REALIZATION OF METRIC SPACES AS INVERSE LIMITS, AND BILIPSCHITZ EMBEDDING IN L_{1}

JEFF CHEEGER AND BRUCE KLEINER

Abstract

We give sufficient conditions for a metric space to bilipschitz embed in L_{1}. In particular, if X is a length space and there is a Lipschitz map $u: X \rightarrow \mathbb{R}$ such that for every interval $I \subset \mathbb{R}$, the connected components of $u^{-1}(I)$ have diameter \leq const $\cdot \operatorname{diam}(I)$, then X admits a bilipschitz embedding in L_{1}. As a corollary, the Laakso examples Laa00 bilipschitz embed in L_{1}, though they do not embed in any any Banach space with the Radon-Nikodym property (e.g. the space ℓ_{1} of summable sequences).

The spaces appearing the statement of the bilipschitz embedding theorem have an alternate characterization as inverse limits of systems of metric graphs satisfying certain additional conditions. This representation, which may be of independent interest, is the initial part of the proof of the bilipschitz embedding theorem. The rest of the proof uses the combinatorial structure of the inverse system of graphs and a diffusion construction, to produce the embedding in L_{1}.

Contents

1. Introduction 2
2. Notation and preliminaries 12
3. Inverse systems of graphs with path metrics 18
4. Realizing metric spaces as limits of admissible inverse systems 22
5. A special case of Theorem 1.16$]$ 23
6. Slices and the associated measures 24
7. Estimates on the family of measures $\left\{\Sigma_{i}^{\prime}\right\}_{i \in \mathbb{Z}}$ 29

Date: October 10, 2012.
J.C. supported by NSF grants DMS-0704404 and DMS-1005552. B.K. supported by NSF grants DMS-1007508 and DMS-1105656.

1. Introduction

Overview. This paper is part of a series CK06c, CK06d, CK06a, CK08, CK09, CKN09, CKb which examines the relations between differentiability properties and bilipschitz embeddability in Banach spaces. We introduce a new notion of dimension - Lipschitz dimension - and show that spaces of Lipschitz dimension $\leq k$ admit a representation as a certain kind of inverse limit. We then use this characterization to show that spaces of Lipschitz dimension ≤ 1 bilipschitz embed in L_{1}. This embedding result applies to several known families of spaces, illustrating the sharpness of earlier nonembedding theorems.

Metric spaces sitting over \mathbb{R}. We begin with a special case of our main embedding theorem.

Theorem 1.1. Let X be a length space. Suppose $u: X \rightarrow \mathbb{R}$ is a Lipschitz map, and there is a $C \in(0, \infty)$ such that for every interval $I \subset \mathbb{R}$, each connected component of $u^{-1}(I)$ has diameter at most C. $\operatorname{diam}(I)$. Then X admits a bilipschitz embedding $f: X \rightarrow L_{1}(Z, \mu)$, for some measure space (Z, μ).

We illustrate Theorem 1.1 with two simple examples:
Example 1.2 (Lang-Plaut [LP01], cf. Laakso Laa00]). We construct a sequence of graphs $\left\{X_{i}\right\}_{i \geq 0}$ where X_{i} has a path metric so that every edge has length 4^{-i}. Let X_{0} be the unit interval $[0,1]$. For $i>0$, inductively construct a X_{i} from X_{i-1} by replacing each edge of X_{i-1} with a copy of the graph Γ in Figure 1, rescaled by the factor $4^{-(i-1)}$. The graphs X_{1}, X_{2}, and X_{3} are shown. The sequence $\left\{X_{i}\right\}$ naturally forms an inverse system,

$$
X_{0} \stackrel{\pi_{0}}{\leftarrow} \cdots \stackrel{\pi_{i-1}}{\longleftarrow} X_{i} \stackrel{\pi_{i}}{\leftarrow} \cdots,
$$

where the projection map $\pi_{i-1}: X_{i} \rightarrow X_{i-1}$ collapses the copies of Γ to intervals. The inverse limit X_{∞} has a metric d_{∞} given by

$$
\begin{equation*}
d_{\infty}\left(x, x^{\prime}\right)=\lim _{i \rightarrow \infty} d_{X_{i}}\left(\pi_{i}^{\infty}(x), \pi_{i}^{\infty}\left(x^{\prime}\right)\right), \tag{1.3}
\end{equation*}
$$

where $\pi_{i}^{\infty}: X_{\infty} \rightarrow X_{i}$ denotes the canonical projection. (Note that the sequence of metric spaces $\left\{X_{i}\right\}_{i \geq 0}$ Gromov-Hausdorff converges to $\left(X_{\infty}, d_{\infty}\right)$.) It is not hard to verify directly that $\pi_{0}^{\infty}:\left(X_{\infty}, d_{\infty}\right) \rightarrow$ $[0,1]$ satisfies the hypotheses of Theorem 1.1\} this also follows from the results in Section 3 .

Figure 1.
Example 1.4. Construct an inverse system

$$
X_{0} \stackrel{\pi_{0}}{\longleftarrow} \cdots \stackrel{\pi_{i-1}}{\leftarrow} X_{i} \stackrel{\pi_{i}}{\leftarrow} \cdots
$$

inductively as follows. Let $X_{0}=[0,1]$. For $i>0$, inductively define X_{i-1}^{\prime} to be the result of trisecting all edges in X_{i-1}, and let $N \subset X_{i-1}^{\prime}$ be new vertices added in trisection. Now form X_{i} by taking two copies of X_{i-1}^{\prime} and gluing them together along N. More formally,

$$
X_{i}=\left(X_{i-1}^{\prime} \times\{0,1\}\right) / \sim,
$$

where $(v, 0) \sim(v, 1)$ for all $v \in N$. The map $\pi_{i-1}: X_{i} \rightarrow X_{i-1}$ is induced by the collapsing map $X_{i-1}^{\prime} \times\{0,1\} \ni(x, j) \mapsto x \in X_{i-1}$. Metrizing the inverse limit X_{∞} as in Example 1.2, the canonical projection $X_{\infty} \rightarrow X_{0} \simeq[0,1] \rightarrow \mathbb{R}$ satisfies the assumptions of Theorem 1.1.

The inverse limit X_{∞} in Example 1.4 is actually bilipschitz homeomorphic to one of the Ahlfors regular Laakso spaces from [aa00], see Section 10 of the present paper. Thus Theorem 1.1 implies that this Laakso space bilipschitz embeds in L_{1} (this special case was announced in $[\mathrm{CK} 06 \mathrm{c}])$. Laakso showed that X_{∞} carries a doubling measure which
satisfies a Poincaré inequality, and using this, the nonembedding result of [CK08] implies that X_{∞} does not bilipschitz embed in any Banach space which satisfies the Radon-Nikodym property. Therefore we have:

Corollary 1.5. There is a compact Ahlfors regular (in particular doubling) metric measure space satisfying a Poincaré inequality, which bilipschitz embeds in L_{1}, but not in any Banach space with the RadonNikodym property (such as ℓ_{1}).

To our knowledge, this is the first example of a doubling space which bilipschitz embeds in L_{1} but not in ℓ_{1}.

We can extend Theorem 1.1 by dropping the length space condition, and replacing connected components with a metrically based variant.

Definition 1.6. Let Z be a metric space and $\delta \in(0, \infty)$. A δ-path (or δ-chain) in Z is a finite sequence of points $z_{0}, \ldots, z_{k} \subset Z$ such that $d\left(z_{i-1}, z_{i}\right) \leq \delta$ for all $i \in\{1, \ldots, k\}$. The property of belonging to a δ-path defines an equivalence relation on Z, whose cosets are the δ-components of Z.

Our main embedding result is:
Theorem 1.7. Let X be a metric space. Suppose there is a 1-Lipschitz map $u: X \rightarrow \mathbb{R}$ and a constant $C \in(0, \infty)$ such that for every interval $I \subset \mathbb{R}$, the diam (I)-components of $u^{-1}(I)$ have diameter at most C. $\operatorname{diam}(I)$. Then X admits a bilipschitz embedding $f: X \rightarrow L_{1}$.

Inverse systems of directed metric graphs, and multi-scale factorization. Our approach to proving Theorem 1.7 is to first show that any map $u: X \rightarrow \mathbb{R}$ satisfying the hypothesis of theorem can be factored into an infinite sequence of maps, i.e. it gives rise to a certain kind of inverse system where X reappears (up to bilipschitz equivalence) as the inverse limit. Strictly speaking this result has nothing to do with embedding, and can be viewed as a kind of multi-scale version of monotone-light factorization ([?, ?]) in the metric space category.

We work with a special class of inverse systems of graphs:
Definition 1.8 (Admissible inverse systems). An inverse system indexed by the integers

$$
\cdots \stackrel{\pi_{-i-1}}{\leftarrow} X_{-i} \stackrel{\pi_{-i}}{\longleftarrow} \cdots \stackrel{\pi_{-1}}{\longleftarrow} X_{0} \stackrel{\pi_{0}}{\longleftarrow} \cdots \stackrel{\pi_{i-1}}{\longleftarrow} X_{i} \stackrel{\pi_{i}}{\leftarrow} \cdots,
$$

is admissible if for some integer $m \geq 2$ the following conditions hold:
(1) X_{i} is a nonempty directed graph for every $i \in \mathbb{Z}$.
(2) For every $i \in \mathbb{Z}$, if X_{i}^{\prime} denotes the directed graph obtained by subdividing each edge of X_{i} into m edges, then π_{i} induces a map $\pi_{i}: X_{i+1} \rightarrow X_{i}^{\prime}$ which is simplicial, an isomorphism on every edge, and direction preserving.
(3) For every $i, j \in \mathbb{Z}$, and every $x \in X_{i}, x^{\prime} \in X_{j}$, there is a $k \leq \min (i, j)$ such that x and x^{\prime} project to the same connected component of X_{k}.

Note that the X_{i} 's need not be connected or have finite valence, and they may contain isolated vertices.

We endow each X_{i} with a (generalized) path metric $d_{i}: X_{i} \times X_{i} \rightarrow$ $[0, \infty]$, where each edge is linearly isometric to the interval $\left[0, m^{-i}\right] \subset \mathbb{R}$. Since we do not require the X_{i} 's to be connected, we have $d_{i}\left(x, x^{\prime}\right)=\infty$ when x, x^{\prime} lie in different connected components of X_{i}. It follows from Definition 1.8 that the projection maps $\pi_{i}^{j}:\left(X_{j}, d_{j}\right) \rightarrow\left(X_{i}, d_{i}\right)$ are 1-Lipschitz.

