
CONFORMAL DIMENSION AND GROMOV HYPERBOLICGROUPS WITH 2-SPHERE BOUNDARYMARIO BONK AND BRUCE KLEINERAbstrat. Suppose G is a Gromov hyperboli group, and �1G is quasisymmetri-ally homeomorphi to an Ahlfors Q-regular metri 2-sphere Z with Ahlfors regularonformal dimension Q. Then G ats disretely, oompatly, and isometrially onH 3 . 1. IntrodutionAording to a well-known onjeture by Cannon, for every Gromov hyperboli groupG whose boundary at in�nity �1G is homeomorphi to the 2-sphere S2, there shouldexist a disrete, oompat, and isometri ation of G on hyperboli 3-spae H 3 . Inthe present paper we establish Cannon's onjeture under the additional assumptionthat the Ahlfors regular onformal dimension of �1G is realized.Theorem 1.1. Let G be a Gromov hyperboli group with boundary �1G homeomor-phi to S2. If the Ahlfors regular onformal dimension of �1G is attained, then thereexists an ation of G on H 3 whih is disrete, oompat and isometri.By de�nition, the Ahlfors regular onformal dimension of a metri spae Z is thein�mal Hausdor� dimension of all Ahlfors regular metri spaes (see Setion 2 forthe preise de�nition) quasisymmetrially homeomorphi to Z. This notion oursimpliitly in a paper by Bourdon and Pajot [7, Setion 0.2℄ and is a variant of Pansu'sonformal dimension for metri spaes (the onformal dimension of a metri spaeZ is the in�mal Hausdor� dimension of all metri spaes quasisymmetrially homeo-morphi to Z).We reall that the boundary of a Gromov hyperboli group G arries a anonialfamily of visual metris; these are Ahlfors regular and pairwise quasisymmetriallyhomeomorphi by the identity map. In partiular, it is meaningful to speak aboutquasisymmetri homeomorphisms between �1G and other metri spaes. The as-sumption on the Ahlfors regular onformal dimension of �1G says more expliitlythat there is an Ahlfors Q-regular metri spae Z quasisymmetrially homeomorphiDate: July 16, 2003.M.B. was supported by NSF grant DMS-0200566. B.K. was supported by NSF grant DMS-9972047. 1



to �1G with smallest possible Q among all suh Ahlfors regular spaes. We neessar-ily have Q � 2, sine the Hausdor� dimension of a spae annot be smaller than itstopologial dimension. The ase Q = 2 of Theorem 1.1 an easily be dedued from[2, Theorem 1.1℄ or [3, Theorem 1.1℄.The onverse of Theorem 1.1 is well-known: if a group ats disretely, oompatlyand isometrially on hyperboli 3-spae, then its boundary is quasisymmetriallyhomeomorphi to the standard 2-sphere [17℄, whih is a 2-regular spae of onformaldimension 2. So by Theorem 1.1, Cannon's onjeture is equivalent to:Conjeture 1.2. If G is a hyperboli group with 2-sphere boundary, then the Ahlforsregular onformal dimension of �1G is attained.We derive Theorem 1.1 from [2, Theorem 1.2℄ and a more general result about hy-perboli groups:Theorem 1.3. Let Z be an Ahlfors Q-regular metri spae, Q > 1, where Q is theAhlfors regular onformal dimension of Z. If Z admits a uniformly quasi-M�obiusation Gy Z whih is �xed point free and for whih the indued ation on the spaeof triples Tri(Z) is oompat, then Z is Q-Loewner.The terminology will be explained in Setion 2. The hypotheses of this theorem willhold, for example, if Z is a Q-regular spae of Ahlfors regular onformal dimensionQ, where Q > 1, and Z is quasisymmetrially homeomorphi to the boundary of ahyperboli group.Another way to state the onlusion of Theorem 1.3 is by saying that Z satis�es a(1; Q)-Poinar�e inequality in the sense of Heinonen and Koskela [13℄. They showedthat for a proper Q-regular metri spae suh a Poinar�e inequality holds if and only ifthe spae is Q-Loewner; they also extended many lassial results about quasionfor-mal and quasisymmmetri homeomorphisms to the setting of Q-regular Q-Loewnerspaes.By now there is a substantial body of literature about metri spaes satisfyingPoinar�e inequalities; see for example [13, 11, 19, 18, 16, 15℄. These spaes playa entral role in Cheeger's theory of di�erentiability of Lipshitz funtions [9℄, andthe Bourdon-Pajot rigidity theorem for quasi-isometries of hyperboli buildings [6℄.Theorem 1.3 suggests that one might obtain more examples of these nie spaes byminimizing the Hausdor� dimension of Ahlfors regular metris on the boundary of ahyperboli group.The full strength of the group ation Gy Z is atually not needed in the proof ofTheorem 1.3. It is suÆient to have a olletion G of uniformly quasi-M�obius home-omorphisms whih is large enough to map any triple in Z to a uniformly separatedtriple, and whih does not have a ommon �xed point. However, the assumption thatthe ation Gy Z is �xed point free is essential. Starting with the Ahlfors 3-regular2



metri on R2 de�ned by the formulad((x1; y1); (x2; y2)) := jx1 � x2j+ jy1 � y2j1=2;one an onstrut an Ahlfors 3-regular metri on S2 admitting a uniformly quasi-M�obius ation whih is transitive on the omplement of a point, and oompaton triples. The sphere S2 equipped with this metri has Ahlfors regular onformaldimension 3, but does not satisfy a (1; p)-Poinar�e inequality for any p � 1.Similar in spirit to Theorem 1.1 is another immediate onsequene of Theorem 1.3for onvex oompat Kleinian groups.Theorem 1.4. Suppose G y H n+1 is a onvex oompat isometri ation of adisrete group G on hyperboli n-spae H n+1 , n � 1. Let �(G) � Sn = �1H n+1 be thelimit set of G, and assume that Q > 1, where Q is the Hausdor� dimension of �(G).If the Ahlfors regular onformal dimension of �(G) is equal to Q, then Q = k 2 N isan integer and � stabilizes a totally geodesi subspae of H n+1 isometri to H k+1 onwhih � ats oompatly.Note that if under the assumptions of this theorem Z = �(G) arries a family ofnononstant urves with positive Q-modulus, then Q is equal to the Ahlfors regularonformal dimension of Z [12, Thm. 15.10℄. One an also replae the ondition on theAhlfors regular dimension in the previous theorem by the requirement that Z satis�esa (1; p)-Poinar�e inequality for some p > 1 (see Setion 5 for further disussion).We now sketh the proof of Theorem 1.3. Let Z and Gy Z be as in the statementof the theorem. A key ingredient used repeatedly in our proof is a result of Tyson[23℄ that implies that elements of G preserve Q-modulus to within a ontrolled fator.Our point of departure is a result of Keith and Laakso [14℄:Theorem 1.5 (Keith-Laakso). Let X be a proper Ahlfors Q-regular metri spae,where Q > 1 is the Ahlfors regular onformal dimension of X. Then there existsa weak tangent W of X whih arries a family of nononstant paths with positiveQ-modulus.This theorem an easily be derived from [14, Cor. 1.0.2℄. For the de�nition of weaktangents and related disussion see [3, Setion 4℄; see Setion 2 or [12℄ for a disussionof modulus. In our \self-similar" situation we an ombine Theorem 1.5 with resultsfrom [3℄ and [23℄ to obtain the following orollary, whih may be of independentinterest.Corollary 1.6. Let Z be a ompat Ahlfors Q-regular metri spae, where Q > 1 isthe Ahlfors regular onformal dimension of Z. If Z admits a uniformly quasi-M�obiusation Gy Z for whih the indued ation on the spae of triples Tri(Z) is oompat,then there is a family of nononstant paths in Z with positive Q-modulus.As we already pointed out, every (proper) Ahlfors Q-regular spae arrying a familyof nontrivial paths with positive Q-modulus has Ahlfors regular onformal dimensionQ; the orollary may be viewed as a partial onverse of this fat.3



