
CONFORMAL DIMENSION AND GROMOV HYPERBOLICGROUPS WITH 2-SPHERE BOUNDARYMARIO BONK AND BRUCE KLEINERAbstra
t. Suppose G is a Gromov hyperboli
 group, and �1G is quasisymmetri-
ally homeomorphi
 to an Ahlfors Q-regular metri
 2-sphere Z with Ahlfors regular
onformal dimension Q. Then G a
ts dis
retely, 
o
ompa
tly, and isometri
ally onH 3 . 1. Introdu
tionA

ording to a well-known 
onje
ture by Cannon, for every Gromov hyperboli
 groupG whose boundary at in�nity �1G is homeomorphi
 to the 2-sphere S2, there shouldexist a dis
rete, 
o
ompa
t, and isometri
 a
tion of G on hyperboli
 3-spa
e H 3 . Inthe present paper we establish Cannon's 
onje
ture under the additional assumptionthat the Ahlfors regular 
onformal dimension of �1G is realized.Theorem 1.1. Let G be a Gromov hyperboli
 group with boundary �1G homeomor-phi
 to S2. If the Ahlfors regular 
onformal dimension of �1G is attained, then thereexists an a
tion of G on H 3 whi
h is dis
rete, 
o
ompa
t and isometri
.By de�nition, the Ahlfors regular 
onformal dimension of a metri
 spa
e Z is thein�mal Hausdor� dimension of all Ahlfors regular metri
 spa
es (see Se
tion 2 forthe pre
ise de�nition) quasisymmetri
ally homeomorphi
 to Z. This notion o

ursimpli
itly in a paper by Bourdon and Pajot [7, Se
tion 0.2℄ and is a variant of Pansu's
onformal dimension for metri
 spa
es (the 
onformal dimension of a metri
 spa
eZ is the in�mal Hausdor� dimension of all metri
 spa
es quasisymmetri
ally homeo-morphi
 to Z).We re
all that the boundary of a Gromov hyperboli
 group G 
arries a 
anoni
alfamily of visual metri
s; these are Ahlfors regular and pairwise quasisymmetri
allyhomeomorphi
 by the identity map. In parti
ular, it is meaningful to speak aboutquasisymmetri
 homeomorphisms between �1G and other metri
 spa
es. The as-sumption on the Ahlfors regular 
onformal dimension of �1G says more expli
itlythat there is an Ahlfors Q-regular metri
 spa
e Z quasisymmetri
ally homeomorphi
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to �1G with smallest possible Q among all su
h Ahlfors regular spa
es. We ne
essar-ily have Q � 2, sin
e the Hausdor� dimension of a spa
e 
annot be smaller than itstopologi
al dimension. The 
ase Q = 2 of Theorem 1.1 
an easily be dedu
ed from[2, Theorem 1.1℄ or [3, Theorem 1.1℄.The 
onverse of Theorem 1.1 is well-known: if a group a
ts dis
retely, 
o
ompa
tlyand isometri
ally on hyperboli
 3-spa
e, then its boundary is quasisymmetri
allyhomeomorphi
 to the standard 2-sphere [17℄, whi
h is a 2-regular spa
e of 
onformaldimension 2. So by Theorem 1.1, Cannon's 
onje
ture is equivalent to:Conje
ture 1.2. If G is a hyperboli
 group with 2-sphere boundary, then the Ahlforsregular 
onformal dimension of �1G is attained.We derive Theorem 1.1 from [2, Theorem 1.2℄ and a more general result about hy-perboli
 groups:Theorem 1.3. Let Z be an Ahlfors Q-regular metri
 spa
e, Q > 1, where Q is theAhlfors regular 
onformal dimension of Z. If Z admits a uniformly quasi-M�obiusa
tion Gy Z whi
h is �xed point free and for whi
h the indu
ed a
tion on the spa
eof triples Tri(Z) is 
o
ompa
t, then Z is Q-Loewner.The terminology will be explained in Se
tion 2. The hypotheses of this theorem willhold, for example, if Z is a Q-regular spa
e of Ahlfors regular 
onformal dimensionQ, where Q > 1, and Z is quasisymmetri
ally homeomorphi
 to the boundary of ahyperboli
 group.Another way to state the 
on
lusion of Theorem 1.3 is by saying that Z satis�es a(1; Q)-Poin
ar�e inequality in the sense of Heinonen and Koskela [13℄. They showedthat for a proper Q-regular metri
 spa
e su
h a Poin
ar�e inequality holds if and only ifthe spa
e is Q-Loewner; they also extended many 
lassi
al results about quasi
onfor-mal and quasisymmmetri
 homeomorphisms to the setting of Q-regular Q-Loewnerspa
es.By now there is a substantial body of literature about metri
 spa
es satisfyingPoin
ar�e inequalities; see for example [13, 11, 19, 18, 16, 15℄. These spa
es playa 
entral role in Cheeger's theory of di�erentiability of Lips
hitz fun
tions [9℄, andthe Bourdon-Pajot rigidity theorem for quasi-isometries of hyperboli
 buildings [6℄.Theorem 1.3 suggests that one might obtain more examples of these ni
e spa
es byminimizing the Hausdor� dimension of Ahlfors regular metri
s on the boundary of ahyperboli
 group.The full strength of the group a
tion Gy Z is a
tually not needed in the proof ofTheorem 1.3. It is suÆ
ient to have a 
olle
tion G of uniformly quasi-M�obius home-omorphisms whi
h is large enough to map any triple in Z to a uniformly separatedtriple, and whi
h does not have a 
ommon �xed point. However, the assumption thatthe a
tion Gy Z is �xed point free is essential. Starting with the Ahlfors 3-regular2



metri
 on R2 de�ned by the formulad((x1; y1); (x2; y2)) := jx1 � x2j+ jy1 � y2j1=2;one 
an 
onstru
t an Ahlfors 3-regular metri
 on S2 admitting a uniformly quasi-M�obius a
tion whi
h is transitive on the 
omplement of a point, and 
o
ompa
ton triples. The sphere S2 equipped with this metri
 has Ahlfors regular 
onformaldimension 3, but does not satisfy a (1; p)-Poin
ar�e inequality for any p � 1.Similar in spirit to Theorem 1.1 is another immediate 
onsequen
e of Theorem 1.3for 
onvex 
o
ompa
t Kleinian groups.Theorem 1.4. Suppose G y H n+1 is a 
onvex 
o
ompa
t isometri
 a
tion of adis
rete group G on hyperboli
 n-spa
e H n+1 , n � 1. Let �(G) � Sn = �1H n+1 be thelimit set of G, and assume that Q > 1, where Q is the Hausdor� dimension of �(G).If the Ahlfors regular 
onformal dimension of �(G) is equal to Q, then Q = k 2 N isan integer and � stabilizes a totally geodesi
 subspa
e of H n+1 isometri
 to H k+1 onwhi
h � a
ts 
o
ompa
tly.Note that if under the assumptions of this theorem Z = �(G) 
arries a family ofnon
onstant 
urves with positive Q-modulus, then Q is equal to the Ahlfors regular
onformal dimension of Z [12, Thm. 15.10℄. One 
an also repla
e the 
ondition on theAhlfors regular dimension in the previous theorem by the requirement that Z satis�esa (1; p)-Poin
ar�e inequality for some p > 1 (see Se
tion 5 for further dis
ussion).We now sket
h the proof of Theorem 1.3. Let Z and Gy Z be as in the statementof the theorem. A key ingredient used repeatedly in our proof is a result of Tyson[23℄ that implies that elements of G preserve Q-modulus to within a 
ontrolled fa
tor.Our point of departure is a result of Keith and Laakso [14℄:Theorem 1.5 (Keith-Laakso). Let X be a proper Ahlfors Q-regular metri
 spa
e,where Q > 1 is the Ahlfors regular 
onformal dimension of X. Then there existsa weak tangent W of X whi
h 
arries a family of non
onstant paths with positiveQ-modulus.This theorem 
an easily be derived from [14, Cor. 1.0.2℄. For the de�nition of weaktangents and related dis
ussion see [3, Se
tion 4℄; see Se
tion 2 or [12℄ for a dis
ussionof modulus. In our \self-similar" situation we 
an 
ombine Theorem 1.5 with resultsfrom [3℄ and [23℄ to obtain the following 
orollary, whi
h may be of independentinterest.Corollary 1.6. Let Z be a 
ompa
t Ahlfors Q-regular metri
 spa
e, where Q > 1 isthe Ahlfors regular 
onformal dimension of Z. If Z admits a uniformly quasi-M�obiusa
tion Gy Z for whi
h the indu
ed a
tion on the spa
e of triples Tri(Z) is 
o
ompa
t,then there is a family of non
onstant paths in Z with positive Q-modulus.As we already pointed out, every (proper) Ahlfors Q-regular spa
e 
arrying a familyof nontrivial paths with positive Q-modulus has Ahlfors regular 
onformal dimensionQ; the 
orollary may be viewed as a partial 
onverse of this fa
t.3



