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Abstract. This is a survey of recent developments at the interface between quasicon-
formal analysis and the asymptotic geometry of Gromov hyperbolic groups. The main
theme is the extension of Mostow rigidity and related theorems to a broader class of
hyperbolic groups, using recently developed analytic structure of the boundary.
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1. Introduction

The celebrated Mostow rigidity theorem [49] states that if X and X ′ are sym-
metric spaces of noncompact type with no de Rham factors isomorphic to the
hyperbolic plane, and Γ ⊂ Isom(X), Γ′ ⊂ Isom(X ′) are uniform lattices, then
any isomorphism Γ → Γ′ between the lattices is the restriction of a Lie group
isomorphism Isom(X) → Isom(X ′). This theorem and its proof have many impor-
tant implications, and have inspired numerous generalizations and variants (e.g.
[53, 47, 32, 59, 57, 27, 35, 51, 44, 2]) most of which concern lattices in semi-
simple groups. Mostow’s proof was based on the asymptotic geometry of symmet-
ric spaces, more specifically the quasiconformal or combinatorial structure of the
boundary at infinity. Recent developments in analysis on metric spaces and quasi-
conformal geometry have begun to create the technical framework needed to imple-
ment Mostow’s proof in a much more general context, yielding new Mostow-type
rigidity theorems. The goal of this article is to survey some of these developments
and their group theoretic applications.

Organization of the paper. Section 2 discusses some general issues in geometric
group theory. Section 3 covers basic facts about Gromov hyperbolic spaces and
their boundaries. Section 4 reviews a selection of recent work related to quasi-
conformal geometry in a metric space setting, and some applications of this are
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covered in section 5. Quasiconformal uniformization is discussed in section 6, and
quasiconformal geometrization in section 7. The last section presents some open
problems.

The survey by Mario Bonk in these Proceedings provides a complementary
viewpoint on some of the material presented here.

Acknowledgements. I would like to thank Mario Bonk and Juha Heinonen for
numerous helpful comments on an earlier version of this article.

2. Rigidity and geometrization in geometric group

theory

The ideas presented in this section are strongly influenced by the work of Gromov
[32, 31, 34].

The asymptotic viewpoint in geometric group theory. One of the guiding
themes in geometric group theory is that one can often understand the algebraic
structure of a group by finding the right geometric realization of the group as a
group of isometries. For instance it is very constructive to think of nonabelian free
groups as groups acting on trees, and lattices in semi-simple Lie groups as groups
of isometries acting on the associated symmetric space. Every finitely generated
group has a plentiful supply of isometric actions, namely the actions on its Cayley
graphs. Recall that if Σ is a finite generating set for a group G, then the Cayley
graph of (G,Σ), denoted Cayley(G,Σ), is the graph with vertex set G, in which
two group elements g, g′ ∈ G are joined by an edge if and only if g = g′σ for
some σ ∈ Σ. The action of G on itself by left translation extends to an action
G y Cayley(G,Σ) by graph isomorphisms; one may view this as an isometric
action by equipping the Cayley graph with the path metric where each edge has
length 1. As a tool for understanding the original group G, Cayley graphs have
a drawback: there are too many of them. Nonetheless their asymptotic, or large-
scale, structures are all the same. To formalize this idea, we now recall a few
definitions.

Definition 2.1. A (possibly discontinuous) map f : X → X ′ between metric
spaces is a quasi-isometry if there are constants L,A such that for every x1, x2 ∈
X ,

1

L
d(x1, x2) −A ≤ d(f(x1), f(x2)) ≤ Ld(x1, x2) +A, (2.1)

and every x′ ∈ X ′ lies within distance at most A from a point in the image of
f . Here and elsewhere we will use the generic letter “d” for metric space distance
functions when it is clear in which metric space distances are being measured.
Two metric spaces are quasi-isometric if there exists a quasi-isometry from one
to another; this defines an equivalence relation on the collection of metric spaces.
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A metric space is proper if every closed ball is compact. An isometric action
G y X on a metric space X is discrete if for every ball B = B(x, r) ⊂ X , the set

{g ∈ G | gB ∩ B 6= ∅} (2.2)

is finite, and cocompact if there is a compact subset K ⊂ X such that

X =
⋃

g∈G

gK. (2.3)

The fundamental lemma of geometric group theory ties these together:

Lemma 2.2. Suppose G is a finitely generated group, X,X ′ are proper geodesic

spaces, and G
ρ
y X, G

ρ′

y X ′ are two discrete, cocompact, and isometric actions
of G. Then X is quasi-isometric to X ′. Moreover one may find a quasi-isometry
f : X → X ′ which is “quasi-equivariant” in the sense that there is a constant D
such that

d(f(gx), gf(x)) < D (2.4)

for all g ∈ G, x ∈ X.

If Σ is a finite generating set for a group G, then the action G y Cayley(G,Σ)
is discrete, cocompact, and isometric; therefore the collection of actions covered by
the lemma is nonempty for any finitely generated group G. This means that there
is a well-defined quasi-isometry class of geodesic metric spaces associated with each
finitely generated group G, which we will refer to as the quasi-isometry class of
G. Another implication of the lemma is that the universal cover of a compact,
connected Riemannian manifold M (equipped with the Riemannian distance func-
tion) is quasi-isometric to π1(M); this follows from Lemma 2.2 because the deck
group action π1(M) y M̃ is discrete, cocompact, and isometric. Thus in addition
to Cayley graphs, one has an abundance of other metric spaces representing the
quasi-isometry class of the group.

The asymptotic approach to geometric group theory is to study groups by
identifying quasi-isometry invariant structure in their quasi-isometry class.

Some asymptotic problems. One of the first quasi-isometry invariants of a
metric space X is its quasi-isometry group, denoted QI(X). This is defined to
be the collection of equivalence classes of quasi-isometries f : X → X , where two
quasi-isometries f, f ′ are declared to be equivalent if and only if their supremum
distance

d(f, f ′) := sup
x∈X

d(f(x), f ′(x))

is finite, and the group law is induced by composition of quasi-isometries. The
group QI(X) is quasi-isometry invariant because a quasi-isometry X → X ′ be-
tween two metric spaces induces an isomorphism QI(X) → QI(X ′) by “quasi-
conjugation”. By Lemma 2.2 it therefore makes sense to speak of the quasi-
isometry group of a finitely generated group G.

We now discuss several problems which are central in geometric group theory.
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Question 2.3.

A. (QI classification of groups) What are the finitely generated groups in a
given quasi-isometry class?

B. (Classification of QI’s) Given a finitely generated group G, what is the quasi-
isometry group of G?

C. (Uniformization/Recognition) Given a model group, find a criterion for de-
ciding when another group is quasi-isometric to it.