Examples 1.2 and 1.4 provide admissible inverse systems in a straightforward way: for $i<0$ one simply takes X_{i} to be a copy of \mathbb{R} with the standard subdivision into intervals of length m^{-i}, and the projection $\operatorname{map} \pi_{i}: X_{i+1} \rightarrow X_{i}$ to be the identity map. Of course this modification does not affect the inverse limit.

Let X_{∞} be the inverse limit of the system $\left\{X_{i}\right\}$, and let $\pi_{i}^{j}: X_{j} \rightarrow X_{i}$, $\pi_{i}^{\infty}: X_{\infty} \rightarrow X_{i}$ denote the canonical projections for $i \leq j \in \mathbb{Z}$. We will often omit the superscripts and subscripts when there is no risk of confusion; thus we often denote the map $\pi_{i}^{j}: X_{j} \rightarrow X_{i}$ simply by π_{i}.

We now equip the inverse limit X_{∞} with a metric \bar{d}_{∞}; unlike in the earlier examples, this is not defined as a limit of pseudo-metrics $d_{i} \circ \pi_{i}^{\infty}$.

Definition 1.9. Let $\bar{d}_{\infty}: X_{\infty} \times X_{\infty} \rightarrow[0, \infty)$ be the supremal pseudodistance on X_{∞} such that for every $i \in \mathbb{Z}$ and every vertex $v \in X_{i}$, if

$$
\operatorname{St}\left(v, X_{i}\right)=\cup\left\{e \mid e \text { is an edge of } X_{i}, v \in e\right\}
$$

is the closed star of v in X_{i}, then the inverse image of $\operatorname{St}\left(v, X_{i}\right)$ under the projection map $X_{\infty} \rightarrow X_{i}$ has diameter at most $2 m^{-i}$. Henceforth, unless otherwise indicated, distances in X_{∞} will refer to \bar{d}_{∞}.

In fact \bar{d}_{∞} is a metric, and for any distinct points $x, x^{\prime} \in X_{\infty}$, the distance $\bar{d}_{\infty}\left(x, x^{\prime}\right)$ is comparable to m^{-i}, where i is the maximal integer
such that $\left\{\pi_{i}^{\infty}(x), \pi_{i}^{\infty}\left(x^{\prime}\right)\right\}$ is contained in the star of some vertex $v \in$ X_{i}; see Section 2. In Examples 1.2 and 1.4, the metric \bar{d}_{∞} is comparable to the metric d_{∞} defined using the path metrics in $\sqrt{1.3)}$; see Section 3 .

Admissible inverse systems give rise to spaces satisfying the hypotheses of Theorem 1.7 .

Theorem 1.10. Let $\left\{X_{i}\right\}$ be an admissible inverse system. Then there is a 1-Lipschitz map $\phi: X_{\infty} \rightarrow \mathbb{R}$ which is canonical up to postcomposition with a translation, which satisfies the assumptions of Theorem 1.7 .

The converse is also true:
Theorem 1.11. Let X be a metric space. Suppose $u: X \rightarrow \mathbb{R}$ is a 1-Lipschitz map, and there is a constant $C \in[1, \infty)$ such that for every interval $I \subset \mathbb{R}$, the inverse image $u^{-1}(I) \subset X$ has diam (I) components of diameter at most $C \cdot \operatorname{diam}(I)$. Then for any $m \geq 2$ there is an admissible inverse system $\left\{X_{i}\right\}$ and a compatible system of maps $f_{i}: X \rightarrow X_{i}$, such that:

- The induced map $f_{\infty}: X \rightarrow\left(X_{\infty}, \bar{d}_{\infty}\right)$ is $L^{\prime}=L^{\prime}(C, m)$ bilipschitz.
- $u=\phi \circ f_{\infty}$, where $\phi: X_{\infty} \longrightarrow \mathbb{R}$ is the 1-Lipschitz map of Theorem 1.10.

Theorem 1.1 is a corollary of Theorem 1.11: if $u: X \rightarrow \mathbb{R}$ is as in Theorem 1.1, then for any interval $[a, a+r] \subset \mathbb{R}$, an r-component of $f^{-1}([a, a+r])$ will be contained in a connected component of $f^{-1}([a-$ $r, a+2 r])$ (since X is a length space), and therefore has diameter \leq $3 C \operatorname{diam}(I)$.

Remark 1.12. Theorem 1.11 implies that Examples 1.2 and 1.4 can be represented up to bilipschitz homeomorphism as inverse limits of many different admissible inverse systems, since the integer m may be chosen freely.
Remark 1.13. Although it is not used elsewhere in the paper, in Section 11 we prove a result in the spirit of Theorem 1.11 for maps $u: X \rightarrow$ Y, where Y is a general metric space equipped with a sequence of coverings.

Analogy with light mappings in the topological category. We would like to point out that Theorems 1.10, 1.11 are analogous to certain results for topological spaces.

Recall that a continuous map $f: X \rightarrow Y$ is light (respectively discrete, monotone) if the point inverses $\left\{f^{-1}(y)\right\}_{y \in Y}$ are totally disconnected (respectively discrete, connected). If X is a compact metrizable space, then X has topological dimension $\leq n$ if and only if there is a light map $X \rightarrow \mathbb{R}^{n}$; one implication comes from the fact that closed light maps do not decrease topological dimension [?, Theorem 1.12.4], and the other follows from a Baire category argument.

One may consider versions of light mappings in the Lipschitz category. One possibility is the notion appearing the Theorems 1.7 and 1.11:

Definition 1.14. A Lipschitz map $f: X \rightarrow Y$ between metric spaces is Lipschitz light if there is a $C \in(0, \infty)$ such that for every bounded subset $W \subset Y$, the $\operatorname{diam}(W)$-components of $f^{-1}(W)$ have diameter $\leq C \cdot \operatorname{diam}(W)$.

The analog with the topological case then leads to:
Definition 1.15. A metric space X has Lipschitz dimension $\leq n$ iff there is a Lipschitz light map from $X \rightarrow \mathbb{R}^{n}$ where \mathbb{R}^{n} has the usual metric.

With this definition, Theorems 1.7 and 1.11 become results about metric spaces of Lipschitz dimension ≤ 1.

To carry the topological analogy further, we note that if $f: X \rightarrow Y$ is a light map between metric spaces and X is compact, then [?, ?], in a variation on monotone-light factorization, showed that there is an inverse system

$$
Y \longleftarrow X_{1} \longleftarrow \ldots \longleftarrow X_{k} \longleftarrow \ldots
$$

and a compatible family of mappings $\left\{g_{k}: X \rightarrow X_{k}\right\}$ such that:

- The projections $X_{k} \leftarrow X_{k+1}$ are discrete.
- g_{k} gives a factorization of f :

$$
Y \longleftarrow X_{1} \longleftarrow \ldots \longleftarrow X_{k} \mathscr{g}_{\longleftarrow}^{g_{k}} X
$$

- The point inverses of g_{k} have diameter $\leq \Delta_{k}$, where $\Delta_{k} \rightarrow 0$ as $k \rightarrow \infty$.
- $\left\{g_{k}\right\}$ induces a homeomorphism $g_{\infty}: X \rightarrow X_{\infty}$, where X_{∞} is the inverse limit X_{∞} of the system $\left\{X_{k}\right\}$.

Making allowances for the difference between the Lipschitz and topological categories, this compares well with Theorem 1.11.

Embeddability and nonembeddability of inverse limits in Banach spaces. Theorem 1.11 reduces the proof of Theorem 1.7 (and also Theorem 1.1) to:
Theorem 1.16. Let $\left\{X_{i}\right\}_{i \in \mathbb{Z}}$ be an admissible inverse system, and m be the parameter in Definition 1.8. There is a constant $L=L(m) \in(0,1)$ and a 1-Lipschitz map $f: X_{\infty} \rightarrow L_{1}$ such that for all $x, y \in X_{\infty}$,

$$
\|f(x)-f(y)\|_{L_{1}} \geq L^{-1} \bar{d}_{\infty}(x, y)
$$

In a forthcoming paper [Ka, we show that if one imposes additional conditions on an admissible inverse system $\left\{X_{i}\right\}$, the inverse limit X_{∞} will carry a doubling measure μ which satisfies a Poincaré inequality, such that for μ a.e. $x \in X_{\infty}$, the tangent space $T_{x} X_{\infty}$ (in the sense of [?]) is 1-dimensional. The results apply to Examples 1.2 and 1.4 . Moreover, in these two examples - and typically for the spaces studied in CKa - the Gromov-Hausdorff tangent cones at almost every point will not be bilipschitz homeomorphic to \mathbb{R}. The non-embedding result of CK08 then implies that such spaces do not bilipschitz embed in Banach spaces which satisfy the Radon-Nikodym property. Combining this with Theorem 1.16, we therefore obtain a large class of examples of doubling spaces which embed in L_{1}, but not in any Banach space satisfying the Radon-Nikodym property, cf. Corollary 1.5 .

Monotone geodesics. Suppose $\left\{X_{i}\right\}_{i \in \mathbb{Z}}$ is an admissible inverse system, and $\phi: X_{\infty} \rightarrow \mathbb{R}$ is as in Theorem 1.10. Then ϕ picks out a distinguished class of paths, namely the paths $\gamma: I \rightarrow X_{\infty}$ such that the composition $\phi \circ \gamma: I \rightarrow \mathbb{R}$ is a homeomorphism onto its image, i.e. $\phi \circ \gamma: I \rightarrow \mathbb{R}$ is a monotone. (This is equivalent to saying that the projection $\pi_{i} \circ \gamma: I \rightarrow X_{i}$ is either direction preserving or direction reversing, with respect to the direction on X_{i}.) It is not difficult to see that such a path γ is a geodesic in X_{∞}; see Section 2. We call the image of such a path γ a monotone geodesic segment (respectively monotone ray, monotone geodesic) if the image $\phi \circ \gamma(I) \subset \mathbb{R}$ is a segment (respectively is a ray, is all of \mathbb{R}). Monotone geodesics and related structures play an important role in the proof of Theorem 1.16. In fact, the proof of Theorem 1.16 produces an embedding $f: X_{\infty} \rightarrow L_{1}$ with the additional property that it maps monotone geodesic segments in X_{∞} isometrically to geodesic segments in L_{1}.

Now suppose $u: X \rightarrow \mathbb{R}$ is as in Theorem 1.11. As above, one obtains a distinguished family of paths $\gamma: I \rightarrow X$, those for which $u \circ \gamma: I \rightarrow \mathbb{R}$ is a homeomorphism onto its image. From the assumptions on u, it is
easy to see that u induces a bilipschitz homeomorphism from the image $\gamma(I) \subset X$ to the image $(u \circ \gamma)(I) \subset \mathbb{R}$, so $\gamma(I)$ is a bilipschitz embedded path. We call the images of such paths monotone, although they need not be geodesics. If $f_{\infty}: X \rightarrow X_{\infty}$ is a homeomorphism provided by Theorem 1.11, then f_{∞} maps monotone paths in X to monotone segments/rays/geodesics in X_{∞} because $\phi \circ f_{\infty}=u$. Therefore, by combining Theorems 1.11 and 1.16, it follows that the embedding in Theorem 1.7 can be chosen to map monotone paths in X to geodesics in L_{1}.