The next step in the proof of Theorem 1.3 is to show that Z satis�es a Loewnertype 
ondition for pairs of balls: if the Q-modulus for a pair of balls is small, thentheir relative distan
e is big, quantitatively. To prove this ball-Loewner 
ondition,we introdu
e the notion of a thi
k path. Thi
k paths 
orrespond to points in thesupport of Q-modulus, viewed as an outer measure on the spa
e of (non
onstant)paths. Using the dynami
s of the a
tion G y Z, we show that any two open sets
an be joined by a thi
k path, and this qui
kly leads to the ball-Loewner 
ondition.The remaining step, whi
h is the bulk of our argument, shows that any proper Q-regular spa
e satisfying the ball-Loewner 
ondition is Q-Loewner. By the result ofHeinonen-Koskela mentioned above, this implies that Z satis�es a (1; Q)-Poin
ar�einequality.In view of Conje
ture 1.2 and Theorem 1.3, it is interesting to look for spa
eswhose Ahlfors regular 
onformal dimension is (or is not) attained. There are nowseveral examples known where the Ahlfors regular 
onformal dimension is a
tuallynot realized; see Se
tion 6 for more dis
ussion. It is parti
ulary interesting thatBourdon and Pajot [7℄ have found Gromov hyperboli
 groups G for whi
h �1G isnot quasisymmetri
ally homeomorphi
 to an Ahlfors regular Loewner spa
e; so byTheorem 1.3 the Ahlfors regular 
onformal dimension of �1G is not attained.Additional remarks and open problems related to the dis
ussion in this introdu
tion
an be found in the �nal Se
tion 7 of the paper.2. Notation and preliminariesIn this se
tion, we will �x notation and review some basi
 de�nitions and fa
ts. Wewill be rather brief, sin
e by now there is a standard referen
e on these subje
ts [12℄and most of the material has been dis
ussed in greater detail in our previous papers[3, 2℄.Notation. If (Z; d) is a metri
 spa
e, we denote the open and the 
losed ball ofradius r > 0 
entered at a 2 Z by BZ(a; r) and �BZ(a; r), respe
tively. We will dropthe subs
ript Z if the spa
e Z is understood. If B = B(a; r) is a ball and � > 0 welet �B := B(a; �r). We use diam(A) for the diameter of a set A � Z. If z 2 Z andA;B � Z, then dist(z; A) and dist(A;B) are the distan
es of z and A and of A andB, respe
tively. If A � Z and r > 0, then we let Nr(A) := fz 2 Z : dist(z; A) < rg.The Hausdor� distan
e between two sets A;B � Z is de�ned bydistH(A;B) := max� supa2A dist(a; B); supb2A dist(b; A)	:If f : X ! Y is a map between two spa
es X and Y , we let Im(f) := ff(x) : x 2 Xg.If A � X, then f jA denotes the restri
tion of the map f to A.4



Cross-ratios and quasi-M�obius maps. Let (Z; d) be a metri
 spa
e. The 
ross-ratio, [z1; z2; z3; z4℄, of a four-tuple of distin
t points (z1; z2; z3; z4) in Z is the quantity[z1; z2; z3; z4℄ := d(z1; z3)d(z2; z4)d(z1; z4)d(z2; z3) :Let � : [0;1) ! [0;1) be a homeomorphism, and let f : X ! Y be an inje
tivemap between metri
 spa
es (X; dX) and (Y; dY ). The map f is an �-quasi-M�obiusmap if for every four-tuple (x1; x2; x3; x4) of distin
t points in X, we have[f(x1); f(x2); f(x3); f(x4)℄ � �([x1; x2; x3; x4℄):The map f is �-quasisymmetri
 ifdY (f(x1); f(x2))dY (f(x1); f(x3)) � ��dX(x1; x2)dX(x1; x3)�for every triple (x1; x2; x3) of distin
t points in X.We will make repeated use of the following lemma. We refer to [3, Lemma 5.1℄ forthe proof.Lemma 2.1. Let (Z; d) be a 
ompa
t metri
 spa
e. Suppose that for ea
h k 2 N weare given a ball Bk = B(pk; Rk) � Z, distin
t points x1k; x2k; x3k 2 �B(pk; �kRk) withdZ(xik; xjk) > ÆkRk for i; j 2 f1; 2; 3g; i 6= j;where �k; Æk > 0, and an �-quasi-M�obius homeomorphism gk : Z ! Z su
h that foryik := gk(xik) we have dZ(yik; yjk) > Æ0 for i; j 2 f1; 2; 3g; i 6= j;where � and Æ0 > 0 are independent of k.(i) If limk!1 �k = 0 and the sequen
e (Rk)k2N is bounded, thendiam(Z n gk(Bk))! 0 for k!1:(ii) Suppose for k 2 N the set Dk � Bk is (�kRk)-dense in Bk, where �k > 0. Iflimk!1 �k = 0 and the sequen
e (�k=Æ2k)k2N is bounded, thendistH(gk(Dk); Z)! 0 for k !1:If a group G a
ts on a 
ompa
t metri
 spa
e (Z; d) by homeomorphisms, we writeG y Z and 
onsider the group elements as self-homeomorphisms of Z. We do notrequire that the a
tion is e�e
tive; so it may well happen that a group element di�erentfrom the unit element is represented by the identity map. We denote by Tri(Z) thespa
e of distin
t triples in Z. An a
tion Gy Z indu
es an a
tion Gy Tri(Z). Thea
tion Gy Tri(Z) is 
o
ompa
t, if and only if every triple in Tri(Z) 
an be mappedto a uniformly separated triple by a group element. More pre
isely, this means thatthere exists Æ > 0 su
h that for every triple (z1; z2; z3) 2 Tri(Z) there exists a groupelement g 2 G su
h that the image triple (g(z1); g(z2); g(z3)) 2 Tri(Z) is Æ-separated,i.e., d(g(zi); g(zj)) � Æ for i 6= j. We 
all the a
tion G y Z �xed point free if the5



