
THE WEAK HYPERBOLIZATION CONJECTURE FOR3-DIMENSIONAL CAT(0) GROUPSMICHAEL KAPOVICH AND BRUCE KLEINER1. IntrodutionLetG be a 3-dimensional Poinare duality group over a ommutative hereditary ringR with a unit; for instane, G ould be the fundamental group of a losed aspherial3-manifold. Suppose in addition that G is a CAT (0)-group, i.e. a group whih admitsa oompat isometri properly disontinuous ation G y X on a proper CAT (0)spae X. The main result of this note is the following:Theorem 1. Under the above assumptions either G is Gromov-hyperboli or G on-tains a opy of Z2.We note that speial ases of this theorem were proven earlier by various people:Buyalo [6℄ and Shroeder [17℄ have independently proven that this theorem holdsprovided that X is the universal over ~M of a losed 3-manifold M , the CAT (0)-struture on ~M is Riemannian and G = �1(M) ats on X by dek-transformations.Mosher [15℄ proved that Theorem 1 holds provided that X = ~M , G = �1(M), andthe CAT (0) metri on is obtained by lifting a pieewise-Eulidean CAT (0)-ubulationfrom M . Bridson and Mosher also have an unpublished proof of Theorem 1 underthe assumption that X = ~M has an arbitrary G-invariant CAT (0)-struture. Unlikeall these proofs, our proof takes plae on the ideal boundary of X; this allows usto treat 3-dimensional Poinare duality groups and drop the assumption that theCAT (0)-spae is a topologial manifold.Despite reent progress towards Thurston's Geometrization Conjeture using theRii ow, the following onjeture remains of independent interest, and ould beviewed as a possible step toward showing that PD(3) groups (over Z) are fundamentalgroups of 3-manifolds:Weak Hyperbolization Conjeture for PD(3) groups: If G is a 3-dimensionalPoinare duality group over a ommutative ring R with unit, then either G is Gromov-hyperboli or G ontains a opy of Z2.Date: November 19, 2003.The �rst author was supported in part by NSF Grant DMS-02-03045.Supported by NSF grant DMS-02-24104. 1



2. PretreesIn what follows we will need de�nitions and basi fats about pretrees; the de�ni-tions whih we give follow [4℄.A pretree is a set T together with a ternary relation (the betweenness relation, \yis between x and z"), to be denoted �(xyz), satisfying the following axioms:(1) �(xyz) implies that x 6= y 6= z.(2) �(xyz) () �(zyx).(3) �(xyz) and �(yxz) annot hold simultaneously.(4) If w 6= y then �(xyz) implies that either �(xyw) or �(wyz).Given a pretree T one an de�ne losed, open and half-open intervals in T by(x; z) := fy 2 T : �(xyz)g; [x; z℄ := (x; z) [ fx; zg; et.Given an inreasing union of intervals[x1; y1℄ � [x2; y2℄ � ::: � [xi; yi℄ � :::we will also refer to the union of these intervals as a (possibly in�nite) interval in T .We note that � de�nes a linear order (up to orientation) on eah interval in T .De�ne a \triangle" in T with verties a; b;  to be the union of the segments (alled\sides" of the triangle) [a; b℄; [b; ℄; [; a℄.Lemma 2. Eah triangle � in T is 0-thin, i.e. eah side of � is ontained in theunion of the two other sides.Proof. Follows immediately from Axiom 4. �Suppose that T is a pretree whih is given a measure � (without atoms) de�nedon losed intervals in T and the �-algebra whih these intervals generate. De�ne afuntion d(x; y) on T by d(x; y) := �([x; y℄).Lemma 3. d is a pseudo-metri on T .Proof. It is lear that d is symmetri and d(x; x) = 0 (sine � has no atoms). Thetriangle inequality follows beause for eah triangle with the verties a; b;  we have(see Lemma 2) [a; b℄ � [a; ℄ [ [b; ℄: �We reall that a metri tree is a omplete geodesi metri spae where eah geodesitriangle is isometri to a tripod.We note that if for eah interval [a; b℄ � T , with a 6= b, �(a; b) > 0 then d is ametri. Moreover, it follows that (a; b) 6= ; for eah a 6= b. If the restrition of themetri d to eah interval [x; y℄ is omplete then [x; y℄ is order isomorphi to an intervalin R and moreover, ([x; y℄; d) is isometri to an interval in R. We thus get:2



