewith the �bration pi, and the Ni are nonpositively curved orbifolds; M is obtainedfrom the disjoint union qiMi by gluing boundary components isometrically in pairsvia gluing isometries which are incompatible with the boundary �berings. In whatfollows we will only consider graph manifolds whose Seifert �bered components haveorientable �ber. Note that for each 1 � i � k, the universal cover of Mi is isometricto a Riemannian product ~Ni � R; the action of �1(Mi) on ~Mi preserves this productstructure and so there is an induced action of �1(Mi) on the R factor by translations.Hence we get a homomorphism �i : �1(Mi)! R for each i. We may also de�ne a classfunction MLSi : �1(Mi)! R+ by taking the minimum of the displacement functionfor the induced action �1(Mi) y ~Ni, i.e. MLSi(g) = inffd ~Ni(gx; x) j x 2 ~Nig; thiscorresponds to the marked length spectrum of the nonpositively curved orbifold Ni.Now suppose M and M 0 are graph manifolds as above, and f : M ! M 0 is ahomotopy equivalence. Embedded incompressible tori in Haken manifolds are deter-mined up to isotopy by their fundamental groups up to conjugacy [Lau74], so we mayassume after isotoping f that it is a homeomorphism which induces homeomorphisms2Let M1 and M2 be closed surfaces with nonpositive curvature, and let N1 and N2 be theRiemannian products Ni := Mi � S1. Suppose f0 : M1 ! M2 is a homotopy equivalence, f :=f0 � idS1 : N1 ! N2 is the corresponding map between the Ni's, and f̂ : ~N1 ! ~N2 is a lift of f to amap between the universal covers. Then it turns out that f̂ extends continuously to up to the idealboundary @1N1 if and only if f0 is homotopic to a homothety.3Boundaries can even fail to be (non-equivariantly) homeomorphic: [CK] describes a pair ofhomeomorphic nonpositively curved 2-complexes whose universal covers have nonhomeomorphicboundary (see also [Wil]).4The action Gy @1X is expansive if and only if G is hyperbolic.2



fi : Mi ! M 0i from the Seifert components of M to the Seifert components of M 0(and hence isomorphisms on the corresponding fundamental groups). We may thenuse the maps fi to compare the invariants �i; � 0i and MLSi; MLS 0i.Theorem 1.1. The following are equivalent:1. The functions MLSi and �i are preserved up to scale by fi: for i = 1; : : : ; kthere are constants ai and bi so that MLSi = aif �(MLS 0i) and �i = bif �(� 0i).2. Any lift ~f : ~M ! ~M 0 of f extends continuously to a map �f : M [ @1M !M 0 [ @1M 0 between the standard compacti�cations.3. If ~f : ~M ! ~M 0 is any lift of f , then ~f maps geodesic rays to geodesic rays, upto uniform sublinear error: there is a function � : R+ ! R+ with limr!1 �(r) = 0 sothat if 
 : [0;1)! ~M is a unit speed geodesic ray, then there is a ray 
0 : [0;1)! ~M 0where d( ~f � 
(t); 
0([0;1))) < (1 + t)�(t).4. If we identify �1(M) with �1(M 0) via f , then the induced boundary actions�1(M) y @1 ~M and �1(M) y @1 ~M 0 are equivariantly homeomorphic (by a uniqueequivariant homeomorphism).If 1 holds and in addition the constants ai and bi are independent of i, then the uniqueequivariant homeomorphism @1 ~M ! @1 ~M 0 in 4 is an isometry with respect to Titsmetrics.In general (see Lemma 6.2) the structure of �1(M) forces the ai's and bi's incondition 1 to satisfy #fa1; : : : ; ak; b1; : : : ; bkg � 2, and except in special circum-stances they all coincide. The condition MLSi = aif �(MLS 0i) means that the ho-motopy equivalence Ni ! N 0i induced by fi preserves the marked length spectrumof the nonpositively curved orbifolds up to the scale factor ai. Although closed non-positively curved surfaces with the same marked length spectrum are isometric by[Cro90, Ota90, CFF92], compact nonpositively curved surfaces with geodesic bound-ary can have the same marked length spectrum without being isometric:Example 1.2. Let N be a pair of pants with a (constant curvature �1) hyperbolicmetric where the boundary components are geodesics with length L, and let fc1; c2g �N be the �xed point set of the order 3 isometry of N . If L is su�ciently large (sothat N looks like a bikini) then a closed geodesic in N cannot pass near fc1; c2g. Thismeans that one can change the metric near fc1; c2g without disturbing the markedlength spectrum of N . Note that one can modify this example slightly so that themetric is 
at in a neighborhood of the boundary geodesics.Suppose M is a nonpositively curved graph manifold with a Seifert component Miisometric to N �S1, where N is as in the example. One can change the metric on theN factor as in example 1.2 to get a Riemannian manifold M 0 so that the conditionsof Theorem 1.1 hold (with f = id), but M 0 is not isometric to M .In section 8 we give an example to show that the uniform sublinear divergenceestimate in condition 3 cannot be improved to a bounded distance estimate as in theGromov hyperbolic case.We now sketch some of the main points in the proof of Theorem 1.1.First consider a single nonpositively curved graph manifold M with geometricSeifert components M1; : : : ;Mk. The universal cover ~Mi is isometric to ~Ni � R { a3



nonpositively curved 3-manifold with a countable collection of totally geodesic bound-ary components isometric to E 2 . The universal cover ~M of M is tiled by a countablecollection of copies of the universal covers ~Mi for i = 1; : : : k; we call these subsetsvertex spaces. We refer to boundary components of vertex spaces as edge spaces. Twovertex spaces are either disjoint, or intersect along an edge space. Let T be the inci-dence graph for the collection of vertex spaces: T is the graph which has one vertex foreach vertex space, and an edge joining two vertices whenever the corresponding vertexspaces intersect. T is isomorphic to the Bass-Serre tree of the graph of groups asso-ciated with the decomposition qiMi ! M (see section 2.5). If v 2 V := V ertex(T )(resp. e 2 E := Edge(T )) we will use the notation ~Mv (resp. ~Me) for the vertexspace (resp. edge space) associated with v (resp. e); and we let ~Mv ' ~Nv � R bethe Riemannian product decomposition of ~Mv. It is not di�cult to check (Lemma3.23) that if Gv := Stabilizer( ~Mv) � G � �1(M), then the center Z(Gv) of Gv isisomorphic to Z, and the �xed point set of Z(Gv) in @1 ~M is just @1 ~Mv; similarly, if~Me is an edge space then the �xed point set of Z2 ' Ge := Stabilizer( ~Me) � G in@1 ~M is @1 ~Me.Let p 2 ~M be an interior point of a vertex space, pick � 2 @1M , and let p�denote the geodesic ray starting at p which is asymptotic to �. The ray p� encountersa (possibly �nite) sequence of vertex and edge spaces called the itinerary of p�. Theconvexity of vertex and edge spaces forces the itinerary v0; e1; v1; e2; : : : of p� to bethe sequence of successive vertices and edges of a geodesic segment or ray in T . Inorder to understand the rays with itinerary v0; e1; v1; e2; : : : , we construct a piecewise
at complex T { a template { in ~M as follows. First let 
i � ~Mvi be a shortestgeodesic from ~Mei to ~Mei+1 for i > 0, and let 
0 be a shortest path from p 2 ~Mv0to ~Me1 . For i � 0 de�ne Si � ~Mvi to be the 
at strip which is the union of thegeodesics in ~Mvi which are parallel to the R-factor of ~Mvi and which pass through 
i.We de�ne T to be the union of the edge spaces f ~Meig with the strips fSig; then T isa Hadamard space with respect to the induced path metric. A key technical step inthe proof of Theorem 1.1 is Theorem 5.1, which shows that for any geodesic ray p�in the Hadamard space T , there is a unique geodesic ray p� 0 in ~M with the propertythat for all x 2 p�, d ~M(x; p� 0) � �(dT (x; p))(1 + dT (x; p))for some function � : [0;1) ! [0;1) with limr!1 �(r) = 0 which is independent ofthe choice of itinerary. Using Theorem 5.1 one �nds that the set of boundary points� 2 @1 ~M for which the ray p� has a given in�nite itinerary v0; e1; : : : is homeomorphicto the set boundary points � 0 2 T so that the T -ray p� 0 passes through ~Mei for every i.One sees (Proposition 7.3) that the latter is either a single point or is homeomorphicto a closed interval, depending on the geometry of T (which depends, in turn, on thechoice of itinerary and the geometry of M).We now consider a second nonpositively curved 3-manifold M 0, and use primesto denote the vertex spaces, edge spaces, etc for M 0. Let f : M ! M 0 be a home-omorphism as in Theorem 1.1, and identify the deck groups G := �1(M) ' �1(M 0)via a lift ~f of f . Then ~f maps vertex (resp. edge) spaces of M homeomorphicallyto vertex (resp. edge) spaces of M 0, so we may use ~f to identify the incidence treeT 0 with T . Suppose � : @1 ~M ! @1 ~M 0 is a G-equivariant homeomorphism. Usingthe remarks about �xed point sets made above, it follows that �(@1 ~Mv) = @1 ~M 0v4



and �(@1 ~Me) = @1 ~M 0e for every v 2 V and every e 2 E. Also, if p 2 ~Mv0 ,and v0; e1; v1; e2; : : : is an in�nite itinerary, then �(S) = S 0 where S � @1 ~M andS 0 � @1 ~M 0 are the subsets corresponding to the itinerary v0; e1; v1; e2; : : : (Corollary5.28); in particular, either S and S 0 are both points or they are both intervals. Byconsidering all possible in�nite itineraries and exploiting this correlation, we are ableto see (section 7) that the invariants MLSi; MLS 0i and �i; � 0i must agree as in condi-tion 1 of Theorem 1.1. Conversely, if condition 1 holds and p 2 ~M , one shows (section6) that for each itinerary the corresponding templates in ~M and ~M 0 have su�cientlysimilar geometry that their geodesics are \similar"; and this implies that ~f extendsto the compacti�cations as in 2 of Theorem 1.1.Our main result generalizes Theorem 1.1 and applies to admissible groups, a classof (fundamental groups of) graphs of groups, see section 3.1 for the precise de�nition.When an admissible group G acts discretely and cocompactly on a Hadamard spaceX then we associate geometric data to each vertex group Gv � G consisting of a classfunction MLSv : Gv ! R+ and a homomorphism �v : Gv ! R (see section 3.2).Theorem 1.3. Let G y X be a discrete, cocompact, isometric action of an admis-sible group on a Hadamard space X. Then for every vertex v, MLSv and �v aredetermined up to scale factors av and bv by the topological conjugacy class of theboundary action Gy @1X, and vice-versa. If Gy X 0 is another such action, thenthe following are equivalent:1. Gy X and Gy X 0 have the same geometric data up to scale.2. G-equivariant quasi-isometries X ! X 0 extend canonically to the compacti�-cations X [ @1X ! X 0 [ @1X 0.3. The boundary actions G y @1X and G y @1X 0 are G-equivariantly homeo-morphic (by a unique5 G-equivariant homeomorphism).4. If f : X ! X 0 is a G-equivariant quasi-isometry, then there is a function� : R+ ! R+ with limr!1 �(r) = 0 so that for every unit speed geodesic ray 
 :[0;1)! X there is a ray 
0 : [0;1)! X 0 with d(f � 
(t); 
0(t)) < (1 + t)�(t).Furthermore, if there is a single scale factor s so that MLS 0v = sMLSv and � 0v =s�v for every vertex v, then the unique G-equivariant homeomorphism @1X ! @1X 0is an isometry with respect to the Tits metrics.The authors proved theorem 1.3 while attempting to digest the negative answerto Gromov's question about boundary actions. A key factor in our example was the(unanticipated) presence of intervals in the Tits boundary. After the examples andtheir properties had been announced, similar structure was found in other manifolds,[HS98]. The paper [BS] also contains some discussion of the Tits boundary of universalcovers of nonpositively curved graph manifolds.Open questions. The results in this paper raise a number of questions. First ofall, for each group G one may ask for a generalization of Theorem 1.3, where the5It follows from the methods of [Bal95, III.3] that if G y X is a cocompact isometric action ona Hadamard space, g 2 G is an axial isometry, and 
g � is an axis for g which does not bound a
at half plane, then the orbit of @1
 � @1X under the action Gy @1X is dense in @1X . Hencethe set of points in @1X which are the unique attracting �xed point of some element of G is densein @1X . Any G-equivariant homeomorphism @1X ! @1X must �x this dense set pointwise, andmust therefore be the identity. The uniqueness statement follows immediately from this.5
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8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552. Preliminaries2.1. Coarse geometryLet X and X 0 be metric spaces, and let � : X ! X 0 be a map.De�nition 2.1. 1. � is (L;A)-Lipschitz if for all x1; x2 2 X,d(�(x1);�(x2)) � Ld(x1; x2) + A:� is coarse Lipschitz if it is (L;A)-Lipschitz for some L; A > 0.2. � is an (L;A)-quasi-isometric embedding if it is (L;A)-Lipschitz and for allx1; x2 2 X, d(�(x1);�(x2)) � L�1d(x1; x2)� A:The constants (L;A) will often be suppressed. A quasi-geodesic (respectively seg-ment/ray) is a quasi-isometric embedding � : R ! X (respectively � : [a; b] ! X,� : [0;1) ! X). We sometimes refer to the image of a quasi-geodesic as a quasi-geodesic.3. � is an (L;A)-quasi-isometry if it is an (L;A)-quasi-isometric embedding andfor all x0 2 X 0, d(x0;�(X)) < A.4. � is a D-Hausdor� approximation if it is a (1; D)-quasi-isometry.We will use the following well-known lemma:Lemma 2.2. If G y X is a discrete, cocompact, isometric action of a group G ona length space X, then there is a G-equivariant quasi-isometry � : Cayley(G)! X,where Cayley(G) is any Cayley graph of G.2.2. Hadamard spacesWe refer the reader to [Bal95] for the material recalled here.Geodesics and the boundary. Let X be a locally compact Hadamard space. Ifp; q 2 X then pq � X denotes the segment from p to q. If p; x; y 2 X and p 62 fx; yg,then e\p(x; y) (respectively \p(x; y)) denotes the comparison angle (respectively angle)of the triangle �pxy at p. We will use @1X to denote the set of asymptote classes ofgeodesic rays in X, with the cone topology. If p 2 X and � 2 @1X, then p� denotesthe ray leaving p in the asymptote class of �. �X := X [ @1X denotes the usualcompacti�cation: a sequence xi 2 �X converges if and only if for any basepoint p 2 Xthe sequence of geodesic segments/rays pxi converges in the compact open topology.We denote the Tits angle between �1; �2 2 @1X by \T (�1; �2), and @TX denotes theunderlying set of @1X equipped with the Tits angle metric (which usually induces atopology di�erent from the one de�ned above). The metric space @TX is a CAT (1)space with respect to this metric. When �1; �2 2 @TX and \T (�1; �2) < � then there isa segment between �1 and �2 in @TX, which we denote by �1�2 � @TX. This segment7



is the limit set in �X of any sequence of segments xk1xk2 where xki tends to in�nityalong a ray asymptotic to �i. We will not use the Tits path metric. We recall that@1 and @T behave nicely with respect to products: @1(X1 � X2) = @1X1 � @1X2and @T (X1 �X2) = @TX1 � @TX2 where in the �rst case � represents the topologicaljoin and in the second the �2 -metric join. We will use this in the case where X2 = R.We will let NR(C) be the closed metric tubular neighborhood of radius R of asubset C � X. A closed convex subset C � X is also a locally compact Hadamardspace as is NR(C), since it is also convex.Standard comparison arguments show the following.Lemma 2.3. Let X be a locally compact Hadamard space, and let C � X be a closedconvex subset. Then for any R > 0, � 2 @1NRC, and z 2 C we have z�1 � C. Inparticular, @1C = @1NRC.One consequence is:Lemma 2.4. Let X be a locally compact Hadamard space, and let C � X be a closedconvex subset. If p 2 X, �i 2 @1X, and �i ! �1, p�i \ C 6= ; for all i, then eitherp�1 \ C 6= ; or �1 2 @1C.Proof. Pick xi 2 p�i\C. If lim inf d(xi; p) <1 then a subsequence of xi converges tox1 2 C \ p�1. On the other hand, if lim inf d(xi; p) =1 then for some subsequencepxi ! p�1. By the convexity of NR(C), p�1 � NR(C) for R = d(p; C) and henceLemma 2.3 yields the result.Lemma 2.5. Let � : X ! X 0 be a quasi-isometric embedding, and assume there isa point x 2 X and a function � : R+ ! R+ with limr!1 �(r) = 0 so that for everyy 2 X, z 2 xy, we havedX0(�(z);�(x)�(y)) � (1 + dX(z; x))�(dX(z; x)): (2.6)Then there is a unique extension �� : �X ! �X 0 of � which is continuous at @1X, and@1� := ��j@1X is a topological embedding.Proof. Let � be an (L;A)�quasi isometric embedding, and � 2 @1X, and yk 2 Xbe such that xyk converges to x�. By the convergence we can choose Rk ! 1 sothat for all k � n we have d(yk; x) � Rn and ykn := xyk \ S(x;Rn) � N1(x�).Note that the point on � closest to ykn lies in �([Rn � 1; Rn + 1]), hence by thetriangle inequality d(ykn; yln) � 4 for k; l � n. Using (2.6), for every k � n choosey0kn 2 �(x)�(yk) with dX0(y0kn;�(ykn)) � (1 + Rn)�(Rn). Then for every k; l � n wehave dX0(�(ykn);�(yln)) � 4L + A, and so dX0(y0kn; y0ln) � 2(1 +Rn)�(Rn) + 4L + A.This, along with the fact that d(�(x); y0kn) � L�1Rn � A � (1 + Rn)�(Rn), forcese\�(x)(y0kn; y0ln) to zero as n ! 1. This in turn forces �(x)�(yk) to converge to aray �(x)�(�) since for each R > 0 we have for large enough k that the sequencef�(x)�(yk) \ S(�(x); R)g is Cauchy and hence converges. This proves that � has aunique extension �� : �X ! �X 0 which is continuous at @1X. The map @1� := ��j@1Xclearly has the property that for all � 2 @1X and all y 2 x�,d(�(y);�(x)@1�(�)) � (1 + d(x; y))�(d(x; y)): (2.7)8



When �1; �2 2 @1X are distinct, the rays x�i diverge linearly, and hence �(x�1) and�(x�2) diverge linearly since � is a quasi isometric embedding. Now if @1�(�1) =@1�(�2) then (2.7) would imply that �(x�1) and �(x�2) would each diverge sublin-early from �(x)@1�(�1) and hence diverge sublinearly from each other. Thus weconclude that @1�(�1) 6= @1�(�2).2.3. Groups acting on Hadamard spaces.Let X be a Hadamard space. We denote the displacement function of an isometryg : X ! X by dg, and the in�mum of dg by �g. When g is axial, we let Minset(g)denote the convex subset where dg attains its minimum. We recall that Minset(g)splits as a metric product C � R where C is convex and g acts trivially on the Cfactor and by translation on the R factor.Let G y X be a discrete, cocompact, isometric action of a group G on aHadamard space X. If H � G is a subgroup isomorphic to Zk, we let Minset(H) :=\h2HMinset(h). We recall that Minset(H) = \h2SMinset(h) for any generatingset S � H, and that Minset(H) splits isometrically as a metric product C � E k sothat H acts trivially on the C factor, and as a translation lattice on the E k factor.The centralizer Z(H;G) of H in G preserves �h for every h 2 H, and hence alsoMinset(H). If S � H is a �nite generating set, then the function Ph2S �h : X ! Rdescends to a proper function on X=Z(H;G); in particular, Minset(H)=Z(H;G) iscompact.2.4. Gromov hyperbolic groups and spacesFor background on the material in this section see [Gro87], [GdlH90], and [CDP90].Some standard facts that we will use: If a Gromov hyperbolic group G acts cocom-pactly on a Hadamard space X then (since X is then quasi-isometric to Cayley(G)and Gromov hyperbolicity is a quasi isometry invariant) X is Gromov hyperbolic (i.e.�-hyperbolic for some �). Further @1X is homeomorphic to @1G, and all in�nite or-der elements g 2 G are axial. The Tits metric @TX is the discrete metric with anytwo distinct points having distance �.In this section we make use of the Morse lemma for quasi-geodesic segments (see[Gro87, CDP90]):Lemma 2.8. (Morse Lemma) Given � > 0, L > 0 and A � 0 there is a constantC = C(�; L; A) such that if 
1 and 
2 are (L;A)-quasi-geodesic segments with thesame endpoints sitting in a �-hyperbolic space, then their Hausdor� distance satis�esdH(
1; 
2) < C.Two geodesics 
1 and 
2 in a Hadamard spaceX are parallel if they stay a boundeddistance apart. The parallel set P (
) � X of a geodesic 
 is the union of all geodesicsparallel to 
. By the 
at strip theorem, P (
) is a convex subset of X, and is isometricto C
�R where C
 � X is convex. A bounded convex set C always contains a uniquecircumcenter: the center of the smallest metric ball containing C.Lemma 2.9. Let X be a �-hyperbolic Hadamard space. Then9



