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Abstract. We study combinatorial modulus on boundaries of hy-
perbolic Coxeter groups. We give new examples of hyperbolic
groups whose boundary satisfies a combinatorial version of the
Loewner property, and prove Cannon’s conjecture for Coxeter groups.
We also establish some connections with `p-cohomology.
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1. Introduction

1.1. Overview. Every hyperbolic group Γ has a canonical action on its
boundary at infinity ∂Γ; with respect to any visual metric on ∂Γ, this
action is by uniformly quasi-Moebius homeomorphisms. This struc-
ture has a central role in the proofs of Mostow’s rigidity theorem and
numerous other results in the same vein, which are based on the ana-
lytic theory of quasiconformal homeomorphisms of the boundary (see
the survey papers [GP91], [BP02], [Kle06] and their references). With
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the aim of extending these rigidity results to a larger class of hyper-
bolic groups, one may hope to apply the work of J. Heinonen and P.
Koskela [HK98] and subsequent authors (e.g. [Che99, Tys98, HKST01,
KZ08]), which has generalized much of the classical quasiconformal the-
ory to the setting of Loewner spaces1, a certain class of metric measure
spaces [HK98]. Unfortunately, among the currently known examples
of Loewner spaces, the only ones which arise as boundaries of hyper-
bolic groups are the boundaries of rank one symmetric spaces, and
Fuchsian buildings [HK98, BP00]. One of the goals of this paper is to
take a step toward improving this situation, by finding infinitely many
new examples of hyperbolic groups whose boundaries satisfy the Com-
binatorial Loewner Property, a combinatorial variant of the Loewner
property which is conjecturally equivalent to the property of being
quasi-Moebius homeomorphic to a Loewner space. In addition to this,
using similar techniques, we prove the Cannon conjecture for hyper-
bolic Coxeter groups, show that the `p equivalence relation studied in
[Gro93, Ele97, Bou04] has a particularly simple form in the case of hy-
perbolic Coxeter groups, and prove that the standard square Sierpinski
carpet in the plane and the standard cubical Menger curve in R3 satisfy
the Combinatorial Loewner Property.

1.2. Statement of results. We now present some of the ideas of the
paper, illustrating them with non-technical statements. More general
results, as well as detailed discussion justifying the statements made
here, may be found in the body of the paper.

Combinatorial modulus. Let Z be a compact metric space. For ev-
ery k ∈ N, let Gk be the incidence graph of a ball cover {B(xi, 2

−k)}i∈I ,
where {xi}i∈I ⊂ Z is a maximal 2−k-separated subset. Given p ≥ 1 and
a curve family F in Z, we denote by Modp(F , Gk) the Gk-combinatorial
p-modulus of F (see Subsection 3.1 for the definition); also for any pair
of subsets A,B ⊂ Z, we let Modp(A,B,Gk) = Modp(F , Gk) where F
is the collection of paths joining A and B.

In our study of combinatorial modulus, we will assume that Z is
approximately self-similar (see Definition 3.11). Examples of approxi-
mately self-similar metric spaces include many classical fractals such as
the the square Sierpinski carpet or the cubical Menger sponge, bound-
aries of hyperbolic groups equipped with their visual metrics, metric

1 We will use the shorthand Loewner space for a compact metric space which is
Ahlfors p-regular and p-Loewner for some p > 1, in the sense of [HK98].
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spaces associated with finite subdivision rules, and metric 2-spheres
arising from expanding Thurston maps [BM].

One of our principal goals is to find criteria for the Combinatorial
Loewner Property (CLP). Roughly speaking, a doubling space Z satis-
fies the CLP if there is a p ∈ (1,∞) such that for any pair A,B ⊂ Z
of disjoint nontrivial continua, the p-modulus Modp(A,B,Gk) is con-
trolled by the relative distance

∆(A,B) =
dist(A,B)

min{diamA, diamB}
;

see Section 3.2 for the definition. As indicated in the overview, our
interest in the CLP stems the fact that a Loewner space satisfies the
CLP, and that the converse is conjecturally true for compact approxi-
mately self-similar spaces. Thus – modulo the conjecture – this paper
would provide new examples of hyperbolic groups to which the re-
cently developed quasiconformal theory would be applicable. Should
the conjecture turn out to be false, the CLP would be of independent
interest, since it shares many of the features of the Loewner property,
e.g. quasi-Moebius invariance; see Section 3.2 for more discussion.

Coxeter group boundaries satisfying the CLP. Recall that a
group Γ is a Coxeter group if it admits a presentation of the form

Γ = 〈si ∈ S | s2
i = 1, (sisj)

mij = 1 for i 6= j〉,

with |S| < +∞, and with mij ∈ {2, 3, ...,+∞}. A subgroup is special
if it is generated by a subset of the generating set S. A subgroup
is parabolic if it is conjugate to a special subgroup. Now suppose in
addition that Γ is hyperbolic, and ∂Γ is its boundary at infinity. Then
a non-empty limit set ∂P ⊂ ∂Γ of a parabolic subgroup P 5 Γ is called
a parabolic limit set.

In Theorem 6.6 we give a sufficient condition (of combinatorial flavour)
for the boundary of a hyperbolic Coxeter group to satisfy the CLP. A
special case is the following result, which shows that the CLP holds
when the parabolic limit sets form a combinatorially simple collection
of subsets.

Theorem 1.1 (Corollary 6.7). Let Γ be a hyperbolic Coxeter group
whose boundary is connected and such that Confdim(∂Γ) > 1. Assume
that for every proper, connected, parabolic limit set ∂P ⊂ ∂Γ, one has

Confdim(∂P ) < Confdim(∂Γ).
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Suppose furthermore that for every pair ∂P , ∂Q of distinct, proper,
connected, parabolic limit sets, the subset ∂P ∩ ∂Q is at most totally
disconnected. Then ∂Γ satisfies the CLP.

In the statement Confdim(Z) denotes the Ahlfors regular conformal
dimension of Z i.e. the infimum of Hausdorff dimensions of Ahlfors
regular metric spaces quasi-Moebius homeomorphic to Z (see [MT] for
a survey paper on the conformal dimension).

To illustrate Theorem 1.1 with some simple examples, consider a
Coxeter group Γ with a Coxeter presentation

〈s1, . . . , s4 | s2
i = 1, (sisj)

mij = 1 for i 6= j〉 ,

where the order mij is finite for all i 6= j, and for every j ∈ {1, ..., 4} one
has

∑
i 6=j

1
mij

< 1. For these examples, the proper connected parabolic

limit sets are circles, and hence have conformal dimension 1, while ∂Γ
is homeomorphic to the Sierpinski carpet and therefore has conformal
dimension > 1 by a result of J. Mackay [Mac08]. Theorem 1.1 therefore
applies, and ∂Γ has the CLP.

Applying similar techniques in a simplified setting, we prove:

Theorem 1.2 (Theorem 8.4). The square Sierpinski carpet and the
cubical Menger sponge satisfy the CLP.

The Cannon conjecture for Coxeter groups. We obtain a proof
of Cannon’s conjecture in the special case of Coxeter groups:

Theorem 1.3 (Theorem 5.1). Let Γ be a hyperbolic Coxeter group
whose boundary is homeomorphic to the 2-sphere. Then there is a
properly discontinuous, cocompact, and isometric action of Γ on H3.

This result was essentially known (see the discussion at the end of Sec-
tion 5). Our view is that the principal value of the proof is that it
illustrates the feasibility of the asymptotic approach (using the ideal
boundary and modulus estimates), and it may suggest ideas for attack-
ing the general case. It also gives a new proof of the Andreev’s theorem
on realizability of polyhedra in H3, in the case when the prescribed di-
hedral angles are submultiples of π.
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`p-equivalence relations. Let Γ be a hyperbolic group and let p ≥
1. The first `p-cohomology group of Γ induces on ∂Γ an equivalence
relation – the `p-equivalence relation – which is invariant under quasi-
isometries of Γ [Gro93, Ele97, BP03, Bou04]. A natural problem is to
determine its cosets. The existence of a non trivial coset, i.e. a coset
different from a point and from the whole space, was shown to be an
obstruction to the Loewner property in [BP03]. Inspired by this, we
prove the analogous statement for the CLP in Corollary 9.5. Moreover
in consequence of some of our previous results we get:

Corollary 1.4 (Corollaries 9.3 and 9.4). Assume Γ is a hyperbolic
Coxeter group, let p ≥ 1, and denote by ∼p the `p-equivalence relation
on ∂Γ. Then:

(1) Each coset of ∼p is either a point or a connected parabolic limit
set.

(2) If ∂Γ is connected, and ∼p admits a coset different from a point
and the whole ∂Γ, then ∼p admits a coset F with Confdim(F ) =
Confdim(∂Γ).

Beyond the CLP. At present, our understanding of Coxeter groups
is still quite limited. We have only been able to show that certain very
special groups have boundaries which satisfy the CLP. While this is
consistent with our expectation that the CLP should be a highly non-
generic property, we only have a few examples which are known not to
have the CLP, apart from groups whose boundaries could not have the
CLP for topological reasons, see Proposition 3.5 and the remark at the
end of Section 9.

It would be desirable to have effective criteria for showing that a
group boundary does not have the CLP, as well as new examples of
such groups. In addition, when a group boundary does not have the
CLP, we expect that alternate structure will be present instead, such
as a quasi-Moebius invariant equivalence relation.

1.3. Discussion of the proofs. We now give an indication of the
ideas that go into some of the proofs.
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Combinatorial modulus on approximately self-similar spaces.
Let Z be a compact, approximately self-similar space. For d0 > 0,
let F0 be the family of curves γ ⊂ Z with diam(γ) ≥ d0. The ap-
proximate self-similarity of Z allows one to compare moduli of curve
families at different locations and scales with the modulus of F0, and
this observation leads readily to a submultiplicativity relation between
combinatorial moduli at different scales:

Proposition 1.5 (Proposition 3.15). Let Z be an arcwise connected
approximately self-similar metric space. Let p ≥ 1 and set Mk :=
Modp(F0, Gk). Then, for d0 sufficiently small, there exists a constant
C > 0 such that for every pair of integers k, ` one has :

(1.1) Mk+` ≤ C ·Mk ·M` .

In addition when p belongs to a compact subset of [1,+∞) the constant
C may be chosen independent of p.

Iterating (1.1) yieldsMnk ≤ Cn−1Mn
k , which implies that limj→∞Mj =

0 if Mk < C−1 for any k. Therefore if we define the critical exponent
to be

QM = inf{p ∈ [1,∞) ; lim
k→∞

Mk = 0}

then Mk = ModQM
(F0, Gk) ≥ C−1 for all k. In fact, QM is the Ahlfors

regular conformal dimension of Z, [KK].

When Z is the standard Sierpinski carpet constructed from the unit
square, one can exploit the reflectional symmetry to get additional con-
trol on the modulus. Using it, one shows that for any nonconstant curve
η : [0, 1] → Z and any ε > 0, if Uε(η) denotes the ε neighborhood of η
in the C0 topology, then the p-modulus Modp(Uε(η), Gk) is uniformly
comparable to Mk, independent of k. In other words, the modulus of
the curves near an arbitrary curve is comparable to the modulus of all
curves. From this, and using the planarity of the carpet, one can prove
a supermultiplicativity inequality as well:

(1.2) Mk+` ≥ C ′ ·Mk ·M` ,

where C ′ ∈ (0,∞) may be chosen in terms of an upper bound on
p. Reasoning as above, it follows that if Mk > C ′−1 for any k, then
limk→∞Mk = ∞; this implies that at the critical exponent QM , the
sequence {Mk} is bounded away from zero and infinity. From this, one
concludes that the statement of the CLP holds for pairs of balls. By
imitating an argument from [BK05a], one shows that the CLP holds
provided it holds for pairs of balls, and therefore the Sierpinski carpet
satisfies the CLP (see Theorem 8.4).
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In the case of the Menger curve, instead of (1.2), one obtains an
estimate for Mk in terms of the moduli {Mj}j<k, which is sufficient to
verify the CLP.

Dynamics of curves and crossing. Our strategy for understanding
the boundary of a hyperbolic Coxeter group Γ is inspired by the analysis
of the Sierpinski carpet, although the story is more complicated.

For the purpose of this paper, much of the dynamics of the Γ-action
on ∂Γ is encoded in the parabolic limit sets. For example we get:

Theorem 1.6 (Corollary 2.6). Consider a Γ-invariant equivalence re-
lation on ∂Γ whose cosets are connected. Then:

• The closure of each coset is either a point or a parabolic limit
set.
• If a nontrivial coset F is path-connected, and P is the parabolic

subgroup with F = ∂P , then for every ε > 0 and every path
η : [0, 1]→ ∂P , there is a path η′ : [0, 1]→ F such that

d(η, η′) = max
t∈[0,1]

d(η(t), η′(t)) < ε .

As an illustration, let γ be a nontrivial curve in ∂Γ, and let ∼ be
the smallest equivalence relation on ∂Γ such that for every g ∈ Γ, the
curve gγ lies in a single coset; in other words, two points x, y ∈ ∂Γ lie
in the same coset if there is a finite chain g1γ, . . . , gkγ joining x to y.
Thanks to the previous theorem, the coset closures are either points or
parabolic limit sets. In particular, if γ is not contained in any proper
parabolic limit set, then any path η : [0, 1] → ∂Γ is a uniform limit of
paths lying in the coset of γ.

A key ingredient in the analysis of the combinatorial modulus on ∂Γ
is a quantitative version of this phenomenon, which is established in
Proposition 2.10.

The proof of the Cannon conjecture for Coxeter groups. By
[Sul81], if Γ is a hyperbolic group and ∂Γ is quasi-Moebius homeomor-
phic to the Euclidean 2-sphere, then Γ admits a properly discontinuous,
cocompact, isometric action on H3. Also, as a consequence of the uni-
formization theorem established in [BK02], we obtain:
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Corollary 1.7 (Corollary 3.14). Suppose Z is an approximately self-
similar metric space homeomorphic to the 2-sphere. Assume that for
d0 > 0 small enough, there exists a constant C = C(d0) ≥ 1 such that
for every k ∈ N one has

(1.3) Mod2(F0, Gk) ≤ C.

Then Z is quasi-Moebius homeomorphic to the Euclidean 2-sphere.

Thus, we are reduced to verifying the hypotheses of the above corollary
when Γ is a Coxeter group. We note that an alternate reduction to the
same assertion can be deduced using [CFP99].

One of the main results of the paper is the existence of a finite number
of “elementary curves families”, whose moduli govern the modulus of
every (thick enough) curve family in ∂Γ (see Theorem 4.1 and Corollary
4.2). Each elementary curve family is associated to a conjugacy class
of an infinite parabolic subgroup.

In consequence, to obtain the bound (1.3), it is enough to establish
that every connected parabolic limit set ∂P enjoys the following prop-
erty: there exists a non constant continuous curve η ⊂ ∂P , such that
letting Uε(η) be the ε-neighborhood of η in the C0 topology, the mod-
ulus Mod2(Uε(η), Gk) is bounded independently of k, for ε > 0 small
enough.

To do so, two cases are distinguished: either ∂P is a circular limit
set i.e. it is homeomorphic to the circle, or it is not.

In the second case one can find two crossing curves η1, η2 ⊂ ∂P . Since
∂Γ is a planar set, one gets that mini=1,2 Mod2(Uε(ηi), Gk) is bounded
independently of k, for ε small enough. Note that crossing type argu-
ments in relation with the combinatorial 2-modulus, appear frequently
in the papers [Can94], [CS98] and [CFP99] (not to mention the whole
body of literature on 2-dimensional quasiconformal geometry).

Let r > 0, and denote by F1 the subfamily of F0 consisting of the
curves γ ∈ F0 which do not belong to the r-neighborhood Nr(∂P ) of
any circular limit set ∂P . At this stage one knows that for r small
enough, Mod2(F1, Gk) is bounded independently of k. To bound the
modulus of F0 \ F1, we proceed as follows. Consider a curve γ ∈
F0 contained in Nr(∂P ), where ∂P is a circular parabolic limit set.
The idea is to break γ into pieces γ1, . . . , γi, such that for each j ∈
{1, . . . , i}, the maximal distance max{d(x, ∂P ) ; x ∈ γj} is comparable
to diam(γj). Then for each j, applying a suitable group element g ∈ Γ,
we can arrange that both gγj and g∂P have roughly unit diameter.
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Since g γj lies close to g ∂P , but not too close, it cannot lie very close
to a circular limit set; it follows that gγj belongs to a curve family with
controlled modulus. We then apply g−1 to the corresponding admissible
function, and renormalize it suitably; by summing the collection of
functions which arise in this fashion from all such configurations, we
arrive at an admissible function for all such curves γ. The fact that
the conformal dimension of S1 is < 2 allows us to bound the 2-mass of
this admissible function, and this yields the desired bound (1.3).

We note that in the body of the paper, the argument in the preceding
paragraph appears in Theorem 4.3, where it is formulated in greater
generality. It is also used in the proofs of Theorem 6.6 and Corollary
9.4.

1.4. Organization of the paper. Section 2 contains preliminary re-
sults about various dynamical aspects of the action of a hyperbolic
Coxeter group on its boundary. Combinatorial modulus, combinato-
rial Loewner property, and approximately self-similar metric spaces are
presented in Section 3. Section 4 is the heart of the paper, it focusses
on the combinatorial modulus on boundaries of hyperbolic Coxeter
groups. Section 5 discusses a proof of the Cannon’s conjecture in the
Coxeter group case. An application to Coxeter groups with Sierpinski
carpet boundary is given. Section 6 establishes a sufficient condition
for a Coxeter boundary to satisfy the combinatorial Loewner property.
Examples are presented in Section 7. In Section 8 the combinatorial
Loewner property is established for the square Sierpinski carpet and
the cubical Menger sponge. Section 9 discusses applications to the
`p-equivalence relations.

1.5. Suggestions to the reader. Readers who are concerned only
with the Coxeter group case of the Cannon’s conjecture may read Sec-
tion 2, Subsection 3.1, Subsection 3.3 until Corollary 3.14, and Sections
4 and 5.

For those who want to quickly understand the combinatorial Loewner
property for the square Sierpinski carpet and the cubical Menger sponge
cases, we recommand the following abbreviated itinerary : start with
Section 3, then go directly to Section 8 and follow the indications there
to find the required arguments in the rest of the paper.
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Special thanks to Peter Häıssinsky for his interest and for several com-
ments on a first version of the paper. M. B. was partially supported
by ANR grant “Cannon”, and B. K. by NSF grant DMS-0701515.

