
THE WEAK HYPERBOLIZATION CONJECTURE FOR3-DIMENSIONAL CAT(0) GROUPSMICHAEL KAPOVICH AND BRUCE KLEINER1. Introdu
tionLetG be a 3-dimensional Poin
are duality group over a 
ommutative hereditary ringR with a unit; for instan
e, G 
ould be the fundamental group of a 
losed aspheri
al3-manifold. Suppose in addition that G is a CAT (0)-group, i.e. a group whi
h admitsa 
o
ompa
t isometri
 properly dis
ontinuous a
tion G y X on a proper CAT (0)spa
e X. The main result of this note is the following:Theorem 1. Under the above assumptions either G is Gromov-hyperboli
 or G 
on-tains a 
opy of Z2.We note that spe
ial 
ases of this theorem were proven earlier by various people:Buyalo [6℄ and S
hroeder [17℄ have independently proven that this theorem holdsprovided that X is the universal 
over ~M of a 
losed 3-manifold M , the CAT (0)-stru
ture on ~M is Riemannian and G = �1(M) a
ts on X by de
k-transformations.Mosher [15℄ proved that Theorem 1 holds provided that X = ~M , G = �1(M), andthe CAT (0) metri
 on is obtained by lifting a pie
ewise-Eu
lidean CAT (0)-
ubulationfrom M . Bridson and Mosher also have an unpublished proof of Theorem 1 underthe assumption that X = ~M has an arbitrary G-invariant CAT (0)-stru
ture. Unlikeall these proofs, our proof takes pla
e on the ideal boundary of X; this allows usto treat 3-dimensional Poin
are duality groups and drop the assumption that theCAT (0)-spa
e is a topologi
al manifold.Despite re
ent progress towards Thurston's Geometrization Conje
ture using theRi

i 
ow, the following 
onje
ture remains of independent interest, and 
ould beviewed as a possible step toward showing that PD(3) groups (over Z) are fundamentalgroups of 3-manifolds:Weak Hyperbolization Conje
ture for PD(3) groups: If G is a 3-dimensionalPoin
are duality group over a 
ommutative ring R with unit, then either G is Gromov-hyperboli
 or G 
ontains a 
opy of Z2.Date: November 19, 2003.The �rst author was supported in part by NSF Grant DMS-02-03045.Supported by NSF grant DMS-02-24104. 1



2. PretreesIn what follows we will need de�nitions and basi
 fa
ts about pretrees; the de�ni-tions whi
h we give follow [4℄.A pretree is a set T together with a ternary relation (the betweenness relation, \yis between x and z"), to be denoted �(xyz), satisfying the following axioms:(1) �(xyz) implies that x 6= y 6= z.(2) �(xyz) () �(zyx).(3) �(xyz) and �(yxz) 
annot hold simultaneously.(4) If w 6= y then �(xyz) implies that either �(xyw) or �(wyz).Given a pretree T one 
an de�ne 
losed, open and half-open intervals in T by(x; z) := fy 2 T : �(xyz)g; [x; z℄ := (x; z) [ fx; zg; et
.Given an in
reasing union of intervals[x1; y1℄ � [x2; y2℄ � ::: � [xi; yi℄ � :::we will also refer to the union of these intervals as a (possibly in�nite) interval in T .We note that � de�nes a linear order (up to orientation) on ea
h interval in T .De�ne a \triangle" in T with verti
es a; b; 
 to be the union of the segments (
alled\sides" of the triangle) [a; b℄; [b; 
℄; [
; a℄.Lemma 2. Ea
h triangle � in T is 0-thin, i.e. ea
h side of � is 
ontained in theunion of the two other sides.Proof. Follows immediately from Axiom 4. �Suppose that T is a pretree whi
h is given a measure � (without atoms) de�nedon 
losed intervals in T and the �-algebra whi
h these intervals generate. De�ne afun
tion d(x; y) on T by d(x; y) := �([x; y℄).Lemma 3. d is a pseudo-metri
 on T .Proof. It is 
lear that d is symmetri
 and d(x; x) = 0 (sin
e � has no atoms). Thetriangle inequality follows be
ause for ea
h triangle with the verti
es a; b; 
 we have(see Lemma 2) [a; b℄ � [a; 
℄ [ [b; 
℄: �We re
all that a metri
 tree is a 
omplete geodesi
 metri
 spa
e where ea
h geodesi
triangle is isometri
 to a tripod.We note that if for ea
h interval [a; b℄ � T , with a 6= b, �(a; b) > 0 then d is ametri
. Moreover, it follows that (a; b) 6= ; for ea
h a 6= b. If the restri
tion of themetri
 d to ea
h interval [x; y℄ is 
omplete then [x; y℄ is order isomorphi
 to an intervalin R and moreover, ([x; y℄; d) is isometri
 to an interval in R. We thus get:2