The next step in the proof of Theorem 1.3 is to show that Z satis�es a Loewnertype ondition for pairs of balls: if the Q-modulus for a pair of balls is small, thentheir relative distane is big, quantitatively. To prove this ball-Loewner ondition,we introdue the notion of a thik path. Thik paths orrespond to points in thesupport of Q-modulus, viewed as an outer measure on the spae of (nononstant)paths. Using the dynamis of the ation G y Z, we show that any two open setsan be joined by a thik path, and this quikly leads to the ball-Loewner ondition.The remaining step, whih is the bulk of our argument, shows that any proper Q-regular spae satisfying the ball-Loewner ondition is Q-Loewner. By the result ofHeinonen-Koskela mentioned above, this implies that Z satis�es a (1; Q)-Poinar�einequality.In view of Conjeture 1.2 and Theorem 1.3, it is interesting to look for spaeswhose Ahlfors regular onformal dimension is (or is not) attained. There are nowseveral examples known where the Ahlfors regular onformal dimension is atuallynot realized; see Setion 6 for more disussion. It is partiulary interesting thatBourdon and Pajot [7℄ have found Gromov hyperboli groups G for whih �1G isnot quasisymmetrially homeomorphi to an Ahlfors regular Loewner spae; so byTheorem 1.3 the Ahlfors regular onformal dimension of �1G is not attained.Additional remarks and open problems related to the disussion in this introdutionan be found in the �nal Setion 7 of the paper.2. Notation and preliminariesIn this setion, we will �x notation and review some basi de�nitions and fats. Wewill be rather brief, sine by now there is a standard referene on these subjets [12℄and most of the material has been disussed in greater detail in our previous papers[3, 2℄.Notation. If (Z; d) is a metri spae, we denote the open and the losed ball ofradius r > 0 entered at a 2 Z by BZ(a; r) and �BZ(a; r), respetively. We will dropthe subsript Z if the spae Z is understood. If B = B(a; r) is a ball and � > 0 welet �B := B(a; �r). We use diam(A) for the diameter of a set A � Z. If z 2 Z andA;B � Z, then dist(z; A) and dist(A;B) are the distanes of z and A and of A andB, respetively. If A � Z and r > 0, then we let Nr(A) := fz 2 Z : dist(z; A) < rg.The Hausdor� distane between two sets A;B � Z is de�ned bydistH(A;B) := max� supa2A dist(a; B); supb2A dist(b; A)	:If f : X ! Y is a map between two spaes X and Y , we let Im(f) := ff(x) : x 2 Xg.If A � X, then f jA denotes the restrition of the map f to A.4



Cross-ratios and quasi-M�obius maps. Let (Z; d) be a metri spae. The ross-ratio, [z1; z2; z3; z4℄, of a four-tuple of distint points (z1; z2; z3; z4) in Z is the quantity[z1; z2; z3; z4℄ := d(z1; z3)d(z2; z4)d(z1; z4)d(z2; z3) :Let � : [0;1) ! [0;1) be a homeomorphism, and let f : X ! Y be an injetivemap between metri spaes (X; dX) and (Y; dY ). The map f is an �-quasi-M�obiusmap if for every four-tuple (x1; x2; x3; x4) of distint points in X, we have[f(x1); f(x2); f(x3); f(x4)℄ � �([x1; x2; x3; x4℄):The map f is �-quasisymmetri ifdY (f(x1); f(x2))dY (f(x1); f(x3)) � ��dX(x1; x2)dX(x1; x3)�for every triple (x1; x2; x3) of distint points in X.We will make repeated use of the following lemma. We refer to [3, Lemma 5.1℄ forthe proof.Lemma 2.1. Let (Z; d) be a ompat metri spae. Suppose that for eah k 2 N weare given a ball Bk = B(pk; Rk) � Z, distint points x1k; x2k; x3k 2 �B(pk; �kRk) withdZ(xik; xjk) > ÆkRk for i; j 2 f1; 2; 3g; i 6= j;where �k; Æk > 0, and an �-quasi-M�obius homeomorphism gk : Z ! Z suh that foryik := gk(xik) we have dZ(yik; yjk) > Æ0 for i; j 2 f1; 2; 3g; i 6= j;where � and Æ0 > 0 are independent of k.(i) If limk!1 �k = 0 and the sequene (Rk)k2N is bounded, thendiam(Z n gk(Bk))! 0 for k!1:(ii) Suppose for k 2 N the set Dk � Bk is (�kRk)-dense in Bk, where �k > 0. Iflimk!1 �k = 0 and the sequene (�k=Æ2k)k2N is bounded, thendistH(gk(Dk); Z)! 0 for k !1:If a group G ats on a ompat metri spae (Z; d) by homeomorphisms, we writeG y Z and onsider the group elements as self-homeomorphisms of Z. We do notrequire that the ation is e�etive; so it may well happen that a group element di�erentfrom the unit element is represented by the identity map. We denote by Tri(Z) thespae of distint triples in Z. An ation Gy Z indues an ation Gy Tri(Z). Theation Gy Tri(Z) is oompat, if and only if every triple in Tri(Z) an be mappedto a uniformly separated triple by a group element. More preisely, this means thatthere exists Æ > 0 suh that for every triple (z1; z2; z3) 2 Tri(Z) there exists a groupelement g 2 G suh that the image triple (g(z1); g(z2); g(z3)) 2 Tri(Z) is Æ-separated,i.e., d(g(zi); g(zj)) � Æ for i 6= j. We all the ation G y Z �xed point free if the5