Question A has led to some remarkable mathematics. In each case where it
was resolved successfully, new geometric, analytic, combinatorial, or topological
ingredients were brought into play. Here are few examples:

• A finitely generated group is quasi-isometric to Zn if and only if it is virtually
Z

n, i.e. it contains a finite index subgroup isomorphic to Z
n. The proof relies

on Gromov’s theorem on groups of polynomial growth [33], Pansu’s description of
asymptotic cones of nilpotent groups [50], and Bass’s formula for the growth of a
nilpotent group [1]. We note that a new proof was found recently by Shalom [55];
it uses a simpler approach, but it is still far from elementary.

• A finitely generated group quasi-isometric to a free group Fk is virtually free.
This is due to Gromov, and uses Stallings’ theorem on ends of groups [56].

• A finitely generated group quasi-isometric to a symmetric space X of non-
compact type admits a discrete, cocompact, isometric action on X . This follows
from combined work of Sullivan, Gromov, Tukia, Pansu, Kleiner-Leeb, and Gabai,
Casson-Jungreis. The proofs involve asymptotic geometry – quasiconformal struc-
ture on boundaries, asymptotic cones, and Tits geometry.

Question A is related to Question B because if a group G′ is quasi-isometric to
G, then there is a homomorphism G′ → QI(G′) ' QI(G), and one can approach
Question A by studying subgroups of QI(G).

In most of the cases when Question B has been answered satisfactorily, the
approach is to identify a “canonical” or “optimal” metric space X which is quasi-
isometric to G, and then argue that the homomorphism Isom(X) → QI(X) is an
isomorphism, i.e. that every quasi-isometry of X lies at finite distance from a
unique isometry [51, 44, 12]. When this happens, one says that the metric space
X is quasi-isometrically rigid. This leads to:

Question 2.4. When can one find a quasi-isometrically rigid space in the quasi-
isometry class of a given finitely generated group G?

In general, an answer to this question has two parts. The first part is ge-
ometrization: finding a candidate for the optimal/rigid metric space in the given
quasi-isometry class. In most of the earlier rigidity theorems, geometrization was
easy because there was an obvious model space to consider. The second part is
to show that the candidate space is actually rigid, which requires one to exploit
appropriate asymptotic structure.

Quasi-isometric rigidity may fail because the quasi-isometry group is too large,
which is what happens for Z

n, free groups Fk, or lattices in Isom(Hn). Nonetheless
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in many cases a weaker form of rigidity survives: there is a proper metric space
X in the quasi-isometry class such that any group in this class admits – possibly
after passing to a finite index subgroup – a discrete, cocompact, isometric action
on X . To put it another way: any group quasi-isometric to X is virtually a lattice
in Isom(X), when one topologizes Isom(X) using the compact-open topology. So
although individual quasi-isometries are not rigid, sufficiently large groups of quasi-
isometries may turn out to be rigid. When this weaker form of rigidity holds, one
may ask if the analog of Mostow rigidity is true.

Question C has a satisfactory answer for only a few classes of groups, such as free
groups, free abelian groups, and surface groups. For instance, a finitely generated
group G is virtually free if for every Cayley graph G there are constants r, R such
that any two points x, y ∈ G at distance at least R lie in distinct components of the
complement of some r-ball B(z, r) ⊂ G. An important unresolved case of Question
C, which is tied to conjectures in 3-manifold topology, is to find a characterization
of groups quasi-isometric to hyperbolic 3-space H3. This is discussed in section 6.

In the remainder of this paper, we will focus on these questions and related
mathematics in the context of negatively curved manifolds, or more generally Gro-
mov hyperbolic spaces.

3. Gromov hyperbolic spaces and their boundaries

In this section we review some facts about Gromov hyperbolicity, see [31, 30, 16,
34, 41]. Gromov hyperbolic spaces form a robust class of metric spaces to which
much of the theory of negatively curved Riemannian manifolds applies. They have
a boundary at infinity, which plays an essential role in rigidity applications. Much
of their asymptotic structure is encoded in the quasiconformal (or quasi-Möbius)
structure of the boundary; this fact enables one to exploit the analytic theory of
quasiconformal homeomorphisms.

We recall that a geodesic metric space X is Gromov hyperbolic if there is a
constant δ such that every geodesic triangle in X is δ-thin, in other words, each
side lies within the δ-neighborhood of the union of the other two sides. Gromov
hyperbolicity is a quasi-isometry invariant property for geodesic metric spaces [16].
A finitely generated group is Gromov hyperbolic if its quasi-isometry class is
Gromov hyperbolic, see Lemma 2.2 and the ensuing commentary.

Except when it is explicitly stated to the contrary, for the remainder of this
paper X will denote a proper Gromov hyperbolic geodesic metric space and δ its
hyperbolicity constant.

Prime examples of Gromov hyperbolic spaces are complete simply-connected
Riemannian manifolds of sectional curvature bounded above by a constant κ < 0,
equipped with their Riemannian distance functions, and more generally, simply-
connected Alexandrov spaces of curvature ≤ κ [16]. Metric trees and piecewise
Euclidean polyhedra satisfying appropriate link conditions also provide many ex-
amples of group theoretic interest [31, 30, 16].
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Two geodesic rays γ1, γ2 : [0,∞) → X are asymptotic if the Hausdorff distance
between their images is finite; this defines an equivalence relation on the collection
of geodesic rays in X . The boundary of X , denoted ∂X , is the collection of
equivalence classes. Pick p ∈ X . Given [γ] ∈ ∂X , there is a unit speed geodesic
ray starting from p which is asymptotic to γ; thus one may identify ∂X with the
collection of asymptote classes of geodesics rays starting at p. Given unit speed
geodesic rays γ1, γ2 : [0,∞) → X starting from p, their Gromov overlap is
defined to be

〈γ1 | γ2〉 := lim
t→∞

1

2
(2t− d(γ1(t), γ2(t))) ∈ [0,∞]. (3.1)

To within an additive error comparable to the hyperbolicity constant δ, the overlap
of two rays is the infimal t ∈ R such that the distance from γ1(t) to γ2(t) is > δ.

Visual metrics. A visual metric on ∂X is a metric ρ such that for some
constants a > 0 and C (a is called the visual parameter of ρ), and some p ∈ X ,

1

C
e−a〈γ1|γ2〉 ≤ ρ(γ1, γ2) ≤ Ce−a〈γ1|γ2〉 (3.2)

for every pair of rays γ1 and γ2 starting at p. This condition is independent of the
choice of basepoint used to define the overlap. When a is small compared to 1/δ,
visual metrics with visual parameter a always exist.

Henceforth when we refer to the boundary ∂X , we will mean the set ∂X
equipped with some visual metric, unless otherwise stated. Here are some ex-
amples of visual metrics (note that the assertions apply to a particular choice of
visual metric):

• The boundary of Hn is bi-Lipschitz homeomorphic to the sphere Sn−1 equipped
with the usual metric.

