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Abstract. We characterize groups quasi-isometric to a right-angled
Artin group G with finite outer automorphism group. In partic-
ular all such groups admit a geometric action on a CAT(0) cube
complex that has an equivariant “fibering” over the Davis building
of G. This characterization will be used in [Hua] to give a com-
mensurability classification of the groups quasi-isometric to certain
RAAG’s.

1. Introduction

Overview. In this paper we will study right angled Artin groups
(RAAG’s). Like other authors, our motivation for considering these
groups stems from the fact that they are an easily defined yet remark-
ably rich class of objects, exhibiting interesting features from many
different vantage points: algebraic structure (subgroup structure, au-
tomorphism groups) [Dro87, Ser89, Lau95, CCV07], finiteness proper-
ties [BB97, BM01], representation varieties [KM98], CAT (0) geometry
[CK00], cube complex geometry [Wis11, HW08], and coarse geome-
try [Wis96, BM00, BKS08a, BN08, BJN10, Hua14b, Hua14a]. Further
impetus for studying RAAG’s comes from their role in the theory of
special cube complexes, which was a key ingredient in Agol’s spectacu-
lar solution of Thurston’s virtual Haken and virtual fibered conjectures
[AGM13, Wis11, HW08, Sag95, KM12].

Our focus here is on quasi-isometric rigidity, which is part of Gro-
mov’s program for quasi-isometric classification of groups and metric
spaces. In this paper we build on [BKS08b, BKS08a, Hua14b, Hua14a],
which analyzed the structure of individual quasi-isometries G → G,
where G is a RAAG with finite outer automorphism group. Our main
results are a structure theorem for groups of quasi-isometries (more
precisely quasi-actions), and a characterization of finitely generated
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groups quasi-isometric to such RAAG’s. Both are formulated using a
geometric description in terms of Caprace-Sageev restriction quotients
[CS11] and the Davis building [Dav98].

Background. Prior results on quasi-isometric classification of RAAG’s
may be loosely divided into two types: internal quasi-isometry classi-
fication among (families of) RAAG’s, and quasi-isometry rigidity re-
sults characterizing arbitrary finitely generated groups quasi-isometric
to a given RAAG. In the former category, it is known that to classify
RAAG’s up to quasi-isometry, it suffices to consider the case when the
groups are 1-ended and do not admit any nontrivial direct product
decomposition, or equivalently, when their defining graphs are con-
nected, contain more than one vertex, and do not admit a nontrivial
join decomposition ([Hua14a, Theorem 2.9], [PW02, KKL98]). This
covers, for instance, the classification up to quasi-isometry of RAAG’s
that may be formed inductively by taking products or free products,
starting from copies of Z. Beyond this, internal classification is known
for RAAG’s whose defining graph is a tree [BN08] or a higher dimen-
sion analog [BJN10], or when the outer automorphism group is finite
[Hua14a, BKS08a]. General quasi-isometric classification results in the
literature are much more limited; if H is a finitely generated group
quasi-isometric to a RAAG G then:

(i) If G is free or free abelian, H is virtually free or free abelian,
respectively [Sta68, Dun85, Bas72, Gro81a].

(ii) If G = Fk × Z`, then H is virtually Fk × Z` [Why10].
(iii) If the defining graph of G is a tree, then H is virtually the

fundamental group of a non-geometric graph manifold that has
nonempty boundary in every Seifert fiber space component, and
moreover H is virtually cocompactly cubulated [BN08, KL97a,
HP15].

(iv) If G is a product of free groups, then H acts geometrically on
a product of trees [Ahl02, KKL98, MSW03].

Unlike (i)-(iii), which give characterizations up to commensurability,
the characterization in (iv) only asserts the existence of an action on
a good geometric model; the stronger commensurability assertion is
false, in view of examples of Wise and Burger-Mozes [Wis96, BM00].

The setup. We now recall some terminology and notation; see Section
3 for more detail.
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If Γ is a finite simplicial graph with vertex set V (Γ), we denote the
associated right-angled Artin group by G(Γ). This is the fundamen-
tal group of the Salvetti complex S(Γ), a nonpositively curved cube
complex that may be constructed by choosing a pointed unit length
circle (S1

v , ?v) for every vertex v ∈ V (Γ), forming the pointed product
torus

∏
v(S

1
v , ?v), and passing to the union of the product subtori corre-

sponding to the cliques (complete subgraphs) in Γ. The clique subtori
are the standard tori in S(Γ).

We denote the universal covering by X(Γ) → S(Γ); here X(Γ) is a
CAT(0) cube complex on which G(Γ) acts geometrically by deck trans-
formations. The inverse image of a standard torus in S(Γ) under the
universal covering X(Γ)→ S(Γ) breaks up into connected components;
these are the standard flats inX(Γ) which we partial order by inclusion.
Note that we include standard tori and standard flats of dimension 0.

The poset of standard flats in X(Γ) turns out to be crucial to our
story. Using it one may define a locally infinite CAT(0) cube complex
|B|(Γ) whose cubes of dimension k ≥ 0 are indexed by inclusions F1 ⊂
F2, and F1, F2 are standard flats where dimF2 = dimF1 + k. Elements
of the 0-skeleton |B|(0)(Γ) correspond to the trivial inclusions F ⊂
F where F is a standard flat, so we will identify |B|(0)(Γ) with the
collection of standard flats, and define the rank of a vertex of |B|(Γ) to
be the dimension of the corresponding standard flat; in particular we
may identify the 0-skeleton X(0)(Γ) with the set of rank 0 vertices of
|B|(0). Since G(Γ) y X(Γ) preserves the collection of standard flats,
there is an induced action G(Γ) y |B|(Γ) by cubical isomorphisms.
The above description is a slight variation on the original construction
of the same object given by Davis, in which one views |B|(Γ) as the
Davis realization of a certain right-angled building B(Γ) associated with
G(Γ), where the apartments of B(Γ) are modelled on the right-angled
Coxeter group W (Γ) with defining graph Γ; see [Dav98] and Section 3.
By abuse of terminology we will refer to this cube complex as the Davis
building associated with G(Γ); it has been called the modified Deligne
complex in [CD95b] and flat space in [BKS08b].

The following lemma is not difficult to prove.

Lemma 1.1.

• Every isomorphism |B|(0)(Γ) → |B|(0)(Γ) of the poset of stan-
dard flats extends to a unique cubical isomorphism |B|(Γ) →
|B|(Γ) (Section 3.4).
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• Every cubical isomorphism of |B| → |B| induces a poset iso-
morphism |B|(0) → |B|(0) (Lemma 3.14).
• A bijection φ(0) : |B|(0)(Γ) ⊃ X(0)(Γ) → X(0)(Γ) ⊂ |B|(0)(Γ)
induces/extends to a poset isomorphism |B|(0)(Γ) → |B|(0)(Γ)
iff it is flat-preserving in the sense that for every standard flat
F1 ⊂ X(Γ), the 0-skeleton F

(0)
1 is mapped bijectively by φ(0)

onto the 0-skeleton of some standard flat F2 (Section 5.1).

Remark 1.2. We caution the reader that a cubical isomorphism |B|(Γ)→
|B|(Γ) need not arise from an isomorphism B(Γ) → B(Γ) of the right-
angled building.

Rigidity and flexibility. We now fix a finite graph Γ such that the
outer automorphism group Out(G(Γ)) is finite; by work of [CF12,
Day12], one may view this as the generic case. The reader may find it
helpful to keep in mind the case when Γ is a pentagon.

Since there is no ambiguity in Γ we will often suppress it in the
notation below.

It is known that in this case X = X(Γ) is not quasi-isometrically
rigid: there are quasi-isometries that are not at finite sup distance from
isometries, and there are finitely generated groups H that are quasi-
isometric to X, but do not admit geometric actions on X (Corollary
6.12). On the other hand, quasi-isometries exhibit a form of partial
rigidity that is captured by the building |B|:

Theorem 1.3 ([Hua14a, BKS08a]). Suppose Out(G(Γ)) is finite and
G(Γ) 6' Z. If φ : X(0) → X(0) is an (L,A)-quasi-isometry, then there
is a unique cubical isomorphism |B| → |B| such that associated flat-
preserving bijection φ̄ : X(0) → X(0) is at finite sup distance from φ,
and moreover

d(φ̄, φ) = sup{v ∈ X(0) | d(φ̄(v), φ(v))} < D = D(L,A) .

By the uniqueness assertion, we obtain a cubical action QI(X) y |B|
of the quasi-isometry group of X on |B|.

We point out that the partial rigidity statement of the theorem does
not hold for general RAAG’s: it only holds for the RAAG’s covered by
the theorem in [Hua14a].
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The main results. We will produce good geometric models quasi-
isometric to X(Γ) that are simultaneously compatible with group ac-
tions, the underlying building |B|, and cubical structure. The key idea
for expressing this is:

Definition 1.4. A cubical map q : Y → Z between CAT(0) cube
complexes (see Definition 3.4) is a restriction quotient if it is surjective,
and the point inverse q−1(z) is a convex subset of Y for every z ∈ Z.

It turns out that restriction quotients as defined above are essen-
tially equivalent to the class of mappings introduced by Caprace-Sageev
[CS11] with a different definition (see Section 4 for the proof that the
definitions are equivalent). Restriction quotients Y → |B| provide a
means to “resolve” or “blow-up” the locally infinite building |B| to a
locally finite CAT(0) cube complex.

Theorem 1.5. (See Section 3 for definitions.) Let H y X be a quasi-
action of an arbitrary group on X = X(Γ), where Out(G(Γ)) is finite
and G(Γ) 6' Z. Then there is an H-equivariant restriction quotient
H y Y

q−→ H y |B| where:

(a) H y |B| is the cubical action arising from the quasi-action
H y X using Theorem 1.5, and H y Y is a cubical action.

(b) The point inverse q−1(v) of every rank k vertex v ∈ |B|(0) is a
copy of Rk with the usual cubulation.

(c) H y X is quasiconjugate to the cubical action H y Y .

Theorem 1.6. If |Out(G(Γ))| <∞ and G(Γ) 6' Z, then a finitely gen-
erated group H is quasi-isometric to G(Γ) iff there is an H-equivariant
restriction quotient H y Y

q−→ H y |B| where

(a) H y Y is a geometric cubical action.
(b) H y |B| is cubical.
(c) The point inverse q−1(v) of every rank k vertex v ∈ |B|(0) is a

copy of Rk with the usual cubulation.

Remark 1.7. In fact the restriction quotient Y → |B| in Theorems 1.5
and 1.6 has slightly more structure, see Theorem 6.4.

In particular, we have:

Corollary 1.8. Any group quasi-isometric to G is cocompactly cubu-
lated, i.e. it has a geometric cubical action on a CAT(0) cube complex.

One may compare Theorem 1.6 with rigidity theorems for symmetric
spaces or products of trees, which characterize a quasi-isometry class
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of groups by the existence of a geometric action on a model space of
a specified type [Sul81, Gro81b, Tuk86, Pan89, KL97b, Sta68, Dun85,
KKL98, MSW03, Ahl02]. As in the case of products of trees — and
unlike the case of symmetric spaces — there are finitely generated
groups H as in Theorem 1.6 which do not admit a geometric action
on the original model space X, so one is forced to pass to a different
space Y [BKS08a, Hua14a]. Also, Theorems 1.5 and 1.6 fail for general
RAAG’s, for instance for free abelian groups of rank ≥ 2, and for
products of nonabelian free groups

∏
1≤j≤kGj, for k ≥ 1.

The quasi-isometry invariance of the existence of a cocompact cubu-
lation as asserted in Corollary 1.8 is false in general. Some groups
quasi-isometric to H2 ×R admit a cocompact cubulation, while others
are not virtually CAT (0) [BH99]. Combining [Lee95], [BN08] and [HP],
it follows that there is a pair of quasi-isometric CAT (0) graph mani-
fold groups, one of which is the fundamental group of a compact special
cube complex, while the other is not virtually cocompactly cubulated.
The quasi-isometry invariance of cocompact cubulations fails to hold
even among RAAG’s: for n > 1 there are groups quasi-isometric Rn

that are not cocompactly cubulated [Hag14].

Earlier cocompact cubulation theorems in the spirit of Corollary
1.8 include the cases of groups quasi-isometric to trees, products of
trees, and hyperbolic k-space Hk for k ∈ {2, 3} [Sta68, Dun85, KKL98,
MSW03, Ahl02, GMRS98, KM12, BW12]. It is worth noting that each
case requires different ingredients that are specific to the spaces in
question.

Further results. We briefly discuss some further results here, refer-
ring the reader to the body of the paper for details.

One portion of the proof of Theorem 1.5 has to do with the geome-
try of restriction quotients, and more specifically, restriction quotients
with a right-angled building as target. We view this as a contribution
to cube complex geometry, and to the geometric theory of graph prod-
ucts; beyond the references mentioned already, our treatment has been
influenced by the papers of Januszkiewicz-Swiatkowski and Haglund
[JŚ01, Hag08]. The main results on this are:

(a) We show in Section 4 that restriction quotients may be charac-
terized in several different ways.

(b) We show that having a restriction quotient q : Y → Z is equiva-
lent to knowing certain “fiber data” living on the target complex
Z.



GROUPS QUASI-ISOMETRIC TO RAAG’S 7

(c) When |B| is the Davis realization of a right-angled building B
and Y → |B| is a restriction quotient whose fibers are copies
of Rk with dimension specified as in Theorems 1.5 and 1.6, the
fiber data in (b) may be distilled even more, leading to what
we call “blow-up data”.

As by-products of (a)-(c), we obtain:

• A characterization of the quasi-actions H y X(Γ) that are
quasiconjugate to isometric actions H y X(Γ) (Section 6.2).
• A characterization of the restriction quotients Y → |B| satis-
fying (b) of Theorem 1.5 for which Y is quasi-isometric to X
(Corollary 6.5 and Theorem 6.6).
• A proof of uniqueness of the right-angled building modelled on
the right-angled Coxeter group W (Γ) with defining graph Γ,
with countably infinite rank 1 residues (Corollary 5.23).

It follows from [KL01] that a finitely generated group H quasi-
isometric to a symmetric space of noncompact type X admits an epi-
morphism H → Λ with finite kernel, where Λ is a cocompact lattice in
the isometry group Isom(X). In contrast to this, we have the following
result, which is inspired by [MSW03, Theorem 9, Corollary 10]:

Theorem 1.9. (See Section 6.2) Suppose G is a RAAG with |Out(G)| <
∞. Then there are finitely generated groups H and H ′ quasi-isometric
to G that do not admit discrete, virtually faithful cocompact represen-
tations into the same locally compact topological group.

Open questions. As mentioned above, Corollary 1.8 may be con-
sidered part of the quasi-isometry classification program for finitely
generated groups. The leads to:

Question 1.10. If Out(G(Γ)) is finite, what is the commensurability
classification of groups quasi-isometric to G(Γ)? Are they all commen-
surable to G(Γ)? What about cocompact lattices in the automorphism
group of X(Γ)?

For comparison, we recall that any group quasi-isometric to a tree is
commensurable to a free group, but there are groups quasi-isometric to
a product of trees that contain no nontrivial finite index subgroups, and
are therefore not commensurable to a product of free groups [Wis96,
BM00].

We mention that Theorem 1.6 will be used in [Hua] to answer Ques-
tion 1.10 in certain cases.
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Another question motivated by Corollary 1.8 is:

Question 1.11. Under what conditions on a RAAG G must every
group quasi-isometric to G be virtually cocompactly cubulated?

Discussion of the proofs. Before sketching the arguments for Theo-
rems 1.5 and 1.6, we first illustrate them in the tautological case when
H = G and the quasi-action is the deck group action G y X. In this
case we cannot take Y = X, as there is no H-equivariant restriction
quotient H y X → H y |B| satisfying (c) of Theorem 1.6. Instead,
we use a different geometric model.

Definition 1.12 (Graph products of spaces [Hag08]). For every vertex
v ∈ V (Γ), choose a pointed geodesic metric space (Zv, ?v). The Γ-
graph product of {(Zv, ?v)}v∈V (Γ) is obtained by forming the product∏

v(Zv, ?v), and passing to the union of the subproducts corresponding
to the cliques in Γ. We denote this by

∏
Γ(Zv, ?v). When the Zv’s are

nonpositively curved, then so is the graph product [Hag08, Corollary
4.6].

There are three graph products that are useful here:

(1) The Salvetti complex S(Γ) is the graph product
∏

Γ(S1
v , ?v),

where (S1
v , ?v) is a pointed unit circle.

(2) For every v ∈ V (Γ), let (Lv, ?v) be a pointed lollipop, i.e. Lv is
the wedge of the unit circle S1

v and a unit interval Iv, and the
basepoint ?v ∈ Lv is the vertex of valence 1. Then the graph
product

∏
Γ(Lv, ?v) is the exploded Salvetti complex Se = Se(Γ).

We denote its universal covering by Xe → Se.
(3) If (Zv, ?v) is a unit interval and ?v ∈ Zv is an endpoint for

every v ∈ V (Γ), then the graph product
∏

Γ(Zv, ?v) is the Davis
chamber, i.e. it is a copy of the Davis realization |c| of a chamber
c in |B|(Γ); for this reason we will denote it by |c|Γ.

By collapsing the interval Iv in each lollipop Lv to a point, we obtain
a cubical map Se → S; this has contractible point inverses, and is
therefore a homotopy equivalence. If we collapse the circles S1

v ⊂ Lv
to points instead, we get a map Se → |c|Γ to the Davis chamber whose
point inverses are closed, locally convex tori. The point inverses of
the composition Xe → Se → |c|Γ cover the torus point inverses of
Se → |c|Γ, and their connected components form a “foliation” of Xe

by flat convex subspaces. It turns out that by collapsing Xe along
these flat subspaces, we obtain a copy of |B|, and the quotient map
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Xe → |B| is a restriction quotient Xe → |B|. Alternately, one may
take the collection K of hyperplanes of Xe dual to edges σ ⊂ Xe whose
projection underXe → |c|Γ is an edge, and form the restriction quotient
using the Caprace-Sageev construction.

Remark 1.13. The exploded Salvetti complex and the restriction quo-
tient Xe → |B| were discussed in [BKS08a] in the 2-dimensional case,
using an ad hoc construction that was initially invented for “ease of
visualization”. However, the authors were unaware of the general de-
scription above, and the notion of restriction quotient had not yet ap-
peared.

