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1. Introduction

1.1. Overview. A key result of geometric function theory is Rademacher’s
theorem: any real-valued Lipschitz function on Rn is differentiable al-
most everywhere. In [Che99], Cheeger found a far-reaching general-
ization of this result in the context of doubling metric measure spaces
that satisfy a Poincaré inequality. The goal of this primer is to give
a streamlined account of the construction of a measurable differen-
tiable structure on such spaces, in the hopes of providing an accessible
introduction to this area of active research. Our exposition is based
on Cheeger’s work, and incorporates a number of clarifications due to
Keith [Kei04a], as well as a few of our own.

The scope of this primer is limited to the foundational results ob-
tained in the first part of Cheeger’s paper. For a broader discussion
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of the historical and mathematical context of this result, we refer the
reader to the aforementioned papers and to the survey of Heinonen [Hei07].

One of Cheeger’s first achievements was to see that it is possible
to define a notion of differentiability in a metric space without any
additional algebraic structure. A real valued function f : Rn → R
is differentiable at a point x0 if there is a some linear combination L
of the coordinate functions xi : Rn → R, i = 1, . . . , n, so that the
behavior of f and L near x0 agree up to first order. In other words,
f(·)−f(x0) = L(·)−L(x0)+o(d(·, x0)). Cheeger observed that this def-
inition of differentiability with respect to a set of coordinate functions
makes sense for real valued functions on general metric measure spaces,
where the role of the coordinate functions is played by suitable tuples
of real valued Lipschitz functions. Cheeger’s version of Rademacher’s
theorem for metric measure spaces asserts that there is a countable,
full measure, disjoint collection of measurable subsets equipped with
coordinate functions, so that every Lipschitz function is differentiable
almost everywhere with respect to the corresponding coordinate func-
tions.

Of course, there is no reason for this conclusion to hold for every
metric measure space. Following Cheeger and Keith, we will show that
it does hold when the space admits a p-Poincaré inequality.

Throughout this paper, X = (X, d, µ) denotes a metric measure
space with metric d and measure µ. We will assume that µ is Borel
regular and doubling: there exists some constant C so that for every
x ∈ X and r > 0, µ(B(x, 2r)) ≤ Cµ(B(x, r)).

1.2. Statement of the theorem. The discussion of differentiability
given in the overview is formalized by the following definition.

Definition 1.1 (Cheeger, Keith). A measurable differentiable struc-
ture on a metric measure space (X, d, µ) is a countable collection of
pairs {(Xα,xα)}, called coordinate patches, that satisfy the following
conditions:

(1) Each Xα is a measurable subset of X with positive measure,
and the union of the Xα’s has full µ-measure in X.

(2) Each xα is a N(α)-tuple of Lipschitz functions on X, for some
N(α) ∈ N, where N(α) is bounded from above independently
of α. The maximum of all the N(α) is called the dimension of
the differentiable structure.

(3) For each α, xα = (x1
α, . . . , x

N(α)
α ) spans the differentials almost

everywhere for Xα, in the following sense: For every Lipschitz
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function f : X → R, there exists a measurable function dfα :
Xα → RN(α) so that for µ-a.e. x ∈ X,

(1.2) lim sup
y→x

|f(y)− f(x)− dfα(x) · (xα(y)− xα(x))|
d(x, y)

= 0.

Moreover, dfα is unique up to sets of measure zero.

(Note that Keith uses the term “strong measurable differentiable
structure” for the above object.)

We can now state the main theorem, which gives a sufficient condi-
tion for the existence of such a differentiable structure. (See [Kei04a,
Theorem 2.3.1] and [Che99, Theorem 4.38].)

Theorem 1.3. If (X, d, µ) is a metric measure space that is doubling
and supports a p-Poincaré inequality with constant L ≥ 1 for some
p ≥ 1 (see Definition 6.1), then X admits a measurable differentiable
structure with dimension bounded above by a constant depending only
on L and the doubling constant.

1.3. Examples. We illustrate some of the possibilities for measurable
differentiable structures with the following examples.

(1) Euclidean spaces: As a consequence of Rademacher’s theo-
rem, the metric measure space Rn (with the usual Euclidean
metric and Lebesgue measure), has a measurable differentiable
structure given by a single coordinate patch (Rn,x), where x is
given by the coordinate functions x = (x1, . . . xn).

(2) Carnot groups: As a specific example of such a space, consider
the Heisenberg group H of unipotent, upper triangular, 3 × 3
matrices. As a set, H can be described by R3 = {(x, y, z)} with
a Carnot-Carathèodory metric and the usual Lebesgue mea-
sure. As a consequence of a theorem of Pansu [Pan89], this
space carries a measurable differentiable structure with a sin-
gle coordinate patch given by x = (x, y). In particular, the
dimension of the differentiable structure is two, the topological
dimension of the space is three, and the Hausdorff dimension of
the space is four, showing that all three may differ.

(3) Glued spaces: Consider the Heisenberg group H = {(x, y, z)}
as above, and R4 = {(a, b, c, d)} with its usual metric and mea-
sure. Note that these are both Ahlfors 4-regular metric measure
spaces. Choose an isometrically embedded copy of R1 in each
— for example, the x-axis in H, and the a-axis in R4 — and let
X be the space formed by gluing H and R4 along these subsets.
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There is a natural geodesic path metric d on X, and the
measures combine to give an Ahlfors 4-regular measure µ on
(X, d). By [HK98, Example 6.19(a)], X admits a p-Poincaré
inequality for p > 3.

The space (X, d, µ) has a measurable differentiable structure
with two coordinate patches,

(X1 = H, x1 = (x, y)) and (X2 = R4, x2 = (a, b, c, d)).

Notice that these coordinate patches are of different dimensions.
(4) Laakso spaces: For every Q ≥ 1, Laakso builds an Ahlfors

Q-regular space that admits a 1-Poincaré inequality [Laa00].
These fractal spaces have topological dimension one.