Lemma 4. Suppose that for ea
h interval [x; y℄ � T , with x 6= y, �[x; y℄ > 0, andthat the restri
tion of the metri
 d to ea
h interval in T is 
omplete. Then (T; d) isa metri
 tree.Proof. It is 
lear from the above dis
ussion that T is a geodesi
 metri
 spa
e. Sin
eea
h triangle in T is 0-thin, it follows that ea
h triangle in T is isometri
 to a tripod.Finally, let's 
he
k 
ompleteness of T : Suppose that xi; i � 0; is a Cau
hy sequen
ein T . Then there exists an in
reasing sequen
e of intervals Ii � T su
h thatlimi �([x0; xi℄ \ Ii) = limi d(x0; xi):Then 
ompleteness of d restri
ted to the union I of Ii's implies that (xi) 
onverges toa point in the interval I. �3. Coarse topology and the ideal boundaries of CAT(0) spa
esLet X be a CAT(0) spa
e. Re
all that the ideal boundary of X, as a set, is the
olle
tion of equivalen
e 
lasses of geodesi
 rays in X, where two rays are equivalent(asymptoti
) if they are within �nite Hausdor� distan
e from ea
h other. In whatfollows we will be 
onsidering the ideal boundary of the spa
e X equipped with twodi�erent stru
tures:(1) The visual topology, in whi
h 
ase we will be using the notation �1X for theideal boundary.(2) The Tits boundary, denoted by �TX, where the ideal boundary of X is equippedwith the Tits angle metri
 \T . We re
all that the topology indu
ed by \T is usu-ally di�erent from the topology on �1X, but the identity map �TX ! �1X is a
ontinuous bije
tion.We refer the reader to [1, 5℄ for a detailed dis
ussion of �1X and �TX.De�nition 5. Points �1; �2 2 �TX are 
alled antipodal if \T (�1; �2) = �. A standard
ir
le in �TX is a subset isometri
 to the unit 
ir
le.A subset S � �TX isometri
 to a standard (unit) 
ir
le also determines a topologi-
ally embedded 
ir
le in �1X (the topology is indu
ed by the Tits metri
 agrees withthe visual topology on S). Note also that if F � X is a 2-
at then �TF � �TX is astandard 
ir
le.Lemma 6. The ideal boundary �1X of X is homeomorphi
 to S2.Proof. Let X = X [ �1X denote the visual 
ompa
ti�
ation of X. We re
all thatthe a
tion G y Z = �1X satis�es the axioms for Z-boundary de�ned by Bestvinain [2℄. Bestvina proves, [2, Theorem 2.8℄, that if G is a PD(3) group over R, then Zis homeomorphi
 to S2. We note that Bestvina proves the latter theorem under morerestri
tive assumptions than ours (although, his 
lass of groups G in
ludes 3-manifoldgroups); the following remarks explain why his arguments apply in our situation.3