maps g 2 G have no ommon �xed point, i.e., for eah z 2 Z there exists g 2 G suhthat g(z) 6= z. The ation G y Z is alled uniformly quasi-M�obius if there existsa homeomorphism � : [0;1) ! [0;1) suh that every g 2 G is an �-quasi-M�obiushomeomorphism of Z.Lemma 2.2. Suppose (Z; d) is a ompat, uniformly perfet metri spae, and Gy Zis a �xed point free uniformly quasi-M�obius ation whih is oompat on Tri(Z).Then the ation is minimal, i.e., for all z; z0 2 Z and all � > 0, there is a groupelement g 2 G suh that d(g(z0); z) < �.Proof. Let z; z0 2 Z and � > 0 be arbitrary. Sine Z is uniformly perfet, we anhoose distint points x1k; x2k 2 Z for k 2 N suh that the distanes d(z; x1k); d(z; x2k),and d(x1k; x2k) agree to within a fator independent of k, and limk!1 d(z; x1k) = 0. Setrk := d(z; x1k). Sine Z y Tri(Z) is oompat, we an �nd gk 2 G suh that thetriples (gk(z); gk(x1k); gk(x2k)) are Æ-separated where Æ > 0 is independent of k. ChooseRk > 0 suh that limk!1Rk = 0 and limk!1Rk=rk = 1. By Lemma 2.1 we thenhave limk!1 diam(Z n gk(Bk)) = 0, where Bk := B(z; Rk). Pik g 2 G suh thatg(z0) 6= z0. Then for large k, either z0 2 gk(Bk) or g(z0) 2 gk(Bk), whih means thateither g�1k (z0) 2 Bk or g�1k Æg(z0) 2 Bk. Hene for suÆiently large k one of the pointsg�1k (z0) or g�1k Æ g(z0) is ontained in B(z; �). �Modulus in metri measure spaes. Suppose (Z; d; �) is a metri measure spae,i.e., (Z; d) is a metri spae and � a Borel measure on Z. Moreover, we assume thatthat (Z; d) is loally ompat and that � is loally �nite and has dense support.The spae (Z; d; �) is alled (Ahlfors) Q-regular, Q > 0, if the measure � satis�es(2.3) C�1RQ � �(B(a; R)) � CRQfor eah open ball B(a; R) of radius 0 < R � diam(Z) and for some onstant C � 1independent of the ball. If the measure is not spei�ed, then it is understood that �is Q-dimensional Hausdor� measure.A density (on Z) is a Borel funtion � : Z ! [0;1℄. A density � is alled admissiblefor a path family � in Z, if Z � ds � 1for eah reti�able path  2 �. Here integration is with respet to arlength on . IfQ � 1, the Q-modulus of a family � of paths in Z is the number(2.4) ModQ(�) = inf Z �Q d�;where the in�mum is taken over all densities � : Z ! [0;1℄ that are admissible for�. If E and F are subsets of Z with positive diameter, we denote by(2.5) �(E; F ) := dist(E; F )minfdiam(E); diam(F )g6



the relative distane of E and F , and by �(E; F ) the family of paths in Z onnetingE and F .Suppose (Z; d; �) is a onneted metri measure spae. Then Z is alled a Q-Loewner spae, Q � 1, if there exists a positive dereasing funtion 	: (0;1) !(0;1) suh that(2.6) ModQ(�(E; F )) � 	(�(E; F ))whenever E and F are disjoint ontinua in Z. Note that in [13℄ it was also requiredthat Z is reti�ably onneted. In ase that the (loally ompat) spae (Z; d; �) isQ-regular and Q > 1, it is unneessary to make this additional assumption, beauseproperty (2.6) alone implies that (Z; d) is even quasionvex, i.e., for every pair ofpoints there exists a onneting path whose length is omparable to the distane ofthe points.We will need the following result due to Tyson.Theorem 2.7. Let X and Y be Ahlfors Q-regular loally ompat metri spaes,Q � 1, and let f : X ! Y be an �-quasi-M�obius homeomorphism. Then for everyfamily � of paths in X, we have1C ModQ(�) � ModQ(f Æ �) � CModQ(�);where f Æ � := ff Æ  :  2 �g and C is a onstant depending only on X, Y and �.Tyson proved this for quasisymmetri mappings f in [23℄ and for loally quasisym-metri maps in [24, Theorem 6.4 and Lemma 9.2℄. Here a map f : X ! Y is alledloally �-quasisymmetri if every point x 2 X has an open neighborhood U suh thatf jU is �-quasisymmetri. Sine �-quasi-M�obius maps are loally ~�-quasisymmetriwith ~� depending only on �, the above theorem follows.Lemma 2.8. Assume Q > 1 and (Z; d; �) is Ahlfors Q-regular. Then there exists aonstant C > 0 with the following property. If � is a family of paths in Z whih startin a ball B � Z of radius R > 0 and whose lengths are at least LR, where L � 2,then ModQ(�) < C (logL)1�Q :We omit a detailed proof, sine the statement is well-known (f. [12, Lemma 7.18℄and [4, Lemma 3.2℄ for very similar results). The basi idea is to use a test funtionof the form R + dist(x;B)supported in LB and use the upper mass bound �(B(x; r)) . rQ.7



Thik paths. We now assume that (Z; d; �) be a separable loally ompat metrimeasure spae, and Q � 1. Let I := [0; 1℄, and denote by P := C(I; Z) the set of(ontinuous) paths in Z, metrized by the supremum metri. Then P is a separableomplete metri spae. Sine Q-modulus is monotoni and ountably subadditive forpath families (f. [12, p. 51℄), we an onsider ModQ as an outer measure on P.De�nition 2.9. A path  2 P is thik if for all � > 0, the family of nononstantpaths in the ball B(; �) � P has positive Q-modulus.In other words, a path  2 P is thik if ModQ(B(; �) n C) > 0 for all � > 0, whereC is the family of onstants paths in Z. We have to exlude the onstant paths here,beause ModQ(�) =1 whenever � ontains a onstant path. Constant paths lead tosome tehnialities later on, whih ould be avoided if we had de�ned P as the spaeof nononstant paths in Z. This also has disadvantages, sine ertain ompletenessand ompatness properties of P would be lost with this de�nition.We denote by PT the set of thik paths in P. Ignoring onstant paths, the thikpaths form the support of the outer measure ModQ.Lemma 2.10. (Properties of thik paths)(i) (Stability under limits) The set PT is losed in P: if k 2 P is thik for k 2 Nand  = limk!1 k, then  is thik.(ii) (Thikness of subpaths) The omposition of any embedding I ! I with a thikpath is a thik path.(iii) (Quasi-M�obius invariane) If (Z; d; �) is loally ompat and Ahlfors Q-regular,Q � 1, then the image of a thik path under a quasi-M�obius homeomorphismZ ! Z is thik.Proof. Property (i) follows immediately from the de�nitions. Property (iii) is a on-sequene of Tyson's Theorem 2.7.To prove property (ii) �rst note that if  is any path and � : I ! I is an embedding,then the de�nition of modulus implies that(2.11) ModQ(B(; �)) � ModQ(B( Æ �; �)):If  is a thik path and  Æ� is nononstant, then for suÆiently small � > 0 there willbe no onstant paths in either B(; �) or B( Æ �; �), and (2.11) implies that  Æ � isthik. If  is thik and  Æ� is onstant, we an assume without loss of generality thatIm(�) is not ontained in a larger interval on whih  is onstant. If Im(�) = I then Æ � is just a reparametrization of a thik path and is therefore thik. Otherwise,we an enlarge Im(�) slightly and approximate  Æ � by nononstant subpaths of ,whih are thik by the �rst part of the argument. Property (i) now implies that  Æ�is also thik. �8