(5) Bourdon-Pajot spaces: These spaces arise as the boundary
at infinity of certain Fuchsian buildings that are important ex-
amples in geometric group theory. They are all homeomorphic
to the Menger sponge, and admit a 1-Poincaré inequality.

(6) Limit spaces: The Gromov-Hausdorff limit of a sequence of
Riemannian manifolds with Ricci curvature uniformly bounded
from below, and diameter uniformly bounded from above, will
admit a 1-Poincaré inequality, even though it may no longer be
a manifold.

1.4. Organization of the paper. In Section 2 we give an overview
of the proof; readers with background in analysis on metric spaces may
prefer to skip this, and refer back to it for definitions as needed. The
proof of Theorem 1.3 is given in Sections 3-6. In Appendix A we give a
simpler proof of the well known result of Semmes [Che99, Appendix A]
that a Poincaré inequality on a complete doubling metric space implies
that the space is quasiconvex. (That is, for all x, y ∈ X there is a path
joining x to y of length at most Cd(x, y), for some uniform constant
C.)

Theorem A.1. Suppose X admits a p-Poincaré inequality (with con-
stant L ≥ 1) for some p ≥ 1. Then X is C-quasiconvex, where C
depends only on L, p and the doubling constant.

1.5. Acknowledgments. We thank Enrico Le Donne for comments
on an earlier draft.
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2. Overview of the proof of Theorem 1.3

Our purpose in this section is to give a nontechnical presentation of
the proof of Theorem 1.3, providing motivation, and a treatment more
accessible to readers from other areas.

2.1. Finite dimensionality yields a measurable differentiable
structure. The first step in the proof of Theorem 1.3 is a rather
general argument showing that a σ-finite metric measure space has a
measurable differentiable structure provided it satisfies a certain finite
dimensionality condition. This involves two definitions:

Definition 2.1. An N -tuple of functions f = (f1, . . . , fN), where fi :
X → R for 1 ≤ i ≤ N , is dependent (to first order) at x ∈ X if there
exists λ ∈ Rn \ {0} so that

(2.2) λ · f(y)− λ · f(x) = o(d(x, y))

as y goes to x. We denote the set where f is not dependent by Ind(f).

Definition 2.3. We say that in (X, d, µ) the differentials have dimen-
sion at most N if every (N+1)-tuple of Lipschitz functions is dependent
almost everywhere. We say that the differentials have finite dimension
if they have dimension at most N for some N ∈ N.

With these definitions, the first step of the proof is the following:

Proposition 4.1. If the differentials have dimension at most N0, then
X admits a measurable differentiable structure whose dimension is at
most N0.

The proof of Proposition 4.1 is selection argument analogous to the
proof that a spanning subset of a vector space contains a basis. It
works in considerable generality, e.g. for any σ-finite metric measure
space.

2.2. Blow-up arguments, tangent spaces and tangent func-
tions. The remainder of the proof is devoted to showing that under the
conditions of Theorem 1.3, the differentials have finite dimension. To
do this, one is faced with analyzing the behavior of a tuple (f1, . . . , fN)
of Lipschitz functions near a typical point in X, in order to produce
nontrivial linear combinations satisfying (2.2). Following [Kei04a], we
approach this using a blow-up argument. Blow-up arguments occur
in many places in geometry and analysis; the common features are a
rescaling procedure which normalizes some quantity of interest, com-
bined with a compactness result which allows one pass to a limiting
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object which reflects the asymptotic behavior of the rescaled quantity.
Then one proceeds by studying the limiting object in order to derive
a contradiction, or to establish a desired estimate. We point out that
the blow-up argument is not essential to this proof; it is possible to
work directly in the space itself. However, in our view, the blow-up
argument clarifies and streamlines the proof.

For readers who are unfamiliar with this setting and/or blow-up
arguments, we first illustrate the ideas using a single function.

To fix terminology and notation, we recall that a function f : Y → Z
between metric spaces is C-Lipschitz if

dZ(f(p), f(q)) ≤ C dY (p, q)

for all p, q ∈ Y , while the Lipschitz constant of f

LIP(f) = sup
p,q∈Y, p 6=q

dZ(f(p), f(q))

dY (p, q)

is the infimal such C. We let LIP(Y ) denote the collection of real-
valued Lipschitz functions f : Y → R.

Now suppose f ∈ LIP(X) is a Lipschitz function, and x ∈ X. To
study the behavior of f near x, we may choose a sequence of scales {rk}
tending to 0, and consider the corresponding sequence of rescalings of
(X, d), i.e. the sequence of metric spaces {(Xk, dk)}, where Xk = X
and dk = 1

rk
d. One then defines a sequence of functions {fk : Xk → R}

by rescaling f accordingly: fk = 1
rk
f . Then fk has the same Lipschitz

constant as f , and the behavior of f in the ball B(x, rk) corresponds
to the behavior of fk on the unit ball B(x, 1) ⊂ (Xk, dk).

Next, by passing to a subsequence, and using a suitable notion of
convergence, we may assume that the metric spaces (Xk, dk) converge to
a (Gromov-Hausdorff) tangent space (X∞, d∞), and the functions fk :
Xk → R converge to a tangent function f∞ : X∞ → R which is LIP(f)-
Lipschitz. We will suppress the details for now, and refer the reader
to Section 3 for the notion of convergence (pointed Gromov-Hausdorff
convergence) and the relevant compactness theorems. The space X∞
comes with a specified basepoint x∞ ∈ X∞, and the restriction of f∞
to the ball B(x∞, R) is a limit of the restrictions fk|B(xk,R)

.

2.3. Pointwise Lipschitz constants and tangent functions. The
tangent function f∞ is LIP(f)-Lipschitz; however, since f∞ only reflects
the behavior of the original function f near x, one is led to consider
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localized versions of the Lipschitz constant, as in the following defini-
tions.