Notation and conventions. Any curve γ : [a, b]→ X is assumed to
be continuous. Often we do not distinguish between γ and its image
γ([a, b]). Two real valued functions f, g defined on a space X are said
to be comparable, and then we write f � g, if there exists a constant
C > 0 such that C−1f ≤ g ≤ Cf . A continuum is a non-empty
compact connected topological space, it is non-degenerate if it contains
more than one point. For an open ball B = B(x, r) in a metric space
and for λ > 0, we denote by λB the ball B(x, λr). The radius of a
ball B is denoted by r(B). The open r-neighborhood of a subset E is
denoted by Nr(E). A subset E of a set F is called a proper subset of
F if E $ F .

2. Hyperbolic Coxeter groups

This section exhibits some specific dynamical properties of the action
of a (word) hyperbolic Coxeter group on its boundary.

2.1. Invariant subsets and parabolic subgroups. We start by re-
calling some standard definitions, see [Dav08] for more details. Let
(Γ, S) be a Coxeter system. A special subgroup of Γ is a subgroup
generated by a non-empty subset I of S, we shall denote it by ΓI . A
parabolic subgroup of Γ is a conjugate of a special subgroup. Let G be
the Cayley graph of (Γ, S). We define G0 and G1 to be the set of ver-
tices and of (non-oriented) open edges respectively. Each edge carries
a type which is an element of S. The distance between two vertices
x, y of G is denoted by |x − y|. For s ∈ S the wall associated to s is
the subset Ms ⊂ G1 of s-invariant (open) edges. The graph G \Ms

consists of two disjoint convex closed subsets of G, denoted by H−(Ms)
and H+(Ms), and called the half-spaces bounded by Ms. They satisfy
the relations

H−(Ms)
0 = {g ∈ Γ ; |sg| = |g|+1}, H+(Ms)

0 = {g ∈ Γ ; |sg| = |g|−1},
and s permutes H−(Ms) and H+(Ms). A wall of G is a subset of the
form g(Ms), with g ∈ Γ and s ∈ S. The involution gsg−1 is called the
reflection along the wall g(Ms). The set of walls forms a partition of
G1. Each wall M divides G in two disjoint convex closed subsets, called
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the half-spaces bounded by M and denoted by H−(M) and H+(M),
with the convention that e ∈ H−(M), where e denotes the identity of
Γ.

Assume now that Γ is a hyperbolic Coxeter group (see e.g. [Gro87],
[BH99] and their references for hyperbolic groups and related topics).
We denote by ∂Γ its boundary at infinity equipped with a visual metric.
For a subset E of G we denote by ∂E its limit set in ∂Γ. A non-empty
limit set of a parabolic subgroup of Γ will be called a parabolic limit
set. If in addition it is a topological circle we shall call it a circular
limit set.

The limit set of a wall M is either of empty interior or equal to ∂Γ.
Indeed this property is well-known for limit sets of subgroups, and the
stabilizer of M in Γ acts cocompactly on M . Using the convexity of
the half-spaces one easily sees that

∂H−(M) ∪ ∂H+(M) = ∂Γ, ∂H−(M) ∩ ∂H+(M) = ∂M.

In consequence, in ∂Γ, the fixed point set of a reflection is the limit set
of its wall.

The following property asserts in particular that the limit sets of
half-spaces form a basis of neighborhoods in ∂Γ.

Proposition 2.1. There exists a constant λ ≥ 1 such that for every
z ∈ ∂Γ and every 0 < r ≤ diam(∂Γ) there exists a half-space H of G
with

B(z, λ−1r) ⊂ ∂H ⊂ B(z, λr).

Proof. Let δG be the triangle fineness constant of G. Using the convex-
ity of the half-spaces and the visual metric one sees that it is enough
to establish the existence of a constant L > 0 with the following prop-
erty. Let x, x1, y1, y be arbitrary 4 points of G lying in this order on
a geodesic line. If |x1 − y1| ≥ L then there exists a wall M passing
between x1 and y1 such that

dist(x,M) ≥ |x− x1| − 2δG and dist(y,M) ≥ |y − y1| − 2δG.

In order to prove this property observe that different edges of a geodesic
segment give rise to different walls. Thus there are as many walls
passing between x1 and y1 as many edges in [x1, y1]. Let (a, b) be such
an edge and let M be the corresponding wall. Let p ∈ G0 be a vertex
adjacent to M realizing dist(x,M). Assume that |x−p| < |x−x1|−2δG.
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Then by Gromov hyperbolicity one has dist(p, [x, x1]) ≤ 2δG. Applying
Gromov hyperbolicity once again we obtain that

dist([p, a], x1) ≤ 3δG.

Observe that the geodesic segment [p, a] lies in a δG-neighborhood of
M . Indeed the Hausdorff distance between [p, a] and its image by the
reflection along M is smaller than δG. Therefore the distance between
M and x1 is smaller than 4δG. A similar argument applies to y and
y1. Let N be the number of walls M ⊂ G such that dist(e,M) ≤ 4δG.
The property follows letting L = 2N + 1. �

We study now the parabolic subgroups of Γ in connection with the
action of Γ on its boundary.

Definition 2.2. Let M be a wall of G and let F be a subset of ∂Γ. We
say that M cuts F if F meets both subsets ∂H−(M) and ∂H+(M).

Theorem 2.3. Let F be a subset of ∂Γ containing at least two distinct
points. Assume that F is invariant under each reflection whose wall
cuts F , and let P be the subgroup of Γ generated by these reflections.
Then P is a parabolic subgroup of Γ, the closure of F is the limit set
of P , and P is the stabilizer of F in Γ.

To prove the theorem we introduce the following notion which will
also be useful in the sequel:

Definition 2.4. Let F be a subset of ∂Γ. Assume it contains at least
two distinct points. The convex hull CF of F is the intersection of all
the half-spaces H in G such that F belongs to the interior of ∂H in
∂Γ. It is a convex subgraph of G.

Lemma 2.5. The limit set ∂CF is the closure of F . In addition every
wall of G which intersects CF cuts F .

Proof. Since CF contains every geodesic in G with both endpoints in F ,
one has F ⊂ ∂CF , and thus F ⊂ ∂CF . To prove the converse inclusion
pick a point z ∈ ∂Γ\F . Since F is a closed set, Proposition 2.1 insures
the existence of a wall M , with associated half-spaces H+ and H−, such
that

z ∈ (∂H+ \ ∂M) and ∂H+ ⊂ (∂Γ \ F ).

It follows that z /∈ ∂H− and that F ⊂ (∂Γ \ ∂H+) = int(∂H−),
therefore z /∈ ∂CF .

Let M be a wall intersecting CF and let (x, y) be an edge in the
intersection. Since CF is a closed subset of G it contains x and y.
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Hence both half-spaces H+, H− bounded by M intersect CF . It follows
that F is contained neither in int(∂H+) = ∂Γ\∂H−, nor in int(∂H−) =
∂Γ \ ∂H+. Thus M cuts F . �

Proof of Theorem 2.3. Consider the convex hull CF of F in G. This
is a closed non-empty P -invariant convex subset of G. Note also that
any wall M which cuts F must intersect CF , since CF is connected and
invariant under reflection in M .

Up to conjugacy we can assume that e belongs to CF . We claim
that P is generated by the elements s ∈ S such that the walls Ms

intersect CF . To this aim let x ∈ C0
F and let x0 = e, x1, ..., xn = x be

the successive vertices of a geodesic segment joining e to x in G. The
wall Mk between xk and xk+1 intersects CF , thus according to Lemma
2.5 it cuts F . Therefore the reflection along the wall Mk belongs to P .
So we get that P acts freely and transitively on C0

F . The claim and the
theorem now follow easily. �

A first corollary concerns a special class of equivalence relations on
∂Γ. Examples of such equivalence relations will be given in Section 9.

Corollary 2.6. Consider a Γ-invariant equivalence relation on ∂Γ
whose cosets are connected. Then:

(1) The closure of each coset is either a point or a parabolic limit
set.

(2) If a nontrivial coset F is path-connected, and P is the parabolic
subgroup with F̄ = ∂P , then for every ε > 0 and every path
η : [0, 1]→ ∂P , there is a path η′ : [0, 1]→ F such that

d(η, η′) = max
t∈[0,1]

d(η(t), η′(t)) < ε .

Proof. (1). If F is a coset, and a wall M cuts F , then the limit set
∂M intersects F , because F is connected. Since the reflection in M is
the identity map on ∂M , the coset and its image intersect, so they are
equal. Therefore the assertion follows from Theorem 2.3.

(2). Suppose F is path-connected, F = ∂P , η ⊂ ∂P is a path,
and ε > 0. By Proposition 2.1, we can find a finite collection of half-
spaces H1, . . . , Hk ⊂ G, such that the limit sets ∂H1, . . . , ∂Hk ⊂ ∂Γ
each have diameter < ε, and their interiors cover the image of η. We
can then choose 0 = t0 < t1 < . . . < tn = 1 such that for each i,
the pair η(ti−1), η(ti) is contained in ∂Hji for some ji ∈ {1, . . . , n}, and
diam(η([ti−1, ti])) < ε/2. Since F is dense in ∂P , for each j ∈ {1, . . . , n}
we may choose sj ∈ F close enough to η(tj), such that for all i, the pair
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si−1, si also lies in ∂Hji . By the path connectedness of F , we may join
si−1 to si by a path γ̄i ⊂ F ; reflecting the portion of γ̄i lying outside
∂Hji into ∂Hji using the reflection whose wall bounds Hji , we get a
path γi ⊂ ∂Hji joining si−1 to si. Concatenating the γi’s, we obtain
the desired path η′. �

The same proof gives:

Corollary 2.7. Let Φ be a quasiconvex subgroup of Γ with connected
limit set. Assume that for all g ∈ Γ, the intersection g∂Φ ∩ ∂Φ is
either empty, or equal to ∂Φ. Then Φ is virtually a parabolic subgroup
of Γ. In other words there exists a parabolic subgroup P of Γ such that
Φ ∩ P is of finite index in both subgroups Φ and P .

�

Corollary 2.8. Each connected component of ∂Γ containing more than
one point is a parabolic limit set.

�

2.2. Shadowing curves. In this paragraph we present a sort of a
quantitative version of Theorem 2.3.

Let γ be a non constant curve in ∂Γ. Up to a translation by a group
element, we can assume that the convex hull Cγ of γ contains e the
identity of Γ (the convex hull of a subset of ∂Γ is defined in Definition
2.4).

Definition 2.9. Let γ be a non constant curve in ∂Γ, let I be a non-
empty subset of S and let L ≥ 0. We say that γ is a (L, I)-curve if
e ∈ Cγ, and if for every s ∈ I there exists an edge as of type s in Cγ
with dist(e, as) ≤ L.

Proposition 2.10. Let ε > 0 and let L, I be as in the above definition.
Let P 5 Γ be a conjugate of ΓI , and let η be a (parametrized) curve
contained in ∂P . There exists a finite subset E ⊂ Γ such that for
any (L, I)-curve γ the subset

⋃
g∈E gγ ⊂ ∂Γ contains a curve which

approximates η to within ε with respect to the C0 distance.

Proof. Since ∂P is a translate of ∂ΓI we may assume that P = ΓI .

First step : we show that for every (L, I)-curve γ the subset⋃
{g∈Γ ; |g|≤L}

gγ
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of ∂Γ contains a curve passing through every ∂Ms with s ∈ I. For this
purpose pick s ∈ I , let as ⊂ Cγ be an edge of type s with dist(e, as) ≤
L, and let M be the wall containing as. Let g ∈ H−(M) such that
as = (g, gs). The geodesic segment [e, g] belongs to Cγ (by convexity).
Denote by

g0 = e, g1 = σ1, g2 = σ1σ2, ... , gn = g = σ1...σn,

the successive vertices of the segment [e, g] with σi ∈ S. According to
Lemma 2.5 the wall Mi passing between gi and gi+1 cuts γ. Thus for
every i ∈ {0, ..., n− 1} the curves γ and giσi+1g

−1
i γ intersect. One has

giσi+1g
−1
i = gig

−1
i+1. It follows that the subset γ ∪ g−1

1 γ ∪ ...∪ g−1
n γ is an

arcwise connected set. It intersects the limit set of the wall g−1M = Ms.
Thus the subset ⋃

{g∈Γ ; |g|≤L}

gγ

is an arcwise connected set which intersects the limit set of every walls
Ms with s ∈ I.

Second step : Consider a collection H1, ..., Hk of half-spaces in G all
of them intersecting the special subgroup ΓI properly i.e. ΓI ∩ Hi 6=
∅ nor ΓI . We will show that there exists a finite subset E0 of Γ such
that for any (L, I)-curve γ, one can find in the subset

⋃
g∈E0

gγ ⊂ ∂Γ
a curve passing through every ∂H1, ..., ∂Hk. To do so, pick for each
i ∈ {1, ..., k} an element pi ∈ ΓI adjacent to the wall which bounds
Hi. Let c be a path in G which joins successively p1, ..., pk and whose
vertices c1, ..., cn lie in ΓI . Define

E0 = {cig ∈ Γ ; |g| ≤ L, 1 ≤ i ≤ n},

and let θ be a curve made of translates of γ passing through every ∂Ms

with s ∈ I (as constructed in step 1). The subset
⋃

1≤i≤n ciθ meets the
limit set of any wall ciMs with i ∈ {1, ..., n} and s ∈ I. In particular
it intersects ∂H1, ..., ∂Hk. In addition this is an arcwise connected set.
Indeed write ci+1 = cis = σci, with s ∈ I and σ = cisc

−1
i . Then

ci+1θ = σciθ. The curve θ intersects ∂Ms, thus ciθ intersects ci∂Ms.
The intersection set is pointwise invariant by the reflection σ and thus
it belongs to ci+1θ too.

Last step : We finally prove the proposition. By Proposition 2.4
there exists a collection of half-spaces H ′1, ..., H

′
k+1 of G such that the

union of their limit sets is a neighborhood of η contained in the ε/2-
neighborhood of η. Reordering if necessary we may assume that the
curve η enters successively ∂H ′1, ..., ∂H

′
k. Pick a collection of half-spaces
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H1, ..., Hk each of them intersecting ΓI properly, and such that for every
i ∈ {1, ..., k} one has

∂Hi ⊂ ∂H ′i ∩ ∂H ′i+1.

Existence of the Hi’s follows from Proposition 2.4. According to step 2
there exists a subset E0 of Γ such that for every (L, I)-curve γ, one can
find in the subset

⋃
g∈E0

gγ a curve passing through every ∂H1, ..., ∂Hk.
Denote by θ such a curve. The part of θ between ∂Hi−1 and ∂Hi may
exit from ∂H ′i. If it happens reflect the outside part of θ along the
wall which bounds H ′i. The resulting curve can be parametrized to
approximate η to within ε with respect to the C0 distance. Let σi be
the reflection along the wall of H ′i. The following subset of Γ

E = E0 ∪
k⋃
i=2

σiE0

satisfies the property we were looking for. �

We now establish the abundance of (L, I)-curves. Denote by Nr(E)
the open r-neighborhood in ∂Γ of a subset E ⊂ ∂Γ.

Proposition 2.11. Let I ⊂ S and let P 5 Γ be a conjugate of ΓI . For
all r > 0 there exist L ≥ 0 and δ > 0 such that every curve γ ⊂ ∂Γ
satisfying the following conditions is a (L, I)-curve :

(i) its convex hull contains e,
(ii) γ ⊂ Nδ(∂P ),

(iii) γ * Nr(∂Q) for any parabolic Q � P with connected limit set.

Proof. Assume by contradiction that for every L ≥ 0 and δ > 0 there
exists a curve γ which satisfies property (i), (ii) and (iii), and which is
not a (L, I)-curve. Choose L = n, δ = 1/n and pick γn a correspond-
ing curve. We may assume, by extracting a subsequence if necessary,
that there exists an element s ∈ I such that for every n ≥ 1 no edge
of Cγn ∩ B(e, n) is of type s. We also may assume that the sequence
of compact subsets {γn}n≥1 converges for the Hausdorff distance to a
non-degenerate continuum L ⊂ ∂P , and that the sequence {Cγn}n≥1

converges to a convex subset C ⊂ G on every compact subset of G.
With item (i) one has e ∈ C, moreover one sees easily that L ⊂ ∂C.
The fact that no edge of C is of type s implies that L is contained in
the limit set of the special subgroup generated by S \ {s}. Intersec-
tions of parabolic subgroups are again parabolic subgroups (see [Dav08]
Lemma 5.3.6), thus L is contained in the limit set of a proper para-
bolic subgroup of P . By Corollary 2.8 the connected component which
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contains L is the limit set of a proper parabolic subgroup Q of P . So
we get a contradiction with the hypothesis (iii). �

Remarks and questions : 1) Theorem 2.3 admits a partial converse.
Indeed let P = gΓIg

−1 be a parabolic subgroup of Γ and let M be a
wall of G such that ∂P meets both open subsets ∂H−(M) \ ∂M and
∂H+(M) \ ∂M . Then a convexity argument shows that M admits
an edge whose end-points lie in gΓI . Thus letting σ be the reflection
along M , there exist h, h′ ∈ ΓI such that σgh = gh′. It follows that
σ = gh′h−1g−1 ∈ P , and so ∂P is σ-invariant.

2) Let Γ be an arbitrary hyperbolic group. Recall that the limit
set of the intersection of two quasiconvex subgroups is the intersection
of their limit sets (see [Gro93] p. 164). Hence for any quasiconvex
subgroup Φ 5 Γ the following properties are equivalent :

– for every g ∈ Γ, g∂Φ ∩ ∂Φ = ∂Φ or ∅,
– for every g ∈ Γ, either gΦg−1 ∩ Φ is finite or is of finite index

in both subgroups gΦg−1 and Φ.

3) Given a subset E ⊂ ∂Γ there exists a unique smallest parabolic
limit set ∂P containing E, moreover if E is connected and non reduced
to a point then ∂P is so. Indeed this follows from the fact that parabolic
subgroups are stable by intersection (see [Dav08] Lemma 5.3.6), from
the property of intersections of limit sets recalled in Remark 2 above,
and from Corollary 2.8.

4) Let Γ be a hyperbolic group and consider a closed Γ-invariant
equivalence relation on ∂Γ whose cosets are continua. What one can
say about such equivalence relations ? In particular for which groups
Γ do the nontrivial cosets arise as the limit sets of a finite collection of
conjugacy classes of quasiconvex subgroups ?

Note that the quotient space of ∂Γ by a Γ-invariant closed equiva-
lence relation ∼ is a compact metrizable space on which Γ acts as a
convergence group, i.e. Γ acts properly discontinuously on the set of
triples of distinct points of ∂Γ/∼ (see [Bow99]).