Lemma 4. Suppose that for eah interval [x; y℄ � T , with x 6= y, �[x; y℄ > 0, andthat the restrition of the metri d to eah interval in T is omplete. Then (T; d) isa metri tree.Proof. It is lear from the above disussion that T is a geodesi metri spae. Sineeah triangle in T is 0-thin, it follows that eah triangle in T is isometri to a tripod.Finally, let's hek ompleteness of T : Suppose that xi; i � 0; is a Cauhy sequenein T . Then there exists an inreasing sequene of intervals Ii � T suh thatlimi �([x0; xi℄ \ Ii) = limi d(x0; xi):Then ompleteness of d restrited to the union I of Ii's implies that (xi) onverges toa point in the interval I. �3. Coarse topology and the ideal boundaries of CAT(0) spaesLet X be a CAT(0) spae. Reall that the ideal boundary of X, as a set, is theolletion of equivalene lasses of geodesi rays in X, where two rays are equivalent(asymptoti) if they are within �nite Hausdor� distane from eah other. In whatfollows we will be onsidering the ideal boundary of the spae X equipped with twodi�erent strutures:(1) The visual topology, in whih ase we will be using the notation �1X for theideal boundary.(2) The Tits boundary, denoted by �TX, where the ideal boundary of X is equippedwith the Tits angle metri \T . We reall that the topology indued by \T is usu-ally di�erent from the topology on �1X, but the identity map �TX ! �1X is aontinuous bijetion.We refer the reader to [1, 5℄ for a detailed disussion of �1X and �TX.De�nition 5. Points �1; �2 2 �TX are alled antipodal if \T (�1; �2) = �. A standardirle in �TX is a subset isometri to the unit irle.A subset S � �TX isometri to a standard (unit) irle also determines a topologi-ally embedded irle in �1X (the topology is indued by the Tits metri agrees withthe visual topology on S). Note also that if F � X is a 2-at then �TF � �TX is astandard irle.Lemma 6. The ideal boundary �1X of X is homeomorphi to S2.Proof. Let X = X [ �1X denote the visual ompati�ation of X. We reall thatthe ation G y Z = �1X satis�es the axioms for Z-boundary de�ned by Bestvinain [2℄. Bestvina proves, [2, Theorem 2.8℄, that if G is a PD(3) group over R, then Zis homeomorphi to S2. We note that Bestvina proves the latter theorem under morerestritive assumptions than ours (although, his lass of groups G inludes 3-manifoldgroups); the following remarks explain why his arguments apply in our situation.3



1. Bestvina assumes that the ommutative ring R is a PID. However this as-sumption is used only to apply the Universal CoeÆient Theorem, whih works forhereditary rings as well, see [7℄.2. Bestvina's de�nition of an n-dimensional Poinare duality group is more restri-tive than the usual one: instead of the FP property he assumes that a group G atsfreely, properly disontinuously, oompatly on a ontratible ell omplex Y . Notehowever that Bestvina in his proof uses only the fat that Gy Y (i) is oompat oneah i-skeleton of Y . Then existene of suh an ation for the CAT (0)-groups followsfrom a general onstrution desribed in [13℄. Namely, if a group G admits a properlydisontinuous oompat ation on a ontratible spae X (e.g. the CAT (0)-spae inour ase) then it also admits a free, properly disontinuous ation on a ontratibleell omplex Y (possibly of in�nite dimension) suh that Y (i)=G is ompat for eahi. 3. Bestvina assumes that the image of the orientation harater � of the Poinareduality group G is �nite (he then passes to a �nite index subgroup in G whih isthe kernel of �). However this