Definition 2.4. (Variation and pointwise Lipschitz constants)
Suppose Y is a metric space, x ∈ Y , and u ∈ LIP(Y ).

(1) The variation of u on a ball B(x, r) ⊂ Y is defined to be

(2.5) varx,r u := sup

{
|u(y)− u(x)|

r
| y ∈ B(x, r)

}
.

We always have varx,r u ≤ LIP(u).
(2) The lower pointwise Lipschitz constant of u at x is

lipx u := lim inf
r→0

varx,r u .

(3) The upper pointwise Lipschitz constant of u at x is

Lipx u := lim sup
r→0

varx,r u .

For any function u : Y → R, and x ∈ Y , we have lipx u ≤ Lipx u.
In general, lipx u and Lipx u need not be comparable. However, in the
special case of Y = Rn, if x is a point of differentiability of u, observe
that lipx u = Lipx u = |∇u(x)|.

Returning to the tangent function f∞ : X∞ → R, one observes that
the restriction of f∞ to the ball B(x∞, R) ⊂ X∞ is the limit of the

sequence {fk|B(xk,R)
}, which, in turn, arises from rescaling f|

B(x,Rrk)
.

This leads to the bound

(2.6) lipx f ≤ varx∞,R f∞ ≤ Lipx f

for all R ∈ [0,∞); in other words, the lower and upper pointwise Lip-
schitz constants of f at x control the variation of the tangent function
f∞ on balls centered at x∞.

Using the fact that the measure on X is doubling, one can strengthen
this assertion to: For almost every x ∈ X, every tangent function
f∞ of f at x satisfies lipx f ≤ vary,r f∞ ≤ Lipx f for every y ∈ X∞,
r ∈ [0,∞). The second inequality is equivalent to LIP(f∞) ≤ Lipx f .
However, for a general doubling metric measure space, the quantity
varx,r f can fluctuate wildly as r → 0, which means that one could
have LIP(f∞) � Lipx f . A key observation of Keith – based on a
closely related earlier observation of Cheeger – is that when (X, d, µ)
satisfies a Poincare inequality, then this bad behavior can only occur
when x ∈ X belongs to a set of measure zero.
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Definition 2.7 ([Kei04a, (5)]). We say X is a K-Lip-lip space if for
every f ∈ LIP(X),

(2.8) Lipx f ≤ K lipx f

for µ-a.e. x ∈ X. If X is a K-Lip-lip space for some K > 0, we say
that X is a Lip-lip space.

Proposition 6.3. [Kei04a, Prop. 4.3.1] If (X,µ) is doubling, and
satisfies a p-Poincaré inequality, then X is a K-Lip-lip space, where K
depends only on the constants in the doubling and Poincaré inequalities.

By Proposition 6.3 it suffices to prove that the differentials have finite
dimension in any Lip-lip space.

2.4. Tangent functions in Lip-lip spaces, and quasilinearity.
By (2.6), if (X, d, µ) is a K-Lip-lip space, and f ∈ LIP(X), then for
µ-a.e. x ∈ X, every tangent function f∞ : X∞ → R of f at x, and
every y ∈ X∞, r ∈ [0,∞), one has

(2.9) lipx f ≤ vary,r f∞ ≤ LIP(f∞) ≤ Lipx f ≤ K lipx f ,

so in particular

(2.10) vary,r f∞ ≥
1

K
LIP(f∞) .

Thus for any ball B(y, r) ⊂ X∞, the variation of f∞ on B(y, r) agrees
with the global Lipschitz constant LIP(f∞) to within a factor of K.
This leads to:

Definition 2.11. A Lipschitz function u : Z → R on a metric space
Z is L-quasilinear if the variation of u on every ball B(x, r) satisfies

varx,r u ≥
1

L
LIP(u) .

In summary: when X satisfies the K-Lip-lip condition, then for every
f ∈ LIP(X) and µ-a.e. x ∈ X, every tangent function of f at x is K-
quasilinear.

We need another version of the doubling condition appropriate to
metric spaces:

Definition 2.12. A metric space Z is C-doubling if every ball can be
covered by at most C balls of half the radius. A metric space is doubling
if it is C-doubling for some C.

The last key ingredient in the proof is:
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Lemma 5.9. For every K,C there is an N ∈ N such that the space of
K-quasilinear functions on a C-doubling metric space Z has dimension
at most N .

The Gromov-Hausdorff tangent spaces X∞ arising from a doubling
metric measure space X are all C-doubling for a fixed C ∈ [1,∞).
Therefore by Lemma 5.9 there is a uniform upper bound on the dimen-
sion of any space of K-quasilinear functions on any Gromov-Hausdorff
tangent space of X.

A related finite dimensionality result appears in [Che99]. We would
like to point out that a similar idea appears in the earlier finite di-
mensionality theorem of Colding-Minicozzi [CM97], also in the setting
of spaces which satisfy a doubling condition and a Poincare inequality
(in [CM97] the spaces are Riemannian manifolds, though the smooth
structure is not used in an essential way). In their paper, the quasi-
linearity condition is replaced by a condition which compares the size
of a function on a ball (measured in terms of normalized energy) with
its size on subballs, and uses this together with the Poincare inequality
and doubling property to bound the dimension of a space of harmonic
functions.

To complete the proof that the differentials have finite dimension in a
K-Lip-lip space, we fix an n-tuple of Lipschitz functions f = (f1, . . . , fn)
for some n ∈ N. Amplifying the above reasoning, there will be a full
measure set of points x ∈ X such that every set of tangent func-
tions f∞ = (f1,∞, . . . , fn,∞) at x spans a space of K-quasilinear func-
tions. Thus when n is larger than the dimension bound coming from
Lemma 5.9, there will be a nontrivial linear relation λ ·f∞ = 0 for some
λ ∈ Rn \ {0}. This implies that f1, . . . , fn are dependent at x.