Discussion of the proof of Theorem 1.16. Before entering into the construction, we recall some observations from CK06b, CK06a, CK09 which motivate the setup, and also indicate the delicacy of the embedding problem.

Let $\left\{X_{i}\right\}_{i \in \mathbb{Z}}$ be an admissible inverse system.
Suppose $f: X_{\infty} \rightarrow L_{1}$ is an L-bilipschitz embedding, and that X_{∞} satisfies a Poincaré inequality with respect to a doubling measure μ (e.g. Examples 1.2 and 1.4). Then there is a version of Kirchheim's metric diffferentiation theorem Kir94, which implies that for almost every $p \in X_{\infty}$, if one rescales the map f and passes to a limit, one obtains an L-bilipschitz embedding $f_{\infty}: Z \rightarrow L_{1}$, where Z is a Gromov-Hausdorff tangent space of X_{∞}, such that $\left.\left(f_{\infty}\right)\right|_{\gamma}: \gamma \rightarrow L_{1}$ is a constant speed geodesic for every $\gamma \subset Z$ which arises as a limit of (a sequence of rescaled) monotone geodesics in X_{∞}. When X_{∞} is self-similar, as in Examples 1.2 and 1.4 , then Z contains copies of X_{∞}, and one concludes that X_{∞} itself has an L-bilipschitz embedding $X_{\infty} \rightarrow L_{1}$ which restricts to a constant speed geodesic embedding on each monotone geodesic $\gamma \subset X_{\infty}$. In view of this, and the fact that any bilipschitz embedding is constrained to have this behavior infinitesimally, our construction has been chosen so as to automatically satisfy the constraint, i.e. it generates maps which restrict to isometric embeddings on monotone geodesics.

By Ass80, DL97, CK06a, producing a bilipschitz embedding f : $X_{\infty} \rightarrow L_{1}$ is equivalent to showing that distance function \bar{d}_{∞} is comparable to a cut metric d_{Σ}, i.e. a distance function d_{Σ} on X_{∞} which is a superposition of elementary cut metrics. Informally speaking this means that

$$
d_{\Sigma}=\int_{2^{x_{\infty}}} d_{E} d \Sigma(E)
$$

Some children of E

Figure 2.
where Σ is a cut measure on the subsets of X_{∞}, and d_{E} is the elementary cut (pseudo)metric associated with a subset $E \subset X_{\infty}$:

$$
d_{E}\left(x_{1}, x_{2}\right)=\left|\chi_{E}\left(x_{1}\right)-\chi_{E}\left(x_{2}\right)\right| .
$$

If $f: X_{\infty} \rightarrow L_{1}$ restricts to an isometric embedding $\left.f\right|_{\gamma}: \gamma \rightarrow L_{1}$ for every monotone geodesic $\gamma \subset X_{\infty}$, then one finds (informally speaking) that the cut measure Σ is supported on subsets $E \subset X_{\infty}$ with the property that for every monotone geodesic $\gamma \subset X_{\infty}$, the characteristic function χ_{E} restricts to a monotone function on γ, or equivalently, that
the the intersections $E \cap \gamma$ and $\left(X_{\infty} \backslash E\right) \cap \gamma$ are both connected. We call such subsets monotone.

For simplicity we restrict the rest of our discussion to the case when $X_{0} \simeq \mathbb{R}$. The reader may find it helpful to keep Example 1.2 in mind (modified with $X_{i} \simeq \mathbb{R}$ for $i<0$ as indicated earlier).

Motivated by the above observations, the approach taken in the paper is to obtain the cut metric d_{Σ} as a limit of a sequence of cut metrics $\left\{d_{\Sigma_{i}^{\prime}}\right\}_{i \geq 0}$, where Σ_{i}^{\prime} is a cut measure on X_{i} supported on monotone subsets. For technical reasons, we choose Σ_{i}^{\prime} so that every monotone subset E in the support of Σ_{i}^{\prime} is a subcomplex of X_{i}^{\prime} (see Definition 1.8), and E is precisely the set of points $x \in X_{i}$ such that there is a monotone geodesic $c:[0,1] \rightarrow X_{i}$ where $\pi_{0}^{i} \circ c$ is increasing, $c(0)=x$, and $c(1)$ lies in the boundary of E; thus one may think of E as the set of points "lying to the left" of the boundary ∂E.

We construct the sequence $\left\{\Sigma_{i}^{\prime}\right\}$ inductively as follows. The cut measure Σ_{0}^{\prime} is the atomic measure which assigns mass $\frac{1}{m}$ to each monotone subset of the form $(-\infty, v]$, where v is vertex of $X_{0}^{\prime} \simeq \mathbb{R}$. Inductively we construct Σ_{i+1}^{\prime} from Σ_{i}^{\prime} by a diffusion process. For every monotone set $E \subset X_{i}$ in the support of Σ_{i}^{\prime}, we take the Σ_{i}^{\prime}-measure living on E, and redistribute it over a family of monotone sets $E^{\prime} \subset X_{i+1}$, called the children of E. The children of $E \subset X_{i}$ are monotone sets $E^{\prime} \subset X_{i+1}$ obtained from the inverse image $\pi_{i}^{-1}(E)$ by modifying the boundary locally: for each vertex v of X_{i+1} lying in the boundary of $\pi_{i}^{-1}(E)$, we move the boundary within the open star of v. An example of this local modification procedure is depicted in Figure 2, where $m=4$.

The remainder of the proof involves a series of estimates on the cut measures Σ_{i}^{\prime} and cut metrics $d_{\Sigma_{i}^{\prime}}$, which are proved by induction on i using the form of the diffusion process, see Section 7. One shows that the sequence of pseudo-metrics $\left\{\rho_{i}=d_{\Sigma_{i}^{\prime}} \circ \pi_{i}^{\infty}\right\}$ on X_{∞} converges geometrically to a distance function which will be the cut metric d_{Σ} for a cut measure Σ on X_{∞}. To prove that d_{Σ} is comparable to d_{∞}, the idea is to show (by induction) that the cut metric $d_{\Sigma_{i}^{\prime}}$ resolves pairs of points $x_{1}, x_{2} \in X_{i}$ whose separation is $>C m^{-i}$.

Organization of the paper. In Section 2 we collect notation and establish some basic properties of admissible inverse systems. Theorem 1.10 is proved in Section 2.3. Section 3 considers a special class of admissible inverse systems which come with natural metrics, e.g. Examples 1.2, 1.4. In Section 4 we prove Theorem 1.11. Sections 59
give the proof of Theorem 1.16. A special case of Theorem 1.16 is introduced in Section 5. In Section 6 we begin the proof of the special case by developing the structure of slices and associated slice measures, which are closely related to the monotone sets in the above discussion of the proof of Theorem 1.16. Section 7 obtains estimates on the slice measures which are needed for the embedding theorem. Section 8 completes the proof of Theorem 1.16 in the special case introduced in Section 5. Section 9 completes the proof in the general case. Section 10 shows that the space in Example 1.4 is bilipschitz homeomorphic to a Laakso space from [aa00]. In Section 11 we consider a generalization of Theorem 1.11 to maps $u: X \rightarrow Y$, where Y is a general metric space equipped with a sequence of coverings.

We refer the reader to the beginnings of the individual sections for more detailed descriptions of their contents.

Acknowledgements. We would like to thank the anonymous referee for corrections and a careful reading of the paper.

2. Notation and preliminaries

In this section $\left\{X_{i}\right\}_{i \in \mathbb{Z}}$ will be an admissible inverse system, and m will be the parameter appearing in Definition 1.8. As in the introduction, we will suppress superscripts and subscripts on projection maps when the domain/target is clear from the context.

Remark 2.1. Given an admissible inverse system $\left\{X_{i}\right\}_{i \in \mathbb{Z}}$ with $m=2$, we can produce a new admissible system $\left\{Y_{i}\right\}_{i \in \mathbb{Z}}$ with $m=4$ by letting $Y_{i}=X_{2 i}$. The map of inverse systems $\left\{f_{i}: Y_{i} \rightarrow X_{2 i}\right\}_{i \in \mathbb{Z}}$ is an isometric isomorphism of graphs for each i, and induces an isometry $Y_{\infty} \rightarrow X_{\infty}$. Using this observation, the proof of our theorems in the $m=2$ case readily reduces to the case when $m=4$.

Standing assumption. For technical convenience, in the remainder of the paper we make the standing assumption that $m \geq 3$; by the above remark there is no loss of generality in doing so. This assumption first becomes relevant in Lemma 2.7 .
2.1. Subdivisions, stars, and trimmed stars. Let Z be a graph. Let $Z^{(k)}$ denote the k-fold iterated subdivision of Z, where each iteration subdivides every edge into m subedges, and let $Z^{\prime}=Z^{(1)}$.

If v is a vertex of a graph \mathcal{G}, then $\operatorname{St}(v, \mathcal{G})$ and $\operatorname{St}^{o}(v, \mathcal{G})$ denote the closed and open stars of v, respectively. Thus $\operatorname{St}(v, \mathcal{G})$ is the union of the edges emanating from v, and $\operatorname{St}^{\circ}(v, \mathcal{G})$ is the union of $\{v\}$ with the interiors of the edges emanating from v.

Definition 2.2. Let Z be a graph, and $v \in Z$ be a vertex. The trimmed star of v in Z is the union of the edges of Z^{\prime} which lie in the open star $\mathrm{St}^{\circ}(v, Z)$, or alternately, the union of the edge paths in Z^{\prime} starting at v, with $(m-1)$ edges. We denote the trimmed star by $\operatorname{TSt}(v, Z)$. We will only use this when $Z=X_{i}$ or $Z=X_{i}^{\prime}$ below.

Note that if v is a vertex of X_{i}, then $\operatorname{TSt}\left(v, X_{i}\right)$ is also the closed ball $\overline{B\left(v, \frac{m-1}{m} \cdot m^{-i}\right)} \subset X_{i}$ with respect to the path metric d_{i}.
2.2. Basic properties of admissible inverse systems and the distance function \bar{d}_{∞}. Let $\left\{X_{i}\right\}_{i \in \mathbb{Z}}$ be an admissible inverse system with inverse limit X_{∞}. For every i, we let V_{i} be the vertex set of X_{i}, and V_{i}^{\prime} be the vertex set of X_{i}^{\prime}. For all $j \geq i$, let $\pi_{i}^{j}: X_{j} \rightarrow X_{i}$ be the composition $\pi_{j-1} \circ \ldots \circ \pi_{i}$. Then $\pi_{i}^{j}: X_{j} \rightarrow X_{i}^{(j-i)}$ is simplicial and restricts to an isomorphism on each edge. It is also 1-Lipschitz with respect to the respective path metrics d_{j} and d_{i}.