maps g 2 G have no 
ommon �xed point, i.e., for ea
h z 2 Z there exists g 2 G su
hthat g(z) 6= z. The a
tion G y Z is 
alled uniformly quasi-M�obius if there existsa homeomorphism � : [0;1) ! [0;1) su
h that every g 2 G is an �-quasi-M�obiushomeomorphism of Z.Lemma 2.2. Suppose (Z; d) is a 
ompa
t, uniformly perfe
t metri
 spa
e, and Gy Zis a �xed point free uniformly quasi-M�obius a
tion whi
h is 
o
ompa
t on Tri(Z).Then the a
tion is minimal, i.e., for all z; z0 2 Z and all � > 0, there is a groupelement g 2 G su
h that d(g(z0); z) < �.Proof. Let z; z0 2 Z and � > 0 be arbitrary. Sin
e Z is uniformly perfe
t, we 
an
hoose distin
t points x1k; x2k 2 Z for k 2 N su
h that the distan
es d(z; x1k); d(z; x2k),and d(x1k; x2k) agree to within a fa
tor independent of k, and limk!1 d(z; x1k) = 0. Setrk := d(z; x1k). Sin
e Z y Tri(Z) is 
o
ompa
t, we 
an �nd gk 2 G su
h that thetriples (gk(z); gk(x1k); gk(x2k)) are Æ-separated where Æ > 0 is independent of k. ChooseRk > 0 su
h that limk!1Rk = 0 and limk!1Rk=rk = 1. By Lemma 2.1 we thenhave limk!1 diam(Z n gk(Bk)) = 0, where Bk := B(z; Rk). Pi
k g 2 G su
h thatg(z0) 6= z0. Then for large k, either z0 2 gk(Bk) or g(z0) 2 gk(Bk), whi
h means thateither g�1k (z0) 2 Bk or g�1k Æg(z0) 2 Bk. Hen
e for suÆ
iently large k one of the pointsg�1k (z0) or g�1k Æ g(z0) is 
ontained in B(z; �). �Modulus in metri
 measure spa
es. Suppose (Z; d; �) is a metri
 measure spa
e,i.e., (Z; d) is a metri
 spa
e and � a Borel measure on Z. Moreover, we assume thatthat (Z; d) is lo
ally 
ompa
t and that � is lo
ally �nite and has dense support.The spa
e (Z; d; �) is 
alled (Ahlfors) Q-regular, Q > 0, if the measure � satis�es(2.3) C�1RQ � �(B(a; R)) � CRQfor ea
h open ball B(a; R) of radius 0 < R � diam(Z) and for some 
onstant C � 1independent of the ball. If the measure is not spe
i�ed, then it is understood that �is Q-dimensional Hausdor� measure.A density (on Z) is a Borel fun
tion � : Z ! [0;1℄. A density � is 
alled admissiblefor a path family � in Z, if Z
 � ds � 1for ea
h re
ti�able path 
 2 �. Here integration is with respe
t to ar
length on 
. IfQ � 1, the Q-modulus of a family � of paths in Z is the number(2.4) ModQ(�) = inf Z �Q d�;where the in�mum is taken over all densities � : Z ! [0;1℄ that are admissible for�. If E and F are subsets of Z with positive diameter, we denote by(2.5) �(E; F ) := dist(E; F )minfdiam(E); diam(F )g6



the relative distan
e of E and F , and by �(E; F ) the family of paths in Z 
onne
tingE and F .Suppose (Z; d; �) is a 
onne
ted metri
 measure spa
e. Then Z is 
alled a Q-Loewner spa
e, Q � 1, if there exists a positive de
reasing fun
tion 	: (0;1) !(0;1) su
h that(2.6) ModQ(�(E; F )) � 	(�(E; F ))whenever E and F are disjoint 
ontinua in Z. Note that in [13℄ it was also requiredthat Z is re
ti�ably 
onne
ted. In 
ase that the (lo
ally 
ompa
t) spa
e (Z; d; �) isQ-regular and Q > 1, it is unne
essary to make this additional assumption, be
auseproperty (2.6) alone implies that (Z; d) is even quasi
onvex, i.e., for every pair ofpoints there exists a 
onne
ting path whose length is 
omparable to the distan
e ofthe points.We will need the following result due to Tyson.Theorem 2.7. Let X and Y be Ahlfors Q-regular lo
ally 
ompa
t metri
 spa
es,Q � 1, and let f : X ! Y be an �-quasi-M�obius homeomorphism. Then for everyfamily � of paths in X, we have1C ModQ(�) � ModQ(f Æ �) � CModQ(�);where f Æ � := ff Æ 
 : 
 2 �g and C is a 
onstant depending only on X, Y and �.Tyson proved this for quasisymmetri
 mappings f in [23℄ and for lo
ally quasisym-metri
 maps in [24, Theorem 6.4 and Lemma 9.2℄. Here a map f : X ! Y is 
alledlo
ally �-quasisymmetri
 if every point x 2 X has an open neighborhood U su
h thatf jU is �-quasisymmetri
. Sin
e �-quasi-M�obius maps are lo
ally ~�-quasisymmetri
with ~� depending only on �, the above theorem follows.Lemma 2.8. Assume Q > 1 and (Z; d; �) is Ahlfors Q-regular. Then there exists a
onstant C > 0 with the following property. If � is a family of paths in Z whi
h startin a ball B � Z of radius R > 0 and whose lengths are at least LR, where L � 2,then ModQ(�) < C (logL)1�Q :We omit a detailed proof, sin
e the statement is well-known (
f. [12, Lemma 7.18℄and [4, Lemma 3.2℄ for very similar results). The basi
 idea is to use a test fun
tionof the form 
R + dist(x;B)supported in LB and use the upper mass bound �(B(x; r)) . rQ.7



Thi
k paths. We now assume that (Z; d; �) be a separable lo
ally 
ompa
t metri
measure spa
e, and Q � 1. Let I := [0; 1℄, and denote by P := C(I; Z) the set of(
ontinuous) paths in Z, metrized by the supremum metri
. Then P is a separable
omplete metri
 spa
e. Sin
e Q-modulus is monotoni
 and 
ountably subadditive forpath families (
f. [12, p. 51℄), we 
an 
onsider ModQ as an outer measure on P.De�nition 2.9. A path 
 2 P is thi
k if for all � > 0, the family of non
onstantpaths in the ball B(
; �) � P has positive Q-modulus.In other words, a path 
 2 P is thi
k if ModQ(B(
; �) n C) > 0 for all � > 0, whereC is the family of 
onstants paths in Z. We have to ex
lude the 
onstant paths here,be
ause ModQ(�) =1 whenever � 
ontains a 
onstant path. Constant paths lead tosome te
hni
alities later on, whi
h 
ould be avoided if we had de�ned P as the spa
eof non
onstant paths in Z. This also has disadvantages, sin
e 
ertain 
ompletenessand 
ompa
tness properties of P would be lost with this de�nition.We denote by PT the set of thi
k paths in P. Ignoring 
onstant paths, the thi
kpaths form the support of the outer measure ModQ.Lemma 2.10. (Properties of thi
k paths)(i) (Stability under limits) The set PT is 
losed in P: if 
k 2 P is thi
k for k 2 Nand 
 = limk!1 
k, then 
 is thi
k.(ii) (Thi
kness of subpaths) The 
omposition of any embedding I ! I with a thi
kpath is a thi
k path.(iii) (Quasi-M�obius invarian
e) If (Z; d; �) is lo
ally 
ompa
t and Ahlfors Q-regular,Q � 1, then the image of a thi
k path under a quasi-M�obius homeomorphismZ ! Z is thi
k.Proof. Property (i) follows immediately from the de�nitions. Property (iii) is a 
on-sequen
e of Tyson's Theorem 2.7.To prove property (ii) �rst note that if 
 is any path and � : I ! I is an embedding,then the de�nition of modulus implies that(2.11) ModQ(B(
; �)) � ModQ(B(
 Æ �; �)):If 
 is a thi
k path and 
 Æ� is non
onstant, then for suÆ
iently small � > 0 there willbe no 
onstant paths in either B(
; �) or B(
 Æ �; �), and (2.11) implies that 
 Æ � isthi
k. If 
 is thi
k and 
 Æ� is 
onstant, we 
an assume without loss of generality thatIm(�) is not 
ontained in a larger interval on whi
h 
 is 
onstant. If Im(�) = I then
 Æ � is just a reparametrization of a thi
k path and is therefore thi
k. Otherwise,we 
an enlarge Im(�) slightly and approximate 
 Æ � by non
onstant subpaths of 
,whi
h are thi
k by the �rst part of the argument. Property (i) now implies that 
 Æ�is also thi
k. �8