3. Preliminaries

3.1. Lipschitz constants. Recall that we work inside a metric mea-
sure space (X, d, µ), where µ is a Borel regular measure on X.

We begin by making some observations about lipx f and Lipx f (see
Definition 2.4).

Lemma 3.1. If f : X → R is Lipschitz, then lipx f and Lipx f are
Borel measurable functions of x.

Proof. For fixed r > 0, we see that varx,r f is a lower-semicontinuous
function of x. (Note that f is Lipschitz, so the variation over open
balls cannot jump up as we approach a point.)
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We can rewrite Lipx f as follows:

Lipx f = lim
r→0

sup{varx,s f | s < r}

= lim
r→0

sup{varx,s f | s < r, s ∈ Q}.
(3.2)

The first equality holds by definition, and the second from the in-
equalities

(s− ε) varx,(s−ε) f ≤ s varx,s f ≤ (s+ ε) varx,(s+ε) f.

A countable supremum of measurable functions is measurable, and a
pointwise limit of measurable functions is also measurable. Therefore,
by equation (3.2), we see that Lipx f is a measurable function of x. An
analogous argument gives the same conclusion for lipx f . �

In fact, for any x ∈ X, Lipx(·) defines a seminorm on LIP(X).

Lemma 3.3. If f : X → R and g : X → R are Lipschitz, then for all
x ∈ X we have Lipx(f + g) ≤ Lipx f + Lipx g.

Proof. Fix x ∈ X. Suppose we are given ε > 0. By equation (3.2) there
exists r > 0 so that for all y ∈ B(x, r) we have

|f(y)− f(x)|
d(x, y)

≤ Lipx f + ε and
|g(y)− g(x)|

d(x, y)
≤ Lipx g + ε.

We can find y ∈ B(x, r) so that

Lipx(f + g) ≤ |(f + g)(y)− (f + g)(x)|
d(x, y)

+ ε,

and applying the triangle inequality we see that

Lipx(f + g) ≤ (Lipx f + ε) + (Lipx g + ε) + ε. �

Definition 3.4. Suppose A ⊂ X is measurable. A point x ∈ X is a
point of density of A if

lim
r→0

µ(B(x, r) \ A)

µ(B(x, r))
= 0.

A function f : X → R is approximately continuous at x ∈ X if there
exists a measurable set A, for which x is a point of density, so that f
restricted to A is continuous at x.

Lemma 3.5 (Theorem 2.9.13, [Fed69]). Assume µ is doubling. If A ∈
X is measurable, then almost every point of A is a point of density for
A.
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If f : X → R is measurable, then f is approximately continuous
almost everywhere.

For the first part of this lemma, see also [Hei01, Theorem 1.8]. The
second part follows from Lusin’s theorem.

3.2. Gromov-Hausdorff convergence. In this subsection we deal
with metric spaces that do not a priori come with a doubling measure;
however, they are doubling metric spaces, see Definition 2.12. Every
metric measure space with a doubling measure is also a doubling metric
space. (For complete metric spaces the converse is also true, but much
less obvious.)

Definition 3.6. A sequence {(Xi, xi)} of pointed metric spaces Gromov-
Hausdorff converges to a pointed metric space (X, x) if there is a se-
quence of maps {φi : X → Xi}, with φi(x) = xi for all i, such that for
all R ∈ [0,∞) we have

lim sup
i→∞

{
|dXi(φi(y), φi(z))− dX(y, z)| | y, z ∈ B(x,R) ⊂ X

}
= 0 ,

and

∀δ > 0, lim sup
i→∞

{
d(y, φi(B(x,R + δ))) | y ∈ B(xi, R) ⊂ Xi

}
= 0.

Such a sequence of maps is called a Hausdorff approximation.

Theorem 3.7. Every sequence of C-doubling pointed metric spaces
{(Xi, xi)} has a subsequence which Gromov-Hausdorff converges to a
complete C-doubling pointed metric space (X, x).

This follows from an Arzelà-Ascoli type of argument. For each ε > 0
and radius r > 0 we can approximate B(xi, r) ⊂ Xi by a maximal
ε-separated net whose cardinality is independent of i. By repeatedly
choosing subsequences we can ensure that these nets converge in the
limit to a net of at most the same cardinality. To finish the proof,
take further subsequences as ε → 0 and r → ∞. For more details see
[BBI01, Theorem 7.4.15].

Definition 3.8. Let {(Xi, xi)} be a sequence of pointed metric spaces.
For a fixed countable index set A, suppose that {Fi}i∈N is a sequence
of collections of functions indexed by A:

Fi = {fi,α : Xi → R}α∈A .
Then the sequence of tuples {(Xi, xi,Fi)}i∈N Gromov-Hausdorff con-
verges to a tuple (X, x,F), where F = {fα : X → R}α∈A, if there is
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a Hausdorff approximation {φi : X → Xi} such that for all x ∈ X,
α ∈ A,

lim
i→∞

fi,α(φi(x)) = fα(x).

If {(Xi, xi)} is a sequence of C-doubling metric spaces, and {Fi =
{fi,α : Xi → R}α∈A} is a sequence such that for every α ∈ A, both the
Lipschitz constants of the family {fi,α} and the values {fi,α(xi)} are
uniformly bounded, then after passing to a subsequence if necessary,
the sequence of tuples {(Xi, xi,Fi)}i∈N Gromov-Hausdorff converges.

Definition 3.9. Suppose X = (X, d) is a metric space, and x ∈ X.

(1) A pointed metric space (X∞, d∞, x∞) is a Gromov-Hausdorff
(GH) tangent space to X at x if it is the Gromov-Hausdorff
limit of the pointed metric spaces {(X, di, x)}i∈N, where each
di = 1

ri
d is the original metric d rescaled by ri > 0, and the

sequence (ri) converges to zero.
(2) Suppose now that F = {fα : X → R}α∈A is a (countable)

collection of functions on X. Then

U = {ufα : X∞ → R}α∈A
is a collection of tangent functions of the functions fα ∈ F at
x ∈ X if U is the Gromov-Hausdorff limit of the sequence of
tuples {(X, 1

ri
d, x,Fi)}i∈N, where

Fi = {fi,α : (X, di, x)→ R}α∈A , and

fi,α(·) =
fα(·)− fα(x)

ri
.