3. Combinatorial modulus

This section develops the theory of combinatorial modulus in a gen-
eral setting. The combinatorial Loewner property and related topics
are discussed. For the classical notions of geometric function theory
used in this paper, we refer to [Hei01].
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Versions of combinatorial modulus have been considered by sev-
eral authors in connection with Cannon’s conjecture on groups with
2-sphere boundary (see e.g. [Can94, CS98, CFP99, BK02, Haib] ), and
in a more general context [Pan89b, Tys98].

3.1. Definitions and first properties. Let (Z, d) be a compact met-
ric space, let k ∈ N and let κ ≥ 1. A finite graph Gk is called a κ-
approximation of Z on scale k, if it is the incidence graph of a covering
of Z such that for every v ∈ G0

k there exists zv ∈ Z with

B(zv, κ
−12−k) ⊂ v ⊂ B(zv, κ2−k),

and for v, w ∈ G0
k with v 6= w :

B(zv, κ
−12−k) ∩B(zw, κ

−12−k) = ∅.

Note that we identify every vertex v of Gk with the corresponding
subset in Z. A collection of graphs {Gk}k∈N is called a κ-approximation
of Z, if for each k ∈ N the graph Gk is a κ-approximation of Z on scale
k.

Let γ : [a, b] → Z be a curve and let ρ : G0
k → R+ be any function.

The ρ-length of γ is

Lρ(γ) =
∑
v∩γ 6=∅

ρ(v).

For p ≥ 1 the p-mass of ρ is

Mp(ρ) =
∑
v∈G0

k

ρ(v)p.

Let F be a non-void family of curves in Z, we define itsGk-combinatorial
p-modulus by

Modp(F , Gk) = inf
ρ
Mp(ρ),

where the infimum is over all F-admissible functions i.e. functions
ρ : G0

k → R+ which satisfy Lρ(γ) ≥ 1 for every γ ∈ F . If F = ∅ we
set Modp(F , Gk) = 0. Observe that admissible functions with minimal
p-mass are smaller than or equal to 1.

We denote by F(A,B) the family of curves joining two subsets A
and B of Z and by Modp(A,B,Gk) its Gk-combinatorial p-modulus.
The following properties are routine.
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Proposition 3.1. 1) If F1 ⊂ F2 then Modp(F1, Gk) ≤ Modp(F2, Gk).

2) Let F1, ...,Fn be curves families then

Modp(∪Fj, Gk) ≤
∑

Modp(Fj, Gk).

3) Let F1,F2 be two curve families. Suppose that each curve in F1

admits a subcurve in F2, then Modp(F1, Gk) ≤ Modp(F2, Gk).

�

Recall that a metric space Z is called a doubling metric space if there
is a constant n ∈ N such that every ball B can be covered by at most

n balls of radius r(B)
2

. For a doubling metric space the combinatorial
modulus does not depend on the choice of the graph approximation up
to a multiplicative constant. More precisely we have :

Proposition 3.2. Assume that Z is a doubling metric space. Then
for every κ, κ′ ≥ 1 and every p ≥ 1 there exists a constant D ≥ 1 such
that for any k ∈ N and for any graphs Gk, G

′
k which are respectively κ

and κ′-approximations of Z on scale k, one has

D−1 Modp(·, Gk) ≤ Modp(·, G′k) ≤ DModp(·, Gk).

Proof. The doubling property allows one to bound the maximal number
N of pieces of G0

k which overlap a given piece of G′k
0, in terms of n, κ, κ′.

Let F be a family of curves in Z. For every F -admissible function
ρ : G0

k → R+ define ρ′ : G′k
0 → R+ by

ρ′(v′) = max{ρ(v) ; v ∈ G0
k, v ∩ v′ 6= ∅}.

Then Nρ′ is a F -admissible function for the graph G′k. In addition we
have

Mp(ρ
′) ≤ NMp(ρ),

so we get

Modp(F , G′k) ≤ Np Modp(F , Gk).

�

The following lemma is sometimes useful to understand the asymp-
totic behaviour of a minimal admissible function when k tends to +∞.
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Lemma 3.3. Let F be a curve family in Z, let Gk be a κ-approximation
of Z on scale k, and let ρ : G0

k → R+ be a F-admissible function with
minimal p-mass. For v ∈ G0

k define

Fv = {γ ∈ F ; γ ∩ v 6= ∅}.
Then one has ρ(v) ≤ Modp(Fv, Gk)

1/p.

Proof. Let ρv : G0
k → R+ be a minimal Fv-admissible function, and

let ρ̃ be the function on G0
k defined by ρ̃(w) = max{ρ(w), ρv(w)} for

w 6= v, and by ρ̃(v) = ρv(v). Clearly ρ̃ is a F -admissible function, thus:

Modp(F , Gk) ≤Mp(ρ̃) ≤
∑
w 6=v

ρ(w)p +
∑
w

ρv(w)p,

which implies that

Modp(F , Gk) ≤ Modp(F , Gk)− ρ(v)p + Modp(Fv, Gk).

The statement follows. �

3.2. The Combinatorial Loewner property (CLP). In this sub-
section we define a combinatorial analogue of the Loewner property
introduced by J. Heinonen and P. Koskela in [HK98]. This notion ap-
pears in [Kle06] Section 7. We will show that the CLP has a number
of features in common with the Loewner property. Examples of spaces
satisfying the combinatorial Loewner property will be given in Sections
7 and 8.

We assume that Z is a compact arcwise connected doubling met-
ric space, in particular Proposition 3.2 holds. Let {Gk}k∈N be a κ-
approximation of Z. Recall that the relative distance between two
disjoint non-degenerate continua A,B ⊂ Z is

∆(A,B) =
dist(A,B)

min{diamA, diamB}
.

Definition 3.4. Suppose Q > 1. Then Z satisfies the Combinatorial p-
Loewner Property if there exist two positive increasing functions φ, ψ of
(0,+∞) with limt→0 ψ(t) = 0, such that for all disjoint non-degenerate
continua A,B ⊂ Z and for all k with 2−k ≤ min{diamA, diamB} one
has :

φ(∆(A,B)−1) ≤ Modp(A,B,Gk) ≤ ψ(∆(A,B)−1).

The following properties have been established by J. Heinonen and P.
Koskela for the Loewner spaces (see [HK98] Theorem 3.13 and Remark
3.19). Their proof generalizes verbatim to the spaces which satisfy the
combinatorial Loewner property.
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Proposition 3.5. Assume that Z satisfies the CLP, then :

(1) It is linearly connected, in other words there exists a constant
C ≥ 1 such that any two points z1, z2 ∈ Z can be joined by a
path of diameter less or equal to Cd(z1, z2),

(2) It has no local cut point, in other words no connected open
subset is disconnected by removing a point.

We also have:

Theorem 3.6.

(1) If Z is a compact Ahlfors p-regular, p-Loewner metric space,
then Z satisfies the combinatorial p-Loewner property.

(2) If Z ′ is quasi-Moebius homeomorphic to a compact space Z sat-
isfying the CLP, then Z ′ also satisfies the CLP (with the same
exponent).

The proof of (1) involves tranferring admissible functions on the
metric measure space to admissible functions on an associated discrete
approximation, and vice-versa. The arguments are straightforward im-
itations of those appearing in [HK98, BK02, Haib], so we omit them.

The proof of (2) is similar in spirit, except that the admissible func-
tions are transferred between two discrete approximations. It involves
some of the techniques that will be used frequently in the sequel.

Proof of (2). We start by some general observations. Let f : Z → Z ′

be a quasi-Moebius homeomorphism. Given a κ′-approximation G′` of
Z ′, the preimages f−1(v′) of the pieces v′ ∈ G′0` form a covering of Z
that we denote by U . It enjoys the following properties : there exist
constants λ ≥ 1 and N ∈ N, depending only on κ′ and the geometric
data of Z,Z ′, f , such that

(i) For every u ∈ U , there is a ball Bu ⊂ Z with 1
λ
Bu ⊂ u ⊂ Bu.

(ii) For every z ∈ Z, the number of balls Bu containing z is bounded
by N .

(iii) If 2Bu and 2Bv intersect, their radii satisfy r(Bu) ≤ λr(Bv).

For disjoint continua E,F ⊂ Z one defines in an obvious way their
p-modulus relatively to the covering U , denoted by Modp(E,F,U), so
that Modp(E,F,U) = Modp(f(E), f(F ), G′`).
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Assuming that Z satisfies the combinatorial p-Loewner property, we
will compare Modp(E,F,U) and Modp(E,F,Gk) for k large. The state-
ment (2) will follow since ∆(E,F ) and ∆(f(E), f(F )) are quantita-
tively related (see [BK02] Lemma 3.2). We begin by the :

Left hand side CLP inequalities. To establish the left hand side
CLP inequalities for Z ′ and G′`, we may assume that 2−` is small in
comparison with dist(f(E), f(F )). Indeed, in the contrary, there is a
family of curves joining f(E) and f(F ), which lies in the union of a con-
trolled amount of pieces of G′` ; its G′`-modulus is bounded from below
in terms of the number of these pieces. Thus, via the correspondence
induced by f , we may assume in addition that

(iv) None of the 2Bu (u ∈ U) intersects both continua E,F .

Let ϕ : U → R+ be a F(E,F )-admissible function. For k � ` we
wish to define a F(E,F )-admissible function of G0

k whose p-mass is
controlled by above by Mp(ϕ). To this aim, for every u ∈ U , consider
a minimal F(Bu, Z \ 3

2
Bu)-admissible function ρu : G0

k → R+, and let
ρk : G0

k → R+ be defined by :

∀v ∈ G0
k, ρk(v) =

∑
u∈U

ϕ(u)ρu(v).

For every γ ∈ F(E,F ), one has with (iv) and the definition of ρu

1 ≤
∑
u∩γ 6=∅

ϕ(u) ≤
∑
u∩γ 6=∅

ϕ(u)
( ∑
v∩γ∩2Bu 6=∅

ρu(v)
)
.

Using property (ii) we obtain that Nρk is F(E,F )-admissible.

To estimate p-masses, observe that ρu being minimal, it is supported
on the set of v ∈ G0

k such that v ⊂ 2Bu. Moreover its p-mass is smaller
than ψ(1/2) since Z satisfies the CLP. In combination with (ii), these
properties show that the p-mass of ρk is∑

v∈G0
k

( ∑
u∈U ,v⊂2Bu

ϕ(u)ρu(v)
)p
≤ Np−1

∑
v∈G0

k

∑
u∈U

ϕ(u)pρu(v)p,

which is less than Np−1ψ(1/2)Mp(ϕ). Therefore the left hand side CLP
inequalities hold for Z ′. It remains to establish the :

Right hand side CLP inequalities. They require the following gen-
eral observation, that will be used frequently in the sequel too :
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Lemma 3.7. let F be a family of curves in a general metric space
Z and let M > 0. Then Modp(F , Gk) ≥ M if and only if for every
function ρ : G0

k → R+ there exists a curve γ ∈ F with

Lρ(γ) ≤
(Mp(ρ)

M

)1/p

.

Proof. Just remark that the modulus can be written as

Modp(F , Gk) = inf
ρ

Mp(ρ)

Lρ(F)p
with Lρ(F) = inf

γ∈F
Lρ(γ),

where ρ is any positive function on G0
k. �

Let k � ` and let ρk : G0
k → R+ be any function. According

to Lemma 3.7, to establish the right hand side CLP inequalities for
Z ′, it is enough to construct a curve γ ∈ F(E,F ) whose ρk-length is
controlled by above by ( Mp(ρk)

Modp(E,F,U)

)1/p

.

We assume that 2−` ≤ min{diam f(E), diam f(F )}. Increasing λ if
necessary, it yields :

(v) Whenever Bu intersects E, the diameter of 2Bu ∩ E is larger
than 1

λ
r(Bu) (and the same holds for F too).

Let Λ ≥ 1 be a constant (that will be specified later on), and let
ϕ : U → R+ be the function :

∀u ∈ U , ϕ(u) =
( ∑
v∩2ΛBu 6=∅

ρk(v)p
)1/p

.

The obvious generalization of property (ii) implies that

(3.1) Mp(ρk) �Mp(ϕ) .

Lemma 3.7 shows that there is a curve δ ∈ F(E,F ) such that

(3.2) Lϕ(δ) ≤
( Mp(ϕ)

Modp(E,F,U)

)1/p

.

Let ui ∈ U so that δ enters successively u1, ..., un, and set Bi := Bui
for

simplicity. We will now use the following lemma whose proof is similar
to the one of Lemma 3.17 in [HK98].
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Lemma 3.8. Let Z be a compact metric space satisfying the CLP.
Then for every α ∈ (0, 1) there exist constants Λ ≥ 1 and m > 0, such
that for every ball B ⊂ Z and every disjoint continua E1, E2 ⊂ B with
diamEi ≥ αr(B), the Gk-combinatorial p-modulus of the family

{η ∈ F(E1, E2) ; η ⊂ ΛB}
is greater than m, for every k with 2−k ≤ min{diamE1, diamE2}.

This lemma in combination with Lemma 3.7 and properties (iii),
(v), allows one to construct by induction on s ∈ {1, ..., n − 1} a curve
γs ⊂ ∪si=12ΛBi, joining E to Bs+1, whose ρk-length is bounded linearly
by above by

∑s
i=1 ϕ(ui). Indeed this follows from letting α = 1

2λ
,

Λ = Λ(α) and B = 2Bs in the statement of the above lemma. A step
futher gives a curve γ ∈ F(E,F ) whose ρk-length is bounded linearly
by above by Lϕ(δ). Thanks to the estimates (3.1) and (3.2), the curve
γ enjoys the expected properties. The theorem follows. �

Our next result is a combinatorial version of Proposition 3.1 in
[BK05a]. It asserts that a space which satisfies a combinatorial Loewner
type condition for pairs of balls satisfies the combinatorial Loewner con-
dition for all pairs of continua. It is a main tool to exhibit examples of
spaces satisfying the combinatorial Loewner property.

Proposition 3.9. Let p ≥ 1. Assume that for every A > 0 there exist
constants m = m(A) > 0 and L = L(A) > 0 such that if r > 0 and
B1, B2 ⊂ Z are r-balls with dist(B1, B2) ≤ Ar, then for every k ≥ 0
with 2−k ≤ r the Gk-combinatorial p-modulus of the family

{γ ∈ F(B1, B2) ; diam γ ≤ Lr}
is greater than m. Then there exists a positive increasing function φ of
(0,+∞) such that for every disjoint non-degenerate continua E1, E2 ⊂
Z and for every k with 2−k ≤ min{diamE1, diamE2}, one has :

φ(∆(E1, E2)−1) ≤ Modp(E1, E2, Gk).

Its proof is a rather straighforward discretization of the “proof of
Proposition 3.1” in [BK05a]. For the sake of completeness and because
similar ideas will be used in Section 6, we will give the details of the
proof. Since it is the most technical part of paper, readers may skip it
at the first reading. The proof requires the following lemma which is
the analogue of Lemma 3.7 in [BK05a].

Lemma 3.10. Let Z as in Proposition 3.9 and suppose 0 < λ < 1/8.
There exist constants Λ = Λ(λ) and C = C(λ) with the following
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property. Let ρ : G0
k → R+ be any function, let B = B(z, r) be a ball

of radius 0 < r < diamZ, and let F1, F2 ⊂ Z be two continua with
Fi ∩ 1

4
B 6= ∅ and Fi \ B 6= ∅ for i = 1, 2. Then for 2−k+2 ≤ λr there

exist disjoint balls Bi, i = 1, 2 and a path σ ⊂ Z such that :

(i) B1 and B2 are disjoint, they are centered on Fi and of radius
λr,

(ii) Bi ⊂ 7
8
B and ∑

v⊂Bi

ρ(v)p ≤ 8λ
∑
v⊂B

ρ(v)p,

(iii) the path σ joins 1
4
B1 to 1

4
B2, it is contained in ΛB and it has

ρ-length at most

C ·
( ∑
v⊂ΛB

ρ(v)p
)1/p

.

Proof. We can find a subcontinuum E1 ⊂ F1 which is contained in
B(z, 3r

8
) \ B(z, r

4
) and which joins Z \ B(z, 3r

8
) to B(z, r

4
). Similarly

we can find a subcontinuum E2 ⊂ F2 which is contained in B(z, 3r
4

) \
B(z, 5r

8
) and which joins Z\B(z, 3r

4
) toB(z, 5r

8
). Then we have diamEi ≥

r/8 for i = 1, 2 and dist(E1, E2) ≥ r/4.

Since diamEi ≥ r/8, for every λ with 0 < λ < 1/8 there exist at
least 1

8λ
pairwise disjoint balls centered on Ei and of radius λr. So at

least one of them - called Bi - satisfies item (ii) of the statement. The
condition (i) is clearly satisfied by the pair of balls B1, B2.

Item (iii) follows from the hypothesis on the modulus of curves join-
ing the pair of balls 1

4
B1,

1
4
B2 and from Lemma 3.7. Note that the

radius of 1
4
Bi is equal to λr

4
therefore our hypotheses requires that

2−k ≤ λr
4

i.e. 2−k+2 ≤ λr. �

Proof of Proposition 3.9. Let λ ∈ R subject to the conditions 0 < λ <
1/8 and 2 · (8λ)1/p < 1.

Suppose E1, E2 ⊂ Z are disjoint non-degenerate continua and let
ρ : G0

k → R+. According to Lemma 3.7 we are looking for a curve γ
joining E1 to E2 whose ρ-length is at most(Mp(ρ)

M

)1/p

,

where M > 0 depends only on the relative distance between E1 and
E2.
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Pick pi ∈ Ei such that d(p1, p2) = dist(E1, E2). Set

r0 :=
1

2
min{d(p1, p2), diamE1, diamE2} > 0.

Let Bi = B(pi, r0) for i = 1, 2. Then B1 ∩ B2 = ∅ and Ei \ Bi 6= ∅ for
i = 1, 2. In addition :

dist(
1

4
B1,

1

4
B2) ≤

(4d(p1, p2)

r0

)r0

4
≤ t

r0

4
,

where t := 8 max{1,∆(E1, E2)}. By our hypotheses one can find a path

σ joining 1
4
B1 to 1

4
B2 and whose ρ-length is at most (Mp(ρ)

m
)1/p where

m = m(t) is the constant appearing in the statement of Proposition
3.9.

By using Lemma 3.10 inductively, we will construct for successive
integers n a family of balls Bn, a collection of continua Ωn, and a
collection of paths Σn, such that :

(1) B0 = {B1, B2}, Ω0 = {E1, E2} and Σ0 = {σ} are defined previ-
ously .

