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1. INTRODUCTION

Let GG be a 3-dimensional Poincare duality group over a commutative hereditary ring
R with a unit; for instance, G could be the fundamental group of a closed aspherical
3-manifold. Suppose in addition that G is a CAT'(0)-group, i.e. a group which admits
a cocompact isometric properly discontinuous action G ~ X on a proper CAT(0)
space X. The main result of this note is the following:

Theorem 1. Under the above assumptions either G is Gromouv-hyperbolic or G con-
tains a copy of Z>.

We note that special cases of this theorem were proven earlier by various people:
Buyalo [6] and Schroeder [17] have independently proven that this theorem holds
provided that X is the universal cover M of a closed 3-manifold M, the C'AT(0)-
structure on M is Riemannian and G' = m; (M) acts on X by deck-transformations.
Mosher [15] proved that Theorem 1 holds provided that X = M, G = m;(M), and
the CAT'(0) metric on is obtained by lifting a piecewise-Euclidean C'AT'(0)-cubulation
from M. Bridson and Mosher also have an unpublished proof of Theorem 1 under
the assumption that X = M has an arbitrary G-invariant C' AT (0)-structure. Unlike
all these proofs, our proof takes place on the ideal boundary of X; this allows us
to treat 3-dimensional Poincare duality groups and drop the assumption that the
CAT'(0)-space is a topological manifold.

Despite recent progress towards Thurston’s Geometrization Conjecture using the
Ricci flow, the following conjecture remains of independent interest, and could be
viewed as a possible step toward showing that PD(3) groups (over Z) are fundamental
groups of 3-manifolds:

Weak Hyperbolization Conjecture for PD(3) groups: If G is a 3-dimensional
Poincare duality group over a commutative ring R with unit, then either G is Gromov-
hyperbolic or G contains a copy of Z.2.
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2. PRETREES

In what follows we will need definitions and basic facts about pretrees; the defini-
tions which we give follow [4].

A pretree is a set T together with a ternary relation (the betweenness relation, “y
is between x and 2”), to be denoted B(xyz), satisfying the following axioms:

(1) B(zyz) implies that x # y # z.

(2) Blryz) = Blzyx).

(3) B(zyz) and f(yxz) cannot hold simultaneously.

(4) If w # y then B(zyz) implies that either f(zyw) or f(wyz).

Given a pretree T one can define closed, open and half-open intervals in T" by

(x,2) :={y €T : B(zy2)}, |z, 2] := (x,2) U{z, 2}, etc.

Given an increasing union of intervals

[z1,y1] C [x2,92) C ... C [z, y:] C ...
we will also refer to the union of these intervals as a (possibly infinite) interval in 7.
We note that 5 defines a linear order (up to orientation) on each interval in 7.
Define a “triangle” in 7" with vertices a, b, ¢ to be the union of the segments (called
“sides” of the triangle) [a, b], [b, ¢], [c, a].

Lemma 2. Fach triangle A in T is 0-thin, i.e. each side of A is contained in the
union of the two other sides.

Proof. Follows immediately from Axiom 4. O

Suppose that 7" is a pretree which is given a measure p (without atoms) defined
on closed intervals in 7" and the o-algebra which these intervals generate. Define a
function d(z,y) on T by d(z,y) = p([z,y])-

Lemma 3. d is a pseudo-metric on T'.

Proof. 1t is clear that d is symmetric and d(x,z) = 0 (since p has no atoms). The
triangle inequality follows because for each triangle with the vertices a, b, ¢ we have
(see Lemma 2)

[a,b] C [a,c]Ub,c]. O

We recall that a metric tree is a complete geodesic metric space where each geodesic
triangle is isometric to a tripod.