Since we used the same Hausdorff approximation and scaling
factors for every fα ∈ F , we say that the tangent functions are
compatible.

We caution the reader that the terminology used for GH tangent
spaces varies: Cheeger calls them tangent cones, and other objects
tangent spaces, while Keith just calls them tangent spaces.

In general, the GH tangent spaces and functions one sees are highly
dependent on the sequence of scales chosen.

Since rescaling preserves doubling and Lipschitz constants, our pre-
vious discussion has the following

Corollary 3.10. (1) Doubling metric spaces have (doubling) GH
tangent spaces at every point.
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(2) Any countable collection F of uniformly Lipschitz functions on
a doubling metric space X has a compatible collection of tangent
functions U at every point of X.

4. Finite dimensionality implies measurable
differentiable structure

Our goal in this section is to prove

Proposition 4.1 (cf. Prop. 7.3.1, [Kei04a]). If the differentials have
finite dimension of at most N0 (see Definition 2.3), then X admits a
measurable differentiable structure whose dimension is at most N0.

Proof. We have N0 fixed by the hypotheses.

Lemma 4.2. We assume the hypothesis of Proposition 4.1. Then,
given any measurable A ⊂ X with positive measure, we can find a
measurable V ⊂ A with positive measure and a function x : V → RN

so that (V,x) is a coordinate patch.

We now complete the proof, assuming Lemma 4.2. Since X is a dou-
bling metric measure space it is σ-finite, so without loss of generality we
may assume it has finite measure. Applying Lemma 4.2, we construct
a sequence of coordinate patches (U1,x1), . . . , (Ui,xi), . . . inductively
as follows. Given i ≥ 0 and charts (U1,x1), . . . , (Ui,xi), if the union
∪j≤i Uj has full measure in X, we stop; otherwise, let C be the col-
lection of coordinate patches (V,x) with V ⊂ X \ ∪j≤i Uj, and choose
(Ui+1,xi+1) ∈ C such that µ(Ui+1) ≥ 1

2
sup{µ(V ) | (V,x) ∈ C}. If the

resulting sequence of charts {Uj} is infinite, then we have µ(Uj) → 0
as j →∞, because µ(X) <∞. The union ∪j Uj has full measure, else
we could choose a chart (V,x) where V is a positive measure subset of
X \ ∪j Uj, and this contradicts the choice of the Uj’s.

�

It remains to prove Lemma 4.2. Before proceeding with this we note
that (1.2) can be expressed more concisely as

(4.3) Lipx (f(·)− dfα(x) · xα(·)) = 0, for µ-a.e. x ∈ Xα.

Proof of Lemma 4.2. Consider the maximalN so that there exists some
positive measure set V ⊂ A, and some N -tuple of Lipschitz functions
x, so that V ⊂ Ind(x), the set where x is not dependent. (Because of
finite dimensionality, we have 0 ≤ N ≤ N0.)
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We want to show that (V,x) is a coordinate patch. Take any Lips-
chitz function f ∈ LIP(X), and consider the (N + 1)-tuple of functions
(x, f). By the maximality of N this is dependent almost everywhere in
V , so for µ-almost every x ∈ V there exists λ(x) ∈ R and df(x) ∈ RN

so that

(4.4) Lipx (λ(x)f(·)− df(x) · x(·)) = 0.

Since V ⊂ Ind(x), we know that λ(x) 6= 0 almost everywhere, so,
without loss of generality, we may assume that λ(x) = 1 everywhere.

The uniqueness of df , up to sets of measure zero, follows from the
fact that Lipx(·) is a semi-norm on the space of Lipschitz functions
(Lemma 3.3). Indeed, suppose that df1 : V → RN and df2 : V → RN

both satisfy (4.4) for almost every x. Then

Lipx

(
(df1(x)− df2(x)) · x(·)

)
≤ Lipx

(
f(·)− df1(x) · x(·)

)
+ Lipx

(
f(·)− df2(x) · x(·)

)
= 0, for µ-a.e. x.

So, if df1 and df2 differed on a set of positive measure, then x would
be dependent on that same set, but this is not possible. Therefore
df1 = df2 almost everywhere.

It only remains to show that df is measurable. This follows if
df−1(K) is measurable for each compact K ⊂ RN . We fix such a
K for the remainder of the proof.

Consider the function hx : Rn → R given by

hx(λ) := Lipx(f(·)− λ · x(·)).

The triangle inequality for Lipx(·) (Lemma 3.3) implies that hx is con-
tinuous; in fact, for λ, λ′ ∈ RN ,

|hx(λ)− hx(λ′)| ≤ Lipx((λ− λ′) · x)

≤
∑

1≤i≤N

|λi − λ′i|Lipx(xi)

≤
(
N max

1≤i≤N
LIP(xi)

)
|λ− λ′|.

Now set

E := {x ∈ V | ∃λ ∈ K s.t. hx(λ) = 0} .
As we have seen, df is uniquely defined up to a set of measure zero, so
df−1(K) equals E less a set of measure zero. Consequently, it suffices
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to show that E is measurable. Fix a dense countable subset K ′ of K,
and observe that

E = {x ∈ V | ∃(λn)n∈N ⊂ K ′, λ ∈ K s.t. hx(λn)→ 0, λn → λ}

=
⋂
n∈N

⋃
λ∈K′

{
x ∈ V | hx(λ) < 1

n

}
.

The first equality follows from the continuity of hx and the density of
K ′ in K. The second equality follows from the compactness of K. Note
that hx(λ) is a measurable function of x for fixed λ ∈ RN (applying
Lemma 3.1). Therefore, E is a measurable set, and we are done. �

We note one consequence of the above proof.