Lemma 2.3. For every $x, x^{\prime} \in X_{\infty}$ there exist $i \in \mathbb{Z}, v \in V_{i}$ such that $x, x^{\prime} \in\left(\pi_{i}^{\infty}\right)^{-1}\left(\operatorname{St}\left(v, X_{i}\right)\right)$.

Proof. By (3) of Definition 1.8, there is a $j \in \mathbb{Z}$ such that $\pi_{j}(x), \pi_{j}\left(x^{\prime}\right)$ are contained in the same connected component of X_{j}. If $\gamma \subset X_{j}$ is a path from $\pi_{j}(x)$ to $\pi_{j}\left(x^{\prime}\right)$ with d_{j}-length N, then for all $i \leq j$, the projection $\pi_{i}^{j}(\gamma)$ is a path in $X_{i}^{(j-i)}$ with d_{i}-length $\leq N$. Therefore if $N<m^{-i}$ then $\pi_{i}^{j}(\gamma)$ will be contained in $\operatorname{St}\left(v, X_{i}\right)$ for some $i \in V_{i}$.

Suppose \hat{d} is a pseudo-distance on X_{∞} with the property that

$$
\operatorname{diam}_{\hat{d}}\left(\left(\pi_{j}^{\infty}\right)^{-1}\left(\operatorname{St}\left(v, X_{j}\right)\right) \leq 2 m^{-j}\right.
$$

for all $j \in \mathbb{Z}, v \in V_{j}$. Then for every $x, x^{\prime} \in X_{\infty}$, we have $\hat{d}\left(x, x^{\prime}\right) \leq$ $2 m^{-i}$, where $i \in \mathbb{Z}$ is as in Lemma 2.3. It follows that the supremum \bar{d}_{∞} of all such pseudo-distance functions takes finite values, i.e. is a well-defined pseudo-distance function.

Lemma 2.4 (Alternate definition of \bar{d}_{∞}). Suppose $x, x^{\prime} \in X_{\infty}$. Then $\bar{d}_{\infty}\left(x, x^{\prime}\right)$ is the infimum of the sums $\sum_{k=1}^{n} 2 m^{-i_{k}}$, such that there exists a finite sequence

$$
x=x_{0}, \ldots, x_{n}=x^{\prime} \in X_{\infty}
$$

where $\left\{\pi_{i_{k}}^{\infty}\left(x_{k-1}\right), \pi_{i_{k}}^{\infty}\left(x_{k}\right)\right\}$ is contained in the closed $\operatorname{star} \operatorname{St}\left(v, X_{i_{k}}\right)$ for some vertex v of $X_{i_{k}}$, for every $k \in\{1, \ldots, n\}$.

Proof. Let $\hat{d}_{\infty}\left(x, x^{\prime}\right) \in[0, \infty]$ be the infimum appearing in the statement of the lemma. By Lemma 2.3 the infimum will be taken over a nonempty set of sequences, and so $\hat{d}_{\infty}\left(x, x^{\prime}\right) \in[0, \infty)$. It follows that \hat{d}_{∞} is a well-defined pseudo-distance satisfying the condition that $\operatorname{diam}_{\hat{d}_{\infty}}\left(\left(\pi_{i}^{\infty}\right)^{-1}\left(\operatorname{St}\left(v, X_{i}\right)\right) \leq 2 m^{-i}\right.$ for every $v \in V_{i}, i \in \mathbb{Z}$. Therefore $\hat{d}_{\infty} \leq \bar{d}_{\infty}$ from the definition of \bar{d}_{∞}. On the other hand the definition of \bar{d}_{∞} and the triangle inequality imply $\bar{d}_{\infty} \leq \hat{d}_{\infty}$.

Lemma 2.5. Suppose $x, x^{\prime} \in X_{\infty}$.
(1) If $\bar{d}_{\infty}\left(x, x^{\prime}\right) \leq m^{-j}$ for some $j \in \mathbb{Z}$, then $\pi_{j}(x), \pi_{j}\left(x^{\prime}\right)$ belong to $\operatorname{St}\left(v, X_{j}\right)$ for some $v \in V_{j}$.
(2) If $x \in X_{\infty}$ and $r \leq \frac{(m-2)}{m} m^{-j}$ for some $j \geq 0$, then $\pi_{j}(B(x, r))$ is contained in the trimmed star $\operatorname{TSt}\left(v, X_{j}\right)$ for some $v \in V_{j}$.

Proof. (1). Pick $\epsilon>0$. Since $\bar{d}_{\infty}\left(x, x^{\prime}\right) \leq m^{-j}$, there is a sequence $x=y_{0}, \ldots, y_{k}=x^{\prime} \in X_{\infty}$, where for $\ell \in\{1, \ldots, k\}$, the points $y_{\ell-1}, y_{\ell}$ lie in $\pi_{i_{\ell}}^{-1}\left(\operatorname{St}\left(v_{\ell}, X_{i_{\ell}}\right)\right), v_{\ell} \in V_{i_{\ell}}$, and

$$
\sum_{\ell} 2 m^{-i_{\ell}} \leq m^{-j}+\epsilon
$$

Taking $\epsilon<m^{-j}$, we may assume that $i_{\ell} \geq j$ for all $\ell \in\{1, \ldots, k\}$. Since $\pi_{i_{\ell}}\left(y_{\ell-1}\right), \pi_{i_{\ell}}\left(y_{\ell}\right) \in \operatorname{St}\left(v_{\ell}, X_{i_{\ell}}\right)$, there is a path from $\pi_{i_{\ell}}\left(y_{\ell-1}\right)$ to $\pi_{i_{\ell}}\left(y_{\ell}\right)$ in $X_{i_{\ell}}$ of $d_{i_{\ell}}$-length $\leq 2 m^{-i_{\ell}}$. Since $\pi_{j}^{i_{\ell}}:\left(X_{i_{\ell}}, d_{i_{\ell}}\right) \rightarrow\left(X_{j}, d_{j}\right)$ is 1-Lipschitz for all $j \geq i_{\ell}$, we get that there is an path from $\pi_{j}(x)$ to $\pi_{j}\left(x^{\prime}\right)$ in X_{j} with d_{j}-length at most

$$
\sum_{\ell} 2 m^{-i_{\ell}}<m^{-j}+\epsilon
$$

As ϵ is arbitrary, $\pi_{j}(x)$ and $\pi_{j}\left(x^{\prime}\right)$ lie in $\operatorname{St}\left(v, X_{j}\right)$ for some $j \in V_{j}$.
(2). The proof is similar to (1).

Corollary 2.6. \bar{d}_{∞} is a distance function on X_{∞}.

Proof. Suppose $x, x^{\prime} \in X_{\infty}, \bar{d}_{\infty}\left(x, x^{\prime}\right)=0$, and $i \in \mathbb{Z}$. By Lemma 2.5. for all $j \geq i$ the set $\left\{\pi_{j}^{\infty}(x), \pi_{j}^{\infty}\left(x^{\prime}\right)\right\}$ is contained in the star of some vertex $v \in V_{j}$. Since $\pi_{i}^{j}:\left(X_{j}, d_{j}\right) \rightarrow\left(X_{i}, d_{i}\right)$ is 1-Lipschitz, it follows that $\left\{\pi_{i}^{\infty}(x), \pi_{i}^{\infty}\left(x^{\prime}\right)\right\}$ is contained in a set of d_{i}-diameter $\leq 2 m^{-j}$. Since j is arbitrary, this means that $\pi_{i}^{\infty}(x)=\pi_{i}^{\infty}\left(x^{\prime}\right)$.

The following is a sharper statement:
Lemma 2.7. Suppose $x_{1}, x_{2} \in X_{\infty}$ are distinct points. Let j be the minimum of the indices $k \in \mathbb{Z}$ such that $\left\{\pi_{k}\left(x_{1}\right), \pi_{k}\left(x_{2}\right)\right\}$ is not contained in the trimmed star $\operatorname{TSt}\left(v, X_{k}\right)$ for any $v \in V_{k}$. Then

$$
\begin{equation*}
\frac{(m-2)}{m} m^{-j}<\bar{d}_{\infty}\left(x_{1}, x_{2}\right) \leq 2 m^{-(j-1)} . \tag{2.8}
\end{equation*}
$$

Recall that $m \geq 3$ by our standing assumption after Remark 2.1.
Proof. The first inequality follows immediately from Lemma 2.5. By the choice of j, there is a vertex $v \in V_{j-1}$ such that

$$
\left\{\pi_{j-1}\left(x_{1}\right), \pi_{j-1}\left(x_{2}\right)\right\} \subset \operatorname{TSt}\left(v, X_{j-1}\right) \subset \operatorname{St}\left(v, X_{j-1}\right)
$$

so $\bar{d}_{\infty}\left(x_{1}, x_{2}\right) \leq 2 m^{-(j-1)}$ by Definition 1.9 .
2.3. A canonical map from the inverse limit to \mathbb{R}. The next theorem contains Theorem 1.10 .

Theorem 2.9. Suppose $\left\{X_{i}\right\}$ is an admissible inverse system.
(1) There is a compatible system of direction preserving maps ϕ_{i} : $X_{i} \rightarrow \mathbb{R}$, such that for every i, the restriction of ϕ_{i} to any edge $e \subset X_{i}$ is a linear map onto a segment of length m^{-i}. In particular, ϕ_{i} is 1-Lipschitz with respect to d_{i}.
(2) The system of maps $\left\{\phi_{i}: X_{i} \rightarrow \mathbb{R}\right\}$ is unique up to postcomposition with translation.
(3) If $\phi:\left(X_{\infty}, \bar{d}_{\infty}\right) \rightarrow \mathbb{R}$ is the map induced by $\left\{\phi_{i}\right\}$, then ϕ is 1-Lipschitz, and for every interval $I \subset \mathbb{R}$, the $\operatorname{diam}(I)$ components of $\phi^{-1}(I)$ have diameter at most $8 m \cdot \operatorname{diam}(I)$.

Proof. (1). Let $X_{-\infty}$ denote the direct limit of the system $\left\{X_{i}\right\}$, i.e. $X_{-\infty}$ is the disjoint union $\sqcup_{i \in \mathbb{Z}} X_{i}$ modulo the equivalence relation that $X_{i} \ni x \sim x^{\prime} \in X_{j}$ if and only if there is an $\ell \leq \min (i, j)$ such that $\pi_{\ell}^{i}(x)=\pi_{\ell}^{j}\left(x^{\prime}\right)$. For every $i \in \mathbb{Z}$ there is a canonical projection map $\pi_{-\infty}^{i}: X_{i} \rightarrow X_{-\infty}$.