We note that if for each interval [a,b] C T, with a # b, p(a,b) > 0 then d is a
metric. Moreover, it follows that (a,b) # () for each a # b. If the restriction of the
metric d to each interval [z, y| is complete then [z, y] is order isomorphic to an interval

in R and moreover, ([z,y],d) is isometric to an interval in R. We thus get:
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Lemma 4. Suppose that for each interval [x,y| C T, with x # y, plz,y] > 0, and
that the restriction of the metric d to each interval in T is complete. Then (T, d) is
a metric tree.

Proof. 1t is clear from the above discussion that 7" is a geodesic metric space. Since
each triangle in 7" is O-thin, it follows that each triangle in 7" is isometric to a tripod.
Finally, let’s check completeness of 1": Suppose that x;,7 > 0, is a Cauchy sequence
in 7. Then there exists an increasing sequence of intervals I; C 1" such that

lim p([zo, 2;] N I;) = limd(xo, ;).

Then completeness of d restricted to the union I of [;’s implies that (z;) converges to
a point in the interval I. [

3. COARSE TOPOLOGY AND THE IDEAL BOUNDARIES OF CAT(0) SPACES

Let X be a CAT(0) space. Recall that the ideal boundary of X, as a set, is the
collection of equivalence classes of geodesic rays in X, where two rays are equivalent
(asymptotic) if they are within finite Hausdorff distance from each other. In what
follows we will be considering the ideal boundary of the space X equipped with two
different structures:

(1) The wvisual topology, in which case we will be using the notation 0, X for the
ideal boundary.

(2) The Tits boundary, denoted by 0r X, where the ideal boundary of X is equipped
with the Tits angle metric Zp. We recall that the topology induced by Zp is usu-
ally different from the topology on 0, X, but the identity map 0rX — 0,X is a
continuous bijection.

We refer the reader to [1, 5] for a detailed discussion of 0, X and 07 X.

Definition 5. Points £, & € 0rX are called antipodal if Z7(&,&) = m. A standard
circle in Or X is a subset isometric to the unit circle.

A subset S C 0rX isometric to a standard (unit) circle also determines a topologi-
cally embedded circle in 05, X (the topology is induced by the Tits metric agrees with
the visual topology on S). Note also that if F¥ C X is a 2-flat then O F C 07X is a
standard circle.

Lemma 6. The ideal boundary 0, X of X is homeomorphic to S?.

Proof. Let X = X U 0, X denote the visual compactification of X. We recall that
the action G ~ Z = 0, X satisfies the axioms for Z-boundary defined by Bestvina
in [2]. Bestvina proves, [2, Theorem 2.8], that if G is a PD(3) group over R, then Z
is homeomorphic to S?. We note that Bestvina proves the latter theorem under more
restrictive assumptions than ours (although, his class of groups G includes 3-manifold

groups); the following remarks explain why his arguments apply in our situation.
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1. Bestvina assumes that the commutative ring R is a PID. However this as-
sumption is used only to apply the Universal Coefficient Theorem, which works for
hereditary rings as well, see [7].

2. Bestvina’s definition of an n-dimensional Poincare duality group is more restric-
tive than the usual one: instead of the F'P property he assumes that a group G acts
freely, properly discontinuously, cocompactly on a contractible cell complex Y. Note
however that Bestvina in his proof uses only the fact that G ~ Y@ is cocompact on
each i-skeleton of Y. Then existence of such an action for the C' AT (0)-groups follows
from a general construction described in [13]. Namely, if a group G admits a properly
discontinuous cocompact action on a contractible space X (e.g. the CAT'(0)-space in
our case) then it also admits a free, properly discontinuous action on a contractible
cell complex Y (possibly of infinite dimension) such that Y¥ /G is compact for each
i.

3. Bestvina assumes that the image of the orientation character y of the Poincare
duality group G is finite (he then passes to a finite index subgroup in G which is
the kernel of x). However this assumption can be omitted from his theorem using
twisting of the action G ~ C,(Y') by the character x as it is done in [13].