1. If 
 � X is a geodesic and P (
) ' C
�R is its parallel set, then Diam(C
) < �.In particular P (
) contains a canonical geodesic z� R � C
 � R where z 2 C
 is thecircumcenter of C
.2. If 
1; 
2 � X are geodesics, xi 2 
i, then 
1 [ x1x2 [ 
2 is 2�-quasi-convex6.3. Suppose 
1; 
2 � X are geodesics with @1
1 \ @1
2 = ;, and let � a minimalgeodesic segment between 
1 and 
2. Then any geodesic segment running from 
1 to
2 will pass within distance D = D(
1; 
2) of both endpoints of �; when d(
1; 
2) > 4�then we may take D = 2�.Proof. 1 follows from the fact that a �-hyperbolic Euclidean strip has width at most�. 2 and 3 follow from repeated application of the �-thinness property of geodesictriangles.In the following lemma is a slight variation on results from [Gro87]. It shows thatdiscrete isometric actions on Gromov hyperbolic spaces behave like free group actionson trees.Lemma 2.10. Let X be a �-hyperbolic Hadamard space, and let ? 2 X. Suppose(gi)i2Z is a periodic sequence of axial isometries of X with period k (i.e. gi+k = gi forall i; and in particular g0 = gk and g�1 = gk�1), and let the attracting (respectivelyrepelling) �xed point of gi be �+i 2 @1X (respectively ��i 2 @1X). If for every i wehave ��i 6= �+i+1, then there are constants L, A, N , and D with the following property.1. If (mi)i2Z is a sequence with mi > N , then the broken geodesic with vertices: : : ; v�2 = (g�m�1�1 g�m�2�2 )(?); v�1 = g�m�1�1 (?); v0 = ?; v1 = gm00 (?); v2 = (gm00 gm11 )(?); : : :(2.11)is an (L;A) quasi-geodesic, andjd(vi; vi+l)� i+l�1Xj=i mj�gj j < lD (2.12)2. If (mi)i2Z is a sequence with mi > N and period k, then g := gm00 : : : gmk�1k�1is an axial isometry with an axis 
 within Hausdor� distance D of the g-invariantbroken geodesic with vertices (2.11), and the minimal displacement of g satis�esj�g � (m0�g0 + : : :+mk�1�gk�1)j < D: (2.13)Furthermore, as m0 ! 1 (respectively mk�1 ! 1), the attracting (respectivelyrepelling) �xed point of g tends to �+0 (respectively ��k�1).Proof. Since ��i 6= �+i+1 for all i 2 Z, there are constants L1, A1, and N1, so that whenm� > N1 then for any i the broken geodesic with vertices g�m�i (?), ?, gm+i+1? is an(L1; A1) quasi-geodesic segment. Let (mi)i2Z be a sequence, and let � : R ! X be thebroken geodesic with vertices (2.11). By the local characterization of quasi-geodesicsgiven in [CDP90, Chapitre 3], we get constants L = L(L1; A1; �), A = A(L1; A1; �),6A subset Z � X is C-quasi-convex if for all x; y 2 Z we have xy � NC(Z).10



and N2 = N2(L1; A1; �; fgigi2Z) � N1 so that � is an (L;A) quasi-geodesic providedmi � N2 for all i.We now assume that mi � N2 for all i. By the Morse lemma there is a D1 =D1(L;A; �) so that there is a geodesic at Hausdor� distance at most D1 from �(R),and any geodesic 
 � X with @1
 = @1� has Hausdor� distance at most D1 from �.Fix such a geodesic 
 � X, and for each i 2 Z let wi 2 
 be the point in 
 nearestvi. By the triangle inequality we havejd(vi; vi+1)� d(wi; wi+1)j � 2D1: (2.14)Choose c1 = c1(?; fgig) so that the distance from ? to the nearest axis of gi is lessthan c1; then for all i 2 Zjd(vi; vi+1)�mi�gi j = jd(?; gmii (?))�mi�gi j < 2c1: (2.15)Since for each i, the broken segment with vertices vi�1; vi; vi+1 is an (L1; A1) quasi-geodesic, the Morse Lemma givesd(vi�1; vi+1) � d(vi�1; vi) + d(vi; vi+1)� 2D1: (2.16)This gives d(wi�1; wi+1) � d(wi�1; wi) + d(wi; wi+1)� 8D1: (2.17)Therefore there is an N = N(?; fgig) � N2 so that if mi � N then wi lies betweenwi�1 and wi+1 for all i. So when mi � N we havejd(vi; vi+l)� j+l�1Xj=i mj�gj j � 2D1 + jd(wi; wi+l)� j+l�1Xj=i mj�gj j� 2D1 + j+l�1Xj=i jd(wj; wj+1)�mj�gj j � 2D1(l + 1) + 2lc1: (2.18)We now set D := (2k + 4)D1 + 2kc1, and note that we have proved 1. When thesequence (mi) has period k, mi � N for all i, and g := gm00 : : : gmk�1k , then we may take
 to be an axis for g. We have �g = d(w0; wk), and (2.13) follows from (2.18). Thelast assertion follows immediately from the fact that as m0 !1 and mk�1 !1, thesegments ?gm00 (?) and ?g�mk�1k�1 (?) converge to the rays ?�+0 and ?��k�1 respectively.Lemma 2.19. Let G �y X be a discrete, cocompact isometric action of a hyperbolicgroup G on a Hadamard space X. There is a constant D = D(�; �) so that for everyx1; x2 2 X there is a g 2 G and an axis 
 for g with d(xi; 
) < D for i = 1; 2, andd(g(x1); x2) < D.Proof. If G is elementary, then either G is �nite (in which case the result holdstrivially) or there is a hyperbolic element g 2 G with an axis 
 so that X = NR(
)for some R; this implies 2 in this case. So we may assume that G is nonelementary,and hence G does not �x any � 2 @1X. 11



Pick ? 2 X and a �nite generating set � � G. Fix �0 2 �, let �0 = f�0g[f��0j� 2�g, and let C(�0) = minfd(?; �0(?))j�0 2 �g.We note that by the cocompactness of the action it is su�cient to prove thetheorem when x1 is ?; for then (with a larger D) if g1(xi) is near ? (within thediameter of the fundamental domain) and g is the solution for ? and g1(x2) theng�11 gg1 works for x1 and x2 (since g�11 (
g) is an axis for g�11 gg1).Claim. There are constants L1, A1 such that for all g 2 G, there is a �0 2 �0 so thatthe broken geodesic with vertices (g�0)�1)(?); ?; (g�0)(?) is an (L1; A1)-quasi-geodesic.Proof of claim. If not, there is a sequence gk 2 G with d(gk(?); ?) ! 1, so thatfor every �0 2 �0 the broken geodesic with vertices (gk�0)�1)(?); ?; (gk�0)(?) is not a(k; k)-quasi-geodesic. This clearly implies that after passing to a subsequence (whichworks for all �0), the segments ?[(gk�0)(?)], ?[(gk�0)�1(?)] converge to some ray ?�(�0).But since d(gk(?); (gk�0)(?)) � C(�0) we see (gk)(?) converges to �(�0), so �(�0) = �is independent of �0. The fact that (gk�0)�1(?) converges to � tells us (by applying�0 to the sequence) that g�1k (?) converges to �0(�) = �0 which is again independentof the choice of �0. Thus �0(�) = �0 for all �0 2 �, and hence for every � 2 �,�(�0) = (��0)��10 (�0) = �0, which is a contradiction.Proof of Lemma 2.19 continued. By the claim and an application of [CDP90, Chapitre3] as in the proof of Lemma 2.10, we see that there are constants L, A, and D1 sothat if g 2 G and d(g(?); ?) > D1, then there is a �0 2 �0 so that the brokengeodesic with ith vertex (g�0)i(?) is an (L;A)-quasi-geodesic. By the Morse Lemmaand Lemma 2.9, (g�0) has an axis at distance < D2(L;A; �) from ? and (g�0)(?).Since d((g�0)(?); g(?)) = d(�0(?); ?) � C(�0), the lemma clearly follows.Lemma 2.20. Consider two discrete, cocompact, isometric actions G �y X, G �0yX 0 where X and X 0 are �-hyperbolic Hadamard spaces. Assume that the minimumdisplacement of any g 2 G in X is the same as the minimal displacement in X 0. Thenany G-equivariant (L;A)-quasi-isometry � : X ! X 0 maps unit speed geodesics 
 towithin D = D(L;A; �; �; �0) of a unit speed geodesic 
0, that is d(�(
(t)); 
0(t)) � D.Proof. By the Morse lemma on quasi-geodesics, it su�ces to show that � is a D1 =D1(L;A; �; �; �0) Hausdor� approximation. Let D5 = maxfD4(�; �); D4(�; �0)g wherethe D4's come from Lemma 2.19. For x1; x2 2 X (resp. �(x1);�(x2) 2 X 0) let g 2 G(resp g0 2 G) be the elements guaranteed by Lemma 2.19. Since x1 is D5 close to anaxis of g we know that 2D5+ �g � d(x1; g(x1)) � �g and hence 3D5+ �g � d(x1; x2) ��g �D5. Nowd(�(x1);�(x2)) � d(�(x1);�(g(x1)))� d(�(g(x1));�(x2)) �� �g � LD5 � A � d(x1; x2)� (L+ 3)D5 � Aand similarly d(x1; x2) � d(x1; g0(x1))� d(g0(x1); x2) �� �g0 � LD5 � A � d(�(x1);�(x2))� (L+ 3)D5 � A:Hence we can take D1 = (L + 3)D5 + A.
12



Lemma 2.21. Let G �y X be a discrete, cocompact isometric action on a �-HyperbolicHadamard space X.1. If f
gjg 2 S � Gg is a collection of distinct axis of distinct elements g 2 Gsuch that f�gg is bounded then f
gg forms a discrete set of geodesics.2. If two axial elements g1; g2 2 G have a common �xed point in @1X then theyhave a common axis (i.e. they have both �xed points in common).Proof. Assume some sequence 
gi converges to a geodesic 
 and let ? 2 
 then theboundedness of f�gig says that there is a C such that d(?; gi(?)) < C but this cannotbe true for in�nitely many distinct gi.To see the second statement we can assume that the attracting and repelling�xed points satisfy �+1 = �+2 and ��1 6= ��2 (the other cases are similar). In this casefg�k1 g2gk1g are distinct since they have distinct �xed point sets f�+1 ; g�k1 (��2 )g in @1Xwhile the axes converge (after taking a subsequence) to an axis of gk. But again thereis a C such that d(?; g�k1 g2gk1(?)) < C giving the desired contradiction.2.5. Graphs of groups and their Bass-Serre treesFor the remainder of the paper, all group actions on simplicial trees will be assumedto be simplicial actions which do not invert edges, and geodesic segments/rays insimplicial trees will be unions of edges.References for the material in this section are [Ser80, SW79, DD89].De�nition 2.22. A graph of groups is a connected graph G together with a groupG� labeling each � 2 V ertex(G) [Edge(G), and a monomorphism Ge ! Gv for eachpair (e; v) consisting of an oriented edge e entering a vertex v. An isomorphism oftwo graphs of groups is an isomorphism of labeled graphs which is compatible withedge monomorphisms.Let G �y T be an action of a group G on a simplicial tree T . We can de�ne anassociated graph of groups G as follows. We let the graph underlying G be G=T . Foreach � 2 V ertex(G) [ Edge(G) we may label � with the stabilizer of a lift �̂ � Tof �. An for each pair (e; v), where e � T=G is an oriented edge with terminusv 2 T=G, we can de�ne an edge monomorphism Ge ! Gv by composing the inclusionGe := Gê ! Ggv̂ (gv̂ 2 T is the terminus of ê) with the isomorphism Ggv̂ ! Gv̂ = Gvinduced by conjugation by g�1. We refer to this as the graph of groups associatedwith the action Gy T .Lemma 2.23. If G is a graph of groups, then there is a group G, a simplicial tree T ,and an action G �y T so that:1. If �G is the graph of groups associated with the action G �y T , then �G ' G.2. If G0 �0y T 0 is another action on a simplicial tree satisfying 1, then there is anisomorphism G0 ' G so that the actions � and �0 become simplicially isomorphic.The (isomorphism class of the) group G is the fundamental group of G, and the treeT (or really the action G �y T ) is called the Bass-Serre tree of G. We note that if13



v is a vertex of T and Gv is its stabilizer, then the Gv-orbits of Link(v) correspondbijectively to the elements of Link(�v) where �v 2 G is the corresponding vertex ofG=T ' G, and the stabilizer of � 2 Link(v) is just Ge where e is the edge associatedwith �.Let G be a graph of groups and let �e be an edge of G with endpoints �v1 and �v2.We let G 0 be the graph of groups determined by �e. The fundamental group of G 0 is afree product with amalgamation if �e is embedded in G and an HNN extension if �e isa loop. Choose a lift e = v1v2 � T of �e to the Bass-Serre tree T . We may identify G�viwith Gvi and G�e with Ge in a fashion compatible with the edge inclusions G�e ! G�vi ,Ge ! Gvi . When �e is a loop we may choose t 2 G = �1(G) so that t(v1) = v2 and thecomposition Ge ! Gv1 t(�)t�1�! Gv2 agrees with the edge monomorphism Ge ! Gv2 . SetG0 := hGv1; Gv2i when �e is embedded and set G0 := hGv1 ; ti when �e is a loop. Thenthe orbit T 0 := G0(e) � T is a G0-invariant subtree of T , and the action G0 y T 0 isthe Bass-Serre action for G 0. When �e is embedded we choose subsets �i � Gvi whichintersect each right coset of Ge exactly once; then any g 2 G0 can be written uniquelyin the form s1 : : : skr (2.24)where r 2 Ge, si 62 Ge, and the si's belong alternately to �1 and �2. The combinato-rial distance from the edge g(e) to e is k and ei = s1 : : : si(e) is the sequence of edgesalong the path from e to g(e). When �e is a loop, we choose a cross-section �1 � Gv1(respectively ��1) of the right cosets of Ge (respectively t�1Get). Then any g 2 G0can be written uniquely in the forms1t�1s2t�2 : : : skt�kr (2.25)where for i = 1; : : : ; k, �i = �1, si 2 ��i , r 2 Gv1 , and if si 2 Ge then �i�1 = ��i.3. Graphs of groups and the structure of Hadamard spaceson which they act3.1. Admissible groups and actionsDe�nition 3.1. A graph of groups G is admissible if1. G is a �nite graph with at least one edge.2. Each vertex group �Gv has center Z( �Gv) ' Z, �Hv := �Gv=Z( �Gv) is a nonelemen-tary hyperbolic group, and every edge subgroup �Ge is isomorphic to Z2.3. Let e1; e2 be distinct directed edges entering a vertex v, and for i = 1; 2 letKi � �Gv be the image of the edge homomorphism �Gei ! �Gv. Then for every g 2 �Gv,gK1g�1 is not commensurable with K2, and for every g 2 �Gv � Ki, gKig�1 is notcommensurable with Ki.4. For every edge group �Ge, if �i : �Ge ! �Gvi are the edge monomorphisms, thenthe subgroup generated by ��11 (Z( �Gv1)) and ��12 (Z( �Gv2)) has �nite index in Ge ' Z2.A group G is admissible if it is the fundamental group of an admissible graph ofgroups. 14



Let G be the fundamental group of an admissible graph of groups G, and letGy T be the action of G on the associated Bass-Serre tree. We let V := V ertex(T )and E := Edge(T ) denote the vertex and edge sets of T , and when � 2 V [E we letG� � G denote corresponding stabilizer. Properties 1-4 of de�nition 3.1 imply :Lemma 3.2. 1. T is an unbounded tree with in�nite valence at each vertex, and Gacts on T with quotient G.2. Each vertex group Gv has center Z(Gv) ' Z, Hv := Gv=Z(Gv) is a nonele-mentary hyperbolic group, and every edge subgroup Ge is isomorphic to Z2.3. If e1; e2 are distinct edges emanating from v 2 V , then Ge1 is not commensu-rable with Ge2 . In particular, Z(Gv) � Gei since g 2 Z(Gv) implies Gei = gGeig�1 =Ggei forcing gei = ei, i.e. g 2 Gei.4. If e 2 E has endpoints v1; v2 2 V , then (Z(Gv1) [ Z(Gv2)) � Ge generates a�nite index subgroup of Ge.Most of the time we will work with the action G y T and ignore the graph ofgroups that produced it.Examples of admissible groups:1. (Graph manifolds) Let M be a 3-dimensional nonpositively curved graph man-ifold as in Theorem 1.1, and let Mi, i = 1; : : : k be the geometric Seifert componentsof M . Let G be the graph of groups which has one vertex labeled with �1(Mi) foreach i, and an edge labeled by Z2 for each pair of totally geodesic boundary tori inthe disjoint union [iMi which are glued to form M . The edge monomorphisms comefrom the two di�erent embeddings of a gluing torus into Seifert components.2. (Torus complexes) Let T0; T1; T2 be 
at two-dimensional tori. For i = 1; 2, wechoose primitive closed geodesics ai � T0 and bi � Ti with length(ai) = length(bi),and we glue Ti to T0 by identifying ai with bi isometrically. We assume that a1 anda2 lie in distinct free homotopy classes, and intersect at an angle � 2 (0; �2 ]. Let G bethe graph of groups associated with the decomposition (T0 [ T1) q (T0 [ T1) ! [Ti.Note that T0 [ T1 is homeomorphic to S1 � (S1 ^ S1), so �1(T0 [ Ti) = Z� F2 whereF2 is the free group on two generators.Lemma 3.3. 1. If e1; e2 2 E are distinct edges incident to v 2 V , then Z(Gv) ' Zis a �nite index subgroup of Ge1 \Ge2. In particular Ge1 \Ge2 ' Z.2. If v1; v2 2 V are the endpoints of an edge e 2 E, then Z(Gv1)\Z(Gv2) = fidg.Proof. Note that Ge1 \Ge2 has in�nite index in each Gei, for otherwise the Gei ' Z2would be commensurable, contradicting 3 of Lemma 3.2. Thus Ge1 \ Ge2 ' Z. Alsoby 3 of Lemma 3.2 we have Z(Gv) � Ge1 \Ge2, so both are rank 1 free abelian groupsand 1 follows.2 follows immediately from 4 of Lemma 3.2, since the Z(Gvi) are rank 1 subgroupsof Ge ' Z2 which generate a �nite index subgroup of Ge.Lemma 3.4. If v1; v2 2 V , then1. If d(v1; v2) > 2 then Gv1 \Gv2 = fidg.2. If d(v1; v2) = 2 and v 2 V is the vertex between them, then Z(Gv) is a �niteindex subgroup of Gv1 \Gv2 . 15