1. Bestvina assumes that the 
ommutative ring R is a PID. However this as-sumption is used only to apply the Universal CoeÆ
ient Theorem, whi
h works forhereditary rings as well, see [7℄.2. Bestvina's de�nition of an n-dimensional Poin
are duality group is more restri
-tive than the usual one: instead of the FP property he assumes that a group G a
tsfreely, properly dis
ontinuously, 
o
ompa
tly on a 
ontra
tible 
ell 
omplex Y . Notehowever that Bestvina in his proof uses only the fa
t that Gy Y (i) is 
o
ompa
t onea
h i-skeleton of Y . Then existen
e of su
h an a
tion for the CAT (0)-groups followsfrom a general 
onstru
tion des
ribed in [13℄. Namely, if a group G admits a properlydis
ontinuous 
o
ompa
t a
tion on a 
ontra
tible spa
e X (e.g. the CAT (0)-spa
e inour 
ase) then it also admits a free, properly dis
ontinuous a
tion on a 
ontra
tible
ell 
omplex Y (possibly of in�nite dimension) su
h that Y (i)=G is 
ompa
t for ea
hi. 3. Bestvina assumes that the image of the orientation 
hara
ter � of the Poin
areduality group G is �nite (he then passes to a �nite index subgroup in G whi
h isthe kernel of �). However this assumption 
an be omitted from his theorem usingtwisting of the a
tion Gy C�(Y ) by the 
hara
ter � as it is done in [13℄.With the above modi�
ations, Bestvina's arguments apply in our 
ase and it followsthat �1X is homeomorphi
 to the 2-sphere. �Lemma 7. If U is a horoball in X then �1U does not separate �1X.Proof. By Alexander duality it suÆ
es to show that �H1(�1U) = 0. Let U = fb �0g where b is a Busemann fun
tion, and for t 2 R let Ut := fb � tg. Similarlyto [2℄ we have �H1(�1U) �= H2
 (Ut) for ea
h t 2 R, sin
e Ut is 
onvex for all t.The inverse system of 
ohomology groups fH2
 (Ut)gt2R is equivalent to a 
onstantsystem, in the sense that all restri
tion mappings are isomorphisms (the nearest pointmaps de�ne proper homotopy inverses to the in
lusions). Using the 
oarse Alexanderduality theorem from [12℄, we dedu
e that the inverse system f ~H0(X n Ut)gt2R ispro-isomorphi
 to a 
onstant system (see [12℄ for the de�nitions). But this for
esf ~H0(X n Ut)gt2R to be pro-zero: if x; y 2 X n Ut, then the segment xy � X n Ut0 fort0 suÆ
iently small, whi
h means that x � y determines the zero element in H0(X nUt0). �4. Proof of the main theoremS
heme of the proof: Let G be as in Theorem 1, and let G y X be a dis
rete
o
ompa
t isometri
 a
tion of G on a CAT (0)-spa
e X. There are three main 
aseswhi
h 
an o

ur:(a) G is a virtually abelian group of rank 3.(b)X 
ontains a parallel set P(l) = R�Y of a geodesi
 l, so that the ideal boundaryof P(l) equals the ideal boundary of X. In this 
ase, by 
onsidering a
tion of G on a4



Gromov-hyperboli
 spa
e Y we 
on
lude that G is 
ommensurable to the fundamentalgroup of a Seifert 3-manifold.(
) The generi
 
ase, when we show that X 
ontains a G-invariant 
olle
tion ofperipheral 2-
ats whi
h \do not 
ross" ea
h other. This allows us to de�ne an a
tionof G on a pretree, then on an R-tree, so that the stabilizers of segments are virtually
y
li
. By applying Rips' theory we 
on
lude that in this 
ase G splits over a virtuallyabelian subgroup of rank 2.A

ording to Eberlein's 
at plane theorem (see [9℄ in the smooth 
ase and [5, Theo-rem 9.33℄ in general), the CAT (0) spa
e X is either Gromov-hyperboli
 or it 
ontainsa 2-
at F . Sin
e in the former 
ase, G is also Gromov-hyperboli
, we assume that X
ontains a 2-
at F .If l � F is a geodesi
 we let P(l) � X denote the parallel set of l, i.e. the unionof geodesi
s in X whi
h are parallel to l. The parallel set P(l) is a 
losed 
onvexsubset in X whi
h splits isometri
ally as a dire
t produ
t l�Y ; a