We now discuss the proofs of Theorem 1.5 and the forward direction
of 1.6.

The forward direction of Theorem 1.6 reduces to Theorem 1.5, by
the standard observation that a quasi-isometry H → G

qi
' X allows us

to quasiconjugate the left translation action H y H to a quasi-action
H y X. Therefore we focus on Theorem 1.5.

Let H y X be as in Theorem 1.5. By a bounded perturbation, we
may assume that this quasi-action preserves the 0-skeleton X(0) ⊂ X.
Applying Theorem 1.3, we may further assume that we have an action
H y X(0) by flat-preserving quasi-isometries. The fact the we have an
action, rather than just a quasi-action, comes from the uniqueness in
Theorem 1.5; this turns out to be a crucial point in the sequel.

Given a standard geodesic ` ⊂ X, the parallel set P` ⊂ X decom-
poses as a product R` × Q`, where R` is a copy of R; likewise there
is a product decomposition of 0-skeleta P (0)

` ' Z` × Q(0)
` . One argues

that the action H y X(0) permutes the collection of 0-skeleta {P (0)
` }`,

and that for any `, the stabilizer Stab(P
(0)
` , H) of P (0)

` in H acts on
P

(0)
` ' Z` × Q(0)

` preserving the product structure. We call the action
Stab(P

(0)
` , H) y Z` a factor action. The factor actions are by bijec-

tions with quasi-isometry constants bounded uniformly independent of
`.

It turns out that factor actions play a central role in the story. For
instance, when the action H y X(0) is the restriction of an action
H y X by cubical isometries, then the factor actions H[`] y Z[`]

are also actions by isometries. In general the factor actions can be
arbitrary: up to isometric conjugacy, any action A y Z by quasi-
isometries with uniform constants can arise as a factor action for some
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action as in Theorem 1.5. A key step in the proof is to show that such
actions have a relatively simple structure:

Proposition 1.14 (Semiconjugacy). Let U
ρ0y Z be an action of an

arbitrary group by (L,A)-quasi-isometries. Then there is an isometric
action U

ρ1y Z and surjective equivariant (L′, A′)-quasi-isometry

U
ρ0y Z −→ U

ρ1y Z ,

where L′ and A′ depend only on L and A.

The assumption that ρ0 is an action, as opposed to a quasi-action, is
crucial: if a group U has a nontrivial quasihomomorphism α : U → R,
then the translation quasi-action U α̂y R defined by α̂(u)(x) = x+α(u)
is quasiconjugate to a quasi-action on Z, but not to an isometric action
on Z.

It follows immediately from the Proposition 1.14 that U
ρ0y Z is

quasiconjugate to an isometric action on the tree R. In that respect
Proposition 1.14 is similar to the theorem of Mosher-Sageev-Whyte
about promoting quasi-actions on bushy trees to isometric actions on
trees [MSW03, Theorem 1]. Since R is not bushy [MSW03, Theorem
1] does not apply, and indeed the example above shows that the as-
sumption of bushiness is essential in that theorem.

Continuing with the proof of Theorem 1.5, Proposition 1.14 gives a
good geometric model for the factor action Stab(P

(0)
` , H) y Z`: we

simply extend each isometry Z` → Z` to an isometry R` → R`, thereby
obtaining a cubical action Stab(P

(0)
` , H) y R`. In vague terms, the

remainder of the proof is concerned with combining these cubical mod-
els into models for the fibers of a restriction quotient Z → |B|, in an
H-equivariant way. This portion of the proof is covered by more gen-
eral results about restriction quotients, see (b)-(c) in the subsection on
further results above.

Organization of the paper.

A summary of notation can found in Section 2. Section 3 contains
some background material on quasi-actions, CAT (0) cube complexes,
RAAG’s and buildings. One can proceed directly to later sections with
Section 2 and Section 3 as references.

The main part of the paper is Section 4 to Section 7, where we prove
Theorem 1.6. In Section 4 we discuss restriction quotients, showing
how to construct a restriction quotient Y → Z starting from the target
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Z and an admissible assignment of fibres to the cubes of Z. Then we
discuss equivariance properties and the coarse geometry of restriction
quotients.

In Section 5, we introduce blow-ups of buildings based on Section
4. These are restriction quotients Y → |B| where the target is a
right-angled building and the fibres are Euclidean spaces of varying
dimension. We motivate our construction in Section 5.1 and Section
5.2. Blow-ups of buildings are constructed in Section 5.3. Several
properties of them are discussed in Section 5.4 and Section 5.5. We
incorporate a group action into our construction in Section 5.6.

In Section 6.1, we apply the construction in Section 5.6 to RAAG’s
and prove Theorem 1.6 modulo Theorem 1.14, which is postponed until
Section 7. In Section 6.2 we answer several natural questions motivated
by Theorem 1.6, and prove Theorem 1.9.

Acknowledgements. The second author would like to thank Mladen
Bestvian and Michah Sageev for many discussions related to atomic
RAAG’s, which planted the seeds for the cubulation result in this pa-
per. In particular, Proposition 6.2 originated in these discussions.
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2. Index of notation

• B: A combinatorial building (Section 3.4).
• |B|: The Davis realization of a building (Section 3.4).
• Chambers in the combinatorial building B are c, c′, d.
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• |c|Γ: the Davis chamber (the discussion after Definition 1.12,
Section 3.4).
• Sr: the collection of all spherical residues in the building B.
• projR : B → R: the nearest point projection from B to a residue
R (Section 3.4).
• ΛB: the collection of parallel classes of rank 1 residues in the
combinatorial building B. We also write Λ when the building
B is clear (Section 5.3).
• T : a type map which assigns each residue of B a subset of ΛB
(Section 5.3).
• CCC: the category of nonempty CAT(0) cube complexes with
morphisms given by convex cubical embeddings.
• PC : the parallel set of a closed convex subset of a CAT(0) space
(Section 3.2).
• W (Γ): The right-angled Coxeter group with defining graph Γ
(Section 3.4).
• G(Γ) the right-angled Artin group with defining graph Γ.
• X(Γ) → S(Γ) the universal covering of the Salvetti complex
(Section 3.3)
• Xe(Γ) → Se(Γ) the universal covering of the exploded Salvetti
complex (after Definition 1.12 and Section 5.1). We also write
Xe → Se when the graph Γ is clear.
• P(Γ): the extension complex (Definition 3.5).
• X → X(K): the restriction quotient arising from a set K of
hyperplanes in a CAT(0) cube complex (Definition 4.1).
• Lk(x,X) or Lk(c,X): the link of a vertex x or a cell c in a
polyhedral complex X.
• Γ1 ◦ Γ2: the join of two graphs.
• K1 ∗K2: the join of two simplicial complexes.

3. Preliminaries

3.1. Quasi-actions. We recall several definitions from coarse geome-
try.

Definition 3.1. An (L,A)-quasi-action of a group G on a metric space
Z is a map ρ : G× Z → Z so that ρ(γ, ·) : Z → Z is an (L,A) quasi-
isometry for every γ ∈ G, d(ρ(γ1, ρ(γ2, z)), ρ(γ1γ2, z)) < A for every
γ1, γ2 ∈ G, z ∈ Z, and d(ρ(e, z), z) < A for every z ∈ Z.

The action ρ is discrete if for any point z ∈ Z and any R > 0, the set
of all γ ∈ G such that ρ(γ, z) is contained in the ball BR(z) is finite; ρ
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is cobounded if Z coincides with a finite tubular neighbourhood of the
“orbit” ρ(G, z). If ρ is a discrete and cobounded quasi-action of G on Z,
then the orbit map γ ∈ G → ρ(γ, z) is a quasi-isometry. Conversely,
given a quasi-isometry between G and Z, it induces a discrete and
cobounded action of G on Z.

Two quasi-actions ρ and ρ′ are equivalent if there exists a constant
D so that d(ρ(γ), ρ′(γ)) < D for all γ ∈ G.

Definition 3.2. Let ρ and ρ′ be quasi-actions of G on Z and Z ′ respec-
tively, and let φ : Z → Z ′ be a quasi-isometry. Then ρ is quasiconjugate
to ρ′ via φ if there is a D so that d(φ◦ρ(γ), ρ′(r)◦φ) < D for all γ ∈ G.

3.2. CAT(0) cube complexes. We refer to [BH99] for background
about CAT(0) spaces (Chapter II.1) and cube complexes (Chapter
II.5), and [Sag95, Sag12] for CAT(0) cube complexes and hyperplanes.

A unit Euclidean n-cube is [0, 1]n with the standard metric. A mid-
cube is the set of fixed points of a reflection with respect to some [0, 1]
factor of [0, 1]n. A cube complex Y is obtained by taking a collection
of unit Euclidean cubes and gluing them along isometric faces. The
gluing metric on Y is CAT(0) if and only if Y is simply connected and
the link of each vertex in Y is a flag simplicial complex ([Gro87]), in
this case, Y is called a CAT(0) cube complex.

Let X be a CAT(0) space and let C ⊂ X be a closed convex subset.
Then there is a well-defined nearest point projection from X to C,
which we denote by πC : X → C. Two convex subsets C1 and C2

are parallel if d(·, C2)|C1 and d(·, C1)|C2 are constant functions. In this
case, the convex hull of C1 and C2 is isometric to C1 × [0, d(C1, C2)].

For closed convex subset C ⊂ X, we define PC , the parallel set of
C, to be the union of all convex subsets of X which are parallel to C.
If C has geodesic extension property, then PC is also a closed convex
subset and admits a canonical splitting PC ∼= C×C⊥ ([BH99, Chapter
II.2.12]).

Suppose Y is a CAT(0) cube complex. Then two edges e and e′ are
parallel if and only if there exists sequences of edges {ei}ni=1 such that
e1 = e, en = e′, and ei, ei+1 are the opposite sides of a 2-cube in Y . For
each edge e ⊂ Y . Let Ne be the union of cubes in Y which contain an
edge parallel to e. Then Ne is a convex subcomplex of Y , moreover,
Ne has a natural splitting Ne

∼= he × [0, 1], where [0, 1] corresponds to
the e direction. The subset he × {1/2} is called the hyperplane dual
to e, and Ne is called the carrier of this hyperplane. Each hyperplane
is a union of mid-cubes, hence has a natural cube complex structure,
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which makes it a CAT(0) cube complex. The following are true for
hyperplanes:

(1) Each hyperplane h is a convex subset of Y . Moreover, Y \ h
has exactly two connected components. The closure of each
connected component is called a halfspace. Each halfspace is
also a convex subset.

(2) Pick an edge e ⊂ Y . We identify e with [0, 1] and consider the
CAT(0) projection πe : Y → e ∼= [0, 1]. Then h = π−1

e (1/2)
is the hyperplane dual to e, and π−1

e ([0, 1/2]), π−1
e ([1/2, 1]) are

two halfspaces associated with h. The closure of π−1
e ((0, 1)) is

the carrier of h.

Let Y be a CAT(0) cube complex and let l ∈ Y be a geodesic line
(with respect to the CAT(0) metric) in the 1-skeleton of Y . Let e ⊂ l
be an edge and pick x ∈ e. We claim that if x is in the interior of
e, then π−1

l (x) = π−1
e (x). It is clear that π−1

l (x) ⊂ π−1
e (x). Suppose

y ∈ π−1
e (x). It follows from the splitting Ne

∼= he × [0, 1] as above that
the geodesic segment xy is orthogonal to l, i.e. ∠x(y, y′) = π/2 for any
y′ ∈ l \ {x}, thus y ∈ π−1

l (x).

The above claim implies π−1
l (x) is a convex subset for any x ∈ l.

Moreover, the following lemma is true.

Lemma 3.3. Let Y and l be as before. Pick an edge e ⊂ Y . If e is
parallel to some edge e′ ⊂ l, then πl(e) = e′, otherwise πl(e) is a vertex
of l.

Now we define an alternative metric on the CAT(0) cube complex
Y , which is called the l1-metric. One can view the 1-skeleton of Y as a
metric graph with edge length = 1, and this metric extends naturally
to a metric on Y . The distant between two vertices in Y with respect
to this metric is equal to the number of hyperplanes separating these
two vertices.

A combinatorial geodesic in Y is an edge path in Y (1) which is a
geodesic with respect to the l1 metric. However, we always refer to the
CAT(0) metric when we talk about a geodesic.

If Y is finite dimensional, the l1 metric and the CAT(0) metric on
Y are quasi-isometric ([CS11, Lemma 2.2]). In this paper, we will use
the CAT(0) metric unless otherwise specified.

Definition 3.4. ([CS11, Section 2.1]) A cellular map between cube
complexes is cubical if its restriction σ → τ between cubes factors as
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σ → η → τ , where the first map σ → η is a natural projection onto a
face of σ and the second map η → τ is an isometry.

3.3. Right-angled Artin groups. Pick a finite simplicial graph Γ,
recall that G(Γ) is the right-angled Artin group with defining graph Γ.
Let S be a standard generating set for G(Γ) and we label the vertices
of Γ by elements in S. G(Γ) has a nice Eilenberg-MacLane space S(Γ),
called the Salvetti complex (see [CD95a, Cha07]). Recall that S(Γ) is
the graph product

∏
Γ(S1

v , ?v), where (S1
v , ?v) is a pointed unit circle

(see Definition 1.12).

The 2-skeleton of S(Γ) is the usual presentation complex of G(Γ), so
π1(S(Γ)) ∼= G(Γ). The 0-skeleton of S(Γ) consists of one point whose
link is a flag complex, so S(Γ) is non-positively curved and S(Γ) is an
Eilenberg-MacLane space for G(Γ) by the Cartan-Hadamard theorem
([BH99, Theorem II.4.1]).

The closure of each k-cell in S(Γ) is a k-torus. Tori of this kind are
called standard tori. There is a 1-1 correspondence between the k-cells
(or standard torus of dimension k) in S(Γ) and k-cliques in Γ. We
define the dimension of G(Γ) to be the dimension of S(Γ).

Denote the universal cover of S(Γ) by X(Γ), which is a CAT(0) cube
complex. Our previous labelling of vertices of Γ induces a labelling of
the standard circles of S(Γ), which lifts to a labelling of edges of X(Γ).
A standard k-flat in X(Γ) is a connected component of the inverse
image of a standard k-torus under the covering map X(Γ) → S(Γ).
When k = 1, we also call it a standard geodesic.

For each simplicial graph Γ, there is a simplicial complex P(Γ) called
the extension complex, which captures the combinatorial pattern of
how standard flats intersect each other in X(Γ). This object was first
introduced in [KK13]. We will define it in a slightly different way (see
[Hua14a, Section 4.1] for more discussion).

Definition 3.5 (Extension complex). The vertices of P(Γ) are in 1-1
correspondence with the parallel classes of standard geodesics in X(Γ).
Two distinct vertices v1, v2 ∈ P(Γ) are connected by an edge if and
only if there is standard geodesic li in the parallel class associated with
vi (i = 1, 2) such that l1 and l2 span a standard 2-flat. Then P(Γ) is
defined to be the flag complex of its 1-skeleton, namely we build P(Γ)
inductively from its 1-skeleton by filling a k-simplex whenever we see
the (k − 1)-skeleton of a k-simplex.
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Since each complete subgraph in the 1-skeleton of P(Γ) gives rise to
a collection of mutually orthogonal standard geodesics lines, there is
a 1-1 correspondence between k-simplexes in P(Γ) and parallel classes
of standard (k + 1)-flats in X(Γ). In particular, there is a 1-1 corre-
spondence between maximal simplexes in P(Γ) and maximal standard
flats in X(Γ). Given standard flat F ⊂ X(Γ), we denote the simplex
in P(Γ) associated with the parallel class containing F by ∆(F ).

3.4. Right-angled buildings. We will follow the treatment in [Dav98,
AB08, Ron09]. In particular, we refer to Section 1.1 to Section 1.3 of
[Dav98] for the definitions of chamber systems, galleries, residues, Cox-
eter groups and buildings. We will focus on right-angled buildings, i.e.
the associated Coxeter group is right-angled, though most of the dis-
cussion below is valid for general buildings.

LetW = W (Γ) be a right-angled Coxeter group with (finite) defining
graph Γ. Let B = B(Γ) be a right-angled building with the associated
W -distance function denoted by δ : B×B → W . We will also call B(Γ)
a right-angled Γ-building for simplicity.

Let I be the vertex set of Γ. Recall that a subset J ⊂ I is spherical
if the subgroup of W generated by J is finite. Let S be the poset of
spherical subsets of I (including the empty set) and let |S|∆ be the
geometric realization of S, i.e. |S|∆ is a simplicial complex such that its
vertices are in 1-1 correspondence to elements in S and its n-simplices
are in 1-1 correspondence to (n + 1)-chains in S. Note that |S|∆ is
isomorphic the simplicial cone over the barycentric subdivision of the
flag complex of Γ.

Recall that for elements x ≤ y in S, the interval Ixy between x and
y is a poset consist of elements z ∈ S such that x ≤ z ≤ y with
the induced order from S. There is a natural simplicial embedding
|Ixy|∆ ↪→ |S|∆. Each |Ixy|∆ is a simplicial cone over the barycentric
subdivision of a simplex, thus can be viewed a subdivision of a cube
into simplices. It is not hard to check the collection of all intervals
in S gives rise to a structure of cube complex on |S|∆. Let |S| be the
resulting cube complex, then |S| is CAT (0).

A residue is spherical if it is a J-residue with J ∈ S. Let Sr be
the poset of all spherical residues in B. For x ∈ Sr which comes from
a J-residue, we define the rank of x to be the cardinality of J , and
define a type map t : Sr → S which maps x to J ∈ S. Let |Sr|∆ be
the geometric realization of Sr, then the type map induces a simplicial
map t : |Sr|∆ → |S|∆. For x ∈ Sr, let Srx be the sub-poset made of
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elements in Sr which is ≥ x. If x is of rank 0, then Srx is isomorphic
to S, moreover, there is a natural simplicial embedding |Srx|∆ → |Sr|∆
and t maps the image of |Srx|∆ isomorphically onto |S|∆.

As before, the geometric realization of each interval in Sr is a sub-
division of a cube into simplices. Moreover, the intersection of two
intervals in Sr is also an interval. Thus one gets a cube complex |B|
whose cubes are in 1-1 correspondence with intervals in Sr. |B| is called
the Davis realization of the building B and |B| is a CAT (0) cube com-
plex by [Dav98]. Moreover, the above type map induces a cubical map
t : |B| → |S|. Let R ⊂ B be a residue. Since R also has the structure
of a building, there is an isometric embedding |R| → |B| between their
Davis realizations. |R| is called a residue in |B|.