3. If d(v1; v2) = 1, then Gv1 \Gv2 = Ge where e = v1v2.Proof. We will prove the assertions in reverse order. Part 3 is immediate since theaction G y T does not invert edges, see section 2.5. To prove 2 we let ei be theedge between vi and v. Clearly Gv1 \Gv2 = Ge1 \Ge2 , which by Lemma 3.3 containsZ(Gv) as a subgroup of �nite index. To prove 1, let e1; e; e2 2 E be three consecutiveedges of the segment v1v2, and let w1; w2 2 V be the endpoints of e. Then by1 of Lemma 3.3, Z(Gwi) (' Z) has �nite index in Gei \ Ge (' Z), so we have(Ge1 \Ge)\ (Ge \Ge2) = ; since otherwise Z(Gw1)[Z(Gw2) would generate a cyclicgroup in Ge (' Z2) contradicting 4 of Lemma 3.2. SinceGv1 \Gv2 � (Ge1 \Ge) \ (Ge \Ge2)1 follows.Lemma 3.5. For v 2 V , the �xed point set of Z(Gv) is the closed star Star(v). Fore 2 E, the �xed point set of Ge is e. In particular, for any � 2 V [ E, G� leaves nopoint in @1T �xed. Further, if Star(v) is invariant under Z(G�) then � 2 Star(v).Proof. Fix a vertex v. Since Z(Gv) � Ge for all e in the star it is clear that the closedstar is in the �xed point set of Z(Gv). On the other hand 1 of Lemma 3.4 says weneed only consider vertices v1 such that d(v; v1) = 2. Let w be the vertex between vand v1. Now 2 of Lemma 3.4 says that Z(Gw) is a �nite index subgroup of Gv \Gv1 ,while 2 of Lemma 3.3 says that Z(Gv) \ Z(Gw) = ;. Thus Z(Gv) \Gv1 = ; and the�rst statement follows.For an edge e = v1v2 the �rst part (since Gvi � Ge) says that the �xed point setof Ge is contained in Star(v1) \ Star(v2) = e. So the second statement follows.The last two statements follow from the �rst two.Lemma 3.6. If v 2 V then the centralizer of Z(Gv) in G is just Gv. If e 2 E thecentralizer of Ge in G is Ge.Proof. By Lemma 3.5, the �xed point set of Z(Gv) in T is just the closed star of vin T . Hence any g 2 G which commutes with Z(Gv) must take the star of v to itselfand hence �x v.If e 2 E and e = v1v2, then a �nite index subgroup Ge is generated by Z(Gv1) [Z(Gv2). So the centralizer of Ge in G is a subgroup of the intersection of the central-izers of Z(Gv1) and Z(Gv2), i.e. Gv1 \Gv2 which is Ge itself.Lemma 3.7. (Uniqueness of decomposition) Let G y T and G0 y T 0 be the Bass-Serre actions associated with two admissible graphs of groups, and suppose G �! G0 isan isomorphism. Then after identifying G with G0 via �, the trees T and T 0 becomeG-equivariantly isomorphic.Proof. We will use primes to denote the vertex and edge set of T 0. Pick v 2 V .Claim: Gv �xes a unique vertex in T 0. Let g 2 Z(Gv) be a generator. If Fix(g; T 0)is empty, then g translates a unique geodesic 
 � T 0, and since g 2 Z(Gv) thewhole vertex group Gv must preserve 
, and act on it by translations. The signedtranslation distance yields a homomorphismGv ! Z with nontrivial kernel. But then16



Ker(Gv ! Z) �xes 
 pointwise, which contradicts 1 of Lemma 3.4. ConsequentlyFix(g; T 0) is nonempty, and by 1 of Lemma 3.4 this is a subcomplex of T 0 withdiameter at most 2. So Gv must �x the center of Fix(g; T 0). It can �x nothing more,since no edge stabilizer can contain the nonabelian Gv. Thus we have proved theclaim.Now consider the G-equivariant map f : V ! V 0 which assigns to each v 2 V theunique vertex in T 0 �xed by Gv; and de�ne a map f 0 : V 0 ! V by reversing the rolesof T and T 0. For all v 2 V , Gv �xes f 0 � f(v), so we must have f 0 � f(v) = v; similarreasoning applies to f � f 0, and we see that f and f 0 are inverses. The maps f and f 0are adjacency preserving since two vertices are adjacent i� their stabilizers intersectin a subgroup isomorphic to Z2. It is now straightforward to see that f de�nes aG-equivariant isomorphism T ! T 0.Lemma 3.7 justi�es use of the phrase \G �y T is the Bass-Serre tree of theadmissible group G."3.2. Vertex spaces, edge spaces, and geometric data for admissible actionsDe�nition 3.8. We say that G �y X is an admissible action if G is an admissiblegroup, X is a Hadamard space, and the action is discrete, cocompact, and isometric.For the remainder of this section G y X will be a �xed admissible action. Inparticular, all constants depend on G y X (i.e. the group G, the Riemannianmanifold X, and the action) in addition to other explicitly mentioned quantities. ByLemma 3.7 there is an essentially unique admissible graph of groups associated withG, and we will let Gy T be the corresponding Bass-Serre tree.We refer the reader to section 2.3 for properties of Minsets that we use here.For each v 2 V we let Yv := Minset(Z(Gv)) := \g2Z(Gv)Minset(g) (this will bethe Minset of a generator), and for every e 2 E we let Ye := Minset(Ge) :=\g2GeMinset(g).Minset(�) is a convex subset of X, invariant under the centralizer of �, which isa metric product of R with a Hadamard space. If � belongs to a group of isometriesthat acts cocompactly on X then the centralizer of � acts cocompactly onMinset(�)(see section 2.3). Thus Yv is the product of R with a Hadamard space �Yv. Z(Gv) actsby translation on the R factor and the induced action of Hv on �Yv is discrete andcocompact. Ye is the product of R2 with a compact Hadamard space �Ye, and Ge = Z2acts by translations on the R2 factor (section 2.3).Note that the assignments v 7! Yv and e 7! Ye are G-equivariant with respect tothe natural G actions. The minimal displacement of a generator of Z(Gv) is the sameas that of a generator of Z(Gg(v)) = gZ(Gv)g�1. By the �niteness of G there is anumber C such that for all v 2 V the minimal displacement of a generator of Z(Gv)is less than C.De�nition 3.9. Let G �y X be an admissible action, and let T be the Bass-Serretree for G. For each v 2 V we choose a generator �v 2 Z(Gv) in a G-equivariantway. We have an isometric splitting Yv ' �Yv � R, which is preserved by Gv. Thechoice of generator �v de�nes an orientation of the R factor of Yv. We have a mapMLSv : Gv ! R+ which assigns to each g 2 Gv the minimum displacement of the17



induced isometry �Yv ! �Yv. MLSv descends to Gv=Z(Gv) ' Hv since Z(Gv) actstrivially on �Yv. We de�ne a homomorphism �v : Gv ! R by sending g 2 Gv to thesigned distance that g translates the R factor of Yv ' �Yv � R. The collections offunctions MLSv and �v constitute the geometric data of the action. Both MLSv and�v descend to functions of the vertex groups of the graph of groups G de�ning G; wewill sometimes �nd it more convenient to think of the geometric data in this way.We remark that it follows from the discreteness of the action Hv y �Yv that g 2 Gvthen MLSv(g) = 0 i� g projects to an element of �nite order in Hv.Lemma 3.10. The collections fYvgv2V and fYege2E are locally �nite. More precisely,for every R there is an N so that if x 2 X then there are at most N elements � 2 V [Eso that Y� \ B(x;R) 6= ;.Proof. Suppose v 2 V and p 2 Yv. Then p has displacement < C under the generatorsof Z(Gv). Therefore if p 2 B(x;R), then x has displacement < 2R + C under thegenerators of Z(Gv). But there are only �nitely many g 2 G with d(g �x; x) < 2R+C;since Z(Gv1) \ Z(Gv2) = feg when v1 6= v2, the local �niteness of fYvgv2V follows.Similar reasoning proves the local �niteness of fYege2E. The fact that N can bechosen independent of x follows from the cocompactness of the G action.The lemma implies that for any D, the collection of D-tubular neighborhoods ofthe Y�'s is locally �nite. We also have the following consequences:Lemma 3.11. For every D there are only �nitely many pairs (�1; �2) 2 (V [ E) �(V [ E) { modulo the diagonal action of G { with ND(Y�1) \ND(Y�2) 6= ;.Proof. By the �niteness of [V [ E]=G we need only show that for �xed � there areonly �nitely many �2 modulo G� such that ND(Y�) \ ND(Y�2) 6= ;. This followsfrom Lemma 3.10, since G� acts cocompactly on ND(Y�) and hence for some g 2 G�ND(Y�) \ (ND(Yg(�2)) intersects a �xed ball.Lemma 3.12. For �1; �2 2 V [ E, G�1 \ G�2 acts cocompactly on the intersectionND(Y�1)\ND(Y�2). Thus, in particular, the diameter of ND(Y�1)\ND(Y�2)=[G�1\G�2 ]is uniformly bounded by a function of D.Proof. This follows from the local �niteness of the family fY�g�2V [E and the dis-creteness of the cocompact action G y X. Pick D > 0 and �1; �2 2 V [ E. Ifxk 2 ND(Y�1)\ND(Y�2), we may choose a sequence gk 2 G�1 such that gk(xk)! x1for some x1 2 ND(Y�1). Then gk(�2) lies in a �nite subset of V [E (since gk(ND(Y�2))intersects some ball B(x1; R) for all k) so after passing to a subsequence if necessarywe may assume that gk�2 is constant. Then g�11 gk 2 G�1 \ G�2 and (g�11 gk)(xk) !g�11 (x1). Thus Gv1 \Gv2 acts cocompactly. The second statement now follows fromLemma 3.11.Lemma 3.13. For every D there is a D0 (depending only on D) such that if � 2 V [Eseparates �1 2 V [ E from �2 2 V [ E, then ND(Y�1) \ ND(Y�2) � ND0(Y�). Inparticular, if T1 and T2 are the closures of distinct connected components of T � �then [[�̂�T1ND(Y�̂)] \ [[�̂�T2ND(Y�̂)] � ND0(Y�):18



Proof. Pick D > 0. Suppose (�1; �2; �) is a triple with �i; � 2 V [ E, � separates�1 from �2 in T , and ND(Y�1) \ ND(Y�2) 6= ;. Then G�1 \ G�2 � G� and G�1 \ G�2acts cocompactly on ND(Y�1) \ ND(Y�2) by Lemma 3.12; hence d(Y�; �) is boundedon ND(Y�1) \ ND(Y�2). By Lemma 3.11 there are only �nitely many such triples(�1; �2; �) modulo G, so the lemma follows.De�nition 3.14. Since G acts cocompactly on X we can now �x a D so that[v2VND(Yv) = [e2END(Ye) = X. We de�ne Xv := ND(Yv) for all v 2 V . Let D0denote the constant in the previous lemma, D00 = max(D;D0), and set Xe := ND00(Ye)for all e 2 E. We will refer to the Xv's and Xe's as vertex spaces and edge spacesrespectively.We note that Lemma 2.3 implies that for any � 2 V [E we have @1X� = @1Y�.We summarize the properties of vertex and edge spaces:Lemma 3.15. There is a constant C1 with the following property.1. [v2VXv = [e2EXe = X.2. If ê 2 E and T1 and T2 are the distinct connected components of T � Int(ê),then [[v2T1Xv]�Xê and [[v2T2Xv]�Xê are disjoint closed and open subsets of X�Xê;and [e2T1Xe �NC1(Xê) and [e2T2Xe �NC1(Xê) are disjoint closed and open subsetsof X �NC1(Xê).3. If �1; �2 2 V [ E and X�1 \X�2 6= ; then dT (�1; �2) < C1.Proof. 1 and 2 follow from the de�nition of vertex/edge spaces and Lemma 3.13. ByLemma 3.11 we can choose C1 so that 3 holds.Corollary 3.16. For any v 2 V , @TXv is isometric to the metric suspension of anuncountable discrete space, and for every e 2 E, @TXe is isometric to a standardcircle. Pick v1; v2 2 V .1. If d(v1; v2) > 2, then @TXv1 \ @TXv2 = ;.2. If d(v1; v2) = 2 and v is the vertex in between v1 and v2, then @TXv1 \@TXv2 =@T
 where 
 � Yv is a geodesic of the form fpg�R � �Yv�R = Yv; i.e. @TXv1\@TXv2is the pair of suspension points of @TXv.3. If d(v1; v2) = 1, then @TXv1 \ @TXv2 = @TXe ' S1, where e := v1v2.Proof. Since Yv ' �Yv � R, we have @TXv = @TYv = �(@T �Yv), and since �Yv admits adiscrete cocompact action by the non-elementary hyperbolic group Hv := Gv=Z(Gv),@TYv is a discrete set with the cardinality of R. For all e 2 E, Ye ' �Ye�R2 where �Yeis compact, so @TXe = @TYe ' @TR2 , and the latter is the standard circle.Pick v1; v2 2 V , and choose R large enough that Z := NR(Xv1) \ NR(Xv2) 6= ;.Then @TXv1 \@TXv2 = @TZ. The lemma now follows from Lemmas 3.4 and 3.12.Lemma 3.17. There is a constant C2 with the following property. Suppose v; v0 2 V ,e1; : : : ; en 2 E are the consecutive edges of the segment vv0 � T , x 2 Xv and y 2 Xv0.Then for 1 � i � n we can �nd points zi 2 xy such that1. d(zi; Xei) < C22. For all 1 � i � j � n we have d(zi; x) � d(zj; x).3. For every p 2 X we have #fzi 2 B(p; 1)g < C2.19



Proof. Pick v; v0 2 V , x 2 Xv, and y 2 Xv0 . Suppose ê 2 E and let T1 and T2be the two connected components of T � Int(ê). If xy \ NC1(Xê) = ; (hence inparticular xy \Xê = ;) then by the �rst part of 2 of Lemma 3.15, xy is contained inone of the two disjoint open sets ([e�TiXe)�NC1(Xê) for i = 1 or i = 2 . It followsthat xy \ NC1(Xei) is nonempty for every 1 � i � n. Let wi 2 xy be the point inxy \ NC1(Xei) closest to x. Let z1 = w1, and let zi be the element of fwi; : : : ; wngclosest to x. So we have either zi = wi, or zi = wi0 for some i0 > i. In the lattercase xzi � [e�T 0Xe (hence in particular zi = wi0 2 [e�T 0Xe) where T 0 � T is thecomponent of T � Int(ei) containing e1, so by Lemma 3.13 we have zi 2 ND0(Xei)where D0 depends only on C1. If p 2 X and zi 2 B(p; 1), then Xei \B(p; 1+D0) 6= ;and thus Yei \B(p; 1+D0+D00) 6= ; so by Lemma 3.10 we have #fzi 2 B(p; 1)g < Nwhere N depends only on D0. Setting C2 := maxfD0; Ng, the lemma follows.3.3. ItinerariesOur next objective is to associate an itinerary to any ray p� � X which is notcontained in a �nite tubular neighborhood of a single vertex space; the itinerary of p�is a ray in T which (roughly speaking) records the sequence of vertex spaces visitedby p�.Let � : X ! V � T be a G-equivariant coarse Lipschitz map from the Hadamardspace X to the vertex set of the tree T with the property that for every x 2 X wehave x 2 X�(x). Such a � may be constructed as follows. Let � � X be a set theoreticcross-section for the free action G y X; de�ne �0 : � ! T so that � 2 X�0(�) forevery � 2 �, and then extend �0 to an equivariant map X ! T . Let L be such thatN2D(Yv1) \ N2D(Yv2) 6= ; implies d(v1; v2) < L, which exists by Corollary 3.11. Inparticular if d(x; y) < 2D then d(�(x); �(y)) � L. In general, by dividing xy into lessthan d(x;y)2D +1 segments of length less than 2D and adding the previous estimates wesee that � will be coarse Lipschitz; i.e. d(�(x); �(y)) � L2D d(x; y) + L.Lemma 3.18. If 
 : [0;1) ! X is a geodesic, then � � 
 : [0;1) ! T has thebounded backtracking property7.Proof. Let e 2 E be an edge in T , and let T1; T2 � T be the connected componentsof T � Int(e). Suppose � � 
(t1) 2 T1, and � � 
(t2) 2 T2 �NC1(e), where t2 > t1. ByLemma 3.13 we have [[v2T1Xv] \ [[v2T2Xv] � Xe:Therefore there is a t3 2 [t1; t2) such that 
(t3) 2 Xe. Since d(� � 
(t2); e) � C1, thechoice of C1 and lemma 3.15 implies that 
(t2) 62 Xe. Hence the convexity of Xe gives
([t2;1)) � X �Xe, which forces � � 
([t2;1)) � T2. This property clearly impliesuniformly bounded backtracking.Lemma 3.19. If 
 : [0;1)! X is a geodesic ray, then one of the following holds:1. � � 
 : [0;1) ! T is unbounded, and � � 
([0;1)) lies in a uniform tubularneighborhood of a unique geodesic ray, � , in T starting at �(
(0)). The geodesic 
intersects Xe for all but �nitely many edges e of � .7A map c : [0;1) ! T has the bounded backtracking property if for every r 2 (0;1) there is anr0 2 (0;1) such that if t1 < t2, and d(c(t1); c(t2)) > r0, then d(c(t); c(t1)) > r for every t > t2.20