Lemma 4.5. Suppose (X, d, µ) is a Borel regular metric measure space,
and that x is an N-tuple of real-valued Lipschitz functions on X. Then
Ind(x), the set where x is not dependent to first order, is a measurable
set.

Proof. This follows from the same argument that we used to prove that
E was measurable in the previous lemma. Notice that

X \ Ind(x) =
{
x ∈ X | ∃λ ∈ RN \ {0} s.t. Lipx(λ · x) = 0

}
=
⋃
n∈N

En,

where

En =
{
x ∈ X | ∃λ ∈ RN , s.t. 1

n
≤ |λ| ≤ n, and Lipx(λ · x) = 0

}
.

Since the annulus {λ ∈ RN | 1
n
≤ |λ| ≤ n} is compact, the argument at

the end of the proof of Lemma 4.2 shows that En is measurable, and
this completes the proof. �

5. A Lip-lip inequality implies finite dimensionality

In this section we prove the following statement, which perhaps is the
heart of the theorem. Throughout this section, (X, d, µ) is a doubling
metric measure space with a K-Lip-lip bound, for fixed K > 0.

Proposition 5.1 (Prop. 7.2.2, [Kei04a]). There exists an N0, depend-
ing only on K and the doubling constant, so that any (N0 + 1)-tuple f
of Lipschitz functions is dependent almost everywhere.

In other words, (X, d, µ) is finite dimensional.
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Suppose we fixN Lipschitz functions f = (f1, . . . , fN). By Lemma 4.5,
we know that Ind(f), the set of points where f is not dependent, is mea-
surable, and we assume that it has positive measure. The proposition
will be proved if we can find a bound N ≤ N0.

Let F be the countable collection of all rational linear combinations

F = {λ · f | λ ∈ QN} ⊂ LIP(X).

The rough idea is that we can take tangents to X and F at a suitable
point to get a vector space of uniformly quasilinear functions that is,
Lipschitz functions whose variation on any ball is comparable to their
Lipschitz constant. The doubling condition then provides an an upper
bound for the size of this vector space, and hence of N .

5.1. Finding good tangent functions.

Definition 5.2. If f is a Lipschitz function and ε > 0, a subset Y ⊂ X
is ε-good for f if there is an r0 ∈ (0,∞) such that if r ∈ (0, r0) and
x ∈ Y , then

(5.3)
1

K
Lipx f − ε ≤ lipx f − ε ≤ varx,r f ≤ Lipx f + ε .

The set Y is good for f if it is ε-good for f , for all ε > 0. If F is
a collection of functions, then the set Y is ε-good for F (respectively
good for F) if it is ε-good (respectively good) for every f ∈ F .

Lemma 5.4. Suppose Y0 ⊂ X is a measurable subset of finite measure
and ε > 0. Given a Lipschitz function f , for all δ > 0 there exists
Y ⊂ Y0 so that µ(Y0 \ Y ) < δ and Y is ε-good for f .

Consequently, given a countable collection of Lipschitz functions F ,
neglecting a set of arbitrarily small measure we can find Y ⊂ Y0 so that
Y is good for F .

Proof of Lemma 5.4. The first inequality of (5.3) follows, almost ev-
erywhere, from the Lip-lip inequality (2.8).

We saw Lipx f was a measurable function of x using the pointwise
convergence of functions in equation (3.2). (A similar equation holds for
lipx f .) By Egoroff’s theorem, after neglecting a subset of arbitrarily
small measure, we may obtain a measurable set Y ⊂ Y0 where the
convergence is uniform. This completes the proof of (5.3). �

As in the introduction to this section, we fix N Lipschitz functions
f1, . . . , fN , and let F be the countable collection of all rational linear
combinations of these functions.
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Let Y0 ⊂ X be a finite measure subset. By the above reasoning, and
Lusin’s theorem, after neglecting a subset of arbitrarily small measure,
we may obtain a measurable subset Y1 ⊂ Y0 such that

• for all f ∈ F , the function Lipx f (viewed as a function of x) is
continuous on Y1, and
• the set Y1 is good for F .

Lemma 5.5. Suppose x ∈ Y is a density point of the above set Y1. Let
X∞ denote a tangent of X at x, and {uf : X∞ → R | f ∈ F} denote a
compatible collection of tangent functions. Then

(1) LIPuf ≤ Lipx f .
(2) For every p ∈ X∞, and every r ∈ (0,∞),

Lipx f ≤ K varp,r uf .

Thus the functions uf are uniformly quasilinear (Definition 2.11), and
have global Lipschitz constant comparable to Lipx f .

Proof. Fix a Hausdorff approximation

{φi : (X∞, d∞, x∞)→ (X, di, x)}i∈N,
where di = 1

ri
d and ri → 0. As x is a point of density for Y , and µ is

doubling, we can find maps

{φ′i : (X∞, d∞, x∞)→ (Y, di, x)}i∈N,
so that di(φi(·), φ′i(·)) converges to zero uniformly on compact sets.

Suppose we fix p 6= q in X∞, f ∈ F , and ε > 0. Let pi = φ′i(p), qi =
φ′i(q) ∈ Y . Notice that d(pi, qi)→ 0 as i→∞.

For all sufficiently large i we have, using the fact that f is Lipschitz,

(5.6)
|uf (p)− uf (q)|

d∞(p, q)
≤
| 1
ri
f(pi)− 1

ri
f(qi)|

1
ri
d(pi, qi)

+ ε.

Since Y is ε-good for f , there exists r0 so that (5.3) holds. To prove
(1), use (5.6) to see that

|uf (p)− uf (q)|
d∞(p, q)

≤ varpi,(1+ε)d(pi,qi) f + ε

≤ Lippi f + 2ε, by (5.3).