ordingly, the Titsboundary �TP(l) is the metri
 �2 -join S0 ? �1Y . Clearly, if l is 
ontained in a 2-
atF , then F � P(l), and hen
e F determines 
ir
les in �1P(l) and �TP(l).Lemma 8. Either G is virtually abelian and �TX is isometri
 to the unit 2-sphereor for ea
h parallel set P(l) = l � Y � X, the subspa
e Y is Gromov-hyperboli
.Proof. We remark that proof of the 
at plane theorem ([9℄ and [5, Theorem 9.33℄)a
tually shows that if Z is a proper CAT (0) spa
e whi
h is not Gromov hyperboli
,then there is a sequen
e of pointed subsets (Si; zi) in Z whi
h Gromov-Hausdor�
onverge to a (pointed) 
at plane. The assumption that Isom(Z) a
ts 
o
ompa
tlyon Z is only used to arrange that the sets a
tually 
onverge to a 
at in the pointedHausdor� topology.Suppose Y is not Gromov-hyperboli
. Then we have a sequen
e (Si; yi) of pointedsubsets of Y su
h that (Si; yi) Gromov-Hausdor� 
onverges to a 
at plane. Letli � P(l) be the geodesi
 in P(l) parallel to l whi
h passes through yi. We may
hoose a sequen
e gi 2 G so that the sequen
e gi(yi) is bounded, and then, afterpassing to a subsequen
e, we may assume that (gi(Si); gi(yi)) 
onverges in the pointedHausdor� topology to a pointed 
at plane (F; y1) � X, li 
onverges to a geodesi
 l1,and (gi(P(l)); g(yi)) 
onverges to a 
onvex subset P1 whi
h splits isometri
ally as aprodu
t P1 = l1 � Y1, where F � Y1. Hen
e X 
ontains the 3-
at F 0 := F � l1.We next 
laim that F 0 is Hausdor�-
lose toX. Otherwise we would have a sequen
exi 2 X su
h that the nearest points yi 2 F 0 satis�ed d(yi; xi)!1; applying groupselements to this 
on�guration and passing to a subsequen
e, we �nd another 3-
atF 00 � X as a limit, and a ray � leaving F 0 orthogonally. Sin
e �1F 00 �= S2; �1X �= S2,it follows that �1F 00 = �1X. This is a 
ontradi
tion sin
e �1� =2 �1F 00.Therefore the parallel set of F 0 is G-invariant, 
onvex, and splits as a produ
tP(F 0) = F 0 �K, where K is a 
ompa
t CAT (0) spa
e. The indu
ed a
tion of G on5



K has a �xed point k 2 K, and hen
e G preserves the 3-
at F 0 � fkg � P(F 0), andmust be virtually free abelian of rank 3. �We will assume from now on that G is not virtually abelian, so that the se
ondalternative in the lemma holds for every parallel set.Corollary 9. For ea
h parallel set P = l � Y as above, the Tits boundary �TY isin�nite and totally dis
onne
ted, i.e. ea
h pair of distin
t points in �TY is antipodal.Proposition 10. Suppose that for some geodesi
 l � X we have �1P(l) = �1X.Then:1. �1l is preserved by G, and hen
e G preserves the parallel set P(l), as well as itsprodu
t stru
ture P(l) = l � Y .2. G is 
ommensurable to the fundamental group of a 3-dimensional Seifert mani-fold. In parti
ular, G 
ontains Z2.Proof. 1. By our assumption we have P(l) = l�Y where �TY is a dis
rete spa
e, andhen
e �TP(l) = �TX is a metri
 suspension of a dis
rete spa
e. Sin
e j�TY j = 1,this means that the only points with unique antipodes are the suspension points, andhen
e the subset �1l is preserved by G. But then for all g 2 G, the geodesi
 g(l)is parallel to l, whi
h means that g(P(l)) = P(l). Hen
e P(l) is G-invariant, andwe may assume that X = P(l). The a
tion of G preserves the produ
t stru
tureP(l) = l�Y , so we get an indu
ed a
tion � of G on the Gromov hyperboli
 spa
e Y .2. Sin
e the suspension of �1Y is homeomorphi
 to the 2-sphere �1X, the idealboundary of Y is homeomorphi
 to S1. Thus the 
o
ompa
t isometri
 a
tion � : GyY extends to a uniform (topologi
al) 
onvergen
e a
tion Gy �1Y = S1. Therefore,a