2. � � 
 : [0;1) ! T is bounded, and 
 eventually lies in ND0(Yv) (where D0comes from De�nition 3.14) for some v 2 V . In this case there is a subcomplexT
 � T de�ned by the property that for each simplex � in T , � 2 T
 if and only if
 is asymptotic to X� . The possibilities for T
 are: a single vertex v 2 V , a singleedge e 2 E along with its vertices, or the closed star Star(v) for some v 2 V .Proof. Pick v 2 V . By the convexity of ND0(Yv), either 
 is eventually containedin ND0(Yv), or 
 is eventually contained in X � ND0(Yv). In the latter case � � 
eventually remains in a unique component of T � v, by Lemma 3.13.If for every v 2 V the ray 
 eventually lies in X � ND0(Yv), then clearly � � 
 isunbounded and hence it must lie within uniform distance of a ray in T by the boundedbacktracking property. So we may assume that 
 is eventually contained in ND0(Yv)for some v 2 V . We note that if e 2 T
 then any vertex v0 of e must also be in T
since Ye � Yv0 . Also if v; v0 2 V and d(v; v0) > 2 then part 1 of Lemma 3.4 along withLemma 3.12 says that for any K, NKXv \NKXv0 is compact so 
 62 NKXv \NKXv0and hence at most one of v and v0 can be in T
.If there are vertices v1 and v2 in T
 with d(v1; v2) = 2 and v is the vertex be-tween them then part 1 of Lemma 3.4 along with Lemma 3.12 says that Z(Gv) actscocompactly on NKXv1 \NKXv2 which contains 
 for some K, and hence there is aK 0 such that for all t > 0 there is a gt 2 Z(Gv) such that d(
(t); gt(
(0)) < K 0 andhence 
 stays a distance at most K 0 + d(
(0); Yv) from a geodesic in the R directionof Yv = �Yv � R (since Z(Gv) translates the R direction). Thus for every e with vas a vertex we have 
 is asymptotic to a geodesic in Ye and hence e 2 T
 . ThusStar(v) � T
. But since vertices in T
 are at most distance 2 apart we see thatStar(v) = T
.The only cases left for T
 are the two mentioned and the case of two vertices aunit distance apart. But in the �nal case a similar argument shows that if e is theedge between them then 
 stays a bounded distance from Ye and hence e must alsobe in T
.De�nition 3.20. Let 
 be a geodesic ray in X. If case 1 of Lemma 3.19 applies thenwe will say that 
 has itinerary � , and otherwise we say that the itinerary of 
 isthe subtree T
 � T described in case 2 of the lemma. In either case we denote theitinerary of 
 by I(
).One immediate consequence of the proof of Lemma 3.19 isCorollary 3.21. If I(
) = Star(v) then 
 is asymptotic to either the positive or thenegative R direction in the decomposition Yv = �Yv � R.Lemma 3.22. If p1�; p2� � X are asymptotic geodesic rays, then either both I(p1�)and I(p2�) are �nite subtrees, in which case they agree, or both I(p1�) and I(p2�)are rays, in which case @1I(p1�) = @1I(p2�). In other words, I(p1�) is a ray in Tif and only if I(p2�) is a ray in T asymptotic to I(p1�).Proof. p1� lies in a tubular neighborhood of some Yv if and only if p2� does, thus thecase where I(p1�) (or I(p2�)) is �nite follows. Thus p1� has itinerary a ray �1 if andonly if p2� has itinerary �2 for some ray �2 � T . But the sets �(p1�) and �(p2�) are21



at �nite Hausdor� distance from one another since � is coarse Lipschitz; hence the �iare asymptotic.By the lemma we have a well-de�ned G-equivariant map from @1X to the union@1T [ (�nite subsets of T )which assigns to each � 2 @1X either @1I(p�); p 2 X if I(p�) is a ray or I(p�)otherwise; we will also denote this map by I. If � 2 @1T , we use @�1X to denotethe corresponding subset: @�1X := I�1(�) � @1X. We will say that @�1X is trivialif @�1X is a point or nontrivial otherwise; (in the latter case we will see that @�1X ishomeomorphic to a closed interval and is in fact an interval in the Tits metric.).In particular @1X = ([v2V @1Xv) [ ([�2@1T@�1X), where [v2V @1Xv is disjointfrom [�2@1T@�1X.The cone topology and Tits metric on @1Xv = @1Yv = @1( �Yv � R) is describedin sections 2.2 and 2.4. We see that in the cone topology @1Xv is just the suspension�(@1Hv) and is independent of the metric on X. The Tits metric is just the metricsuspension of the discrete metric.We now study the dynamics of the action of G on @1X.Lemma 3.23. 1. For every v 2 V , the �xed point set of Z(Gv) in @1X is @1Xv;this set is homeomorphic to the suspension of @1Hv where Hv is the nonelementaryhyperbolic group Gv=Z(Gv).2. For every e 2 E, Fix(Ge; @1X) = @1Xe which is homeomorphic to a circle.Proof. Let � 2 @1X be �xed by Z(Gv) and p 2 Yv. If I(p�) is a ray then by Lemma3.22 @1I(p�) is �xed by Z(Gv). But this can not happen since by Lemma 3.5 Z(Gv)leaves no point in @1T �xed. So I(p�) is a �nite subtree which by Lemma 3.22is invariant under Z(Gv). Thus by Lemma 3.19 and Lemma 3.5 v 2 I(p�). Thusp� � Yv and hence � 2 @1Xv = @1Yv. On the other hand geodesics rays p� in Yv aretranslated by a �xed amount by elements g 2 Gv, so g(p�) is asymptotic to p� andso � is �xed by g. The rest of part 1 follows from sections 2.2 and 2.4 as above.Let � be �xed by Ge and p 2 Ye. Again since Ge leaves no point in @1T �xed, byLemma 3.5 I(p�) is a �nite subtree that is invariant under Ge and hence by Lemma3.19 and Lemma 3.5 must contain e. Hence we see p� � Ye and � 2 @1Ye = @1Xe.Again, since Ge acts by translations on Ye, we see that if � 2 @1Xe = @1Ye thenit is left �xed by Ge. Since Ye = R2 � Ye where Ye is compact, @1Ye = @1R2 ishomeomorphic to a circle.4. Templates and the behavior of their geodesics4.1. TemplatesIn this section we study \Templates". These are piecewise Euclidean Hadamardspaces (which can be embedded in R3) which approximate certain subspaces of thespaces we are studying, and carry much of the information about the spaces at in�nity.22



A template is a Hadamard space T obtained from a disjoint collection of Euclid-ean planes fWgW2WallT (called walls) and directed Euclidean strips8 fSgS2StripT byisometric gluing9 subject to the following conditions:1. The boundary geodesics of each strip S 2 StripT , which we will refer to assingular geodesics, are glued isometrically to distinct walls in WallT .2. Each wall W 2 WallT is glued to at most two strips, and the gluing lines arenot parallel.3. T is connected.One can think of T as sitting in R3 so that its walls are parallel planes and the stripsmeet the walls orthogonally. Two walls W1; W2 2 WallT are adjacent if there isa strip S 2 StripT with S \ Wi 6= ;. The incidence graph Graph(T ) of T { thegraph with vertex set WallT and one edge for each pair of incident walls { is a graphisomorphic to a connected subcomplex of R with the usual triangulation (where thevertices are the integers). A wall is an interior wall if it is incident to two strips, and astrip is an interior strip if it is incident to two interior walls;WalloT and StripoT denotethe interior walls and strips respectively. For every interior wall W 2 WalloT we havea distinguished point oW := W \ S1 \ S2, where Si 2 StripT , i = 1; 2, are the stripsincident to W . Let Strip+T be the collection of oriented interior strips; an orientationof a strip S 2 StripT combines with the direction of S to give an orientation of theinterval factor of S ' R � I, and also an ordering of the two incident walls. We cande�ne a function � : Strip+T ! R as follows: if W�; W+ are incident to S+ 2 Strip+Tand W� < W+ with respect to the ordering de�ned by S+, then �(S+) 2 R is de�nedto be the signed distance that oW+ lies \above" oW� in the strip S+. We also have astrip width function l : StripT ! (0;1) and an angle function � : WalloT ! (0; �)which give the angle between the oriented lines W \ Si where S1; S2 are incident toW .We will sometimes enumerate the consecutive walls and strips of T so thatWallT =fWiga<i<b and StripT = fSiga<i<b�1 where a 2 f�1; 0g and b 2 N [ f1g. We thende�ne L�i := Wi \ Si�1 for a+ 1 < i < b and L+i := Wi \ Si for a < i < b� 1.An equivalence between two templates T1 and T2 is an isometry  : T1 ! T2which respects strip directions. Two templates are equivalent if and only if there isan incidence preserving bijectionWallT1 [StripT1 ! WallT2 [StripT2 which respectsthe functions l; �, and �. We will call a template uniform if there is a �2 � � > 0so that the angle function � : WalloT ! (0; �) satis�es � � � � � � �, and ifthe strip widths are bounded away from zero. We are mostly interested in uniformtemplates. A template T is full if Graph(T ) ' R, half if Graph(T ) ' R+ , and �niteif jWallT j <1.If W 2 WalloT and S1; S2 are the incident strips, then the oriented lines W \ S1and W \ S2 divide the plane W into four sectors which we call Quarter Planes andwhich we label as QI , QII , QIII , and QIV as usual. If we are given a choice QWof quarter planes in W for each W 2 WallT then there is an isometric immersionD : [[W2WallTQW ] [ [[S2StripT S] ! R2 (the development) which takes any geodesicray 
 � T such that 
 \W � QW , to a Euclidean ray (see Figure 3 in section 7.2 foran example of the developement of a special kind of template).8A direction for a strip S is an orientation for its R-factor S ' R � I .9In general one may also have to complete the resulting quotient space to get a Hadamard space.23



When T is a half template we will be primarily interested in geodesic rays 
 � Tthat start at a given base point and intersect all but �nitely many walls of T . From theseparation properties of walls it is clear that such a ray intersects the wallsW 2 WallTin order. We let @11T (resp. @1T T ) denote the corresponding subset of @1T (resp.@TT ). In section 7.1 we will show that @1T T is isometric to either a point, in whichcase T is called trivial, or an interval of length < �.Remark 4.1. One can show directly that any two half templates such that corre-sponding angles agree, and both corresponding strip widths and displacements di�erby a bounded amount will have @11 's with the same Tits length. We will only need aweaker version (that will follow from Theorem 5.1) in this paper so we will not digressto prove it here.4.2. Templates associated with itineraries in TWe now return to the setting of our paper: G is an admissible group with a discretecocompact isometric action on a Hadamard space X. We now want to associate atemplate with each geodesic segment/ray in T ; these templates capture the asymp-totic geometry of geodesic segments/rays in X which pass near the correspondingedge spaces.We �rst choose, in a G-equivariant way, a plane Fe � Ye for each edge e 2 E.Then for every pair of adjacent edges e1; e2 we choose, again equivariantly, a minimalgeodesic from Fe1 to Fe2 ; by the convexity of Yv = �Yv � R, v := e1 \ e2, this geodesicdetermines a Euclidean strip10 Se1;e2 := 
e1;e2 � R for some geodesic segment 
e1;e2 ��Yv; note that Se1;e2 \ Fei is an axis of Z(Gv). Hence if e; e1; e2 2 E, ei \ e = vi 2 Vare distinct vertices, then the angle between the geodesics Se1;e \ Fe and Se2;e \ Feis bounded away from zero (since only �nitely many angles show up). We also notethat De�nition 3.14 tells us that dH(Fe; Xe) is bounded by D00 + Diam( �Ye) which,since there are only �nitely many e up to the action of G, is uniformly bounded.The signi�cance of the strips Se1;e2 can be seen in the next two lemmas.Lemma 4.2. There is a constant C3 so that if e1 = vv1 and e2 = vv2 are adjacentedges, then Xe1 [ Se1;e2 [Xe2 and Xv1 [ Se1;e2 [Xv2 are C3-quasi-convex.Proof. Since the Hausdor� distance dH(Xê; Fê) is uniformly bounded for ê 2 E, itsu�ces to show that there is a constant C so that the unions Fe1 [ Se1;e2 [ Fe2 areC-quasi-convex for all pairs of adjacent edges. But if e1; e2 2 E are adjacent thenFe1[Se1;e2[Fe2 � Yv ' �Yv�R, and we are reduced to showing that �Fe1[
e1;e2[ �Fe2 ��Yv is uniformly quasi-convex, where �Fei is the image of Fei under the projectionYv ' �Yv � R ! �Yv. This follows from Lemma 2.9. This gives the �rst statement.The interesting part of the second statement is when we consider xy when x 2 Xv1and y 2 Xv2 . In this case Lemma 3.17 gives us z1 2 NC2Xe1 and z2 2 NC2Xe2 on xy.Now the �rst statement along with the convexity of NC2+D00(Xvi) (note zi 2 NC2Xei �NC2+D00Xvi) yields the second statement.10Se1 ;e2 may have width zero. 24



Lemma 4.3. There is a constant C4 so that if e1; : : : ; en 2 E is a geodesic edge pathin T with initial vertex v1 and terminal vertex vn, thenZ := Xe1 [ Se1;e2 [Xe2 [ : : : [Xen�1 [ Sen�1;en [Xenand Z 0 := Xv1 [ Se1;e2 [Xe2 [ : : : [Xen�1 [ Sen�1;en [Xvnare C4-quasi-convex.Proof. Pick x; y 2 Z. We may assume without loss of generality that x 2 Xe1[Se1;e2[Xe2 � Xv where v = e1\e2, and y 2 Xen�1[Sen�1;en[Xen � Xv0 where v0 = en�1\en.Applying Lemma 3.17 we get points zi 2 xy \ NC2(Xei) for 2 � i � n � 1, withd(zi; x) � d(zj; x) when i � j. If C4 := C2 + C3, then by Lemma 4.2 we havexz2 � NC4(Xe1 [ Se1;e2 [Xe2), zizi+1 � NC4(Xei [ Sei;ei+1 [Xei+1) for i = 2; : : : n� 1,and zn�1y � NC4(Xen�1 [ Sen�1;en [Xen).We omit the proof that Z 0 is quasi-convex, as it is similar.Lemma 4.3 suggests that we will understand the geodesic geometry of X if thegeometry of the sets Z (as in the lemma) can be easily modeled. To this end, we\approximate" Z with a template.De�nition 4.4. Suppose 
 � T is a geodesic segment or ray. Let T be a templatewith walls fWgW2WallT and strips fSgS2StripT , let f : WallT ! E be an adjacencypreserving bijection between the walls of T and the edges of 
, and let � : T ! X bea (not necessarily continuous) map. Then the triple (T ; f; �) is a K-template for 
if for all W 2 WallT we have �(W ) � NK(Xf(W )) and Xf(W ) � NK(�(W )) and thefollowing conditions are met for every S 2 StripT .1. Width(S) � 1.2. If S is incident to W1; W2 2 WallT and x; y 2 W1 [ S [W2 then we havejdX(�(x); �(y))� dT (x; y)j < K and if 
1 : [0; 1]! xy and 
2 : [0; 1]! �(x)�(y) areconstant speed parameterizations, then d(� � 
1(t); 
2(t)) < K for all t 2 [0; 1].3. IfW1; W2 2 WallT are adjacent to S then the Hausdor� distance dH((Xf(W1)[Sf(W1);f(W2) [Xf(W2)); �(W1 [ S [W2)) < K.Often when the value of K is not relevant we will refer to the triple (T ; f; �) as atemplate for 
, by which we mean a K-template for some K.Let T 0 be another template such that the angles on corresponding walls agree withthose of T and such that the other data (strip widths and displacements) di�er fromT by a bounded amount. Then there is a natural (discontinuous) map F : T 0 ! Twhich is an isometry on each wall and simply stretches the width of the strips. It iseasy to check that using �0 = � � F that we get a K 0 template (T 0; f; �0) for 
 (seestep 3 of the proof of Lemma 7.14).For a suitably large K we describe a construction that gives a K-template forany geodesic segment or geodesic ray 
 � T . We will refer to these K-templatesas standard K-templates. We begin with a disjoint collection of walls We and anisometry �e : We ! Fe for each edge e � 
. For every pair e; e0 of adjacent edgesof 
, we let Ŝe;e0 be a strip which is isometric to Se;e0 � X if Width(Se;e0) � 1, andisometric to R � [0; 1] otherwise; we let �e;e0 : Ŝe;e0 ! Se;e0 be an a�ne map which25



respects product structure (�e;e0 is an isometry if Width(Se;e0) � 1 and compressesthe interval otherwise). We construct T by gluing the strips and walls so that themaps �e and �e;e0 descend to continuous maps on the quotient.The above construction yieldsLemma 4.5. There is a constant K = K(X) such that for every geodesic segmentor ray, 
 � T , there is a K-template for 
.There is a � = �(X) > 0 such that for any K-template the angle function � :WalloT ! (0; �) satis�es 0 < � � � � � � � < �.Proof. We check that each condition of De�nition 4.4 holds for the standard templatedescribed above, for su�ciently large K.First, since dH(Fe; Xe) is uniformly bounded and Ff(W ) = �(W ) for every W 2WallT , we have �(W ) � NK(Xf(W )) and Xf(W ) � NK(�(W )) for all W 2 WallT forlarge enough K.Conditions 1 and 3 follow immediately from the description of standard templates.We now verify condition 2. Pick adjacent wallsW;W 0 2 WallT and set e := f(W ),e0 := f(W 0), and v := e\e0. Recall that Fe[Se;e0[Fe0 � Yv and Yv splits isometricallyas Yv = �Yv � R where �Yv is Gromov hyperbolic. Furthermore, � induces a mapWe [ Ŝe;e0 [We0 ! Fe [ Se;e0 [ Fe0 which is compatible with the product structure.Hence condition 2 follows from part 3 of Lemma 2.9 (and triangle inequalities) whend(Fe; Fe0) � 4� (where � is the maximum of the hyperbolicity constants of the �Yv's);modulo G there are only �nitely many cases when d(Fe; Fe0) < 4� (Lemma 3.11), andeach of these is also settled by part 3 of Lemma 2.9.For any K template (T ; f; �) for a 
 containing an interior edge e = v0v we claimthat the wall W with f(W ) = e will have the same angle, up to taking supplements(i.e. � might be replaced by � � �), as the angle � between the R factors of Yv0 =�Yv0 � R and Yv = �Yv � R in Ye = Yv \ Yv0 . The fact that these angles are positiveand the �niteness of edges modulo G will yield the result. We note that � is the Titsangle between the R factors.To see this we �rst note that Property 2 of De�nition 4.4 says that the angle forW ,i.e. the angle between the gluing lines L0 and L, is the same as the comparison anglelimt!1 ~\�(o)�(L0(t)); �(L(t)). Also Property 2 of De�nition 4.4 says that there aregeodesic rays � = limi!1 p�(L(ti)) where ti !1 and p 2 Ye. Since �(W ) � NKXewe see that �(L) � NKXe and hence e 2 I(�). Now if we let e0 be the other edgeincident to v in 
 then the intersection of the wall f�1(e0) with the strip between Wand f�1(e0), is a line parallel to L and hence, again by 2 of De�nition 4.4, �(L) staysin a uniform neighborhood of Xe0 so e0 2 I(�). but e; e0 2 I(�) implies by Lemma3.19 that I(�) = Star(v) and hence by Corollary 3.21 any such � is asymptotic tothe R factor of Yv = �Yv � R. Since p 2 Ye � Yv, � is a half line of such an R and weassume without loss of generality that it points in the positive direction. A similarargument works for �(L0). Thus \(L0; L) = limt!1 ~\�(o)�(L0(t)); �(L(t)) � �. Alsothe same arguments applied to �L0 and L yield \(�L0; L) =� � � �. Thus we getequality and the result.The next proposition and Proposition 4.8 are technical results that compare tem-plate geometry with ambient geometry. 26



Proposition 4.6. Suppose K > 0. There is a constant C5 depending only on K andthe geometry of X with the following property. Suppose 
 � T is a geodesic segmentor geodesic ray in T with ith edge ei, and set Z := [[e�
Xe][ [[e;e0�
Se;e0]. If (T ; f; �)is a K-template for 
, and x; y 2 Z, then there is a continuous map � : xy ! T sothat1. d(� � �; idjxy) < C52. For all p; q 2 xy we havedX(p; q)� kC5 � dT (�(p); �(q)) � length(�jpq) � dX(p; q) + kC5 (4.7)where the segment �(p)�(q) � T intersects at most k � 1 strips and walls in T . Inparticular there are constants (L;A) depending only on K and X so that � is an(L;A) quasi-isometric embedding for every K-template (T ; f; �).Proof. By the standard properties of Hadamard spaces we may reduce to the case thatx 2 Yex[Sex;e0x � Xvx (vx = ex\e0x) and y 2 Sey;e0y[Ye0y � Xvy since the original x andy are within a bounded distance of such. Let Wi := f�1(ei) 2 WallT for ei 1 � i � nthe edges between vx and vy. We may apply Lemma 3.17 to the pair x; y obtainingpoints zi 2 xy. We let z0 = x and zn+1 = y. After making a small perturbation ofthe zi's if necessary, we may assume that they satisfy dX(zi; x) < d(zj; x) when i < j.For 1 � i � n pick wi 2 T with wi 2 Wi � T with d(zi; �(wi)) � 1+ inffd(zi; �(w)) jw 2 Wig � C2 + 1. By De�nition 4.4 part 3 we can also choose w0 2 W0 [ S [W1and such that dX(x; �(w0)) � K and similarly choose wn+1. Now de�ne � by thecondition that �(zi) = wi, and � is a constant speed geodesic on the segment zizi+1.Proof of 1. Apply De�nition 4.4 to see that the constant speed parameterization[0; 1] ! �(wi)�(wi+1) is at uniformly bounded distance from the composition of theconstant speed parameterization [0; 1] ! wiwi+1 � T with � : T ! X. Sinced(�(wi); zi) is uniformly bounded, we know that the constant speed parameterizations[0; 1]! �(wi)�(wi+1) and [0; 1]! zizi+1 are also at uniformly bounded distance fromone another, so there is a constant c1 depending on K so that d(� � �; idjxy) < c1.Proof of 2. Assume p 2 zj�1zj � zj�1 and q 2 zj0zj0+1 � zj0+1 for j � j 0. ByDe�nition 4.4 we have, for c2 = 2c1 +Kjlength(�jpzj)� dX(p; zj)j < c2jlength(�jzizi+1)� dX(zi; zi+1)j < c2 for every i = 1; : : : n� 1jlength(�jzj0q)� dX(zj0; q)j < c2:Hence there is a c3 = c3(K) so thatlength(�pq) = length(�jpzj) + : : :+ length(�jzj0q)� dX(p; zj) + : : :+ dX(zj0; q) + (j 0 � j + 2)c2� dX(p; q) + kc2:27