Since Lipx f is continuous on Y , and pi → x in the metric d, we see
that

|uf (p)− uf (q)|
d∞(p, q)

≤ Lipx f + 2ε,
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but ε was arbitrary, and so were p and q, so (1) is proved.

To see (2), fix ε > 0 and take pi as before. Now choose ai ∈ B(pi, (r−
ε)ri) ⊂ (X, d) so that

varpi,(r−ε)ri f ≤
|f(pi)− f(ai)|

(r − ε)ri
+ ε.

For sufficiently large i, at a cost of adding another ε to the right hand
side, we can assume that ai ∈ Y , and that ai = φ′i(vi), for some vi ∈
B(p, r). Furthermore, since f ◦φ′i : X∞ → R converges to uf pointwise,
and these functions are uniformly Lipschitz, the convergence is uniform
on compact sets. Therefore for sufficiently large i,

(5.7) varpi,(r−ε)ri f ≤
|uf (p)− uf (vi)|

r − ε
+ 3ε ≤ r

r − ε
varp,r uf + 3ε.

But by the continuity of Lipx f on Y and equation (5.3),

(5.8) Lipx f = lim
i→∞

Lippi f ≤ lim
i→∞

K
(
varpi,(r−ε)ri f + ε

)
.

Since ε > 0 was arbitrary, after combining (5.7) and (5.8), we are
done. �

5.2. Bounding the dimension of the space of tangent functions.
We say that T ⊂ X is a c-net if the c-neighborhood of T is X. If in
addition every two distinct points of T are at least c apart, we say that
T is a (maximal) c-separated net.

Lemma 5.9. Suppose V is a linear space of K-quasilinear functions
on a metric space Z.

(1) If some r-ball in Z contains a finite r
4K

-net T , then dimV ≤
|T |.

(2) If Z is C-doubling, then dimV ≤ (AK)log2 C, where A is a
universal constant.

Proof of (1). After rescaling, we may assume that r = 1. Let
B = B(x, r) = B(x, 1), and let T ⊂ B be a maximal 1

4K
-separated net.

Suppose u ∈ V is in the kernel of the restriction map V ⊂ L∞(B)→
L∞(T ). If x ∈ B, there is a t ∈ T with d(t, x) < 1

4K
, so

|u(x)| = |u(x)− u(t)| ≤ LIP(u) d(x, t)

≤ K(varB u) · 1

4K
≤ 1

2

∥∥∥u|
B

∥∥∥
L∞

.
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This implies that ∥∥∥u|
B

∥∥∥
L∞
≤ 1

2

∥∥∥u|
B

∥∥∥
L∞

,

forcing ‖u|
B
‖L∞ = 0. By quasilinearity, we get u ≡ 0. Thus the

restriction map is injective, and dimV ≤ dimL∞(T ) = |T |.
Proof of (2). The C-doubling condition implies that if B ⊂ Z is a

unit ball, there is a 1
4K

-net T ⊂ B with |T | ≤ (16K)log2 C . Then Part
(1) applies. �

5.3. Bounding the dimension of the differentials. As stated in
the introduction to this section, we assume that Ind(f) is a measurable
set of positive measure.

Using Lemmas 5.4 and 5.5 (applied to Y0 = Ind(f)) we can take a GH
tangents to X and F at some x ∈ Ind(f) to find a GH tangent space
Z = X∞ with a compatible family of tangent functions {uf | f ∈ F}.
Note that this family is the span over Q of {uf1 , . . . , ufN}. Since these
are all K-quasilinear for a fixed K, the same is true of the span over R
of {uf1 , . . . , ufN}.

We suppose for a contradiction that N > (AK)log2 C . By Lemma
5.9, the functions {uf1 , . . . , ufN} satisfy a nontrivial linear relation∑

i biufi = 0 with real coefficients. Approximating the vector b =
(b1, . . . , bN) ∈ RN with a sequence of rational vectors (a1,k, . . . , aN,k) ∈
Qn, we get that the sequence of linear combinations vk := {

∑
i ai,k ufi}

tends to zero uniformly on bounded subsets of X∞. From the construc-
tion of the uf ’s, this means that Lipx(

∑
i ai,k fi)→ 0. But then

Lipx

(∑
i

bi fi

)

≤ lim sup
k→∞

(
Lipx

(∑
i

ai,k fi

)
+ Lipx

(∑
i

(bi − ai,k) fi
))

≤ lim sup
k→∞

(
Lipx

(∑
i

ai,k fi

)
+
∑
i

|bi − ai,k| LIP fi

)
= 0 .

Hence the fi’s are dependent to first order at x, contradicting our
assumption. �
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6. A Poincaré inequality implies a Lip-lip inequality

Definition 6.1. Fix p ≥ 1. A metric measure space (X,µ) admits
a p-Poincaré inequality (with constant L ≥ 1) if every ball in X has
positive and finite measure, and for every f ∈ LIP(X) and every ball
B = B(x, r)

(6.2) −
∫
B

|f − fB|dµ ≤ Lr

(
−
∫
LB

(lipx f)pdµ(x)

)1/p

.

This is is equivalent to the usual definition of a Poincaré inequality
(see [Che99, (4.3)], and [Kei04b]). (Note that lipx f is an upper gradient
for f .)

The goal of this section is the following proposition.

Proposition 6.3 (Prop. 4.3.1, [Kei04a]). Suppose X admits a p-Poincaré
inequality (with constant L ≥ 1) for some p ≥ 1. (See Section 6 for
the definition.) Then X has a K-Lip-lip bound (2.8), where K depends
only on L and the doubling constant of X.

We will use the following:

Lemma 6.4. The space (X,µ) is given as above. Suppose A <∞ and
ε > 0 are fixed constants. If u : X → R is a Lipschitz function, and
x ∈ X is an approximate continuity point for lipu : X → R, then there
exists r0 = r0(u, x,A, ε) > 0 such that if r ≤ r0, y, y′ ∈ B(x,Ar) ⊂ X
and d(y, y′) ≤ r, then

(6.5)

∣∣∣∣−∫
B

u−−
∫
B′
u

∣∣∣∣ ≤ C1r (lipx u+ ε),

where B := B(y, r), B′ := B(y′, r), and where C1 = C1(X,µ) < ∞ is
a suitable constant.