(2) For n ≥ 1 the family Bn consists of 2n+1 disjoint balls of radius
λnr0. Each ball B ∈ Bn is centered on a continuum ω ∈ Ωn

with ω \B 6= ∅. The collection Σn consists of 2n paths, for each
element σ ∈ Σn there are exactly two elements B1, B2 ∈ Bn
such that σ joins 1

4
B1 to 1

4
B2.

The induction proceeds as follows. According to item (2) for every ball
B ∈ Bn there exist ω ∈ Ωn and σ ∈ Σn such that the pair {F1, F2} :=
{ω, σ} satisfies Fi ∩ 1

4
B 6= ∅ and Fi \B 6= ∅ for i = 1, 2. Thus applying

Lemma 3.10 we get two disjoint balls B1, B2 and a path σ joining 1
4
B1

to 1
4
B2. The balls Bi are of radius λn+1r0, they are centered respectively

on ω and σ. The definitions of Bn+1 and Σn+1 are therefore clear. We
define Ωn+1 to be Ωn ∪ Σn.

With Lemma 3.10 and by construction the following additional prop-
erties are satisfied :

(3) For every ball B ∈ Bn there exists a ball B′ ∈ Bn−1 such that
B ⊂ 7

8
B′ and ∑

v⊂B

ρ(v)p ≤ 8λ
∑
v⊂B′

ρ(v)p.
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(4) For every path σ ∈ Σn there exists a ball B′ ∈ Bn−1 such that
σ lies in ΛB′ and has ρ-length at most

C ·
( ∑
v⊂ΛB′

ρ(v)p
)1/p

,

where Λ = Λ(λ) and C = C(λ) .
(5) At each stage n one can index the elements of

⋃
`≤n Σ` by

σ1, ..., σm and the elements of Bn by B1, ..., Bm+1, in order that
B1 meets E1 and σ1, Bi meets σi−1 and σi for 2 ≤ i ≤ m , and
Bm+1 meets σm and E2.

We iterate this procedure as long as n ∈ N satisfies 2−k+2 ≤ λnr0. Let
N be the largest integer satisfying this condition.

It remains to connect the paths σi described in item (5) to obtain a
curve joining E1 to E2. For this purpose observe that the hypotheses
of Proposition 3.9 assert that for every pair z1, z2 of points in Z there
exists a path joining B(z1,

1
4
d(z1, z2)) to B(z2,

1
4
d(z1, z2)) whose diam-

eter is comparable to d(z1, z2). This property implies that every pair
of points z1, z2 are connected by a path whose diameter is comparable
to d(z1, z2), (see Lemma 3.4 in [BK05a] for more details). Therefore
increasing Λ if necessary and using item (5) with n = N we exhibit a
family Θ consisting of 2N+1 curves such that :

(6) For every θ ∈ Θ the union of the subsets v ∈ G0
k with v ∩ θ 6= ∅

is contained in a ball of the form ΛB with B ∈ BN .
(7) The following subset contains a curve γ joining E1 to E2 :⋃

θ∈Θ

θ ∪
⋃
n≤N

⋃
σ∈Σn

σ.

Observe that for B ∈ BN the number of v ∈ G0
k with v ⊂ ΛB is

bounded in terms of Λ, κ and the doubling constant of Z. Hence in-
creasing C if necessary we obtain with property (6) that

(8) Every θ ∈ Θ has ρ-length at most

C ·
( ∑
v⊂ΛB

ρ(v)p
)1/p

,

where B ∈ BN is the ball attached to θ in item (6).

We now compute the ρ-length of the curve γ defined in (7). At first
with properties (2) and (3) one obtains that for 0 ≤ s ≤ n ≤ N and for
every ball B ∈ Bn there exists a ball B′ ∈ Bn−s such that ( 1

8λ
)sB ⊂ B′.

Let s = s(λ) be the smallest integer such that ( 1
8λ

)s ≥ Λ.
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With properties (4) and (3) we get that for s < n ≤ N the ρ-length
of every curve σ ∈ Σn is less than

C ·
(

(8λ)n−s−1Mp(ρ)
)1/p

.

Similarly with properties (8) and (3) we get that the ρ-length of every
curve θ ∈ Θ is less than

C ·
(

(8λ)N−sMp(ρ)
)1/p

.

For 0 < n ≤ s each σ ∈ Σn has ρ-length at most C(Mp(ρ))1/p. Recall

that σ ∈ Σ0 has ρ-length at most (Mp(ρ)

m
)1/p. Finally :

Lρ(γ) ≤Mp(ρ)1/p
( 1

m1/p
+ C

s∑
n=1

2n + C
N+1∑
n=s+1

2n(8λ)(n−s−1)/p
)
.

Therefore letting D := C · (8λ)(−s−1)/p and a := 2 · (8λ)1/p we get

Lρ(γ) ≤Mp(ρ)1/p
( 1

m1/p
+D

N+1∑
n=1

an
)
,

and

M :=
( 1

m1/p
+D

N+1∑
n=1

an
)−p

satisfies the desired properties since a < 1 by assumption. �

3.3. Self-similarity. This subsection derives from self-similarity sev-
eral general principles that will be useful in the sequel. The following
definition appears in [Kle06] Section 3.

Definition 3.11. A compact metric space (Z, d) is called approximately
self-similar if there is a constant L0 ≥ 1 such that if B(z, r) ⊂ Z
is a ball of radius 0 < r ≤ diam(Z), then there is an open subset
U ⊂ Z which is L0-bi-Lipschitz homeomorphic to the rescaled ball
(B(z, r), 1

r
d).

Observe that approximately self-similar metric spaces are doubling
metric spaces. Examples include some classical fractal spaces like the
square Sierpinski carpet and the cubical Menger sponge (their respec-
tive definitions are recalled in Sections 5 and 8). Other examples are
provided by the following situation.
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Definition 3.12. Let Γ be a hyperbolic group. A metric d on ∂Γ is
called a self-similar metric, if there exists a Gromov hyperbolic geodesic
metric spaceX, on which Γ acts by isometries, properly discontinuously
and cocompactly, such that d is the preimage of a visual metric on ∂X
by the canonical homeomorphism ∂Γ→ ∂X.

By standard arguments ∂Γ equipped with a self-similar metric d is
approximately self-similar, the partial bi-Lipschitz maps being restric-
tions of group elements. Moreover Γ acts on (∂Γ, d) by bi-Lipschitz
homeomorphisms, and d is quasi-Moebius equivalent to a visual metric
on ∂Γ. In addition we remark that (∂Γ, d) is linearly connected as soon
as it is connected [BK05b].

A further source of examples comes from expanding Thurston maps,
[BM]. It follows readily from [BM, Theorem 1.2] that with respect to
any visual metric as in [BM], the 2-sphere is approximately self-similar.

For the rest of the subsection Z denotes an arcwise connected, ap-
proximately self-similar metric space. Let {Gk}k∈N be a κ-approximation
of Z. We fix a positive constant d0 which is small compared to the di-
ameter of Z and to the constant L0 of the Definition 3.11. Denote by
F0 the family of curves γ ⊂ Z with diam(γ) ≥ d0.

Proposition 3.13. Let p > 1 and suppose there exists a constant C ≥
0 such that for every k ∈ N one has Modp(F0, Gk) ≤ C. Then there
exists a positive increasing function ψ of (0,+∞) with limt→0 ψ(t) = 0,
such that for every disjoint non-degenerate continua A,B ⊂ Z and
every integer k satisfying 2−k ≤ min{diam(A), diam(B)}, one has

Modp(A,B,Gk) ≤ ψ(∆(A,B)−1).

Proof. Define for t > 0 :

ψ(t) = sup Modp(A,B,Gk),

where the supremum is over all disjoint continua A,B with ∆(A,B) ≥
1/t and over all integers k such that 2−k ≤ min{diam(A), diam(B)}.
From the monotonicity of the modulus (Proposition 3.1.1) and from our
hypotheses, the function t 7→ ψ(t) is non-decreasing with non-negative
real values. It is enough to prove that ψ(t) tends to 0 when t tends to
0.

Let A and B be disjoint non-degenerate continua, assume that d :=
diam(A) is smaller than diam(B) and let n be the largest integer with
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2n · d ≤ dist(A,B). Pick z0 ∈ A, we get :

A ⊂ B(z0, d) and B ⊂ Z \B(z0, 2
n · d).

For i ∈ {1, ..., n− 1} define Bi = B(z0, 2
i · d). There exists a constant

C1 depending only on κ and on the geometry of Z such that for every
k ∈ N with 2−k ≤ d and every i ∈ {1, ..., n− 1} one has

Modp(Bi, Z \Bi+1, Gk) ≤ C1.

Indeed applying the self-similarity property (Definition 3.11) to Bi+1

we may inflate F(Bi, Z \Bi+1) to a family of curves of essentially unit
diameters. Hence the above inequalities follow from the monotonicity
of the modulus, from our hypotheses, and from Proposition 3.2.

Choose for every i ∈ {1, ..., n−1} a minimal F(Bi, Z\Bi+1)-admissible
function ρi : G0

k → R+, and let ρ = 1
n−1

∑n−1
i=1 ρi. This is a F(A,B)-

admissible function since every curve joining A and B joins Bi and
Z \ Bi+1 too. For 2−k ≤ d the minimality of the ρi’s shows that their
supports are essentially disjoint, thus

Mp(ρ) ≤ C2

(n− 1)p

n−1∑
i=1

Mp(ρi) ≤
C1C2

(n− 1)p−1
,

where C2 depends only on κ. Since p > 1 and ∆(A,B) ≤ 2n+1 we get
that for t small enough ψ(t) ≤ C3(log 1/t)−1 where C3 depends only on
C1, C2, p. �

The following uniformization criterion is a consequence of an uni-
formization theorem established in [BK02] (see also [CFP99] for related
results).

Corollary 3.14. Suppose in addition that Z is homeomorphic to the
2-sphere. Assume that there exists a constant C ≥ 1 such that for every
k ∈ N one has

Mod2(F0, Gk) ≤ C .

Then Z is quasi-Moebius homeomorphic to the Euclidean 2-sphere.

Proof. The statement is a consequence of the previous proposition in
combination with [BK02] Th. 10.4. This theorem supposes that Z is
doubling and linearly locally contractible.

The doubling property follows from the fact that Z is approximately
self-similar.

Recall that a metric space Z is linearly locally contractible if there
exists a constant λ ≥ 1, such that every ball B ⊂ Z with 0 < r(B) <
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diamZ
λ

, is contractible in λB. Approximately self-similar manifolds en-
joy this property. Indeed, if Z is a compact manifold then there is a
R0 > 0 and a positive function Φ of (0, R0) with limt→0 Φ(t) = 0, such
that every ball B ⊂ Z of radius r with 0 < r < R0, is contractible in
Φ(r)B. Let λ ≥ 1 and let B(z, r) ⊂ Z be a ball with λr < diamZ.
Applying self-similarity to the ball B(z, λr), one obtains a open subset
U ⊂ Z and a bilipschitz map f : B(z, λr)→ U such that for every pair
x, y ∈ B(z, λr) :

L−1
0

1

λr
d(x, y) ≤ d(f(x), f(y)) ≤ L0

1

λr
d(x, y).

Thus if λ satisfies L0

λ
≤ L−1

0 , one has

f(B(z, r)) ⊂ B(f(z),
L0

λ
) ⊂ B(f(z), L−1

0 ) ⊂ f(B(z, λr)).

Choosing λ subject to the conditions Φ(L0

λ
) < L−1

0 and L0

λ
≤ L−1

0 ,
we get that f(B(z, r)) is contractible in f(B(z, λr)). Therefore so is
B(z, r) in B(z, λr).

Assumptions of Theorem 10.4 of [BK02] also require the graphs Gk

to be (essentially) homeomorphic to 1-skeletons of triangulations of S2.
Corollary 6.8 of [BK02] ensures existence of such graphs.

We remark finally that when Z is the boundary of a hyperbolic group,
the corollary can also be deduced from [CFP99] Th. 1.5 and 8.2. �

We now study the behaviour of Modp(F0, Gk) when k tends to +∞,
depending on p ≥ 1. For this purpose we establish a submultiplicative
inequality :

Proposition 3.15. Let p ≥ 1 and write Mk := Modp(F0, Gk) for
simplicity. There exists a constant C > 0 such that for every pair
of integers k, ` one has : Mk+` ≤ C · Mk · M`. In addition when p
belongs to a compact subset of [1,+∞) the constant C may be choosen
independent of p.

Proof. Let ρk : G0
k → R+ be a minimal F0-admissible function on scale

k. By definition each v ∈ G0
k is roughly a ball of Z of radius 2−k.

For every v ∈ G0
k, let Bv be a ball containing v and whose radius is

approximately 2−k.

We inflate every ball 2Bv to essentially unit diameter like in Defini-
tion 3.11. Let gv be the corresponding partial bi-Lipschitz map. Define
Gk+` ∩ 2Bv to be the incidence graph of the covering of 2Bv by the
subsets w ∈ G0

k+` with w ∩ 2Bv 6= ∅. Using the map gv, one can
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consider the graph Gk+` ∩ 2Bv as a (2κL0)-approximation of gv(2Bv)
on scale `. We pull back on Gk+` ∩ 2Bv a normalized minimal F0-
admissible function on scale `, in order to get for every v ∈ G0

k a
function ρv : (Gk+` ∩ 2Bv)

0 → R+ with the following properties

(i) its p-mass is bounded by above by D ·M` · ρk(v)p, where D is
independent of k and v,

(ii) every curve γ ⊂ 2Bv whose diameter is larger than r(Bv) picks
up a (ρv)-length larger than ρk(v), where r(Bv) is the radius of
Bv.

Define a function ρk+` on G0
k+` by

ρk+`(w) = max ρv(w),

where the maximun is over all v ∈ G0
k with w ∩ 2Bv 6= ∅. Its p-mass is

linearly bounded by above by∑
v∈G0

k

Mp(ρv),

which in turn is linearly bounded by Mp(ρk) ·M` = Mk ·M` (see item
(i)).

It remains to prove that ρk+` is a F0-admissible function – up to a
multiplicative constant independent of the scale. For γ ∈ F0 we have

1 ≤
∑
v∩γ 6=∅

ρk(v) ≤
∑
v∩γ 6=∅

∑
γ∩2Bv∩w 6=∅

ρv(w).

Indeed the last inequality follows from item (ii) since the relation v∩γ 6=
∅ implies that there exists a subcurve of γ of diameter greater than
r(Bv) contained in 2Bv.

Thus the ρk+`-length of γ is larger than 1/N where N is maximal
number of elements v ∈ G0

k such that 2Bv intersects a given piece
w ∈ G0

k+` . Therefore N · ρk+` is F0-admissible. �

For every k ∈ N, observe that p 7→ Modp(F0, Gk) is a non-increasing
continuous function on [1,+∞) (monotonicity comes from the fact that
minimal admissible functions are smaller than or equal to 1). We define
a critical exponent associated to the curve family F0 by

QM := inf{p ∈ [1,+∞) ; lim
k→+∞

Modp(F0, Gk) = 0}.

With Propositions 3.13, 3.15 and Lemma 3.3 one gets
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Corollary 3.16. (i) For p > QM one has limk→+∞Modp(F0, Gk) = 0,

(ii) for 1 ≤ p ≤ QM the sequence {Modp(F0, Gk)}k≥0 admits a posi-
tive lower bound,

(iii) if in addition Z is linearly connected, then for 1 ≤ p < QM the
sequence {Modp(F0, Gk)}k≥0 is unbounded.

In particular when Z satisfies the combinatorial p-Loewner property
one has p = QM .

Proof. Part (i) is a consequense of the definition. Part (ii) comes from
Proposition 3.15 and from the fact that if a positive sequence {Mk}k∈N
satisfies Mk+` ≤ C ·Mk ·M`, then one has :

lim
k→+∞

Mk = 0 ⇐⇒ ∃` ∈ N with M` < C−1.

To establish part (iii) suppose by contradiction that the sequence
is bounded for some Q with 1 < Q < QM . Then the conclusion of
Proposition 3.13 holds for the exponent Q. We will prove that for
p > Q the sequence {Modp(F0, Gk)}k≥0 tends to 0, contradicting the
definition of QM .

By the monotonicity of the combinatorial modulus it is enough to
show that for every disjoint non-degenerate continua A and B of Z
the sequence {Modp(A,B,Gk)}k≥0 tends to 0. For this purpose we will
establish that the F(A,B)-admissible functions ρk : G0

k → R+ with
minimal Q-mass satisfy

lim
k→+∞

‖ρk‖∞ = 0, where ‖ρk‖∞ := sup
v∈G0

k

ρk(v).

For each v ∈ G0
k pick a continuum Ev containing v and whose diameter

dv is comparable to diam(v) � 2−k. The existence of Ev follows from
the assumption that Z is linear connected. Any curve in F(A,B)
passing through v possesses a subcurve in each family F(A,Ev) and
F(B,Ev). Hence with Lemma 3.3 and Proposition 3.1 we get

ρk(v) ≤ min{ModQ(A,Ev, Gk),ModQ(B,Ev, Gk)}1/Q.

For 2−k small enough compared with dist(A,B) one has

max{∆(A,Ev),∆(B,Ev)} ≥ dist(A,B)/2dv.

Therefore Proposition 3.13 applied with exponent Q shows that

ρk(v) ≤ ψ(2dv/ dist(A,B))1/Q,

and so ‖ρk‖∞ tends to 0 when k tends to +∞.
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Finally the CLP assertion follows from Proposition 3.5.1. �

Remarks :

1) P. Häıssinsky [Haia] has proved that if Z satisfies the combina-
torial Q-Loewner property then for every disjoint non-degenerate con-
tinua A,B ⊂ Z one has for 1 ≤ p < Q :

lim
k→+∞

Modp(A,B,Gk) = +∞.

2) In [KK] S. Keith and the second (named) author establish that
QM is equal to the Ahlfors regular conformal dimension of Z i.e. the
infimum of Hausdorff dimensions of Ahlfors regular metric spaces quasi-
Moebius homeomorphic to Z. In particular QM is a quasi-Moebius
invariant of Z.

3) M. Barlow and R. Bass have established submultiplicative and su-
permultiplicative inequalities for the combinatorial 2-modulus on some
self-similar space like the square Sierpinski carpet. Their method relies
on the analysis of random walks on graph approximations (see [Bar03]
Lemma 3.2).

4) One may formulate a variant of Proposition 3.15 for doubling
spaces in general, by modifying the definition of Mk. For constants
C1, C2, and each k, let Mk be the supremum, as x ranges over Z, of
the p-modulus of the family of curves of diameter at least C12−k lying
in the ball B(x,C22−k). Then for suitably chosen C1, C2, one obtains
a submultiplicative inequality Mk+l ≤ C ·MkMl.