With the above modifications, Bestvina’s arguments apply in our case and it follows
that 0, X is homeomorphic to the 2-sphere. O

Lemma 7. If U is a horoball in X then 0,,U does not separate Os X .

Proof. By Alexander duality it suffices to show that H'(0,U) = 0. Let U = {b <
0} where b is a Busemann function, and for ¢ € R let U; := {b < t}. Similarly
to [2] we have H'(0,,U) = H?(U,) for each t € R, since U, is convex for all t.
The inverse system of cohomology groups {HZ(U;)}ier is equivalent to a constant
system, in the sense that all restriction mappings are isomorphisms (the nearest point
maps define proper homotopy inverses to the inclusions). Using the coarse Alexander
duality theorem from [12], we deduce that the inverse system {Ho(X \ Up)}ier is
pro-isomorphic to a constant system (see [12] for the definitions). But this forces
{Ho(X \ U;) }1er to be pro-zero: if x,y € X \ U, then the segment 75 C X \ Uy for
t' sufficiently small, which means that x — y determines the zero element in Hy(X \
Uy). O

4. PROOF OF THE MAIN THEOREM

Scheme of the proof: Let G be as in Theorem 1, and let G ~ X be a discrete
cocompact isometric action of G on a CAT(0)-space X. There are three main cases
which can occur:

(a) G is a virtually abelian group of rank 3.

(b) X contains a parallel set P(l) = RxY of a geodesic [, so that the ideal boundary

of P(l) equals the ideal boundary of X. In this case, by considering action of G on a
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Gromov-hyperbolic space Y we conclude that GG is commensurable to the fundamental
group of a Seifert 3-manifold.

(c) The generic case, when we show that X contains a G-invariant collection of
peripheral 2-flats which “do not cross” each other. This allows us to define an action
of G on a pretree, then on an R-tree, so that the stabilizers of segments are virtually
cyclic. By applying Rips’ theory we conclude that in this case G splits over a virtually
abelian subgroup of rank 2.

According to Eberlein’s flat plane theorem (see [9] in the smooth case and [5, Theo-
rem 9.33] in general), the CAT(0) space X is either Gromov-hyperbolic or it contains
a 2-flat F'. Since in the former case, G is also Gromov-hyperbolic, we assume that X
contains a 2-flat F'.

If | C F is a geodesic we let P(l) C X denote the parallel set of [, i.e. the union
of geodesics in X which are parallel to [. The parallel set P(l) is a closed convex
subset in X which splits isometrically as a direct product [ x Y'; accordingly, the Tits
boundary d7P(l) is the metric Z-join S® x 05Y . Clearly, if [ is contained in a 2-flat
F, then F C P(l), and hence F' determines circles in 9, P(l) and orP(l).

Lemma 8. Either G is virtually abelian and 0pX s isometric to the unit 2-sphere
or for each parallel set P(l) =1 xY C X, the subspace Y is Gromov-hyperbolic.

Proof. We remark that proof of the flat plane theorem ([9] and [5, Theorem 9.33|)
actually shows that if Z is a proper C AT (0) space which is not Gromov hyperbolic,
then there is a sequence of pointed subsets (S;,z;) in Z which Gromov-Hausdorff
converge to a (pointed) flat plane. The assumption that Isom(Z) acts cocompactly
on Z is only used to arrange that the sets actually converge to a flat in the pointed
Hausdorff topology.

Suppose Y is not Gromov-hyperbolic. Then we have a sequence (S;,y;) of pointed
subsets of Y such that (S;,y;) Gromov-Hausdorff converges to a flat plane. Let
l; C P(l) be the geodesic in P(l) parallel to | which passes through y;. We may
choose a sequence g; € G so that the sequence g¢;(y;) is bounded, and then, after
passing to a subsequence, we may assume that (g;(.S;), g;(y;)) converges in the pointed
Hausdorff topology to a pointed flat plane (F,y) C X, [; converges to a geodesic I,
and (g;(P(1)), g(y;)) converges to a convex subset P, which splits isometrically as a
product Py, = [ X Yoo, where F' C Y,,. Hence X contains the 3-flat F' := F X [.