To prove the remaining inequality of (4.7) we break up the T -geodesic �(p)�(q) intoat most k subsegments uiui+1 so that each subsegment lies inWi[Si[Wi+1 for somei. Then by de�nition 4.4 we have jdX(�(ui); �(ui+1))� dT (ui; ui+1)j < K sodX(p; q) � 2c1 + dX(� � �(p); � � �(q))� 2c1 +X dX(�(ui); �(ui+1))� 2c1 + kc2 + dT (�(p); �(q))� dT (�(p); �(q)) + kc3:where c3 := 2c1 + c2.To see the quasi-isometry property of �, let x0; y0 2 T , x = �(x0), y = �(y0), andlet � be the map de�ned above where we choose w0 = x and w1 = y (i.e �(x) = x0and �(y) = y0). Now 4.7 applied to p = x and q = y along with k � dT (x0; y0) + 1(since strips have width at least 1) and k � const1dX(p; q)+const2 (as in the proof ofthe coarse lipschitz property of � - see section 3.3) yields the quasi-isometry propertyof �. This completes the proof of Proposition 4.6.Proposition 4.8. Pick K > 0. There is a constant C6 = C6(K;X) so that thefollowing holds. If (T ; f; �) is a K-template for 
 � T , and x; y 2 T , then there is acontinuous map � : xy ! X where1. d(�; �jxy) < C6.2. For all p; q 2 xy we havedT (p; q)� kC6 � dX(�(p); �(q)) � length(�jpq) � dT (p; q) + kC6 (4.9)where the segment pq � T intersects at most (k � 1) strips and walls in T .Proof. This is similar to the proof of Proposition 4.6, so we omit it.Corollary 4.10. If (T ; f; �) is a K-template and C6 = C6(K) is the constant fromProposition 4.8, then for any x; y 2 T we havedT (x; y)� kC6 � dX(�(x); �(y)) � dT (x; y) + kC6where xy � T meets at most k � 1 strips and walls.5. ShadowingIn this section we show that geodesic segments in a K-template are sublinearly shad-owed by ambient geodesic segments, and vice-versa.Theorem 5.1 (Shadowing). There is a function � : R+ ! R+ depending on Kand the geometry of X (sometimes denoted �(X;K)) with limR!1 �(R) = 0 so that if(T ; f; �) is a K-template for a geodesic segment/ray 
 � T , then the following hold.1. If x; y 2 T , z 2 xy and R := d(z; x), then d(�(z); �(x)�(y)) � (1 +R)�(R).2. If x; y 2 T , z 2 �(x)�(y) and R := d(z; �(x)) then d(z; �(xy)) � (1 +R)�(R).28



3. Let �T := T [ @1T and �X := X [ @1X be the usual compacti�cations. Thenthere is a unique topological embedding @1� : @1T ! @1X so that�� := � [ @1� : �T ! �Xis continuous at every � 2 @1T � �T .4. The image of @1� is[[W2WallT (@1Xf(W ))] [ [@@1
1 X];and when 
 is a ray with @1
 = � then @1�(@11T ) = @�1X (see section 3.3 for thede�nition of @�1X).5. @1�j@11T : @11T ! @�1X is an isometric embedding with respect to the Titsmetric.The proof of the theorem breaks up into two pieces. We �rst show in Proposition5.6 that a geodesic segment (in a template or in X) running through a sequence ofconsecutive walls has to be \close" to any point p which lies close to su�ciently manywalls in the sequence. We then show in Theorem 5.7 that a segment in a template(resp. in X) which doesn't meet too many walls (i.e. encounters at most Const logRwalls in the segment px, d(p; x) = R) is well shadowed by a geodesic segment in X(resp. in the template). These two arguments are combined in section 5.3 to proveTheorem 5.1.5.1. Paths in a template which are close to a cluster of wallsWe begin with a result about templates. It estimates the excess length of a path� which connects two walls W; W 0 while remaining outside a ball which intersectsW; W 0, and all walls between them.Proposition 5.2. Let T be a template with angle function � : WalloT ! (0; �) sat-isfying 0 < � � � � � � � < �. Then there are positive constants N1 = N1(�);(N1 � Const� ), C1 = C1(�), and C2 = C2(�) with the following property. LetWn0 ; : : : ;Wn1 2 WallT be a sequence of consecutive walls, and supposeWi\B(p; R) 6=; for some p 2 T , R > 0 and every n0 � i � n1. Then for any R0 � N1R and anypath c : [0; 1]! T � B(p; R0) with c(0) 2 Wn0 and c(1) 2 Wn1 we havelength(c) � dT (c(0); c(1)) + C1(n1 � n0 � C2)R0:Proof. Let Si be the strip incident to Wi and Wi+1 for i = n0; : : : ; n1 � 1, set L�i :=Si�1 \Wi for i = n0 + 1; : : : n1, and set L+i := Si \Wi for i = n0; : : : ; n1 � 1.We prove the proposition with the help of some lemmas.Lemma 5.3. There is a constant c1 � Const� so that if p 2 T and d(p;Wj) < R forj = i� 1 then d(p; oi) < c1R.Proof. By joining xi�1p to pxi+1 for appropriate choices of xi�1 2 Wi�1 and xi+1 2Wi+1 we get a path 
 : [0; 1] ! T of length at most 2R joining Wi�1 to Wi+1.Therefore there is a segment [a; b] � [0; 1] with 
(a) 2 L�i and 
(b) 2 L+i . Sod(p; oi) � R +min(d(
(a); oi); d(
(b); oi))29



� R + d(
(a); 
(b))2 sin(�2 ) � c1R:We now de�ne N1 := max(2c1; [�� ] + 2).Consider a path � : [0; 1] ! T � B(p; R0) where R0 > N1R. The ball B(p; R0) �T is convex, so clearly T � B(p; R0) is complete and locally compact with respectto the induced path metric. Therefore we may assume that c is a constant speedminimizing path from c(0) to c(1) in T �B(p; R0). Since B(p; R0) is a convex subsetof the Hadamard space T , the nearest point projection T ! B(p; R0) is distance nonincreasing; it follows that the set c�1(B(p; R0)) is either empty or a closed subinterval[a; b] � [0; 1]. cj[0;a] and cj[b;1] are constant speed geodesic segments in the Hadamardspace T , and since R0 > c1R these segments lie in T � foign0<i<n1 by Lemma 5.3.Lemma 5.4. c([0; a]) � �[n0+N1i=n0 Wi� [ �[n0+N1�1i=n0 Si�and c([b; 1]) � �[n1i=n1�N1Wi� [ �[n1�1i=n1�N1Si� :Proof. We prove the �rst assertion; the proof of the second is similar. If the lemmawere false, we would have c(t) 2 Sn0+N1 for some t 2 [0; a]. Therefore c([0; t]) mustcross every strip Si for n0 � i < n0 + N1, and for every n0 < i � n0 + N1 itmust enter Wi through L�i and exit through L+i . Since c([0; a]) is disjoint fromfoign0<i<n1 there is a 
at convex strip Y � T containing c([0; a]) in its interior.Using Y we can de�ne co-orientations for the segments c([0; a])\Si and c([0; a])\Wifor n0 � i � n0 + N1. If two of the origins oi 2 Wi for n0 < i � n0 + N1 lie onopposite sides of the corresponding segments c([0; a]) \ Wi with respect to the co-orientations then the geodesic between them (of length less than 2c1R by lemma 5.3)will intersect c([0; a]) and hence d(oi; c([0; a])) < c1R for some n0 < i � n0 +N1, andthus d(p; c([0; a]) < 2c1R. But this cannot happen since d(p; c([0; a]) � R0 > 2c1R.Thus all the origins oi 2 Wi for n0 < i � n0 + N1 lie on the same side of thecorresponding segments c([0; a]) \Wi with respect to the co-orientations. It followsthat the angle between c([0; a]) and L�i increases by at least � each time c([0; a])passes through a wall. Hence (N1 � 1)� < �, contradicting the de�nition of N1.Proof of Proposition 5.2 concluded. Let [a0; b0] � [a; b] � [0; 1] be the inverse image of[[n1�N1�1i=n0+N1+1Wi] [ [[n1�N1�1n0+N1 Si]under c. We know that c([a0; b0]) remains in the sphere S(p; R0) while it passes throughall the walls Wi for n0 + N1 < i < n1 � N1. So for every n0 + N1 < i < n1 � N1,c([a0; b0]) joins L�i to L+i outside B(p; R0) � B(oi; R0�c1R). Hence length(c([a0; b0]) ��(R0�c1R)(n1�n0�(2N1+2)) � �2R0(n1�n0�(2N1+2)) while dT (c(a0); c(b0)) � 2R0so length(c[a0; b0]) � dT (c(a0); c(b0)) + �2 (n1 � n0 � (2N1 + 2)� 4� )R0 and hencelength(c) � dT (c(0); c(1)) + C1(n1 � n0 � C2)R0where C1; C2 depend only on �. 30



Corollary 5.5. Let T , N1, C1, C2, Wn0 ; : : : ;Wn1, p, R be as in Proposition 5.2.If n1 � n0 > C2, then any geodesic segment from Wn0 to Wn1 must pass throughB(p;N1R).The result corresponding to Corollary 5.5 in the space X is:Proposition 5.6. There are constants N2 = N2(X); R0 = R0(X) with the followingproperty. If n � N2, e1; : : : en 2 E are the consecutive edges of a geodesic segment,
, in the tree T , p 2 X, R � R0, and Xei \ B(p; R) 6= ; for 1 � i � n; then for anyC � 0, and any segment xy � X with xy\NC(Xei) 6= ; for i = 1 and i = n, we havexy \B(p;N2R + 2C) 6= ;.Proof. Let e1; : : : ; en, p, Xei be as in the statement of the proposition. If xy \NC(Xei) 6= ; for i = 1 and i = n, then we have x0 2 Xe1 and y0 2 Xen withd(x0; xy); d(y0; xy) � C. By convexity of the distance function dX it su�ces to showthat x0y0 \ B(p;N2R) 6= ;.Let K and � be as in Lemma 4.5 and (T ; f; �) be a K template for 
 whoseangles are bounded by �. Let � : x0y0 ! T be the map guaranteed by Proposition4.6. So Length(�) � d(x0; y0) + nC5. By part 3 of de�nition 4.4 there is a p0 2 T besuch that d(p; �(p0)) < R + K and hence (since Xei � NK�(Wi)) d(�(p0); �(Wi)) <2R + 2K. Since, by Proposition 4.6, � is an (L;A)-quasi isometric embedding wehave B(p0; R2) \Wi 6= ; for R2 = L(2R + 2K) + A. We will choose R0 and N2 largeenough so that for n > N2 and R � R0 we will have nC5 < C1(n � C2)N1R2 forthe N1(�), C1(�) and C2(�) of Proposition 5.2. Thus Proposition 5.2 forces � tointersect B(p0; N1R2). So we conclude (again using Proposition 4.6) that d(x0y0; p) <C5+d(�(�); �(p0))+R+K � C5+LN1R2+A+R+K. The proposition now followsby taking N2 and R0 large enough.5.2. Paths with small length distortionProposition 5.7. PickM > 0 and � 2 (12 ; 1]. Then there is a constant C = C(M;�)so that if 1 � A � B, � : [A;B] ! X is a (not necessarily continuous) map to aHadamard space X, and for all A � t1 � t2 � B we havejdX(�(t1); �(t2))� (t2 � t1)j �M(1 + log(t2t1 )) (5.8)then d(�(t); z) � C(1 + t�) (5.9)where z 2 �(A)�(B) is the point with d(z; �(A)) = t�AB�Ad(�(A); �(B)). Similarly, ifA � 1 and � : [A;1)! X satis�es (5.8) for all A � t1 � t2, then there is a uniqueunit speed geodesic ray 
 : [A;1)! X with 
(A) = �(A) such thatdX(�(t); 
(t)) � C(1 + t�)for all t 2 [A;1). 31



Proof. First note that we may assume that A = 1, since the map �1 : [1; B�A+1]!X given by �1(t) := �(t + A� 1) will satisfy the hypotheses of the proposition, andthe conclusion of the proposition applied to �1 will imply (5.9) for �.Step 1: When 1 � s1 � s2 � 2s1 � B and s1 is su�ciently large then thecomparison angle e\�(1)(�(s1); �(s2)) � Const s��11 .We will make use of the following lemma that follows from standard comparisons.Lemma 5.10. Let X be a Hadamard space, x; y; z 2 X. Set L := d(x; z), and theexcess E := d(x; y) + d(y; z)� d(x; z). Thend(y; xz) � p2LE2 r1 + E2L (5.11)� pLE if E � 2L. (5.12)Proof. Triangle comparison.Proof of Proposition 5.7 continued. Take 1 � s1 � s2 � B, and consider the triple�(1); �(s1); �(s2). The excess for the triple is�M(1 + log s2) +M(1 + log s1) +M(1 + log(s2s1 )) = 3M(1 + log s2):Since d(�(1); �(s2)) � (s2� 1)�M(1+ log s2) when s2 > c1 = c1(M), then the excessis � 2d(�(1); �(s2)). Thus since d(�(1); �(s2)) � (s2 � 1) +M(1 + log s2) applying(5.12) we getd(�(s1); �(1)�(s2)) �p[(s2 � 1 +M(1 + log s2))][3M(1 + log s2)]� c2(1 + s�2 ) (5.13)where c2 = c2(M;�). Therefore the comparison angle e\�(1)(�(s1); �(s2)) satis�essin(e\�(1)(�(s1); �(s2))) � c2(1 + s�2 )d(�(1); �(s1)) � c2(1 + s�2 )[(s1 � 1)�M(1 + log s1)] :So there are constants c3 = c3(M;�) and c4 = c4(M;�) so that if c3 � s1 � s2 �2s1 � B then sin(e\�(1)(�(s1); �(s2))) � 2c2(1 + s�2 )s1 � c42 s��12 (5.14)and e\�(1)(�(s1); �(s2)) � c4s��12 : (5.15)Step 2: Estimating d(�(t); �(1)�(B)). Now pick t0 2 [1; B] with t0 � c3 . Letti = 2it0 for i = 0; : : : ; n where n is the integer part of logBlog 2 , and tn+1 = B. ThenBtn < 2. Applying the estimate (5.15) with ui := �(ti) we have for i = 1; : : : ; n+ 1:e\�(1)(ui�1; ui) � c4t��1i32



since titi�1 � 2 and ti � c3. Either n = 0, in which case we haved(�(t0); �(1)�(B)) � c2(1 + t�1 ) by (5.13)� c2(1 + 2�t�0 ) � c5(1 + t�0 )where c5 = c5(M;�). Otherwise, if t0 > c6 = c6(M;�),d(�(1); u0) � (t0 � 1) +M(1 + log t0)� (ti � 1)�M(1 + log ti) � d(�(1); ui):So for 0 � i � n+ 1 we may pick vi 2 �(1)ui with d(�(1); vi) = d(�(1); u0) =: R0. Bytriangle comparison we haved(vi�1; vi) � R0e\�(1)(vi�1; vi) � R0e\�(1)(ui�1; ui)� R0c4t��1iso d(u0; �(1)�(B)) = d(u0; �(1)un+1) � d(u0; vn+1)� n+1Xi=1 d(vi�1; vi) � R0c4 n+1Xi=1 t��1i� R0c7t��10for c7 = c7(M;�) (independent of n). We have R0 � t0 � 1 +M(1 + log t0) � 2t0when t0 is su�ciently large, so when t0 � c8 = c8(M;�)d(u0; �(1)�(B)) � c9t�0where c9 = c9(M;�).Step 3: Estimating d(�(t); z) where z 2 �(1)�(B) satis�es d(z; �(1)) = t�1B�1d(�(1); �(B)).Let x 2 �(1)�(B) be the point nearest �(t). Then for t � c10 we haved(�(t); z) � d(�(t); x) + d(x; z)= d(�(t); x) + jd(x; �(1))� (t� 1)d(�(1); �(B))B � 1 j� d(�(t); x) + [d(x; �(t)) + (t� 1)B � 1M(1 + logB) +M(1 + log t)] � 3c9t�:Thus the result holds for large t, but by choosing C large enough we get the resultfor all t.For the ray case we redo step 3 above when d(�(1); �(B)) > t for z1 2 �(1)�(B)the point which satis�es d(z1; �(1)) = t. Let x 2 �(1)�(B) be the point nearest �(t).Then for t � c11 we have d(�(t); z1) � d(�(t); x) + d(x; z1)= d(�(t); x) + jd(x; �(1))� (t� 1)j� d(�(t); x) + [d(x; �(t)) +M(1 + log t)] � 3c9t�:Now choose 
 as a limit of a subsequence of �(1); �(B) as B goes to1 (the resultwill in fact imply that the sequence itself converges). Since none of the constantsdepended on B the above estimate for d(�(t); z1) gives the result for rays.33