Lemma 2.12. The family Pt of non
onstant paths in P whi
h are not thi
k has zeroQ-modulus. In parti
ular, given any family � � P of non
onstant paths, we haveModQ(� \ PT ) = ModQ(�).Proof. For ea
h 
 2 Pt, we 
an �nd an open set U
 
ontaining 
 whi
h 
onsists ofnon
onstant paths and has zero Q-modulus. The spa
e P is separable, so we 
an �nda 
ountable sub
olle
tion of the sets U
 whi
h 
overs Pt. Countable subadditivity ofQ-modulus implies that ModQ(Pt) = 0.The se
ond part of the lemma follows from monotoni
ity and subadditivity of Q-modulus. �The previous lemma implies the existen
e of non
onstant thi
k paths whenever Z
arries a family of non
onstant paths of positive Q-modulus. Moreover, suppose �0is a family of paths with ModQ(�0) = 0. Then if 
 is thi
k and � > 0 is arbitrary, we
an �nd a thi
k path � 2 B(
; �) n �0. In other words, by a small perturbation of athi
k path, we 
an obtain a thi
k path avoiding any given family of zero Q-modulus.3. The Loewner 
ondition for ballsIn this se
tion we prove the following proposition, whi
h asserts that a spa
e whi
hsatis�es a Loewner type 
ondition for pairs of balls, satis�es the Loewner 
onditionfor all pairs of 
ontinua.Proposition 3.1. Let (Z; d; �) be a proper metri
 measure spa
e. Assume that forall C > 0, there are 
onstants m = m(C) > 0 and L = L(C) > 0 su
h that if R > 0and B;B0 � Z are R-balls with dist(B;B0) � CR, then the Q-modulus of the familyf
 2 �(B;B0) : length(
) � LRgis a least m. Then (Z; d; �) is Q-Loewner.Rather than using the hypothesis dire
tly, the proof of the proposition will use thefollowing 
onsequen
e: if � : Z ! [0;1℄ is a Borel fun
tion and the balls are as inthe statement of the proposition, then there is a path � 2 �(B;B0) whose length isat most LR and whose �-length is at most(3.2) 1m1=Q �Z(L+1)B �Q d��1=Q :Here and in the following we 
all the integral R� � ds the �-length of a re
ti�able path�.We point out the following 
orollary of Proposition 3.1 whi
h is of independentinterest. 9



Corollary 3.3. Suppose (Z; d; �) is a proper Ahlfors Q-regular metri
 measure spa
e,Q > 1. Suppose that there exists a positive de
reasing fun
tion 	: (0;1) ! (0;1)su
h that ModQ(�(B;B0)) � 	(�(B;B0))whenever B and B0 are disjoint balls in Z. Then (Z; d; �) is Q-Loewner.Proof. This immediately follows from Proposition 3.1, Lemma 2.8 and the subaddi-tivity of modulus (see the end of the proof of Lemma 4.3 for additional details). �Before we start with the proof of Proposition 3.1, we �rst indi
ate a lemma whoseproof uses a similar 
onstru
tion in a simpler setting.Lemma 3.4. Let X be a 
omplete metri
 spa
e. Suppose there exist 0 � � < 1=2and L < 1 su
h that if u; v 2 X, then there is a path of length at most Ld(u; v)
onne
ting B(u; �d(u; v)) and B(v; �d(u; v)). Then X is quasi-
onvex.This lemma 
an be used to give another proof that a Q-regular spa
e satisfying a(1; Q)-Poin
ar�e inequality is quasi-
onvex.Outline of proof. Suppose x; y 2 X and let R := d(x; y). By assumption we 
an �nda path �1 of length � LR joining B(x; �R) to B(y; �R). Set �0 := f�1g. Then we
an �nd paths �2; �3 of length � L�2R su
h that �2 joins B(x; �2R) to B(�1(0); �2R)and �3 joins B(�1(1); �2R) to B(y; �2R). Set �2 := f�2; �3g. Continuing indu
tively,we 
an �nd path 
olle
tions �k for all k � 0. At ea
h step of the indu
tion the \totalgap" �k gets multiplied by 2� < 1, and the total length of the 
urves generated is� L�k. One then 
on
ludes that ifY := 1[k=0 [�2�k Im(�);then �Y is a 
ompa
t 
onne
ted set 
ontaining fx; yg, and has 1-dimensional Hausdor�measure at most LR1�2� . Therefore there is an ar
 of length� � L1� 2�� d(x; y)joining x to y. �The proof of Proposition 3.1 will require two lemmas.Lemma 3.5. Let X be a metri
 spa
e, and � be a �nite Borel measure on X. IfY � X is a nondegenerate 
ontinuum, then we 
an �nd a point y 2 Y su
h that forall r > 0 we have(3.6) �(B(y; r)) � 10rdiam(Y )�(X):10



Proof. We assume that �(X) > 0, for otherwise the assertion obviously holds.If the statement were false, then for ea
h y 2 Y we 
ould �nd ry > 0 su
h that�(B(y; ry)) > M�(X)ry, where M = 10= diam(Y ). Then the radii ry, y 2 Y , areuniformly bounded from above, and so we 
an �nd a disjoint sub
olle
tion fBi =B(yi; ri)gi2I of the 
over fB(y; ry) : y 2 Y g of Y su
h that the 
olle
tion f5Bigi2I isalso a 
over of Y [12, Theorem 1.2℄. De�ne an equivalen
e relation on I by de
laringthat i � i0 if there are elements i = i1; : : : ; ik = i0 su
h that Bij \ Bij+1 6= ; for1 � j < k. If I = tj2JIj is the de
omposition of I into equivalen
e 
lasses, then the
olle
tion f[i2Ij5Bigj2J is a 
over of Y by disjoint open sets; sin
e Y is 
onne
tedthis implies that #J = 1. It follows thatXi ri � 110 diam(Y ) = 1M ;and so �(X) �Xi �(Bi) > �(X)MXi ri � �(X):This is a 
ontradi
tion. �Lemma 3.7. Let Z be as in Proposition 3.1, and suppose 0 < � < 1=8. Thenthere are 
onstants � = �(�) > 0, K = K(�) > 0 with the following property. If� : Z ! [0;1℄ is a Borel fun
tion, B = B(p; r) � Z is a ball, and F1; F2 � Z are
ontinua su
h that Fi \ 14B 6= ; and Fi n B 6= ; for i = 1; 2, then there are disjointballs Bi := B(qi; �r) for i = 1; 2, and a path � : [0; 1℄! Z su
h that(i) qi 2 Fi for i = 1; 2,(ii) Bi � 78B and ZBi �Q d� � 80� ZB �Q d�for i = 1; 2,(iii) the path � joins 14B1 and 14B2, has image 
ontained in �B, length at most �r,and �-length at most K �Z�B �Q d��1=Q :Proof. We 
an �nd a sub
ontinuum E1 � F1 whi
h is 
ontained in �B(p; 3r8 ) nB(p; r4)and joins the sets �B(p; 3r8 ) and �B(p; r4). Similarly, we 
an �nd a sub
ontinuumE2 � F2 whi
h is 
ontained in �B(p; 3r4 ) n B(p; 5r8 ) and joins the sets �B(p; 3r4 ) and�B(p; 5r8 ). Then diam(Ei) � r=8 for i = 1; 2, and dist(E1; E2) � r=4.11