Lemma 2.12. The family Pt of nononstant paths in P whih are not thik has zeroQ-modulus. In partiular, given any family � � P of nononstant paths, we haveModQ(� \ PT ) = ModQ(�).Proof. For eah  2 Pt, we an �nd an open set U ontaining  whih onsists ofnononstant paths and has zero Q-modulus. The spae P is separable, so we an �nda ountable subolletion of the sets U whih overs Pt. Countable subadditivity ofQ-modulus implies that ModQ(Pt) = 0.The seond part of the lemma follows from monotoniity and subadditivity of Q-modulus. �The previous lemma implies the existene of nononstant thik paths whenever Zarries a family of nononstant paths of positive Q-modulus. Moreover, suppose �0is a family of paths with ModQ(�0) = 0. Then if  is thik and � > 0 is arbitrary, wean �nd a thik path � 2 B(; �) n �0. In other words, by a small perturbation of athik path, we an obtain a thik path avoiding any given family of zero Q-modulus.3. The Loewner ondition for ballsIn this setion we prove the following proposition, whih asserts that a spae whihsatis�es a Loewner type ondition for pairs of balls, satis�es the Loewner onditionfor all pairs of ontinua.Proposition 3.1. Let (Z; d; �) be a proper metri measure spae. Assume that forall C > 0, there are onstants m = m(C) > 0 and L = L(C) > 0 suh that if R > 0and B;B0 � Z are R-balls with dist(B;B0) � CR, then the Q-modulus of the familyf 2 �(B;B0) : length() � LRgis a least m. Then (Z; d; �) is Q-Loewner.Rather than using the hypothesis diretly, the proof of the proposition will use thefollowing onsequene: if � : Z ! [0;1℄ is a Borel funtion and the balls are as inthe statement of the proposition, then there is a path � 2 �(B;B0) whose length isat most LR and whose �-length is at most(3.2) 1m1=Q �Z(L+1)B �Q d��1=Q :Here and in the following we all the integral R� � ds the �-length of a reti�able path�.We point out the following orollary of Proposition 3.1 whih is of independentinterest. 9



Corollary 3.3. Suppose (Z; d; �) is a proper Ahlfors Q-regular metri measure spae,Q > 1. Suppose that there exists a positive dereasing funtion 	: (0;1) ! (0;1)suh that ModQ(�(B;B0)) � 	(�(B;B0))whenever B and B0 are disjoint balls in Z. Then (Z; d; �) is Q-Loewner.Proof. This immediately follows from Proposition 3.1, Lemma 2.8 and the subaddi-tivity of modulus (see the end of the proof of Lemma 4.3 for additional details). �Before we start with the proof of Proposition 3.1, we �rst indiate a lemma whoseproof uses a similar onstrution in a simpler setting.Lemma 3.4. Let X be a omplete metri spae. Suppose there exist 0 � � < 1=2and L < 1 suh that if u; v 2 X, then there is a path of length at most Ld(u; v)onneting B(u; �d(u; v)) and B(v; �d(u; v)). Then X is quasi-onvex.This lemma an be used to give another proof that a Q-regular spae satisfying a(1; Q)-Poinar�e inequality is quasi-onvex.Outline of proof. Suppose x; y 2 X and let R := d(x; y). By assumption we an �nda path �1 of length � LR joining B(x; �R) to B(y; �R). Set �0 := f�1g. Then wean �nd paths �2; �3 of length � L�2R suh that �2 joins B(x; �2R) to B(�1(0); �2R)and �3 joins B(�1(1); �2R) to B(y; �2R). Set �2 := f�2; �3g. Continuing indutively,we an �nd path olletions �k for all k � 0. At eah step of the indution the \totalgap" �k gets multiplied by 2� < 1, and the total length of the urves generated is� L�k. One then onludes that ifY := 1[k=0 [�2�k Im(�);then �Y is a ompat onneted set ontaining fx; yg, and has 1-dimensional Hausdor�measure at most LR1�2� . Therefore there is an ar of length� � L1� 2�� d(x; y)joining x to y. �The proof of Proposition 3.1 will require two lemmas.Lemma 3.5. Let X be a metri spae, and � be a �nite Borel measure on X. IfY � X is a nondegenerate ontinuum, then we an �nd a point y 2 Y suh that forall r > 0 we have(3.6) �(B(y; r)) � 10rdiam(Y )�(X):10



Proof. We assume that �(X) > 0, for otherwise the assertion obviously holds.If the statement were false, then for eah y 2 Y we ould �nd ry > 0 suh that�(B(y; ry)) > M�(X)ry, where M = 10= diam(Y ). Then the radii ry, y 2 Y , areuniformly bounded from above, and so we an �nd a disjoint subolletion fBi =B(yi; ri)gi2I of the over fB(y; ry) : y 2 Y g of Y suh that the olletion f5Bigi2I isalso a over of Y [12, Theorem 1.2℄. De�ne an equivalene relation on I by delaringthat i � i0 if there are elements i = i1; : : : ; ik = i0 suh that Bij \ Bij+1 6= ; for1 � j < k. If I = tj2JIj is the deomposition of I into equivalene lasses, then theolletion f[i2Ij5Bigj2J is a over of Y by disjoint open sets; sine Y is onnetedthis implies that #J = 1. It follows thatXi ri � 110 diam(Y ) = 1M ;and so �(X) �Xi �(Bi) > �(X)MXi ri � �(X):This is a ontradition. �Lemma 3.7. Let Z be as in Proposition 3.1, and suppose 0 < � < 1=8. Thenthere are onstants � = �(�) > 0, K = K(�) > 0 with the following property. If� : Z ! [0;1℄ is a Borel funtion, B = B(p; r) � Z is a ball, and F1; F2 � Z areontinua suh that Fi \ 14B 6= ; and Fi n B 6= ; for i = 1; 2, then there are disjointballs Bi := B(qi; �r) for i = 1; 2, and a path � : [0; 1℄! Z suh that(i) qi 2 Fi for i = 1; 2,(ii) Bi � 78B and ZBi �Q d� � 80� ZB �Q d�for i = 1; 2,(iii) the path � joins 14B1 and 14B2, has image ontained in �B, length at most �r,and �-length at most K �Z�B �Q d��1=Q :Proof. We an �nd a subontinuum E1 � F1 whih is ontained in �B(p; 3r8 ) nB(p; r4)and joins the sets �B(p; 3r8 ) and �B(p; r4). Similarly, we an �nd a subontinuumE2 � F2 whih is ontained in �B(p; 3r4 ) n B(p; 5r8 ) and joins the sets �B(p; 3r4 ) and�B(p; 5r8 ). Then diam(Ei) � r=8 for i = 1; 2, and dist(E1; E2) � r=4.11