In the special case when B is equal to the associated Coxeter group
W , there is a natural embedding from the Cayley graph of W to |B|
such that vertices of Cayley graph are mapped to vertices of rank 0
in |B|. And |B| can be viewed as the first cubical subdivision of the
cubical completion of the Cayley graph of W (the cubical completion
means we attach an n-cube to the graph whenever there is a copy of
the 1-skeleton of an n-cube inside the graph).

Each vertex of |B| corresponds to a J-residue in B, thus has a well-
defined rank. For a vertex x of rank 0, the space |Srx|∆ discussed in the
previous paragraph induces a subcomplex |Bx| ⊂ |B|. Note that t maps
|Bx| isomorphically onto |S|. |Bx| is called a chamber in |B|, and there is
a 1-1 correspondence between chambers in |B| and chambers in B. Let
|Bx| and |By| be two chambers in |B|. Since there is an apartment A ⊂
B which contains both x and y, this induces an isometric embedding
|A| → |B| whose image contains |Bx| and |By|, here |A| is isomorphic
to the Davis realization of the Coxeter group W . |A| is called an
apartment in |B|.

Definition 3.6. For c1, c2 ∈ B, define d(c1, c2) to be the minimal length
of word in W (with respect to the generating set I) that represents
δ(c1, c2). For any two residues R1,R2 ∈ B, we define d(R1,R2) =
min{d(c, d) | c ∈ R1, d ∈ R2}. It turns out that for any c ∈ R1 and
d ∈ R2 with d(c, d) = d(R1,R2), δ(c, d) gives rise to the same element
in W ([AB08, Chapter 5.3.2]), this element is defined to be δ(R1,R2).

Lemma 3.7. d(c1, c2) = 2dl1(c1, c2), here dl1 means the l1-distance in
|B|. Since c1 and c2 can be also viewed as vertex of rank 0 in |B|,
dl1(c1, c2) makes sense.
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Proof. If B = W , then this lemma follows from the above description
of the Davis realization of a Coxeter group. The general case can be
reduced to this case by considering an apartment |A| ⊂ |B| which
contains c1 and c2. Note that |A| is convex in |B|. �

Given a residue R ⊂ B, there is a well-defined nearest point projec-
tion map as follows.

Theorem 3.8 (Proposition 5.34, [AB08]). Let R be a residue and c a
chamber. Then there exists a unique c′ ∈ R such that d(c, c′) = d(R, c).

This projection is compatible with several other projections in the
following sense. Let |R| ⊂ |B| be the convex subcomplex corresponding
to R. Let c and c′ be as above. We also view them as vertex of rank 0
in |B|. Let c1 be the combinatorial projection of c onto |R| (see [HW08,
Lemma 13.8]) and let c2 be the CAT (0) projection of c onto |R|.

Lemma 3.9. c′ = c1 = c2.

Proof. c1 = c2 is actually true for any CAT (0) cube complexes. By
[Hua14a, Lemma 2.3], c2 is a vertex. If c2 6= c1, by [HW08, Lemma
13.8], the concatenation of the combinatorial geodesic ω1 which con-
nects c2 and c1 and the combinatorial geodesic ω2 which connects c1 and
c is a combinatorial geodesic connecting c and c2. Note that ω1 ⊂ |R|.
Let e ⊂ ω1 be the edge that contains c2 and let x be the other endpoint
of e. Then x and c are in the same side of the hyperplane dual to e. It
is easy to see d(x, c) < d(c2, c) (here d denotes the CAT (0) distance),
which yields a contradiction.

To see c′ = c1, by Lemma 3.7, it suffices to prove c1 is of rank 0.
When B = W , this follows from c1 = c2, since we can work with the
cubical completion of the Cayley graph of W instead of |W | (the latter
is the cubical subdivision of the former) and apply [Hua14a, Lemma
2.3]. The general case follows by considering an apartment |A| ⊂ |B|
which contains c1 and c, note that in this case |A| ∩ |R| can be viewed
as a residue in |A|. �

Definition 3.10. Let projR be the map defined in Theorem 3.8. Two
residues R1 and R2 are parallel if projR1

(R2) = R1 and projR2
(R1) =

R2. In this case projR1
and projR2

induce mutually inverse bijections
between R1 and R2. These bijections are called parallelism maps be-
tween R1 and R2. They are also isomorphisms of chamber system i.e.
they map residues to residues ([AB08, Proposition 5.37]).
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It follows from the uniqueness of the projection map that if f : R →
R′ is the parallelism map between two parallel residues and R1 ⊂ R
is a residue, then R1 and f(R1) are parallel, and the parallelism map
between R1 and f(R1) is induced by f .

Lemma 3.11. If R1 and R2 are parallel, then |R1| and |R2| are paral-
lel with respect to the CAT (0) metric on |B|. Moreover, the parallelism
maps between R1 and R2 induces by projR1

and projR2
is compatible

with the CAT (0) parallelism between |R1| and |R2| induced by CAT (0)
projections.

Proof. By Lemma 3.9, it suffices to show for any residue R ∈ B, |R| is
the convex hull of the vertices of rank 0 inside |R|. This is clear when
B = W if one consider the cubical completion of the Cayley graph of
W . The general case also follows since |R| is a union of apartments in
|R|, and |R| is convex in |B|. �

It follows that if R1 and R2 are parallel residues, and R2 and R3 are
parallel residues, then R1 is parallel to R3. Moreover, let fij be the
parallelism map from Ri to Rj induced by the projection map, then
f13 = f23 ◦ f12.

Given chamber systems C1, · · · , Ck over I1, · · · , Ik, their direct prod-
uct C1×· · ·×Ck is a chamber system over the disjoint union I1t · · · t
Ik. Its chambers are k-tuples (c1, · · · , ck) with ct ∈ Ct. For i ∈ It,
(c1, · · · , ck) is i-adjacent to (d1, · · · , dk) if cj = dj for j 6= t and ct and
dt are i-adjacent.

Suppose the defining graph Γ of the right-angled Coxeter group W
admits a join decomposition Γ = Γ1◦Γ2◦· · ·◦Γk. Let I = ∪ki=1Ii be the
corresponding decomposition of the vertex set of Γ and W =

∏k
i=1 Wi

be the induced product decomposition of W . Pick chamber c ∈ B,
and let Bi be the Ii-residue that contains c. Define a map φ : B →
B1 × B2 × · · · × Bk by φ(d) = (projB1(d), projB2(d), · · · , projBk(d)) for
any chamber d ∈ B.

Theorem 3.12 (Theorem 3.10, [Ron09]). The definition of φ does not
depend on the choice of c, and φ is an isomorphism of buildings.

It follows from the definition of the Davis realization that there is a
natural isomorphism |B1×B2×· · ·×Bk| ∼= |B1|× |B2|× · · ·× |Bk|, thus
we have a product decomposition |B| ∼= |B1| × |B2| × · · · × |Bk|, where
the isomorphism is induced by CAT (0) projections from |B| to |Bi|’s
(this is a consequence of Lemma 3.11).
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We define the parallel set of a residue R ⊂ B to be the union of all
residues in B that are parallel to R.

Lemma 3.13. Suppose R is a J-residue. Let J⊥ ⊂ I be the collection
of vertices in Γ which are adjacent to every vertex in J . Then:

(1) If R′ is parallel to R, then R′ is a J-residue.
(2) The parallel set of R is the J ∪ J⊥-residue that contains R.

Note that this lemma is not true if the building under consideration
is not right-angled.

Proof. Suppose R′ is a J1-residue. Let w = δ(R,R′) (see Definition
3.6). It follows from (2) of [AB08, Lemma 5.36] that R′ is a (J ∩
wJ1w

−1)-residue. Since R and R′ are parallel, they have the same
rank, thus J = wJ1w

−1. By considering the abelianization of the
right-angled Coxeter group W , we deduce that J = J1 (this proves
the first assertion of the lemma) and w commutes with each element
in J . Thus w belongs to the subgroup generated by J⊥ and R′ is in
the J ∪ J⊥-residue S that contains R. Then the parallel set of R is
contained in S. It remains to prove every J-residue in S is parallel to
R, but this follows from Theorem 3.12. �

Pick a vertex v ∈ |B| of rank k and let R =
∏k

i=1Ri be the as-
sociated residue with its product decomposition. Let {vλ}λ∈Λ be the
collection of vertices that are adjacent to v. Then there is a decom-
position {vλ}λ∈Λ = {vλ ≤ v} t {vλ > v}, where {vλ > v} denotes the
collection of vertices whose associated residues containR. This induces
a decomposition Lk(v, |B|) = K1 ∗ K2 of the link of v in |B| ([BH99,
Definition I.7.15]) into a spherical join of two CAT (1) all-right spheri-
cal complexes. Note that K2 is finite, since {vλ>v} is finite. Moreover,
K1
∼= Lk(v, |R|). However, |R| ∼=

∏k
i=1 |Ri|, thus K1 is the spherical

join of k discrete sets such that elements in each of these discrete sets
are in 1-1 correspondence to elements in some Ri. Now we can deduce
from this the following result.

Lemma 3.14. Suppose B is a right-angled building such that each of its
residues of rank 1 contains infinitely many elements. If α : |B| → |B|
is a cubical isomorphism, then α preserves the rank of vertices in |B|.
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4. Restriction quotients

In this section we study restriction quotients, a certain type of map-
ping between CAT(0) cube complexes introduced by Caprace and Sageev
in [CS11]. These play a central role in our story.

We first show in Subsection 4.1 that restriction quotients can be
characterized in several different ways, see Theorem 4.4. We then show
in Subsection 4.2 that a restriction quotient f : Y → Z determines
fiber data that satisfies certain conditions; conversely, given such fiber
data, one may construct a restriction quotient inducing the given data,
which is unique up to equivalence. This correspondence will later be
applied to construct restriction quotients over right-angled buildings.
Subsections 4.3 and 4.4 deals with the behavior of restriction quotients
under group actions and quasi-isometries.

4.1. Quotient maps between CAT(0) cube complexes. We recall
the notion of restriction quotient from [CS11, Section 2.3]; see [HW14]
for the background on wallspaces.

Definition 4.1. Let Y be a CAT(0) cube complex and let H be the
collection of walls in the 0-skeleton Y (0) corresponding to the hyper-
planes in Y . Pick a subset K ⊂ H and let Y (K) be the CAT(0) cube
complex associated with the wallspace (Y (0),K). Then every 0-cube of
the wallspace (Y (0),H) gives rise to a 0-cube of (Y (0),K) by restriction.
This can be extended to a surjective cubical map q : Y → Y (K), which
is called the restriction quotient arising from the subset K ⊂ H.

The following example motivates many of the constructions in this
paper:

Example 4.2 (The canonical restriction quotient of a RAAG). For a
fixed graph Γ, let Se → |c|Γ and Xe → Se be the mappings associated
with the exploded Salvetti complex, as defined in the introduction after
Definition 1.12. Let K be the collection of hyperplanes in Xe(Γ) dual
to edges e ⊂ Xe that project to edges under the composition Xe →
Se → |c|Γ. Then the canonical restriction quotient of G = G(Γ) is the
restriction quotient arising from K.

Let q : Y → Y (K) be a restriction quotient. Pick an edge e ⊂ Y . If
e is dual to some element in K, then q(e) is an edge, otherwise q(e) is
a point. The edge e is called horizontal in the former case, and vertical
in the latter case. We record the following simple observation.
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Lemma 4.3. Let α : Y → Y be a cubical CAT(0) automorphism
of Y that maps vertical edges to vertical edges and horizontal edges to
horizontal edges. Then α descends to an automorphism Y (K)→ Y (K).

The following result shows that restriction quotients may be charac-
terized in several different ways.

Theorem 4.4. If f : Y → Z is a surjective cubical map between two
CAT(0) cube complexes, then the following conditions are equivalent:

(1) The inverse image of each vertex of Z is convex.
(2) The inverse image of every point in Z is convex.
(3) The inverse image of every convex subcomplex of Z is convex.
(4) The inverse image of every hyperplane in Z is a hyperplane.
(5) f is equivalent to a restriction quotient, i.e. for some set of

walls K in Y , there is a cubical isomorphism φ : Z → Y (K)
making the following diagram commute:

Y

Z

f
∨

φ
> Y (K)

q
>

The proof of Theorem 4.4 will take several lemmas. For the remain-
der of this subsection we fix CAT(0) cube complexes Y and Z and a
(not necessarily surjective) cubical map f : Y → Z.

Lemma 4.5. Let σ ⊂ Z be a cube and let Yσ be the be the union of
cubes in Y whose image under f is exactly σ. Then:

(1) If y ∈ σ is an interior point, then f−1(y) ⊂ Yσ.
(2) f−1(y) has a natural induced structure as a cube complex; more-

over, there is a natural isomorphism of cube complexes Yσ ∼=
f−1(y)× σ.

(3) If σ1 ⊂ σ2 are cubes of Z and yi ∈ σi are interior points, then
there is a canonical embedding f−1(y2) ↪→ f−1(y1). Moreover,
these embeddings are compatible with composition of inclusions.

Lemma 4.6.

(1) For every y ∈ Z, every connected component of f−1(y) is a
convex subset of Y .

(2) For every convex subcomplex A ⊂ Z, every connected compo-
nent of f−1(A) is a convex subcomplex of Y .
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Proof. First we prove (1). Let σ be the support of y and let Yσ ∼=
f−1(y)× σ be the subcomplex defined as above. It suffices to show Yσ
is locally convex. Pick vertex x ∈ Yσ, and let {ei}ni=1 be a collection
of edges in Yσ that contains x. It suffices to show if these edges span
an n-cube η ⊂ Y , then η ⊂ Yσ. It suffices to consider the case when
all ei’s are orthogonal to σ, in which case it follows from Definition 3.4
that η × σ ⊂ Yσ.

To see (2), pick an n-cube η ⊂ Y and let {ei}ni=1 be the edges of η at
one corner c ⊂ η. It suffices to show if f(ei) ⊂ A, then f(η) ⊂ A. Note
that f(η) is a cube, and every edge of this cube which emanates from
the corner f(c) is contained in A. Thus f(η) ⊂ A by the convexity of
A. �

Lemma 4.7. Let f : Y → Z be a cubical map as above. Then:

(1) The inverse image of each hyperplane of Z is a disjoint union
of hyperplanes in Y .

(2) If the inverse image of each hyperplane of Z is a single hyper-
plane, then for each point y ∈ Z, the point inverse f−1(y) is
connected, and hence convex.

Proof. It follows from Definition 3.4 that the inverse image of each
hyperplane of Z is an union of hyperplanes. If two of them were to
intersect, then there would be a 2-cube in Y with two consecutive
edges mapped to the same edge in Z, which is impossible.

Now we prove (2). It suffices to consider the case that y is the
center of some cube in Z. In this case, y is a vertex in the first cubical
subdivision of Z, and f can viewed as a cubical map from the first
cubical subdivision of Y to the first cubical subdivision of Z such that
the inverse image of each hyperplane is a single hyperplane, thus it
suffices to consider the case that y is a vertex of Z.

Suppose f−1(y) contains two connected components A and B. Pick
a combinatorial geodesic ω of shortest distant that connects vertices
in A and vertices in B. Note that f(ω) is a non-trivial edge-loop in
Z, otherwise we will have ω ⊂ f−1(y). It follows that there exists two
different edges e1 and e2 of ω mapping to parallel edges in Y . The
hyperplanes dual to e1 and e2 are different, yet they are mapped to the
same hyperplane in Y , which is a contradiction. �

Lemma 4.8. If f is surjective, and for any vertex v ∈ Z, f−1(v) is
connected, then the inverse image of each hyperplane of Z is a single
hyperplane.
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Proof. Let h ⊂ Z be a hyperplane, by Lemma 4.7, f−1(h) = tλ∈Λhλ
where each hλ is a hyperplane in Y . Since f is surjective, {f(hλ)}λ∈Λ

is a collection of subcomplexes of h that cover h. Thus there exists
h1, h2 ∈ {hλ}λ∈Λ and vertex u ∈ h such that u ⊂ f(h1) ∪ f(h2). Let
e ⊂ Z be the edge such that u = e∩h, then there exist edges e1, e2 ⊂ Y
such that ei ∩ hi 6= ∅ and f(ei) = e for i = 1, 2. Since h1 ∩ h2 = ∅, a
case study implies there exist x1 and x2 which are endpoints of e1 and
e2 respectively such that

(1) these two points are separated by at least one of h1 and h2;
(2) they are mapped to the same end point y ∈ e.

It follows that f−1(y) is disconnected, which is a contradiction. �

Remark 4.9. If f is not surjective, then the above conclusion is not
necessarily true. Consider the map from A = [0, 3] × [0, 1] to the
unit square which collapses the [0, 1] factor in A and maps [0, 3] to 3
consecutive edges in the boundary of the unit square.