If $k \in \mathbb{Z}$, then for all $i \leq k$ let $X_{i}^{(k-i)}$ denote the $(k-i)$-fold iterated subdivision of X_{i}, as in Section 2.1. Thus $\pi_{i}^{j}: X_{j}^{(k-j)} \rightarrow X_{i}^{(k-i)}$ is simplicial for all $i \leq j \leq k$, and restricts to a direction-preserving isomorphism on each edge of $X_{j}^{(k-j)}$. Therefore the direct limit $X_{-\infty}$ inherits a directed graph structure, which we denote $X_{-\infty}^{(k-\infty)}$, and for all $i \leq k$, the projection map $\pi_{-\infty}^{i}: X_{i}^{(k-i)} \rightarrow X_{-\infty}^{(k-\infty)}$ is simplicial, and a directed isomorphism on each edge of $X_{i}^{(k-i)}$. Condition (3) of the definition of admissible systems implies that $X_{-\infty}^{(k-\infty)}$ is connected.

Note also that for all $k \leq l$, the graph $X_{-\infty}^{(l-\infty)}$ is canonically isomorphic to $\left(X_{-\infty}^{(k-\infty)}\right)^{(l-k)}$. In particular, if v, v^{\prime} are distinct vertices of $X_{-\infty}^{(k-\infty)}$, then their combinatorial distance in $X_{-\infty}^{(l-\infty)}$ is at least m^{l-k}; morever every vertex of $X_{-\infty}^{(l-\infty)}$ which is not a vertex of $X_{-\infty}^{(k-\infty)}$ must have valence 2 , since it corresponds to an interior point of an edge of $X_{-\infty}^{(k-\infty)}$. It follows that $X_{-\infty}^{(l-\infty)}$ can contain at most one vertex v which has valence $\neq 2$, since the combinatorial distance between any two such vertices is at least m^{l-k}, for all $k \leq l$. Thus $X_{-\infty}^{(l-\infty)}$ is either isomorphic to \mathbb{R} with the standard subdivision, or to the union of a single vertex v with a (possibly empty) collection of standard rays, each of which is direction-preserving isomorphic to either $(-\infty, 0]$ or $[0, \infty)$ with the standard subdivision. In either case, there is clearly a direction preserving simplicial map $X_{-\infty}^{(l-\infty)} \rightarrow \mathbb{R}$ which is an isomorphism on each edge of $X_{-\infty}^{(l-\infty)}$. Precomposing this with the projection maps $X_{\infty} \rightarrow X_{l} \rightarrow X_{-\infty}$ gives the desired maps ϕ_{i}.
(2). Any such system $\left\{\phi_{i}: X_{i} \rightarrow \mathbb{R}\right\}$ induces a map $\phi_{-\infty}: X_{-\infty} \rightarrow \mathbb{R}$, which for all $k \in \mathbb{Z}$ restricts to a direction preserving isomorphism on every edge of $X_{-\infty}^{(k-\infty)}$. From the description of $X_{-\infty}^{(k-\infty)}$, the map $\phi_{-\infty}$ is unique up to post-composition with a translation.
(3). If $x, x^{\prime} \in X_{\infty}$ and $\left\{\pi_{i}(x), \pi_{i}\left(x^{\prime}\right)\right\} \subset \operatorname{St}\left(v, X_{i}\right)$ for some $i \in \mathbb{Z}$, $v \in V_{i}$, then by (1) $\left\{\phi(x), \phi\left(x^{\prime}\right)\right\}$ is contained in the union of two intervals of length m^{-i} in \mathbb{R}, and therefore $d\left(\phi(x), \phi\left(x^{\prime}\right)\right) \leq 2 m^{-i}$. By the definition of \bar{d}_{∞}, this implies that $d\left(\phi(x), \phi\left(x^{\prime}\right)\right) \leq \bar{d}_{\infty}\left(x, x^{\prime}\right)$ for all $x, x^{\prime} \in X_{\infty}$, i.e. ϕ is 1-Lipschitz.

From the construction of the map $X_{-\infty} \rightarrow \mathbb{R}$, there exists a sequence $\left\{Y_{i}\right\}_{i \in \mathbb{Z}}$ of subdivisions of \mathbb{R}, such that $Y_{i+1}=Y_{i}^{(1)}$, and $\phi_{i}: X_{i} \rightarrow \mathbb{R} \simeq$ Y_{i} is simplicial and restricts to an isomorphism on every edge of X_{i}.

Now suppose $I \subset \mathbb{R}$ is an interval, and choose $i \in \mathbb{Z}$ such that $\operatorname{diam}(I) \in\left[\frac{m^{-(i+1)}}{4}, \frac{m^{-i}}{4}\right)$. Then there is a vertex $v \in Y_{i}$ such that $I \subset \operatorname{St}\left(v, Y_{i}\right)$ and $\operatorname{dist}\left(I, \mathbb{R} \backslash \operatorname{St}\left(v, Y_{i}\right)\right)>\operatorname{diam}(I)$. Pick $x, x^{\prime} \in \phi^{-1}(I)$ which lie in the same $\operatorname{diam}(I)$-component of $\phi^{-1}(I) \subset X_{\infty}$, so there is a diam (I)-path $x=x_{0}, \ldots, x_{k}=x^{\prime}$ in X_{∞}. For each $\ell \in\{1, \ldots, k\}$ and every $\epsilon>0$, there is a path γ_{ℓ} in X_{i} which joins $\pi_{i}\left(x_{\ell-1}\right)$ to $\pi_{i}\left(x_{\ell}\right)$ such that length $\left(\phi_{i} \circ \gamma_{\ell}\right) \leq \operatorname{diam}(I)+\epsilon$. When ϵ is sufficiently small we get $\gamma_{\ell} \subset \phi_{i}^{-1}\left(\mathrm{St}^{o}\left(v, Y_{i}\right)\right)$ because $\phi_{i} \circ \gamma_{\ell}$ has endpoints in I. Therefore $\pi_{i}(x), \pi_{i}\left(x^{\prime}\right)$ lie in the same path component of $\phi_{i}^{-1}\left(\operatorname{St}^{o}\left(v, Y_{i}\right)\right)$, which implies that they lie in $\operatorname{St}\left(\hat{v}, X_{i}\right)$ for some vertex $v \in V_{i}$. Hence $\bar{d}_{\infty}\left(x, x^{\prime}\right) \leq 2 m^{-i} \leq 8 m \cdot \operatorname{diam}(I)$.
2.4. Directed paths, a partial ordering, and monotone paths. Suppose $\left\{X_{i}\right\}$ is an admissible system, and $\left\{\phi_{i}: X_{i} \rightarrow \mathbb{R}\right\}$ is a system of maps as in Theorem 2.9.

Definition 2.10. A directed path in X_{i} is a path $\gamma: I \rightarrow X_{j}$ which is locally injective, and direction preserving (w.r.t. the usual direction on I). A directed path in X_{∞} is a path $\gamma: I \rightarrow X_{\infty}$ such that $\pi_{i} \circ \gamma: I \rightarrow X_{i}$ is directed for all $i \in \mathbb{Z}$.

If $\gamma: I \rightarrow X_{j}$ is a directed path in X_{j}, then $\phi_{j} \circ \gamma$ is a directed path in \mathbb{R}, and hence it is embedded, and has the same length as γ. Therefore X_{∞} and the X_{j} 's do not contain directed loops. Furthermore, it follows that $\pi_{i}^{j} \circ \gamma$ is a d_{i}-geodesic in X_{i} for all $i \leq j$.
Definition 2.11 (Partial order). We define a binary relation on X_{i}, for $i \in \mathbb{Z} \cup\{\infty\}$ by declaring that $x \preceq y$ if there is a (possibly trivial) directed path from x to y. This defines a partial order on X_{i} since X_{i} contains no directed loops. As usual, $x \prec y$ means that $x \preceq y$ and $x \neq y$.

Since the projections $\pi_{i}^{j}: X_{j} \rightarrow X_{i}$ are direction-preserving, they are order preserving for all $i \leq j$, as is the projection map $\pi_{i}^{\infty}: X_{\infty} \rightarrow X_{i}$.
Lemma 2.12. Suppose $\gamma: I \rightarrow X_{\infty}$ is a continuous map. The following are equivalent:
(1) γ is a directed geodesic, i.e. length $(\gamma)=d(\gamma(0), \gamma(1))$.
(2) γ is a directed path.
(3) $\pi_{i} \circ \gamma$ is a directed path for all i.
(4) $\phi \circ \gamma:[0,1] \rightarrow \mathbb{R}$ is a directed path.

Proof. $(1) \Longrightarrow(2) \Longrightarrow(3) \Longrightarrow(4)$ is clear.
$(4) \Longrightarrow(3)$ follows from the fact that $\phi_{i}: X_{i} \rightarrow \mathbb{R}$ restricts to a direction preserving isomorphism on every edge of X_{i}.
$(3) \Longrightarrow(1)$. For all $i \in \mathbb{Z}$, let $\gamma_{i} \subset X_{i}$ be the union of the edges whose interiors intersect the image of $\pi_{i} \circ \gamma$. Then γ_{i} is a directed edge path in X_{i}, and hence $\phi_{i} \circ \gamma_{i}$ is a directed edge path in \mathbb{R} with the same number of edges. Therefore γ_{i} has $<2+m^{i}(d(\phi(\gamma(0)), \phi(\gamma(1))))$ edges. Since the vertices of γ_{i} belong to the image of $\pi_{i}: X_{\infty} \rightarrow X_{i}$, by the definition of \bar{d}_{∞}, we have $\bar{d}_{\infty}(\gamma(0), \gamma(1)) \leq 4 m^{-i}+d(\phi(\gamma(0)), \phi(\gamma(1)))$. Since i is arbitrary we get $\bar{d}_{\infty}(\gamma(0), \gamma(1)) \leq d(\phi(\gamma(0)), \phi(\gamma(1)))$, and Theorem 2.9(3) gives equality. This holds for all subpaths of γ as well, so γ is a geodesic.
Definition 2.13. A monotone geodesic segment in X_{i} is the image of a directed isometric embedding $\gamma:[a, b] \rightarrow X_{i}$; a monotone geodesic in X_{i} is the image of a directed isometric embedding $\mathbb{R} \rightarrow\left(X_{i}, d_{i}\right)$. A monotone geodesic segment in X_{∞} is (the image of) a path $\gamma: I \rightarrow X_{\infty}$ satisfying any of the conditions of Lemma 2.12. A monotone geodesic is (the image of) a directed isometric embedding $\mathbb{R} \rightarrow X_{\infty}$, or equivalently, a geodesic $\gamma \subset X_{\infty}$ which projects isometrically under $\phi: X_{\infty} \rightarrow \mathbb{R}$ onto \mathbb{R}.

