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Résumé. We consider Lipschitz mappings f : X → V , where X is
a doubling metric measure space which satisfies a Poincaré inequality,
and V is a Banach space. We show that earlier differentiability and bi-
Lipschitz nonembedding results for maps f : X → R

N remain valid when
R

N is replaced by any separable dual space. We exhibit spaces which
bi-Lipschitz embed in L1, but not in any separable dual V . For certain
domains, including the Heisenberg group with its Carnot-Caratheodory
metric, we establish a new notion of differentiability for maps into L1.
This implies that the Heisenberg group does not bi-Lipschitz embed in
L1, thereby proving a conjecture of J. Lee and A. Naor. When combined
with their work, this has implications for theoretical computer science.

Rubrique : Analyse.

Titre : Différentiation généralisée et impossibilité d’un plongement bilip-
schitzien dans L1

Résumé : Nous considérons des applications lipchitziennes f : X → V ,
où X est un espace métrique mesuré tel que l’on contrôle le volume des
boules par doublement du rayon et qui satisfait à une inégalité de Poincaré,
et où V est un espace de Banach. On montre que des résultats antérieurs
de différentiabilité et de non plongement bilipschitzien pour des applications
f : X → R

N restent valables quand on suppose que V est un dual séparable.
Nous donnons des exemples d’espaces plongés de manière bilipschitzienne
dans L1, mais qui ne sont plongeables dans aucun dual séparable. Pour
certains espaces, dont le groupe d’Heisenberg muni de la métrique de Carnot-
Caratheodory, on établit une nouvelle notion de différentiabilité pour des
applications dans L1. Ceci implique que le groupe de Heisenberg ne possède
aucun plongement bilipschitzien dans L1, un résultat conjecturé par J. Lee
et A. Naor. Quand il est combiné avec des résultats de ces deux auteurs,
notre travail a des applications en informatique théorique.
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1. Introduction

Rademacher’s differentiation theorem states that a real valued Lipschitz
function on R

k is differentiable almost everywhere. The literature contains
a vast number of variants of this theorem, in which either the domain, the
target, or the class of mappings is generalized. In this paper we announce
several results in a similar vein, examples showing their sharpness and ap-
plications to bi-Lipshitz nonembedding theorems. 1

2. PI SPACES

Henceforth (X, dX , µ) will denote a metric measure space satisfying a
doubling condition and a Poincaré inequality in the sense of [HK96] (see
below for the definition), and we will refer to such spaces as PI spaces.

Examples of PI spaces include Gromov-Hausdorff limits of sequences of
Riemannian manifolds with a uniform lower Ricci curvature bound, Bourdon-
Pajot spaces, Laakso spaces and Carnot groups such as the Heisenberg group
H; see [CC97], [BP99], [Laa00], [Gro90]. For our present purposes, the latter
two examples are particularly significant; see Theorems 5.1, 6.1.

We now recall some relevant definitions concerning PI spaces. Let Br(x)
denote the metric ball, {x′ | dX(x, x′) < r}.

The doubling condition is: for all x ∈ X and r ≤ R,

(2.1) µ(B2r(x)) ≤ 2κ(R)µ(Br(x)) .

A function, g : X → [0,∞], is called an upper gradient for f : X → R, if
for all rectifiable curves, c : [0, `] → X, parametrized by arc length, s,

(2.2) |f(c(`)) − f(c(0))| ≤

∫ `

0
g(c(s)) ds .

Given an integrable function, f : Br(x) → R, put f = 1
µ(Br(x))

∫

Br(x) f dµ .

The (1, p)-Poincaré inequality asserts the existence of constants, τ(R),
λ(R), such that for all x ∈ X, r ≤ R, and all f , g, with g upper gradient
for f ,

(2.3)

∫

Br(x)
|f − f | ≤ τr

(

∫

Bλr(x)
gp dµ

)
1
p

.