assumption an be omitted from his theorem usingtwisting of the ation Gy C�(Y ) by the harater � as it is done in [13℄.With the above modi�ations, Bestvina's arguments apply in our ase and it followsthat �1X is homeomorphi to the 2-sphere. �Lemma 7. If U is a horoball in X then �1U does not separate �1X.Proof. By Alexander duality it suÆes to show that �H1(�1U) = 0. Let U = fb �0g where b is a Busemann funtion, and for t 2 R let Ut := fb � tg. Similarlyto [2℄ we have �H1(�1U) �= H2 (Ut) for eah t 2 R, sine Ut is onvex for all t.The inverse system of ohomology groups fH2 (Ut)gt2R is equivalent to a onstantsystem, in the sense that all restrition mappings are isomorphisms (the nearest pointmaps de�ne proper homotopy inverses to the inlusions). Using the oarse Alexanderduality theorem from [12℄, we dedue that the inverse system f ~H0(X n Ut)gt2R ispro-isomorphi to a onstant system (see [12℄ for the de�nitions). But this foresf ~H0(X n Ut)gt2R to be pro-zero: if x; y 2 X n Ut, then the segment xy � X n Ut0 fort0 suÆiently small, whih means that x � y determines the zero element in H0(X nUt0). �4. Proof of the main theoremSheme of the proof: Let G be as in Theorem 1, and let G y X be a disreteoompat isometri ation of G on a CAT (0)-spae X. There are three main aseswhih an our:(a) G is a virtually abelian group of rank 3.(b)X ontains a parallel set P(l) = R�Y of a geodesi l, so that the ideal boundaryof P(l) equals the ideal boundary of X. In this ase, by onsidering ation of G on a4



Gromov-hyperboli spae Y we onlude that G is ommensurable to the fundamentalgroup of a Seifert 3-manifold.() The generi ase, when we show that X ontains a G-invariant olletion ofperipheral 2-ats whih \do not ross" eah other. This allows us to de�ne an ationof G on a pretree, then on an R-tree, so that the stabilizers of segments are virtuallyyli. By applying Rips' theory we onlude that in this ase G splits over a virtuallyabelian subgroup of rank 2.Aording to Eberlein's at plane theorem (see [9℄ in the smooth ase and [5, Theo-rem 9.33℄ in general), the CAT (0) spae X is either Gromov-hyperboli or it ontainsa 2-at F . Sine in the former ase, G is also Gromov-hyperboli, we assume that Xontains a 2-at F .If l � F is a geodesi we let P(l) � X denote the parallel set of l, i.e. the unionof geodesis in X whih are parallel to l. The parallel set P(l) is a losed onvexsubset in X whih splits isometrially as a diret produt l�Y ; aordingly, the Titsboundary �TP(l) is the metri �2 -join S0 ? �1Y . Clearly, if l is ontained in a 2-atF , then F � P(l), and hene F determines irles in �1P(l) and �TP(l).Lemma 8. Either G is virtually abelian and �TX is isometri to the unit 2-sphereor for eah parallel set P(l) = l � Y � X, the subspae Y is Gromov-hyperboli.Proof. We remark that proof of the at plane theorem ([9℄ and [5, Theorem 9.33℄)atually shows that if Z is a proper CAT (0) spae whih is not Gromov hyperboli,then there is a sequene of pointed subsets (Si; zi) in Z whih Gromov-Hausdor�onverge to a (pointed) at plane. The assumption that Isom(Z) ats oompatlyon Z is only used to arrange that the sets atually onverge to a at in the pointedHausdor� topology.Suppose Y is not Gromov-hyperboli. Then we have a sequene (Si; yi) of pointedsubsets of Y suh that (Si; yi) Gromov-Hausdor� onverges to a at plane. Letli � P(l) be the geodesi in P(l) parallel to l whih passes through yi. We mayhoose a sequene gi 2 G so that the sequene gi(yi) is bounded, and then, afterpassing to a subsequene, we may assume that (gi(Si); gi(yi)) onverges in the pointedHausdor� topology to a pointed at plane (F; y1) � X, li onverges to a geodesi l1,and (gi(P(l)); g(yi)) onverges to a onvex subset P1 whih splits isometrially