Monotone geodesics lead to monotone sets:
Definition 2.14. A subset $E \subset X_{i}, i \in \mathbb{Z} \cup\{\infty\}$, is monotone if the characteristic function χ_{E} restricts to a monotone function on any monotone geodesic $\gamma \subset X_{i}$ (i.e. $\gamma \cap E$ and $\gamma \backslash E$ are both connected subsets of γ).

3. Inverse systems of graphs with path metrics

For some admissible inverse systems, such as Examples 1.2, 1.4, the path metrics d_{i} induce a length structure on the inverse limit which is comparable to \bar{d}_{∞}. We discuss this special class here, comparing the length metric with the metric \bar{d}_{∞} defined earlier.

In this section we assume that $\left\{X_{i}\right\}$ is an admissible inverse system satisfying two additional conditions:

$$
\begin{equation*}
\pi_{i}: X_{i+1} \rightarrow X_{i}^{\prime} \text { is an open map for all } i \in \mathbb{Z} \tag{3.1}
\end{equation*}
$$

There is a $\theta \in \mathbb{N}$ such that for every $i \in \mathbb{Z}, v \in V_{i}$, $w, w^{\prime} \in \pi_{i}^{-1}(v)$, there is an edge path in X_{i+1} with at most θ edges, which joins w and w^{\prime}.

Both conditions obviously hold in Examples 1.2, 1.4.
Lemma 3.3 (Path lifting). Suppose $0 \leq i<j, c:[a, b] \rightarrow X_{i}$ is a path, and $v \in\left(\pi_{i}^{j}\right)^{-1}(c(a))$. Then there is a path $\hat{c}:[a, b] \rightarrow X_{j}$ such that

- \hat{c} is a lift of $c: \pi_{i}^{j} \circ \hat{c}=c$.
- $\hat{c}(a)=v$.

Proof. This follows from a continuity argument.
Assume $j=i+1$, and let $I \subset[a, b]$ be a maximal subinterval of $[a, b]$ containing a, such that the restriction of c to I has a lift \hat{c} as in the statement of the lemma.

First suppose $I=[a, \delta)$ for some $\delta \in(a, b)$. Note that $\pi_{i}^{-1}(B(c(\delta), r))$ is a disjoint union of open subsets of X_{i+1}, whose diameter tends to zero as $r \rightarrow 0$. It follows that $\hat{c}(t)$ has a limit as $t \rightarrow \delta$, so \hat{c} may be extended to the closed interval $[a, \delta]$, which contradicts the maximality of I.

Next assume that $I=[a, \delta]$ for some $\delta \in[a, b)$. If $c(\delta)$ is not a vertex of X_{i}^{\prime}, then π_{i} is a local homeomorphism near $\hat{c}(\delta)$, so we may extend \hat{c} to a strictly larger interval $I^{\prime} \supset I$, contradicting the maximality of I. If $c(\delta)$ is a vertex of X_{i}^{\prime}, for each edge e of X_{i}^{\prime} emanating from $c(\delta)$ we may choose a lift \hat{e} of e starting at $\hat{c}(\delta)$, by condition (3.1) above. This defines a lift

$$
\operatorname{St}^{o}\left(c(\delta), X_{i}^{\prime}\right) \rightarrow \operatorname{St}^{o}\left(\hat{c}(\delta), X_{i+1}\right)
$$

which we may use to extend \hat{c}, which is a contradiction. Therefore $I=[a, b]$.

Lemma 3.4.

(1) X_{i} is connected for all i.
(2) $\pi_{i}^{j}: X_{j} \rightarrow X_{i}$ and $\pi_{i}^{\infty}: X_{\infty} \rightarrow X_{i}$ are surjective for all $i \leq j$.

Proof. (1). By Lemma 3.3 and condition (3.2), if $x_{1}, x_{2} \in X_{i}$ lie in the same connected component of X_{i}, then any $x_{1}^{\prime} \in \pi_{i}^{-1}\left(x_{1}\right), x_{2}^{\prime} \in \pi_{i}^{-1}\left(x_{2}\right)$
lie in the same connected component of X_{i+1}. Iterating this, we get that $\left(\pi_{i}^{j}\right)^{-1}\left(x_{1}\right) \cup\left(\pi_{i}^{j}\right)^{-1}\left(x_{2}\right) \subset X_{j}$ is contained in a single component of X_{j}. Now for every $j \in \mathbb{Z}, \hat{x}_{1}, \hat{x}_{2} \in X_{j}$, by Definition 1.8 (3) there is an $i \leq j$ such that $x_{1}=\pi_{i}\left(\hat{x}_{1}\right), x_{2}=\pi_{i}\left(\hat{x}_{2}\right)$ lie in the same connected component of X_{i}; therefore \hat{x}_{1}, \hat{x}_{2} lie in the same component of X_{j}.
(2). $\pi_{i}: X_{i+1} \rightarrow X_{i}$ is open by condition (3.1), X_{i} is connected by (1), and X_{i+1} is nonempty by Definition 1.8 (1). Therefore $\pi_{i}: X_{i+1} \rightarrow X_{i}$ is surjective. It follows that $\pi_{i}^{\infty}: X_{\infty} \rightarrow X_{i}$ is surjective as well.

Note that $\pi_{i}:\left(X_{i+1}, d_{i+1}\right) \rightarrow\left(X_{i}, d_{i}\right)$ is a 1 -Lipschitz map by Definition 1.8(2).

Lemma 3.5.

(1) For all $i \in \mathbb{Z}$, and every $x_{1}, x_{2} \in X_{i}, x_{1}^{\prime}, x_{2}^{\prime} \in X_{i+1}$ with $\pi_{i}\left(x_{k}^{\prime}\right)=$ x_{k}, we have

$$
d_{i+1}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \leq d_{i}\left(x_{1}, x_{2}\right)+2 m^{-i}+\theta \cdot m^{-(i+1)}
$$

(2) If $i<j$, then for every $x_{1}, x_{2} \in X_{i}, x_{1}^{\prime}, x_{2}^{\prime} \in X_{j}$ with $\pi_{i}\left(x_{k}^{\prime}\right)=$ x_{k}, we have

$$
d_{j}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \leq d_{i}\left(x_{1}, x_{2}\right)+(2 m+\theta) \cdot\left(\frac{m^{-i}-m^{-j}}{m-1}\right)
$$

Proof. (1). Let $\gamma: I \rightarrow X_{i}$ be a path of length at most $d_{i}\left(x_{1}, x_{2}\right)+m^{-i}$ which joins x_{1} to x_{2}, and then continues to some vertex $v_{2} \in V_{i}$. By Lemma 3.3 there is a lift $\gamma^{\prime}: I \rightarrow X_{i+1}$ starting at x_{1}^{\prime}, and clearly length $\left(\gamma^{\prime}\right)=$ length (γ). Since x_{2}^{\prime} has distance $\leq m^{-i}$ from $\pi_{i}^{-1}\left(v_{2}\right)$, (1) follows from condition (3.2).
(2). This follows by iterating (1).

As a consequence of Lemma 3.5, the sequence of (pseudo)distance functions $\left\{d_{i} \circ \pi_{i}^{\infty}: X_{\infty} \times X_{\infty} \rightarrow[0, \infty)\right\}_{i \geq 0}$ converges geometrically to a distance function d_{∞} on X_{∞}. Since π_{i}^{∞} is surjective for all $i \geq 0$, the lemma also implies that $\left\{\pi_{i}^{\infty}:\left(X_{\infty}, d_{\infty}\right) \rightarrow\left(X_{i}, d_{i}\right)\right\}_{i \geq 0}$ is a sequence of Gromov-Hausdorff approximations, so $\left(X_{i}, d_{i}\right)$ converges to (X_{∞}, d_{∞}) in the Gromov-Hausdorff topology.

Lemma 3.7.

(1) $\bar{d}_{\infty} \leq d_{\infty}$, with equality on montone geodesic segments.
(2) $d_{\infty} \leq\left(1+\frac{(2 m+\theta)}{2(m-1)}\right) \bar{d}_{\infty}$.

Proof. (1). Suppose $x, x^{\prime} \in X_{\infty}$ and for some $i \in \mathbb{Z}, \gamma: I \rightarrow X_{i}$ is a geodesic from $\pi_{i}(x)$ to $\pi_{i}\left(x^{\prime}\right)$. Then the image of γ is contained in a chain of at most $2+\frac{d_{\infty}\left(x, x^{\prime}\right)}{2 m-i}$ stars in X_{i}. Since π_{i}^{∞} is surjective, Definition 1.9 implies

$$
\bar{d}_{\infty}\left(x, x^{\prime}\right) \leq d_{\infty}\left(x, x^{\prime}\right)+2 m^{-i}
$$

Thus $\bar{d}_{\infty} \leq d_{\infty}$.
Suppose $x, x^{\prime} \in X_{\infty}$ are joined by a directed path $\gamma: I \rightarrow X_{\infty}$. Then by Theorem 2.9, the composition $\phi_{i} \circ \pi_{i} \circ \gamma: I \rightarrow \mathbb{R}$ has the same length as $\pi_{i} \circ \gamma$ for all i, hence $\phi \circ \gamma: I \rightarrow \mathbb{R}$ has the same length as $\pi_{i} \circ \gamma$ for all i. Therefore

$$
\begin{aligned}
d_{\infty}\left(x, x^{\prime}\right) & \leq \lim _{i \rightarrow \infty} \text { length }\left(\pi_{i} \circ \gamma\right)=\operatorname{length}(\phi \circ \gamma) \\
& =d(\phi(\gamma(0)), \phi(\gamma(1))) \leq \bar{d}_{\infty}\left(x, x^{\prime}\right)
\end{aligned}
$$

where the last equality follows from Theorem $2.9(3), \phi$ is 1 -Lipschitz.
(2). If $x, x^{\prime} \in X_{\infty}$ and $\left\{\pi_{i}(x), \pi_{i}\left(x^{\prime}\right)\right\} \subset \operatorname{St}\left(v, X_{i}\right)$ for some $i \in \mathbb{Z}$, $v \in V_{i}$, then $d_{i}\left(\pi_{i}(x), \pi_{i}\left(x^{\prime}\right)\right) \leq 2 m^{-i}$ and so

$$
d_{\infty}\left(x, x^{\prime}\right) \leq 2 m^{-i}+\frac{(2 m+\theta) m^{-i}}{m-1}=2 m^{-i}\left(1+\frac{(2 m+\theta)}{2(m-1)}\right)
$$

by Lemma 3.5. It follows from Lemma 2.4 that

$$
d_{\infty} \leq\left(1+\frac{(2 m+\theta)}{2(m-1)}\right) \cdot \bar{d}_{\infty}
$$

Corollary 3.8. If $\phi: X_{\infty} \rightarrow \mathbb{R}$ is the map from Theorem 2.9, then $\phi:\left(X_{\infty}, d_{\infty}\right) \rightarrow \mathbb{R}$ satisfies the hypotheses of Theorem 1.1.