1Our work was motivated by the conjecture of J. Lee and A. Naor, that the Heisenberg
group with its Carnot-Caratheodory metric does not bi-Lipschitz embed in L1; see The-
orem 6.1. We are very much indebted to Naor for telling us of their conjecture and for
explaining its significance in connection with the Goemans-Linial conjecture of theoretical
computer science; see Remark 6.5.
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3. Differentiation theory for separable dual space targets

A Banach space V is said to have the Radon-Nikodym property if the
conclusion of Rademacher’s differentiation theorem holds for every Lipschitz
map R

k → V . Separable dual spaces and reflexive spaces (separable or not)
have the Radon-Nikodym property, [Gel38]. It is difficult to construct spaces
with the Radon-Nikodym property which are not isomorphic to a subspace
of some separable dual space; see p. 124 and also pp. 121–124 of [BL00].

An extension of the original Rademacher theorem to PI spaces was ob-
tained in [Che99]. In [CK05], we show that the differentiation theory of
[Che99] extends to separable dual space targets.

Let a(x, x′), b(x, x′), take values in V and let ‖ · ‖ denote the norm of V .
The notation,

a(x, x′) = b(x, x′) + o(dX(x, x′)) ,

means

lim
dX (x,x′)→0

‖a(x, x′) − b(x, x′)‖

dX(x, x′)
= 0.

Theorem 3.1. ([CK05]) Let X denote a PI space with associated constants

κ, λ, τ . Then there exists a countable covering of X by measurable sets,

X =
⋃

α Aα, and Lipschitz maps,

uα : Aα → Rkα ,

uα = (u1,α, . . . , ukα,α), with kα ≤ c(κ, τ, λ), with the following property: For

any Lipschitz map, f : X → V , with V a separable dual space, there exist

µ-a.e. unique, bounded measurable functions,

∂f(x′)

∂ui,α

: Aα → V ,

such that for µ-a.e. x, x′ ∈ Aα,

(3.2)

f(x) = f(x′) +

kα
∑

i=1

∂f(x′)

∂ui,α
· (ui,α(x) − ui,α(x′))

+ o(dX(x, x′)) .

Remark 3.3. The countable covering, X =
⋃

α Aα, and Lipschitz maps,

uα : Aα → R
kα , would determine an atlas of charts for a connected Lips-

chitz manifold, if we added the conditions that kα is independent of α, the
measurable sets, Aα, are open, and the Lipschitz maps, uα, are bi-Lipschitz
onto their images. If in such a case, µ denotes Lebesgue measure, then (3.2)
reduces to the almost everywhere defined first order Taylor expansion of the
Lipschitz function, f , in local coordinates uα.
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The space, X, also has a measurable cotangent bundle, T ∗X, which is a
measurable vector bundle whose fiber at µ-a.e. x ∈ Aα has dimension kα.
Every real valued Lipschitz function, f : X → R, has a differential, df , which
is a bounded measurable section of T ∗X. Likewise, if V is a separable dual
space, then any Lipschitz map into V has a differential, which is a section
of T ∗X ⊗ V .

Remark 3.4. An earlier differentiation theory for Lipschitz maps between
Carnot groups was developed by Pansu; [Pan89]. For R

N targets, it coincides
with that of [Che99]. The theory of [Pan89], which uses curve families, has
a rather straightforward extension to targets having the Radon-Nikodym
property; [CK05], [LN06]. We do not know if this holds for Theorem 3.1.

4. Bi-Lipschitz nonembedding in separable dual spaces

Generalized differentiation theorems for Lipschitz maps, f : X → V ,
can be used to show that under certain conditions on X, f cannot be a
bi-Lipschitz embedding. An early such result of Semmes, based on the
differentiation theory of Pansu, states that H does not bi-Lipchitz embed in
any finite dimensional Banach space; see [Sem96].

In [Che99], the differentiation theory developed there was used to prove
results on bi-Lipschitz nonembedding for finite dimensional Banach space
targets. This unified and extended previously known nonembedding theo-
rems for certain classes of PI spaces, including in particular, Laakso spaces,
Carnot groups and Bourdon-Pajot spaces.

In light of the differentiation result, Theorem 3.2, the bi-Lipschitz nonem-
bedding theorems, Theorems 14.1–14.3 of [Che99], and their proofs, extend
directly to separable dual targets; see, for instance, Theorem 4.1 below.