We next claim that F” is Hausdorff-close to X. Otherwise we would have a sequence
x; € X such that the nearest points y; € F”' satisfied d(y;, z;) — oo; applying groups
elements to this configuration and passing to a subsequence, we find another 3-flat
F" C X as alimit, and a ray p leaving F' orthogonally. Since O, F" = 52, 0,,X = 52,
it follows that 0u F" = 0, X. This is a contradiction since 0,,p ¢ Oxo F".

Therefore the parallel set of F' is G-invariant, convex, and splits as a product
P(F') = F' x K, where K is a compact CAT(0) space. The induced action of G on
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K has a fixed point k € K, and hence G preserves the 3-flat F' x {k} C P(F"), and
must be virtually free abelian of rank 3. O

We will assume from now on that G is not virtually abelian, so that the second
alternative in the lemma holds for every parallel set.

Corollary 9. For each parallel set P =1 x Y as above, the Tits boundary 0pY is
infinite and totally disconnected, i.e. each pair of distinct points in OpY is antipodal.

Proposition 10. Suppose that for some geodesic | C X we have 0P (1) = 0,X.
Then:

1. Oxol is preserved by G, and hence G preserves the parallel set P(l), as well as its
product structure P(l) =1 x Y.

2. G 1s commensurable to the fundamental group of a 3-dimensional Seifert mani-
fold. In particular, G contains Z>.

Proof. 1. By our assumption we have P(l) = [ xY where 0;Y is a discrete space, and
hence 0,P(l) = 04X is a metric suspension of a discrete space. Since |07Y | = oo,
this means that the only points with unique antipodes are the suspension points, and
hence the subset 0! is preserved by G. But then for all ¢ € G, the geodesic g(()
is parallel to [, which means that g(P(l)) = P(l). Hence P(l) is G-invariant, and
we may assume that X = P(l). The action of G preserves the product structure
P(l) =1xY, so we get an induced action p of G on the Gromov hyperbolic space Y.

2. Since the suspension of 0, is homeomorphic to the 2-sphere 0, X, the ideal
boundary of Y is homeomorphic to S'. Thus the cocompact isometric action p : G ~
Y extends to a uniform (topological) convergence action G ™~ 0,Y = S*. Therefore,
according to [8, 10, 11, 18], the action G ~ S is topologically conjugate to a Moebius
action p'. Note that the kernel of p acts with bounded orbit on Y, and hence has a
fixed point yy € Y. Therefore Ker(p) = Ker(p') acts isometrically on the geodesic
I x {yo} C P(l) and is either finite or a virtually infinite cyclic subgroup of G.

Lemma 11. The action G A S! factors through the action of a uniform lattice in

Isom(H?) on S' = 0, H2.

Proof. The action p'(G) ~ H? is cocompact, therefore we have the following possi-
bilities:

(a) p/(G) is a cocompact discrete subgroup in Isom(H?); in this case we are done.

(b) p'(G) is a solvable subgroup in Isom(H?), which fixes a point in S*. Then p'(G)
is not virtually abelian which contradicts the fact that G'is a CAT(0) group.

(c) p'(G) is dense in PSL(2,R). Then, the group p'(G) contains a nontrivial elliptic
element ¢ and it also contains a sequence of elements h; which converge to 1 €
PSL(2,R). Let g,h; € G be elements which map (via p') to ¢ and h; respectively.