5.3. The proof of Theorem 5.1Let � = �(X) be the minimum angle between singular geodesics of a templatefor X de�ned in Lemma 4.5, and let C2(�); N1(�) be the constants from Corol-lary 5.5. Let N2; R0 be the constants from Proposition 5.6; we will assume thatN2 � max(C2(�); N1(�)).De�nition 5.16. For every  > 0 , we will say that z 2 xy is a  -cluster point ifthe segment B(z;  d(z; x))\ xy intersects at least N2 walls of T , or if z 2 fx; yg. Wewill let P � xy represent the set of  -cluster points.Proof of 1. Let (T ; f; �), x, y, be as in the statement of part 1 of the theorem.We begin with two lemmas.Lemma 5.17. There is a constant c1 depending on K such that if xy intersects awall W 2 WallT , then �(x)�(y) \Nc1(Xf(W )) 6= ;:Proof. If fx; yg\W 6= ; this is immediate since �(W ) � NK(Xf(W )) by de�nition 4.4.Otherwise x and y must lie in distinct components of T �W because each componentis convex. Say x 2 W1 [ S1 [W 01 and y 2 W2 [ S2 [W 02 where Wi is adjacent to W 0i .Set v := f(W1) \ f(W 01) and v0 := f(W2) \ f(W 02). Applying Lemma 3.17 the lemmafollows.Lemma 5.18. Suppose p1; p2 2 xy, d(p1; x) � d(p2; x), and p1p2 \ P � fp1; p2g.Set A := 1 + d(p1; x), B := 1 + d(p2; x). Let �0 : [A;B] ! T be the unit speedparameterization of p1p2. Then the composition � := � � �0 : [A;B]! X satis�es thehypotheses of Proposition 5.7 with M =M(K; ).Proof. Pick A � t1 < t2 � B. By Corollary 4.10 we havejdX(�(t1); �(t2))� (t2 � t1)j � kC6 (5.19)where �0(t1)�0(t2) intersects at most (k � 1) walls and strips of T . For each z 2�0(t1)�0(t2), the segment B(z;  d(z; x)) \ xy intersects at most N2 � 1 walls. We cancover �0(t1)�0(t2)�B(x; 1) with at most Const log( t2t1 ) such segments, and B(x; 1) \�0(t1)�0(t2) intersects at most 2 walls (since strips have width at least 1), so thelemma follows from (5.19).Step 1: Estimating d(�(z); �(x)�(y)) when z 2 P . Suppose z 2 P . Thenxy\B(z;  R) intersects at least N2 consecutive wallsW1; : : : ;Wn of T . By de�nition4.4 and the fact that � : T ! X is a quasi-isometric embedding (Proposition 4.6)there is a constant c2 = c2(K) so that dX(�(z); Xf(Wi)) � c2(1 +  R) for i = 1; : : : n.By Lemma 5.17 and Proposition 5.6, we conclude that �(x)�(y) \ B(�(z); N2c2(1 + R) + 2c1) 6= ; provided c2(1 +  R) � R0. So there are positive constants r0 =r0(K; ); c3 = c3(K; �) so that if z 2 P and R := d(z; x) � r0, thend(�(z); �(x)�(y)) � c3 R: (5.20)Hence for any z 2 P d(�(z); �(x)�(y)) � c3 R + Lr0 + A = c3 R + c4 (5.21)34



where (L;A) are the quasi-isometric embedding constants of �, and c4 := Lr0 +A =c4(K; ).Step 2: Estimating d(�(z); �(x)�(y)) when z 62 P . Pick z 62 P . There are pointsp1; p2 2 xy so that z 2 p1p2, d(p1; x) � d(p2; x), and either p1p2 \ P = fp1; p2g orone or both of p1 = x or p2 = y hold. Each step of the argument below holds in thespecial cases p1 = x or p2 = y (often for easier reasons) so we will ignore them. By(5.21) we have d(�(pi); �(x)�(y)) � c3 d(pi; x) + c4 (5.22)for i = 1; 2. Since p1; p2 satisfy the conditions of Lemma 5.18, we may applyProposition 5.7 with � = 34 to get that for the w 2 �(p1)�(p2) with d(w; �(p1)) =d(z;p1)d(p1;p2)d(�(p1); �(p2)) we haved(�(z); w) � C(1 + [d(z; x)] 34 ) �  d(z; x) + c6: (5.23)Where c6 = c6(K; ).On the other hand for � = d(w;�(p1))d(�(p1);�(p2)) = d(z;p1)d(p1;p2) the convexity of the distancefunction d(�; �(x)�(y)) and 5.22 says thatd(w; �(x)�(y)) � c3 ((1� �)d(p1; x) + �d(p2; x)) + c4 = c3 d(z; x) + c4 (5.24)Combining (5.24) and (5.23) we getd(�(z); �(x)�(y)) � c7 d(z; x) + c8 (5.25)for c7 = c7(K) and c8 = c8(K; ). Thus (5.21) and (5.25) together imply that forevery choice of  > 0 there are constants c9(K; �) and c10(K; ) such that for all zd(�(z); �(x)�(y)) � c9 R + c10:The fact that c9 does not depend on  allows us to pick �(R) which decays to 0 asR ! 1 such that for each R there is a  =  (R) > 0 (for example choose  (R)decaying to 0 such that c10( ) < R� 12 ) so thatc9 R + c10( ) � (1 +R)�(R)This implies part 1 of Theorem 5.1.Proof of 2. We omit this, as it is similar to the proof of 1.Proof of 3. Part 3 follows directly from part 1 and Lemma 2.5.Proof of 4. Part 2 along with reasoning similar to the proof of Lemma 2.5 showsthat if x; yk 2 T , � 2 @1X, and �(x)�(yk) ! x�, then xyk converges to someray x�0 � T . Hence @1� is a homeomorphism from @1T onto the limit set of�(T ) � X, which we denote by @1�(T ). It follows immediately from this that @1�maps @1T �@11T = [W2WallT @1W homeomorphically onto [W2WallT @1Xf(W ). This35



implies 4 when 
 � T is a geodesic segment, so we now assume that 
 is a geodesicray, and we need only show that @1�(@11T ) = @�1X where � = @1
 2 @1T . We willlet Wk 2 WallT be the kth wall of T .We �rst show @1�(@11T ) � @�1X. Suppose � 2 @11T , zk 2 x� \ Wk, andd(zk; x) ! 1. Thus �(x)�(zk) ! �(x)@1�(�). By lemma 3.17 part 1, for any lwe have �(x)�(zk) \ Nc(Xf(Wl)) 6= ; for su�ciently large k. So by Lemma 2.4 ei-ther @1�(�) 2 @1Nc(Xf(Wl)) = @1Xf(Wl) or �(x)@1�(�) \ Nc(Xf(Wl)) 6= ;. Theformer case is impossible since we already know that (@1�)�1(@1Xf(Wl)) = @1Wl.So �(x)@1�(�) \ Nc(Xf(Wl)) 6= ; for every W 2 WallT , forcing I(�(x)@1�(�)) = 
.So @1�(@11T ) � @�1X.We now show @�1X � @1�(@11T ). Suppose x 2 W1 2 WallT and � 2 @�1X. Thenfrom the de�nition of itineraries 3.20 and Lemma 3.19 there are zk 2 �(x)�\NC(Xek)for ek 2 T so that dT (ek; f(W1)) ! 1 and dT (ek; 
) is uniformly bounded. So forall but �nitely many W , f(W ) separates ek from f(W1) for su�ciently large k, so byLemma 3.17 �(x)zk \Nc(Xf(W )) 6= ;for su�ciently large k. Hence � belongs to the limit set of [W2WallTXf(W ), which isthe same as @1(�(T )) = @1�(@1T ). Therefore � 2 (@1�)(@1T �[W2WallT @1W ) =(@1�)(@11T ).Proof of 5. Pick x 2 T and � 2 @11T . Suppose there is a sequence zk 2 x�with limk!1(zk; x) = 1 so that zk is a  k-cluster point x� where  k ! 0. SetRk := d(zk; x). Applying Corollary 5.5 to each zk, we see that if �0 2 @11T , then forsu�ciently large k the intersection x�0 \B(zk; N1 kRk) is nonempty, and this clearlyforces x�0 = x�. In this case we have @11T = f�g, and 5 is immediate. So we mayassume that for every �1; �2 2 @11T there is a  > 0 such that x�1 and x�2 contain no -cluster points. Let ��i : [1;1)! T be the unit speed parameterization of x�i, andlet �i : [1;1)! X be the composition � � ��i : [1;1)! X. Then by Lemma 5.18 the�i satisfy the hypotheses of Proposition 5.7 for a suitable M ; so we have unit speedgeodesic rays 
i : [1;1) ! X with 
i(1) = �i(1) and dX(�i(t); 
i(t)) � C(1 + t 34 ).Now, for su�ciently large k, choose tik so that ��i(tik) lies in the kth wall of T . Byde�nition 4.4 jdX(�1(t1k); �2(t2k))� dT (��1(t1k); ��2(t2k))j < K:Thus\T (
1; 
2) = limk!1 e\�1(1)(�1(t1k); �2(t2k)) = limk!1 e\x(��1(t1k); ��2(t2k)) = @T (�1; �2):This proves 5.5.4. Applications of Theorem 5.1Theorem 5.1 has a number of corollaries:Corollary 5.26. Let G be the fundamental group of an admissible graph of groupsG, and let G y T be the Bass-Serre tree of G. Let 
 � T be a geodesic ray with ithedge ei � T , and set � := @1
 2 @1T . Then for any admissible action Gy X, thesubset @�1X � @1X de�ned in section 3.3 is precisely the set of limit points of thesequence of subsets @1Xek � @1X. 36



Proof. Let (T ; f; �) be a template for 
 � T . By parts 3 and 4 of Theorem 5.1, @1� :@1T ! @1X is a homeomorphism onto ([k @1Xek)[ (@�1X). Therefore it su�ces toshow that @11T � @1T is the set of limit points of the sequence @1f�1(ek) � @1T .To see this, observe that any geodesic segment px � T which arrives at a wallW 2 WallT via a strip S 2 StripT may be prolonged by a geodesic ray containedin W ; this implies that every � 2 @11T is a limit of a sequence �k 2 @1f�1(ek). Onthe other hand, if �k 2 @1f�1(ek) converges to � 2 @1T , then Lemma 2.4 impliesthat either � 2 @11T , or � belongs to @1f�1(ek) for all su�ciently large k, which isabsurd.Remark 5.27. Let G y X, T , 
, and � be as in Corollary 5.26. When X is a3-dimensional Hadamard manifold, then @1X ' S2 and there is an alternate charac-terization of @�1X which uses little more than the de�nition of itineraries. For each i,@1Xei � @1X ' S2 determines two closed disks by the Jordan separation theorem;let Di be the one which contains @1Xej for all j � i. Then @�1X = \iDi. To seethis note that if F � X is a 
at totally geodesic plane and p 2 X � F , then the twocomponents of @1X�@1F are f� 2 @1X j p�\F 6= ;g and f� 2 @1X j p�\F = ;g.Corollary 5.28. Let G y X and G y X 0 be admissible actions, let G y T be theBass-Serre tree of G, and let V; E be the sets of vertices and edges of T , respectively.If � : @1X ! @1X 0 is any G-equivariant homeomorphism, then1. � maps @1X� homeomorphically to @1X 0� for all � 2 V [ E.2. � maps @�1X homeomorphically to @�1X 0 for all � 2 @1T .Proof. Part 1 follows from the characterization of @1X� as a �xed point set which isstated in Lemma 3.23. Part 2 follows from part 1 and Corollary 5.26.Corollary 5.29. Let Gy X be an admissible action, and Gy T be the Bass-Serreaction for G. Then1. The union [v2V @TXv � @TX is a CAT (1) space with respect to the inducedmetric, and may be described metrically as follows. First, @TXv is a metric suspensionof an uncountable discrete CAT (1) space for each v 2 V , and @TXe is isometric tothe standard circle for every e 2 E. Take the disjoint union qv2V @TXv, and for eachedge e = v1v2 2 E, glue @TXv1 to @TXv2 isometrically by identifying the copies of@TXe � @TXvi; the result is isometric to [v2V @TXv � @TX.2. The union [v2V @TXv forms a connected component of @TX. The remainingcomponents are contained in the subsets @�TX for � 2 @1T . We will show in Lemma7.3 that each @�TX is either a point or isometric to an interval of length < �.Proof. To prove 1, we �rst observe that if e1; : : : ; en is an edge path in T with initialvertex v1 and terminal vertex vn, �1 2 @TXv1 , �n 2 @TXvn , and \T (�1; �n) < �, thenthe Tits segment �1�n � @TX is contained in [ni=1 @TXvi . To see this, pick � 2 �1�n.Recall that for a given base point x, x� may be obtained as the limit of a sequence xykwhere yk lies on a segment xk1xk2 and xki 2 x�i is a sequence tending to in�nity. Thequasi-convexity property of Lemma 4.3 (applied in sucession to x�i, xk1xk2, and thenxyk) implies that xyk � NC([ni=1Xvi) for some C, and the convexity of the NC(Xvi)'simplies that � 2 @TXvi for some i 2 f1; : : : ng. Part 1 now follows from Corollary3.16. 37



Before proving 2, we recall that open balls of radius �2 in CAT (1) spaces aregeodesically convex, so two points in a CAT (1) space belong to the same connectedcomponent i� they can be joined by a unit speed path.Suppose � 2 @1T and � 2 @�TX. Fix v 2 V , p 2 Xv, and let ek 2 E denote thekth edge of the ray v� � T . Part 1 of Lemma 3.19 implies that p� \Xek 6= ; for allbut �nitely many k. If c : [0; L] ! @TX is a unit speed path starting at �, then byLemma 2.4, we �nd that either c([0; L]) � @�TX or for all su�ciently large k thereis a tk 2 [0; L] so that pc(tk) 2 @TXek . But part 1 shows that when e; e0 2 E andd(e; e0) � 2, then d(@TXe; @TXe0) is bounded away from 0, which gives a contradiction.Therefore c([0; L]) � @�TX and we have shown that the connected component of � iscontained in @�TX.Finally, we note that [v2V @TXv is connected: if v1; : : : ; vk are the consecutivevertices of a geodesic segment in T , then @TXvi \ @TXvi+1 = @TXvivi+1 6= ;.6. Geometric data and equivariant quasi-isometriesThroughout this section, G �y X and G �0y X 0 will denote admissible actions ofan admissible group G on Hadamard spaces X and X 0, and we let MLSv; �v andMLS 0v; � 0v denote their respective geometric data (see De�nition 3.9). The mainresult in this section is Theorem 6.5, which shows that a G-equivariant quasi-isometry� : X ! X 0 induces an equivariant homeomorphism @1� : @1X ! @1X 0 provided� and �0 have equivalent geometric data.De�nition 6.1. We say that � and �0 have equivalent geometric data if there arefunctions � : V ! R+ and � : V ! R+ so that for every v 2 VMLS 0v = �(v)MLSv and � 0v = �(v)�v:It follows from theG-invariance of the geometric data that � and � will beG-invariant.The structure of G strongly restricts the possibilities for the functions � and �:Lemma 6.2. Suppose the geometric data for the actions G y X and G y X 0 areequivalent, and let � : V ! R+ and � : V ! R+ be as in De�nition 6.1. Then either1. � � � � a, for some a > 0.or2. There are constants a and b, a 6= b, so that �(V ) = fa; bg = �(V ). Moreover,for any pair v1; v2 of adjacent vertices in T , �(v1) = �(v2), �(v2) = �(v1), and the Rdirections of Yvi ' �Yvi �R determine orthogonal directions in Ye, where e := v1v2. Inparticular, there is a G-equivariant 2-coloring of V (i.e. a two coloring of the �nitegraph G = T=G) such that � and � are functions of the vertex color.Proof. Pick e = v1v2 2 E, and consider Ge 
 R ' Z2 
 R ' R2 . For i = 1; 2 wehave subspaces Zi := (Z(Gvi) \ Ge)
 R ' Z
 R ' R determined by the centers ofthe Gvi 's. The action Ge y Ye induces an inner product h�; �i on Ge 
 R by letting,for g 2 Ge, hg; gi = �2g . (For p 2 Ye there is an embedded Euclidean plane R2 � Yeinvariant under the action of Ge y Ye on which Ge acts by translations of �g. Soour metric is naturally related to the metric on this R2). We can extend the maps38
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Figure 1: On Ge
R ' R2 we have two metrics < �; � > and < �; � >0. Ker(�̂i) (whichis the same as Ker(�̂ 0i)) for i 2 f1; 2g is perpendicular to Zi with respect to bothmetrics.�i : Ge ! R to linear maps �̂i : Ge 
 R ! R. For g 2 Ge we see that �i(g) is justthe change in the i-vertical component from y to g(y). So for x 2 Ge 
 R, �̂i(x) isjust the length of the orthogonal projection of x onto Zi. In particular, for x 2 Ziwe have hx; xi = �̂i(x)2, and Ker(�̂i) is h�; �i perpendicular to Zi. Similarly ^MLSi(x)corresponds to the length of the projection of x perpendicular to Zi (i.e. to Ker(�i)).In general Z1 and Z2 are not perpendicular but they are always linearly independent(see �gure 1.Similarly, using the action Ge y Y 0e , we get an induced inner product h�; �i0 andlinear maps �̂ 01 and �̂ 02. By assumption �̂ 0i = �(vi)�̂i, hence Ker(�̂i) = Ker(�̂ 0i). So thespace perpendicular to Z1 (resp. Z2) with respect to h�; �i is the same as that withrespect to h�; �i0. Hence, by the independence of Z1 and Z2, either h�; �i0 = ah�; �i forsome a > 0 or Z1 and Z2 are perpendicular in both metrics so Ker(�̂1) = Ker(�̂ 01) =Z2 and Ker(�̂2) = Ker(�̂ 02) = Z1. In the latter case, choosing x 2 Z2 we havehx; xi0 = ( ^MLS1(x))2 = �(v2)2( ^MLS1(x))2 = �(v2)2hx; xi and hx; xi0 = (� 02(x))2 =�(v1)2(�2(x))2 = �(v1)2hx; xi so �(v1) = �(v2); similarly �(v2) = �(v1).We now �x a G-equivariant (L;A)-quasi-isometry � : X ! X 0 for the rest of thissection. The constants de�ned will depend on the geometry of G �y X and G �0y X 0as well as any other explicitly stated quantities.Lemma 6.3. There is a constant D1 = D1(L;A) so that for every � 2 V [ E, theHausdor� distance dH(�(X�); X 0�) is at most D1.Proof. For g 2 G let dg and d0g denote the displacement functions for g in X and X 0respectively. In particular d0g(x) � Ldg(x) + A.For any v 2 V , if g 2 Z(Gv) is a generator of the center Z(Gv) then (see section2.3) dg is proper on X=Z(Z(Gv); G) = X=Gv (by Lemma 3.6) and hence dg (respd0g) grows with the distance from Xv (resp X 0v). This (along with the fact that thereare only �nitely many � modulo G) implies the lemma when � 2 V . If e 2 E, andg1; g2 2 Ge are a basis for Ge then maxfdg1; dg2g (resp maxfd0g1; d0g2g) grows with thedistance from Xe (resp X 0e). This implies the lemma when � 2 E.We now assume for the remainder of this section that � and �0 have equivalentgeometric data, and we let � : V ! R+ and � : V ! R+ be as in De�nition 6.1. Foreach v 2 V , we have nearest point projections pv : X ! Yv and p0v : X 0 ! Y 0v . Modulo39



renormalization of the metrics on the spaces Yv, the equivariant quasi-isometry �restricts to a Hausdor� approximation:Lemma 6.4. For every v 2 V , the Gv-equivariant quasi-isometry �v := p0v � �jYv :Yv ! Y 0v has the following properties:1. It is at distance < D2 = D2(L;A) from a Gv-equivariant map 	v : Yv ! Y 0vwhich respects the product structures Yv ' �Yv � R and Y 0v ' �Y 0v � R.2. If we stretch the metric on the �Yv factor of Yv by �(v), and the metric on theR factor by �(v), then �v becomes a D3 = D3(L;A)-Hausdor� approximation, andmaps unit speed geodesic segments to within D3 of unit speed geodesic segments.Proof. We �rst prove part 1. The R �bers of Yv and Y 0v are within uniform Haus-dor� distance of Z(Gv)-orbits, so Gv-equivariance implies that �v takes R �bers of Yvto within uniform Hausdor� distance (say C1) of R �bers of Y 0v . The �Yv �bers of Yv arewithin uniformHausdor� distance of sets of the form fg(p) j p 2 Yv,g 2 Gv, j�v(g)j < Cgfor su�ciently large C, and a similar characterization of the �Y 0v �bers of Y 0v holds. Wenow de�ne the product map 	v = �	v�	Rv : �Yv�R ! �Y 0v�R. Fix a basepoint p 2 Yv.We may assume that the R factor of p and �v(p) are 0 and take 	Rv (t) = �(v)t. Welet S � �Yv be a (set theoretical) cross section for the Hv action. For s 2 S choose ag 2 Gv such that j�v(g)j < C and d(g(p); (s; 0)) � C1. Now, since j� 0v(g)j < �(v)C,we can choose a point �	v(s) such that d(g(�(p)); ( �	v(s); 0)) � �(v)C. We note thatd(	((s; 0));�((s; 0))) � d(( �	v(s); 0);�(g(p))) + LC1 + A � �(v)C + LC1 + AExtend this to an Hv equivariant map �	v : �Yv ! �Y 0v . Thus, along with the fact that� 0(g) = �(v)�(g), we see that 	v is a Gv-equivariant map. Now for every q 2 Yv thereis a g 2 Gv such that g(q) = (s; t) for some s 2 S and some �C < t < C. Nowd(	(q);�(q)) =d(	((s; t));�((s; t))) � 2C�(v) + d(	((s; 0));�((s; 0))) � 3�(v)C + LC1 + AThis proves 1.Part 2 follows from part 1 if we can show that �	v and 	Rv carry unit speedgeodesics to within uniform distance of unit speed geodesics. The map 	Rv clearlydoes, because the translation distance in the R-direction is measured by �v (resp.� 0v) and these have ratio �(v). Recall that Hv := Gv=Z(Gv) acts discretely andcocompactly on the hyperbolic metric spaces �Yv and �Y 0v . Since MLS 0v = �(v)MLSv,if we renormalize the metric on �Yv by �(v) we can apply Lemma 2.20 to see that�	v : �Yv ! �Y 0v preserves unit speed geodesics up to uniform error. This proves 2.We may now use our quasi-isometry � : X ! X 0 to transport standard K-templates for X to templates for X 0 (see section 4.2). Start with a standard K-template (T ; f; �) for some segment or ray 
 � T . Recall that the walls of T comefrom 
ats Fe � Ye � Xe. To produce the new template T 0 distort the metric on T byan a�ne change as follows. For each v 2 V , we think of scaling the metric on �Yv by�(v) and the R-factor of Yv by �(v); and then we distort the 
ats Fe = Fvv0 � Fv\Fv0and strips See0 � Ye\e0 used to build T accordingly. Lemmas 6.3 and 6.4 imply that(T 0; f;� � �) is a K 0-template for 
 where K 0 = K 0(L;A). Notice (using Lemma 6.2)that the identity map T ! T 0 is an a�ne map (i.e. maps constant speed geodesicsto constant speed geodesics), and is a homothety when � = � = a 2 R.40