as aprodut P1 = l1 � Y1, where F � Y1. Hene X ontains the 3-at F 0 := F � l1.We next laim that F 0 is Hausdor�-lose toX. Otherwise we would have a sequenexi 2 X suh that the nearest points yi 2 F 0 satis�ed d(yi; xi)!1; applying groupselements to this on�guration and passing to a subsequene, we �nd another 3-atF 00 � X as a limit, and a ray � leaving F 0 orthogonally. Sine �1F 00 �= S2; �1X �= S2,it follows that �1F 00 = �1X. This is a ontradition sine �1� =2 �1F 00.Therefore the parallel set of F 0 is G-invariant, onvex, and splits as a produtP(F 0) = F 0 �K, where K is a ompat CAT (0) spae. The indued ation of G on5



K has a �xed point k 2 K, and hene G preserves the 3-at F 0 � fkg � P(F 0), andmust be virtually free abelian of rank 3. �We will assume from now on that G is not virtually abelian, so that the seondalternative in the lemma holds for every parallel set.Corollary 9. For eah parallel set P = l � Y as above, the Tits boundary �TY isin�nite and totally disonneted, i.e. eah pair of distint points in �TY is antipodal.Proposition 10. Suppose that for some geodesi l � X we have �1P(l) = �1X.Then:1. �1l is preserved by G, and hene G preserves the parallel set P(l), as well as itsprodut struture P(l) = l � Y .2. G is ommensurable to the fundamental group of a 3-dimensional Seifert mani-fold. In partiular, G ontains Z2.Proof. 1. By our assumption we have P(l) = l�Y where �TY is a disrete spae, andhene �TP(l) = �TX is a metri suspension of a disrete spae. Sine j�TY j = 1,this means that the only points with unique antipodes are the suspension points, andhene the subset �1l is preserved by G. But then for all g 2 G, the geodesi g(l)is parallel to l, whih means that g(P(l)) = P(l). Hene P(l) is G-invariant, andwe may assume that X = P(l). The ation of G preserves the produt strutureP(l) = l�Y , so we get an indued ation � of G on the Gromov hyperboli spae Y .2. Sine the suspension of �1Y is homeomorphi to the 2-sphere �1X, the idealboundary of Y is homeomorphi to S1. Thus the oompat isometri ation � : GyY extends to a uniform (topologial) onvergene ation Gy �1Y = S1. Therefore,aording to [8, 10, 11, 18℄, the ation Gy S1 is topologially onjugate to a Moebiusation �0. Note that the kernel of � ats with bounded orbit on Y , and hene has a�xed point y0 2 Y . Therefore Ker(�) = Ker(�0) ats isometrially on the geodesil � fy0g � P(l) and is either �nite or a virtually in�nite yli subgroup of G.Lemma 11. The ation G �0y S1 fators through the ation of a uniform lattie inIsom(H 2) on S1 = �1H 2 .Proof. The ation �0(G) y H 2 is oompat, therefore we have the following possi-bilities:(a) �0(G) is a oompat disrete subgroup in Isom(H 2); in this ase we are done.(b) �0(G) is a solvable subgroup in Isom(H 2), whih �xes a point in S1. Then �0(G)is not virtually abelian whih ontradits the fat that G is a CAT(0) group.() �0(G) is dense in PSL(2;R). Then, the group �0(G) ontains a nontrivial elliptielement ĝ and it also ontains a sequene of elements ĥi whih onverge to 1 2PSL(2;R). Let g; hi 2 G be elements whih map (via �0) to ĝ and ĥi respetively.Clearly, �(g) 2 Isom(Y ) is ellipti as well, let y 2 Y be its �xed point. By taking6