Clearly, p(g) € Isom(Y) is elliptic as well, let y € Y be its fixed point. By taking
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conjugates g; := h;gh;', we get an infinite collection of distinct elements {g; : i € N}
of G so that for each n € Z, g;(y x R) is contained in Ng(y x R) where R € R, is
independent of 7. We note that since all g; are pariwise conjugate, there exists C' < 0o
such that d(x, g;(z)) < C for each z € y x R and 7 € N. This contradicts discreteness
of the action of G on X. O

The above lemma implies that the kernel of p is commensurable to Z and the quo-
tient p(G) is commensurable to the fundamental group of a 2-dimensional hyperbolic
surface. Therefore GG is commensurable to the fundamental group of a 3-dimensional
Seifert manifold and hence G' contains Z x Z. OJ

In view of the proposition, we will henceforth assume that no parallel set P(l) has
the same ideal boundary as X.

We now review some properties of the space 0rX. Recall that a subset C' C Z is
called convex if for any two non-antipodal points x,y € 0rX, the geodesic segment Ty
connecting x to y is contained in C'. The intersection of two convex subsets of 07X
is convex. If Y C X is a convex of the CAT(0) space X, then 0;Y C 0,X is convex
as well. Thus, if F,F" C X are 2-flats then the intersection OrF N opF' C 0rX is
convex and either consists of two antipodal points, a circular arc in 9, F of the length
< 7, or we have OpF = OrF".

Definition 12. Given two standard circles S, S" C 07X, we say that S and S’ cross
if S contains points from each component of 0, X \ S’ (note that we are using the
visual topology). We say that 2-flats F), F' C X cross if S = 0, F and S' = 0, F'
CTOSS.

We will say that the ideal boundaries of two distinct parallel sets P, P’ cross if at
least one circle in 7P crosses a circle in OrP'.

We will say that a parallel set P(() is nontrivial if P(l) =1 x Y where [0,.Y| > 3.

It follows (from convexity of SN S" with respect to the Tits metric) that in the case
S, S" cross, the intersection S N S’ consists of a pair of points which are antipodal
with respect to the Tits metric. Note that crossing is a symmetric relation.

Lemma 13. Suppose that P(l) is a nontrivial parallel set, and F C X is a flat. If
S = OrF crosses a circle in OprP(l), then F C P(l).

Proof. Suppose S crosses a circle S C 9pP(l). Recall that 9,P(l) is the metric join
of {n,n'} = 0rl and 0;Y. As observed before, the intersection S N S’ is a pair of
antipodal points in 9;P(l). If SN S" contained one of the points {n,n'}, it would
therefore contain the other (since the other is the unique antipode in 9pP(l)). This
would imply that F' C P(l), and we are done in this case.

Therefore, we may assume that S does not pass through 0, and so the configura-

tion {0 P, S} has to look like the one on Figure 4, where z, y, z denote the distances
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from 7 to the points of intersection between 0, P and S. It follows that x +y = m,
y+z=m,x+ 2z =m and thus

r=y=z=m/2.

This implies that the 3 intersection points have pairwise distance 7, which is absurd
since S is a standard circle. (l

Suppose P(l) is a nontrivial parallel set. We refer to the standard semi-circles in
OrP(l) running between the “poles” 0,0 = {n,n'} as longitudes. By our assumptions
we have 0, X \ 0P(l) # 0; let U be a connected component of 9,,X \ 0,P(l). We
claim that the frontier of U is a pair of longitudes. To see this, note that if U\ {n,n'}
intersected at most one longitude L, then we would necessarily have U = 0,,X \ L,
which contradicts our assumption that P() is nontrivial. Hence there are at least two
longitudes L; and Ly intersecting U\ {n,n'}. Let U’ be the component of 9,, X \ L ULy
intersecting U. Clearly no other longitute L’ can intersect U’, and hence we have
U = U', and the frontier of U is a standard circle (the union of two longitudes of
OrP(l)). We will refer to these circles as peripheral circles of 0,,P(l). A flat in X
whose boundary is a peripheral circle will be called a peripheral flat.

Lemma 14. If P(I) and P(l') are distinct nontrivial parallel sets, then 0P(I') lies
in U, where U is a component of 0o X \ OxP(1).