ording to [8, 10, 11, 18℄, the a
tion Gy S1 is topologi
ally 
onjugate to a Moebiusa
tion �0. Note that the kernel of � a
ts with bounded orbit on Y , and hen
e has a�xed point y0 2 Y . Therefore Ker(�) = Ker(�0) a
ts isometri
ally on the geodesi
l � fy0g � P(l) and is either �nite or a virtually in�nite 
y
li
 subgroup of G.Lemma 11. The a
tion G �0y S1 fa
tors through the a
tion of a uniform latti
e inIsom(H 2) on S1 = �1H 2 .Proof. The a
tion �0(G) y H 2 is 
o
ompa
t, therefore we have the following possi-bilities:(a) �0(G) is a 
o
ompa
t dis
rete subgroup in Isom(H 2); in this 
ase we are done.(b) �0(G) is a solvable subgroup in Isom(H 2), whi
h �xes a point in S1. Then �0(G)is not virtually abelian whi
h 
ontradi
ts the fa
t that G is a CAT(0) group.(
) �0(G) is dense in PSL(2;R). Then, the group �0(G) 
ontains a nontrivial ellipti
element ĝ and it also 
ontains a sequen
e of elements ĥi whi
h 
onverge to 1 2PSL(2;R). Let g; hi 2 G be elements whi
h map (via �0) to ĝ and ĥi respe
tively.Clearly, �(g) 2 Isom(Y ) is ellipti
 as well, let y 2 Y be its �xed point. By taking6




onjugates gi := high�1i , we get an in�nite 
olle
tion of distin
t elements fgi : i 2 Ngof G so that for ea
h n 2 Z, gi(y � R) is 
ontained in NR(y � R) where R 2 R+ isindependent of i. We note that sin
e all gi are pariwise 
onjugate, there exists C <1su
h that d(x; gi(x)) < C for ea
h x 2 y�R and i 2 N . This 
ontradi
ts dis
retenessof the a
tion of G on X. �The above lemma implies that the kernel of � is 
ommensurable to Z and the quo-tient �(G) is 
ommensurable to the fundamental group of a 2-dimensional hyperboli
surfa
e. Therefore G is 
ommensurable to the fundamental group of a 3-dimensionalSeifert manifold and hen
e G 
ontains Z� Z. �In view of the proposition, we will hen
eforth assume that no parallel set P(l) hasthe same ideal boundary as X.We now review some properties of the spa
e �TX. Re
all that a subset C � Z is
alled 
onvex if for any two non-antipodal points x; y 2 �TX, the geodesi
 segment xy
onne
ting x to y is 
ontained in C. The interse
tion of two 
onvex subsets of �TXis 
onvex. If Y � X is a 
onvex of the CAT (0) spa
e X, then �TY � �TX is 
onvexas well. Thus, if F; F 0 � X are 2-
ats then the interse
tion �TF \ �TF 0 � �TX is
onvex and either 
onsists of two antipodal points, a 
ir
ular ar
 in �TF of the length� �, or we have �TF = �TF 0.De�nition 12. Given two standard 
ir
les S; S 0 � �TX, we say that S and S 0 
rossif S 
ontains points from ea
h 
omponent of �1X n S 0 (note that we are using thevisual topology). We say that 2-
ats F; F 0 � X 
ross if S = �1F and S 0 = �1F 0
ross.We will say that the ideal boundaries of two distin
t parallel sets P;P 0 
ross if atleast one 
ir
le in �TP 
rosses a 
ir
le in �TP 0.We will say that a parallel set P(l) is nontrivial if P(l) = l � Y where j�1Y j � 3.It follows (from 
onvexity of S\S 0 with respe
t to the Tits metri
) that in the 
aseS; S 0 
ross, the interse
tion S \ S 0 
onsists of a pair of points whi
h are antipodalwith respe
t to the Tits metri
. Note that 
rossing is a symmetri
 relation.Lemma 13. Suppose that P(l) is a nontrivial parallel set, and F � X is a 
at. IfS := �TF 
rosses a 
ir
le in �TP(l), then F � P(l).Proof. Suppose S 
rosses a 
ir
le S 0 � �TP(l). Re
all that �TP(l) is the metri
 joinof f�; �0g = �T l and �TY . As observed before, the interse
tion S \ S 0 is a pair ofantipodal points in �TP(l). If S \ S 0 
ontained one of the points f�; �0g, it wouldtherefore 
ontain the other (sin
e the other is the unique antipode in �TP(l)). Thiswould imply that F � P(l), and we are done in this 
ase.Therefore, we may assume that S does not pass through �1l and so the 
on�gura-tion f�1P; Sg has to look like the one on Figure 4, where x; y; z denote the distan
es7