5) We could have chosen to define the CLP using the more gen-
eral notion of κ-approximations from [BK02], so as to make the quasi-
Moebius invariance automatic from the definition. However, this would
simply make it harder to verify in examples, forcing one to prove the
equivalence of the two definitions anyway.

4. Combinatorial modulus and Coxeter groups

In this section we study the combinatorial modulus in the case of
hyperbolic Coxeter groups. Consider a hyperbolic Coxeter group Γ
with connected boundary, and let Z be the metric space ∂Γ equipped
with a self-similar metric (see Definition 3.12). We fix in the sequel
some κ-approximation {Gk}k∈N of Z.
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We wish to establish a kind of a filtration for the combinatorial mod-
ulus of curve families in Z. Let d0 be a fixed (small) positive constant.
We are mainly concerned with the following families of curves. Let
∂P ⊂ Z be a parabolic limit set and let δ, r > 0. Denote by Fδ,r(∂P )
the family of curves γ in Z satisfying the following conditions :

– γ ⊂ Nδ(∂P ) and diam γ ≥ d0,
– γ * Nr(∂Q) for any connected parabolic limit set ∂Q $ ∂P .

For ε > 0 and for any (parametrized) curve η in Z, let Uε(η) be the set
of curves whose C0 distance to η is smaller than ε.

Theorem 4.1. Let p ≥ 1, ε, r > 0, let ∂P ⊂ Z be a parabolic limit
set and let η be any curve in ∂P . There exist δ = δ(r) > 0 and
C = C(p, ε, η, r) > 0 such that one has for every k ∈ N

Modp(Fδ,r(∂P ), Gk) ≤ C Modp(Uε(η), Gk).

In addition when p belongs to a compact subset of [1,+∞) the constant
C may be choosen independent of p.

In combination with Proposition 3.1.1, this leads to:

Corollary 4.2. Let η ⊂ Z be a curve whose diameter is larger than d0,
and let ∂P be the smallest parabolic limit set containing η. Let r > 0
be small enough in order that η * N r(∂Q) for any parabolic limit set
∂Q $ ∂P . Then for ε > 0 small enough we have for every k ∈ N :

Modp(Uε(η), Gk) ≤ Modp(Fδ,r(∂P ), Gk) ≤ C Modp(Uε(η), Gk),

where δ and C are the constants defined in the previous theorem.

�

Proof of Theorem 4.1. Instead of considering all curves with diameter
larger than d0 – which might mean translating curves by group elements
with word-length bounded by above in terms of d0 – we may restrict
ourselves to those whose convex hulls contain e. In the sequel of the
proof we make this restriction and we keep the same notation for the
restriction of Fδ,r(∂P ). We shall also use – without further mention –
the metric equivalence between Z and ∂Γ.

Let I ⊂ S such that P is a conjugate of ΓI . Thanks to Proposition
2.11 there exists L and δ > 0 depending only on r, such that every
element of Fδ,r(∂P ) is a (L, I)-curve. By Proposition 2.10 there exists
a finite subset E ⊂ Γ such that for every γ ∈ Fδ,r(∂P ) the subset⋃
g∈E gγ ⊂ Z contains a curve of Uε(η). Let G′k be the incidence graph
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of the covering of Z by the elements of
⋃
g∈E g

−1G0
k. According to

Proposition 3.2 the moduli Modp(·, G′k) and Modp(·, Gk) are compa-
rable (since Γ acts on Z by bi-Lipschitz homeomorphisms). For any
Uε(η)-admissible function ρ : G0

k → R+ define a function ρ′ : G′k
0 → R+

by
ρ′(g−1v) = ρ(v),

where v ∈ G0
k and g ∈ E. Using the above property of E one gets

immediately that ρ′ is a Fδ,r(∂P )-admissible function. Thus

Modp(Fδ,r(∂P ), G′k) ≤ |E|
∑
v∈G0

k

ρ(v)p,

and so
Modp(Fδ,r(∂P ), G′k) ≤ |E|Modp(Uε(η), Gk).

�

We now present a companion result to Theorem 4.1. Its statement
requires some notation. As in paragraph 3.3, F0 denotes the family of
curves γ ⊂ Z with diam γ ≥ d0. For a parabolic subgroup P 5 Γ let
Nr(∂P ) be the family of curves γ ⊂ Nr(∂P ) with diam γ ≥ d0. Let L
be a collection of parabolic limit sets. For r > 0 set

Fr(L) := F0 \
⋃
∂Q∈L

Nr(∂Q).

We denote by Confdim(∂P ) the Ahlfors regular conformal dimension
of ∂P (its definition is recalled in Remark 2 at the end of Section 3),
and we set

Confdim(L) := max
∂Q∈L

Confdim(∂Q).

The following property “controls” the modulus of neighborhoods of
some limit sets by the modulus of the complementary subsets.

Theorem 4.3. Let L be a Γ-invariant collection of connected proper
parabolic limit sets. Assume that there exists ∂P ∈ L such that for
every ∂Q ∈ L with ∂Q 6= ∂P , the set ∂P ∩ ∂Q is at most totally
disconnected. Let p > Confdim(∂P ). There exist constants C > 0 and
a ∈ (0, 1) such that for r > 0 small enough and for every k ∈ N one
has :

Modp(Nr(∂P ), Gk) ≤ C ·
k∑
`=0

Modp(Fr(L), Gk−`) a
`.

With the basic properties of the combinatorial modulus one obtains:
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Corollary 4.4. Let L be a Γ-invariant collection of connected proper
parabolic limit sets. Assume that for every ∂P, ∂Q ∈ L with ∂Q 6= ∂P ,
the set ∂P ∩ ∂Q is at most totally disconnected. Let p > Confdim(L).
There exist constants C > 0 and a ∈ (0, 1) such that for r > 0 small
enough and for every k ∈ N :

Modp(F0, Gk) ≤ C ·
k∑
`=0

Modp(Fr(L), Gk−`) a
`.

�

As an example the collection L of all circular limit sets satisfies the
above hypotheses with Confdim(L) = 1.

The proof of the theorem relies on some lemmata. The first one
shows that two connected parabolic limit sets whose intersection is
at most totally disconnected, have to “move away one from another
linearly”.

Lemma 4.5. There is a constant C0 ≥ 1 with the following property.
Let ∂P1, ∂P2 be two connected parabolic limit sets such that either ∂P1 =
∂P2 or ∂P1 ∩ ∂P2 is at most totally disconnected. Assume that there
exist r > 0 and a curve γ ⊂ Nr(∂P1) ∩ Nr(∂P2) with diam(γ) ≥ C0r.
Then ∂P1 = ∂P2.

Proof. Applying self-similarity property 3.11 we may assume that γ has
unit diameter. Then ∂P1 and ∂P2 have diameter bounded away from
zero, and hence P1 and P2 belong to a finite collection of parabolic
subgroups with connected limit sets. But if P1 6= P2, then ∂P1 ∩ ∂P2

cannot contain an arc, because the intersection is totally disconnected.
Hence taking C0 large enough, the lemma follows. �

From now on we consider a connected parabolic limit set ∂P ⊂ Z.

Lemma 4.6. Let r > 0, C ≥ 1 and let γ ⊂ Nr(∂P ) be a curve with
diam(γ) > Cr. For every z ∈ (γ \ ∂P ) there exists a subcurve γ′ of γ
such that letting d := diam(γ′), one has :

γ′ ⊂ B(z, 4d) ∩Nd/C(∂P ) and γ′ * Nd/(8C)(∂P ).

Proof. Either there exists a point z1 on γ with d(z, z1) < 2C dist(z, ∂P )
and dist(z1, ∂P ) = 2 dist(z, ∂P ), or there does not.
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If not then the part of γ contained in the ball centered on z of radius
2C dist(z, ∂P ) lies in the (2 dist(z, ∂P ))-neighborhood of ∂P . The as-
sumption on diam(γ) implies that γ exits the ball B(z, 2C dist(z, ∂P )).
Thus γ contains a desired subcurve which moreover contains z.

If z1 exists then we repeat the process with z1 instead of z. Eventually
we get a sequence of points z0, z1, ..., zn on γ with z0 = z such that for
all indices i :

dist(zi, ∂P ) = 2i dist(z, ∂P ) and d(zi, zi+1) < 2C dist(zi, ∂P ).

Since γ ⊂ Nr(∂P ) and dist(z, ∂P ) > 0 the process has to stop, let zn
be the last point. From the first case argument we get a subcurve γ′

of γ such that letting d = diam(γ′) we have :

zn ∈ γ′ ⊂ B(zn, 2C dist(zn, ∂P )) , d ≥ 2C dist(zn, ∂P ),

and

γ′ ⊂ Nd/C(∂P ) , γ′ * Nd/(8C)(∂P ).

Finally we compute

d(z, zn) ≤
n−1∑
i=0

d(zi, zi+1) ≤ 2n+1C dist(z, ∂P ) = 2C dist(zn, ∂P ) ≤ d.

Therefore γ′ ⊂ B(z, 4d). �

Pick for every ` ∈ N a collection B` of balls in Z centered on ∂P and
of radius 2−` such that the set {1

2
B ; B ∈ B`} is a minimal covering of

∂P . Let B =
⋃
`∈N B`. Recall that the radius of a ball B is denoted by

r(B). From the previous lemma we get :

Lemma 4.7. Let r > 0, C ≥ 1 and let γ ⊂ Nr(∂P ) be a curve with
diam(γ) > Cr. For every z ∈ (γ \ ∂P ) there exists a ball B ∈ B and a
subcurve γ′ of γ such that letting d = diam(γ′) we have :

γ′ ∪ {z} ⊂ B , r(B) ≤ 36d , γ′ ⊂ Nd/C(∂P ) and γ′ * Nd/(8C)(∂P ).

Proof. Consider the subcurve γ′ obtained in the previous lemma. We
compute :

dist(z, ∂P ) ≤ 4d+ dist(γ′, ∂P ) ≤ 5d.

Let w be a point in ∂P which realises dist(z, ∂P ), we have γ′ ∪ {z} ⊂
B(w, 9d). Pick a ball B ∈ B such that w ∈ 1

2
B and r(B)/4 ≤ 9d ≤

r(B)/2. Then B contains B(w, 9d) and hence it contains γ′ ∪ {z}. In
addition we have r(B) ≤ 36d. �
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Proof of Theorem 4.3. Let ∂P ∈ L be the connected proper limit set
of the statement, and let p > Confdim(∂P ). For appropriate r > 0
we wish to construct on every scale a Nr(∂P )-admissible function ρk :
G0
k → R+ with controlled p-mass. For this purpose we equip ∂P with an

Ahlfors regular metric δ∂P , which is quasi-Moebius to the restriction of
the Z-metric to ∂P , and whose Hausdorff dimension Q satisfies Q < p.
Let µ be the Q-Hausdorff measure of (∂P, δ∂P ). Given any ball B ⊂ Z
centered on ∂P , its trace on ∂P is comparable to a ball of (∂P, δ∂P ).
We denote by τ(B) the radius of a minimal ball of (∂P, δ∂P ) containing
B ∩ ∂P . One has

µ(B ∩ ∂P ) � τ(B)Q.

Let B be a ball family as considered in the statement of the previous
lemma. We inflate every element B ∈

⋃k
`=0 B` to essentially unit diam-

eter as in Definition 3.11. Let gB be the corresponding group element.
Define Gk ∩ B to be the incidence graph of the covering of B by the
subsets v ∈ G0

k with v∩B 6= ∅. Note that for B ∈ B`, the graph Gk∩B
may be considered as a (2κL0)-approximation of gB(B) on scale k − `
(via the group element gB).

For k ∈ N and r > 0 write mk := Modp(Fr(L), Gk) for simplicity.
Suppose that r is small compared to L0, C0, d0 (L0 and C0 are defined
respectively in statements 3.11 and 4.5) . Then using the group element
gB and the Γ-invariance of L, we may pull back on Gk∩B a normalized
minimal Fr(L)-admissible function on scale k − `, in order to get for

every ball B ∈
⋃k
`=0 B` a function ρB : (Gk ∩ B)0 → R+, with the

following properties

(i) its p-mass satisfies, with D ≥ 1 independent of k and of B :

Mp(ρB) ≤ D ·mk−` · τ(B)p,

(ii) every curve γ ⊂ B whose diameter is larger than r(B)/36
picks up a (ρB)-length larger than τ(B), unless it lies in the
(10−3C−1

0 r(B))-neighborhood of a limit set of L.

Define ρk by

∀v ∈ G0
k, ρk(v) = max ρB(v),

where the maximum is over all B ∈
⋃k
`=0 B` with v∩B 6= ∅. Its p-mass

is linearly bounded by above by

k∑
`=0

∑
B∈B`

Mp(ρB).
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Since the metric δ∂P and the rectriction of the Z-metric are quasi-
Moebius, they are Hölder equivalent (see [Hei01]). In particular there
exists α > 0 such that for every B ∈ B` one has τ(B) ≤ 2−α` (up to a
multiplicative constant). With item (i) one obtains that the p-mass of
ρk is linearly bounded by above by :

k∑
`=0

mk−`
∑
B∈B`

τ(B)p ≤
k∑
`=0

mk−`
∑
B∈B`

τ(B)Qa` � µ(∂P )
k∑
`=0

mk−` a
`,

with a = 2−α(p−Q). Because p > Q one has 0 < a < 1 .

It remains to prove that ρk is a Nr(∂P )-admissible function up to a
multiplicative constant independent of k. Let γ ∈ Nr(∂P ).

Claim : For every z ∈ γ there exists a ball Bz ∈
⋃k
`=0 B` with z ∈ Bz

and such that the ρk-length of γ ∩Bz is larger than τ(Bz).

Indeed, assume at first that z ∈ γ ∩ ∂P . Pick Bz ∈ Bk with z ∈ Bz.
Since for B ∈ Bk we may assume that the function ρB is larger than
τ(B), the ball Bz admits the desired property.

Now assume that z ∈ γ \ ∂P . Because r is small compared with d0

the hypotheses of Lemma 4.7 are satisfied with C = C0. Let B ∈ B as
in this lemma. If B belongs to

⋃
`≥k B`, then choosing Bz ∈ Bk with

B ⊂ Bz we are back to the previous case.

If B ∈
⋃k−1
`=0 B`, let Bz = B and consider the subcurve γ′ given by

Lemma 4.7 applied with C = C0. It lies in the (d/C0)-neighborhood of
∂P , hence our hypotheses and Lemma 4.5 assert that there is no other
limit set in L whose (d/C0)-neighborhood contains γ′. In addition we
have

10−3C−1
0 r(Bz) ≤ 10−3C−1

0 36d ≤ d/(8C0),

thus γ′ does not lie in any (10−3C−1
0 r(Bz))-neighborhood of a limit set

of L. Therefore the claim follows from item (ii).

According to 5r-covering theorem (see [Mat95]) we may extract from
the collection {10Bz ; z ∈ γ} a finite cover {10B1, ..., 10Bn} of γ such
that the balls 2B1, ..., 2Bn are pairwise disjoint. This last property
ensures that for every v ∈ G0

k the number of elements of {B1, ..., Bm}
which meet v is bounded by above by a constant C1 which depends
only on κ and on the geometry of Z. With the claim we obtain

C1Lρk
(γ) ≥

n∑
i=1

Lρk
(γ ∩Bi) ≥

n∑
i=1

τ(Bi).
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Reordering if necessary we may assume that γ enters successively the
10Bi’s. Let wi ∈ ∂P be the center of Bi. For every i ∈ {1, ..., n−1} the
balls 10Bi and 10Bi+1 intersect, so one of two balls 20Bi and 20Bi+1

contains the pair {wi, wi+1}. Thus 20Bi∩∂P and 20Bi+1∩∂P intersect.
Since the metric δ∂P and the rectriction of the Z-metric are quasi-
Moebius, it follows from the triangle inequality that the last sum is
linearly bounded from below by the δ∂P -diameter of

⋃n
i=1 20Bi ∩ ∂P .

Therefore Lρk
(γ) is bounded from below in terms of d0. �

5. Cannon Coxeter groups

Using the techniques developed in the previous section we prove a
special case of the Cannon’s conjecture (Theorem 5.1). This result
was already known, we review a proof due to M. Davis at the end of
the section. However our methods are new and of different flavour.
An application to the hyperbolic Coxeter groups whose boundary is
homeomorphic to the Sierpinski carpet is presented in Corollary 5.5.

Theorem 5.1. Let Γ be a hyperbolic Coxeter group whose boundary is
homeomorphic to the 2-sphere. Then there is a properly discontinuous,
cocompact, and isometric action of Γ on H3, the real hyperbolic space.

Let {Gk}k∈N be a κ-approximation of ∂Γ, and let d0 be a fixed small
positive constant. As before we denote by F0 the family of curves
γ ⊂ ∂Γ with diam γ ≥ d0. The following proposition is the main step
of the proof.

Proposition 5.2. For p = 2 the modulus Modp(F0, Gk) is bounded
independently of the scale k.

Its proof will use the following general dichotomy :

Lemma 5.3. Let Φ be a hyperbolic group whose boundary is connected.
Then either ∂Φ is a topological circle, or it contains a subset homeo-
morphic to the capital letter I.

Proof. Since ∂Φ is locally connected and nontrivial, it contains an arc
X (see [BK05b]). If x ∈ X is not an endpoint and if some neighborhood
of x in ∂Φ is contained in X, then clearly ∂Φ is a 1-manifold and so
is homeomorphic to the circle. Otherwise, if x1, x2 ∈ X are distinct
points which are not endpoints of X, then we may find y1, y2 ∈ ∂Φ \X
and disjoint arcs Ji ⊂ ∂Φ, (i = 1, 2), joining yi to xi. Trimming the
Ji’s and taking the union X ∪ J1 ∪ J2, we get a subset homeomorphic
to the capital letter I, provided yi is sufficiently close to xi. �
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Proof of Proposition 5.2. With the notation of Section 4, let L be the
collection of circular limit sets. We will prove that for every r > 0
there exists δ = δ(r) > 0 such that for every parabolic subgroup P of Γ
with connected non-circular limit set, Mod2(Fδ,r(∂P ), Gk) is bounded
independently of the scale k. This together with Proposition 3.1.2 im-
ply that for every r > 0 the modulus Mod2(Fr(L), Gk) is so. Therefore
with Corollary 4.4 the statement of Proposition 5.2 will follow.

Let ∂P be a non-circular connected parabolic limit set. According
to the above lemma, ∂P contains a graph homeomorphic to the capital
letter I. Express the capital letter I as the union of two arcs α, α′ where
α joins the upper left endpoint to the lower right endpoint, and α′

joins the upper right endpoint to the lower left endpoint. Bending the
two horizontal segments of α′ we obtain a vertical segment denoted
by β. Consider a thin vertical rectangle R which is a small planar
neighborhood of the vertical segment α ∩ β. Then every curve which
lies within sufficiently small C0 distance from α cross-connects in R its
vertical sides, and every curve which lies within sufficiently small C0

distance from β cross-connects in R its horizontal sides.