Applying Lemma 3.5 with X = B, the measure � de�ned by �(N) := RN �Q d� fora Borel set N � B, and Y = Ei for i = 1; 2, we �nd qi 2 Ei su
h that(3.8) ZB(qi;s) �Q d� � 10sdiam(Ei) ZB �Q d� � 80sr ZB �Q d�;for 0 < s � r=4. Set Bi := B(qi; �r). By our assumption on Z, we 
an �nd a path �from 14B1 to 14B2 with Im(�) � �B, length at most �r, and �-length at mostK �Z�B �Q d��1=Q ;where � = �(�) > 0 and K = K(�) > 0.The balls B1 and B2 are disjoint sin
e � < 1=8 andd(q1; q2) � dist(E1; E2) � r=4:Conditions (i) and (iii) are 
learly satis�ed. Condition (ii) follows from the fa
ts that� < 1=8 and qi 2 �B(p; 3r4 ) and from (3.8). �Proof of Proposition 3.1. Fix 0 < � < 1=8 subje
t to the 
ondition 2 � (80�)1=Q < 1.Suppose E1; E2 � Z are nondegenerate 
ontinua, and let � : Z ! [0;1℄ be a Borelfun
tion. We will show that there is a re
ti�able path 
 joining E1 to E2 whose�-length is at most M �ZZ �Q d��1=Qwhere M > 0 only depends on the relative distan
e �(E1; E2) of E1 and E2. Infa
t, the path produ
ed will have length . dist(E1; E2), though this will not be usedanywhere. We will hen
eforth assume that E1 and E2 are disjoint, for otherwise wemay use a 
onstant path mapping into E1 \ E2.Pi
k pi 2 Ei su
h that d(p1; p2) = dist(E1; E2). Setr0 := 12 min(d(p1; p2); diam(E1); diam(E2)) > 0:Let Bi = B(pi; r0) for i = 1; 2. Then B1 \ B2 = ; and Ei nBi 6= ; for i = 1; 2. Also,dist(B1; B2) � �d(p1;p2)r0 � r0 � tr0 where t := 2max(1;�(E1; E2)). By our hypotheseswe 
an �nd a path � joining 14B1 to 14B2 of length at most Lr0 and �-length at most(3.9) 1m1=Q �ZZ �Q d��1=Q ;where L = L(t), m = m(t) are the 
onstants appearing in the statement of Proposi-tion 3.1. Let �0 := f�g, B0 := fB1; B2g, and 
0 be the set fE1; Im(�); E2g endowedwith the linear ordering E1 < Im(�) < E2. In addition, we asso
iate the ball B1 withthe pair E < Im(�), and the ball B2 with the pair Im(�) < E2.12



Indu
tively, assume that for j = 0; : : : ; k we have a path 
olle
tion �j, a ball
olle
tion Bj, and a 
olle
tion of 
ontinua 
j subje
t to the following 
onditions:1. For 0 � j � k, the set 
j is linearly ordered.2. For ea
h pair �1 < �2 of su

essive elements of 
j, there is an asso
iated ballB�1;�2 2 Bj su
h that �i nB�1;�2 6= ; and �i \ 14B�1;�2 6= ;, for i = 1; 2.3. For j � 1, the 
olle
tions �j, Bj, and 
j are obtained from 
j�1 and Bj�1using the following pro
edure. For ea
h pair of su

essive elements �1; �2 2 
j�1 withasso
iated ball B�1;�2 2 Bj�1, one applies Lemma 3.7 with B = B�1;�2 and fF1; F2g =f�1; �2g, to obtain a path � = �(�1; �2) and a pair of disjoint balls B�1;�; B�;�2 . HereB�1;� is 
entered at a point in �1, and B�;�2 is 
entered at a point in �2. Then �j isthe 
olle
tion of paths � and Bj is the 
olle
tion of balls B�1;�; B�;�2 where �1 < �2ranges over all su

essive pairs in Bj�1. The 
ontinuum 
olle
tion 
j is the disjointunion 
j�1 t fIm(�) : � 2 �jg. One linearly orders 
j by extending the order on
j�1 subje
t to �1 < Im(�) < �2; moreover, one asso
iates the ball B�1;� with the pair�1 < Im(�), and the ball B�2;� with the pair Im(�) < �2.By our se
ond indu
tion assumption, the hypotheses of Lemma 3.7 hold for ea
hsu

essive pair �1; �2 2 
k and asso
iated ball B�1;�2 2 Bk. Hen
e we may use thepro
edure in the third indu
tion assumption (with j repla
ed by k + 1) to generate�k+1, Bk+1, 
k+1, the linear order on 
k+1, and an asso
iation of balls in Bk+1 withsu

essive pairs in 
k+1. The 
onditions in Lemma 3.7 guarantee that the indu
tionhypotheses are ful�lled. Therefore by indu
tion there are 
olle
tions �k, Bk, and 
kfor all k � 0 whi
h satisfy the 
onditions 1{3 for all k � 0.By indu
tion, one proves the following:13



(a) For ea
h k � 0, we have #Bk = 2k+1, and ea
h ball in Bk has radius �k+1r0 (seeLemma 3.7).(b) For ea
h k � 0, j � k, and B 2 Bk, there is a ball B0 2 Bk�j su
h thatB0 � (87)k�jB, (see 
ondition (ii) of Lemma 3.7).(
) For k � 0, the �-mass of ea
h ball B 2 Bk satis�esZB �Q d� � (80�)k ZZ �Q d�(see Lemma 3.7, 
ondition (ii)).(d) For ea
h k > 0, we have #�k = 2k. Ea
h � 2 �k has length at most ��kr0, fora suitable ball B 2 Bk�1 we have Im(�) � �B, and the �-length of � is at mostK �Z�B �Q d��1=Q :(e) For k � 0 set Yk := k[j=0 [�2�j Im(�):Then dist(Yk; E1); dist(Yk; E2) � �kr0=4, and Yk is (�kr0=4)-
onne
ted: given y; y0 2Yk there are points y = y1; : : : ; yl = y0 su
h that d(yj; yj+1) � �kr0=4 for 1 � j � l.(f) For k > 0, the union Zk := [j>k0� [�2�j Im(�)1Ais 
overed by the 
olle
tion f(� + 1)BgB2Bk .Set Y := 1[j=0 [�2�j Im(�):By (e) the 
losure �Y of Y is 
ompa
t, 
onne
ted, and interse
ts both E1 and E2. Then(f) and (a) imply that �Y n Y has 1-dimensional Hausdor� measure zero. Combiningthis with (d) and the fa
t that � < 1=8, we get that the 1-dimensional Hausdor�measure of �Y is at most1Xk=0 X�2�k length(�) � 1Xk=0(2k)(��kr0) = �r01� 2� <1:Hen
e there is a re
ti�able path 
 : [0; 1℄! Z 
ontained in �Y joining E1 to E2 withlength(
) � �r01� 2�:14