Proof. Suppose £ € 0,P(I') \ 0.cP(l). Let U be the component of 0,X \ 0,P(l)
containing £, and let S be the standard circle bounding U. If 9,,P(l’) contains a point
& € 0,X \ U, then there is a standard circle S C P(I') containing {&, &'}, and S’

will cross S. But then Lemma 13 implies that S" C 0,P(l), which is a contradiction.
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Thus 0,P(l) C 0,P(I'). Since the standard circles in OpP(l) are unions of pairs of
longitudes, this clearly forces drl = Orl’, and hence P(l) = P(I'). O

As a consequence of the lemma, if P (/) is a nontrivial parallel set and S C 9,P(l)
is a peripheral circle, then the circle collection {g(S)}4eq contains no crossing pairs.
On the other hand, if two flats cross, their union is contained in a nontrivial parallel
set, and so there is necessarily a G-invariant collection F of flats whose boundaries
are pairwise noncrossing circles. For the remainder of the proof, we fix one such
collection F, and endow it with the pointed Hausdorff topology. Since taking closure
preserves the noncrossing property, we will assume that F is a closed subset of the
space of subsets of X (equipped with the pointed Hausdorff topology). Therefore F
is locally compact.

Suppose that we have three flats F, F', F" € F with pairwise distinct ideal bound-
aries. We will say that F' separates F' from F" if the following holds:

0.F C D,0,F"Cc D",

where D and D" are the connected components of 0o X \ O F'. We use S(F, F', F")
to denote this ternary relation on F.

We leave it to the reader to verify that with this ternary relation the set P of all
peripheral flats in X satisfies the axioms of a pretree.

Proposition 15. Let F, F" be flats in X. Then the set S(F, F") of flats F' separating
F from F" is compact with respect to the Gromov-Hausdorff topology.

Proof. If 0o F = 05 F" then for each flat [’ separating F' and F" we have: 0,,F' =
OxF and thus the flats F, F' are parallel. Since the parallel set P(F') is isometric to
K x F, where K is compact, it follows that S(F, F") is compact.

Therefore we will assume that O, F" # 0 F". Suppose that Fj is a sequence of
2-flats in X which diverge to infinity, i.e.

limd(o, F}) = o0

where 0 € X is a base-point. Consider the functions f; := d(z, F;) — d(z,0). Then,
according to Lemma 2.3 in [14], the functions to f; subconverge to a Busemann
function b¢ in X.

Let U denote the horoball {z : be(x) < 0}. We claim that 0xF\ O U is nonempty.
Otherwise, the Busemann function b would restrict to a bounded convex function on
Fie. a constant function. It follows readily that U would contain an isometrically
embedded half space F' x R, ; this contradicts our assumption that all parallel sets
have Gromov hyperbolic factors. Similarly, 0 F" \ OxU is nonempty.

We leave the proof of the following lemma to the reader:
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Lemma 16. 1. For each i, O F N OxF" C 050F;. 2. OxF; subconverge into 05U,
in particular, OsF N Os F" C 05U

Thus we pick points 7 € 0,0F \ OxU, 1" € 0o F" \ 0xoU. Lemma 7 implies that
n,n" & 0xF N0 F" and that (since 0,U does not separate 0., X) for large i the
points 1, 7" belong to the same connected component of 0, X \ Oso F;. This contradicts
the assumption that F; is between F, F" for all i. O