Applying Lemma 3.5 with X = B, the measure � de�ned by �(N) := RN �Q d� fora Borel set N � B, and Y = Ei for i = 1; 2, we �nd qi 2 Ei suh that(3.8) ZB(qi;s) �Q d� � 10sdiam(Ei) ZB �Q d� � 80sr ZB �Q d�;for 0 < s � r=4. Set Bi := B(qi; �r). By our assumption on Z, we an �nd a path �from 14B1 to 14B2 with Im(�) � �B, length at most �r, and �-length at mostK �Z�B �Q d��1=Q ;where � = �(�) > 0 and K = K(�) > 0.The balls B1 and B2 are disjoint sine � < 1=8 andd(q1; q2) � dist(E1; E2) � r=4:Conditions (i) and (iii) are learly satis�ed. Condition (ii) follows from the fats that� < 1=8 and qi 2 �B(p; 3r4 ) and from (3.8). �Proof of Proposition 3.1. Fix 0 < � < 1=8 subjet to the ondition 2 � (80�)1=Q < 1.Suppose E1; E2 � Z are nondegenerate ontinua, and let � : Z ! [0;1℄ be a Borelfuntion. We will show that there is a reti�able path  joining E1 to E2 whose�-length is at most M �ZZ �Q d��1=Qwhere M > 0 only depends on the relative distane �(E1; E2) of E1 and E2. Infat, the path produed will have length . dist(E1; E2), though this will not be usedanywhere. We will heneforth assume that E1 and E2 are disjoint, for otherwise wemay use a onstant path mapping into E1 \ E2.Pik pi 2 Ei suh that d(p1; p2) = dist(E1; E2). Setr0 := 12 min(d(p1; p2); diam(E1); diam(E2)) > 0:Let Bi = B(pi; r0) for i = 1; 2. Then B1 \ B2 = ; and Ei nBi 6= ; for i = 1; 2. Also,dist(B1; B2) � �d(p1;p2)r0 � r0 � tr0 where t := 2max(1;�(E1; E2)). By our hypotheseswe an �nd a path � joining 14B1 to 14B2 of length at most Lr0 and �-length at most(3.9) 1m1=Q �ZZ �Q d��1=Q ;where L = L(t), m = m(t) are the onstants appearing in the statement of Proposi-tion 3.1. Let �0 := f�g, B0 := fB1; B2g, and 
0 be the set fE1; Im(�); E2g endowedwith the linear ordering E1 < Im(�) < E2. In addition, we assoiate the ball B1 withthe pair E < Im(�), and the ball B2 with the pair Im(�) < E2.12



Indutively, assume that for j = 0; : : : ; k we have a path olletion �j, a ballolletion Bj, and a olletion of ontinua 
j subjet to the following onditions:1. For 0 � j � k, the set 
j is linearly ordered.2. For eah pair �1 < �2 of suessive elements of 
j, there is an assoiated ballB�1;�2 2 Bj suh that �i nB�1;�2 6= ; and �i \ 14B�1;�2 6= ;, for i = 1; 2.3. For j � 1, the olletions �j, Bj, and 
j are obtained from 
j�1 and Bj�1using the following proedure. For eah pair of suessive elements �1; �2 2 
j�1 withassoiated ball B�1;�2 2 Bj�1, one applies Lemma 3.7 with B = B�1;�2 and fF1; F2g =f�1; �2g, to obtain a path � = �(�1; �2) and a pair of disjoint balls B�1;�; B�;�2 . HereB�1;� is entered at a point in �1, and B�;�2 is entered at a point in �2. Then �j isthe olletion of paths � and Bj is the olletion of balls B�1;�; B�;�2 where �1 < �2ranges over all suessive pairs in Bj�1. The ontinuum olletion 
j is the disjointunion 
j�1 t fIm(�) : � 2 �jg. One linearly orders 
j by extending the order on
j�1 subjet to �1 < Im(�) < �2; moreover, one assoiates the ball B�1;� with the pair�1 < Im(�), and the ball B�2;� with the pair Im(�) < �2.By our seond indution assumption, the hypotheses of Lemma 3.7 hold for eahsuessive pair �1; �2 2 
k and assoiated ball B�1;�2 2 Bk. Hene we may use theproedure in the third indution assumption (with j replaed by k + 1) to generate�k+1, Bk+1, 
k+1, the linear order on 
k+1, and an assoiation of balls in Bk+1 withsuessive pairs in 
k+1. The onditions in Lemma 3.7 guarantee that the indutionhypotheses are ful�lled. Therefore by indution there are olletions �k, Bk, and 
kfor all k � 0 whih satisfy the onditions 1{3 for all k � 0.By indution, one proves the following:13



(a) For eah k � 0, we have #Bk = 2k+1, and eah ball in Bk has radius �k+1r0 (seeLemma 3.7).(b) For eah k � 0, j � k, and B 2 Bk, there is a ball B0 2 Bk�j suh thatB0 � (87)k�jB, (see ondition (ii) of Lemma 3.7).() For k � 0, the �-mass of eah ball B 2 Bk satis�esZB �Q d� � (80�)k ZZ �Q d�(see Lemma 3.7, ondition (ii)).(d) For eah k > 0, we have #�k = 2k. Eah � 2 �k has length at most ��kr0, fora suitable ball B 2 Bk�1 we have Im(�) � �B, and the �-length of � is at mostK �Z�B �Q d��1=Q :(e) For k � 0 set Yk := k[j=0 [�2�j Im(�):Then dist(Yk; E1); dist(Yk; E2) � �kr0=4, and Yk is (�kr0=4)-onneted: given y; y0 2Yk there are points y = y1; : : : ; yl = y0 suh that d(yj; yj+1) � �kr0=4 for 1 � j � l.(f) For k > 0, the union Zk := [j>k0� [�2�j Im(�)1Ais overed by the olletion f(� + 1)BgB2Bk .Set Y := 1[j=0 [�2�j Im(�):By (e) the losure �Y of Y is ompat, onneted, and intersets both E1 and E2. Then(f) and (a) imply that �Y n Y has 1-dimensional Hausdor� measure zero. Combiningthis with (d) and the fat that � < 1=8, we get that the 1-dimensional Hausdor�measure of �Y is at most1Xk=0 X�2�k length(�) � 1Xk=0(2k)(��kr0) = �r01� 2� <1:Hene there is a reti�able path  : [0; 1℄! Z ontained in �Y joining E1 to E2 withlength() � �r01� 2�:14