Moreover, we may assume that Im(
) is an ar
 and 
 is an inje
tive map.Pi
k an integer s su
h that (87)s�1 > �. Then by (d), (b) and (
), for every k � sand � 2 �k there is a ball B0 2 Bk�s su
h that the �-length of � is at mostK �ZB0 �Q d��1=Q � K �(80�)k�s ZZ �Q d��1=Q :For 0 < k < s, ea
h � 2 �k has �-length at mostK �ZZ �Q d��1=Q :Re
all that � 2 �0 has �-length 1m1=Q �ZZ �Q d��1=Q :Using these bounds for �-length and the fa
t that 
 parametrizes an ar
, we getZ
 � ds � Z �Y � dH1 � 1Xk=0 X�2�k ZIm(�) � dH1� �ZZ �Q d��1=Q 1m1=Q +K s�1Xk=1 2k +K 1Xk=s 2k(80�)k�s!=: M �ZZ �Q d��1=Q :Note that M is �nite sin
e 2 � (80�)1=Q < 1 by our initial 
hoi
e of �. Moreover, Mdepends only on �(E1; E2). This shows that the path 
 has the desired properties. �4. Res
aling and abundan
e of thi
k pathsWe now let (Z; d; �) be a Ahlfors Q-regular 
ompa
t metri
 spa
e, Q > 1, whi
h
arries a family of non
onstant paths with positive Q-modulus, and we let G y Zbe a uniformly quasi-M�obius a
tion whi
h is �xed point free, and a
ts 
o
ompa
tlyon triples in Z. As we have seen, Lemma 2.12 implies that there exist non
onstantthi
k paths in Z.Lemma 4.1. There exist disjoint open balls B and B0 in Z su
h that the set ofendpoints of thi
k paths 
onne
ting B and B0 has a point of density in B.Proof. Let 
 : I ! Z be a non
onstant thi
k path. Pi
k t 2 (0; 1) so that x :=
(t) is distin
t from the endpoints x0 := 
(0) and x1 := 
(1) of 
. De�ne R :=110 dist(x; fx0; x1g), and let � := R=10. Set B := B(x;R) and B0 := B(x1; R).15



Every path � 2 B(
; �) has an image interse
ting the open ball B and pi
ks uplength in B whi
h is 
omparable to R. In parti
ular, ea
h path in B(
; �) is non
on-stant. Let S := B \ fIm(�) : � 2 B(
; �) \ PTg:By Lemma 2.10, every point in S is the initial point of a thi
k path ending in B0.Hen
e it is enough to show that S has positive Q-dimensional Hausdor� measure. Ifthis is not the 
ase, we 
an �nd a Borel set S 0 � S of vanishing Hausdor� Q-measure.Then the fun
tion � : Z ! [0;1℄ de�ned to be in�nity on S 0 and 0 elsewhere is Boreland an admissible test fun
tion for the path family B(
; �) \ PT . Sin
e the totalQ-mass of � is zero, Lemma 2.12 impliesModQ(B(
; �) n C) = ModQ(B(
; �)) = ModQ(B(
; �) \ PT ) = 0;whi
h 
ontradi
ts the thi
kness of 
. �Lemma 4.2. Let M � Z � Z be the set of pairs of points that 
an be joined by athi
k path. Then M is dense in Z � Z.Note that this implies in parti
ular that Z is 
onne
ted.Proof. By Lemma 4.1, we 
an �nd a pair of disjoint open balls B and B0 so that thereexists a density point x 2 B of the set of initial points of the family � of thi
k pathsstarting in B and ending in B0. For k 2 N pi
k Rk > 0 with limk!1Rk = 0, and letDk be the set of initial points of paths in � whi
h start in Bk := B(x;Rk). Then�k := distH(Dk; Bk)Rk ! 0:We let Æk := p�k and �k := 2p�k. Set x1k := x. Sin
e Z is 
onne
ted, for large k we 
an
hoose points x2k 2 �B(x; ÆkRk) and x3k 2 �B(x; 2ÆkRk). Using the 
o
ompa
tnessof the a
tion G y Tri(Z), we 
an �nd gk 2 G su
h that the image of the triple(x1k; x2k; x3k) under gk is Æ0-separated where Æ0 > 0 is independent of k. ApplyingLemma 2.1, we 
on
lude that distH(gk(Dk); Z) ! 0 and diam(Z n gk(Bk)) ! 0 ask ! 1. After passing to a subsequen
e if ne
essary, we may assume that the setsZ n gk(Bk) Hausdor� 
onverge to fzg for some z 2 Z. Sin
e B0 and Bk are disjointfor large k, we then also have distH(gk(B0); fzg)! 0 as k !1.Now let z1; z2 2 Z and � > 0 be arbitrary. By Lemma 2.2, we 
an �nd g 2 G su
hthat g(z) 2 B(z1; �); then g Æ gk(B0) � B(z1; �) for large k. In addition, for large kwe will also have g Æ gk(Dk)\B(z2; �) 6= ;. Using this and the invarian
e of thi
knessunder quasi-M�obius homeomorphisms we see that there is a thi
k path starting inB(z1; �) and ending in B(z2; �). �Lemma 4.3. For ea
h C > 0 there are 
onstants m > 0 and L > 0 su
h that ifB; B0 � Z are R-balls with dist(B;B0) � CR, then the modulus of the family ofpaths of length at most LR joining B to B0 has Q-modulus at least m.16



Proof. Suppose C > 0 is arbitrary. We �rst 
laim that there is a number m0 > 0 su
hthat if B; B0 � Z are R-balls with dist(B;B0) � CR, then ModQ(�(B;B0)) > m0.If this assertion were false, there would be balls Bk = B(zk; Rk) and B0k = B(z0k; Rk)for k 2 N su
h that dist(Bk; B0k) � CRk for all k, but(4.4) limk!1ModQ(�(Bk; B0k)) = 0:Passing to a subsequen
e, we may assume that the sequen
es (zk) and (z0k) 
onvergeto points z 2 Z and z0 2 Z respe
tively. Sin
e Z is 
ompa
t, we dedu
e from Lemma4.2 that limk!1Rk = 0. So after passing to another subsequen
e we 
an 
hoosex1k 2 �B(zk; Rk), and x2k 2 �B(zk; 2Rk) for all k. Choose gk 2 G su
h that the triples(gk(zk); gk(x1k); gk(x2k)) are Æ-separated where Æ > 0 is independent of k. Sin
e thehomeomorphisms gk are uniformly quasi-M�obius it is easy to see that there is � > 0su
h that B(gk(zk); 2�) � gk(Bk) and B(gk(z0k); 2�) � gk(B0k) for all k. Hen
e forlarge k we have ~B := B(z; �) � gk(Bk), ~B0 := B(z0; �) � gk(B0k). Tyson's theorem(Theorem 2.7) givesModQ(�(Bk; B0k)) � 
ModQ ��(gk(Bk); gk(B0k))� � 
ModQ(�( ~B; ~B0));where 
 > 0 is a 
onstant independent of k. Sin
e ModQ(�( ~B; ~B0)) > 0 by Lemma4.2, this 
ontradi
ts (4.4), and hen
e the 
laim is true.A

ording to Lemma 2.8 we 
an 
hoose L � 2 su
h that every family of paths in Zwhi
h start in a given ball of radius R and have length at least LR has modulus atmost m0=2. Now B and B0 are arbitrary balls of radius R > 0 in Z and let �1 and �2be the families of paths in Z a whi
h 
onne
t B and B0 and have length at most LRand length at least LR, respe
tively. Then by the 
hoi
e of L and by subadditivityof modulus we havem0 � ModQ(�(B;B0)) � ModQ(�1) + ModQ(�2) � ModQ(�1) +m0=2:It follows that ModQ(�1) � m := m0=2 > 0. �5. The proofs of the theoremsProof of Theorem 1.3. By Lemma 4.3, (Z; d; �) satis�es the hypotheses of Proposi-tion 3.1, and is therefore a Q-Loewner spa
e. �Proof of Corollary 1.6. Under the hypotheses of the 
orollary, for every weak tangentW of Z there exist a point z 2 Z and a quasi-M�obius homeomorphism betweenW andZ n fzg (
f. [3, Lemma 5.2℄). A

ording to Theorem 1.5 there exists a weak tangentW of Z whi
h 
arries a family of non
onstant paths with positive Q-modulus. Hen
eby Tyson's Theorem 2.7, the spa
e Z also 
arries a family of non
onstant paths withpositive Q-modulus. �17