Lemma 4.10. If q : Y → Y (K) is the restriction quotient as Defini-
tion 4.1, then the inverse image of each hyperplane in Y (K) is a single
hyperplane in Y . Conversely, suppose f : Y → Z is a surjective cubi-
cal map between CAT(0) cube complexes such that the inverse image of
each hyperplane is a hyperplane. Let K be the collection of walls aris-
ing from inverse images of hyperplanes in Z. Then there is a natural
isomorphism i : Z ∼= Y (K) which fits into the following commutative
diagram:

Y
f
> Z

Y (K)

i
∨q >

Proof. Define two vertices of Y to be K-equivalent if and only if they
are not separated by any wall in K. This defines an equivalence relation
on vertices of Y , and the corresponding equivalent classes are called K-
classes. For each K-class C and every wall in K, we may choose the
halfspace that contains C; it follows that the points in C are exactly
the set of vertices contained in the intersection of such halfspaces, and
thus C is the vertex set of a convex subcomplex of Y . Note that each
K-class determines a 0-cube of (Y 0,K), hence is mapped to this 0-cube
under q. It follows that the inverse image of every vertex in Y (K) is
convex, thus by Lemma 4.8, the inverse image of a hyperplane is a
hyperplane.
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It remains to prove the converse. Note that the inverse image of each
halfspace in Z under f is a halfspace of Y . Moreover, the surjectivity
of f implies that f maps hyperplane to hyperplane and halfspace to
halfspace. Pick vertex y ∈ Z, let {Hλ}λ∈λ be the collection of hyper-
planes in Z that contains y. Then f−1(y) ⊂ ∩λ∈Λf

−1(Hλ), and every
vertex of ∩λ∈Λf

−1(Hλ) is mapped to y by f , and thus the vertex set of
f−1(y) is a K-class. This induces a bijective map from Z(0) to the ver-
tex set of Y (K), which extends to an isomorphism. The above diagram
commutes since it commutes when restricted to the 0-skeleton. �

Proof of Theorem 4.4. The equivalence of (4) and (5) follows from Lemma
4.10. (1)⇒ (4) follows from Lemma 4.8, (4)⇒ (2) follows from Lemma
4.7, (3)⇒ (1) is obvious. It suffices to show (2)⇒ (3). Pick a convex
subcomplex K ⊂ Z and let {Rλ}λ∈Λ be the collection of cubes in K.
For each Rλ, let YRλ be the subcomplex defined after Definition 3.4.
YRλ 6= ∅ since f is surjective and YRλ is connected by (2). If Rλ ⊂ Rλ′ ,
then YRλ ∩ YRλ′ 6= ∅. Thus f−1(K) = ∪λ∈ΛYRλ is connected, hence
convex. �

4.2. Restriction maps versus fiber functors. If q : Y → Z is a
restriction quotient between CAT(0) cube complexes, then we may ex-
press the fiber structure in categorical language as follows. Let Face(Z)
denote the face poset of Z, viewed as a category, and let CCC denote
the category whose objects are nonempty CAT(0) cube complexes and
whose morphisms are convex cubical embeddings. By Lemma 4.5, we
obtain a contravariant functor Ψq : Face(Z)→ CCC.

Definition 4.11. The contravariant functor Ψq is the fiber functor of
the restriction quotient q : Y → Z.

For notational brevity, for any inclusion i : σ1 → σ2, we will often
denote the map Ψ(i) : Ψ(σ2) → Ψ(σ1) simply by Ψ(σ2) → Ψ(σ1),
suppressing the name of the map.

Note that if σ1 ⊂ σ2 ⊂ σ3, then the functor property implies that
the image of Ψ(σ3) → Ψ(σ1) is a convex subcomplex of the image of
Ψ(σ2) → Ψ(σ1). In particular, if v is a vertex of a cube σ, then the
image of Φ(σ)→ Ψ(v) is a convex subcomplex of the intersection⋂

v(e⊂σ(1)

Im(Ψ(e)→ Ψ(v))

Definition 4.12. Let Z be a cube complex. A contravariant functor
Ψ : Face(Z) → CCC is 1-determined if for every cube σ ∈ Face(Z),



26 JINGYIN HUANG AND BRUCE KLEINER

and every vertex v ∈ σ(0),

(4.13) Im(Ψ(σ) −→ Ψ(v)) =
⋂

v(e⊂σ(1)

Im(Ψ(e)→ Ψ(v)) .

Lemma 4.14. If q : Y → Z is a restriction quotient, then the fiber
functor Ψ : Face(Z)→ CCC is 1-determined.

Proof. Pick σ ∈ Face(Z), v ∈ σ(0). We know that Im(Ψ(σ) → Ψ(v))
is a nonempty convex subcomplex of ∩v(e⊂σ(1) Im(Ψ(e)→ Ψ(v)), so to
establish (4.13) we need only show that the two convex subcomplexes
have the same 0-skeleton.

Pick a vertex w ∈ Im(Ψ(σ)→ Ψ(v)), and let w′ ∈ ∩v(e⊂σ(1) Im(Ψ(e)→
Ψ(v)) be a vertex adjacent to w. We let τ ∈ Face(Y ) denote the edge
spanned by w,w′. For every edge e of Z with v ( e ⊂ σ(1), let ê ⊂ Y (1)

denote the edge with q(ê) = e that contains w. By assumption, the
collection of edges {τ}∪{ê}v(e⊂σ(1) determines a complete graph in the
link of w, and therefore is contained in a cube σ̂ of dimension 1+dim σ.
Then q(σ̂) = σ and τ ⊂ σ̂; this implies that τ ⊂ Im(Ψ(σ)→ Ψ(v)).

Since the 1-skeleton of ∩v(e⊂σ(1) Im(Ψ(e) → Ψ(v)) is connected, we
conclude that it coincides with the 1-skeleton of Im(Ψ(σ)→ Ψ(v)). By
convexity, we get (4.13). �

Theorem 4.15. Let Z be a CAT(0) cube complex, and Ψ : Face(Z)→
CCC be a 1-determined contravariant functor. Then there is a re-
striction quotient q : Y → Z such that the associated fiber functor
Ψq : Face(Z)→ CCC is equivalent by a natural transformation to Ψ.

Proof. We first construct the cube complex Y , and then verify that it
has the desired properties.

We begin with the disjoint union
⊔
σ∈Face(Z)(σ×Ψ(σ)), and for every

inclusion σ ⊂ τ , we glue the subset σ × Ψ(τ) ⊂ τ × Ψ(τ) to σ × Ψ(σ)
by using the map

σ ×Ψ(τ)
idσ ×Ψ(σ⊂τ)−−−−−−−→ σ ×Ψ(σ) .

One checks that the cubical structure on
⊔
σ∈Face(Z)(σ×Ψ(σ)) descends

to the quotient Y , the projection maps σ × Ψ(σ) → σ descend to a
cubical map q : Y → Z, and for every σ ∈ Face(Z), the union of the
cubes σ̂ ⊂ Y such that f(σ̂) = σ is a copy of σ ×Ψ(σ).

We now verify that links in Y are flag complexes.

Let v be a 0-cube in Y , and suppose σ1, . . . , σk are 1-cubes containing
v, such that for all 1 ≤ i 6= j ≤ k the 1-cubes σi, σj span a 2-cube σij
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in the link of v. We may assume after reindexing that for some h ≥ 0
the image q(σi) is a 1-cube in Z if i ≤ h and a 0-cube if i > h.

Since Ψ(v) is a CAT(0) cube complex, the edges {σi}i>h span a cube
σvert ⊂ q−1(v).

For 1 ≤ i 6= j ≤ h, the 2-cube σij projects to a 2-cube q(σij) spanned
by the two edges q(σi), q(σj). Since Z is a CAT(0) cube complex,
the edges {q(σi)}i≤h span an h-cube σ̄hor ⊂ Z. By the 1-determined
property, we get that Im(Ψ(σ̄hor) → Ψ(v)) contains v, and so there is
an h-cube σhor ⊂ Y containing v such that q(σhor) = σ̄hor.

Fix 1 ≤ i ≤ h. Then for j > h, the 2-cube σij projects to q(σi), and
hence σj belongs to Im(Ψ(σi) → Ψ(v)). If j, k > h, then σj, σk both
belong to Im(Ψ(σi) → Ψ(v)), and by the convexity of Im(Ψ(σi) →
Ψ(v)) in Ψ(v), we get that σjk also belongs to Im(Ψ(σi) → Ψ(v)).
Applying convexity again, we get that σvert ⊂ Im(Ψ(σi) → Ψ(v)). By
the 1-determined property, it follows that σvert ⊂ Im(Ψ(σ̄hor)→ Ψ(v)).
This yields a k-cube σ ⊂ Y containing σhor ∪ σvert, which is spanned
by σ1, . . . , σk.

Thus we have shown that links in Y are flag complexes. The fact that
the fibers of f : Y → Z are contractible implies that Y is contractible
(in particular simply connected), so Y is CAT(0).

�

We now observe that the construction of restriction quotients is com-
patible with product structure:

Lemma 4.16 (Behavior under products). For i ∈ {1, 2} let qi : Yi →
Zi be a restriction quotient with fiber functor Ψi : Face(Zi) → CCC.
Then the product q1 × q2 : Y1 × Y2 → Z1 × Z2 is a restriction quotient
with fiber functor given by the product:

Face(Z1 × Z2) ' Face(Z1)× Face(Z2)
Ψ1×Ψ2−−−−→ CCC×CCC

×−→ CCC .

In particular, if one starts with CAT(0) cube complexes Zi and fiber
functors Ψi : Zi → CCC for i ∈ {1, 2}, then the product fiber functor
defined as above is the fiber functor of the product of the restriction
quotients associated to the Ψi’s.

4.3. Equivariance properties. We now discuss isomorphisms be-
tween restriction quotients, and the naturality properties of the re-
striction quotient associated with a fiber functor.
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Suppose we have a commutative diagram

Y1

α̂
> Y2

Z1

q1
∨ α

> Z2

q2
∨

where the qi’s are restriction quotients and α, α̂ are cubical isomor-
phisms. Let Ψi : Face(Zi)→ CCC be the fiber functor associated with
qi. Notice that the pair α, α̂ allows us to compare the two fiber functors,
since for every σ ∈ Face(Z1), the map α̂ induces a cubical isomorphism
between Ψ1(σ) and Ψ2(α(σ)), and this is compatible with maps induced
with inclusions of faces. This may be stated more compactly by saying
that α̂ induces a natural isomorphism between the fiber functors Ψ1

and Ψ2 ◦ Face(α), where Face(α) : Face(Z1) → Face(Z2) is the poset
isomorphism induced by α. Here the term natural isomorphism is be-
ing used in the sense of category theory, i.e. a natural transformation
that has an inverse that is also a natural transformation.

Now suppose that for i ∈ {1, 2} we have a CAT(0) cube complex Zi
and a 1-determined fiber functor Ψi : Face(Zi) → CCC. Let fi : Yi →
Zi be the associated restriction quotients. If we have a pair α, β, where
α : Z1 → Z2 is a cubical isomorphism, and β is a natural isomorphism
between the fiber functors Ψ1 and Ψ2◦Face(α), then we get an induced
map α̂ : Y1 → Y2, which may be defined by using the description of Yi
as the quotient of the disjoint collection {σ ×Ψi(σ)}σ∈Face(Zi).

As a consequence of the above, having an action of a group G on
a restriction quotient f : Y → Z is equivalent to having an action
Gy Z together with a compatible “action” on the fiber functor Ψf , i.e.
a family {(α(g), β(g))}g∈G as above that also satisfies an appropriate
composition rule.

4.4. Quasi-isometric properties. We now consider the coarse geom-
etry of restriction quotients; this amounts to a “coarsification” of the
discussion in the preceding subsection.

The relevant definition is a coarsification of the natural isomorphisms
between fiber functors.

Definition 4.17. Let Z be a CAT(0) cube complex and Ψi : Face(Z)→
CCC be fiber functors for i ∈ {1, 2}. An (L,A)-quasi-natural isomor-
phism from Ψ1 to Ψ2 is a collection {φ(σ) : Ψ1(σ) → Ψ2(σ)}σ∈Face(Z)

such that φ(σ) is an (L,A)-quasi-isometry for all σ ∈ Face(Z), and for
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every inclusion σ ⊂ τ , the diagram

Ψ1(τ)
φ(τ)

> Ψ2(τ)

Ψ1(σ)
∨ φ(σ)

> Ψ2(σ)
∨

commutes up to error L.

Now for i ∈ {1, 2} let fi : Yi → Z be a finite dimensional restriction
quotient, with respective fiber functor Ψi : Face(Z) → CCC. For
any σ ∈ Face(Z), we identify Ψi(σ) with fi(bσ), where bσ ∈ σ is the
barycenter.

Lemma 4.18. Suppose we have a commutative diagram

Y1

φ
>

<
φ′

Y2

Z

f2
<

f1 >

where φ, φ′ are (L,A)-quasi-isometries that are A-quasi-inverses, i.e.
the compositions φ ◦ φ′, φ′ ◦ φ are at distance < A from the identity
maps. Then the collection

{Ψ1(σ) = f−1
1 (bσ)

φ|
f−1
1

(bσ)

−→ f−1
2 (bσ) = Ψ2(σ)}σ∈Face(Z)

is an (L′, A′)-quasi-natural isomorphism where L′ = L′(L,A, dimYi),
A′ = A′(L,A, dimYi).

Proof. By Theorem 4.4, the fiber f−1
i (bσ) is a convex subset of Yi, and

hence is isometrically embedded. Therefore φ and φ′ induce (L,A)-
quasi-isometric embeddings f−1

1 (bσ)→ f−1
2 (bσ), f−1

2 (σb)→ f−1
1 (bσ). If

σ ⊂ τ , then any point x ∈ f−1
i (bτ ) lies at distance < C = C(dimYi)

from a point in f−1
i (bσ), and this implies that the collection of maps

{Ψ1(σ) → Ψ2(σ)}σ∈Face(Z) is an (L′, A′)-quasi-natural isomorphism as
claimed. �

Lemma 4.19. If {φ(σ) : Ψ1(σ) → Ψ2(σ)}σ∈Face(Z) is an (L,A)-quasi-
natural isomorphism from Ψ1 to Ψ2, then it arises from a commuta-
tive diagram as in the previous lemma, where φ, φ′ are (L′, A′)-quasi-
isometries that are A′-quasi-inverses, and L′, A′ depend only on L,A,
and dimYi.
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Proof. For every σ ∈ Face(Z), we may choose a quasi-inverse φ′(σ) :
Ψ2(σ) → Ψ1(σ) with uniform constants; this is also a quasi-natural
isomorphism. Identifying f−1

i (Int(σ)) with the product Int(σ)×Ψi(σ),
we define φ|

f−1
1 (Int(σ))

by

f−1
1 (Int(σ)) = Int(σ)×Ψ1(σ)

idInt(σ)×φ(σ)
−→ Int(σ)×Ψ2(σ) = f−1

2 (σ) ,

and φ′ similarly using {φ′(σ)}σ∈Face(Z). One readily checks that φ, φ′
are quasi-isometric embeddings that are also quasi-inverses, where the
constants depend on L,A, and dimYi. �

5. The Z-blow-up of right-angled Building

In this section Γ will be an arbitrary finite simplicial graph, and all
buildings will be right-angled buildings modelled on the right-angled
Coxeter group W (Γ) with defining graph Γ. The reader may wish to
review Section 3.4 for terminology and notation regarding buildings,
before proceeding.

The goal of this section is examine restriction quotients q : Y → |B|,
where the fibers are Euclidean spaces satisfying a dimension condition
as in Theorem 1.5 or 1.6. For such restriction quotients, the fiber
functor may be distilled down to 1-data, see Definition 5.3; this is
discussed in Subsection 5.2. Conversely, given a building B and certain
blow-up data (Definition 5.8), one can construct a corresponding 1-
determined fiber functor as in Section 4.2; see Subsection 5.3.

5.1. The canonical restriction quotient for a RAAG. Let G(Γ)
be the RAAG with defining graph Γ and let B(Γ) be the building
associated withG(Γ) (see [Dav98, Section 5]). ThenG(Γ) can identified
with the set of chambers of B(Γ). Under this identification, the J-
residues of B, for J a collection of vertices in Γ, are the left cosets
of the standard subgroups of G(Γ) generated by J . Thus the poset of
spherical residues is exactly the poset of left cosets of standard Abelian
subgroups of G(Γ), which is also isomorphic to the poset of standard
flats in X(Γ).

We now revisit the discussion after Definition 1.12 and Example 4.2
in more detail, and relate them to buildings. To simplify notation, we
will write G = G(Γ), B = B(Γ) and X = X(Γ).

Let |B| be the Davis realization of the building B. Then we have
an induced isometric action G y |B|, which is cocompact, but not
proper. It turns out there is natural way to blow-up |B| to obtain a
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space Xe = Xe(Γ) such that there is a geometric action Gy Xe and a
G-equivariant restriction quotient map Xe → |B|.
Xe can be constructed as follows. First we constructed the exploded

Salvetti complex Se = Se(Γ), which was introduced in [BKS08a], see
also the discussion after Definition 1.12. Suppose L is the “lollipop”,
which is the union of a unit circle S and a unit interval I along one
point. For each vertex v in the vertex set V (Γ) of Γ, we associate
a copy of Lv = Sv ∪ Iv, and let ?v ∈ Lv be the free end of Iv. Let
T =

∏
v∈V (Γ) Lv. Each clique ∆ ⊂ Γ gives rise to a subcomplex T∆ =∏

v∈∆ Lv ×
∏

v/∈∆{?v}. Then Se is the subcomplex of T which is the
union of all such T∆’s, here ∆ is allowed to be empty. It is easy to
check Se is a non-positively curved cube complex. A standard torus
in Se is a subcomplex of form

∏
v∈∆ Sv ×

∏
v/∈∆{?v}, where ∆ ⊂ Γ

is a clique. Note that there is a unique standard torus of dimension
0, which corresponds to the empty clique. There is a natural map
Se = Se(Γ) → S(Γ) by collapsing the Iv-edge in each Lv-factor. This
maps induces a 1-1 correspondence between standard tori in Se and
standard tori in S(Γ). Notice that there is also a 1-1 correspondence
between vertices in Se and standard tori in Se.

Let Xe be the universal cover of Se. Then Xe is a CAT (0) cube
complex and the action G y Xe is geometric. The inverse images
of standard tori in Se are called standard flats. Note that each ver-
tex in Xe is contained in a unique standard flat. We define a map
between the 0-skeletons p : X

(0)
e (Γ) → |B|(0) as follow. Pick a G-

equivariant identification between 0-dimensional standard flats in X
and elements in G, and pick a G-equivariant map φ : Xe → X in-
duced by Se = Se(Γ)→ S(Γ) described as above. Note that c induces
a 1-1 correspondence between standard flats in Xe and standard flats
in X. This gives rise to a 1-1 correspondence between standard flats
in Xe and left cosets of standard Abelian subgroups of G. For each
x ∈ X(0)

e (Γ), we define p(x) to be the vertex in |B|(0) that represents
the left coset of the standard Abelian subgroup of G which corresponds
to the unique standard flat that contains x.

A vertical edge of Xe is an edge which covers some Sv-circle in Se.
A horizontal edge of Xe is an edge which covers some Iv-interval in
Se. Two endpoints of every vertical edge are in the same standard
flat, thus they are mapped by p to the same point in |B|(0). More
generally, for any given vertical cube, i.e. every edge in this cube is a
vertical edge, its vertex set is mapped by p to one point in |B|(0). Pick
a horizontal edge and let F1, F2 ⊂ Xe be standard flats which contain
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the two endpoints of this edge respectively. Then φ(F1) and φ(F2) are
two standard flats in X such that one is contained as a codimension 1
flat inside another. More generally, if σ is a horizontal cube, i.e. each
edge of σ is a horizontal edge, then by looking the image of σ under
the covering map Xe → Se, we know the vertex set of σ corresponds
to an interval in the poset of standard flats of X. Every cube in Xe

splits as a product of a vertical cube and a horizontal cube (again this
is clear by looking at cells in Se). Thus we can extend p to a cubical
map p : Xe → |B|.