• The boundary of complex hyperbolic space CH
n is bi-Lipschitz homeomorphic

to S2n−1 equipped with the usual Carnot metric. We recall that this metric is
defined as follows. Let ∆ be the usual contact structure on S2n−1 induced by the
embedding of S2n−1 into Cn. The Carnot distance between two points p, q ∈ S2n−1

is the infimum of the lengths of integral curves of ∆ which join p to q. This metric
on the (2n− 1)-sphere has Hausdorff dimension 2n.

• Let T be a trivalent simplicial tree where each edge has length 1. Then ∂T
is a Cantor set.

• Let M be a compact Riemannian 3-manifold of constant sectional curvature
−1 with nonempty totally geodesic boundary, and let X be its universal cover
equipped with the Riemannian distance function. Then X isometrically embeds
in H3 as a convex subset C bounded by a countable collection of disjoint totally
geodesic planes, and ∂X may be identified with the limit set of C in the sphere at
infinity of H3. The limit set is obtained by removing a countable disjoint collection
of round spherical caps from the 2-sphere, and is homeomorphic to the Sierpiński
carpet.
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There is not much one can say about boundaries of Gromov hyperbolic spaces
in general since every compact doubling metric space is isometric to the bound-
ary of a proper Gromov hyperbolic space equipped with a visual metric, see [13,
Section 2]. However, if X admits a discrete, cocompact, isometric action, then the
boundary structure is much more restricted – it is approximately self-similar
in the following sense. There are constants L, D > 0 such that if B(p, r) ⊂ ∂X is
a ball with 0 < r ≤ diam(∂X), then there is an open subset U ⊂ ∂X of diameter
> D which is L-bi-Lipschitz homeomorphic to the rescaled ball 1

r
B(p, r). This

approximate self-similarity has many implications for the topology and geometry
of ∂X . Before stating them, we need several definitions.

Definition 3.1. A metric space Z is Ahlfors Q-regular if there is a constant C
such that the Q-dimensional Hausdorff measure of any r-ball B satisfies

1

C
rQ ≤ HQ(B) ≤ CrQ, (3.3)

provided r ≤ diam(Z).

Note that an Ahlfors Q-regular space has Hausdorff dimension Q. Examples of
Ahlfors regular spaces are Rn and S2n−1 equipped with standard Carnot metric.

The next definitions are scale-invariant, quantitative versions of standard topo-
logical conditions.

Definition 3.2. A metric space Z is linearly locally contractible if there is a
constant λ > 0 such that for all x ∈ Z, 0 < r ≤ diam(Z), the inclusion

B(x, λr) → B(x, r) (3.4)

is null-homotopic. Linear local contractibility excludes examples where the metric
topology looks worse and worse at smaller and smaller scales. For instance, a
metric on a two sphere which has a sequence of “fingers” of smaller and smaller
diameter, for which the ratio of the diameter to the circumference tends to infinity
will not be linearly locally contractible.

A metric space Z is uniformly perfect if there is a constant λ > 0 such that
if p ∈ Z, 0 < r ≤ diam(Z), then B(p, r) \B(p, λr) is nonempty.

A metric space Z is LLC (not be to be confused with “linear locally con-
tractible”) if there is an L such that for all p ∈ Z, 0 < r ≤ diam(X), the inclusions

B(p, r) → B(p, Lr), X \B(p, r) −→ X \B
(

p,
r

L

)

(3.5)

induce the zero homomorphism on reduced 0-dimensional homology. This is a stan-
dard type of condition in quasiconformal geometry, and is a quantitative version
of local connectedness and absence of local cut points.

Theorem 3.3 (Structure of the boundary). If X is a proper, geodesic, Gromov
hyperbolic space which admits a discrete, cocompact, isometric action, then:

1. ∂X is either empty, has two elements, or is uniformly perfect.
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2. ∂X is Ahlfors Q-regular for some Q ([26]) .

3. If ∂X is connected, it is LLC ([4, 15, 58, 7]).

4. If ∂X is homeomorphic to Sk, then ∂X is linearly locally contractible.

5. If X is a contractible n-manifold, then ∂X is a homology (n − 1)-manifold
with the homology of the (n− 1)-sphere [4, 3]. When n ≤ 3 then ∂X is a sphere.

Induced homeomorphisms between boundaries. In applications to group
theory and rigidity, a key property of the boundary is that quasi-isometries between
Gromov hyperbolic spaces induce homeomorphisms between their boundaries. To
formulate this more precisely we need the following definition, which is due to
Väisälä.

Definition 3.4 ([63]). The cross-ratio, [z1, z2, z3, z4], of a 4-tuple of distinct
points (z1, z2, z3, z4) in a metric space Z is the quantity

[z1, z2, z3, z4] :=
d(z1, z3)d(z2, z4)

d(z1, z4)d(z2, z3)
. (3.6)

This is a metric space version of the familiar cross-ratio in complex analysis. A
homeomorphism φ : Z → Z ′ between metric spaces is quasi-Möbius if there is
a homeomorphism η : [0,∞) → [0,∞) such that for every quadruple of distinct
points (z1, z2, z3, z4) ∈ Z,

[φ(z1), φ(z2), φ(z3), φ(z4)] ≤ η([z1, z2, z3, z4]). (3.7)

Such a homeomorphism η is called a distortion function for the homeomorphism
φ. Intuitively, a homeomorphism is quasi-Möbius if it distorts cross-ratios in a
controlled way.

Compositions and inverses of quasi-Möbius homeomorphisms are quasi-Möbius,
so every metric space Z has an associated group of quasi-Möbius homeomorphisms,
which we denote by QM(Z).

Theorem 3.5 ([52]). Every quasi-isometry f : X → X ′ between Gromov hyper-
bolic spaces induces a quasi-Möbius homeomorphism ∂f : ∂X → ∂X ′ between their
boundaries. The distortion function η for ∂f can be chosen to depend only on the
the hyperbolicity constants of X and X ′, the constants for the visual metrics on
∂X and ∂X ′, and the quasi-isometry constants of f .

In particular, the full isometry group of a Gromov hyperbolic space acts on its
boundary as a group of quasi-Möbius homeomorphisms with uniform distortion
function.

The proof of Theorem 3.5 has two ingredients. The first is the “Morse Lemma”,
which implies that f maps each geodesic segment (respectively ray) in X to within
controlled Hausdorff distance of a geodesic segment (respectively ray) in X ′. This
yields the induced set-theoretic bijection ∂f : ∂X → ∂X ′. To verify that ∂f is
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quasi-Möbius, the idea is to associate to each 4-tuple of points in ∂X a configuration
in X consisting of a pair of geodesics and a shortest geodesic segment connecting
them. The cross-ratio is determined by the length of the connecting geodesic
segment, and the latter is preserved to within a factor by the quasi-isometry.

Under mild assumptions, for instance if X is quasi-isometric to a nonelemen-
tary hyperbolic group (a hyperbolic group which does not contain a finite index
cyclic subgroup), the homomorphism QI(X) → QM(∂X) given by taking boundary
homeomorphisms is an isomorphism. Thus one can translate questions about quasi-
isometries into questions about quasi-Möbius homeomorphisms of the boundary.
This has the additional advantage of eliminating some ambiguity (an equivalence
class of quasi-isometries is replaced by a single quasi-Möbius homeomorphism), as
well as providing extra structure – the group QM(Z) has a natural topology.