onjugates gi := high�1i , we get an in�nite olletion of distint elements fgi : i 2 Ngof G so that for eah n 2 Z, gi(y � R) is ontained in NR(y � R) where R 2 R+ isindependent of i. We note that sine all gi are pariwise onjugate, there exists C <1suh that d(x; gi(x)) < C for eah x 2 y�R and i 2 N . This ontradits disretenessof the ation of G on X. �The above lemma implies that the kernel of � is ommensurable to Z and the quo-tient �(G) is ommensurable to the fundamental group of a 2-dimensional hyperbolisurfae. Therefore G is ommensurable to the fundamental group of a 3-dimensionalSeifert manifold and hene G ontains Z� Z. �In view of the proposition, we will heneforth assume that no parallel set P(l) hasthe same ideal boundary as X.We now review some properties of the spae �TX. Reall that a subset C � Z isalled onvex if for any two non-antipodal points x; y 2 �TX, the geodesi segment xyonneting x to y is ontained in C. The intersetion of two onvex subsets of �TXis onvex. If Y � X is a onvex of the CAT (0) spae X, then �TY � �TX is onvexas well. Thus, if F; F 0 � X are 2-ats then the intersetion �TF \ �TF 0 � �TX isonvex and either onsists of two antipodal points, a irular ar in �TF of the length� �, or we have �TF = �TF 0.De�nition 12. Given two standard irles S; S 0 � �TX, we say that S and S 0 rossif S ontains points from eah omponent of �1X n S 0 (note that we are using thevisual topology). We say that 2-ats F; F 0 � X ross if S = �1F and S 0 = �1F 0ross.We will say that the ideal boundaries of two distint parallel sets P;P 0 ross if atleast one irle in �TP rosses a irle in �TP 0.We will say that a parallel set P(l) is nontrivial if P(l) = l � Y where j�1Y j � 3.It follows (from onvexity of S\S 0 with respet to the Tits metri) that in the aseS; S 0 ross, the intersetion S \ S 0 onsists of a pair of points whih are antipodalwith respet to the Tits metri. Note that rossing is a symmetri relation.Lemma 13. Suppose that P(l) is a nontrivial parallel set, and F � X is a at. IfS := �TF rosses a irle in �TP(l), then F � P(l).Proof. Suppose S rosses a irle S 0 � �TP(l). Reall that �TP(l) is the metri joinof f�; �0g = �T l and �TY . As observed before, the intersetion S \ S 0 is a pair ofantipodal points in �TP(l). If S \ S 0 ontained one of the points f�; �0g, it wouldtherefore ontain the other (sine the other is the unique antipode in �TP(l)). Thiswould imply that F � P(l), and we are done in this ase.Therefore, we may assume that S does not pass through �1l and so the on�gura-tion f�1P; Sg has to look like the one on Figure 4, where x; y; z denote the distanes7
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from � to the points of intersetion between �1P and S. It follows that x + y = �,y + z = �, x+ z = � and thus x = y = z = �=2:This implies that the 3 intersetion points have pairwise distane �, whih is absurdsine S is a standard irle. �Suppose P(l) is a nontrivial parallel set. We refer to the standard semi-irles in�TP(l) running between the \poles" �1l = f�; �0g as longitudes. By our assumptionswe have �1X n �1P(l) 6= ;; let U be a onneted omponent of �1X n �1P(l). Welaim that the frontier of U is a pair of longitudes. To see this, note that if �U nf�; �0ginterseted at most one longitude L, then we would neessarily have U = �1X n L,whih ontradits our assumption that P(l) is nontrivial. Hene there are at least twolongitudes L1 and L2 interseting �Unf�; �0g. Let U 0 be the omponent of �1XnL1[L2interseting U . Clearly no other longitute L0 an interset U 0, and hene we haveU = U 0, and the frontier of U is a standard irle (the union of two longitudes of�TP(l)). We will refer to these irles as peripheral irles of �1P(l). A at in Xwhose boundary is a peripheral irle will be alled a peripheral at.Lemma 14. If P(l) and P(l0) are distint nontrivial parallel sets, then �1P(l0) liesin �U , where U is a omponent of �1X n �1P(l).Proof. Suppose � 2 �1P(l0) n �1P(l). Let U be the omponent of �1X n �1P(l)ontaining �, and let S be the standard irle bounding U . If �1P(l0) ontains a point�0 2 �1X n �U , then there is a standard irle S 0 � P(l0) ontaining f�; �0g, and S 0will ross S. But then Lemma 13 implies that S 0 � �1P(l), whih is a ontradition.8