Moreover, we may assume that Im() is an ar and  is an injetive map.Pik an integer s suh that (87)s�1 > �. Then by (d), (b) and (), for every k � sand � 2 �k there is a ball B0 2 Bk�s suh that the �-length of � is at mostK �ZB0 �Q d��1=Q � K �(80�)k�s ZZ �Q d��1=Q :For 0 < k < s, eah � 2 �k has �-length at mostK �ZZ �Q d��1=Q :Reall that � 2 �0 has �-length 1m1=Q �ZZ �Q d��1=Q :Using these bounds for �-length and the fat that  parametrizes an ar, we getZ � ds � Z �Y � dH1 � 1Xk=0 X�2�k ZIm(�) � dH1� �ZZ �Q d��1=Q 1m1=Q +K s�1Xk=1 2k +K 1Xk=s 2k(80�)k�s!=: M �ZZ �Q d��1=Q :Note that M is �nite sine 2 � (80�)1=Q < 1 by our initial hoie of �. Moreover, Mdepends only on �(E1; E2). This shows that the path  has the desired properties. �4. Resaling and abundane of thik pathsWe now let (Z; d; �) be a Ahlfors Q-regular ompat metri spae, Q > 1, whiharries a family of nononstant paths with positive Q-modulus, and we let G y Zbe a uniformly quasi-M�obius ation whih is �xed point free, and ats oompatlyon triples in Z. As we have seen, Lemma 2.12 implies that there exist nononstantthik paths in Z.Lemma 4.1. There exist disjoint open balls B and B0 in Z suh that the set ofendpoints of thik paths onneting B and B0 has a point of density in B.Proof. Let  : I ! Z be a nononstant thik path. Pik t 2 (0; 1) so that x :=(t) is distint from the endpoints x0 := (0) and x1 := (1) of . De�ne R :=110 dist(x; fx0; x1g), and let � := R=10. Set B := B(x;R) and B0 := B(x1; R).15



Every path � 2 B(; �) has an image interseting the open ball B and piks uplength in B whih is omparable to R. In partiular, eah path in B(; �) is nonon-stant. Let S := B \ fIm(�) : � 2 B(; �) \ PTg:By Lemma 2.10, every point in S is the initial point of a thik path ending in B0.Hene it is enough to show that S has positive Q-dimensional Hausdor� measure. Ifthis is not the ase, we an �nd a Borel set S 0 � S of vanishing Hausdor� Q-measure.Then the funtion � : Z ! [0;1℄ de�ned to be in�nity on S 0 and 0 elsewhere is Boreland an admissible test funtion for the path family B(; �) \ PT . Sine the totalQ-mass of � is zero, Lemma 2.12 impliesModQ(B(; �) n C) = ModQ(B(; �)) = ModQ(B(; �) \ PT ) = 0;whih ontradits the thikness of . �Lemma 4.2. Let M � Z � Z be the set of pairs of points that an be joined by athik path. Then M is dense in Z � Z.Note that this implies in partiular that Z is onneted.Proof. By Lemma 4.1, we an �nd a pair of disjoint open balls B and B0 so that thereexists a density point x 2 B of the set of initial points of the family � of thik pathsstarting in B and ending in B0. For k 2 N pik Rk > 0 with limk!1Rk = 0, and letDk be the set of initial points of paths in � whih start in Bk := B(x;Rk). Then�k := distH(Dk; Bk)Rk ! 0:We let Æk := p�k and �k := 2p�k. Set x1k := x. Sine Z is onneted, for large k we anhoose points x2k 2 �B(x; ÆkRk) and x3k 2 �B(x; 2ÆkRk). Using the oompatnessof the ation G y Tri(Z), we an �nd gk 2 G suh that the image of the triple(x1k; x2k; x3k) under gk is Æ0-separated where Æ0 > 0 is independent of k. ApplyingLemma 2.1, we onlude that distH(gk(Dk); Z) ! 0 and diam(Z n gk(Bk)) ! 0 ask ! 1. After passing to a subsequene if neessary, we may assume that the setsZ n gk(Bk) Hausdor� onverge to fzg for some z 2 Z. Sine B0 and Bk are disjointfor large k, we then also have distH(gk(B0); fzg)! 0 as k !1.Now let z1; z2 2 Z and � > 0 be arbitrary. By Lemma 2.2, we an �nd g 2 G suhthat g(z) 2 B(z1; �); then g Æ gk(B0) � B(z1; �) for large k. In addition, for large kwe will also have g Æ gk(Dk)\B(z2; �) 6= ;. Using this and the invariane of thiknessunder quasi-M�obius homeomorphisms we see that there is a thik path starting inB(z1; �) and ending in B(z2; �). �Lemma 4.3. For eah C > 0 there are onstants m > 0 and L > 0 suh that ifB; B0 � Z are R-balls with dist(B;B0) � CR, then the modulus of the family ofpaths of length at most LR joining B to B0 has Q-modulus at least m.16



Proof. Suppose C > 0 is arbitrary. We �rst laim that there is a number m0 > 0 suhthat if B; B0 � Z are R-balls with dist(B;B0) � CR, then ModQ(�(B;B0)) > m0.If this assertion were false, there would be balls Bk = B(zk; Rk) and B0k = B(z0k; Rk)for k 2 N suh that dist(Bk; B0k) � CRk for all k, but(4.4) limk!1ModQ(�(Bk; B0k)) = 0:Passing to a subsequene, we may assume that the sequenes (zk) and (z0k) onvergeto points z 2 Z and z0 2 Z respetively. Sine Z is ompat, we dedue from Lemma4.2 that limk!1Rk = 0. So after passing to another subsequene we an hoosex1k 2 �B(zk; Rk), and x2k 2 �B(zk; 2Rk) for all k. Choose gk 2 G suh that the triples(gk(zk); gk(x1k); gk(x2k)) are Æ-separated where Æ > 0 is independent of k. Sine thehomeomorphisms gk are uniformly quasi-M�obius it is easy to see that there is � > 0suh that B(gk(zk); 2�) � gk(Bk) and B(gk(z0k); 2�) � gk(B0k) for all k. Hene forlarge k we have ~B := B(z; �) � gk(Bk), ~B0 := B(z0; �) � gk(B0k). Tyson's theorem(Theorem 2.7) givesModQ(�(Bk; B0k)) � ModQ ��(gk(Bk); gk(B0k))� � ModQ(�( ~B; ~B0));where  > 0 is a onstant independent of k. Sine ModQ(�( ~B; ~B0)) > 0 by Lemma4.2, this ontradits (4.4), and hene the laim is true.Aording to Lemma 2.8 we an hoose L � 2 suh that every family of paths in Zwhih start in a given ball of radius R and have length at least LR has modulus atmost m0=2. Now B and B0 are arbitrary balls of radius R > 0 in Z and let �1 and �2be the families of paths in Z a whih onnet B and B0 and have length at most LRand length at least LR, respetively. Then by the hoie of L and by subadditivityof modulus we havem0 � ModQ(�(B;B0)) � ModQ(�1) + ModQ(�2) � ModQ(�1) +m0=2:It follows that ModQ(�1) � m := m0=2 > 0. �5. The proofs of the theoremsProof of Theorem 1.3. By Lemma 4.3, (Z; d; �) satis�es the hypotheses of Proposi-tion 3.1, and is therefore a Q-Loewner spae. �Proof of Corollary 1.6. Under the hypotheses of the orollary, for every weak tangentW of Z there exist a point z 2 Z and a quasi-M�obius homeomorphism betweenW andZ n fzg (f. [3, Lemma 5.2℄). Aording to Theorem 1.5 there exists a weak tangentW of Z whih arries a family of nononstant paths with positive Q-modulus. Heneby Tyson's Theorem 2.7, the spae Z also arries a family of nononstant paths withpositive Q-modulus. �17