By construction, for a vertex v ∈ |B| of rank k, p−1(v) is isometric
to En. It follows from Theorem 4.4 that p arises from a restriction
quotient, and this is called the canonical restriction quotient for the
RAAG G. This restriction quotient is exactly the one described in
Example 4.2, since hyperplanes in K of Example 4.2 are those which are
dual to horizontal edges. We record following immediate consequence
of the this construction.

Lemma 5.1. Let σ ⊂ |B| be a cube and let v ∈ σ be the vertex of
minimal rank in σ. Then for any interior point x ∈ σ, p−1(x) is
isometric to Erank(σ).

Remark 5.2. In the literature, there is a related cubical map X →
|B| defined as follows. First we recall an alternative description of
X. Actually similar spaces can be defined for all Artin groups (not
necessarily right-angled) and was introduced by Salvetti. We will follow
the description in [Cha]. LetG→ W (Γ) be the natural projection map.
This map has a set theoretic section defined by representing an element
w ∈ W by a minimal length positive word with respect to the standard
generating set and setting σ(w) to be the image of this word G. It
follows from fundamental facts about Coxeter groups that σ is well-
defined. Let I be the vertex set of Γ, and for any J ⊂ I, let W (J)
be the subgroup of W (Γ) generated by J . Let K be the geometric
realization of the following poset:

{gσ(W (J)) | g ∈ G, J ⊂ I,W (J) is finite}.

It turns out that K is isomorphic to the first barycentric subdivision
of X. Let G(J) ≤ G be the subgroup generated by J . We associate
each gσ(W (J)) with the left coset gG(J), and this induces a cubical
map from the first cubical subdivision of X to |B|. However, this map
is not a restriction quotient, since it has a lot of foldings (think of the
special case when G ∼= Z).
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5.2. Restriction quotients with Euclidean fibers. We reminder
the reader that in this section, W = W (Γ) will be the right-angled
Coxeter group with defining graph Γ and standard generating set I.
Let B be an arbitrary right-angled building modelled on W . Let S be
the poset of spherical subsets of I and let |B| be the Davis realization
of B.

Our next goal is to generalize the canonical restriction quotient men-
tioned in the previous subsection. However, to motivate our construc-
tion, we will first consider a restriction quotient q : Y ′ → |B| which
satisfies the conclusion of Lemma 5.1, and identify several key features
of q.

Let Φ be the fiber functor associated with q (see Section 4.2). For
any vertices v, w ∈ |B|, we will write v ≤ w if and only if the residue
associated with v is contained in the residue associated with w.

Let Sr be the poset of spherical residues in B. Then Φ induces a
functor Φ′ from Sr to CCC (Section 4.2) as follows. Each element in
Sr is associated with the fiber of the corresponding vertex in |B|. If
s, t ∈ Sr are two elements such that rank(t) = rank(s) + 1 and s < t,
then the associated vertices in vs, vt ∈ |B| are joined by an edge est. In
this case Φ(est)→ Φ(vs) is an isomorphism, so we define the morphism
Φ′(s)→ Φ′(t) to be the map induced by Φ(est)→ Φ(vt). If s, t ∈ Sr are
arbitrary two elements with s ≤ t, then we find an ascending chain from
s to t such that the difference between the ranks of adjacent elements
in the chain is 1, and define Φ′(s)→ Φ′(t) be the composition of those
maps induced by the chain. It follows from the functor property of Φ
that Φ′(s)→ Φ′(t) does not depend on the choice of the chain, and Φ′ is
a functor. Recall that there is a 1-1 correspondence between elements
in Sr and vertices of |B|, so we will also view Φ′ as a functor from the
vertex set of |B| to CCC. Let σ1 ⊂ σ2 be faces in |B| and let vi be the
vertex of minimal rank in σi for i = 1, 2. Then by our construction,
then morphism Φ(σ2)→ Φ(σ1) is the same as Φ′(v2)→ Φ′(v1).

Definition 5.3 (1-data). Pick a vertex v ∈ |B| of rank 1, and let Rv be
the associated residue. Let {vλ}λ∈Λ be the collection of vertices in |B|
which is < v and let eλ be the edge joining v and vλ. Then there is a 1-1
correspondence between elements in Rv and vλ’s. Each vλ determines
a point in Φ(v) by consider the image of Φ(eλ)→ Φ(v). This induced a
map fRv : Rv → Φ(v). The collection of all such fRv ’s with v ranging
over all rank 1 vertices of |B| is called the 1-data associated with the
restriction quotient q : Y ′ → |B|.
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Lemma 5.4. Pick two vertices v, u ∈ |B| of rank 1, and let Rv,Ru

be the corresponding residues. Suppose these two residues are parallel
with the parallelism map given by p : Rv → Ru. Then:

(1) Φ(v) and Φ(u), considered as convex subcomplexes of Y ′, are
parallel.

(2) If p′ : Φ(v) → Φ(u) is the parallelism map, then the following
diagram commutes:

Rv
p−−−→ Ru

fRv

y fRu

y
Φ(v)

p′−−−→ Φ(u)

Proof. It follows from Lemma 3.13 that there is a finite chain of residues,
starting at Rv and ending at Ru, such that adjacent elements in the
chain are parallel residues in a spherical residue of rank 2. Thus we
can assume without loss of generality that Rv and Ru are contained in
the a spherical residue S of type J = {j, j′}, and we assume both Rv

and Ru are j-residues.

Pick x ∈ Rv. By Theorem 3.12, there is a j′-residue W which con-
tains both x and p(x). Let s, w ∈ |B| be the vertex corresponding
to S and W . Note that there is a 2-cube in |B| such that v, w, s
are its vertices. Since Φ is 1-determined, Im(Φ′(v) → Φ′(s)) and
Im(Φ′(w) → Φ′(s)) are orthogonal lines in the 2-flat Φ′(s). More-
over, the intersection these two lines is the image of fRv(x) under the
morphism Φ′(v) → Φ′(s). Similarly, the images of Φ′(u) → Φ′(s)
and Φ′(w) → Φ′(s) are orthogonal lines Φ′(s), and their intersec-
tion is the image of fRu(p(x)) under Φ′(v) → Φ′(s). It follows that
Im(Φ′(v)→ Φ′(s)) and Im(Φ′(u)→ Φ′(s)) are parallel, hence Φ(v) and
Φ(u), considered as convex subcomplexes of Y ′, are parallel. Moreover,
since image of fRv(x) under Φ′(v)→ Φ′(s) and the image of fRu(p(x))
under Φ′(v)→ Φ′(s) are in the line Im(Φ′(w)→ Φ′(s)), the diagram in
(2) commutes. �

Pick a vertex u ∈ |B| of rank = k and let Ru be the corresponding
J-residue with J = ∪ki=1ji. Then there is a map fRu : Ru → Φ′(Ru) =
Φ(u) defined by considering Φ′(x)→ Φ′(Ru) for each element x ∈ Ru.
This map coincides with the fRu defined before when u is rank 1. For
1 ≤ i ≤ k, let Ri be a ji-residue in Ru. Since Φ is 1-determined,
{Im(Φ′(Ri) → Φ′(Ru))}ki=1 are mutually orthogonal lines in Φ′(Ru).
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This induces an isomorphism

(5.5) i :
k∏
i=1

Φ′(Ri)→ Φ′(Ru).

The following is a consequence of (2) of Lemma 5.4.

Corollary 5.6. The map fRu satisfies fRu = i ◦ (
∏k

i=1 fRi) ◦ g, where
g : Ru →

∏k
i=1Ri is the map in Theorem 3.12. In this case, we will

write fRu =
∏k

i=1 fRi for simplicity.

Pick J ′ ⊂ J and let R′u be a J ′-residue in Ru. By Theorem 3.12,
R′u =

∏
i∈J ′Ri ×

∏
i/∈J ′{ai} for ai ∈ Ri. Then the following is a

consequence of Corollary 5.6 and the functorality of Φ′.

Corollary 5.7. Let h be the morphism between Φ′(Ru′) and Φ′(Ru) =
Φ′(Ru′)×

∏
i/∈J ′ Φ

′(Ri). Then for x ∈ Φ′(Ru′), we have h(x) = {x} ×∏
i/∈J ′{fRi(ai)}.

5.3. Construction of the Z-blow-up. In the previous section, we
started from a restriction quotient q : Y ′ → |B|, and produced asso-
ciated 1-data (Definition 5.3), which is compatible with parallelism in
the sense of Lemma 5.4. In this section, we will consider the inverse,
namely we want construct a restriction quotient from this data.

Let ΛB be the collection of parallel sets of i-residues in B (i could be
any element in I). There is another type map T which maps a spherical
J-residue R to {λ ∈ ΛB | λ contains a representative in R}. In other
words, let R ∼=

∏
i∈I Ri be the product decomposition as in Theorem

3.12, where each Ri is an i-residue in R (i ∈ J). Then T (R) is the
collection of parallel sets represented by those Ri’s. Let ZT (R) be the
collection of maps from T (R) to Z, and let Z∅ be a single point.

Our goal in this section is to construct a restriction quotient from
the following data.

Definition 5.8 (Blow-up data). For each i-residue R ⊂ B, we as-
sociate a map hR : R → ZT (R) such that if two i-residues R1 and
R2 are parallel, let h12 : R1 → R2 be the parallelism map, then
hR1 = hR2 ◦ h12.

If R is a spherical residue with product decomposition given by R ∼=∏
i∈I Ri, then the maps hRi : Ri → Z induces a map hR : R → ZT (R).

It follows from the definition of hR, and the discussion after Definition
3.10 that ifR,R′ ∈ C are parallel and let h : R → R′ be the parallelism
map, then hR = hR′ ◦ h.
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The following result is a consequence of Theorem 3.12:

Lemma 5.9. Let T ∈ C be an H-residue. Let g : T ∼=
∏n

i=1 Ti be
the product decomposition induced by H = tni=1Hi (see Theorem 3.12).
Then hT = (

∏n
i=1 hTi) ◦ g.

To simplify notation, we will write hT =
∏n

i=1 hTi instead of hT =
(
∏n

i=1 hTi) ◦ g.
Let J and R =

∏
i∈J Ri be as before. A J ′-residue R′ ⊂ R can

be expressed as (
∏

i∈J ′Ri) × (
∏

i∈J\J ′{ci}), here ci is a chamber in
Ri. We define an inclusion hR′R : ZT (R′) → ZT (R) by hR′R(a) =
{a} ×

∏
i∈J\J ′{hRi(ci)}. Since hR = hR′ × (

∏
i∈J\J ′ hRi), hR′R fits into

the following commutative diagram:

R′ −−−→ R

hR′

y hR

y
ZT (R′) hR′R−−−→ ZT (R)

Suppose R′′ is a J ′′-residue such that R′′ ⊂ R′ ⊂ R. Since hR =
hR′ × (

∏
i∈J\J ′ hRi) = hR′′ × (

∏
i∈J ′\J ′′ hRi)× (

∏
i∈J\J ′ hRi), we have

(5.10) hR′′R = hR′R ◦ hR′′R′ .

Now we define a contravariant functor Ψ : Face(|B|) → CCC as
follows. Let f be a face of |B| and let vf ∈ f be unique vertex which
has minimal rank among the vertices of f . Let Rf ⊂ B be the residue
associated with vf . We define Ψ(f) = RT (Rf ) (R∅ is a single point),
here RT (Rf ) is endowed with the standard cubical structure and we
identify ZT (Rf ) with the 0-skeleton of RT (Rf ).

An inclusion of faces f → f ′ induces an inclusion Rf ′ → Rf . We
define the morphism Ψ(f ′) → Ψ(f) to be the embedding induce by
hRf ′Rf : ZT (Rf ′ ) → ZT (Rf ).

Lemma 5.11. Ψ is contravariant functor.

Proof. It is easy to check that passing from an inclusion of faces f → f ′

to Rf ′ → Rf is a functor. And it follows from (5.10) that passing from
Rf ′ → Rf to hRf ′Rf : ZT (Rf ′ ) → ZT (Rf ) is a functor. �

Lemma 5.12. Ψ is 1-determined.

Proof. Let σ ⊂ |B| be a face and pick a vertex v ∈ σ. Let {vi}ki=1 be
the vertices in σ that are adjacent to v along an edge ei. Let σ≤v be
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the sub-cube of σ that is spanned by ei’s such that vi ≥ v. We define
σ>v similarly (σ>v could be empty). Then σ = σ≤v × σ>v. Moreover,
v is the maximal vertex in σ≤v and the minimum vertex in σ>v. Note
that Ψ(ei)→ Ψ(v) is an isometry if vi > v. Thus it suffices to consider
the case where v is the maximal vertex of σ.

Let vm be the minimal vertex of σ. Note that Im(Ψ(σ) → Ψ(v)) ⊂
∩ki=1 Im(Ψ(e)→ Ψ(v)) is a cubical convex embedding of Euclidean sub-
spaces, it suffices to show they have the same dimension. LetR(v) ⊂ C
be the residue corresponding to the vertex v. Note that T (R(vm)) =
∩ki=1T (R(vi)) (T is the type map defined on the beginning of Section
5.3). Thus the dimension of ∩ki=1 Im(Ψ(e)→ Ψ(v)) equals to the cardi-
nality of T (R(vm)), which is the dimension of Im(Ψ(σ)→ Ψ(v)). �

Ψ is called the fiber functor associated with the blow-up data {hR},
and the restriction quotient q : Y → |B| which arises from the fiber
functor Ψ (see Theorem 4.15) is called the restriction quotient associ-
ated with the blow-up data {hR}. It is clear from the construction that
the 1-data of q (Definition 5.3) is the blow-up data {hR} (we naturally
identify ZT (R)’s in the blow-up data with the 0-skeleton of the q-fibers
of rank 1 vertices in |B|). We summarize the above discussion in the
following theorem.

Theorem 5.13. Given the blow-up data {hR} as in Definition 5.8,
there exists a restriction quotient q : Y → |B| whose 1-data is the
blow-up data we start with.

Remark 5.14. Here we blow up the building B with respect to a col-
lection of Z’s since we want to apply the construction for RAAG’s.
However, in other cases, it may be natural to blow up with respect to
other objects. Here is a variation. For each parallel class of rank 1
residues λ ∈ ΛB, we associate a CAT (0) cube complex Zλ. For each
rank 1 residue R in the class λ, we define a map hR which assigns each
element of R a convex subcomplex of Zλ. We require these {hR} to
be compatible with parallelism between rank 1 residues. Given this set
of blow-up data, we can repeat the previous construction to obtain a
restriction quotient over |B|.

Now we show that the construction in this section is indeed a converse
to Section 5.2 in the following sense. Let q : Y ′ → |B| be a restriction
quotient as in Section 5.2 and let Φ and Φ′ be the functors introduced
there. For each vertex v ∈ |B| of rank 1 and its associated residue
Rv, we pick an isometric embedding ηv : ZT (Rv) → Φ(v) such that
its image is vertex set of Φ(v). We also require these ηv’s respect
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parallelism. More precisely, let u ∈ |B| be a vertex of rank 1 such that
Φ(v) and Φ(u) (understood as subcomplexes of Y ′) are parallel with
the parallelism map given by p : Φ(v)→ Φ(u). Then p ◦ ηv = ηu (note
that T (Rv) = T (Ru) by Lemma 5.4).

Let Ψ be the functor constructed in this section from the blow-up
data {hRv = η−1

v ◦ fRv : Rv → ZT (Rv)}v∈|B|, here v ranges over all
vertices of rank 1 in |B|, Rv is the residue associated with v and fRv
is the map in Definition 5.3. Pick a face σ ∈ |B| and let u ∈ σ be
the vertex of minimal rank. Let Ru be the associated J-residue with
its product decomposition given by Ru =

∏
j∈J Rvj (vj’s are rank 1

vertices ≤ u). Let ξσ : Ψ(σ)→ Φ(σ) be the isometry induced by∏
j∈J ηvj : ZT (Ru) →

∏
j∈J Φ(vj)

and the product decomposition
∏

j∈J Φ(vj) ∼= Φ(u) ∼= Φ(σ) which
comes from (5.5). The following is a consequence of Corollary 5.6,
Corollary 5.7 and the discussion in this section.

Corollary 5.15. The maps {ξσ}σ∈Face(|B|) induce a natural isomor-
phism between Φ and Ψ. Thus for any restriction quotient q : Y ′ → |B|
which satisfies the conclusion of Lemma 5.1, if q′ is the restriction quo-
tient whose blow-up data is the 1-data of q, then q′ is equivalent to q
up to a natural isomorphism between their fiber functors.

Corollary 5.16. Let q : Y → |B| be a restriction quotient which satis-
fies the conclusion of Lemma 5.1. Let B ∼= B1×B2 be a product decom-
position of the building B induced by the join decomposition Γ = Γ1◦Γ2

of the defining graph of the associated right-angled Coxeter group. Then
there are two restriction quotients q1 : Y1 → |B1| and q2 : Y2 → |B2|
such that Y = Y1×Y2 and q = q1× q2. Moreover, q1 and q2 also satisfy
the conclusion of Lemma 5.1.

Proof. By Corollary 5.15, we can assume q is the restriction quotient
associated with a set of blow-up data {hR}. For every B1-slice in B, we
can restrict {hR} to B1 to obtain a blow-up data for B1. This does not
depend on our choice of the B1-slice, since the blow-up data respects
parallelism. We obtain a blow-up data for B2 in a similar way. It follows
from the above construction that the fiber functor associated with {hR}
is the product of the fiber functors associated the blow-up data on B1

and B2. Thus this corollary is a consequence of Lemma 4.16. �

5.4. More properties of the blow-up buildings. In this section,
we look at the restriction quotient q : Y → |B| associated with the
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blow-up data {hR} as in Definition 5.8 (or equivalently, a restriction
quotient q : Y → |B| which satisfies the conclusion of Lemma 5.1) in
more detail, and record several basic properties of Y . A hurried reader
can go through Definition 5.17, then proceed directly to Section 5.5
and come back to this part later.