π−x

x

y

z

π−π−y z

S

η

−η

from � to the points of interse
tion between �1P and S. It follows that x + y = �,y + z = �, x+ z = � and thus x = y = z = �=2:This implies that the 3 interse
tion points have pairwise distan
e �, whi
h is absurdsin
e S is a standard 
ir
le. �Suppose P(l) is a nontrivial parallel set. We refer to the standard semi-
ir
les in�TP(l) running between the \poles" �1l = f�; �0g as longitudes. By our assumptionswe have �1X n �1P(l) 6= ;; let U be a 
onne
ted 
omponent of �1X n �1P(l). We
laim that the frontier of U is a pair of longitudes. To see this, note that if �U nf�; �0ginterse
ted at most one longitude L, then we would ne
essarily have U = �1X n L,whi
h 
ontradi
ts our assumption that P(l) is nontrivial. Hen
e there are at least twolongitudes L1 and L2 interse
ting �Unf�; �0g. Let U 0 be the 
omponent of �1XnL1[L2interse
ting U . Clearly no other longitute L0 
an interse
t U 0, and hen
e we haveU = U 0, and the frontier of U is a standard 
ir
le (the union of two longitudes of�TP(l)). We will refer to these 
ir
les as peripheral 
ir
les of �1P(l). A 
at in Xwhose boundary is a peripheral 
ir
le will be 
alled a peripheral 
at.Lemma 14. If P(l) and P(l0) are distin
t nontrivial parallel sets, then �1P(l0) liesin �U , where U is a 
omponent of �1X n �1P(l).Proof. Suppose � 2 �1P(l0) n �1P(l). Let U be the 
omponent of �1X n �1P(l)
ontaining �, and let S be the standard 
ir
le bounding U . If �1P(l0) 
ontains a point�0 2 �1X n �U , then there is a standard 
ir
le S 0 � P(l0) 
ontaining f�; �0g, and S 0will 
ross S. But then Lemma 13 implies that S 0 � �1P(l), whi
h is a 
ontradi
tion.8