Proof of Theorem 1.1. Let G be as in the statement of Theorem 1.1, suppose Z is anAhlfors Q-regular metri spae where Q � 2 is the Ahlfors regular onformal dimen-sion of �1G, and � : �1G ! Z is a quasisymmetri homeomorphism. Conjugatingthe anonial ation G y �1G by �, we obtain a uniformly quasi-M�obius ationG y Z whih is �xed point free and for whih the indued ation on triples is bothproperly disontinuous and oompat. Now by Corollary 1.6 the spae Z arriesa family of nononstant paths with positive Q-modulus, and so it is Q-Loewner byTheorem 1.3.Aording to Theorem 1.2 of [2℄ every Ahlfors Q-regular and Q-Loewner 2-sphereis quasisymmetrially homeomorphi to the standard 2-sphere S2. This applies to Zand so there exists a quasisymmetri homeomorphism  : Z ! S2. Conjugating ouration G y Z by  , we get a uniformly quasionformal ation G 1y S2 (we use thesupersript \1" to distinguish this ation from another ation disussed below). By atheorem of Sullivan and Tukia (f. [21, p. 468℄ and [22, Theorem F and Remark F2℄)every uniformly quasionformal ation on S2 is quasionformally onjugate to anation by M�obius transformations. Hene G 1y S2 is quasionformally onjugate toan ation G 2y S2 by M�obius transformations. If we represent H 3 by the unit ballmodel so that �1H 3 = S2, the ation G 2y S2 naturally extends to an isometriation G y H 3 . Being topologially onjugate to G 1y S2 and hene to Gy Z, theation G 2y S2 is also properly disontinuous and oompat on triples. Therefore,the orresponding isometri ation Gy H 3 is disrete and oompat. �Proof of Theorem 1.4. Let G be group as in the theorem, and assume that Q > 1 isequal to the Ahlfors regular onformal dimension of Z = �(G). Note that Z � Snequipped with the ambient Eulidean metri on Sn � Rn+1 is Ahlfors Q-regular [20,Thm. 7℄, and that the indued ation Gy Z satis�es the hypotheses of Theorem 1.3.It follows that Z is a Q-Loewner spae. Hene Z satis�es a (1; Q)-Poinar�e inequality.Sine the metri spae Z � Rn+1 is Ahlfors regular and satis�es a (1; Q)-Poinar�einequality, a theorem by Cheeger [9, Thm. 14.3℄ implies that Z has a weak tangentwhih is bi-Lipshitz equivalent to some Eulidean spae Rk , k � 1. Sine eah weaktangent of an Ahlfors Q-regular spae is also Ahlfors Q-regular, we onlude thatQ = k 2 N ; in partiular, the topologial dimension of Z is equal to its Hausdor�dimension. Moreover, sine Q > 1, we have k � 2. The desired onlusion nowfollows from [3, Thm. 1.2℄. �The proof shows that if Gy X is a properly disontinuous, quasi-onvex oompat,and isometri ation on a CAT(�1)-spae X, if the limit set �(G) has Hausdor�dimension equal to its Ahlfors regular onformal dimension, and if �(G) embeds insome Eulidean spae by a bi-Lipshitz map, then there is a onvex G-invariant opyof a hyperboli spae Y � X on whih G ats oompatly.18



The onlusion of the quoted result by Cheeger already holds if Z satis�es a (1; p)-Poinar�e inequality for some p > 1. So it would be enough to stipulate this onditionin Theorem 1.4 instead of requiring that the Ahlfors regular onformal dimension ofZ = �(G) is equal to Q.The onverse of Theorem 1.4 and its indiated modi�ations lead to a statementthat is worth reording: if the limit set �(G) of a group G as in the theorem is not a\round" subsphere of Sn, then the Ahlfors regular dimension of Z = �(G) is stritlyless than Q, Z does not arry a family of nononstant urves with positiveQ-modulus,and Z does not satisfy a (1; p)-Poinar�e inequality for any p > 1. In partiular, limitssets of suh groups G annot lead to new examples of Loewner spaes.6. Spaes whose Ahlfors regular onformal dimension is notrealizedIn our disussion below, we will refer to the Ahlfors regular onformal dimensionsimply as the onformal dimension.The most basi example of a spae whose onformal dimension is not realized is thestandard Cantor set C. This dimension is equal to 0 for C, but it is not attained, sineany quasisymmetri homeomorphism between C and a metri spae Z is bi-H�older[5℄, and so the Hausdor� dimension of Z is stritly positive.To our knowledge, the �rst onneted and loally onneted example of this type isdue to Pansu, whih we learned of through M. Bourdon. Essentially the same examplewas onsidered also in [8℄: if one glues together two losed hyperboli surfaes N1 andN2 isometrially along embedded geodesis i � Ni of equal length, then one obtainsa 2-omplex M with urvature bounded from above by �1 and the boundary atin�nity �1fM of the universal over fM has onformal dimension 1. To see this onepinhes the hyperboli strutures along the losed geodesis i, and observes thatthe volume entropy of the resulting universal overs tend to 1 (\branhing beomesless and less frequent"). The spae �1fM is not quasisymmetrially homeomorphito an Ahlfors 1-regular spae, beause in this ase it would have to be a topologialirle by [3, Theorem 1.1℄; in fat it is not diÆult to see diretly that �1fM isnot quasisymmetrially homeomorphi to a spae with �nite 1-dimensional Hausdor�measure.Bishop and Tyson [1℄ have shown that \antenna sets"|ertain self-similar den-drites in the plane|have onformal dimension 1, but are not quasisymmetriallyhomeomorphi to any spae of Hausdor� dimension 1.Another example of a similar avor is due to Laakso. He has shown that thestandard Sierpinski gasket has onformal dimension 1, but again, this dimensionannot be realized. By onsidering pairs of points whose removal disonnets the set,it is not hard to show that the homeomorphism group of the gasket is the same as19