Definition 5.17. A vertex y ∈ Y is of rank k if p(y) is a vertex of rank
k. Thus q induces a bijection between rank 0 vertices in Y and rank
0 vertices in |B|. Since rank 0 vertices in |B| can be identified with
chambers in B, q−1 induces a well-defined map q−1 : B → Y from the
set of chambers of B (or rank 0 vertices of |B|) to rank 0 vertices in Y .

Lemma 5.18. For any residue R ⊂ B, we view R as a building
and restrict the blow-up data over B to a blow-up data over R. Let
qR : YR → |R| be the associated restriction quotient. Then there ex-
ists an isometric embedding i : YR → Y which fits into the following
commutative diagram:

YR
i−−−→ Y

qR

y q

y
|R| i′−−−→ |B|

Moreover, i(YR) = q−1(i′(|R|)).

The lemma is a direct consequence of the construction in Section 5.3.

Pick a vertex v ∈ |B|. The downward complex of v is the smallest
convex subcomplex of |B| which contains all vertices which are ≤ v.
If Rv is the residue associated with v, then the downward complex is
the image of the embedding |Rv| ↪→ |B|. The next result follows from
Lemma 5.18 and Corollary 5.16.

Lemma 5.19. Let Dv be the downward complex of a vertex v ∈ B and
let Rv =

∏k
i=1Ri be the product decomposition of residue associated

with v. Then q−1(Dv) is isomorphic to the product of the mapping

cylinders of Ri

hRi−−→ ZT (Ri) → RT (Ri) (1 ≤ i ≤ k).

Lemma 5.20.

(1) If h−1
R (x) is finite for any rank 1 residue R and x ∈ ZT (R), then

Y is locally finite. If there is a uniform upper bound for the
cardinality of h−1

R (x), then Y is uniformly locally finite.
(2) If there exists D > 0 such that the image of each hR is D-

dense in ZT (R), then there exists D′ which depends on D and
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the dimension of |B| such that the collection of inverse images
of rank 0 vertices in |B| is D′-dense in Y .

Proof. We prove (1) first. Pick a vertex y ∈ Y . Let v = q(y). It suffices
to show the set of edges in |B| which contain v, and can be lifted to an
edge in Y that contains y, is finite. Since there are only finitely many
vertices in |B| which are ≥ v, it suffices to consider the edges of the
form vλv with vλ < v. It follows from our assumption and Lemma 5.19
that there are only finitely many such edges which have the required
lift. The proof of uniform local finiteness is similar.

To see (2), notice that ∪v∈|B|Ψ(v) is 1-dense in Y , here v ranges over
all vertices of |B|. It follows from Lemma 5.19 that every point in Ψ(v)
be can approximated by the inverse image of some rank 0 vertex up to
distance D′. �

Next we discuss the relation between Y and the exploded Salvetti
complex Se = Se(Γ) introduced in Section 5.1. Let Ψ be the fiber
functor associated with q : Y → |B|.

First we label each vertex v ∈ Y by a clique in Γ as follows. Recall
that q(v) is associated with a J-residue R ⊂ B, where J is the vertex
set of a clique in Γ. Thus we label v by this clique. We also label each
vertex of Se by a clique. Any vertex v ∈ Se is contained in a unique
standard torus. Recall that a standard torus arises from a clique in
Γ, thus we label v by this clique. Note some vertices of Y and Se
are labelled by the empty set. There is a unique label-preserving map
p : Y (0) → S

(0)
e (Γ).

An edge in Y or Se is horizontal if the labels on its two endpoints are
different, otherwise, this edge is vertical. When Y = Xe, this definition
coincides with the one in Section 5.1. Moreover, horizontal (or vertical)
edges in Xe are lifts of horizontal (or vertical) edges in Se.

Horizontal edges in Y are exactly those ones whose dual hyperplanes
are mapped by q to hyperplanes in |B|, and the q-image of any vertical
edge is a point. Now we label each edge vertical edge of Y by vertices
in Γ as follows. Pick vertical edge e ⊂ Y and let v = q(e). Let R =∏k

i=1Ri be the product decomposition of the residue associated with
v. There is a corresponding product decomposition Ψ(v) =

∏k
i=1 `i,

where `i is a line which is parallel to Ψ(vi), here vi ∈ |B| is the vertex
associated with Ri, and we view Ψ(vi) and Ψ(v) as subcomplexes of Y .
If e is in the `i-direction, then we label e by the type of Ri, which is a
vertex in Γ. A case study implies if two vertical edges are the opposite
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sides of a 2-cube, then they have the same label. Hence all parallel
vertical edges have the same label. Now we label vertical edges in Se.
Recall that the map Se → S(Γ) induces a 1-1 correspondence between
vertical edges in Se and edges in S(Γ), and edges in S(Γ) are labelled
by vertices of Γ. This induces a labelling of vertical edges in Se.

We pick an orientation for each vertical edge in Se, and orient every
vertical edge in Y in the following way. A vertical line is a geodesic line
made of vertical edges. It is easy to see every vertical edge is contained
in a vertical line. For two vertical `1 and `2, if there exist edges ei ∈ `i
for i = 1, 2 such that they are parallel, then `1 and `2 are parallel.
To see this, it suffices to consider the case where e1 and e2 are the
opposite sides of a 2-cube, and this follows from a similar case study
as before. Now we pick an orientation for each parallel class of vertical
lines, and this induces well-define orientation on each vertical edge of
Y , moreover, this orientation respects parallelism of edges.

There is a unique way to extend p : Y (0) → S
(0)
e (Γ) to p : Y (1) →

S
(1)
e (Γ) such that p preserves the orientation and labelling of vertical

edges. One can further extend p to higher-dimensional cells as follows.
A cube σ ⊂ Y is of type (m,n) if σ is the product of m vertical edges
and n horizontal edges. We extend p according to the type:

(1) If σ is of type (m, 0), then we can define p on σ since the orienta-
tion of vertical edges in Y respects parallelism, and p preserves
labelling and orientation of vertical edges. In this case, p(σ) is
an m-dimensional standard torus.

(2) If σ is of type (0, n), then we can define p on σ since p preserves
labelling of vertices. In this case, p(σ) ∼= [0, 1]n.

(3) If σ is of type (m,n), then we can define p on σ for similar
reasons as before. In this case, p(σ) ∼= Tm × [0, 1]n.

Pick vertex y ∈ Y , then p induces a simplicial map between the
vertex links py : Lk(y, Y ) ∼= Lk(p(y), Se). The above case study implies
py is a combinatorial map, i.e. py maps each simplex isomorphically
onto its image.

Theorem 5.21. If each map hR in the blow-up data is a bijection,
then Y is isomorphic to Xe = Xe(Γ), which is the universal cover of
the exploded Salvetti complex Se = Se(Γ).

Proof. We prove the theorem by showing p : Y → Se is a covering
map. It suffices to show for each vertex y ∈ Y , the above map py is
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an isomorphism. Suppose y is labelled by a clique ∆ ⊂ Γ. We look at
edges which contain y, which fall into three classes:

(1) vertical edges;
(2) horizontal edges whose other endpoints are labelled by cliques

in ∆;
(3) horizontal edges whose other endpoints are labelled by cliques

that contain ∆.

Note that there is a 1-1 correspondence between edges in (3) and cliques
which contain ∆ and have exactly one vertex not in ∆. For any clique
∆′ ⊂ ∆ which contains all but one vertex of ∆, there exists a unique
edge in (2) such that its other endpoint is labelled by ∆′, since if such
edge does not exist, then some hR will not be surjective; if there exists
more than one such edges, then some hR will not be injective. Thus
there is a 1-1 correspondence between horizontal edges which contains
y and horizontal edges which contains p(y). Hence py induces bijection
between the 0-skeletons. Moreover, edges in (3) are orthogonal to edges
in (1) and (2), so a case study implies if two edges at p(y) form the
corner of a 2-cube, then their lifts at y (if any exist) also form the
corner of a 2-cube. It follows that py induces isomorphism between the
1-skeletons. Since both Lk(y, Y ) and Lk(p(y), Se) are flag complexes,
py is an isomorphism. �

Remark 5.22. If each map hR is injective (or surjective), then p is
locally injective (or locally surjective).

Corollary 5.23. Let B1 = B1(Γ) and B2 = B2(Γ) be two right-angled
Γ-buildings with countably infinite rank 1 residues. Then they are iso-
morphic as buildings.

Proof. We pick a blow-up for B1 such that each map in the blow-up
data is a bijection. Let Y → |B1| be the associated restriction quotient
and let p : Y → Se be the covering map as in Theorem 5.21. Note that p
sends vertical edges to vertical edges and horizontal edges to horizontal
edges, and p preserves the labelling of vertices and edges. So does the
lift p̃ : Y → Xe of p. Lemma 4.3 implies p̃ descends to a cubical
isomorphism |B1| → |B|, where |B| is the building associated with
G(Γ). Since p̃ is label-preserving, this cubical isomorphism induces a
building isomorphism B1 → B. Similarly, we can obtain a building
isomorphism B2 → B. Hence the corollary follows. �

Theorem 5.24. Suppose Γ does not admit a join decomposition Γ =
Γ1 ◦ Γ2 where that Γ1 is a discrete graph with more than one vertex.
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If B is a Γ-building and q : Y → |B| is a restriction quotient with
blow-up data {hR}, then any automorphism α : Y → Y descends to an
automorphism α′ : |B| → |B|.

Proof. By Lemma 4.3, it suffices to show α preserves the rank (Defini-
tion 5.17) of vertices of Y . Let F (Γ) be the flag complex of Γ. Here
we change the label of each vertex in Y from some clique in Γ to the
associated simplex in F (Γ). Suppose y ∈ Y is vertex of rand k la-
belled by ∆. Then Lemma 5.19 and the proof of Theorem 5.21 imply
Lk(y, Y ) ∼= K1 ∗K2 ∗ · · · ∗Kk ∗Lk(∆, F (Γ)), where each Ki is discrete
with cardinality ≥ 2, and Lk(∆, F (Γ)) is understood to be F (Γ) when
∆ = ∅. Note that {Ki}ki=1 comes from vertices adjacent to y of rank
≤ k, and Lk(∆, F (Γ)) comes from vertices adjacent to y of rank > k.
Thus α preserves the collection of rank 0 vertices.

Now we assume α preserves the collection of rank i vertices for i ≤
k − 1. A rank k vertex in Y is of type I if it is adjacent to a vertex of
rank k−1, otherwise it is a vertex of type II. It is clear that α preserves
the collection of rank k vertices of type I. Before we deal with type II
vertices, we need the following claim. Suppose w ∈ Y is a vertex of
rank k such that α(w) is also of rank k. If there exist k vertices {zi}ki=1

adjacent to w such that

(1) rank(zi) ≤ k and rank(α(zi)) ≤ k;
(2) the edges {ziw}ki=1 are mutually orthogonal,

then rank(α(z)) ≤ k for any z adjacent to w with rank(z) ≤ k.

Let w′ = α(w). Suppose w and w′ are labelled by ∆ and ∆′. Then
α induces an isomorphism between the links of w and w′ in Y :

α∗ : K1 ∗ · · · ∗Kk ∗ Lk(∆, F (Γ))→ K ′1 ∗ · · · ∗K ′k ∗ Lk(∆′, F (Γ)).

Each edge ziw gives rise to a vertex in Ki, and each edge α(zi)w′ gives
rise to a vertex in K ′i. Thus α∗(K1 ∗ · · · ∗Kk) = K ′1 ∗ · · · ∗K ′k. Since the
edge zw gives rise to a vertex in K1 ∗ · · · ∗Kk, the edge α(z)w′ gives
rise to a vertex in K ′1 ∗ · · · ∗K ′k. Then α(z) is of rank ≤ k.

Let y ∈ Y be a rank k vertex of type II. Then there exists an edge
path ω from y to a type I vertex y1 such that every vertex in ω is of
rank k. Let {yi}mi=1 be consecutive vertices in ω such that ym = y. Note
that there are k vertices of rank k− 1 adjacent to y1. By the induction
assumption, they are send to vertices of rank k − 1 by α. Moreover,
rank(α(y1)) = k since y1 is of type I. Thus the assumption of the claim
is satisfied for y1. Then rank(α(y2)) ≤ k, hence rank(α(y2)) = k by
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the induction assumption. Next we show y2 satisfies the assumption
of the claim. Let {zi}ki=1 be vertices of rank k such that they are
adjacent to y1 and {ziy1}ki=1 are mutually orthogonal. We also assume
y2 = z1. Then rank(α(zi)) = k for all i. Hence all α(ziy1)’s are
vertical edges. For i ≥ 2, let z′i be the vertex adjacent to y2 such that
z′iy2 and ziy1 are parallel. Then α(z′iy2) is a vertical edge for i ≥ 2.
Thus rank(α(z′i)) = k and the assumption of the claim is satisfies for
y2. We can repeat this argument finite many times to deduce that
rank(α(y)) = k. �

Remark 5.25. If the assumption on Γ in Theorem 5.24 is not satisfied,
then there exists a blow-up Y → |B| and an automorphism of Y such
that it does not descend to an automorphism of |B|. By Corollary 5.16,
it suffices to construct an example in the case when Γ be a discrete
graph with n vertices with n ≥ 2. If n ≥ 3, then we define each hR to
be a surjective map such that the inverse image of each point has n−2
points. Then Y is a tree with valence = n. If n = 2, then we define hR
to be an injective map whose image is the set of even integers. Then
Y is isomorphic to the first subdivision of a tree of valence 3. In both
case, it is not hard to find an automorphism of Y which maps some
vertex of rank 0 to a vertex of rank 1.

5.5. Morphisms between blow-up data. Let B and B′ be two build-
ings modelled on the same right-angled Coxeter group W (Γ). An iso-
morphism η : |B| → |B′| is rank-preserving if for each vertex v ∈ |B|,
v and η(v) have the same rank. Note that such η induces a bijection
η′ : B → B′ which preserves the spherical residues. Conversely, ev-
ery bijection B → B′ which preserves the spherical residues induces a
rank-preserving isomorphism |B| → |B′|. Note that η′ maps parallel
residues of rank 1 to parallel residues of rank 1, thus η′ induces a bijec-
tion η̄ : ΛB → ΛB′ , where ΛB and ΛB′ denote the collection of parallel
classes of residues of rank 1 in B and B′ respectively (see Section 5.3).

Definition 5.26 (η-isomorphism). Suppose the blow-up data (Defini-
tion 5.8) of |B| and |B′| are given by {hR} and {h′R} respectively. An
η-isomorphism between the blow-up data is defined to be a collection
of isometries {fλ : Zλ → Zη̄(λ)}λ∈ΛB such that the following diagram
commutes for every rank 1 residue R ⊂ B:

R hR−−−→ ZT (R)

η′

y fT (R)

y
η′(R)

h′
η′(R)−−−→ Zη̄(T (R))
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Here T is the type map defined in the beginning of Section 5.3. The
map hR is nondegenerate if its image contains more than one point. In
this case, if fT (R) exists, then it is unique. If hR is degenerate, then we
have two choices for fT (R).

Let η1 : |B1| → |B2|, η2 : |B2| → |B3| and η : |B1| → |B3| be rank-
preserving isomorphisms such that η = η2 ◦ η1. We fix a blow-up data
for each Bi. Let {fλ : Zλ → Zη̄1(λ)}λ∈ΛB1

and {gλ : Zλ → Zη̄2(λ)}λ∈ΛB2
be the η1-isomorphism and η2-isomorphism between the corresponding
blow-up data. We define the composition of them to be {gη̄1(λ)◦fλ}λ∈Λ,
which turns out to be an η-isomorphism.

Let Ψ and Ψ′ be the fiber functor associated with the blow-up data
{hR} and {h′R} respectively, and let Y → |B| and Y ′ → |B′| be the
associated restriction quotient.

Lemma 5.27. Every η-isomorphism induces a natural isomorphism
from Ψ to Ψ′, hence by Section 4.3, it induces an isomorphism Y →
Y ′ which is a lift of η : |B| → |B′|. Moreover, composition of η-
isomorphisms gives rise to composition of natural transformations of
the associated fiber functors.

Proof. For every spherical residue R ⊂ B, η′ respects the product de-
composition of R. Thus the following diagram commutes:

R hR−−−→ ZT (R)

η′

y ∏
λ∈T (R) fλ

y
η′(R)

h′
η′(R)−−−→ Zη̄(T (R))

Here
∏

λ∈T (R) fλ induces an isometry RT (R) → Rη̄(T (R)). This gives rise
to a collection of isometries between objects of Ψ and Ψ′. It follows from
the construction in Section 5.3 that these isometries give the required
natural isomorphism between Ψ and Ψ′. The second assertion in the
lemma is straightforward. �

Remark 5.28. If we weaken the assumption of Definition 5.26 by assum-
ing each fλ is a bijection, then we can obtain a bijection between the
vertex sets of Y and Y ′. This bijection preserves the fibers, however,
we may not be able to extend it to a cubical map.

Theorem 5.29. If each map hR in the blow-up data is a bijection,
then Y is isomorphic to Xe = Xe(Γ), which is the universal cover of
the exploded Salvetti complex.
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Definition 5.30 (η-quasi-morphism). We follow the notation in Def-
inition 5.26. An (η, L,A)-quasi-morphism between the blow-up data
{hR} and {h′R} is a collection of (L,A)-quasi-isometries {fλ : Zλ →
Zη̄(λ)}λ∈ΛB such that the diagram in Definition 5.26 commutes up to
error A.

Lemma 5.31. Each (η, L,A)-quasi-morphism between {hR} and {h′R}
induces an (L′, A′)-quasi-isometry Y → Y ′ with L′, A′ depending on
L,A, and the dimension of |B|.

Proof. By Lemma 4.19, it suffices to produce an (L′, A′)-quasi-natural
isomorphism from Ψ to Ψ′. This can be done by considering maps of
form

∏
λ∈T (R) fλ as in Lemma 5.27. �

Remark 5.32 (A nice representative). Let Y0 be the collection of rank
0 vertices in Y (Definition 5.17). We define Y ′0 similarly. If the as-
sumption in Lemma 5.20 (2) is satisfied, then Y0 and Y ′0 are D-dense
in Y and Y ′ respectively. In this case, the quasi-isometry Y → Y ′ in
Lemma 5.31 can be represented by φ : Y0 → Y ′0 , where φ is the bijec-
tion induced by η : |B| → |B′| (recall that we can identify Y0 and Y ′0
with rank 0 vertices in |B| and |B′| respectively, see Definition 5.17).
The fact that φ is a quasi-isometry follows from the construction in the
proof Lemma 4.19.