Proof of Theorem 1.1. Let G be as in the statement of Theorem 1.1, suppose Z is anAhlfors Q-regular metri
 spa
e where Q � 2 is the Ahlfors regular 
onformal dimen-sion of �1G, and � : �1G ! Z is a quasisymmetri
 homeomorphism. Conjugatingthe 
anoni
al a
tion G y �1G by �, we obtain a uniformly quasi-M�obius a
tionG y Z whi
h is �xed point free and for whi
h the indu
ed a
tion on triples is bothproperly dis
ontinuous and 
o
ompa
t. Now by Corollary 1.6 the spa
e Z 
arriesa family of non
onstant paths with positive Q-modulus, and so it is Q-Loewner byTheorem 1.3.A

ording to Theorem 1.2 of [2℄ every Ahlfors Q-regular and Q-Loewner 2-sphereis quasisymmetri
ally homeomorphi
 to the standard 2-sphere S2. This applies to Zand so there exists a quasisymmetri
 homeomorphism  : Z ! S2. Conjugating oura
tion G y Z by  , we get a uniformly quasi
onformal a
tion G 1y S2 (we use thesupers
ript \1" to distinguish this a
tion from another a
tion dis
ussed below). By atheorem of Sullivan and Tukia (
f. [21, p. 468℄ and [22, Theorem F and Remark F2℄)every uniformly quasi
onformal a
tion on S2 is quasi
onformally 
onjugate to ana
tion by M�obius transformations. Hen
e G 1y S2 is quasi
onformally 
onjugate toan a
tion G 2y S2 by M�obius transformations. If we represent H 3 by the unit ballmodel so that �1H 3 = S2, the a
tion G 2y S2 naturally extends to an isometri
a
tion G y H 3 . Being topologi
ally 
onjugate to G 1y S2 and hen
e to Gy Z, thea
tion G 2y S2 is also properly dis
ontinuous and 
o
ompa
t on triples. Therefore,the 
orresponding isometri
 a
tion Gy H 3 is dis
rete and 
o
ompa
t. �Proof of Theorem 1.4. Let G be group as in the theorem, and assume that Q > 1 isequal to the Ahlfors regular 
onformal dimension of Z = �(G). Note that Z � Snequipped with the ambient Eu
lidean metri
 on Sn � Rn+1 is Ahlfors Q-regular [20,Thm. 7℄, and that the indu
ed a
tion Gy Z satis�es the hypotheses of Theorem 1.3.It follows that Z is a Q-Loewner spa
e. Hen
e Z satis�es a (1; Q)-Poin
ar�e inequality.Sin
e the metri
 spa
e Z � Rn+1 is Ahlfors regular and satis�es a (1; Q)-Poin
ar�einequality, a theorem by Cheeger [9, Thm. 14.3℄ implies that Z has a weak tangentwhi
h is bi-Lips
hitz equivalent to some Eu
lidean spa
e Rk , k � 1. Sin
e ea
h weaktangent of an Ahlfors Q-regular spa
e is also Ahlfors Q-regular, we 
on
lude thatQ = k 2 N ; in parti
ular, the topologi
al dimension of Z is equal to its Hausdor�dimension. Moreover, sin
e Q > 1, we have k � 2. The desired 
on
lusion nowfollows from [3, Thm. 1.2℄. �The proof shows that if Gy X is a properly dis
ontinuous, quasi-
onvex 
o
ompa
t,and isometri
 a
tion on a CAT(�1)-spa
e X, if the limit set �(G) has Hausdor�dimension equal to its Ahlfors regular 
onformal dimension, and if �(G) embeds insome Eu
lidean spa
e by a bi-Lips
hitz map, then there is a 
onvex G-invariant 
opyof a hyperboli
 spa
e Y � X on whi
h G a
ts 
o
ompa
tly.18



The 
on
lusion of the quoted result by Cheeger already holds if Z satis�es a (1; p)-Poin
ar�e inequality for some p > 1. So it would be enough to stipulate this 
onditionin Theorem 1.4 instead of requiring that the Ahlfors regular 
onformal dimension ofZ = �(G) is equal to Q.The 
onverse of Theorem 1.4 and its indi
ated modi�
ations lead to a statementthat is worth re
ording: if the limit set �(G) of a group G as in the theorem is not a\round" subsphere of Sn, then the Ahlfors regular dimension of Z = �(G) is stri
tlyless than Q, Z does not 
arry a family of non
onstant 
urves with positiveQ-modulus,and Z does not satisfy a (1; p)-Poin
ar�e inequality for any p > 1. In parti
ular, limitssets of su
h groups G 
annot lead to new examples of Loewner spa
es.6. Spa
es whose Ahlfors regular 
onformal dimension is notrealizedIn our dis
ussion below, we will refer to the Ahlfors regular 
onformal dimensionsimply as the 
onformal dimension.The most basi
 example of a spa
e whose 
onformal dimension is not realized is thestandard Cantor set C. This dimension is equal to 0 for C, but it is not attained, sin
eany quasisymmetri
 homeomorphism between C and a metri
 spa
e Z is bi-H�older[5℄, and so the Hausdor� dimension of Z is stri
tly positive.To our knowledge, the �rst 
onne
ted and lo
ally 
onne
ted example of this type isdue to Pansu, whi
h we learned of through M. Bourdon. Essentially the same examplewas 
onsidered also in [8℄: if one glues together two 
losed hyperboli
 surfa
es N1 andN2 isometri
ally along embedded geodesi
s 
i � Ni of equal length, then one obtainsa 2-
omplex M with 
urvature bounded from above by �1 and the boundary atin�nity �1fM of the universal 
over fM has 
onformal dimension 1. To see this onepin
hes the hyperboli
 stru
tures along the 
losed geodesi
s 
i, and observes thatthe volume entropy of the resulting universal 
overs tend to 1 (\bran
hing be
omesless and less frequent"). The spa
e �1fM is not quasisymmetri
ally homeomorphi
to an Ahlfors 1-regular spa
e, be
ause in this 
ase it would have to be a topologi
al
ir
le by [3, Theorem 1.1℄; in fa
t it is not diÆ
ult to see dire
tly that �1fM isnot quasisymmetri
ally homeomorphi
 to a spa
e with �nite 1-dimensional Hausdor�measure.Bishop and Tyson [1℄ have shown that \antenna sets"|
ertain self-similar den-drites in the plane|have 
onformal dimension 1, but are not quasisymmetri
allyhomeomorphi
 to any spa
e of Hausdor� dimension 1.Another example of a similar 
avor is due to Laakso. He has shown that thestandard Sierpinski gasket has 
onformal dimension 1, but again, this dimension
annot be realized. By 
onsidering pairs of points whose removal dis
onne
ts the set,it is not hard to show that the homeomorphism group of the gasket is the same as19