its isometry group for the usual embedding in R2 . It follows that this example is nothomeomorphi to Pansu's example.There are translation invariant Ahlfors regular metris on R2 for whih the 1-parameter group of linear transformations etA, whereA := �1 10 1� ;is a family of homotheties. Their onformal dimension is 2, but it annot be realized.The seond author would like to thank L. Mosher for bringing these examples to hisattention. One an also desribe them as follows. Let G be the semi-diret produt ofR with R2 , where R ats on R2 by the 1-parameter group above. Then the solvable Liegroup G admits left invariant Riemannian metris with urvature pinhed arbitrarilylose to �1; if one removes the unique �xed point from �1G, one gets the \twistedplane" example above.The examples disussed so far are all either disonneted, have loal ut points (i.e.by removing a single point one an disonnet a onneted neighborhood), or annotbe the boundary of a hyperboli group.Suppose an Ahlfors Q-regular spae Z is quasisymmetri to the boundary of ahyperboli group G, where Q is the onformal dimension of Z. If Q < 1, then thetopologial dimension of Z is zero; thus there is a free subgroup Fk sitting in G with�nite index. But then k = 1, jZj = 2, and Q = 0, for otherwise k > 1 whih impliesthat Z is quasisymmetri to the standard Cantor set, whose onformal dimension isnot realized. If Q = 1, then [3, Theorem 1.1℄ implies that Z is quasisymmetri to thestandard irle. The ase Q > 1 is overed by Theorem 1.3. Disonneted spaes,or spaes with loal ut points annot satisfy a Poinar�e inequality, so Theorem 1.3implies that if Q > 1, then Z is onneted and has no loal ut points. The examplesof Bourdon and Pajot [7℄ give boundaries of hyperboli groups whih possess thesetwo topologial properties, but whih are not quasisymmetrially homeomorphi toa Q-regular spae satisfying a (1; Q)-Poinar�e inequality. Thus by Theorem 1.3 evenunder these topologial onditions the onformal dimension is not neessarily realized.Based on the examples mentioned above, one may speulate that if the onformaldimension of a self-similar spae fails to be attained, then this is due to degenerationwhih leads to a limiting struture resembling a foliation or lamination.We onlude this setion with two questions related to the realization problem.Problem 6.1. Can one algebraially haraterize the hyperboli groups whose bound-ary has (Ahlfors regular) onformal dimension equal to 1? In partiular, if the bound-ary of a hyperboli group is homeomorphi to a Sierpinski arpet or a Menger urve,is the Ahlfors regular onformal dimension stritly greater than 1?Problem 6.2. Is the (Ahlfors regular) onformal dimension of the standard squareSierpinski arpet S attained? 20



If it is, it seems to be the ase that S equipped with any Ahlfors regular metrirealizing its onformal dimension is a Loewner spae. We remark that it followsfrom [14℄ that the onformal dimension of S is less than its Hausdor� dimension. Aalulation by the seond author had earlier given an expliit upper bound for theonformal dimension of S.7. Remarks and open problemsThe themes explored in this paper lead to various general questions. To further exploitthe relation between the algebrai struture of a Gromov hyperboli group and theanalysis of its boundary one needs analyti tools from the general theory of analysis onmetri spaes, perhaps tailored to the setting of self-similar spaes or spaes admittinggroup ations as onsidered in this paper. In partiular, it would be interesting to �ndlasses of funtion spaes that are invariant under quasisymmetri homeomorphisms.They ould be used to de�ne quasisymmetri invariants and answer struture andrigidity questions for quasisymmetri homeomorphisms.The setting of Loewner spaes is relatively well-understood, but it is not lear hownatural this framework really is. At present there is a somewhat limited supply ofthese spaes, and one would like to have more examples. As Theorem 1.4 indiates,the Loewner ondition seems to lead to strong onlusions in the presene of groupations and probably also in the presene of self-similarity. In view of this theoremthe following problem suggests itself.Problem 7.1. Can one lassify all quasi-onvex oompat isometri ations Gy X,where X is a CAT(�1)-spae and the Ahlfors regular onformal dimension of the limitset �(G) is realized and stritly greater than 1?Note that in this situation Z = �(G) is a Loewner spae, so the problem asks for alassi�ation of all Loewner spaes that arise as limit sets of quasi-onvex oompatisometri group ations on CAT(�1)-spaes.Conversely, one ould start with an Ahlfors Q-regular Q-Loewner Z spae qua-sisymmetrially homeomorphi to the boundary of a Gromov hyperboli group Gand ask whether Z appears as the limit set �(G) of some isometri ation G y X,where X is a negatively urved metri spae. It is natural to require that X is Gro-mov hyperboli. One an interpret the relation between Z and �(G) in a measuretheoreti sense. The obvious measure on Z is Hausdor� Q-measure, and the mea-sure on �(G) related to the dynamis G y �(G) is the so-alled Patterson-Sullivanmeasure (f. [10℄). We arrive at the following question:Problem 7.2. Suppose � : Z ! �1G is a quasisymmetri homeomorphism from aompat Ahlfors regular Loewner spae Z to the boundary �1G of Gromov hyperboligroup G. Is there a disrete, oompat, isometri ation Gy X of G on a Gromov21



hyperboli spae X whose Patterson-Sullivan measure lies the same measure lass aspush-forward of Hausdor� measure under �?More generally, one may ask when the measure lass of a given measure on theboundary of a Gromov hyperboli group is represented by the Patterson-Sullivanmeasure for some Gromov hyperboli \�lling" G y X of the boundary ation G y�1G.The general problem behind Cannon's onjeture is the desire to �nd anonialmetri spaes on whih a given Gromov hyperboli group G ats. Sine the dynamisof an isometri ation G on a Gromov hyperboli spae X is enoded in the Patterson-Sullivan measure on �(G), a �rst step in this diretion is to �nd a natural measure,or at least a natural measure lass on �1G.Problem 7.3. Given a Gromov hyperboli group G, when is there a natural measurelass on �1G?Here \natural" an be interpreted in various ways. One ould require the measurelass to be invariant under all (loal) quasisymmetri homeomorphisms. For instane,if G ats disretely oompatly on a rank 1 symmetri spae X spae other thanH 2 , then the measure lass of the Lebesgue measure assoiated with the standardsmooth struture on �1X is invariant under the full group of quasisymmetri self-homeomorphisms of �1X ' �1G. When X = H 2 this fails, sine the \Mostowmap" �1H 2 ! �1H 2 indued between two non-onjugate disrete, oompat andisometri ations G 1y H 2 and G 2y H 2 will not be absolutely ontinuous with respetto Lebesgue measure. One expets a similar phenomenon whenever G virtually splitsover a virtually yli group, or equivalently, when �1G has loal ut points. Due tothis, one an hope for an aÆrmative answer to Problem 7.3 only under the assumptionthat G does not have this property.In many ases one expets thatG is a subgroup of �nite index in the group QS(�1G)of all quasisymmetri self-homeomorphisms of �1G. Then the requirement that themeasure lass be invariant under QS(�1G) is rather weak. This suggests another(stronger) interpretation of Problem 7.3: the measure lass should be onstruted ina quasisymmetrially invariant way.Referenes[1℄ C. J. Bishop and J. T. Tyson. Conformal dimension of the antenna set. Pro. Amer. Math.So., 129:3631{3636, 2001.[2℄ M. Bonk and B. Kleiner. Quasisymmetri parametrizations of two-dimensional metri spheres.Invent. Math., 150:127{183, 2002.[3℄ M. Bonk and B. Kleiner. Rigidity for quasi-M�obius group ations. J. Di�erential Geom., 61:81{106, 2002.[4℄ M. Bonk, P. Koskela, and S. Rohde. Conformal metris on the unit ball in Eulidean spae.Pro. London Math. So. (3), 77:635{664, 1998.22
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