Questions A–C in section 2 translate to:

A’. What are the hyperbolic groups whose boundary is quasi-Möbius homeo-
morphic to a given metric space Z?

B’ What is the group of quasi-Möbius homeomorphisms of the metric space
∂G?

C’. Given a boundary ∂G, how can one tell if another boundary (or space) is
quasi-Möbius homeomorphic to it?

The latter two questions make perfect sense and are interesting for spaces other
than boundaries, e.g. self-similar spaces like the standard square Sierpinski carpet
or the Menger sponge.

4. Quasiconformal homeomorphisms

This section presents some recent results on quasiconformal homeomorphisms. The
material was selected for its applicability to rigidity and group theoretic problems,
and does not represent a balanced overview. See [38, 37, 61, 25] for more discussion.
The somewhat separate topic of uniformization is discussed in section 6.

We begin with some definitions.

Definition 4.1. Let f : X → X ′ be a homeomorphism between metric spaces,
and p ∈ X . The dilatation of f at p is

H(f, p) := lim sup
r→0

sup{d(f(x), f(p)) | x ∈ B(p, r)}

inf{d(f(x), f(p)) | x 6∈ B(p, r)}
. (4.1)

The homeomorphism f is C-quasiconformal if H(f, p) ≤ C for every p ∈ X , and
quasiconformal if it is C-quasiconformal for some C.

Heuristically, a homeomorphism is quasiconformal if it maps infinitesimal balls
to sets of controlled eccentricity.
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Definition 4.2. Let (Z, µ) be a metric space equipped with a Borel measure µ,
and p ≥ 1. If Γ is a collection of paths in Z (i.e. continuous maps [0, 1] → Z),
then a Borel measurable function ρ : Z → [0,∞] is Γ-admissible if

∫

γ

ρ ds ≥ 1 (4.2)

for every rectifiable path γ ∈ Γ, where ds denotes the arclength measure. The
p-modulus of Γ is the infimum of the quantities

∫

Z

ρpdµ (4.3)

where ρ ranges over all Γ-admissible functions on Z. If E,F are subsets of Z,
then the p-modulus of (E,F ), denoted Modp(E,F ), is the p-modulus of the
collection of paths running from E to F . When Z is an Ahlfors Q-regular space
and no measure is specified, we will be using Q-dimensional Hausdorff measure by
default.

Modulus is an old and important tool in conformal and quasiconformal geom-
etry, due to its conformal invariance and the fact that it permits one to relate
infinitesimal with global behavior of homeomorphisms. One checks by a change
of variable computation that a conformal diffeomorphism M → M ′ between Rie-
mannian manifolds preserves modulus of curve families, and that a diffeomorphism
which preserves modulus is conformal. More generally, the effect of a diffeomor-
phism on modulus can be controlled by its dilatation.

Quasiconformal homeomorphisms between domains in Rn have a number of
important regularity properties.

Theorem 4.3 ([62]). Let f : U → U ′ be a quasiconformal homeomorphism be-
tween domains in Rn, n ≥ 2. Then f belongs to the Sobolev space W 1,n

loc (U,U ′),
it is differentiable almost everywhere, and maps sets of measure zero to sets of
measure zero. Furthermore, f is ACL; this means that for every direction v ∈ Rn,
for almost every line L parallel to v, the restriction of f to U ∩ L is absolutely
continuous with respect to 1-dimensional Hausdorff measure H1. Furthermore, in-
verses and compositions of quasiconformal homeomorphism between such domains
are quasiconformal.

The following theorem shows that there are many characterizations of quasi-
conformal homeomorphisms. This is important because different characterizations
are useful in different situations, and also because it demonstrates that this notion
is robust.

Theorem 4.4 (See [62]). Let M and M ′ be Riemannian manifolds of dimension
n ≥ 2. Then the following conditions on a homeomorphism f : M → M ′ are
quantitatively equivalent:

1. f is C-quasiconformal.
2. f distorts n-modulus of curve families by a factor at most L.
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3. f belongs to the Sobolev space W 1,n
loc (M,M ′) and the distributional deriva-

tive Df satisfies |Df |n ≤ C Jac(f) almost everywhere, for some C, where Jac(f)
denotes the Jacobian of f with respect to the Riemannian structures on M and M ′

(the infinitesimal volume distortion factor).
If one assumes in addition that M and M ′ are compact, then one may add

quasi-Möbius to this list of quantitatively equivalent conditions:
4. f is η-quasi-Möbius.

These two theorems show that quasiconformal homeomorphisms are very nicely
behaved in a Riemannian context, when n ≥ 2. Unfortunately, for general metric
spaces, or even general Ahlfors regular metric spaces, Definition 4.1 is not necessar-
ily equivalent to the quasi-Möbius condition, and does not lead to a useful theory.
Examples show that it is necessary to impose further conditions on the structure
of the metric space in order to prove anything akin to Theorem 4.4. After earlier
work on Carnot-Carathéodory geometry [49, 45, 48], the breakthrough paper [38]
introduced natural conditions for precisely this purpose, and by now they have
been shown to imply most of the properties above. The essential requirement on
the space is a quantitative link between infinitesimal structure and global struc-
ture, which is expressed by a relation between moduli of pairs (E,F ) and their
relative distance. The relative distance between two subsets E,F of a metric
space is

∆(E,F ) :=
dist(E,F )

min (diam(E), diam(F ))
, (4.4)

where
dist(E,F ) := inf{d(x, y) | x ∈ E, y ∈ F}. (4.5)

This is a simple scale invariant measure of the separation between two subsets.

Definition 4.5. Let Z be an Ahlfors Q-regular metric space. Then Z is Q-
Loewner if there is a positive decreasing function φ : (0,∞) → (0,∞) such that

ModQ(E,F ) ≥ φ(∆(E,F )), (4.6)

whenever E,F ⊂ Z are disjoint nondegenerate continua. We recall that a con-
tinuum is a compact, connected, subset, and a nondegenerate continuum is one
of positive diameter. Recall that for Q-regular spaces, Q-dimensional Hausdorff
measure is the default measure used to calculate modulus.

We remark that for Ahlfors Q-regular spaces, one always has an upper bound
on modulus of the following form. There is a function

ψ : [0,∞) → [0,∞] (4.7)

with limt→∞ ψ(t) = 0 such

ModQ(E,F ) ≤ ψ(∆(E,F )) (4.8)

for any pair of closed subsets E,F . Combining (4.6) and (4.8), one can say that
for a Q-Loewner space, the modulus for a pair of disjoint continua is quantitatively
controlled by their relative distance.
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The paper [38] introduced Definition 4.5, and together with subsequent work
[61, 39, 25], most of the facts in Theorems 4.3 and 4.4 have now been proved for
quasiconformal homeomorphisms between Loewner spaces.