Proof. Set B̂ := B(y, 2r), so B,B′ ⊂ B̂. Then we have

(6.6) C2

∣∣∣∣−∫
B

u−−
∫
B′
u

∣∣∣∣ ≤ −∫
B̂

|u− uB̂| ≤ 2Lr

(
−
∫
LB̂

(lipu)p
) 1

p

,

where C2 > 0 depends only on the doubling constant for µ, and the
second inequality comes from the Poincaré inequality for (X,µ). Since
lipu ≤ LIP(u) everywhere, and x is an approximate continuity point
of lipu, when r is sufficiently small we have

(6.7)

(
−
∫
LB̂

(lipu)p
) 1

p

≤ lipx u+ ε.
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Combining (6.6) and (6.7) gives the lemma. �

Proof of Proposition 6.3. Since lipf is Borel it is approximately con-
tinuous almost everywhere. Let x ∈ X be an approximate continuity
point for lip f , and fix λ ∈ (0, 1), ε ∈ (0, 1).

Since (X,µ) is doubling, its completion X̄ equipped with the measure
µ̄ defined by µ̄(Y ) = µ(Y ∩X) is also doubling. If x̄ ∈ X̄, r ∈ (0,∞),
we may find x ∈ B(x̄, r) ∩X. Then using the doubling property of µ̄
and the p-Poincare inequality for X, we get

−
∫
B(x̄,r)

|f − fB(x̄,r)|dµ̄ ≤ C−
∫
B(x,2r)

|f − fB(x,2r)|dµ̄

≤ 2CLr

(
−
∫
B(x,2Lr)

(lipx f)pdµ(x)

) 1
p

≤ 2CLr

(
−
∫
B(x̄,(2L+1)r)

(lipx f)pdµ̄(x)

) 1
p

where C depends only on the doubling constant of µ. Hence (X̄, µ̄) also
satisfies a p-Poincare inequality, and is quasiconvex by Theorem A.1.
Therefore, given r > 0 and y ∈ B(x, r), by the quasiconvexity of X̄,
there is a chain of points x = p1, . . . , pk = y in X, where d(pi, pi+1) ≤ λr
and k ≤ Q

λ
, for some Q that depends only on X. Set Bi := B(pi, λr).

Then

(6.8) |f(y)− f(x)| ≤∣∣∣∣f(x)−−
∫
B1

f

∣∣∣∣+
∑

1≤i<k

∣∣∣∣−∫
Bi+1

f −−
∫
Bi

f

∣∣∣∣+

∣∣∣∣(−∫
Bk

f

)
− f(y)

∣∣∣∣ .
By the lemma, when r is sufficiently small we have∣∣∣∣−∫

Bi+1

f −−
∫
Bi

f

∣∣∣∣ ≤ C1λr(lipx f + ε),

so

|f(y)− f(x)| ≤
(
Q

λ

)
(C1λr(lipx f + ε)) + 2λr LIP(f)

= (QC1(lipx f + ε) + 2λLIP(f)) r.

Thus Lipx f ≤ QC1 lipx f +QC1ε+ 2λLIP(f) and, since λ, ε > 0 were
arbitrary, this proves the proposition. �

Appendix A. A Poincaré inequality implies quasiconvexity

As mentioned in the introduction, in this appendix we give a simpler
proof of the following theorem of Semmes [Che99, Appendix A]. A
similar argument can be found in [Kei03, Section 6].
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Theorem A.1. Let (X, d, µ) be a complete, doubling metric measure
space satisfying a Poincaré inequality. Then X is λ-quasiconvex, where
λ depends only on the data (doubling constant and constants in the PI).

The main step in the proof of Theorem A.1 is:

Lemma A.2. There is a constant C ∈ (0,∞) such that if p, q ∈ X,
and r = d(p, q), then there is a path of length at most C r from B(p, r

4
)

to B(q, r
4
).

Assuming the lemma, the proof goes as follows. Pick x, x′ ∈ X, and
apply the lemma to obtain a path γ of length at most Cd(x, x′), such
that “total gap” d(x, γ) + d(γ, x′) is at most 1

2
d(x, x′). Now apply the

lemma to each of the gaps, to get two new paths, and so on. The total
gap at each step is at most half the total gap at the previous step, and
the total additional path produced is at most C-times the gap left after
the previous step. The closure of the union of the resulting collection
of paths contains a path from p to q of length at most 2C d(x, x′).

Before proving Lemma A.2, we make the following definition:

Definition A.3. An ε-path in a metric space X is a sequence of points
x0, . . . , xk ∈ X such that d(xi−1, xi) < ε for all i ∈ {1, . . . , k}; the
length of the ε-path is

∑
i d(xi−1, xi).

To prove Lemma A.2, we will show that for all ε ∈ (0,∞), there is
an ε-path from B(p, r

4
) to B(q, r

4
) of length at most C d(p, q); then a

variant of the Arzelà-Ascoli theorem applied to a sequence of discrete
paths implies that there is a path of length at most C d(p, q) from
B(p, r

4
) to B(q, r

4
).

Fix ε ∈ (0,∞), and define u : X → [0,∞] by setting u(x) equal to
the infimal length of an ε-path from B(p, r

4
) to x. For A ∈ (0,∞), let

uA := min(u,A). Then uA is is a continuous function which is locally 1-
Lipschitz; in particular the constant function ρ ≡ 1 is an upper gradient
for uA. The Poincaré inequality applied to uA and B(p, 5r

4
) implies that

uA is ≤ C r somewhere in B(q, r
4
), where C depends only on the data

of X. Since this is true for A > Cr, the desired ε-path exists. �
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