Let £ be the collection of pointed flats (F,p) where F' € F, equipped with the
pointed Hausdorff topology. Since F is locally compact, the space L is a locally
compact surface lamination, and the induced action G ~ L is properly discontinuous
and cocompact. The lamination £ has a G-invariant leafwise flat metric. After
passing to a smaller G-invariant subset of F we may further assume that the action
G ~ L is minimal (i.e. it contains no proper closed, G-invariant sublaminations).
Therefore (see [16]) there exists a transversal G-invariant measure z on £; minimality
of G ~ F implies that that this measure has full support. Since £ fibers over F,
we obtain a measure on F. If £ contains an isolated leaf/flat F, then it will define
an atom in the transverse measure, and hence the collection {gF'},cc of translates
of F must be locally finite in X. This means that {gF},cc defines a closed G-
invariant sublamination of £, forcing it to be all of £, and the stabilizer of F in G
acts cocompactly on F', and so we are done. Hence we may assume that there are no
isolated leaves, and that each flat has at most virtually infinite cyclic stabilizer. In
fact, similar reasoning implies that for each flat F' € F, there is a sequence F; € F of
flats not parallel to ' which converge to F'.

NEED TO CLARIFY THE RELATION BETWEEN THE LAMINATION £ AND
THE PICTURE AT INFINITY WHERE ONE COLLAPSES PARALLEL FLATS.

Lemma 17. Suppose that F' € F, g, € G is a sequence such thatlim, . g F' = Fy €
F. Then there exist x_,xy € F such that for all sufficiently large n, g, F € [x_, x,]
and Fo, € [x_,x].

Proof. Since lim,, o g, F = F, the circles Or(g,F') converge to the circle 0pF,, in
the Chabauty topology (we again are using here the visual topology on Z). The
circles in the collection

{aT(gnF)a 8TFoo; n < N}
are all peripheral and hence do not cross each other (by Lemma 13). This implies that
for all large n, m either 0r(g,F) separates Or(g,,F) from OpF,, or OrF,, separates
Or(9,F) from 0r(g,, F). O

The above lemma implies that the natural projection p : L — F is continuous,
where we give F the order topology, whose basis consists of the open intervals (a, b).
It is also clear that p is a proper map in the sense that for each interval [a,b] the

inverse image p~'([a,b]) consists of leaves of £ which intersect a certain compact
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subset in X: If a sequence of flats F} leaves every compact subset in X then this
sequence subconverges to a point in 0,, X, but a point cannot separate one circle in
Or X from another.

The measure p on the pretree F has the no atoms and (since the measure y transver-
sal to £ has full support) for each pair of distinct points z, 2’ € F, u([z,2']) = 0 iff
the corresponding flats F, F' in X are not separated by any flat in F. We let T'
be the quotient of F by the equivalence relation: Points x,z’ € F are equivalent iff
p([z,2']) = 0. The G-action, the pretree structure and the measure u project to T
(we retain the notation p for the projection of the measure). As it was explained in
section 2, the measure y yields a metric d on 1. Local compactness of L implies that
the restriction of d to each interval in 71" is a complete metric. It is clear that the
group G acts isometrically on 7'.

Remark 18. The map F — T has at most countable multiplicity. Moreover, all but
countably many points in 7" have a unique preimage in F.

Lemma 19. 1. T is an uncountable metric tree. 2. Stabilizers of nondegenrate arcs
in T are at most cyclic. 3. G does not have a global fized point on T

Proof. 1. Follows from Lemma, 4.

2. By our hypothesis, for each point F' € F its G-stabilizer is at most cyclic. Since
F is prefect, it is uncountable; hence, by Remark 18, uncountably many points in
each nondegenerate arc [z, y] C T have at most cyclic stabilizer.

3. The action G ~ F is minimal, hence the action G ~ T is minimal as well.
Since 7' is not a point it follows that G cannot fix a point in 7. OJ

We now can applly [3] to conclude that the group G splits as an amalgam over a
virtually abelian subgroup A. Since G is a 3-dimensional Poincare duality group over
R, it follows from the Meyer-Vietoris sequence that A is a 2-dimensional Poincare
duality group over R. Thus implies that A is virtually a surface group, see for instance
[13]. Since A is virtually abelian, it follows that A contains Z? as a subgroup of finite
index. This proves the main theorem. O
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