Theorem 6.5. Let G �y X and G �0y X 0 be admissible actions of an admissiblegroup G on Hadamard spaces X and X 0 such that � and �0 have equivalent geometricdata, and let � : X ! X 0 be a G-equivariant (L;A)-quasi-isometry. Then there isa function � : R+ ! R+ (depending on K,L, A and the geometry of X and X') withlimr!1 �(r) = 0 so that for every x; y 2 X, z 2 xy, we havedX0(�(z);�(x)�(y)) � (1 + dX(z; x))�(dX(z; x)): (6.6)Consequently, by Lemma 2.5, � extends to a unique map �� : �X ! �X 0 which iscontinuous at @1X � �X. Setting @1� := ��j@1X : @1X ! @1X 0, we obtain a G-equivariant homeomorphism. If � = � = a 2 R, then @1� is an isometry with respectto Tits metrics.Proof. Pick x; y 2 X, and then �nd a segment 
 � T so that x 2 Xe1 , y 2 Xen,and the ith edge of 
 is ei. Now let (T ; f; �) be the standard K-template for 
, andde�ne the K 0-template (T 0; f; �0) as in the paragraph preceding the statement of theTheorem. We may assume, after moving x and y a uniformly bounded distance ifnecessary (see part 3 of de�nition 4.4), that x = �(x1), y = �(y1) for some x1; y1 2 T .We get (6.6) by applying Theorem 5.1 twice { once to (T ; f; �) and once to (T 0; f; �0).Speci�cally, Since z 2 �(x1)�(y1) an application of Theorem 5.1 part 2 givesdX(z; �(x1y1)) � (1 + dX(z; x))�(X;K)(dX(z; x)):So there is a z1 2 x1y1 with dX(z; �(z1)) � (1 + dX(z; x))�(X;K)(dX(z; x)): Hence wesee dX0(�(z); �0(z1)) � L(1 + dX(z; x))�(X;K)(dX(z; x)) + A:Now an application of Theorem 5.1 part 1 to �0 givesdX0(�0(z1);�(x)�(y)) = dX0(�0(z1); �0(x1)�0(y1)) � (1+dT 0(x1; z1))�(X0 ;K0)(dT 0(x1; z1)):We thus need to bound dT 0(x1; z1) linearly from above by dX(z; x). But this followssince dT 0(x1; z1) � L0dX0(�0(x1); �0(z1)) + A0 (where L0 and A0 come from Propo-sition 4.6 and depend only on K 0 and the geometry of X 0), dX0(�0(x1); �0(z1)) �LdX(�(x1); �(z1)) + A, and dX(�(x1); �(z1)) � dX(x; z) + dX(z; �(z1)) � dX(x; z) +(1 + dX(z; x))�(X;K)(dX(z; x)). Equation (6.6) will thus follow for an appropriatechoice �(K;L;A;X;X0) that will depend only on L, A, K, and the geometry of X and X 0.Lemma 2.5 then applies to �, so we get an induced embedding @1� : @1X ! @1X 0which is automatically G-equivariant.Now suppose � = � = a. Pick � 2 @1T , and a geodesic ray 
 � T with@1
 = �. Then the identity map T ! T 0 between the associated templates (T ; f; �)and (T 0; f; �0) constructed as above is a homothety, and so part 5 of Theorem 5.1applied to @1�j@11T and @1�0j@11T 0 then shows that @1�j@�1X induces an isometry@�TX ! @�TX 0. By Corollary 5.29 it remains only to show that @1� induces anisometry @TXv ! @TX 0v. But Lemma 6.4 part 2 implies that �v : Yv ! Y 0v is at �nitedistance from a product of Hausdor� approximations (up to rescaling of X 0 by 1a) andso �v induces an isometry @TXv ! @TX 0v.41



7. Recovering the geometric data from the action on theideal boundaryIn this section we will prove the remaining implication of Theorem 1.3: for anyadmissible action G y X, the topological conjugacy class of the action G y @1Xdetermines the functions MLSv : Gv ! R+ and �v : Gv ! R up to a multiplicativefactor, for every vertex v 2 G. Our strategy for proving this is as follows. UsingLemma 3.23 and Corollary 5.26, for any ideal boundary point � of the Bass-Serretree T , we may detect the subset @�1X � @1X; speci�cally, the action G y @1Xdetermines the set of boundary points � 2 @1T for which j@�1Xj = 1. To extractuseful information from this, we consider a special class of geodesic rays 
 � T(see De�nition 7.11) which admit templates (T ; f; �) where T is asymptotically self-similar: there is a (non-surjective) map T ! T which stretches distances by a factorof 2. These templates have two key properties: their geometry relates directly tothe geometric data MLSv and �v, and at the same time we can tell explicitly when(in terms of the geometry) we have j@@1
1 T j = 1 (see section 7.2). Putting all thistogether we able to recover the geometric data from the action Gy @1X.7.1. @1T T is either a point or an intervalLemma 7.1. Let X be a Hadamard space, p 2 X, and 
i � X a sequence of geodesicswith limi!1 d(p; 
i) =1. SetS := f� 2 @TX j p� \ 
i 6= ; for all ig:Then S embeds isometrically in the interval [0; �].Proof. Pick x; y; z 2 S, and for each i choose xi 2 px \ 
i, yi 2 py \ 
i, zi 2 pz \ 
i.After passing to a subsequence and reordering x; y; z we may assume that yi liesbetween xi and zi on 
i, or that it coincides with xi or zi. Then it follows thate\p(xi; yi) + e\p(yi; zi) � e\p(xi; zi):Taking the limit as i!1, we get\T (x; y) + \T (y; z) � \T (x; z):Hence (fx; y; zg;\T ) � @TX embeds isometrically in [0; �].If jSj = 1 the lemma is immediate, so assume jSj � 2, and construct a mapf : S ! R as follows. Pick distinct points x0; x1 2 S and for i = 0; 1 choosef(xi) 2 R so that d(x0; x1) = d(f(x0); f(x1)). Now de�ne f uniquely by the conditionthat d(f(s); f(xi)) = d(s; xi) for all s 2 S and i = 0; 1. Clearly f is an isometricembedding, and its image lies in an interval of length at most �.Lemma 7.2. Let T be a half template with walls W0;W1; : : : . For i � 1 set �i :=�(Wi) where � : Wall0T ! (0; �) is the angle function, and assume minf�i; ���ig �� for all i � 1. Then1. The diameter of @1T T with respect to the Tits metric is at most � � �.2. For p 2 W0 and every i > 0 there is an Ri, depending only on � and d(oi; p),so that if q 2 L+i then pq \ L�i � B(oi; Ri).42
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Figure 2: On the wall Wi the angle between L�i and L+i is � � hence the angle at x�iis � � � �. The angle at y�i is always � � (no mater where y+i lies on L+i ).Proof. Pick p 2 W0 � T , and distinct points x; y 2 @1T T . Let x�i 2 L�i (resp.x+i 2 L+i ) be the point where the ray px enters (resp. exits) the wall Wi; de�ney�i ; y+i similarly. Since x 6= y, there is an i0 > 0 so that x�i 6= y�i when i � i0. Picki � i0, and assume that d(x�i ; oi) � d(y�i ; oi) (the case when d(y�i ; oi) � d(x�i ; oi) issimilar). Clearly (see �gure 2) we have\x�i (x+i ; oi) = \x�i (x+i ; y�i ) � maxf�i; � � �ig � � � �:Now this implies 1 since by standard properties of Tits angles\T (x; y) = h limi!1(\x�i (y�i ; x) + \y�i (x�i ; y))i� � � maxf�i; � � �ig � � � �:It also implies 2 by applying triangle comparison to the angle at xi of the trianglewith vertices p, oi, and xi.Proposition 7.3. Let T be a uniform half template with minf�i; ���ig � � for alli. Then @1T T is isometric to an interval [0; �] where � 2 [0; �].Proof. Applying Lemma 7.1 with 
i = L�i and Lemma 7.2 we get that @1T T isisometric to a subset of [0; �]. We need only show that @1T T is connected. Sup-pose x; y 2 @1T T , and pick a point z lying on the Tits interval xy � @TT . Letp; x�i ; y�i be as in the proof of Lemma 7.2. Then limi!1 e\p(x�i ; y�i ) = \T (x; y), sowe can choose a sequence zi 2 x�i y�i � L�i so that limi!1 e\p(x�i ; zi) = \T (x; z) andlimi!1 e\p(z�i ; yi) = \T (z; y). The segments pzi converge to the ray pz. Since for anyj > 0 the segment pzi crosses L+j for su�ciently large i, by Lemma 7.2 part 2 we getpzi \ L�j � B(oj; Rj)and we conclude that pz \ L�j 6= ;. Hence z 2 @1T T .The � in the above proposition is referred to as the Tits angle of T and is denoted�(T ).7.2. Self-similar TemplatesIn this section we study a special class of full templates called self-similar templates.43



De�nition 7.4. Let T be a full template with WallT = fWigi2Z and StripT =fSigi2Z, and set �i := �(Wi), li := l(Si), and �i := �(Si) (we de�ne � using the striporientation compatible with the strip directions and the usual ordering on Z). ThenT is a self-similar template if for all i; j 2 Z we have �i = �j, li+2j = 2jli, and�i+2j = 2j�i. In this case we say that T has data (�; l0; �0; l1; �1) where � = �i for alli 2 Z.Note that by the de�nition, if we rescale the metric on a self-similar template Tby a factor of 2, then we get a template equivalent to T , i.e. there is a homothety� : T ! T which preserves strip directions, stretches distances by a factor of 2, andwhich shifts wall and strip indices by 2. A self-similar template is determined up toequivalence by � and the data fl0; �0; l1; �1g.T contains one point v which is not on any wall or strip (since the union of thewalls and strips is not complete). The point v is the limit of the Cauchy sequencefo�iji = 0; 1; 2; :::g. On the other hand, for each j 2 Z the half template, Tj, givenby the union of planes Wi and strips Si for i � j is uniform (and complete). Theimages of the embeddings @11Ti ! @1T and @1T Ti ! @TT are independent of i, andwe use @11T (respectively @1T T ) to denote this common subspace. We will say thatT is trivial if j@11T j = 1 and nontrivial if j@11T j > 1.We note that if r is a geodesic ray parameterized by arclength then � � r is ageodesic ray parameterized by twice arclength. So � and ��1 take rays to rays. Since� is a homothety it preserves the Tits angles between rays.If Ri represents the space of geodesic rays starting at oi and intersecting Wj forall j � i, then the above shows ��1(Ri) = Ri�2 and that ��1 acts as a Tits isometryon @1T T . In particular since @1T T is isometric to an interval, � leaves the midpoint�xed, and �2 acts as the identity. Thus by repeated applications of ��1 we see thatwe can represent @1T T as the set rays, R�1, that start at v and are invariant under�2. Further, the middle ray is invariant under �.We will show in the lemma below that all rays in R�1 are � invariant. Inparticular any such ray that intersects an oi must intersect all oi+2n for n 2 Z, andhence there are at most two such rays, reven and rodd, in R�1.Each choice N 2 fI; II; III; IV g determines a choice of quarter planes QNi �Wi as follows: for all k 2 Z, QN2k = QN � W2k while QN2k+1 = �QN � W2k+1.Straightforward Euclidean geometry shows that the corresponding development map,DN , with DN(v) = 0 has the property that DN � � � D�1N is multiplication by 2wherever (and however) it is de�ned (see Figure 3). (The easiest way to see this isto �rst develop QN0 , S0, QN1 , S1, and QN2 into the plane, then shift the origin (0; 0)so that it lies on the line through D(o0) and D(o2) and such that D(o0) lies between(0; 0) and D(o2) and such that the distance from (0; 0) to D(o2) is twice the distanceto D(o0). We note that D(QN2 ) = 2D(QN0 ). We can now de�ne a map D uniquelyso that D � � � D�1 is multiplication by 2. It is easy to check that this map is adevelopment and hence by uniqueness is DN - up to an element of O(2).) There arerays reven and rodd from the origin such that DN(o2i) 2 reven and DN(o2i+2) 2 rodd.(We can �x DN completely if desired by taking reven to be the positive x-axis and tomake rodd point in the upper half plane.)Lemma 7.5. Let T be a nontrivial self-similar template. Then there is a choice44
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Figure 3: Development of a self-similar template from quarter planes QIi . Develope-ments of quadrants for nonnegative integers are shaded and labeled with their type,while those with negative indices are not shown. The direction of S5 and S6 areshown via arrows. The interval of rays between reven and rodd correspond to rays inthe template.N 2 fI; II; III; IV g such that for r 2 R�1, r \ Wi � QNi . Each r 2 R�1 is �invariant, and reven and rodd are the DN images of the boundary rays of R�1 as aclosed interval. In particular the set of r 2 R�1 span a space isometric, via DN to aconvex cone in R2.Proof. The fact that R�1 is a closed interval follows from Proposition 7.3. If r1; r2 2R�1 then their invariance under the homothety �2 implies that\T (r1; r2) = \v(r1; r2),and hence the rays between r1 and r2 span a space isometric to a convex cone in R2.In particular, no ray between r1 and r2 can intersect an origin oi. Thus the middle(� invariant) ray rm determines N;M 2 fI; II; III; IV g such that rm \W2n � QN ,and rm \W2n+1 � QM . The above says that for any interior ray, r, r \W2n � QN ,and r \W2n+1 � QM . Consider the development map D determined by this choiceof quarter planes. We will assume that D(v) is the origin, so in particular D(Qi) andD(Si) miss the origin. Now D � �2 � D�1 is de�ned when restricted to the image ofeach strip or quarter plane. It is clearly just multiplication by 4, since that is whatit does to each ray in the D image of R�1.We assume thatN = I (the other cases are similar) and must prove thatM = III.If M = II (resp. M = IV ) then for i = 1 (resp. i = 0), D(Qi) [ D(Si) [ D(Qi+1)will contain a half plane which in turn contains one of D(Qi) or D(Qi+1). But thiscannot happen since any ray entering that half plane will never leave it. If M = Ithen for k � maxf�� ; ����g we have [ki=1(D(Qi) [ DSi) contains a half plane whichin turn contains one of the quarter planes and the same argument works. Thus weconclude that M = III, and Qi = QNi .We know that DN �� � D�1N is just multiplication by 2. This means in particularthat all rays in R�1 are invariant under �. Now since at least one ray between reven45
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-�2Figure 4: The graph of A� for � = 3�5 .and rodd hits every DN(Qi) this is true of all such rays, hence all are DN of a ray inT . This gives a 1-1 correspondence between rays in T and rays in the plane betweenreven and rodd completing the lemma.The argument in the last proof shows that a self-similar template is nontrivialif and only if there is an N 2 fI; II; III; IV g such that some (and hence any) raybetween the corresponding reven and rodd intersects every DN(QNi ). But by self-similarity this will be true if and only if the line segment from DN(o0) to DN(o2)intersects DN(QN1 ). This leads to the following lemma:We will use the notation R40 = f(x1; x2; x3; x4) � R4 j x1; x3 > 0g.Let A� be:f(x; y) 2 (��2 ; �2 )�(��2 ; �2 ) j x+ � � y � x� � and �x + (� � �) � y � �x� (� � �)g:See Figure 4.Lemma 7.6. Fix � > � > 0 and let A� be the set of (l0; �0; l1; �1) � R40 such that theself-similar template with data (�; l0; �0; l1; �1) is trivial. ThenA� = f(l0; �0; l1; �1) 2 R40 j (arctan(�0l0 ); arctan(�1l1 )) 2 A�gProof. Let  i = arctan( �ili ). The proof follows once we show that R4�A� consists of4 components given in order for N=I, II, III, and IV by: 0 >  1 + �; � 1 � (� � �) >  0;  1 � � >  0; and  0 > � 1 + (� � �):Here we do the case N = I, i.e. the line segment from DI(o0) to DI(o2) intersectsDI(QI1) . The cases N = II; III; and IV are similar.Let � > �0 > 0 be the angle between the line segment from DI(o1) to DI(o0) andthe \incoming" edge of DI(QI1) (see Figure 5). Here the \incoming" edge is the DIimage of the negative half line of L�1 (since QI1 is of type III). Similarly let �2 bethe angle between the line segment from DI(o1) to DI(o2) and the \outgoing" edgeof DI(QI1). �1 will be the angle at DI(o1) of the sector DI(QI1) (which in our case isjust �). It is easy to see that our condition is equivalent to� > �0 + �1 + �2:46
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Figure 5: Developement in case I; �0 > 0, �1 < 0 .The rest of the argument is just that the de�nitions (being careful about how thesign of �i and the orientation of the strips interact) give us, when N = I,�0 = �2 � arctan(�0l0 ) and �2 = �2 � arctan(��1l1 )which completes the argument.We extract the information we need with the following elementary (but somewhatnon-trivial):Corollary 7.7. Pick ai > 0 for i = 1; : : : ; 4, b1 > 0, b2 2 R, and a subset B � R40 .Suppose there is a � 2 (0; �) so that B is precisely the set of (x1; x2; x3; x4) 2 R40 forwhich (a1x1 + b1; a2x2 + b2; a3x3; a4x4) 2 A�:Then �, b1a1 , and b2a2 are uniquely determined by B. If this unique � is not �2 then b1a2and b2a1 are also determined by B.Proof. We consider the map	(x1; x2; x3; x4) = (arctan(a2x2 + b2a1x1 + b1 ); arctan(a4x4a3x3 )) =: ( 0(x1; x2);  1(x3; x4)):the previous lemma along with our assumption says that for a1x1+ b1 > 0 and x3 > 0(x1; x2; x3; x4) 2 B () 	(x1; x2; x3; x4) 2 A�. 	 maps f(x1; x2; x3; x4)ja1x1 + b1 >0 and x3 > 0g onto (��2 ; �2 )� (��2 ; �2 ).Step 1: � is determined by B. We notice that (x; y0) 2 A� for all �2 � � < x < �2if and only if y0 = �2 � �. Similarly (x1; y) 2 A for all large �2 � � < y < �2 if andonly if x1 = �2 � �. Thus (1; x2; x03; x04) 2 B for all su�ciently large x2 if and only if 1((x03; x04)) = �2 � �, while (x11; x12; 1; x4) 2 B for all su�ciently large x4 if and only if 0((x11; x12)) = �2 � �. Fix such an (x11; x12), then, if � 6= �2 , there is a unique x14 suchthat for all x4 � x14, (x11; x12; 1; x4) 2 B. If � < �2 we have  1(1; x14) = �2 � 2�, while if� > �2 we have  1(1; x14) = 2� � 3�2 .Let �ai, �b1; �b2, and �� be another choice of parameters that work and �	 and � i thecorresponding functions. Then tan( � 1) = c tan( 1) where c = �a4a3�a3a4 > 0. Plugging in(x03; x04) from the previous paragraph allows us to conclude tan(�2 � ��) = c tan(�2 ��),(i.e. tan( ��) = 1c tan(�) if � 6= �2 ). Note in particular that the sign of �2 � �� isthe same as the sign of �2 � �. Plugging in (1; x14) from the above paragraph weget tan(�2 � 2��) = c tan(�2 � 2�) if � < �2 and tan(2�� � 3�2 ) = c tan(2� � 3�2 ) if47