its isometry group for the usual embedding in R2 . It follows that this example is nothomeomorphi
 to Pansu's example.There are translation invariant Ahlfors regular metri
s on R2 for whi
h the 1-parameter group of linear transformations etA, whereA := �1 10 1� ;is a family of homotheties. Their 
onformal dimension is 2, but it 
annot be realized.The se
ond author would like to thank L. Mosher for bringing these examples to hisattention. One 
an also des
ribe them as follows. Let G be the semi-dire
t produ
t ofR with R2 , where R a
ts on R2 by the 1-parameter group above. Then the solvable Liegroup G admits left invariant Riemannian metri
s with 
urvature pin
hed arbitrarily
lose to �1; if one removes the unique �xed point from �1G, one gets the \twistedplane" example above.The examples dis
ussed so far are all either dis
onne
ted, have lo
al 
ut points (i.e.by removing a single point one 
an dis
onne
t a 
onne
ted neighborhood), or 
annotbe the boundary of a hyperboli
 group.Suppose an Ahlfors Q-regular spa
e Z is quasisymmetri
 to the boundary of ahyperboli
 group G, where Q is the 
onformal dimension of Z. If Q < 1, then thetopologi
al dimension of Z is zero; thus there is a free subgroup Fk sitting in G with�nite index. But then k = 1, jZj = 2, and Q = 0, for otherwise k > 1 whi
h impliesthat Z is quasisymmetri
 to the standard Cantor set, whose 
onformal dimension isnot realized. If Q = 1, then [3, Theorem 1.1℄ implies that Z is quasisymmetri
 to thestandard 
ir
le. The 
ase Q > 1 is 
overed by Theorem 1.3. Dis
onne
ted spa
es,or spa
es with lo
al 
ut points 
annot satisfy a Poin
ar�e inequality, so Theorem 1.3implies that if Q > 1, then Z is 
onne
ted and has no lo
al 
ut points. The examplesof Bourdon and Pajot [7℄ give boundaries of hyperboli
 groups whi
h possess thesetwo topologi
al properties, but whi
h are not quasisymmetri
ally homeomorphi
 toa Q-regular spa
e satisfying a (1; Q)-Poin
ar�e inequality. Thus by Theorem 1.3 evenunder these topologi
al 
onditions the 
onformal dimension is not ne
essarily realized.Based on the examples mentioned above, one may spe
ulate that if the 
onformaldimension of a self-similar spa
e fails to be attained, then this is due to degenerationwhi
h leads to a limiting stru
ture resembling a foliation or lamination.We 
on
lude this se
tion with two questions related to the realization problem.Problem 6.1. Can one algebrai
ally 
hara
terize the hyperboli
 groups whose bound-ary has (Ahlfors regular) 
onformal dimension equal to 1? In parti
ular, if the bound-ary of a hyperboli
 group is homeomorphi
 to a Sierpinski 
arpet or a Menger 
urve,is the Ahlfors regular 
onformal dimension stri
tly greater than 1?Problem 6.2. Is the (Ahlfors regular) 
onformal dimension of the standard squareSierpinski 
arpet S attained? 20



If it is, it seems to be the 
ase that S equipped with any Ahlfors regular metri
realizing its 
onformal dimension is a Loewner spa
e. We remark that it followsfrom [14℄ that the 
onformal dimension of S is less than its Hausdor� dimension. A
al
ulation by the se
ond author had earlier given an expli
it upper bound for the
onformal dimension of S.7. Remarks and open problemsThe themes explored in this paper lead to various general questions. To further exploitthe relation between the algebrai
 stru
ture of a Gromov hyperboli
 group and theanalysis of its boundary one needs analyti
 tools from the general theory of analysis onmetri
 spa
es, perhaps tailored to the setting of self-similar spa
es or spa
es admittinggroup a
tions as 
onsidered in this paper. In parti
ular, it would be interesting to �nd
lasses of fun
tion spa
es that are invariant under quasisymmetri
 homeomorphisms.They 
ould be used to de�ne quasisymmetri
 invariants and answer stru
ture andrigidity questions for quasisymmetri
 homeomorphisms.The setting of Loewner spa
es is relatively well-understood, but it is not 
lear hownatural this framework really is. At present there is a somewhat limited supply ofthese spa
es, and one would like to have more examples. As Theorem 1.4 indi
ates,the Loewner 
ondition seems to lead to strong 
on
lusions in the presen
e of groupa
tions and probably also in the presen
e of self-similarity. In view of this theoremthe following problem suggests itself.Problem 7.1. Can one 
lassify all quasi-
onvex 
o
ompa
t isometri
 a
tions Gy X,where X is a CAT(�1)-spa
e and the Ahlfors regular 
onformal dimension of the limitset �(G) is realized and stri
tly greater than 1?Note that in this situation Z = �(G) is a Loewner spa
e, so the problem asks for a
lassi�
ation of all Loewner spa
es that arise as limit sets of quasi-
onvex 
o
ompa
tisometri
 group a
tions on CAT(�1)-spa
es.Conversely, one 
ould start with an Ahlfors Q-regular Q-Loewner Z spa
e qua-sisymmetri
ally homeomorphi
 to the boundary of a Gromov hyperboli
 group Gand ask whether Z appears as the limit set �(G) of some isometri
 a
tion G y X,where X is a negatively 
urved metri
 spa
e. It is natural to require that X is Gro-mov hyperboli
. One 
an interpret the relation between Z and �(G) in a measuretheoreti
 sense. The obvious measure on Z is Hausdor� Q-measure, and the mea-sure on �(G) related to the dynami
s G y �(G) is the so-
alled Patterson-Sullivanmeasure (
f. [10℄). We arrive at the following question:Problem 7.2. Suppose � : Z ! �1G is a quasisymmetri
 homeomorphism from a
ompa
t Ahlfors regular Loewner spa
e Z to the boundary �1G of Gromov hyperboli
group G. Is there a dis
rete, 
o
ompa
t, isometri
 a
tion Gy X of G on a Gromov21



hyperboli
 spa
e X whose Patterson-Sullivan measure lies the same measure 
lass aspush-forward of Hausdor� measure under �?More generally, one may ask when the measure 
lass of a given measure on theboundary of a Gromov hyperboli
 group is represented by the Patterson-Sullivanmeasure for some Gromov hyperboli
 \�lling" G y X of the boundary a
tion G y�1G.The general problem behind Cannon's 
onje
ture is the desire to �nd 
anoni
almetri
 spa
es on whi
h a given Gromov hyperboli
 group G a
ts. Sin
e the dynami
sof an isometri
 a
tion G on a Gromov hyperboli
 spa
e X is en
oded in the Patterson-Sullivan measure on �(G), a �rst step in this dire
tion is to �nd a natural measure,or at least a natural measure 
lass on �1G.Problem 7.3. Given a Gromov hyperboli
 group G, when is there a natural measure
lass on �1G?Here \natural" 
an be interpreted in various ways. One 
ould require the measure
lass to be invariant under all (lo
al) quasisymmetri
 homeomorphisms. For instan
e,if G a
ts dis
retely 
o
ompa
tly on a rank 1 symmetri
 spa
e X spa
e other thanH 2 , then the measure 
lass of the Lebesgue measure asso
iated with the standardsmooth stru
ture on �1X is invariant under the full group of quasisymmetri
 self-homeomorphisms of �1X ' �1G. When X = H 2 this fails, sin
e the \Mostowmap" �1H 2 ! �1H 2 indu
ed between two non-
onjugate dis
rete, 
o
ompa
t andisometri
 a
tions G 1y H 2 and G 2y H 2 will not be absolutely 
ontinuous with respe
tto Lebesgue measure. One expe
ts a similar phenomenon whenever G virtually splitsover a virtually 
y
li
 group, or equivalently, when �1G has lo
al 
ut points. Due tothis, one 
an hope for an aÆrmative answer to Problem 7.3 only under the assumptionthat G does not have this property.In many 
ases one expe
ts thatG is a subgroup of �nite index in the group QS(�1G)of all quasisymmetri
 self-homeomorphisms of �1G. Then the requirement that themeasure 
lass be invariant under QS(�1G) is rather weak. This suggests another(stronger) interpretation of Problem 7.3: the measure 
lass should be 
onstru
ted ina quasisymmetri
ally invariant way.Referen
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