Thus �1P(l) � �1P(l0). Sine the standard irles in �TP(l) are unions of pairs oflongitudes, this learly fores �T l = �T l0, and hene P(l) = P(l0). �As a onsequene of the lemma, if P(l) is a nontrivial parallel set and S � �TP(l)is a peripheral irle, then the irle olletion fg(S)gg2G ontains no rossing pairs.On the other hand, if two ats ross, their union is ontained in a nontrivial parallelset, and so there is neessarily a G-invariant olletion F of ats whose boundariesare pairwise nonrossing irles. For the remainder of the proof, we �x one suholletion F , and endow it with the pointed Hausdor� topology. Sine taking losurepreserves the nonrossing property, we will assume that F is a losed subset of thespae of subsets of X (equipped with the pointed Hausdor� topology). Therefore Fis loally ompat.Suppose that we have three ats F; F 0; F 00 2 F with pairwise distint ideal bound-aries. We will say that F 0 separates F from F 00 if the following holds:�1F � D; �1F 00 � D00;where D and D00 are the onneted omponents of �1X n �1F 0. We use �(F; F 0; F 00)to denote this ternary relation on F .We leave it to the reader to verify that with this ternary relation the set P of allperipheral ats in X satis�es the axioms of a pretree.Proposition 15. Let F; F 00 be ats in X. Then the set S(F; F 00) of ats F 0 separatingF from F 00 is ompat with respet to the Gromov-Hausdor� topology.Proof. If �1F = �1F 00 then for eah at F 0 separating F and F 00 we have: �1F 0 =�1F and thus the ats F; F 0 are parallel. Sine the parallel set P(F ) is isometri toK � F , where K is ompat, it follows that S(F; F 00) is ompat.Therefore we will assume that �1F 0 6= �1F 00. Suppose that Fi is a sequene of2-ats in X whih diverge to in�nity, i.e.limi d(o; Fi) =1where o 2 X is a base-point. Consider the funtions fi := d(x; Fi) � d(x; o). Then,aording to Lemma 2.3 in [14℄, the funtions to fi subonverge to a Busemannfuntion b� in X.Let U denote the horoball fx : b�(x) � 0g. We laim that �1F n�1U is nonempty.Otherwise, the Busemann funtion b� would restrit to a bounded onvex funtion onF , i.e. a onstant funtion. It follows readily that U would ontain an isometriallyembedded half spae F � R+ ; this ontradits our assumption that all parallel setshave Gromov hyperboli fators. Similarly, �1F 00 n �1U is nonempty.We leave the proof of the following lemma to the reader:9



Lemma 16. 1. For eah i, �1F \ �1F 00 � �1Fi. 2. �1Fi subonverge into �1U ,in partiular, �1F \ �1F 00 � �1U .Thus we pik points � 2 �1F n �1U , �00 2 �1F 00 n �1U . Lemma 7 implies that�; �00 =2 �1F \ �1F 00 and that (sine �1U does not separate �1X) for large i thepoints �; �00 belong to the same onneted omponent of �1Xn�1Fi. This ontraditsthe assumption that Fi is between F; F 00 for all i. �Let ~L be the olletion of pointed ats (F; p) where F 2 F , equipped with thepointed Hausdor� topology. Sine F is loally ompat, the spae ~L is a loallyompat surfae lamination, and the indued ation Gy ~L is properly disontinuousand oompat. The lamination ~L has a G-invariant leafwise at metri. Afterpassing to a smaller G-invariant subset of F we may further assume that the ationG y ~L is minimal (i.e. it ontains no proper losed, G-invariant sublaminations).Therefore (see [16℄) there exists a transversal G-invariant measure � on ~L; minimalityof G y F implies that that this measure has full support. Sine ~L �bers over F ,we obtain a measure on F . If ~L ontains an isolated leaf/at F , then it will de�nean atom in the transverse measure, and hene the olletion fgFgg2G of translatesof F must be loally �nite in X. This means that fgFgg2G de�nes a losed G-invariant sublamination of ~L, foring it to be all of ~L, and the stabilizer of F in Gats oompatly on F , and so we are done. Hene