Theorem 4.6. Let Z,Z ′ be compact Q-Loewner for Q > 1.
1. Quasiconformal homeomorphisms Z → Z ′ are absolutely continuous, i.e.

map sets of measure zero to sets of measure zero.
2. Every quasiconformal homeomorphism f : Z → Z ′ is ACL in the following

sense. There is a collection of paths Γ of Q-modulus zero such that if γ : [0, 1] → Z
is a path, γ 6∈ Γ, then f ◦ γ : [0, 1] → Z is absolutely continuous with respect to
1-dimensional Hausdorff measure on the target.

3. Every quasiconformal homeomorphism Z → Z ′ belongs to the Sobolev space
W 1,Q(Z,Z ′).

4. For a homeomorphism f : Z → Z ′, conditions 1,2, and 4 of Theorem 4.4
are quantitatively equivalent.

5. The inverse of a quasiconformal homeomorphism is quasiconformal.

In the paper [61] it was shown that quasi-Möbius homeomorphisms between
compact Q-regular spaces distort Q-modulus in a controlled way; in particular the
Q-Loewner property is invariant under quasi-Möbius homeomorphisms.

The paper [38] also showed that when Q > 1, for compact Ahlfors Q-regular
spaces, the Q-Loewner condition is equivalent to a (1, Q)-Poincaré inequality. This
is an analytic condition which relates upper gradients to mean oscillation. We refer
the reader to [37] for more on this topic.

Another breakthrough was the paper [25] which established a notion of differ-
entiability for Lipschitz functions on doubling metric measure spaces satisfying a
Poincaré inequality, in particular for compact Q-Loewner spaces. This has the re-
markable implication that there is a cotangent bundle T ∗Z for such metric mea-
sure spaces, which is a measurable vector bundle equipped with a canonical measur-
ably varying fiberwise norm. Any bi-Lipschitz homeomorphism (Z, µ) → (Z ′, µ′)
preserving measure classes induces a derivative mapping T ∗Z ′ → T ∗Z, which is
a measurable bundle isomorphism which distorts the norms by a factor controlled
by the bi-Lipschitz constant. The paper [39] extended this assertion to Sobolev
functions, and showed that quasiconformal homeomorphisms Z → Z ′ between
Q-regular, Q-Loewner spaces also have a well-defined Cheeger derivative, when
Q > 1. Using this the author showed [43] that under the same assumptions, the
dilatation of a quasiconformal homeomorphism is controlled quantitatively by the
dilatation of its derivative mapping T ∗Z ′ → T ∗Z; the latter is defined relative to
the canonical fiberwise norms on T ∗Z and T ∗Z ′.

5. Applications to rigidity

We now discuss applications of the analytic results in the previous section to rigid-
ity theorems.

The first is Mostow rigidity in the negatively curved case:
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Theorem 5.1. Suppose X and X ′ are rank 1 symmetric spaces of noncompact
type other than H2, and G and G′ are cocompact lattices in Isom(X) and Isom(X)
respectively. Then any isomorphism G → G′ extends to a Lie group isomorphism
Isom(X) → Isom(X ′).

The outline of the proof is as follows. Identifying the two groupsG and G′ using
the isomorphism, one obtains discrete, cocompact, isometric actions of G y X
and G y X ′. These induce uniformly quasi-Möbius (in fact Möbius in the Hn

case) boundary actions G y ∂X , G y ∂X ′. By Lemma 2.2 one gets a “quasi-
equivariant” quasi-isometry

f : X → X ′, (5.1)

which has a quasi-Möbius boundary homeomorphism ∂f : ∂X → ∂X ′. The quasi-
equivariance of f implies that ∂f is equivariant with respect to the actionsG y ∂X
andG y ∂X ′. By using the equivariance and the dynamics of the group action, one
then argues that the derivative of ∂f , which is defined almost everywhere because
∂X and ∂X ′ are Carnot spaces [49, 45, 48, 51], must actually be conformal almost
everywhere. This implies that ∂f = ∂h, for a unique isometry h : X → X ′.
It follows readily that h is G-equivariant, and induces the desired isomorphism
Isom(X) → Isom(X ′).

Pansu used a similar outline to show that for rank 1 symmetric spaces other
than the hyperbolic and complex hyperbolic spaces an even stronger rigidity result
holds:

Theorem 5.2 ([51]). Suppose X is a quaternionic hyperbolic space or the Cayley
hyperbolic plane, and X ′ is a rank 1 symmetric space of noncompact type. Then
any quasi-isometry X → X ′ is at bounded distance from a unique isometry.

The proof of this theorem also uses boundary geometry. The boundary home-
omorphism ∂f : X → X ′ for a quasi-isometry is quasiconformal, and Pansu shows
that for the spaces in question, the derivative is forced to be conformal even without
invoking an equivariance assumption as in Mostow’s proof.

This kind of argument was used in a “non-classical” setting in work of Bour-
don, Bourdon-Pajot, and Xie, proving a Pansu-type rigidity result for Fuchsian
buildings:

Theorem 5.3 ([8, 11, 12, 9, 64]). Every quasi-isometry between Fuchian buildings
is at finite distance from an isomorphism.

Here a Fuchsian building X is a special kind of 2-dimensional polyhedral com-
plex. It is a union of subcomplexes called apartments, each of which is isomorphic
to the Coxeter complex associated with a fixed Coxeter group acting on H2. We
refer the reader to the papers above for the precise definition. The proof of this
rigidity result also uses the quasiconformal structure on the boundary, but in this
case the boundary is a Loewner space homeomorphic to the Menger sponge, and
much of the theory in section 4 is brought into play.

Another result in a spirit similar to Mostow rigidity is:
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Theorem 5.4 ([57, 32, 59, 51, 22]). Suppose G is a finitely generated group quasi-
isometric to a rank 1 symmetric space X other than H2. Then G admits a discrete,
cocompact, isometric action on X.

The outline of the proof goes as follows. The group G acts by isometries on a
Cayley graph Cayley(G,Σ), and a quasi-isometry Cayley(G,Σ) → X allows one to
“conjugate” this isometric action to a “quasi-action” by quasi-isometries G y X .
Passing to the boundary, one obtains an actionG y ∂X by uniformly quasi-Möbius
homeomorphisms, in particular uniformly quasiconformal homeomorphisms. By a
lemma of Sullivan, this action G y ∂X is actually conformal with respect to some
bounded measurable Riemannian structure on T ∗∂X ; recall that ∂X is a Loewner
space and therefore has a Cheeger cotangent bundle T ∗∂X whose fiberwise norm
can be used to express the boundedness condition on the Riemannian structure.
By using the dynamics of the action and a rescaling argument, one shows that
modulo quasi-Möbius conjugation, this Riemannian metric can be taken to be
standard. This means that the action is actually conformal in the usual sense, and
is therefore induced by an isometric action G y X .