Proof. This follows from the previous Lemma and Theorem 2.9(3).
4. REALIZING METRIC SPACES AS LIMITS OF ADMISSIBLE INVERSE SYSTEMS

In this section, we characterize metric spaces which are bilipschitz homeomorphic to inverse limits of admissible inverse systems, proving Theorem 1.11.

Suppose a metric space Z is bilipschitz equivalent to the inverse limit of an admissible inverse system. Evidently, if X_{∞} is such an inverse limit, $\phi: X_{\infty} \rightarrow \mathbb{R}$ is as in Theorem 2.9, and $F: Z \rightarrow X_{\infty}$ is a bilipschitz homeomorphism with respect to \bar{d}_{∞}, then the composition $u=\phi \circ F: Z \rightarrow \mathbb{R}$ has the property that for every interval $I \subset \mathbb{R}$, the diam (I)-components of $u^{-1}(I)$ have diameter at most comparable to diam (I), (see Theorem 2.9). In other words a necessary condition for a space to be bilipschitz homeomorphic to an inverse limit is the existence of a map satisfying the hypotheses of Theorem 1.11. Theorem 1.11 says that the existence of such a map is sufficient.

We now prove Theorem 1.11 .
Fix $m \in \mathbb{N}, m \geq 2$, and let $u: X \rightarrow \mathbb{R}$ be as in the statement of the theorem.

Let $\left\{Y_{i}\right\}_{i \in \mathbb{Z}}$ be a sequence of subdivisions of \mathbb{R}, where:

- Y_{i} is a subdivision of \mathbb{R} into intervals of length m^{-i} for all $i \in \mathbb{Z}$.
- Y_{i+1} is a subdivision of Y_{i} for all $i \in \mathbb{Z}$.

We define a simplicial graph X_{i} as follows. The vertex set of X_{i} is the collection of pairs (v, U) where v is a vertex of Y_{i} and U is a m^{-i} component of $u^{-1}\left(\operatorname{St}\left(v, Y_{i}\right)\right)$. Two distinct vertices $\left(v_{1}, U_{1}\right),\left(v_{2}, U_{2}\right) \in$ X_{i} span an edge iff $U_{1} \cap U_{2} \neq \emptyset$; note that this can only happen if v_{1}, v_{2} are distinct adjacent vertices of Y_{i}.

We have a projection map $\phi_{i}: X_{i} \rightarrow Y_{i}$ which sends each vertex (v, U) of X_{i} to $v \in Y_{i}$, and is a linear isomorphism on each edge of X_{i}. If (\hat{v}, \hat{U}) is a vertex of X_{i+1}, there will be a vertex (v, U) of X_{i} such that $\hat{U} \subset U$ and $\operatorname{St}\left(\hat{v}, Y_{i+1}\right) \subset \operatorname{St}\left(v, Y_{i}\right)$; there are at most two such vertices, and they will span an edge in X_{i}. Therefore we obtain a well-defined projection map $\pi_{i}: X_{i+1} \rightarrow X_{i}$ such that $\phi_{i} \circ \pi_{i}=\phi_{i+1}$, and which induces a simplicial map $\pi_{i}: X_{i+1} \rightarrow X_{i}^{\prime}$.

We define $f_{i}: X \rightarrow X_{i}$ as follows. Suppose $z \in X$ and $u(z) \in \mathbb{R} \simeq Y_{i}$ belongs to the edge $e=\overline{v_{1} v_{2}}=\operatorname{St}\left(v_{1}, Y_{i}\right) \cap \operatorname{St}\left(v_{2}, Y_{i}\right)$. Then z belongs to
an m^{-i}-component of $u^{-1}\left(\operatorname{St}\left(v_{j}, Y_{i}\right)\right)$ for $j \in\{1,2\}$, and therefore these two components span an edge \hat{e} of X_{i} which is mapped isomorphically to e by ϕ_{i}. We define $f_{i}(z)$ to be $\phi_{i}^{-1}(u(z)) \cap \hat{e}$. The sequence $\left\{f_{i}\right\}_{i \in \mathbb{Z}}$ is clearly compatible, so we have a well-defined map $f_{\infty}: X \rightarrow X_{\infty}$.

Now suppose $z_{1}, z_{2} \in X$ and for some $i \in \mathbb{Z}$ we have $m^{-(i+1)}<$ $d\left(z_{1}, z_{2}\right) \leq m^{-i}$. Then $\left\{u\left(z_{1}\right), u\left(z_{2}\right)\right\} \subset \operatorname{St}\left(v, Y_{i}\right)$ for some vertex $v \in Y_{i}$, and z_{1}, z_{2} lie in the same m^{-i} component of $u^{-1}\left(\operatorname{St}\left(v, Y_{i}\right)\right)$. Therefore $\left\{f_{i}\left(z_{1}\right), f_{i}\left(z_{2}\right)\right\}$ is contained in $\operatorname{St}\left(\hat{v}, X_{i}\right)$ for some vertex \hat{v} of X_{i}. It follows that $\bar{d}_{\infty}\left(f_{\infty}\left(z_{1}\right), f_{\infty}\left(z_{2}\right)\right) \leq 2 m^{-i}<2 m d\left(z_{1}, z_{2}\right)$, from the definition of \bar{d}_{∞}. Thus f_{∞} is $2 m$-Lipschitz.

On the other hand, if $z_{1}, z_{2} \in X$ and $m^{-(i+1)}<\bar{d}_{\infty}\left(f_{\infty}\left(z_{1}\right), f_{\infty}\left(z_{2}\right)\right) \leq$ m^{-i}, then by Lemma $2.5(1)$, we have $\left.\left\{f_{i}\left(z_{1}\right), f_{i}\left(z_{2}\right)\right)\right\} \subset \operatorname{St}\left(\hat{v}, X_{i}\right)$. By the construction of f_{i}, this means that $\left\{z_{1}, z_{2}\right\}$ lie in an m^{-i}-component of $u^{-1}\left(\operatorname{St}\left(v, Y_{i}\right)\right)$ for $v=\phi_{i}(\hat{v}) \in Y_{i}$. By our assumption on u, this gives $d\left(z_{1}, z_{2}\right) \lesssim m^{-i}$. Thus f_{∞} is L^{\prime}-bilipschitz, where L^{\prime} depends only on C and m.

5. A special case of Theorem 1.16

Let $\left\{X_{j}\right\}$ be an admissible inverse system as in Definition 1.8.
Assumption 5.1. We will temporarily assume that:
(1) π_{i} is finite-to-one for all $i \in \mathbb{Z}$.
(2) $X_{i} \simeq \mathbb{R}$ and $\pi_{i}: X_{i+1} \rightarrow X_{i}^{\prime}$ is an isomorphism for all $i \leq 0$.
(3) For every $i \in \mathbb{Z}$, every vertex $v \in V_{i}$ has neighbors $v_{ \pm} \in V_{i}$ with $v_{-} \prec v \prec v_{+}$. Equivalently, X_{i} is a union of (complete) monotone geodesics (see Definition 2.13).

In particular, (1) and (2) imply that X_{i} has finite valence for all i.

This extra assumption will be removed in Section 9, in order to complete the proof in the general case. We remark that it is possible to adapt all the material to the general setting, but this would impose a technical burden that is largely avoidable. Furthermore, Assumption 5.1 effectively covers many cases of interest, such as Examples 1.2 and 1.4.

6. Slices and the associated measures

Rather than working directly with monotone subsets as described in the introduction, we instead work with subsets which we call slices, which are sets of vertices which arise naturally as the boundaries of monotone subsets. A slice in $S \subset X_{i}$ gives rise to a family of slices in X_{i+1} - its children - by performing local modifications to the inverse image $\pi_{i}^{-1}(S) \subset X_{i+1}$. The children of S carry a natural probability measure which treats disjoint local modifications as independent. This section develops the properties of slices and their children, and then introduces a family of measures $\left\{\Sigma_{i}^{\prime}\right\}_{i \in \mathbb{Z}}$ on slices.

Let $\left\{X_{i}\right\}$ be an admissible inverse system satisfying Assumption 5.1.
6.1. Slices and their descendents. We recall from Section 2.4 that X_{i} carries a partial order \preceq, see Definition 2.11.

Definition 6.1. A partial slice in X_{i}^{\prime} is a finite subset $S \subset V_{i}^{\prime}$ which intersects each monotone geodesic $\gamma \subset X_{i}$ at most once; this is equivalent to saying that no two elements of S are comparable: if $v, v^{\prime} \in S$ and $v \preceq v^{\prime}$, then $v=v^{\prime}$. A slice in X_{i}^{\prime} is a partial slice which intersects each monotone geodesic precisely once. We denote the set of slices in X_{i}^{\prime} and partial slices in X_{i}^{\prime} by Slice ${ }_{i}^{\prime}$ and $\mathrm{PSlice}_{i}^{\prime}$ respectively.

The vertex set V_{i}^{\prime} is countable, in view of Assumption 5.1. Every partial slice is finite, so this implies that the collection of partial slices is countable. When $i \leq 0, X_{i}^{\prime}$ is a copy of \mathbb{R} with a standard subdivision, so the slices in X_{i}^{\prime} are just singletons $\{v\}$, where $v \in V_{i}^{\prime}$.

Note that we cannot have $w \prec x \prec w^{\prime}$ for $x \in X_{i}, S \in$ Slice $_{i}^{\prime}$, and $w, w^{\prime} \in S$, because then w, w^{\prime} would be comparable. Therefore we use the notation $x \prec S$ if there is a $w \in S$ such that $x \prec w$. The relations $x \succ S, x \preceq S$, and $x \succeq S$ are defined similarly.

A slice $S \in$ Slice $_{i}^{\prime}$ separates (respectively weakly separates) $x_{1}, x_{2} \in$ X_{i} if $x_{1} \prec S \prec x_{2}$ or $x_{2} \prec S \prec x_{1}$ (respectively $x_{1} \preceq S \preceq x_{2}$ or $\left.x_{2} \preceq S \preceq x_{1}\right)$.