By assumption a similar picture appears in ∂Γ and ∂P too : there
exist two arcs η1, η2 in ∂P and there exists a topological rectangle
R ⊂ ∂Γ such that every curve in ∂Γ which lies within sufficiently
small C0 distance from η1 cross-connects in R its vertical sides, and
every curve which lies within sufficiently small C0 distance from η2

cross-connects in R its horizontal sides. Let Fh(R) (resp. Fv(R))
be the family of curves contained in R and joining its horizontal (resp.
vertical) sides. With Proposition 3.1 we get that for ε > 0 small enough:

Mod2(Uε(η1), Gk) ≤ Mod2(Fv(R), Gk),

and Mod2(Uε(η2), Gk) ≤ Mod2(Fh(R), Gk).

The following lemma shows that mini=1,2 Mod2(Uε(ηi), Gk) is bounded
independently of k. Therefore Theorem 4.1 applied to η1 or η2 com-
pletes the proof of the Proposition 5.2. �

Lemma 5.4. There exists a constant C ≥ 1 such that for any topolog-
ical rectangle R ⊂ ∂Γ one has for every k ∈ N large enough :

Mod2(Fv(R), Gk) ·Mod2(Fh(R), Gk) ≤ C.

Proof. Let mod(·) denotes the classical analytic modulus on the Eu-
clidean sphere S2. A well-known result asserts that for R ⊂ S2 :

mod(Fv(R)) ·mod(Fh(R)) = 1.
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The lemma follows from this fact and from some process to relate the
combinatorial 2-modulus on ∂Γ with the analytic modulus on S2 (see
[CFP99] Th. 1.5 or [BK02] Cor. 8.8 for more details). See also [Haib]
lemme 2.14 for an alternative and more direct proof of this lemma. �

Proof of Theorem 5.1. According to Proposition 5.2 and Corollary 3.14
one obtains that ∂Γ is quasi-Moebius homeomorphic to the Euclidean
2-sphere. As explained in the sketch of proof in Subsection 1.3, a
theorem of Sullivan completes the proof ([Sul81] p. 468, see also
[Tuk86]). �

Recall that the Sierpinski carpet is the compact topological space
constructed as follows : start with the unit square in the plane, sub-
divide it into nine equal subsquares, remove the middle open square,
and then repeat this procedure inductively on the remaining squares.

Corollary 5.5. Let Γ be a hyperbolic Coxeter group whose boundary
is homeomorphic to the Sierpinski carpet, then Γ acts properly discon-
tinuously by isometries on H3, and cocompactly on the convex-hull of
its limit set.

Proof. Recall that a peripheral circle in ∂Γ is a nonseparating topolog-
ical circle. A peripheral subgroup of Γ is the stabilizer of a peripheral
circle. In [KK00] Th. 5, the following results are proved :

(i) there is only a finite number of conjugacy classes of peripheral
subgroups ;

(ii) let H1, ..., Hk be a set of representatives of these classes, then
the double group Γ?Hi

Γ (2) is a hyperbolic group with 2-sphere
boundary.

Observe that Theorem 2.3 shows that every peripheral subgroup is a
parabolic subgroup. Choose subsets I1, ..., Ik of S such that the sub-
groups Pi generated by Ii form a set of representatives of conjugacy
classes of peripheral subgroups. Then Γ̂ := Γ ?Pi

Γ is obviously an
index 2 subgroup of a Coxeter group. Therefore the corollary follows
from item (ii) and Theorem 5.1. �

2 The notation Γ?Hi
Γ is a bit misleading as it suggests an amalgamated product

of some kind, while in reality this is the fundamental group of a graph of groups
with two vertices and k edges between them, so it is never an amalgamated product
unless k=1.
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Remark : The following proof of Theorem 5.1 has been communi-
cated to us by M. Davis. A theorem of Bestvina-Mess [BM91] and the
boundary hypothesis show that Γ is a virtual 3-dimensional Poincaré
duality group. Then Theorem 10.9.2 of [Dav08] implies that Γ decom-
poses as Γ = Γ0 × Γ1, where Γ0 is a finite Coxeter group and where
Γ1 is a Coxeter group whose nerve is a 2-sphere. Applying Andreev’s
theorem to the dual polyhedron to the nerve, one obtains that Γ1 acts
on H3 as a cocompact reflection group.

6. The Combinatorial Loewner Property for Coxeter
groups

This section gives a sufficient condition for the boundary of a hy-
perbolic Coxeter group to satisfy the combinatorial Loewner property
(Theorem 6.6). Some examples of groups for which the condition ap-
plies are presented in the next section.

6.1. Generic curves. Let Γ be a hyperbolic Coxeter group whose
boundary is connected. Let Z be the metric space ∂Γ equipped with
a self-similar metric (see Definition 3.12). We fix in the sequel some
κ-approximation {Gk}k∈N of Z.

As before d0 is a fixed small positive constant. For r > 0 consider
the family of curves γ ⊂ Z with diam(γ) ≥ d0, and such that γ *
Nr(∂Q) for any connected proper parabolic limit set ∂Q ⊂ Z. It is
a non-empty curve family provided r is small enough. According to
Corollary 4.2 its combinatorial modulus is comparable to the one of
any of its subsets of the form Uε(η). In particular it does not depend
on r up to a multiplicative constant independent of the scale. We shall
denote such a family of curves by Fg and we shall call it a family of
generic curves. Similarly we will call its combinatorial modulus the
combinatorial modulus of generic curves.

When p ≥ 1 is understood we denote Modp(Fg, Gk) by mk for sim-

plicity. It will be also convenient to set Lk := m
−1/p
k . It satisfies :

Lk = sup
ρ

Lρ(Fg)
Mp(ρ)1/p

with Lρ(Fg) := inf
γ∈Fg

Lρ(γ),

where the supremum is over all positive functions of G0
k.

We now study the asymptotic behaviour of the sequence {Lk}k∈N
depending on p ≥ 1. Our main result establishes a weak type submul-
tiplicative inequality for the sequence {Lk}k∈N (Proposition 6.3). The
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results of this paragraph must be compared with those of paragraph
3.3 concerning the family F0.

For the rest of the paragraph p is an arbitrary number in [1,+∞). In
the statement of the following two lemmata, A0 denotes a fixed (large)
positive number.

Lemma 6.1. There exist a constant Λ ≥ 1 and a positive function Φ
of (0,+∞) with the following properties. Let B be a ball in Z and let
k ∈ N such that the radius r(B) satisfies

A−1
0 ≤

r(B)

2−k
≤ A0.

Consider two balls of same radius B1, B2 ⊂ B, and let t := r(Bi)
r(B)

. Then

for every ` ∈ N the Gk+`-combinatorial p-modulus of the family

{γ ∈ F(B1, B2) ; γ ⊂ ΛB}

is greater than m` · Φ(t).

Proof. Using self-similarity property 3.11 we can restrict ourself to the
case k = 0. For every 0 < r ≤ diamZ pick a maximal r

2
-separated

subset Er ⊂ Z. Since Z is linearly connected there exists a constant
λ > 0 such that every pair of points x, y ∈ Z can be joined by a path
of diameter less than λd(x, y). For every pair of points x, y ∈ Er we
choose such a path and we call it ηx,y.

Let Λ be a large number compared with λ. Consider any two r-
balls B1, B2 contained in B. Pick two points z1, z2 ∈ Er such that
B(zi, r/2) ⊂ Bi for i = 1, 2. Then with the notation of Section 4 we
have

Ur/2(ηz1,z2) ⊂ {γ ∈ F(B1, B2) ; γ ⊂ ΛB}.
Given r > 0 there is only a finite number of left handside terms. There-
fore the desired inequality follows from Theorem 4.1 and from the fact
that r � t by the rescaling assumption. �

Lemma 6.2. There exist constants Λ, D ≥ 1 and b ∈ (0, 1) with the
following properties. Let B be a ball in Z and let k ∈ N such that the
radius r(B) satisfies

A−1
0 ≤

r(B)

2−k
≤ A0.

Consider two continua F1, F2 ⊂ Z with Fi ∩ 1
4
B 6= ∅ and Fi \ B 6= ∅.

Then for every ` ∈ N and every positive function ρ on G0
k+` there exists
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a path in ΛB joining F1 to F2 whose ρ-length is smaller than

D ·Mp(ρ)1/p ·
∑̀
n=0

L`−n b
n.

Proof. The arguments are basically the same as those used in the proof
of Proposition 3.9. Indeed pick q ∈ N such that λ := 2−q and a :=
2 · (8λ)1/p satisfy λ < 1/8 and a < 1. Let Λ be as in Lemma 6.1. Using
Lemma 6.1 we can construct – like in the proof of Proposition 3.9 – a
path joining F1 to F2 in ΛB whose ρ-length is smaller than

D ·Mp(ρ)1/p ·
[`/q]∑
n=0

L`−nq a
n,

where D > 0 depends only on Λ, q, p, κ and the geometry of Z, and
where [·] denotes the integer part. Letting b := a1/q the lemma follows.

�

With the above two lemmata we obtain :

Proposition 6.3. There exist constants b ∈ (0, 1) and C ≥ 1 such that
for every pair of integers k, ` one has :

Lk+` ≤ C · Lk ·
∑̀
n=0

L`−n b
n.

Morever when p belongs to a compact subset of [1,+∞) the constants
C and b may be choosen independent of p.

Proof. Given a positive function ρk+` of G0
k+` we wish to construct a

curve γ ∈ Fg with controlled ρk+`-length. For this purpose we pick
two disjoint balls E1, E2 ⊂ Z such that F(E1, E2) ⊂ Fg, and we will
look for γ in F(E1, E2).

For any v ∈ G0
k, let Bv be a ball containing v and whose radius is

approximately 2−k. Let ρk : G0
k → R+ be defined by

ρk(v)p =
∑

w∩4ΛBv 6=∅

ρk+`(w)p,

where Λ is the constant appearing in Lemma 6.2. Since Z is a doubling
metric space one has

(6.1) Mp(ρk+`) �Mp(ρk) .
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From Theorem 4.1 there exists a curve δ ∈ F(E1, E2) whose ρk-length
is linearly bounded by above by

(6.2) Mp(ρk)
1/p · Lk .

Let vi ∈ G0
k so that δ enters successively v1, ..., vn, and set Bi := Bvi

for
simplicity. Then, providing 2−k is small enough compared to diamEi,
Lemma 6.2 allows one to construct by induction on s ∈ {1, ..., n} a
curve γs ⊂ ∪si=14ΛBi, joining E1 to ∪ni=s+1Bi ∪ E2, whose ρk+`-length
is bounded linearly by above by

s∑
i=1

ρk(vi) ·
∑̀
n=0

L`−n b
n.

Therefore γ := γn belongs to F(E1, E2) and its ρk+`-length is bounded

linearly by above by Lρk
(δ) ·

∑`
n=0 L`−n b

n. Thanks to estimates (6.1)
and (6.2), the proposition follows. �

Associated to generic curves, we introduce the following critical ex-
ponent

Qm := sup{p ∈ [1,+∞) ; lim
k→+∞

Modp(Fg, Gk) = +∞}.

The previous theorem combined with the monotonicity and the conti-
nuity of the functions p 7→ Modp(Fg, Gk) gives

Corollary 6.4. The set of p ≥ 1 such that limk→+∞Modp(Fg, Gk) =
+∞ is equal to the interval [1, Qm), in particular it is void if Qm = 1.

Proof. As a consequence of the weak submultiplicative inequality stated
in Proposition 6.3 one has :

lim
k→+∞

Lk = 0 ⇐⇒ ∃` ∈ N with
∑̀
n=0

L`−n b
n < C−1,

where C is the constant appearing in the weak submultiplicative in-
equality. Hence the set of p ≥ 1 such that limk→+∞Modp(Fg, Gk) =
+∞ is open in [1,+∞). �

Proposition 6.5. One has Qm > 1 if and only if Z has no local cut
point.

Proof. The above corollary shows that Qm > 1 is equivalent to the fact
that for p = 1 one has limk→+∞Modp(Fg, Gk) = +∞.

Assume z0 is a local cut point of Z, and let η ⊂ Z be a curve
containing z0 in its interior. Enlarging η if necessary, we may assume
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that for ε > 0 small enough, the curve family Uε(η) is contained in
a family Fg of generic curves. Therefore for any p ∈ [1,+∞) the
moduli Modp(Fg, Gk) and Modp(Uε(η), Gk) are comparable. Since z0

is a local cut point, every curve which belongs to Uε(η) passes through
z0, provided ε is small enough. Choose for every k ∈ N an element
vk ∈ G0

k containing z0. The function of G0
k whose value is 1 on vk

and 0 otherwise, is a Uε(η)-admissible function of p-mass 1. Hence the
sequence {Modp(Uε(η), Gk)}k∈N is bounded.

Conversely assume that Z has no local cut point. Let Fg be a family
of generic curves and let η ⊂ Z, ε > 0 such that Uε(η) ⊂ Fg. Since
Z has no local cut point, a construction of J. Mackay [Mac08] shows
that the family Uε(η) contains an infinite collection of pairwise disjoint
curves. It implies obviously that limk→+∞Modp(Uε(η), Gk) = +∞ for
p = 1. �

6.2. A sufficient condition for the CLP. As in the previous sub-
section Γ is a hyperbolic Coxeter group with connected boundary, and
∂Γ is equipped with a self-similar metric.

Among the curve families already considered, the combinatorial mod-
ulus of generic curves is the lowest one, while the combinatorial modu-
lus of F0 is the largest one. Intermediate curve families are the Fr(L)’s
introduced in Section 4.

In the following statement we allow L to be the empty collection ∅.
In this case we set Fr(∅) := F0 and Confdim(∅) := 1. The critical
exponents QM and Qm are respectively defined in paragraphs 3.3 and
6.1.

Theorem 6.6. Let Fg be a family of generic curves and let L be a
Γ-invariant collection of connected proper parabolic limit sets. Assume
that for every pair of distinct elements ∂P, ∂Q ∈ L, the set ∂P ∩ ∂Q
is at most totally disconnected. Suppose that there exists p ∈ [1,+∞)
satisfying

p > Confdim(L) and Qm ≤ p ≤ QM ,

such that for r > 0 small enough and for every k ∈ N :

Modp(Fr(L), Gk) ≤ DModp(Fg, Gk),

with D = D(r) ≥ 1 independent of k. Then p = QM and ∂Γ satisfies
the combinatorial Loewner property.

This leads to
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Corollary 6.7. Assume that Confdim(∂Γ) > 1, and suppose that for
every proper, connected, parabolic limit set ∂P ⊂ ∂Γ, one has

Confdim(∂P ) < Confdim(∂Γ) .

Suppose furthermore that for every pair ∂P, ∂Q of distinct, proper, con-
nected, parabolic limit sets, the subset ∂P ∩ ∂Q is at most totally dis-
connected. Then ∂Γ satisfies the CLP.

Proof. One knows that QM = Confdim(∂Γ) from Remark 2 at the
end of Section 3. Therefore the statement follows from Theorem 6.6
by considering the collection L of all proper connected parabolic limit
sets. �

The rest of the paragraph is devoted to the proof of the theorem.
We will slightly abuse notation writing Lk instead of C · Lk where C
be the constant appearing in the statement of Proposition 6.3. With
this convention the weak submultiplicative inequality in Proposition
6.3 simply writes

Lk+` ≤ Lk ·
∑̀
n=0

L`−n b
n.

Letting u` :=
∑`

n=0 L`−n b
n, it becomes Lk+` ≤ Lk · u`.

Lemma 6.8. Let p ∈ [1,+∞) and a ∈ (0, 1) such that
∑+∞

`=0 u
p
` a

` =
+∞. Then the sequence {Lk}k∈N tends to +∞ exponentially fast.

Proof. Observe that {uk}k∈N is submultiplicative. Indeed from its def-
inition and with the weak submultiplicative inequality one has

uk+` =
( `−1∑
n=0

Lk+`−n b
n
)

+ b`uk ≤
( `−1∑
n=0

L`−n b
n
)
uk + b`uk.

The weak submultiplicative inequality applied with k = ` = 0 shows
that L0 ≥ 1. With the above inequalities we get that uk+` ≤ uk · u`.

Therefore there exists α ∈ R+ such that limk→+∞
log uk

k
= logα.

With our hypotheses we obtain that α > 1. It follows that there exists
a constant C ≥ 1 such that for every k ∈ N

C−1α
3
4
k ≤ uk ≤ Cα

5
4
k.

In another hand one has for every k, ` ∈ N :

uk+` =
( `−1∑
n=0

Lk+`−n b
n
)

+ b`uk ≤ Lk

( `−1∑
n=0

u`−n b
n
)

+ b`uk.
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Because b ∈ (0, 1) the above inequalities and a simple computation
show the existence of constants C1, C2 ≥ 1 with

α
3
4

(k+`) ≤ C1Lkα
5
4
` + C2α

5
4
k.

Letting k = ` yields the desired conclusion. �

Proof of Theorem 6.6. Let p satisfying the hypotheses of the statement.
At first we prove that the sequence {Lk}k∈N is bounded. Since p ≤ QM

part (ii) of Corollary 3.16 shows that the sequence {Modp(F0, Gk)}k∈N
admits a positive lower bound. With our assumptions and with Corol-
lary 4.4 we obtain the existence of constants C > 0 and a ∈ (0, 1) such
that for every k ∈ N

C ≤
k∑
`=0

mk−` a
` =

k∑
`=0

L−pk−` a
`.

In particular {Lk}k∈N does not tend to +∞, and so according to the
previous lemma the sum

∑+∞
`=0 u

p
` a

` is finite. The weak submultiplica-
tivity inequality writes Lk−` ≥ Lk · u−1

` , and hence

C ≤ L−pk ·
k∑
`=0

up` a
`.

Therefore {Lk}k∈N is bounded.

We now claim that {Lk}k∈N admits a positive lower bound. For this
purpose observe that from its definition and with the weak submulti-
plicative inequality one has

uk+` =
( `−1∑
n=0

Lk+`−n b
n
)

+ b`uk ≤ Lk

( `−1∑
n=0

u`−n b
n
)

+ b`uk.

Since {Lk}k∈N is bounded so is {uk}k∈N. Let M be an upper bound for
{uk}k∈N, we obtain

uk+` ≤ LkS` + b`M with S` :=
`−1∑
n=0

u`−n b
n.