we may assume that there are noisolated leaves, and that eah at has at most virtually in�nite yli stabilizer. Infat, similar reasoning implies that for eah at F 2 F , there is a sequene Fi 2 F ofats not parallel to F whih onverge to F .NEED TO CLARIFY THE RELATION BETWEEN THE LAMINATION L ANDTHE PICTURE AT INFINITY WHERE ONE COLLAPSES PARALLEL FLATS.Lemma 17. Suppose that F 2 F , gn 2 G is a sequene suh that limn!1 gnF = F1 2F . Then there exist x�; x+ 2 F suh that for all suÆiently large n, gnF 2 [x�; x+℄and F1 2 [x�; x+℄.Proof. Sine limn!1 gnF = F1, the irles �T (gnF ) onverge to the irle �TF1 inthe Chabauty topology (we again are using here the visual topology on Z). Theirles in the olletion f�T (gnF ); �TF1; n 2 Ngare all peripheral and hene do not ross eah other (by Lemma 13). This implies thatfor all large n;m either �T (gnF ) separates �T (gmF ) from �TF1 or �TF1 separates�T (gnF ) from �T (gmF ). �The above lemma implies that the natural projetion p : ~L ! F is ontinuous,where we give F the order topology, whose basis onsists of the open intervals (a; b).It is also lear that p is a proper map in the sense that for eah interval [a; b℄ theinverse image p�1([a; b℄) onsists of leaves of ~L whih interset a ertain ompat10



subset in X: If a sequene of ats Fj leaves every ompat subset in X then thissequene subonverges to a point in �1X, but a point annot separate one irle in�TX from another.The measure � on the pretree F has the no atoms and (sine the measure � transver-sal to ~L has full support) for eah pair of distint points x; x0 2 F , �([x; x0℄) = 0 i�the orresponding ats F; F 0 in X are not separated by any at in F . We let Tbe the quotient of F by the equivalene relation: Points x; x0 2 F are equivalent i��([x; x0℄) = 0. The G-ation, the pretree struture and the measure � projet to T(we retain the notation � for the projetion of the measure). As it was explained insetion 2, the measure � yields a metri d on T . Loal ompatness of ~L implies thatthe restrition of d to eah interval in T is a omplete metri. It is lear that thegroup G ats isometrially on T .Remark 18. The map F ! T has at most ountable multipliity. Moreover, all butountably many points in T have a unique preimage in F .Lemma 19. 1. T is an unountable metri tree. 2. Stabilizers of nondegenrate arsin T are at most yli. 3. G does not have a global �xed point on T .Proof. 1. Follows from Lemma 4.2. By our hypothesis, for eah point F 2 F its G-stabilizer is at most yli. SineF is prefet, it is unountable; hene, by Remark 18, unountably many points ineah nondegenerate ar [x; y℄ � T have at most yli stabilizer.3. The ation G y F is minimal, hene the ation G y T is minimal as well.Sine T is not a point it follows that G annot �x a point in T . �We now an applly [3℄ to onlude that the group G splits as an amalgam over avirtually abelian subgroup A. Sine G is a 3-dimensional Poinare duality group overR, it follows from the Meyer-Vietoris sequene that A is a 2-dimensional Poinareduality group overR. Thus implies that A is virtually a surfae group, see for instane[13℄. Sine A is virtually abelian, it follows that A ontains Z2 as a subgroup of �niteindex. This proves the main theorem. �Referenes[1℄ W. Ballmann, Letures on Spaes of Nonpositive Curvature, DMV Seminar, Band 25,Birkh�auser, 1995.[2℄ M. Bestvina, Loal homology properties of boundaries of groups, Mih. Math. J., 43 (1996),pp. 123{139.[3℄ M. Bestvina and M. Feighn, Stable ations of groups on real trees, Inventiones Matth., 121(1995), pp. 287{321.[4℄ B. H. Bowdith and J. Crisp, Arhimedean ations on median pretrees, Math. Pro. Cam-bridge Philos. So., 130 (2001), pp. 383{400.11
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