Corollary 5.33. If there exists constant D > 0 such that each map
hR in the blow-up data satisfies:

(1) For any x ∈ ZT (R), |h−1
R (x)| ≤ D.

(2) The image of hR is D-dense in ZT (R).

Then Y is quasi-isometric to G(Γ).

Proof. By the assumptions, there exists another set of blow-up data
{h′R} such that each h′R is a bijection, and an (η, L,A)-quasi-isomorphism
{fλ}λ∈ΛB from {h′R} to {hR} where η is the identity map. It follows
from Lemma 5.31 and Theorem 5.21 that Y is quasi-isometric to Xe,
the universal cover of the exploded Salvetti complex; hence Y is quasi-
isometric to G(Γ). �

In the rest of this section, we look at the special case when B = B(Γ)
is the Davis building of G(Γ) (see the beginning of Section 5.1), and
record an observation for later use. In this case, we identify points in
G(Γ) with chambers in B.
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We denote the word metric on G(Γ) by dw. If we identify G(Γ) with
chambers of the building B = B(Γ), then there is another metric on
G(Γ) defined in Definition 3.6. We caution the reader that these two
metrics are not the same. We pick a set of blow-up data {hR} on B
and let q : Y → |B| be the associated restriction quotient. Recall that
vertices of rank 0 on |B| can be identified with chambers in B, hence can
be identified with G(Γ). Thus the map q−1 : G(Γ)→ Y is well-defined.

Lemma 5.34. If there exist L,A > 0 such that all {hR : R → ZT (R)}
are (L,A)-quasi-isometries (here we identify chambers in R with a sub-
set of G(Γ), hence R is endowed with an induced metric from dw), then
q−1 : (G(Γ), dw) → Y is an (L′, A′)-quasi-isometry with its constants
depending on L,A and Γ.

Proof. Let q′ : Xe → |B| be the G(Γ)-equivariant canonical restriction
quotient constructed in Section 5.1. In this case, (q′)−1 : G(Γ)→ Xe is
a quasi-isometry whose constants depend on Γ. Let h′R be the blow-up
data which arises from the 1-data (Definition 5.3) of q′. Then each
h′R is an isometry. It follows from the assumption that there exists an
(η, L,A)-quasi-isomorphism from the blow-up data {h′R} to {hR} with
η being the identity map. Thus there exists a quasi-isometry Xe → Y
which can be represented by a map φ of the form in Remark 5.32. Since
q−1 = φ ◦ (q′)−1, the lemma follows. �

5.6. An equivariant construction. Let B = B(Γ) be a right-angled
building. Let K be group which acts on |B| by automorphisms which
preserve the rank of its vertices and let K y B and K y ΛB be the
induced actions (ΛB is defined in the beginning of Section 5.3).

Definition 5.35 (Factor actions). Pick λ ∈ Λ and let Rλ ⊂ B be a
residue of rank 1 such that T (Rλ) = λ (T is the type map defined in
Section 5.3). Let Kλ be the stabilizer of λ with respect to the action
K y ΛB and let P (Rλ) = Rλ × R⊥λ be the parallel set of Rλ with
its product decomposition (see Lemma 3.13 and Theorem 3.12). Then
P (Rλ) is Kλ-invariant, and Kλ respects the product decomposition of
P (Rλ). Let ρλ : Kλ y Rλ be the action of Kλ on the Rλ-factor. This
action ρλ is called a factor action.

We construct equivariant blow-up data as follows. Pick one repre-
sentative from each K-orbit of K y ΛB and form the set {λu}u∈U . Let
Ku be the stabilizer of λu. Pick residue Ru ⊂ B of rank 1 such that
T (Ru) = λu and let ρu : Ku y Ru be the factor action defined as
above.
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To obtain a K-equivariant blow-up data, we pick an isometric action
Ku y Zλu and a Ku-equivariant map hRu : Ru → Zλu . If R is parallel
to Ru with the parallelism map given by p : R → Ru, we define
hR = hRu ◦ p. By the previous discussion, there is a factor action
Ku y R, and hR is Ku-equivariant. We run this process for each
element in {λu}u∈U . If λ /∈ {λu}u∈U , then we fix an element gλ ∈ K
such that gλ(λ) ∈ {λu}u∈U . For rank 1 element R with T (R) = λ,
we define hR = Id ◦ hgλ(R) ◦ gλ, here Id : Zgλ(λ) → Zλ is the identity
map. Let Kλ = g−1

λ Kgλ(λ)gλ be the stabilizer of λ. We define the action
Kλ y Zλ by letting g−1

λ ggλ acts on Zλ by Id ◦ g ◦ Id−1 (g ∈ Kgλ(λ)).
Then hR becomes Kλ-equivariant.

It follows from the above construction that we can produce an isom-
etry fg,R : ZT (R) → ZT (g(R)) for each g ∈ K and rank 1 residue R ∈ B
such that the following diagram commutes

R hR−−−→ ZT (R)

g

y fg,R

y
g(R)

hg(R)−−−→ ZT (g(R))

and fg1g2,R = fg1,g2(R) ◦ fg2,R for any g1, g2 ∈ K. Let Ψ be the fiber
functor associated with the above blow-up data and let q : Y → |B| be
the corresponding restriction quotient. Lemma 5.27 implies K acts on
Ψ by natural transformations, hence there is an induced action K y Y
and q is K-equivariant.

Remark 5.36. The previous construction depends on several choices:

(1) The choice of the set {λu}u∈U .
(2) The choice of the isometric action Ku y Zλu and the Ku-

equivariant map hRu : Ru → Zλu .
(3) The choice of the elements gλ’s.

6. Quasi-actions on RAAG’s

In this section we will apply the construction in Section 5.6 to study
quasi-actions on RAAG’s.

We assume G(Γ) 6= Z throughout Section 6.

6.1. The cubulation. Throughout Subsection 6.1 we assume G(Γ) 6'
Z is a RAAG with |Out(G(Γ))| <∞, and ρ : H y G(Γ) is an (L,A)-
quasi-action.
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Recall that G(Γ) acts on X(Γ) by deck transformations, and this
action is simply transitive on the vertex set of X(Γ). By picking a base
point in X(Γ), we identify G(Γ) with the 0-skeleton of X(Γ).

Definition 6.1. A quasi-isometry φ : G(Γ)→ G(Γ) is flat-preserving if
it is a bijection and for every standard flat F ⊂ X(Γ) there is a standard
flat F ′ ⊂ X(Γ) such that φ maps the 0-skeleton of F bijectively onto
the 0-skeleton of F ′. The standard flat F ′ is uniquely determined, and
we denote it by φ∗(F ). Note that if φ is flat-preserving, then φ−1 is
also flat-preserving.

By Theorem 1.3, without loss of generality we can assume ρ : H y
G(Γ) is an action by flat-preserving bijections which are also (L,A)-
quasi-isometries.

On the one hand, we want to think G(Γ) as a metric space with
the word metric with respect to its standard generating set, or equiv-
alently, with the induced l1-metric from X(Γ); on the other hand, we
want to treat G(Γ) as a right-angled building (see Section 5.1), more
precisely, we want to identify points in G(Γ) with chambers in the asso-
ciated right-angled building of G(Γ). Then the ρ preserves the spherical
residues in G(Γ), thus there is an induced ρ|B| : H y |B| on the Davis
realization |B| of G(Γ).

Let Λ be the collection of parallel classes of standard geodesic lines
in X(Γ), in other words, Λ is the collection of parallel classes of rank 1
residues in G(Γ), and let T be the type map defined in the beginning
of Section 5.3. There is another induced action ρΛ : H y Λ. For each
λ ∈ Λ, let Hλ be the stabilizer of λ. Pick a residue R in the parallel
class λ, and let ρλ : Hλ y R be the factor action in Definition 5.35.
Note that R is an isometrically embedded copy of Z with respect to the
metric on G(Γ); moreover, ρλ is an action by (L′, A′)-quasi-isometries.
Here we can choose L′ and A′ such that they depend only on L and A,
so in particular they do not depend on λ and R.

For the action ρΛ : H y Λ, we pick a representative from each H-
orbit and form the set {λu}u∈U . By the construction in Section 5.6, it
remains to choose an isometric action Gu y Zλu and a Gu-equivariant
map hRu : Ru → Zλu for each u ∈ U (Ru is a residue in the parallel
class λu). The choice is provided by the following result, whose proof
is postponed to Section 7.

Proposition 6.2. If a group K has an action on Z by (L,A)-quasi-
isometries, then there exists another action K y Z by isometries which



50 JINGYIN HUANG AND BRUCE KLEINER

is related to the original action by a surjective equivariant (L′, A′)-
quasi-isometry f : Z→ Z where L′, A′ depend on L and A.

From the above data, we produce H-equivariant blow-up data hR :
R → ZT (R) for each rank 1 residue R ⊂ G(Γ) as in Section 5.6. Note
that each hR is an (L′′, A′′)-quasi-isometry with constants depending
only on L and A.

Let q : Y → |B| be the restriction quotient associated with the
above blow-up data. Then there is an induced action H y Y by
isomorphisms, and q is H-equivariant. It follows from Lemma 5.20
that Y is uniformly locally finite.

Claim. There exists an (L1, A1)-quasi-isometry G(Γ) → Y with
L1, A1 depending only on L and A.

Proof of claim. Let h′R : R → ZT (R) be another blow-up data such
that each h′R is an isometry (such blow-up data always exists), and let
q′ : Y ′ → |B| be the associated restriction quotient. By Theorem 5.21,
Y ′ is isomorphic to Xe, which is the universal cover of the exploded
Salvetti complex introduced in Section 5.1. For any λ ∈ Λ, we define
fλ = hR ◦ (h′R)−1, here R is a residue such that T (R) = λ and the
definition of fλ does not depend on R. Each fλ is an (L′′, A′′)-quasi-
isometry and the collection of all fλ’s induces a quasi-isomorphism
between the blow-up data {h′R} and {hR}. It follows from Lemma 5.31
that there exists a quasi-isometry between ϕ : Y ′ ∼= Xe → Y , and the
claim follows. �

Let B0 be the set of vertices of rank 0 in |B|. There is a natural
identification of B0 with G(Γ). Letting Y0 = q−1(B0), we get that
q induces a bijection between Y0 and B0. We define Y ′0 similarly. It
follows from (2) of Lemma 5.20 that Y ′0 and Y0 are D-dense in Y ′ and Y
respectively for D depending on L and A. Note that q−1 : G(Γ)→ Y0

is H-equivariant, and if the action ρ : H y G(Γ) is cobounded, then
H y Y is cocompact.

The above quasi-isometry ϕ can be represented by q−1 ◦ q′ : Y ′0 → Y0

(Remark 5.32). By Lemma 5.34, (q′)−1 : B0 = G(Γ) → Y ′0 is also a
quasi-isometry, and thus q−1 : G(Γ) → Y0 is a quasi-isometry. This
map is H-equivariant, so if ρ : H y G(Γ) is proper, then H y Y is
also proper.

Remark 6.3. Here we discuss a refinement of the above construction.
Instead of requiring each h′R to be an isometry, it is possible to choose
each h′R such that:



GROUPS QUASI-ISOMETRIC TO RAAG’S 51

(1) h′R is a bijection.
(2) h′R is an (L2, A2)-quasi-isometry.
(3) fλ : Zλ → Zλ is a surjective map which respects the order of the

Z, hence can be extended to a surjective cubical map Rλ → Rλ.

The surjectivity in (3) follows from our choice in Proposition 6.2. In
this case, the space Y ′ is still isomorphic to Xe (Theorem 5.21). Let
Ψ and Ψ′ be the fiber functors associated with the blow-up data {hR}
and {h′R}. As in the proof of Lemma 5.27, the fλ’s induce a nat-
ural transformation from Ψ′ to Ψ which is made of a collection of
surjective cubical maps from objects in Ψ′ to objects in Ψ; moreover,
these maps are quasi-isometries with uniform quasi-isometry constants.
Recall that we can describe Y as the quotient of the disjoint collec-
tion {σ × Ψ(σ)}σ∈Face(|B|) (see the proof of Theorem 4.15), and a sim-
ilar description holds for Y ′. Thus there is a surjective cubical map
φ : Y ′ → Y induced by the natural transformation. Actually φ is a
restriction quotient, since the inverse image of each hyperplane is a
hyperplane. We also know φ is a quasi-isometry by Lemma 4.19.

The following theorem summarizes the above discussion.

Theorem 6.4. If the outer automorphism group Out(G(Γ)) is finite
and G(Γ) 6' Z, then any quasi-action ρ : H y X(Γ) is quasiconjugate
to an action ρ̂ of H by cubical isometries on a uniformly locally finite
CAT (0) cube complex Y . Moreover:

(1) If ρ is cobounded, then ρ̂ is cocompact.
(2) If ρ is proper, then ρ̂ is proper.
(3) Let |B| be the Davis realization of the right-angled building as-

sociated with G(Γ), let H y |B| be the induced action, and
let Xe = Xe(Γ) be the universal cover of the exploded Salvetti
complex for G(Γ). Then Y fits into the following commutative
diagram:

Xe

φ
> Y

|B|
q

<
q′ >

Here q′, q and φ are restriction quotients. The map φ is a
quasi-isometry whose constants depend on the constants of the
quasi-action ρ, and q is H-equivariant.
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Corollary 6.5. Suppose the outer automorphism group Out(G(Γ)) is
finite. Then H is quasi-isometric to G(Γ) if and only if there exists an
H-equivariant restriction quotient map q : Y → |B| such that:

(1) |B| is the Davis realization of some right-angled Γ-building.
(2) The action H y Y is geometric.
(3) If v ∈ |B| is a vertex of rank k, then q−1(v) = Ek.

Proof. The only if direction follows from Theorem 6.4. For the if di-
rection, it suffices to show Y is quasi-isometric to G(Γ). Let Φ be the
fiber functor associated with q.

Pick a vertex v ∈ |B| of rank k and let Fv = q−1(v). We claim Stab(v)
acts cocompactly on Fv. By a standard argument, to prove this it suf-
fices to show that {h(Fv)}h∈H is a locally finite family in Y . Suppose
there exists an R-ball N ⊂ Y such that there are infinitely many dis-
tinct elements in {h(Fv)}h∈H which have nontrivial intersection of N .
Since Y admits a geometric action, it is locally finite, and thus there
exists a vertex x ∈ |B| which is contained in infinitely many distinct el-
ements in {h(Fv)}h∈H . This is impossible, since if h(Fv) 6= h′(Fv), then
q(h(Fv)) and q(h′(Fv)) are distinct vertices in |B| by theH-equivariance
of q.

Consider a cube σ ⊂ |B| and let v be its vertex of minimal rank.
We claim Φ(σ) → Φ(v) is surjective, hence is an isometry. By (3),
the action H y |B| preserves the rank of the vertices, thus Stab(σ) ⊂
Stab(v). We know that Stab(v) acts cocompactly on q−1(v); since the
poset {w ≥ v} is finite, Stab(σ) has finite index in Stab(v), and so
Stab(σ) also acts cocompactly on q−1(v). Now the image of Φ(σ) →
Φ(v) is a convex subcomplex of q−1(v) that is Stab(σ)-invariant, so it
coincides with q−1(v).

By Corollary 5.15, we can assume q is the restriction quotient of a
set of blow-up data {hR}. Pick a vertex v ∈ |B| of rank 1 and let D(v)
be the downward complex of v (see Section 5.3). Let Rv ⊂ B be the
associated residue and let Rv → RT (R) be the map induced by hRv .
Then q−1(Dv) is isomorphic to the mapping cylinder of this map. Since
the Stab(v) acts cocompactly on q−1(Dv), there are only finite many
orbits of vertices of rank 1, and the assumptions of Corollary 5.33 are
satisfied. It follows that Y is quasi-isometric to G(Γ). �

It is possible to drop the H-equivariant assumption on q under the
following conditions. Here we do not put any assumption on Γ.
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Theorem 6.6. Let B be a right-angled Γ-building. Suppose q : Y → |B|
is a restriction quotient such that for every cube σ ⊂ |B|, and every
interior point x ∈ σ, the point inverse q−1(x) is a copy of Erank(v),
where v ∈ σ is the vertex of minimal rank.

If H acts geometrically on Y by automorphisms, then H is quasi-
isometric to G(Γ).

Proof. First we assume Γ satisfies the assumption of Theorem 5.24.
Then the above result is a consequence of Corollary 5.15, Theorem 5.24
and the argument in Corollary 6.5.

For arbitrary Γ, we make a join decomposition Γ = Γ1◦Γ2◦· · ·Γk◦Γ′
where Γ′ satisfies the assumption of Theorem 5.24, and all Γi’s are
discrete graphs with more than one vertex. By Corollary 5.16, there
are induced cubical product decomposition Y = Y1 × Y2 × · · ·Yk × Y ′
and restriction quotients qi : Yi → |Bi| and q′ : Y ′ → |B′| which
satisfy the assumption of the theorem. By [CS11, Proposition 2.6], we
assume H respects this product decomposition by passing to a finite
index subgroup. Since Y ′ is locally finite and cocompact, the same
argument in Corollary 6.5 implies Y ′ is quasi-isometric to G(Γ′). Each
Yi is a locally finite and cocompact tree which is not quasi-isometric to
a line. So Yi is quasi-isometric to G(Γ′). Thus Y is quasi-isometric to
G(Γ). �

Corollary 6.7. Suppose Out(G(Γ)) is finite and G(Γ) 6' Z. Let B be
the right-angled building of G(Γ). Then H is quasi-isometric to G(Γ)
if and only if H acts geometrically on a blow-up of B in the sense of
Section 5.3 by automorphisms.

6.2. Reduction to nicer actions. Though every action ρ : H y
G(Γ) by flat-preserving bijections which are also (L,A)-quasi-isometries
is quasiconjugate to an isometric action H y Y as in Theorem 6.4, it is
in general impossible to take Y = X(Γ), even if the action ρ is proper
and cobounded.

Definition 6.8. Let H = Z/2 ⊕ Z with the generator of Z/2 and Z
denoted by a and b respectively. Let H

ρ0y Z be the action where
ρ0(b)(n) = n+ 2, and ρ0(a) acts on Z by flipping 2n and 2n+ 1 for all
n ∈ Z. An action K y Z is 2-flipping if it factors through the action
H

ρ0y Z via an epimorphism K → H.