Now suppose Z and Z ′ are compact Q-Loewner metric spaces, where Q >
1. The differentiation theory for quasiconformal homeomorphisms enables one to
make the following definition:

Definition 5.5. Suppose 〈·, ·〉, 〈·, ·〉′ are measurable Riemannian structures on
T ∗Z and T ∗Z ′. A homeomorphism f : Z → Z ′ is conformal with respect to
these structures if it is quasiconformal and its derivative

Df(z) : (T ∗
f(z)Z

′, 〈·, ·〉′) → (T ∗
zZ, 〈·, ·〉) (5.2)

is conformal for almost every z ∈ Z. The conformal group of (Z, 〈·, ·〉), denoted
Conf(Z, 〈·, ·〉), is the group of conformal homeomorphisms

(Z, 〈·, ·〉) → (Z, 〈·, ·〉). (5.3)

By the lemma of Sullivan quoted above, any countable group of uniformly
quasiconformal homeomorphisms of Z is conformal with respect to some bounded
measurable Riemannian structure on T ∗Z. In particular, if G is a Gromov hyper-
bolic group whose boundary is quasi-Möbius homeomorphic to a Q-Loewner space
for Q > 1, then G may be viewed as a group of conformal homeomorphisms in
this sense. For such a group, the full conformal group Conf((Z, 〈·, ·〉) provides a
natural substitute for the ambient Lie group that one has in the case of lattices in
rank 1 Lie groups. The following result shows that in this case the homomorphism
G→ Conf((Z, 〈·, ·〉) is canonically attached to G:

Theorem 5.6 (Mostow rigidity for Loewner groups [43]). Suppose G is a Gromov
hyperbolic group, and

G
ρ
y (Z, 〈·, ·〉), G

ρ′

y (Z ′, 〈·, ·〉′) (5.4)

are conformal actions of G on Loewner spaces which are topologically conjugate to
the action of G on its boundary ∂G. Then ρ is conformally equivalent to ρ′.
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The proof is identical to that of Theorem 5.4 until the last step, which requires
one has to exploit delicate infinitesimal structure of the Loewner space.

6. Uniformization

The uniformization problem for spheres. We recall the following extension
of the Koebe uniformization theorem to measurable conformal structures:

Theorem 6.1 (The measurable Riemann mapping theorem). If g is a bounded
measurable Riemannian metric on the 2-sphere, then g is conformally equivalent to
the standard metric g0, i.e. there is a quasiconformal homeomorphism f : S2 → S2

such that the derivative

Df(x) : (TxS
2, g) → (TxS

2, g0) (6.1)

is conformal almost everywhere. Moreover the uniformizing homeomorphism is
unique up to post-composition with Möbius transformation.

A Riemannian metric g is bounded if there is a C such that

1

C
g0(v, v) ≤ g(v, v) ≤ Cg0(v, v) for all v ∈ TS2. (6.2)

Theorem 6.1 and a version for parametrized families of Riemannian metrics are
fundamental tools in Kleinian groups and complex dynamics.

It is very tempting to extend Theorem 6.1 to a more general setting. An
approach based on a type of coverings (“shinglings”) was introduced by Cannon
[17], and further developed in [19, 20, 21, 18]. In a metric space setting, one is
naturally led to the following quasi-Möbius uniformization problem:

Question 6.2. When is a metric n-sphere quasi-Möbius homeomorphic to the
standard n-sphere Sn?

Here a metric n-sphere means a metric space homeomorphic to the n-sphere.
One arrives at the n = 2 case of this question starting with Question C from

section 2, in the H3 case, since a geodesic space quasi-isometric to H3 is Gromov
hyperbolic and has boundary quasi-Möbius homeomorphic to S2. The question is
also tied to one approach to:

Conjecture 6.3 (Thurston’s Hyperbolization Conjecture). Every closed, aspher-
ical, irreducible, atoroidal 3-manifold M admits a Riemannian metric of constant
curvature −1.

The relation with Question 6.2 is as follows. Gabai-Meyerhoff-Thurston [29] re-
duced Conjecture 6.3 to showing that π1(M) is isomorphic to the fundamental
group of a hyperbolic manifold (a closed Riemannian manifold of constant curva-
ture −1). When π1(M) is Gromov hyperbolic, [4] implies that the boundary of
π1(M) is homeomorphic to the 2-sphere. Therefore the Gromov hyperbolic case
of Conjecture 6.3 is implied by:
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Conjecture 6.4 (Cannon). If G is a Gromov hyperbolic group and ∂G is homeo-
morphic to the 2-sphere S2, then G admits a discrete, cocompact, isometric action
on hyperbolic 3-space H3.

By Theorem 5.4, it follows readily that Cannon’s conjecture is equivalent to the
following case of Question 6.2:

Conjecture 6.5. If G is a Gromov hyperbolic group and ∂G is homeomorphic to
S2, then it is quasi-Möbius homeomorphic to the standard 2-sphere.

Although Thurston’s conjecture appears to have been solved by Perelman, Conjec-
ture 6.4 remains very interesting – it is logically independent of the Hyperbolization
Conjecture, and moreover it provides an approach to an old unsolved problem due
to Wall: Is every 3-dimensional Poincaré duality group is a 3-manifold group?

Necessary conditions for uniformization. The uniformization problem above
was discussed in [60], where two necessary conditions were identified. A metric
n-sphere which is quasi-Möbius homeomorphic to the standard n-sphere must be
doubling and linearly locally contractible. Recall that a metric space is doubling if
there is a constant N such that every ball can be covered by at most N balls of half
the radius. We note that if the boundary of a hyperbolic group is homeomorphic
to a sphere, then it satisfies both of these conditions since Ahlfors regular spaces
are always doubling, see section 3. When n = 1 these two necessary conditions are
sufficient:

Theorem 6.6 ([60]). A doubling, linearly locally contractible metric circle is quasi-
Möbius homeomorphic to the standard circle.

However, when n ≥ 2, the conditions are not sufficient. One can show that R
2

with the homogeneous distance function

d((x1, y1), (x2, y2)) := |x1 − x2| + |y1 − y2|
1

2 (6.3)

is not locally quasi-Möbius homeomorphic to R2, and it is possible to construct a
doubling linearly locally contractible metric on S2 which is locally isometric to the
metric (6.3) near some point.

Sufficient conditions for uniformization. Motivated by considerations relating
analytic properties of a space and the existence of good parametrizations, Semmes
made the following conjecture:

Conjecture 6.7 ([40]). If Z is an Ahlfors 2-regular, linearly locally contractible
2-sphere, then Z is quasi-Möbius homeomorphic to the standard 2-sphere.