Assume by contradiction that lim infk→+∞ Lk = 0. At first choose `
such that b`M < 1/2, then pick k such that LkS` < 1/2 ; we get that
uk+` < 1. As seen already in the proof of Corollary 6.4, this implies
that {Lk}k∈N tends to 0. Since p ≥ Qm it contradicts Corollary 6.4,
the claim follows.

The claim combined with our assumption imply that Modp(Fr(L), Gk)
is bounded independently of k. With Corollary 4.4 we get that the same
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holds for Modp(F0, Gk). Summarizing there exits a constant C > 0
such that for every k ∈ N :

C−1 ≤ Modp(Fg, Gk) ≤ Modp(F0, Gk) ≤ C.

The p-combinatorial Loewner property comes now from Lemma 6.1 and
from Propositions 3.9 and 3.13. Note that Proposition 3.13 requires
that p > 1. This inequality is satisfied because by assumption p >
Confdim(L) ≥ 1. Finally one has p = QM according to Corollary
3.16. �

Remarks and questions : 1) The equality QM = Qm is a necessary
condition for the CLP. This follows from Remark 1 at the end of Section
3, by choosing the continua A,B in order that F(A,B) is contained in
a family of generic curves.

2) Recall that QM is a quasi-Moebius invariant of Z (see Remark 2
at the end of Section 3). Is it true for Qm too ?

7. Examples

We give various examples of boundaries of hyperbolic Coxeter groups
satisfying the combinatorial Loewner property.

7.1. Simplex groups. Let (Γ, S) be an infinite hyperbolic Coxeter
group such that every proper parabolic subgroup is finite. This last
condition is equivalent to the fact that the Davis chamber of (Γ, S) is
a simplex of dimension |S| − 1 (see [Dav08]). Using Proposition 6.5
one sees easily that Qm > 1 if and only if |S| ≥ 4. Since the only
infinite parabolic subgroup is Γ itself, the assumptions of Corollary 6.7
are clearly satisfied for |S| ≥ 4. Therefore when |S| ≥ 4, the boundary
of Γ admits the CLP.

This result was already known by other methods. Indeed it is a well-
known theorem due to Lannér that such a group acts by isometries,
properly discontinuously and cocompactly on the real hyperbolic space
Hn of dimension n = |S| − 1. Moreover the boundary of Hn is the
Euclidean (n − 1)-sphere which is a Loewner space for n − 1 ≥ 2 (see
[HK98]).
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7.2. Prism groups. Let n ≥ 3, consider a n-simplex and truncate an
open neighborhood of one of its vertices. The resulting polytope is a
n-prism (i.e. isomorphic to the product of a segment with a (n − 1)-
simplex). Let Σ ⊂ Hn be a geodesic n-prism whose dihedral angles are
submultiples of π, and those of the truncated face are equal to π

2
. Such

polytopes have been classified by Kaplinskii ([Kap74], see also [Vin85]
table 4), they exist only when n ≤ 5. Let Γ be the discrete subgroup
of Isom(Hn) generated by reflections along the codimension 1 faces of
Σ except the truncated one. The subset Γ · Σ is equal to Hn minus
a countable union of disjoint totally geodesic half-spaces. Therefore Γ
is a (word) hyperbolic Coxeter group and its boundary identifies with
Sn−1 minus a countable union of disjoint Euclidean (n− 1)-balls.

Up to conjugacy the only infinite proper parabolic subgroup is the
simplex group generated by the faces adjacent to the truncated one.
Its limit set is an Euclidean (n − 2)-sphere. Let L be the collection
of all proper parabolic limit sets. It follows that Confdim(L) = n − 2
and that L satisfies the Γ-invariance and separability hypotheses of
Theorem 6.6. Moreover one has Fg = Fr(L). Therefore the following
lemma combined with Theorem 6.6 shows that ∂Γ admits the CLP.

Lemma 7.1. One has QM > n− 2.

Proof. When n = 3 this follows from Proposition 6.5 since in this case
∂Γ is homeomorphic to the Sierpinski carpet which doesn’t possess any
local cut point.

In general we will prove that ∂Γ equipped with the induced Euclidean
metric satisfies Qm > n− 2. Since Qm ≤ QM and since QM is a quasi-
Moebius invariant (see Remark 2 at the end of Section 3), the lemma
will follow. For this purpose we will exhibit a collection {Fi}i∈N of
pairwise disjoint closed subsets of ∂Γ with the following properties :

– the Fi’s are uniformly Lipschitz equivalent to the unit Euclidean
sphere Sn−2,

– there exists a constant D with d0 ≤ D ≤ 1
2

diam(Fi), such that
for every i ∈ N one has {γ ⊂ Fi ; diam(γ) ≥ D} ⊂ Fg.

Existence of such a collection implies that limk→+∞Modn−2(Fg, Gk) =
+∞, which in turn implies that Qm > n− 2 thanks to Corollary 6.4.

Pick a wall M of Γ, its limit set in ∂Hn is contained in a (n − 2)-
sphere. Identifying ∂Hn with the unit (n − 1)-Euclidean sphere, we
may assume that ∂M is contained in the equator. Let B be the set
of connected components of ∂Hn \ ∂Γ. Because ∂Γ is invariant by the
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reflection along M , every ball B ∈ B with B ∩ ∂M 6= ∅ is centered
on the equator. Thus adding to ∂M a countable union of disjoint
(n − 2)-half-spheres contained in the north hemisphere, we obtain a
subset F ⊂ ∂Γ homeomorphic to Sn−2. Since the parabolic subgroups
are quasi-convex in Γ, there exists a constant C > 0 such that for any
distinct B,B′ ∈ B one has ∆(B,B′) ≥ C (see [Bou04] p. 89). One
deduces easily from this fact that F is Lipschitz-equivalent to Sn−2.

We construct Fi by induction, as a small deformation of F . Let S0

be a smooth manifold diffeomorphic to Sn−2, contained in the north
hemisphere, disjoint from F and lying within small Hausdorff distance
from F . For every B ∈ B with B ∩ S0 6= ∅, replace B ∩ S0 by the
spherical boundary of the connected component of B \ S0 which does
not contain the center of B. Let F0 be the resulting subset of ∂Γ. Still
it is a topological (n−2)-sphere disjoint from F , which lies within small
Hausdorff distance from F . We claim that one can choose S0 properly
in order that F0 is bi-Lipschitz equivalent to Sn−2 with controlled Lip-
schitz constants. Indeed the Lipschitz regularity holds provided the
diedral angles of the singular locus in F0 admit an uniform positive
lower bound. Using the previous lower bound estimates for the rela-
tive distances between elements of B, one can construct S0 in such a
way that at every location its curvatures are smaller than those of the
balls B ∈ B with B∩S0 6= ∅. The control on the diedral angles follows,
which in turn implies the claim. We repeat this procedure starting with
a manifold S1 whose Hausdorff distance to F is much smaller than the
one between F0 and F , in order that the resulting subset F1 ⊂ ∂Γ is
disjoint from F0. The construction of the Fi’s is now clear. �

7.3. Highly symmetric Coxeter groups. Let L be a finite graph
whose girth is greater or equal to 4 and such that the valency of each
vertex is at least equal to 3. Let r be an even integer greater or equal
to 6. Consider the Coxeter system (Γ, S) with one generating reflection
for every vertex in L, and such that the order of the product of two
distinct vertices v, w is r/2 if (v, w) ∈ L1, and +∞ otherwise. Its
Davis complex is a 2-cell contractible complex X where every 2-cell is
isomorphic to the regular right-angled r-gon in H2, and where the link
of every vertex is isomorphic to L. Equipped with the geodesic distance
induced by its 2-cells, X is a CAT(−1)-space on which Γ acts properly
discontinuously, by isometries, and cocompactly. In particular Γ is a
hyperbolic group. Moreover the Cayley graph of (Γ, S) identifies with
the 1-skeleton of X. The walls of (Γ, S) identify with totally geodesic
subtrees of X, namely those generated by a geodesic segment which
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joins the middles of two opposite edges in a 2-cell. We shall call them
the walls of X. Consider X minus the union of its walls, the closures of
the connected components are called the Davis chambers of X. Each
of them is homeomorphic to the cone over L (see [Dav08], [Hag98] for
more details).

Assume now that L is a highly symmetric graph in the following
sense: for every pair of adjacent vertices v, w ∈ L0 the pointwise sta-
bilizer of the star of v acts transitively on the set of remaining edges
in the star of w. Recall that the star of a vertex is the union of its
incident edges. Examples of such graphs include the full bipartite
graph with s+ t vertices (s, t ≥ 3), the Mouffang generalized polygons
(see [Ron89]), every 3-transitive trivalent graph (such as the Petersen
graph), the odd graphs (see [Big74]), etc.

We have

Proposition 7.2. ∂Γ satisfies the CLP.

When L is a generalized polygon the statement was already known.
Indeed in this case ∂Γ possesses a self-similar metric δ such that (∂Γ, δ)
is an Loewner space [BP00].

Proof. Let K 5 Isom(X) be the pointwise stabilizer of the Davis cham-
ber containing the identity of Γ. Endow ∂Γ with the self-similar metric
d induced by a visual metric on ∂X ; then K acts on (∂Γ, d) by bi-
Lipschitz homeomorphisms.

We will show that the assumptions of Theorem 6.6 are satisfied with
L = ∅. Since ∂Γ does not admit any local cut point – it is homeomor-
phic to the Menger curve, see [KK00] – Proposition 6.5 implies that
QM > 1 = Confdim(L). Let p > 1 with Qm ≤ p ≤ QM .

Let I ⊂ S be such that ∂ΓI is a connected parabolic limit set. We
will prove by induction on |S| − |I|, that for δ, r > 0 small enough,
there exists a constant C ≥ 1 such that for every k ∈ N one has

Modp(Fδ,r(∂ΓI), Gk) ≤ C Modp(Fg, Gk).

For |S| − |I| = 0 there is nothing to prove. Assume that the property
holds for |S| − |I| ≤ N and let prove it for |S| − |I| ≤ N + 1. Pick a
curve γ ⊂ ∂ΓI which crosses every ∂Mv for v ∈ I, and such that for
δ, r, ε small enough Fδ,r(∂ΓI) and Uε(γ) have comparable modulus (see
Corollary 4.2). We wish to use the group K to deform γ into a curve
contained in a larger parabolic limit set.
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Let v ∈ I and consider a special subgroup ΓJ with v ∈ J . Its Davis
complex, denoted by XJ , embeds equivariantly and totally geodesically
in X. The wall of v in XJ is equal to Mv ∩XJ , where Mv denotes the
wall of v in X. Hence we see that either ∂ΓJ ∩∂Mv is of empty interior
in ∂Mv, or J contains all the neighbors of v in L. For v ∈ S, let Uv
be the open dense subset of ∂Mv whose complement is the union of all
empty interior subsets of the form ∂ΓJ ∩ ∂Mv. We now use :

Lemma 7.3. Every orbit of the K-action on Πv∈S∂Mv is open.

Assuming the lemma we finish the proof of the proposition. Thanks
to the lemma there exists g ∈ K such that for every v ∈ I one has
gγ ∩ Uv 6= ∅. Let Q 5 Γ be a parabolic subgroup such that gγ ⊂ ∂Q.
Enlarging γ if necessary we may assume that its convex hull contains
the identity of Γ. This property remains for gγ, thus Q is a special
subgroup, ΓJ say. Since gγ crosses every ∂Mv for v ∈ I, one has
I ⊂ J (see Remark 1 at the end of Section 2). Therefore the above
discussion implies that J contains the neighbors in L of every vertex
v ∈ I. Hence, assuming |I| < |S|, one obtains that |I| < |J |. Moreover,
since g is bi-Lipschitz, Uε(γ) and Uε(gγ) have comparable modulus.
Therefore Corollary 4.2 combined with the induction assumption give
the expected inequality. �

It remains to give the

Proof of Lemma 7.3. Let Σ ⊂ X be the Davis chamber containing the
identity of Γ. For a pair of adjacent vertices v, v′ ∈ L0 consider the walls
M,M ′ ⊂ X of the reflections v, v′. They intersect exactly at the center
o ∈ X of the 2-cell corresponding to the edge (v, v′) ∈ L1. Denote by
H−, H+ the closed half-spaces bounded by M with Σ ⊂ H−. We will
show that the pointwise stabilizer of H+ in Isom(X) acts transitively on
the set of the edges of M ′∩H− adjacent to the one containing o. Since
v, v′ is an arbitrary pair of adjacent vertices, this result combined with
the Γ-action on X gives the lemma. To do so we shall use an argument
of F. Haglund ([Hag98], démonstration de la Proposition A.3.1). For
simplicity assume first that r is a multiple of 4. Every automorphism
of L gives rise to a group automorphism of Γ which in turn induces an
isometry of X. Let a ∈ Aut(L) which pointwise stabilizes the star of
v. Then the associated isometry f acts trivially on the wall M (the
hypothesis r is a multiple of 4 is used at this point). Therefore one can
define g ∈ Isom(X) by letting g = id on H+ and g = f on H−. Since
L is highly symmetric the result follows.



56 MARC BOURDON AND BRUCE KLEINER

When r is only a multiple of 2, f is not anymore the identity on M
but still it acts trivially on a tree T containing o and which zig-zag
in the 2-cells (joining the center to the middles of two edges at even
distance). Moreover one can choose T such that H+ and M ′ ∩H− are
contained in the closure of two distinct connected components of X \T .
Hence the previous argument generalizes. �

7.4. More planar examples. Let Γ be a hyperbolic Coxeter group
with planar connected boundary. Planarity is exploited to define trans-
versal intersection of parabolic limit sets. Some modulus estimates are
derived in Proposition 7.5. They are useful to establish the CLP in
some examples.

Definition 7.4. Two curves γ1, γ2 ⊂ ∂Γ intersect tranversely if there
exists ε > 0 such that every pair of curves η1 ∈ Uε(γ1), η2 ∈ Uε(γ2)
intersect. We say that two connected parabolic limit sets ∂P1, ∂P2 ⊂
∂Γ intersects tranversely if there exists two curves γ1 ⊂ ∂P1, γ2 ⊂ ∂P2

which intersect transversely, and such that the smallest parabolic limit
set containing γi is ∂Pi for i = 1, 2.

Proposition 7.5. Let ∂P1, ∂P2 be two connected parabolic limit sets
which intersect transversely and let ∂Q be the smallest parabolic limit
set containing ∂P1 ∪ ∂P2. Then for every p ≥ 1 and for δ, r small
enough one has

inf
i=1,2

Modp(Fδ,r(∂Pi), Gk) � Modp(Fδ,r(∂Q), Gk).

Proof. Pick a pair of curves γ1 ⊂ ∂P1, γ2 ⊂ ∂P2 as in the definition. Let
ε > 0 be small enough and assume by contradiction that for i = 1, 2 the
modulus Modp(Uε(γi), Gk) is large compared to Modp(Fδ,r(∂Q), Gk).
Let ρ : Gk → R+ be a Fδ,r(∂Q)-admissible function with minimal p-
mass. Then for i = 1, 2 the family Uε(γi) contains a curve ηi of small
ρ-length (see Lemma 3.7). By transversality the curves η1 and η2 inter-
sect, thus Fδ,r(∂Q) contains a curve of small ρ-length, contradicting the
admissibility of ρ. Therefore the moduli infi=1,2 Modp(Uε(γi), Gk) and
Modp(Fδ,r(∂Q), Gk) are comparable, so the proposition follows from
Corollary 4.2. �

As an illustation consider a 3 dimensional cube and truncate an open
neighborhood of every vertex. The resulting polyhedron possesses 8
triangular faces and 6 hexagonal ones. Let Σ ⊂ H3 be a regular geodesic
truncated cube whose diedral angles are submultiples of π, and those of
the triangular faces are equal to π

2
. By regular we mean that Σ admits
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all the cube symmetries. Let Γ be the discrete subgroup of Isom(H3)
generated by reflections along the hexagonal faces of Σ. The subset
Γ ·Σ is equal to H3 minus a countable disjoint union of totally geodesic
half-spaces. Therefore Γ is a (word) hyperbolic Coxeter group whose
boundary is homeomorphic to the Sierpinski carpet. We will check that
∂Γ satisfies the CLP.

For this purpose, equip ∂Γ with a self-similar metric d such that the
symmetries of the cube act on (∂Γ, d) by bi-Lipschitz homeomorphisms.

Let L be the graph whose vertices are the generators of Γ and whose
edges are the pairs (s, s′) with s 6= s′ and ss′ of finite order. Then L
is the 1-skeleton of the octahedron. One sees easily that there is only
one type of proper parabolic subgroups with connected non-circular
limit set: those whose graph is equal to L minus a vertex and its ad-
jacent edges. By applying an appropriate cube symmetry to such a
parabolic P , we get another parabolic P ′ such that ∂P and ∂P ′ inter-
sect transversely. Moreover the smallest parabolic limit set containing
∂P ∪ ∂P ′ is ∂Γ itself. Hence Proposition 7.5 and the Lipschitz invari-
ance of d, show that Fδ,r(∂P ) and Fg have comparable modulus. The
CLP comes now from Theorem 6.6 with L equal to the collection of all
circular parabolic limit sets.

Remarks and questions : 1) In [Ben06] Y. Benoist exhibits examples
of hyperbolic Coxeter groups with the following properties :

• Their Davis chambers are isomorphic to the product of two
simplices of dimension 2,
• They are virtually the fundamental group of a compact locally

CAT(−1) 4-dimensional manifold,
• They are not quasi-isometric to H4,
• They admit a properly discontinuous cocompact projective ac-

tion on a strictly convex open subset of the real projective space
P4.

An interesting question is to determine whether their boundary satisfies
the CLP or even the analytical Loewner property. Previous examples
of hyperbolic Coxeter groups enjoying the first three properties above
appear in Moussong’s thesis (unpublished, see [Dav08] example 12.6.8).
In connection with these problems, we remark that F. Esselmann has
classified the Coxeter polytopes in H4 isomorphic to the product of two
simplices of dimension 2 (see [Ess96]).
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2) Suppose Z is a Sierpinski carpet sitting in the standard 2-sphere.
Mario Bonk ([Bon06] Prop. 7.6) has shown that if the peripheral cir-
cles of Z are uniformly quasi-Moebius homeomorphic to the standard
circle, and have pairwise relative distance bounded away from zero,
then Z satisfies a version of the Loewner property for transboundary
2-modulus. Since a Sierpinski carpet Coxeter group boundary ∂Γ is
quasi-Moebius homeomorphic to such a Z, this should imply that ∂Γ
satisfies a transboundary variant of the CLP for 2-modulus. It would
be interesting to have examples which do not satisfy the (usual) CLP.