� > �2 . However this can only happen if c=1 and � = ��. Thus we conclude that � isdetermined by B and that either � = �2 or else c = 1 and  1 = � 1.Step 2: If � 6= �2 then  0 = � 0, while if � = �2 then tan( � 0) = 1c tan( 0). We will�rst show that given B, � and  1 then there is at most one choice for  0. To see this�x (x1; x2) and consider S � R2 such that B \ ((x1; x2) � R2) = (x1; x2) � S. Then 1(S) is precisely the interval such that A� \ ( 0(x1; x2)�R) = ( 0(x1; x2)� 1(S)).However the shape of A� is such that  1(S) thus determines  0(x1; x2), unless � = �2in which case it determines  0(x1; x2) up to sign. The sign is determined by continuityand the fact that for x2 large and positive (resp. negative) then  0(x1; x2) is positive(resp. negative).Thus if � 6= �2 then  1 = � 1 and we see that � 0 =  0 is the unique solution.If � = �2 then tan( � 1) = c tan( 1) and A� = f(x; y) 2 R2j � x + �2 � y � x � �2when x > 0 and x + �2 � y � �x � �2 when x < 0g. Thus for c > 0 the map(x; y)! (arctan(1c tan(x)); arctan(c tan(y)) preserves A� and step 2 follows.The rest of the proof follows from the following equation that holds for all positivex1 and all x2: �a2x2 + �b2�a1x1 + �b1 = 1c a2x2 + b2a1x1 + b1and the fact that c = 1 when � 6= �2 .7.3. Recovering the dataIn this section G will denote a �xed admissible graph of groups, G := �1(G) thefundamental group of G, and Gy T the Bass-Serre action for G. For every vertex vof G we choose a generator �v 2 Z(Gv) for the center of Z(Gv) as in De�nition 3.9.Also, we will �x an admissible action G y X. We will use the template notationfrom section 4.1. Recall that when T is a half-template, then @11T � @1T denotesthe set of boundary points corresponding to rays which intersect all but �nitely manywalls.The goal of this section is to prove the remaining half of Theorem 1.3: the topo-logical conjugacy class of the action G y @1X determines the functions MLSv :Gv ! R+ and �v : Gv ! R up to a multiplicative factor, for every vertex v 2 G.De�nition 7.8. An element g of a vertex group Gv is restricted if g acts on �Yv (seesection 3.2) as an axial isometry and its �xed points in @1 �Yv are distinct from the�xed points of Ge where e is any edge incident to v.It will be convenient to choose, for each vertex v of G, a restricted element �v 2 Gvwhich lies in the commutator subgroup [Gv; Gv] � Gv:Lemma 7.9. For every vertex v, the commutator subgroup [Gv; Gv] contains re-stricted elements.Proof. We �rst recall that Hv := Gv=Z(Gv) is a nonelementary hyperbolic group, andthe induced action Hv y �Yv is discrete and cocompact.Choose a free nonabelian subgroup S � Hv [Gro87, p. 212], and elements �g1; �g2 2S which belong to a free basis for the commutator subgroup [S; S] � [Hv; Hv], and let48



gi 2 Gv be lift of �gi under the projection Gv ! Hv. Then gi acts axially on �Yv since�gi has in�nite order in Hv and Hv acts discretely on �Yv. Note that Fix(g1; @1 �Yv) \Fix(g2; @1 �Yv) = ;, since otherwise by Lemma 2.21 we would have Fix(g1; @1 �Yv) =Fix(g2; @1 �Yv), forcing hg1; g2i to be virtually cyclic, which is absurd. Set hn := gn1 gn2 .Lemma 2.10 tells us that hn is axial for large n and Fix(hn; @1 �Yv) converges tof�1; �2g � @1 �Yv where �i 2 Fix(gi; @1 �Yv). The induced action of Ge on �Yv translatesa geodesic 
e � �Yv. By the �niteness of G we can choose elements ge 2 Ge suchthat the induced translation of ge is nonzero but uniformly bounded. Thus Lemma2.21 says that subsets Fix(Ge; @1 �Yv) = Fix(ge; @1 �Yv) de�ne a discrete subset of(@1 �Yv � @1 �Yv)=Z2, so eithera) Fix(hn; @1 �Yv)\Fix(Ge; @1 �Yv) = ; for all edges e incident to v when n is large,orb) There is a subsequence hni and an edge e incident to v so that Fix(hni ; @1 �Yv) =Fix(Ge; @1 �Yv).But if b) held then we would have Fix(Ge; @1 �Yv) = f�1; �2g, which, by Lemma2.21, would force the absurd conclusion that Fix(g1; @1 �Yv) = Fix(ge; @1 �Yv) =Fix(g2; @1 �Yv). Hence case a) holds and the lemma is proved.Notice that for every v, MLSv(�v) 6= 0 (since �v acts on �Yv as an axial isometry),�v(�v) = 0 since �v 2 [Gv; Gv], and �v(�v) 6= 0.Lemma 7.10. In order to determine MLSv and �v up to a multiplicative factor, itsu�ces to determine the ratiosMLSv(�)MLSv(�v) and �v(�)�v(�v)for every restricted element � 2 Gv whose �xed point set in @1 �Yv is disjoint fromFix(�v; @1 �Yv).Proof. Choose an arbitrary � 2 Gv.We �rst discuss MLSv. Note that MLSv(�) = 0 i� � projects to an elementof �nite order in Hv; hence we may assume that � acts on �Yv as an axial isometry.First assume that Fix(�; @1 �Yv) = Fix(�v; @1 �Yv). Let ��; ��v 2 Hv be the projectionsto Hv. Then �� and ��v generate a virtually cyclic subgroup S because they have acommon axis. Hence there is a �nite subset fs1; : : : ; skg � Gv so that for any n wehave �n = sin�jnv �knv for suitable in; jn; kn. ThenMLSv(�) = limn!1 1nMLSv(�n) = limn!1MLSv(�jnv )so we can recover the ratio above in this case.Now assume Fix(�; @1 �Yv) \ Fix(�v; @1 �Yv) = ;. Setting hk := �kv�k2, we argue asin the proof of Lemma 7.9 to see that for large k, hk is restricted, Fix(hk; @1 �Yv) \Fix(�v; @1 �Yv) = ;, and jMLSv(hk)�kMLSv(�v)�k2MLSv(�)j is uniformly bounded(by Lemma 2.10). We may then recover the desired ratios from the formulaMLSv(�) = limk!1 1k2MLSv(hk):49



We now consider the behavior of �v. Suppose � projects to an element of �niteorder in Hv, or Fix(�; @1 �Yv) \ Fix(�v; @1 �Yv) 6= ;. In either case we have a �nite setfs1; : : : ; skg � Gv so that �n = sin�jnv �knv for suitable in; jn; kn. Then�v(�) = limn!1 1n�v(�n) = limn!1[jnn �v(�v) + knn �v(�v)]:For the case Fix(�; @1 �Yv) \ Fix(�v; @1 �Yv) = ;, use the same hk as above for large ksince �v(hk) = k2�(�).We now focus our attention on a vertex �v1 of G. Choose an edge �e of G incident to�v1, and lift �e to an edge e of the Bass-Serre tree. We adopt the notation from section2.5 for the associated graph of groups G 0, G0 := �1(G 0), T 0 � T , etc. We �x somerestricted element � 2 G�v1 with Fix(�; @1 �Yv1) \ Fix(�v1 ; @1 �Yv1) = ;.De�nition 7.11. (Special rays) For every (p; q; r; s) 2 R40 we de�ne a geodesic ray
 � T 0 and sequences l̂i = li(p; q; r; s), �̂i = �̂i(p; q; r; s) as follows.Case 1: �e � G is embedded. Let e = v1v2. For each i 2 N we set s2i�1 :=�2i�1�[p2i�1]v1 � [q2i�1]v1 and s2i := �[r2i�1]v2 � [s2i�1]v2 , where [x] denote the integer part of x 2 R.Then we let 
 � T be the geodesic ray with successive edgese; s1e; s1s2e; : : : ; s1 : : : ske; : : : ; (7.12)and de�ne, for all i 2 N , l̂2i�1 = 2i�1(MLSv1(�)+jpjMLSv1(�v1)), l̂2i = 2i�1jrjMLSv2(�v2);and �̂2i+1 := 2i(�v1(�) + q�v1(�v1)), and �̂2i := 2i�1s�v2(�v2).Case 2: �e � G is a loop. Let t be as in section 2.5. For each i 2 N we sets2i�1 := �2i�1�[p2i�1]v1 � [q2i�1]v1 and s2i := �[r2i�1]v1 � [s2i�1]v1 ; then we let 
 � T be the geodesicwith successive verticesv1; tv1; ts1t�1v1; ts1t�1s2tv1; : : : ts1t�1s2t : : : s2ktv1; : : : ; (7.13)and de�ne, for all i 2 N , l̂2i�1 = 2i�1(MLSv1(�)+jpjMLSv1(�v1)), l̂2i = 2i�1jrjMLSv1(�v1);and �̂2i+1 := 2i(�v1(�) + q�v1(�v1)), and �̂2i := 2i�1s�v1(�v1).These rays are useful because they admit templates that are asymptotically self-similar:Lemma 7.14. There is a half template (T ; f; �) for 
 with walls WallT = fWig1i=1and strips StripT = fSig1i=1, so that for i su�ciently large, l(Si) = l̂i, �(Si) = �̂i, and�(Wi) = �, where � is the Tits angle between the (positively oriented) R-factors ofYv1 and Yv2 .Proof. We will treat the case when �e is embedded; the other case is similar. To provethe lemma we will show that the desired template may be obtained from a standardtemplate for 
 by changing the strip widths and strip gluings by a bounded amount.Thus by "uniformly" we will just mean independent of i, but possibly dependent onall other choices.For i � 1 we set ei := s1 : : : si�1e and vi := ei \ ei+1. Recall (section 4.2) that thestandard template (T ; f; �) for 
 is constructed using 
ats Fei � Yei and 
at strips50



Sei;ei+1 � Yvi, where Sei;ei+1 = 
ei;ei+1 � R � �Yvi � R = Yvi. We choose x1 2 Fe1 andset xi := s1 : : : si�1x1 2 Fei .Step 1: There is a constant c1 so that d(xi;Sei;ei+1) < c1, d(xi+1;Sei;ei+1) < c1 andjWidth(Sei;ei+1)� l̂ij < c1. We will do the case when i = 2j � 1 is odd; the even caseis similar. Let � : Yv1 = �Yv1 � R ! �Yv1 be the projection map, and set �x1 := �(x1),�Fe := �(Fe), �Fsie := �(�siFe) = �(Fsie), and 
e;sie := �(Se;sie). We apply (s1 : : : si�1)�1and then � to everything, and are thereby reduced to showing that there is a c1 sothat d(�x1; 
e;sie) < c1, d(si�x1; 
e;sie) < c1, and jd(si�x1; �x1)� l̂ij < c1.>From the de�nition of si we have si�x1 = �2j�1�[p2j�1]v1 �x1 since �v1 acts triviallyon �Yv1. Since �; �v1 2 Gv1 are restricted elements, the sets @1 �Fe � @1 �Yv1 and@1 �Fsie � @1 �Yv1 are disjoint from the �xed point sets of � and �v1 ; the latter two setsare disjoint by assumption. Therefore we may apply Lemma 2.10 to conclude thatwhen j is su�ciently large,a) si : �Yv1 ! �Yv1 is an axial isometry with an axis 
i � �Yv1 at uniformly boundeddistance from �x1 and si�x1.b) jd(si�x1; �x1)� l̂ij is uniformly bounded.c) The attracting (resp. repelling) �xed point of si in @1 �Yv1 is close to the at-tracting �xed point, �+, of � (resp. repelling �xed point, ��, of �sign(p)v1 ).Let 
e;sie be the shortest path from �Fe to �Fsie with endpoints �zi 2 �Fe and �wi 2 �FsieLet 
 be a geodesic with endpoints �� and �+. The Gromov hyperbolicity of �Yv1 andLemma 2.9 part 3 imply that for t �xed and large and i large the axis of si comeswithin a uniform distance of 
e;sie(t) and hence 
e;sie(t) stay a uniform distance from
. Thus �zi, which is the point on �Fe closest to 
e;sie(t), must stay a uniform distancefrom the set of points on �Fe closest (in a Buseman function sense) to �+ (which we seeby taking t large) and hence stay uniformly close to �x1 . Similarly s�1i ( �wi) approachesthe set of points on �Fe closest to �� and hence �wi stays uniformly close to si(�x1).Step 2: There is a c2 so that the standard template (T ; f; �) satis�es j�(Si)� �̂ij <c2 and �(Wi) = � for all i > 1. The assertion that �(Wi) = � is clear from thede�nition of �(Wi) and the construction of standard templates. Step 1 then impliesthat there is a c3 so that the origin oi 2 Wi maps under f : T ! X to within distancec3 of xi, for i > 1. Hence from the de�nition of � : StripoT ! R we see that �(Si)agrees with �vi((s1 : : : si�1)si(s1 : : : si�1)�1) to within 2c3. The conjugacy invarianceof �v then gives j�(Si)� �̂ij < c2 for a suitable c2.Step 3: Adjusting (T ; f; �). In steps 1 and 2 we have shown that the standard tem-plate satis�es conditions of Lemma 7.14 to within bounded error. So we now modifythe construction of T by changing the metric11 on Ŝei;ei+1so that Width(Ŝei;ei+1) = l̂iif li � 1, and leaving Ŝei;ei+1 untouched otherwise, and by modifying the gluings@Ŝei;ei+1 ! Wei q Wei+1 by a bounded amount so that �(Si) = �̂i. Finally, if werede�ne f : T ! X to agree with the original f on qeWe and on T � (qeWe), thenwe get the desired template for 
.Proof the Theorem 1.3 concluded. Consider the subset B � R40 of 4-tuples (p; q; r; s)for which the geodesic ray 
 � T de�ned above gives a trivial subset @@1
1 X (i.e. a11We do this in the simplest way: we start with the metric product decomposition Ŝei;ei+1 ' I�Rand then scale the metric on the I factor. 51



single point); by Lemma 3.23 and Corollary 5.26 the subset @@1
1 X can be detectedjust using the action Gy @1X, and so B is also determined by the action Gy @1X.On the other hand, by Theorem 5.1, @@1
1 X is trivial i� @11T is trivial (i.e. a singlepoint) where (T ; f; �) is any template for 
. Using Lemma 7.14 we arrive at thefollowing: the subset B of (p; q; r; s) 2 R40 so that any template T with l(Si) =l̂i(p; q; r; s), �(Si) = �̂i(p; q; r; s), and �(Wi) = � (for i su�ciently large) is trivial, isdetermined by the action Gy @1X. But since a template T with l(Si) = l̂i(p; q; r; s),�(Si) = �̂i(p; q; r; s), and �(Wi) = � (for i su�ciently large) is trivial i� the self-similartemplate with data f�; l̂3; �̂3; l̂4; �̂4g is trivial, we may apply Corollary 7.7 to concludethat the ratios MLSv1(�)MLSv1(�v1) and �v1(�)�v1(�v1)as well as � are determined by the action Gy @1X. Moreover, unless � = �2 thenMLSv1(�)�v1(�v1) and �v1(�)MLSv1(�v1)are also determined.8. ExamplesIn this section we construct the example mentioned in the introduction: we will �ndtwo locally compact Hadamard spaces X0 andXr on which an admissible groupG actsdiscretely and cocompactly with the same geometric data (i.e. the induced actionsof G on @1X0 and @1Xr are topologically conjugate), an equivariant quasi-isometry~F : X0 ! Xr, and a geodesic ray 
 of X0 such that ~F (
) does not lie within abounded distance of a geodesic ray in Xr.To do that we consider for each (small) real r a complex Mr, built out of four 
atsquare tori Ti. On each Ti we use standard angle coordinates (s; t)i with (s+2n�; t+2m�)i = (s; t)i for any integers n and m. We let Mr = T1 [ T2 [ T3 [ T4= �r, where(0; t)1 �r (t; 0)2, (�; t)2 �r (t; �)3, (�; t)3 � (t; �)4 and (0; t)4 �r (t; r)1. We will letXr represent the universal cover.The Xr are Hadamard spaces with admissible fundamental groups which all havethe same geometric data. This is easiest to see by consideringMr as the union of fourspaces T1[T2, T2[T3, T3[T4, and T4[T1 each of which is isometric to a �gure eightcross a circle, where both circles in the �gure eight and the product circle have length2�. Each of the three spaces is glued to adjacent spaces along (product) boundarytori (reversing the factors). We note that the underlying �nite graph of G is a squarewith four edges ei corresponding naturally to Ti.It is easy to see that theMr are homeomorphic. In fact for small r the fundamentalgroups are identi�ed in a natural way. However, we will �nd it more useful to considerthe map Fr : M0 ! Mr de�ned by F (s; t)i = (s; t)i, except that F ((0; t)4) = (t; 0)1.This is not continuous along the closed geodesic (0; t)4, but the induced equivariantquasi-isometry ~F : X0 ! Xr is relatively easy to study.We now want to choose a geodesic ray 
 in X0. For these spaces geodesics are justgeodesics in templates. It is easier to �rst choose the degenerate half template T thatit will lie in. By degenerate template we mean a template where we alow the strip52



widths to be 0. In fact in our case all the strip widths will be 0, all the angles will be�2 , and the displacements will all be odd multiples of �. We will choose T so that theedges of the ray in the Bass-Serre tree project to the �nite graph periodically in theorder e1, e2, e3, e4, e1 : : : . Subject to this constraint we can still choose the itinerarysuch that the displacements in T are any odd multiples of � we please. Hence wemay choose the itinerary (e.g. make it nontrivial) so that there is a geodesic 
 in Twhich misses all the vertices such that 
 \Wi gets arbitrarily long. (The easiest wayto see this is to consider the developement D. First choose a ray r that you want tobe D(
). The choice of itinerary at each step amounts to a choice of quarter planesamong those shifted by 2n�. We can thus make the choice so that the quarter planeintersects r in increasingly long intervals).Of course 
 is also a geodesic ray in X0. ~F will take T to a corresponding templateTr, and the geodesic ray corresponding to F (
) must be a geodesic in this template.~F will be discontinuous exactly where walls corresponding to e4 and e1 are glued.The discontinuity is a translation by r perpendicular to the gluing line.We develop T (and Tr) to the plane in such a way that 
 goes to a ray withangle �2 > � > 0, the quarter planes map to planes of type II and IV where wallsof type e1 and e3 yield quarter planes of type II and walls of type e2 and e4 yieldquarter planes of type IV. ~F will induce a map of developments which is discontinuousprecisely on the horizontal lines where the quarter planes coming from e4 meet thosecoming from e1. The discontinuity will be precisely a vertical shift by r. Thus theimage of 
 consists of arbitrarily long line segments of slope � with in�nitely manyvertical jumps of size r. Since the segments get arbitrarily long, the only rays thatcan stay a bounded distance from ~F (
) must also have slope �. But then, because ofthe in�nitely many vertical jumps of size r in ~F (
), no such ray can stay a boundeddistance from ~F (
).One can make similar examples on singular piecewise Euclidean graph manifolds.We construct such examples by gluing together two pieces. Each piece is topologicallya twice punctured torus cross S1. The boundary of each piece will consist of twototally geodesic square 
at two-tori. The �rst space is constructed by gluing bothof the corresponding boundary tori together 
ipping the coordinates. The secondspace is similar except that for one of the boundary tori the gluing map is coordinate
ipping composed with a small translation.The metric of each piece is a product metric where the circle has length 1 andwhere the metric on the torus is the completion of the 
at square torus minus two linesegments (slits) of length 12 . The torus with the slits is a compact 
at singular spacewith boundary being two closed geodesics of length 1 (i.e. going \around a slit").The argument that this gives an example is very similar to the above since geo-desics in the space are in fact geodesics in the corresponding templates and since theinduced map on the development of appropriate templates has properties similar tothe above example.We also suspect there are such examples on smooth graph manifolds. In fact onemay be able to construct such an example by smooth approximations to the aboveexample. To do this carefully it would be necessary to be careful with how closelytemplate geodesics shadow actual geodesics in this case.53
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