Thus �1P(l) � �1P(l0). Sin
e the standard 
ir
les in �TP(l) are unions of pairs oflongitudes, this 
learly for
es �T l = �T l0, and hen
e P(l) = P(l0). �As a 
onsequen
e of the lemma, if P(l) is a nontrivial parallel set and S � �TP(l)is a peripheral 
ir
le, then the 
ir
le 
olle
tion fg(S)gg2G 
ontains no 
rossing pairs.On the other hand, if two 
ats 
ross, their union is 
ontained in a nontrivial parallelset, and so there is ne
essarily a G-invariant 
olle
tion F of 
ats whose boundariesare pairwise non
rossing 
ir
les. For the remainder of the proof, we �x one su
h
olle
tion F , and endow it with the pointed Hausdor� topology. Sin
e taking 
losurepreserves the non
rossing property, we will assume that F is a 
losed subset of thespa
e of subsets of X (equipped with the pointed Hausdor� topology). Therefore Fis lo
ally 
ompa
t.Suppose that we have three 
ats F; F 0; F 00 2 F with pairwise distin
t ideal bound-aries. We will say that F 0 separates F from F 00 if the following holds:�1F � D; �1F 00 � D00;where D and D00 are the 
onne
ted 
omponents of �1X n �1F 0. We use �(F; F 0; F 00)to denote this ternary relation on F .We leave it to the reader to verify that with this ternary relation the set P of allperipheral 
ats in X satis�es the axioms of a pretree.Proposition 15. Let F; F 00 be 
ats in X. Then the set S(F; F 00) of 
ats F 0 separatingF from F 00 is 
ompa
t with respe
t to the Gromov-Hausdor� topology.Proof. If �1F = �1F 00 then for ea
h 
at F 0 separating F and F 00 we have: �1F 0 =�1F and thus the 
ats F; F 0 are parallel. Sin
e the parallel set P(F ) is isometri
 toK � F , where K is 
ompa
t, it follows that S(F; F 00) is 
ompa
t.Therefore we will assume that �1F 0 6= �1F 00. Suppose that Fi is a sequen
e of2-
ats in X whi
h diverge to in�nity, i.e.limi d(o; Fi) =1where o 2 X is a base-point. Consider the fun
tions fi := d(x; Fi) � d(x; o). Then,a

ording to Lemma 2.3 in [14℄, the fun
tions to fi sub
onverge to a Busemannfun
tion b� in X.Let U denote the horoball fx : b�(x) � 0g. We 
laim that �1F n�1U is nonempty.Otherwise, the Busemann fun
tion b� would restri
t to a bounded 
onvex fun
tion onF , i.e. a 
onstant fun
tion. It follows readily that U would 
ontain an isometri
allyembedded half spa
e F � R+ ; this 
ontradi
ts our assumption that all parallel setshave Gromov hyperboli
 fa
tors. Similarly, �1F 00 n �1U is nonempty.We leave the proof of the following lemma to the reader:9



Lemma 16. 1. For ea
h i, �1F \ �1F 00 � �1Fi. 2. �1Fi sub
onverge into �1U ,in parti
ular, �1F \ �1F 00 � �1U .Thus we pi
k points � 2 �1F n �1U , �00 2 �1F 00 n �1U . Lemma 7 implies that�; �00 =2 �1F \ �1F 00 and that (sin
e �1U does not separate �1X) for large i thepoints �; �00 belong to the same 
onne
ted 
omponent of �1Xn�1Fi. This 
ontradi
tsthe assumption that Fi is between F; F 00 for all i. �Let ~L be the 
olle
tion of pointed 
ats (F; p) where F 2 F , equipped with thepointed Hausdor� topology. Sin
e F is lo
ally 
ompa
t, the spa
e ~L is a lo
ally
ompa
t surfa
e lamination, and the indu
ed a
tion Gy ~L is properly dis
ontinuousand 
o
ompa
t. The lamination ~L has a G-invariant leafwise 
at metri
. Afterpassing to a smaller G-invariant subset of F we may further assume that the a
tionG y ~L is minimal (i.e. it 
ontains no proper 
losed, G-invariant sublaminations).Therefore (see [16℄) there exists a transversal G-invariant measure � on ~L; minimalityof G y F implies that that this measure has full support. Sin
e ~L �bers over F ,we obtain a measure on F . If ~L 
ontains an isolated leaf/
at F , then it will de�nean atom in the transverse measure, and hen
e the 
olle
tion fgFgg2G of translatesof F must be lo
ally �nite in X. This means that fgFgg2G de�nes a 
losed G-invariant sublamination of ~L, for
ing it to be all of ~L, and the stabilizer of F in Ga
ts 
o
ompa
tly on F , and so we are done. Hen
e we may assume that there are noisolated leaves, and that ea
h 
at has at most virtually in�nite 
y
li
 stabilizer. Infa
t, similar reasoning implies that for ea
h 
at F 2 F , there is a sequen
e Fi 2 F of
ats not parallel to F whi
h 
onverge to F .NEED TO CLARIFY THE RELATION BETWEEN THE LAMINATION L ANDTHE PICTURE AT INFINITY WHERE ONE COLLAPSES PARALLEL FLATS.Lemma 17. Suppose that F 2 F , gn 2 G is a sequen
e su
h that limn!1 gnF = F1 2F . Then there exist x�; x+ 2 F su
h that for all suÆ
iently large n, gnF 2 [x�; x+℄and F1 2 [x�; x+℄.Proof. Sin
e limn!1 gnF = F1, the 
ir
les �T (gnF ) 
onverge to the 
ir
le �TF1 inthe Chabauty topology (we again are using here the visual topology on Z). The
ir
les in the 
olle
tion f�T (gnF ); �TF1; n 2 Ngare all peripheral and hen
e do not 
ross ea
h other (by Lemma 13). This implies thatfor all large n;m either �T (gnF ) separates �T (gmF ) from �TF1 or �TF1 separates�T (gnF ) from �T (gmF ). �The above lemma implies that the natural proje
tion p : ~L ! F is 
ontinuous,where we give F the order topology, whose basis 
onsists of the open intervals (a; b).It is also 
lear that p is a proper map in the sense that for ea
h interval [a; b℄ theinverse image p�1([a; b℄) 
onsists of leaves of ~L whi
h interse
t a 
ertain 
ompa
t10