8. The Combinatorial Loewner Property for the
standard Sierpinski carpet and Menger curve

Let S ⊂ [0, 1]2 ⊂ R2 be the square Sierpinski carpet (see Section 5 for
the definition). Recall that the cubical Menger sponge is the continuum

M =
3⋂
i=1

π−1
i (S) ,

where πi : R3 → R2 is the map which forgets the ith coordinate. Both
S and M are endowed with the induced Euclidean metric.

Many ideas appearing in this paper have their origin in the analysis
of the combinatorial modulus on S and M. This section establishes
the CLP for S and M (Theorem 8.4); we remark that similar reasoning
applies to other families of self-similar examples, see Subsection 8.2.

The proof goes along the same lines as for Coxeter groups, but it is
simpler. We think that this exposition may be useful to the reader to
understand the Coxeter group case.

8.1. A criterion for a self-similar space to satisfy the CLP.
With the notation of Sections 3.3 and 4, one has:

Proposition 8.1. Let Z be a linearly connected, approximately self-
similar metric space, such that QM > 1 . Assume that for every p ≥ 1,
for every non constant curve η ⊂ Z and for every ε > 0, there exists a
constant C = C(p, η, ε) such that for every k ∈ N :

Modp(F0, Gk) ≤ C Modp(Uε(η), Gk).

Suppose futhermore that when p belongs to a compact subset of [1,+∞)
the constant C may be choosen independent of p. Then Z satisfies the
CLP.
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The proof will reuse some previous arguments. In the following two
lemmata the hypotheses of the proposition are supposed to be satisfied.

Lemma 8.2. Write Mk := Modp(F0, Gk) and Lk := M
−1/p
k for sim-

plicity. There exist constants C ≥ 1 and b ∈ (0, 1) such that for every
k, ` ∈ N one has :

Lk+` ≤ C · Lk ·
∑̀
n=0

L`−n b
n.

Morever when p belongs to a compact subset of [1,+∞) the constants
C and b may be choosen independent of p.

Proof. The assumptions on Z allow one to check that the proofs of
Lemmata 6.1, 6.2 and of Proposition 6.3 apply verbatim to Z, with Mk

instead of mk. Therefore the inequality holds. �

Lemma 8.3. For p = QM the sequence {Mk}k∈N admits a positive
lower bound, and it doesn’t tend to +∞.

Proof. The first part of the statement follows from Corollary 3.16(ii).
The previous lemma shows that the set of p such that {Mk}k∈N tends
to +∞ is an open subset of [1,+∞) — see the proof of Corollary 6.4
for more details. Therefore the second part of the statement holds. �

Proof of Proposition 8.1. It is enough to prove that for p = QM one has
Mk � 1. The p-combinatorial Loewner property will then come from
Lemma 6.1 and from Propositions 3.9 and 3.13. Note that Proposition
3.13 requires that p > 1, at this point the hypothesis QM > 1 is needed.

Thanks to Corollary 8.3 the sequence {Mk}k∈N admits a positive
lower bound. To obtain the upper bound, one argues exactly as in the
second part of the proof of Theorem 6.6, using the fact that {Mk}k∈N
does not tend to +∞. �

Proposition 8.1 will be useful to obtain the

Theorem 8.4. S and M satisfy the combinatorial Loewner property.

The proof requires some preliminary materials. For the rest of the
subsection Z will denote S or M. By construction, for every k ∈ N,
the space Z is tesselated by homothetic copies of itself of size 3−k. Let
Gk be the incidence graph of this covering. The collection {Gk}k∈N is
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a κ-approximation of Z (3). As usual we identify every vertex of Gk

with the corresponding subset in Z.

Definition 8.5. A partial isometry of Z is a map s : D ⊂ Z → s(D) ⊂ Z
which is the restriction of an Euclidean isometry. It is said to be at
level ` if the subsets D and s(D) are unions of elements of G0

` . The set
of level ` partial isometries of Z is denoted by I`. For a subset E ⊂ Z
and a partial isometry s : D ⊂ Z → s(D) ⊂ Z, we denote by s(E) the
image s(E ∩D).

The following lemma is an analogue of Proposition 2.10.

Lemma 8.6. For every ε > 0 and d > 0 there exists an integer ` =
`(ε, d), such that for every curves η, γ ⊂ Z with diam(γ) ≥ d, the subset⋃
s∈I`

s(γ) ⊂ Z contains a curve which approximates η to within ε with

respect to the C0 distance.

Sketch of proof. The main observation is the following. Let θ be a
curve in the unit square (resp. cube) joining two opposite faces F1, F2,
and let F3 be a third face different from F1 and F2. Then there is
an appropriate (diagonal) reflection s of the square (resp. cube), such
that θ ∪ s(θ) is an arwise connected subset joining F1, F2, F3 and the
face opposite to F3. The rest of the proof is left to the reader as an
exercice. �

Proof of Theorem 8.4. Apart from the modulus inequality and the as-
sumption QM > 1, the hypotheses of Proposition 8.1 are clearly satis-
fied. The modulus inequality is derived from the previous lemma as in
the second paragraph of the proof of Theorem 4.1.

To see that QM > 1, observe that Z contains an isometric copy of
the product space K × [0, 1], where K is the tryadic Cantor set. Let
F be the curve family consisting of the segments k × [0, 1] ⊂ Z, with
k ∈ K. One can compute the modulus of F (using e.g. the Beurling
criterion [Haib] Prop. 2.1). Since Modp(F , Gk) ≤ Modp(F0, Gk), this
computation yields the inequality QM > 1. �

3More rigourously there is a subsequence of {Gk}k∈N which is a κ-approximation
of Z. Indeed any interval of the form [ 1

2k ,
3
2k ] contains a power of 1

3 .
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8.2. Other examples. Similar reasoning establishes the CLP for the
following examples:

1) Higher dimensional Menger spaces. For n ≥ 2, the Sierpinski
carpet may be generalized to a space Sn, by iterating the subdivision
of the unit cube [0, 1]n into 3n subcubes of side length 1

3
, and removing

the central open subcube. Then for ` ≥ n, we get an analog of the
Menger space by letting

M`,n = ∩{π−1
I (Sn) | I ⊂ {1, . . . , `}, |I| = n} ,

where πI : [0, 1]` → [0, 1]n is the projection map which retains the
coordinates indexed by elements of I. These examples can be further
generalized by subdividing into kn subcubes instead of 3n, where k is
an odd integer, or by removing a symmetric pattern of subcubes at
each stage, instead of just the central cube, etc.

2) Higher dimensional snowspheres, cf. [Mey10]. Fix n ≥ 2. Let
Qk denote the n-dimensional polyhedron obtained from the boundary
of the cube [0, 3−k]n+1 by removing the interior of one n-dimensional
face. Construct a sequence {Pk}k∈Z+ , where Pk is a metric polyhedron
consisting of Euclidean n-cubes of side length 3−k, as follows. Let P0

be the boundary of the unit cube [0, 1]n, and inductively construct Pk
from Pk−1 by subdividing each n-cube face of Pk−1 into 3n subcubes,
removing the central open subcube, and gluing on a copy of Qk along
the boundary. If we endow Pk with the path metric, then the sequence
{Pk} Gromov-Hausdorff converges to a self-similar space Z. As with
Menger spaces, there are further generalizations of these examples.

3) Pontryagin manifolds. We modify slightly the above construction
to obtain some Pontryagin manifolds. Fix n ≥ 2, and let T n be the
standard n-torus obtained by identification of the opposite faces of the
unit cube [0, 1]n. Let Qk denote the polyhedron obtained as follows.
Tesselate T n by 3n equal subcubes, remove the interior of one of them,
and normalize the metric so that the side length of every subcube is 3−k.
Define P0 = T n and inductively construct Pk from Pk−1 by subdividing
each n-cube face of Pk−1 into 3n subcubes, removing the central open
subcube, and gluing on a copy of Qk along the boundary. Then, as
above, {Pk} Gromov-Hausdorff converges to a self-similar space Z.
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9. `p-Equivalence relations

This section covers some applications of the previous results to the
`p-equivalence relations. These equivalence relations are of great in-
terest because of their invariance by quasi-Moebius homeomorphisms.
Moreover they can be used to provide examples of spaces which do not
admit the CLP (see the remark at the end of the section).

We start by defining the `p-equivalence relation, it requires some
preliminary materials. Let Z be a compact doubling metric space.
Assume in addition that it is uniformly perfect , i.e. there exists a
constant 0 < λ < 1 such that for every ball B(z, r) of Z with 0 < r ≤
diamZ one has B(z, r) \B(z, λr) 6= ∅.

We will associate to Z a Gromov hyperbolic graph G such that ∂G
– namely its boundary at infinity – identifies canonically with Z. For
this purpose fix a constant κ ≥ 1, and pick for each k ∈ N∗ a finite
covering Uk of Z with the following properties :

– ∀v ∈ Uk, ∃zv ∈ Z with B(zv, κ
−12−k) ⊂ v ⊂ B(zv, κ2−k),

– ∀v, w ∈ Uk, v 6= w : B(zv, κ
−12−k) ∩B(zw, κ

−12−k) = ∅,
– ∀z ∈ Z, ∃v ∈ Uk with B(z, κ−12−k) ⊂ v.

Let U0 = {Z} be the trivial cover, and let G be the graph whose vertex
set is ∪k∈NUk and whose edges are defined as follows : two distinct
vertices v and w are joined by an edge if

– v and w both belong to Uk, (k ∈ N), and v ∩ w 6= ∅, or if
– one belongs to Uk the other one belongs to Uk+1 and v ∩w 6= ∅.

Then G is a Gromov hyperbolic graph with bounded valency. The
metric space Z is bi-Lipschitz equivalent to ∂G equipped with a visual
metric [BP03].

For a countable set E and for p ∈ [1,∞), we denote by `p(E) the Ba-
nach space of p-summable real functions on E. The first `p-cohomology
group of G is

`pH
1(G) = {f : G0 → R ; df ∈ `p(G1)}/`p(G0) + R,

where df is the function on G1 defined by

∀a ∈ G1, df(a) = f(a+)− f(a−),

and where R denotes the set of constant fonctions on G0. Equipped
with the semi-norm induced by the `p-norm of df the topological vector
space `pH

1(G) is a Banach space. It is a quasi-isometric invariant of
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G and a quasi-Moebius invariant of Z. In addition `pH
1(G) injects in

`qH
1(G) for 1 ≤ p ≤ q < +∞. See [Gro93], [BP03] for a proof of these

results.

Recall that Z being a compact, doubling, uniformly perfect metric
space, it admits a doubling measure, that is a finite measure µ such that
for every ball B ⊂ Z of positive radius one has : 0 < µ(2B) ≤ Cµ(B),
with C ≥ 0 independent of B (see [Hei01]). By a result of R. Strichartz
[Str83] (see also [Pan89a], [BP03]) there is a continuous monomorphism

`pH
1(G) ↪→ Lp(Z, µ)/R

[f ] 7−→ f∞ mod R,

where f∞ is defined µ-almost everywhere as follows : for z ∈ Z and for
any geodesic ray rz of G with endpoint z,

f∞(z) = lim
t→+∞

f(rz(t)).

Following M. Gromov ([Gro93] p. 259, see also [Ele97] and [Bou04])
we set

B0
p(Z) := {u : Z → R continuous ; u = f∞ with [f ] ∈ `pH1(G)},

and we define the `p-equivalence relation on Z by :

x ∼p y ⇐⇒ ∀u ∈ B0
p(Z), u(x) = u(y).

This is a closed equivalence relation which is invariant by the group of
quasi-Moebius homeomorphisms of Z.

Proposition 9.1. The cosets of the `p-equivalence relation are con-
tinua.

Proof. We will use the following obvious properties of the space B0
p(Z):

(i) if u1 and u2 belong to B0
p(Z) then max{u1, u2} does too ;

(ii) let u1, u2 ∈ B0
p(Z), and let U1, U2 be open subsets of Z with

U1 ∪ U2 = Z. Assume that u1 = u2 on U1 ∩ U2. Then the
function u defined by u = u1 on U1 and u = u2 on U2, belongs
to B0

p(Z).

First we claim that for any coset F and any compact subset K ⊂
Z disjoint from F , there exists u ∈ B0

p(Z) such that u(F ) = 0 and

u(K) = 1. Indeed for any z ∈ K there exists a function uz ∈ B0
p(Z)

with uz(F ) = 0 and uz(z) > 1. Extract a finite cover of K from the
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open subsets {uz > 1}. Let U1, ..., Un be such a cover and let u1, ..., un
be the corresponding functions. Then the function

v =
n∑
i=1

max{0, ui}

belongs to B0
p(Z) and satisfies v(F ) = 0 and v ≥ 1 on K. Letting

u = min{1, v} the claim follows.

Assume now by contradiction that a coset F is a disjoint union of
two non-empty compact subsets F1 and F2. Let r > 0. By the previ-
ous claim there exists a function u ∈ B0

p(Z) such that u(F ) = 0 and
u(Z \ Nr(F )) = 1. For r small enough Nr(F ) is the disjoint union
of Nr(F1) and Nr(F2). Define a function v on Z by letting v(z) = 1
for z ∈ Nr(F2), and v(z) = u(z) otherwise. Then the above property
(ii) applied to the open subsets Z \ N r(Fi) shows that the function
v belongs to B0

p(Z). Moreover it satisfies v(F1) = 0 and v(F2) = 1.
Contradiction. �

The following result relates the `p-equivalence relation with the com-
binatorial p-modulus.

Proposition 9.2. Let {Gk}k∈N be a κ-approximation of Z. Assume
x, y ∈ Z satisfy x �p y, then there exist open subsets U, V ⊂ Z con-
taining respectively x and y such that

lim
k→+∞

Modp(U, V,Gk) = 0.

Proof. Recall that Z being a doubling metric space, up to a multiplica-
tive constant the Gk-combinatorial p-modulus does not depend on the
κ-approximation (see Proposition 3.2). Consider the graph G associ-
ated to a family of covers {Uk}k∈N as described at the beginning of the
section. For k ∈ N, let Gk be the subgraph of G which is the incidence
graph of the covering Uk. The family {Gk}k∈N is a κ-approximation of
Z. In addition G0

k identifies with the sphere in G of radius k centered
at the unique vertex of G0.

Let u ∈ B0
p(Z) with u(x) 6= u(y). Changing u to au+ b (a, b ∈ R) if

necessary, we can assume that there exist open subsets U, V of Z with
x ∈ U, y ∈ V and u ≤ 0 on U , u ≥ 1 on V . Pick a function f : G0 → R
such that df ∈ `p(G1) and f∞ = u. Choosing f properly one can ensure
that for k large enough and for every v ∈ G0

k the following holds :

f(v) ≤ 1/3 if v ∩ U 6= ∅, f(v) ≥ 2/3 if v ∩ V 6= ∅,
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(see [BP03] preuve du Th. 3.4). Let ρk : G0
k → R+ be defined by

ρk(v) = 3 max
(v,w)∈G1

k

|f(v)− f(w)|.

Obviously it is an F(U, V )-admissible function. In addition its p-mass
satisfies

Mp(ρk) ≤ 3p
∑
a∈G1

k

|df(a)|p.

For df ∈ `p(G
1) the right handside term tends to 0 when k tends to

+∞. �

Combining several previous results we now collect some applications
to hyperbolic Coxeter groups.

Corollary 9.3. Let Γ be a hyperbolic Coxeter group. Then each coset
of the `p-equivalence relation on ∂Γ is either a point or a connected
parabolic limit set.

Proof. It is a straitforward consequence of Proposition 9.1 and Corol-
lary 2.6. �

Corollary 9.4. Let Γ be a hyperbolic Coxeter group with connected
boundary. Let p ≥ 1 and suppose that ∼p admits a coset different from a
point and the whole ∂Γ. Then ∼p admits a coset F with Confdim(F ) =
Confdim(∂Γ).

Proof. Let p be as in the statement and let L be the collection of the
cosets of ∼p which are different from a point. From the above corollary
its elements are connected proper parabolic limit sets. Obviously the Γ-
invariance and separation hypotheses of Corollary 4.4 are satisfied. In
addition, for every r > 0, Proposition 9.2 shows that Modp(Fr(L), Gk)
tends to 0 when k tends to +∞. The same holds for every q ≥ p by
monotonicity of the function q 7→ Modq. Assume by contradiction that
Confdim(L) < Confdim(∂Γ). Since Confdim(∂Γ) = QM (see [KK] and
the remark 2 at the end of Section 3), one can apply Corollary 4.4 with
exponent QM . One obtains that ModQM

(F0, Gk) tends to 0 when k
tends to +∞, contradicting Corollary 3.16(ii). �

Finally we return to the general approximately self-similar metric
spaces and to the combinatorial Loewner property. The second part of
the following corollary is the combinatorial analogue of Theorem 0.3 in
[BP03].



66 MARC BOURDON AND BRUCE KLEINER

Corollary 9.5. Let Z be an approximately self-similar metric space.
Assume Z is connected and let p ≥ 1. Then p > QM if and only if
(Z/ ∼p) = Z. If in addition Z satisfies the CLP, then for 1 ≤ p ≤ QM

the quotient Z/ ∼p is a singleton.

Proof. The second part of the statement follows from Proposition 9.2
and from the monotonicity of p 7→ Modp. To establish the “only if”
part of the first, one invokes that QM is equal to the Ahlfors regular
conformal dimension of Z [KK], and the fact that B0

p(Z) separates
the points of Z for p strictly larger than the Alhfors-regular conformal
dimension [BP03]. Conversely if (Z/ ∼p) = Z, then Proposition 9.2
implies that Modp(F0, Gk) tends to 0 when k tends to +∞. With
Proposition 3.16(ii) we get that p > QM . �

Remarks and questions : Corollary 9.5 may be used to produce ex-
amples of spaces for which the CLP fails. Indeed suppose that for
a given hyperbolic group Γ, the family of quotient spaces ∂Γ/ ∼p,
(p ∈ [1,+∞)), contains intermediate states between the singleton and
the whole ∂Γ. Then, according to Corollary 9.5, ∂Γ does not admit
the CLP.

Currently all known examples of hyperbolic groups for which the
CLP fails are of two types. Either their boundary admits local cut
points – in which case the CLP fails “trivially” (see Proposition 3.5.2)
– or they decompose as Γ = A?C B and there exists p ∈ [1, QM ] with :

x ∼p y ⇐⇒ x = y or ∃g ∈ Γ such that x, y ∈ g∂B.

Examples of the second type, including some Coxeter groups, are de-
scribed in [Bou04]. In the Coxeter group case, Corollary 9.4 shows that
Confdim(∂B) = Confdim(∂Γ).

It would be desirable to have a better understanding of the relations
between the combinatorial modulus and the `p-cohomology.
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