Lemma 6.9. Let ρK : K y Z be a 2-flipping action. Then ρK is not
conjugate to an action by isometries on Z (with respect to the word
metric on Z).
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Proof. Suppose there exists a permutation p : Z→ Z which conjugates
ρK to an isometric action. Let h : K → G be the epimorphism in
Definition 6.8. Pick k1, k2 ∈ K such that h(k1) is of order 2 and
h(k2) is of order infinity. Then pk1p

−1 is a reflection of Z and pk2p
−1

is a translation. However, this is impossible since h(k1) and h(k2)
commute. �

Lemma 6.10. There does not exists an action ρK : K y Z by (L,A)-
quasi-isometries with the following property. K has two subgroup K1

and K2 such that ρK |K1 is conjugate to a 2-flipping action and ρK |K2

is conjugate to a transitive action on Z by translations.

Proof. By Proposition 6.2, there exists an isometric action ρ′K : K y Z

and a K-equivariant surjective map f : K
ρKy Z −→ K

ρ′Ky Z. We claim
f is also injective. Given this claim, we can deduce a contradiction to
Lemma 6.9 by restricting the action toK1. To see the claim, we restrict
the action to K2. Thus we can assume without loss of generality that
ρK is a transitive action by translations. Suppose f(a1) = f(a1 + k)
for a1, k ∈ Z and k 6= 0. Then the equivariance of f implies f(a1) =
f(a1 + nk) for any integer n ∈ Z, which contradicts that f is a quasi-
isometry. �

Theorem 6.11. Suppose G(Γ) is a RAAG with |Out(G(Γ))| < ∞
and G(Γ) 6' Z. Then there is a pair H,H ′ of finitely generated groups
quasi-isometric to G(Γ) that does not admit discrete, virtually faith-
ful cocompact representations into the same locally compact topological
group.

Recall that a discrete, virtually faithful cocompact representation
from H to a locally compact group Ĝ is a homomorphism h : H → Ĝ
such that its kernel is finite, and its image is a cocompact lattice.

Proof. Pick a vertex u ∈ Γ and let Γ′ be a graph obtained by taking
two copies of Γ and gluing them along the closed star of u. There is
a graph automorphism α : Γ′ → Γ′ which fixes the closed star of u
pointwise and flips the two copies of Γ. Then α induces an involution
α : G(Γ′)→ G(Γ′), which gives rise to a semi-productH = G(Γ′)oZ/2.

Note that G(Γ′) is a subgroup of index 2 in both G(Γ) and H. There-
fore this induces a quasi-isometry q : H → G(Γ), an also a quasi-action
ρH : H y G(Γ). By the previous discussion, we can assume ρH is an
action by flat-preserving quasi-isometries. We look at the associated
collection of factor actions {Hλ y Z}λ∈Λ (see Definition 5.35), recall
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that Λ is the collection of parallel classes of rank 1 residues in G(Γ),
and a rank 1 residue in some class λ can be identified with a copy of
Z. Up to conjugacy by bijective quasi-isometries, these factor actions
are either transitive actions on Z or 2-flipping actions.

We claim that G(Γ) and H do not admit discrete, virtually faithful
cocompact representations into the same locally compact topological
group. Suppose such a topological group Ĝ exists. Then by [MSW03,
Chapter 6], Ĝ has a quasi-action on G(Γ). We assume Ĝ acts on G(Γ)
by flat-preserving quasi-isometries as before. Then there are restriction
actions ρ′G(Γ) : G(Γ) y G(Γ) and ρ′H : H y G(Γ) which are discrete
and cobounded. Since any two discrete and cobounded quasi-actions
H y G(Γ) are quasi-conjugate, it follows from Theorem 1.3 that ρH
and ρ′H are conjugate by a flat-preserving quasi-isometry. Thus factor
actions of ρ′H is conjugate to factor actions of ρH by bijective quasi-
isometries. Similarly, we deduce that the factor actions of ρ′G(Γ) are
conjugate to transitive actions by left translations on Z via bijective
quasi-isometries. Note that the factor actions of ρ′G(Γ) and the factor
actions of ρ′H are both restrictions of factor actions of Ĝ y G(Γ),
however, this is impossible by Lemma 6.10. �

Corollary 6.12. The group H = G(Γ′)oZ/2 cannot act geometrically
on X(Γ).

We now give a criterion for when one can quasi-conjugate a quasi-
action on X(Γ) to an isometric action H y X(Γ).

Theorem 6.13. Let ρ : H y G(Γ) be an action by flat-preserving
bijections. If for each λ ∈ Λ, the factor action ρλ : Hλ y Z can be
conjugate to an action by isometries with respect to the word metric
of Z, then there is an flat-preserving bijection g : G(Γ)→ G(Γ) which
conjugates ρ : H y G(Γ) to an action ρ′ : H y X(Γ) by flat-preserving
isometries. If ρ is also an action by (L,A)-quasi-isometries, then g can
be taken to be a quasi-isometry.

Proof. We repeat the construction in Section 6.1 and assume each hR :
R → ZT (R) is a bijection. Let q : Y → |B|, Y0, q−1 : G(Γ) → Y0 and
the action ρ̂ : H y Y by automorphisms be as in Section 6.1. Recall
that q−1 is H-equivariant. There is an isomorphism i : Y → Xe by
Theorem 5.21, moreover, i(Y0) is exactly the collection of 0-dimensional
standard flats X0 in Xe. We deduce from the construction of i that
the isometric action H y Xe induced by ρ̂ preserves standard flats
in Xe. By the construction of Xe, there exists a natural identification
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f : X0 → G(Γ) such that any automorphism of Xe which preserves its
standard flats induces a flat-preserving isometry of G(Γ) (with respect
to the word metric) via f . It suffices to take g = f ◦ i ◦ q−1. �

Suppose we have already conjugated the flat-preserving action ρ :
H y G(Γ) to an action ρ′ : H y X(Γ) (or H y G(Γ)) by flat-
preserving isometries. We ask whether it is possible to further conju-
gate ρ′ to an action by left translations.

We can oriented each 1-cell in S(Γ) and label it by the associated
generator. This lifts to orientations and labels of edges of X(Γ). If H
preserves this orientation and labelling, then ρ′ is already an action by
left translations. In general, it suffices to require H preserves a possibly
different orientation and labelling which satisfy several compatibility
conditions. Now we recall the following definitions from [Hua14a].

Definition 6.14 (Coherent ordering). A coherent ordering for G(Γ)
is a blow-up data for G(Γ) such that each map hR is a bijection. Two
coherent orderings are equivalent if the their maps agree up to trans-
lations.

Let P(Γ) be the extension complex defined in Section 3.3. Note that
we can identify ΛG(Γ) with the 0-skeleton of P(Γ). Any flat-preserving
action H y G(Γ) induces an action H y P(Γ) by simplicial isomor-
phisms. Let F (Γ) be the flag complex of Γ.

Definition 6.15 (Coherent labelling). Recall that for each vertex x ∈
X(Γ), there is a natural simplicial embedding ix : F (Γ) → P(Γ) by
considering the standard flats passing through x. A coherent labelling
of G(Γ) is a simplicial map L : P(Γ)→ F (Γ) such that L◦ ix : F (Γ)→
F (Γ) is a simplicial isomorphism for every vertex x ∈ X(Γ).

The next result follows from [Hua14a, Lemma 5.7].

Lemma 6.16. Let ρ′ : H y G(Γ) be an action by flat-preserving
bijections and let H y P(Γ) be the induced action. If there exists an
H-invariant coherent ordering and an H-invariant coherent labelling,
then ρ′ is conjugate to an action by left translations.

Since each vertex of P(Γ) corresponds to a parallel class of v-residues
for vertex v ∈ Γ, this gives a labelling of vertices of P(Γ) by vertices of
Γ. We can extend this labelling map to a simplicial map L : P(Γ) →
F (Γ), which gives rise to a coherent labelling.

Corollary 6.17. Let ρ : H y G(Γ) be an action by flat-preserving
bijections. Suppose:
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(1) The induced action H y P(Γ) preserves the vertex labelling of
P(Γ) as above.

(2) For each vertex v ∈ P(Γ), the action ρv : Hv y Z is conjugate
to an action by translations.

Then ρ is conjugate to an action H y G(Γ) by left translations.

Note that condition (2) is equivalent to the existence of anH-invariant
coherent ordering.

7. Actions by quasi-isometries on Z

In this section we prove Proposition 6.2.

7.1. Tracks. Tracks were introduced in [Dun85]. They are hypersurface-
like objects in 2-dimensional simplicial complexes.

Definition 7.1 (Tracks). Let K be 2-dimensional simplicial complex.
A track τ ⊂ K is a connected embedded finite simplicial graph such
that:

(1) For each 2-simplex ∆ ⊂ K, τ ∩ ∆ is a finite disjoint union of
curves such that the end points of each curve are in the interior
of edges of ∆.

(2) For each edge e ∈ K, τ ∩ e is a discrete set in the interior of e.
Let {∆λ}λ∈Λ be the collection of 2-simplices that contains e. If
v ∈ τ ∩e, then for each λ, τ ∩∆λ contains a curve that contains
v.

Given a track τ ⊂ K, we defined the support of τ , denoted Spt(τ),
to be the minimal subcomplex of K which contains τ .

We can view hyperplanes defined in Section 3.2 as analogue of tracks
in the cubical setting. Each track τ ⊂ K has a regular neighbourhood
which fibres over τ . When K is simply-connected, K \ τ has two
connected components, moreover, the regular neighbourhood of τ is
homeomorphic to τ × (−ε, ε).

Two tracks τ1 and τ2 are parallel if Spt(τ1) = Spt(τ2) and there is
a region homeomorphic to τ1 × (0, ε) bounded by τ1 and τ2. A track
τ ⊂ K is essential if the components of K \ τ are unbounded. The
following result follows from [Dun85, Proposition 3.1]:

Lemma 7.2. If K is simply-connected and has more than one end,
then there exists an essential track τ ⊂ K.
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Next we look at essential tracks which are “minimal”; these turn out
to behave like minimal surfaces. First we metrize K as in [SS96].

Let ∆ = ∆(ξ1ξ2ξ3) be an ideal triangle in the hyperbolic plane. We
mark a point in each side of the triangle as follows. Let φ be the unique
isometry which fixes ξ3 and flips ξ1 and ξ2, we mark the unique point
in ξ1ξ2 which is fixed by φ. Other sides of ∆ are marked similarly. This
is called a marked ideal triangle.

We identify each 2-simplex of K with a marked ideal triangle in the
hyperbolic plane and glue these triangles by isometries which identify
the marked points. This gives a collection of complete metrics on each
connected component of K −K(0) which is not an interval. We denote
this collection of metrics by dH. If a group G acts on K by simplicial
isomorphisms, then G also acts by isometries on (K, dH). The original
definition in [SS96] does not required these marked points, see Remark
7.4 for why we add them.

Each track τ has a well-defined length under dH, which we denote by
l(τ). We also define the weight of τ , denoted by w(τ), to be cardinality
of τ ∩ K(1). The complexity c(τ) is defined to be the ordered pair
(w(τ), l(τ)). We order the complexity lexicographically, namely c(τ1) <
c(τ2) if and only if w(τ1) < w(τ2) or w(τ1) = w(τ2) and l(τ1) < l(τ2).

The following result follows from [SS96, Lemma 2.11 and Lemma
2.14]:

Lemma 7.3. SupposeK is a uniformly locally finite and simply-connected
simplicial 2-complex with at least two ends. Suppose K does not con-
tain separating vertices. Then there exists an essential track τ ⊂ K
which has the least complexity with respect to dH among all essential
tracks in K.

Remark 7.4. Let {τi}∞i=1 be a minimizing sequence. Since K is uni-
formly locally finite, there are only finitely many combinatorial possi-
bilities for {τi}∞i=1. Thus we can assume all the τi’s are inside a finite
subcomplex L. Moreover, we can construct a hyperbolic metric dH on
L as above and it suffices to work in the space (L, dH). However, if we
do not use marked points in the construction of the hyperbolic metric
on K, then each τi may sit inside a copy of L with different shears
along the edges of L.

In [SS96], K is assumed to be cocompact, so one does not need to
worry about the above issue.

Remark 7.5. If we metrize each simplex in K with the Euclidean met-
ric, then Lemma 7.3 and Lemma 7.6 may not be true. For example,
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one can take the following picture, where the dotted line is part of
some track τ . Once we shorten τ , it may hit the central vertex of the
hexagon. However, this cannot happen if we have hyperbolic metrics
on each simplex. Once τ gets too close to some vertex, then it takes a
large amount of length for τ to escape that vertex since dH is complete
(actually it does not matter if dH is not complete, since we also have a
upper bound on the weight of τ).

The next result can be proved in a similar fashion:

Lemma 7.6. Let K be a simply-connected simplicial 2-complex. Let
A ⊂ K be a uniformly locally finite subcomplex such that

(1) A contains an essential track of K.
(2) A does not contain any separating vertex of K.

Then there exists an essential track τ of K which has the least com-
plexity among all essential tracks of K with support in A.

Lemma 7.7. [SS96, Lemma 2.7] Let τ1 and τ2 be two essential tracks
of K which are minimal in the sense of Lemma 7.3 or Lemma 7.6, then
either τ1 = τ2, or τ1 ∩ τ2 = ∅.

7.2. The proof of Proposition 6.2. First we briefly recall the notion
of Rips complex. See [BH99, Chapter III.Γ.3] for more detail. Let
(X, d) be a metric space and pick R > 0. The Rips complex PR(X, d)
is the geometric realization of the simplicial complex with vertex set X
whose n-simplices are the (n+ 1)-element subsets {x0, · · · , xn} ⊂ X of
diameter at most R.

Let d be the usual metric on Z. Define a new metric d̄ on Z by

d̄(x, y) = sup
g∈G

d(g(x), g(y))

Note that (Z, d̄) is quasi-isometric to (Z, d), and G acts on (Z, d̄)
by isometries. Since (Z, d̄) is Gromov-hyperbolic, the Rips complex
PR(Z, d̄) is contractible for some R = R(L,A) (see [BH99, Proposition
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III.Γ.3.23]). Let K be the 2-skeleton of PR(Z, d̄). Then K is simply-
connected, uniformly locally finite and 2-ended.

We make K a piecewise Euclidean complex by identifying each 2-
face with an equilateral triangle and identifying each edge with [0, 1].
Let dE be the resulting length metric. There is an inclusion map
i : (Z, d) → (K, dE) which is a quasi-isometry with quasi-isometry
constants depending only on L and A.

Claim 7.8. There exist D1 = D1(L,A) and a collection of disjoint
essential tracks {τi}i∈I of K such that

(1) {τi}i∈I is G-invariant.
(2) The diameter of each τi with respect to dE is ≤ D1.
(3) Each connected component of K \ (∪i∈Iτi) has diameter ≤ D1.

In the following proof, we denote the ball of radius D centered at x
in K with respect to dE by BE(x,D). Let diamE be the diameter with
respect to dE.

Proof of Claim 7.8. First we assume K does not have separating ver-
tices. Since K is quasi-isometric to Z, there exists D = D(L,A) such
that K \ BE(x,D) has at least two unbounded components for each
x ∈ K. Thus every (D+1)-ball contains an essential track with weight
bounded above by D′ = D′(L,A). We put a G-invariant hyperbolic
metric dH on K as in Section 7.1. By Lemma 7.3, there exists an essen-
tial track τ ⊂ K of least complexity. Note that diamE(τ) ≤ D′ since
the weight w(τ) ≤ D′. Lemma 7.7 implies the G-orbits of τ give rise
to collection of disjoint essential tracks in K.

A collection of tracks {τi}i∈I of K is admissible if

(1) Each track in {τi}i∈I is essential and different tracks have empty
intersection.

(2) No two tracks in {τi}i∈I are parallel.
(3) The collection {τi}i∈I is G-invariant.
(4) diamE(τi) ≤ D′ for each i ∈ I.

There exists a non-empty admissible collection of tracks by previous
discussion.

Let {τi}i∈I be a maximal admissible collection of tracks. Then this
collection satisfies the above claim with D1 = 2D′ + 5D. To see this,
let C be one connected component of K \ (∪i∈Iτi). Since each track
is essential and K is 2-ended, either diamE(C) < ∞ and C̄ \ C (C̄ is
the closure of C) is made of two tracks τ1 and τ2, or diamE(C) = ∞
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and C̄ \C is made of one track. Let us assume the former case is true.
The latter case can be dealt in a similar way. Let A be the maximal
subcomplex of K which is contained in C. Then A is uniformly locally
finite and C \ A is contained in the 1-neighbourhood of τ1 ∪ τ2.

Suppose diamE(C) ≥ 2D′ + 5D. Since diamE(τi) ≤ D′ for i = 1, 2,
there exists x ∈ A such that BE(x, 2D) ⊂ A. Thus A contains an
essential track of X with its weight bounded above by D′. Let η ⊂ A
be an essential track of K which has the least complexity in the sense
of Lemma 7.6, then w(η) ≤ D′, hence diamE(η) ≤ D′. Moreover,
by Lemma 7.7, for each g ∈ Stab(A) = Stab(C), either g · η = η or
g · η ∩ η = ∅. Thus we can enlarge the original admissible collection of
tracks by adding the G-orbits of η, which yields a contradiction.

The case when K has separating vertices is actually easier, since one
can find essential tracks on the ε-sphere of each separating vertices.
The rest of the proof is identical. �

We now continue with the proof of Proposition 6.2.

Pick a regular neighbourhood N(τi) for each τi such that collection
{N(τi)}i∈I is disjoint and G-invariant. Then we define a map φ from
K to a tree T by collapsing each component of Y \ ∪i∈IN(τi) to a
vertex and collapsing each N(τi), which is homeomorphic to τi× (0, 1),
to the (0, 1) factor. It is easy to make φ equivariant under G, and by
the above claim, φ is a quasi-isometry with quasi-isometry constants
depending only on L and A. Note that T is actually a line since τ is
essential andK is 2-ended. Then Proposition 6.2 follows by considering
the G-equivariant map φ ◦ i : (Z, d)→ T .

Remark 7.9. If the action Gy Z by (L,A)-quasi-isometries in Propo-
sition 6.2 is not cobounded, then the resulting isometric action Λ : Gy
Z is also not cobounded, hence there are two possibilities:

(1) if G coarsely preserve the orientation of Z, then Λ is trivial;
(2) otherwise Λ factors through a Z/2-action by reflection.
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