This conjecture was proven in [5]. Recall that the Hausdorff dimension of any met-
ric space is always greater than or equal to its topological dimension. For linearly
locally contractible 2-spheres, one can strengthen this to the quantitative assertion
that every r-ball has 2-dimensional Hausdorff measure at least comparable to r2,
for r ≤ diam(Z). Thus the Ahlfors 2-regularity condition in the hypothesis of
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Conjecture 6.7 provides a competing upper bound on the Hausdorff measure, and
in some sense this tension is the key to the proof. We remark that this result is
optimal in several respects. First, Semmes had shown in [54] that the analogous
assertion is false in higher dimensions: for every n ≥ 3 there are Ahlfors n-regular,
linearly locally contractible metric n-spheres which are not quasi-Möbius homeo-
morphic to the standard n-sphere. Also, the conclusion cannot be strengthed to
bi-Lipschitz homeomorphism, due to examples of Laakso [46]. Finally, the Ahlfors
2-regularity condition cannot be relaxed to Q-regularity because by using metrics
as in (6.3) one can get examples which are Ahlfor 3-regular.

Nonetheless, one can relax the 2-regularity condition if one imposes a Loewner
condition:

Theorem 6.8 ([5]). If Z is a Q-Loewner metric 2-sphere, then Q = 2 and Z is
quasi-Möbius homeomorphic to the standard 2-sphere.

In particular, as indicated above, Cannon’s conjecture is true for those hyperbolic
groups whose boundary is quasi-Möbius homeomorphic to a Loewner 2-sphere.
The higher dimensional analog of Theorem 6.8 is false, because the Carnot metric
on S3 is 4-Loewner but not quasi-Möbius homeomorphic to S3.

Quasi-Möbius characterizations of the 2-sphere. In [5], the proofs of The-
orem 6.8 and Conjecture 6.7 invoked a more general necessary and sufficient con-
dition. To formulate this, we require a combinatorial version of modulus, and the
related definitions.

Suppose G is a graph with vertex set V = V (G), and Γ is a collection of subsets
of V ; in our context, the elements γ ∈ Γ will be the vertex sets of certain connected
subgraphs of Γ. A function ρ : V (G) → [0,∞) is Γ-admissible if for every γ ∈ Γ,

∑

v∈γ

ρ(v) ≥ 1. (6.4)

If Q ≥ 1, the Q-modulus of Γ is the infimum of
∑

v∈Vertex(G)

ρQ(v) (6.5)

where ρ ranges over all Γ-admissible functions.
Pick Q ≥ 1. Now suppose Γ is a path family in a metric space Z, and U is

an open cover of Z. Then the Q-modulus of Γ with respect to U, denoted
ModQ(Γ,U), is defined as follows. We let G(U) be the nerve of the open cover U ,
which is the graph with vertex set U whose edges correspond to pairs U,U ′ ∈ U
with nonempty intersection. Then we let Γ(G) be the collection of subsets of the
vertex set V (G) of the form

{U ∈ U | U ∩ Im γ 6= ∅},

where γ ranges over all paths γ ∈ Γ. Note that each element of Γ(G) is the
0-skeleton of a connected subgraph if G. We then define ModQ(Γ,U) to be the Q-
modulus of Γ(G) in G. Finally, if E,F ⊂ Z are subsets, we let ModQ(E,F ;U) :=
ModQ(Γ(E,F ),U), where Γ(E,F ) denotes the family of paths joining E to F .
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Theorem 6.9 ([5]). Let Z be a doubling, linearly locally contractible metric 2-
sphere, and let {ri} be a sequence of positive numbers converging to 0. For each i,
let Vi be a maximal ri-separated subset of Z, and let

Ui := {B(v, ri)}v∈Vi
(6.6)

be the corresponding open ball cover. Then the following conditions are equivalent.
• Z is quasi-Möbius homeomorphic to S2.
• There is a function ψ : [0,∞) → [0,∞] tending to zero at infinity, and a

number L, such that if E,F ⊂ Z are closed subsets, then

Mod2(E,F ;Ui) ≤ ψ(∆(E,F )) (6.7)

for every i satisfying

min(diam(E), diam(F )) ≥ Lri.

Here ∆(E,F ) denotes the relative distance as before.
• There is a positive decreasing function φ : [0,∞) → (0,∞) and a number M

such that if E,F ⊂ Z are continua, then

Mod2(E,F ;Ui) ≥ φ(∆(E,F )), (6.8)

for every i satisfying
dist(E,F ) ≥M ri.

The theorem says that Z is quasi-Möbius equivalent to the standard 2-sphere if
and only if, for a sequence of combinatorial approximations, the combinatorial
2-modulus behaves as in S2, i.e. it can be bounded below or above by functions
of relative distance. The idea of the proof is to associate, for each i, a topolog-
ical triangulation Ti of Z whose 1-skeleton is quasi-isometric to the nerve of Ui

(with quasi-isometry constants independent of i). Then one can apply classical
uniformization to the equilateral polyhedron associated with Ti to produce a map
fi : Vi → S2. The crux of the argument is to show that the maps fi, when ap-
propriately normalized, are uniformly quasi-Möbius, and hence subconverge to a
quasi-Möbius homeomorphism by the Arzela-Ascoli theorem.

Other uniformization problems. One may formulate uniformization problems
for spaces other than spheres. The case of Sierpinski carpets is especially interest-
ing, where there are remarkable uniformization and rigidity results. We refer the
reader to Mario Bonk’s article in these Proceedings for a treatment of this topic.

7. Geometrization

Minimizing Hausdorff dimension. Geometrization – the problem of finding
optimal or canonical geometric structures – appears in many contexts in mathemat-
ics: for example, the Yamabe problem (finding conformally equivalent metrics of
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constant scalar curvature), Thurston’s Geometrization conjecture for 3-manifolds,
Thurston’s characterization of rational maps, and the Calabi conjecture. For each
of these problems there are cases where there is no solution: the Yamabe problem
for the “teardrop” 2-orbifold has no solution, and any closed 3-manifold whose
prime or torus decomposition is nontrivial does not admit a Thurston geometry.
The goal is to show that geometrization is always possible unless some alternate
structure appears, on which the failure can be blamed (such as a bad isometry
group in the case of the teardrop, or an essential decomposition in the 3-manifold
geometrization problem).

In the metric space context, a natural geometrization problem is to minimize the
Hausdorff dimension in an attempt to optimize shape. This leads to the following
notion, which is a minor variant of a definition of Pansu:

Definition 7.1. The conformal dimension of a metric space Z is the infimal
Hausdorff dimension of the Ahlfors regular metric spaces quasi-Möbius homeomor-
phic to it. We denote this by Confdim(Z).

Visual metrics on boundaries of hyperbolic groups are Ahlfors regular, so

Confdim(∂G) <∞

for every hyperbolic group G. Likewise

Confdim(Z) <∞

for every self-similar space Z. Every Q-Loewner metric space (Definition 4.5), and
more generally Q-regular metric spaces with nontrivial Q-modulus, are solutions to
the geometrization problem, because they minimize Hausdorff dimension in their
quasi-Möbius homeomorphism class:

Theorem 7.2. [Bonk-Tyson, see [37, Thm. 15.10]] Suppose Z is a compact
Ahlfors Q-regular metric space which carries a family of nonconstant paths of pos-
itive Q-modulus. Then any metric space quasi-Möbius homeomorphic to Z has
positive Q-dimensional Hausdorff measure, and in particular Q = Confdim(Z).