subset in X: If a sequen
e of 
ats Fj leaves every 
ompa
t subset in X then thissequen
e sub
onverges to a point in �1X, but a point 
annot separate one 
ir
le in�TX from another.The measure � on the pretree F has the no atoms and (sin
e the measure � transver-sal to ~L has full support) for ea
h pair of distin
t points x; x0 2 F , �([x; x0℄) = 0 i�the 
orresponding 
ats F; F 0 in X are not separated by any 
at in F . We let Tbe the quotient of F by the equivalen
e relation: Points x; x0 2 F are equivalent i��([x; x0℄) = 0. The G-a
tion, the pretree stru
ture and the measure � proje
t to T(we retain the notation � for the proje
tion of the measure). As it was explained inse
tion 2, the measure � yields a metri
 d on T . Lo
al 
ompa
tness of ~L implies thatthe restri
tion of d to ea
h interval in T is a 
omplete metri
. It is 
lear that thegroup G a
ts isometri
ally on T .Remark 18. The map F ! T has at most 
ountable multipli
ity. Moreover, all but
ountably many points in T have a unique preimage in F .Lemma 19. 1. T is an un
ountable metri
 tree. 2. Stabilizers of nondegenrate ar
sin T are at most 
y
li
. 3. G does not have a global �xed point on T .Proof. 1. Follows from Lemma 4.2. By our hypothesis, for ea
h point F 2 F its G-stabilizer is at most 
y
li
. Sin
eF is prefe
t, it is un
ountable; hen
e, by Remark 18, un
ountably many points inea
h nondegenerate ar
 [x; y℄ � T have at most 
y
li
 stabilizer.3. The a
tion G y F is minimal, hen
e the a
tion G y T is minimal as well.Sin
e T is not a point it follows that G 
annot �x a point in T . �We now 
an applly [3℄ to 
on
lude that the group G splits as an amalgam over avirtually abelian subgroup A. Sin
e G is a 3-dimensional Poin
are duality group overR, it follows from the Meyer-Vietoris sequen
e that A is a 2-dimensional Poin
areduality group overR. Thus implies that A is virtually a surfa
e group, see for instan
e[13℄. Sin
e A is virtually abelian, it follows that A 
ontains Z2 as a subgroup of �niteindex. This proves the main theorem. �Referen
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