The doubling condition, (2.1), together with Gromov’s compactness the-
orem, implies that any sequence of pointed PI spaces with rescaled metrics,
{X,x, ci · dX , µ}, where ci → ∞, has a subsequence which converges to
(Xx, x∞, d∞, µ∞) in the pointed measured Gromov-Hausdorff sense. The
space Xx is called a tangent cone of X at x. Let TX be the tangent bundle

of X, i.e. the dual of (T ∗X), equipped with the dual norm. Then there is a
surjective Lipschitz map Xx → TXx; see Section 13 of [Che99]. Thus,

dimXx ≥ dimTXx .

Here and below, dim denotes Hausdorff dimension.

Theorem 4.1. ([CK05]) Let X denote a PI space and let G ⊂ X denote

the set of points, x, such that for some tangent cone, Xx,

dim Xx > dim TXx .

If µ(G) > 0, then X does not bi-Lipschitz embed in any separable dual space.
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The targets covered by Theorem 4.1 include Lp, 1 < p < ∞ and `p,
1 ≤ p < ∞.

In view of Remark 3.4, for the special case, H, we also have the following
generalization of Semmes’ result; see also [LN06].

Theorem 4.2. ([CK05]) A Carnot group does not bi-Lipschitz embed in any

Banach space with the Radon-Nikodym property.

5. Bi-Lipschitz embedding in L1

The Lipschitz map, I : (0,∞) → L1, given by I(t) = χ
(0,t)

, is nowhere dif-

ferentiable, [Aro76]. Thus, L1 does not have the Radon-Nikodym property.
This leads one to ask if the nonembedding result Theorem 4.1 also breaks
down when the target is L1. Indeed this is the case:

Theorem 5.1 ([CK06b]). There exist PI spaces, including Laakso spaces,

which satisfy the hypothesis of Theorem 4.1, and hence do not bi-Lipschitz

embed in any separable dual space, but which do bi-Lipschitz embed in L1.

Remark 5.2. As far as we know, the PI spaces in Theorem 5.1 provide the
first examples of spaces which bi-Lipschitz embed in L1 but not in `1.

6. Generalized differentiation for L1 and bi-Lipschitz

nonembedding

In [CK06a], it is shown that there is a generalized sense in which Lipschitz
maps, R

n → L1, or H → L1, are differentiable. As a direct consequence, it
follows that H does not bi-Lipschitz embed in L1. This was conjectured by
J. Lee and A. Naor.

Theorem 6.1 ([CK06a]). If U ⊂ H is an open subset, and f : U → L1 is a

Lipschitz map, then for almost every point, x ∈ H, the map collapses in the

direction of the center of H i.e.

(6.2) lim
g→e

‖f(gx) − f(x)‖L1

dH(gx, x)
= 0 , g ∈ Center(H) .

Corollary 6.3 ([CK06a]). There is a compact doubling metric space which

does not bi-Lipschitz embed in L1.

Let W denote some Cayley graph for the subgroup of the Heisenberg
group consisting of matrices with integer entries. Give W the length space
metric such that each edge has length 1. For k ≥ 0, let Wk := Bk(e) ⊂ W

denote the ball of radius k in W , with center the identity element.
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Corollary 6.4. ([CK06a]) The sequence, {Wk}, is a sequence of uniformly

doubling finite graphs with uniformly bounded valence, which do not admit

embeddings into L1 with uniformly bounded bi-Lipschitz distortion.

Remark 6.5. A metric space, (Z, ρ), is said to be of negative type if (Z, ρ
1
2 )

isometrically embeds in Hilbert space. The Goemans-Linial conjecture as-
serts that if (Z, ρ) is of negative type, then (Z, ρ) bi-Lipschitz embeds in
L1. In [LN06], Lee and Naor show that (H, dH) is bi-Lipschitz to a metric
space of negative type. Therefore, by Theorem 6.1, (H, dH) is bi-Lipschitz
equivalent to a doubling metric space which does not satisfy the conclusion
of the Goemans-Linial conjecture. For a prior recent counter example which
is not doubling, see [KV05].
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