The following theorem of Keith-Laakso shows that the converse is nearly true:

Theorem 7.3 ([42]). If Z is an Ahlfors Q-regular metric space where

Q = Confdim(Z) > 1,

then some weak tangent of Z carries a nontrivial curve family of positive Q-
modulus.

Here a weak tangent is a pointed Gromov-Hausdorff limit of a sequence of rescal-
ings of Z, see [42, 6]. If one adds the hypothesis that Z is self-similar, or approxi-
mately self-similar like a visual metric on the boundary of a hyperbolic group, then
one can map open subsets of a weak tangent to Z itself, and thereby conclude that
Z itself has a nontrivial curve family of positive Q-modulus. Therefore Theorem



20

7.2 has a converse in the self-similar case. The idea of the proof of Theorem 7.3
is to show that if the conclusion of the theorem fails for some Q-regular space Z,
then one can use a construction of Semmes (a “Semmes deformation”) to produce
an Ahlfors regular metric of strictly smaller Hausdorff dimension.

For spaces quasi-Möbius homeomorphic to boundaries of groups, a much stronger
statement holds:

Theorem 7.4 ([6]). If Z is an Ahlfors Q-regular metric space where

Q = Confdim(Z) > 1,

and Z is quasi-Möbius homeomorphic to the boundary of some hyperbolic group G,
then Z is Q-Loewner.

The proof of this theorem uses Theorem 7.3, work of Tyson [61], and a dynamical
argument to show that for a large supply of ball pairs B ⊂ B ′ the pair (B,Z \B′)
has Q-modulus bounded away from zero. The main work consists in showing that
this “ball-Loewner” condition implies the usual Loewner property in Definition
4.5.

Theorem 7.4 connects the problem of realizing the conformal dimension with
results such as Theorems 5.6 and 6.8, since one would like to know for which hyp-
erbolic groups the boundary is quasi-Möbius homeomorphic to a Loewner space.

Examples where the conformal dimension is (not) realized. Suppose G is
an infinite hyperbolic group and Q = Confdim(∂G) can be realized by an Ahlfors
Q-regular metric. If Q < 1 then one can argue that G must be virtually infinite
cyclic. If Q = 1, then it is not difficult to deduce that ∂G is homeomorphic to a
circle, and hence by [23, 28] it is virtually a surface group. If Q > 1, then Theorem
7.4 implies that ∂G is quasi-Möbius homeomorphic to a Loewner space, which
implies that it is connected and has no local cut points. These two conditions
are equivalent by [4, 15, 58, 14] to saying that G does not virtually split over a
virtually cyclic group.

Any hyperbolic group G which splits over a finite group has disconnected
boundary, so unless G is virtually cyclic, the previous paragraph implies that the
conformal dimension of ∂G cannot be realized. A free group of rank at least two
is such an example.

Pansu showed that if one takes two copies of a surface of genus 2 and glues
them along a homotopically nontrivial simple closed curve, the fundamental group
of the resulting 2-complex is a hyperbolic group G where Confdim(∂G) = 1. Since
G is not a virtual surface group, this group provides another example where the
conformal dimension cannot be realized. In the case of self-similar spaces (not
arising as boundaries of group), it was shown by Laakso that the Sierpinski gasket
has conformal dimension 1, but it cannot be realized.

Much deeper examples were constructed by Bourdon and Pajot [13, 10]. These
are hyperbolic groups which do not virtually split over virtually cyclic groups, and
whose boundaries are not quasi-Möbius homeomorphic to Loewner spaces. These
examples are very intriguing, and have led Marc Bourdon to speculate that the
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nonexistence of Loewner structure implies with the presence G-invariant fibration-
like structure in ∂G.

A further necessary condition. Suppose Z is a compact doubling metric space,
and Q > 1. Then Z satisfies the combinatorial Q-Loewner property if the
following combinatorial analog of (4.6) and (4.8) holds. There are constants C,
λ > 0, and functions φ : [0,∞) → (0,∞), ψ : [0,∞) → [0,∞] with the following
properties:

• φ is a positive decreasing function, ψ(t) → 0 as t→ ∞, and φ ≤ ψ.

• For every 0 < r ≤ diam(Z), if V is a maximal r-separated net in Z, U is
the corresponding r-ball cover, and E,F ⊂ Z are disjoint nondegenerate continua
where r ≤ λmin(diam(E), diam(F )), then

φ(∆(E,F )) ≤ ModQ(E,F,U) ≤ ψ(∆(E,F )), (7.1)

where ModQ(E,F,U) is the combinatorial modulus defined just before Theorem
6.9.

Using arguments from [38, 5] is not hard to see that if Z is a Q-Loewner space,
then Z satisfies the combinatorial Q-Loewner property. Based on current evidence,
the following seems plausible:

Conjecture 7.5. Suppose Z is a self-similar space, or quasi-Möbius homeomor-
phic to the boundary of a hyperbolic group. If Z satisfies the combinatorial Loewner
property, then Z is quasi-Möbius homeomorphic to a Loewner space.

Currently there is no example of a compact doubling space satisfying the combi-
natorial Loewner property, which is known not to be quasi-Möbius homeomorphic
to a Loewner space.

The conjecture is intriguing, because the author has shown that several exam-
ples, including the standard square Sierpinski carpet, the standard Menger sponge
(obtained from the unit cube in R3), and boundaries of certain hyperbolic Cox-
eter groups satisfy the combinatorial Loewner property. Therefore the conjecture
would provide new examples of Loewner spaces.

8. Open problems

We conclude with some open problems. These are questions which seem to be key
to making further progress with the central themes of this article.

Question 8.1. Let Z be the boundary of a hyperbolic group, or more generally
an “approximately self-similar” space. When is the conformal dimension of Z
realized?

Question 8.2. Suppose G is a Gromov hyperbolic group. Suppose G does not
virtually split over a virtually cyclic group, or equivalently, that ∂G is connected
and has no local cut points. Is every quasiconformal homeomorphism of ∂G quasi-
Möbius?
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Question 8.3. Is the standard square Sierpinski carpet quasi-Möbius homeomor-
phic to a Loewner space? What is its conformal dimension?

The author and independently [42] have shown that usual metric does not
realize the conformal dimension. The author has shown that for a particular choice
of exponent Q, the square carpet satisfies the combinatorial Loewner property, see
section 7.

Question 8.4. If G is a random hyperbolic group, is the homomorphism G →
QI(G) an isomorphism?

See [24, 41] for discussion of random groups.

Question 8.5. What is the quasi-isometry group of the Gromov-Thurston exam-
ples [36]?
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