If $S \in$ Slice $_{i}^{\prime}, v \in X_{i} \backslash S$, then we define

$$
\operatorname{Side}(v, S)= \begin{cases}\prec & \text { if } \quad v \prec S \tag{6.2}\\ \succ & \text { if } \quad v \succ S\end{cases}
$$

Slices give rise to monotone sets:

Lemma 6.3. If $S \in$ Slice $_{i}^{\prime}$, define $S_{\preceq}=\left\{x \in X_{i} \mid x \preceq S\right\}$ and $S_{\succeq}=\left\{x \in X_{i} \mid x \succeq S\right\}$. Then S_{\preceq} and \bar{S}_{\succeq} are both monotone sets with boundary S.

Proof. Since the complement S_{\preceq}^{c} of S_{\preceq} is the same as $S_{\succ}=\left\{x \in X_{i} \mid\right.$ $x \succ S\}$, the monotonicity of $S_{\preceq} \overline{\text { follows immediately from the definition }}$ of slices. Similarly for S_{\succeq}.

Given a vertex $v \in V_{i}$, we can associate a collection of partial slices in X_{i}^{\prime} :
Definition 6.4. If $v \in V_{i}$, a child of v is a maximal partial slice $S^{\prime} \in \mathrm{PSlice}_{i}^{\prime}$ which is contained in the trimmed star $\operatorname{TSt}\left(v, X_{i}\right)$, see Figure 3. In other words, $S^{\prime} \subset \operatorname{TSt}\left(v, X_{i}\right)$ and precisely one of the following holds:
(1) $S^{\prime}=\{v\}$.
(2) For every vertex $w \in \operatorname{St}\left(v, X_{i}\right)$ with $v \prec w, S^{\prime}$ intersects the edge $\overline{v w}$ in precisely one point, which is an interior point.
(3) For every vertex $w \in \operatorname{St}\left(v, X_{i}\right)$ with $w \prec v, S^{\prime}$ intersects the edge $\overline{v w}$ in precisely one point, which is an interior point.

We denote the collection of children of v by $\mathrm{Ch}(v)$, and refer to the children in the above cases as children of type (1), (2), or (3) respectively.

Note that if $S \in$ PSlice $_{i}^{\prime}$ and $v_{1}, v_{2} \in V_{i+1}$ are distinct vertices lying in $\pi_{i}^{-1}(S)$, then their trimmed stars are disjoint.
Definition 6.5. If $S \in$ PSlice $_{i}^{\prime}$ is a partial slice, a child of S is a subset $S^{\prime} \subset V_{i+1}^{\prime}$ obtained by replacing each vertex $v \in \pi_{i}^{-1}(S) \subset V_{i+1}$ with one of its children, so that S^{\prime} is a subset of V_{i+1}^{\prime}. More formally, S^{\prime} belongs to the image of the "union map"

$$
\prod_{v \in \pi_{i}^{-1}(S)} \mathrm{Ch}(v) \longrightarrow V_{i+1}^{\prime}
$$

which sends $\prod_{v}\left(S_{v}\right)$ to $\cup_{v} S_{v}$. We use $\mathrm{Ch}(S) \subset \mathrm{PSlice}_{i+1}^{\prime}$ to denote the children of $S \in$ PSlice $_{i}^{\prime}$.
Lemma 6.6. If S is a partial slice, so is each of its children. Moreover, if $S \in$ Slice $_{i}^{\prime}$ is a slice, so is $S^{\prime \prime}$.

Proof. Suppose S^{\prime} is a child of the partial slice $S \in$ PSlice $_{i}^{\prime}$, and $\gamma^{\prime} \subset$ X_{i+1} is a monotone geodesic. Then γ^{\prime} projects isomorphically to a

Some children of v

Figure 3.
monotone geodesic $\gamma \subset X_{i}$, so $\pi_{i}^{-1}(S) \cap \gamma^{\prime}$ contains at most one vertex $v^{\prime} \in V_{i+1}$. From the definition of children, it follows that $\gamma^{\prime} \cap S^{\prime}$ contains at most one point. If S is a slice, then $\gamma^{\prime} \cap \pi_{i}^{-1}(S)$ contains precisely one vertex $v \in V_{i+1}^{\prime}$, and therefore S^{\prime} contains a child of $\{v\}$, which will intersect γ^{\prime} in precisely one point.

Definition 6.7. If $S \in \operatorname{PSlice}_{i}^{\prime}$ and $j>i$, then a partial slice $S^{\prime} \in$ PSlice ${ }_{j}^{\prime}$ is a descendent of S in X_{j}^{\prime} if there exist $S=S_{i}, S_{i+1}, \ldots, S_{j}=$ S^{\prime} such that for all $k \in\{i+1, \ldots, j\}, S_{k} \in \mathrm{PSlice}_{k}^{\prime}$ and S_{k} is a child
of S_{k-1}; in other words, S^{\prime} is an iterated child of S. We denote the collection of such descendents by $\operatorname{Desc}\left(S, X_{j}^{\prime}\right)$.
Lemma 6.8. For all $i<j$, if $S^{\prime} \in$ PSlice $_{j}^{\prime}$ is a descendent of $S \in$ PSlice $_{i}^{\prime}$, then $\pi_{i}\left(S^{\prime}\right) \subset \cup_{w \in S} \operatorname{St}^{o}\left(w, X_{i}^{\prime}\right)$.

Proof. Suppose $S=S_{i}, \ldots, S_{j}=S^{\prime}$, where $S_{k} \in$ PSlice $_{k}^{\prime}$ and S_{k+1} is a child of S_{k} for all $i \leq k<j$. Then

$$
\pi_{k}\left(S_{k+1}\right) \subset \pi_{k}\left(\cup_{w \in \pi_{k}^{-1}\left(S_{k}\right)} \operatorname{TSt}\left(w, X_{k+1}^{\prime}\right)\right)
$$

Iterating this yields the lemma.
6.2. A measure on slices. We now define a measure on Slice $_{i}^{\prime}$ for each i, by an iterated diffusion construction. To do this, we first associate with each vertex $v \in V_{i}$ a probability measure on its children $\operatorname{Ch}(v) \subset$ PSlice ${ }_{i}$.

Definition 6.9. If $v \in V_{i}$, let $w_{\operatorname{Ch}(v)}$ be the probability measure on $\mathrm{Ch}(v)$ which:

- Assigns measure $\frac{1}{m}$ to the child $\{v\} \in \operatorname{Ch}(v)$ of type (1).
- Uniformly distributes measure $\frac{1}{2} \cdot \frac{(m-1)}{m}$ among the children of type (2). Equivalently, for each vertex $\hat{v} \in V_{i}$ adjacent to v with $v \prec \hat{v}$, we take the uniform measure on the $(m-1)$ vertices in V_{i}^{\prime} which are interior points of the edge $\overline{v \hat{v}}$, take the product of these measures as \hat{v} ranges over

$$
\left\{\bar{v} \in V_{i} \mid \bar{v} \in \operatorname{St}\left(v, X_{i}\right), v \prec \bar{v}\right\}
$$

and then multiply the result by $\frac{1}{2} \cdot \frac{(m-1)}{m}$.

- Uniformly distributes measure $\frac{1}{2} \cdot \frac{(m-1)}{m}$ among the children of type (3).

Note that if $v^{\prime} \in V_{i}^{\prime}$ belongs to the trimmed star of v, then the $w_{\operatorname{Ch}(v)}$ measure of the children of v which contain v^{\prime} is

$$
w_{\mathrm{Ch}(v)}\left(\left\{S \in \operatorname{Ch}(v) \mid v^{\prime} \in S\right\}\right)=\left\{\begin{array}{lll}
\frac{1}{m} & \text { if } & v^{\prime}=v \tag{6.10}\\
\frac{1}{2 m} & \text { if } & v^{\prime} \neq v
\end{array}\right.
$$

Using the measures $w_{\operatorname{Ch}(v)}$ we define a measure on the children of a slice:

Definition 6.11. If $S \in$ Slice $_{i}^{\prime}$, we define a probability measure K_{S} on $\operatorname{Ch}(S)$ as follows. We take the product measure $\prod_{v \in \pi_{i}^{-1}(S)} w_{\mathrm{Ch}(v)}$ on $\prod_{v \in \pi_{i}^{-1}(S)} \mathrm{Ch}(v)$, and push it forward under the union map

$$
\prod_{v \in \pi_{i}^{-1}(S)} \mathrm{Ch}(v) \rightarrow \text { Slice }_{i+1}^{\prime}
$$

In probabilistic language, for each $v \in \pi_{i}^{-1}(S)$, we independently choose a child of v according to the distribution $w_{\mathrm{Ch}(v)}$, and then take the union of the resulting children. Note that this is well-defined because the inverse image of any slice is nonempty.

Now given a measure ν on Slice $_{i}^{\prime}$, we diffuse it to a measure ν^{\prime} on Slice ${ }_{i+1}$:

$$
\begin{equation*}
\nu^{\prime}=\sum_{S \in \text { Slice }_{i}^{\prime}} K_{S} \nu(S) \tag{6.12}
\end{equation*}
$$

If we view the collection $\left\{K_{S}\right\}_{S \in \text { Slice }_{i}^{\prime}}$ as defining a kernel

$$
K_{i}: \text { Slice }_{i}^{\prime} \times \text { Slice }_{i+1}^{\prime} \rightarrow[0,1]
$$

by the formula $K_{i}\left(S, S^{\prime}\right)=K_{S}\left(S^{\prime}\right)$, then the associated diffusion operator K_{i} is given by

$$
\begin{equation*}
K_{i}(\nu)\left(S^{\prime}\right)=\sum_{S \in \text { Slice }_{i}^{\prime}} K\left(S, S^{\prime}\right) \nu(S) \tag{6.13}
\end{equation*}
$$

When $i<0$, then this sum will be finite for any measure ν since $K\left(S, S^{\prime}\right) \neq 0$ for only finitely many S.

Lemma 6.14. When $i \geq 0$, the sum will be finite provided ν is supported on the descendents of slices in X_{0}^{\prime}.

Proof. For a given $S^{\prime} \in$ Slice $_{i+1}^{\prime}$, the summand $K\left(S, S^{\prime}\right) \nu(S)$ is nonzero only if S is a descendent of a slice $\{v\} \in V_{0}^{\prime}$ and S^{\prime} is a child of S. By Lemma 6.8 this means that $\pi_{0}\left(S^{\prime}\right) \subset \mathrm{St}^{o}\left(v, X_{0}^{\prime}\right)$, so there are only finitely many possibilities for such S.

Definition 6.15. For $i \leq 0$, let Σ_{i}^{\prime} be the measure on Slice $_{i}^{\prime}$ which assigns measure $m^{-(i+1)}$ to each slice in Slice ${ }_{i}^{\prime}=V_{i}^{\prime}$. For $i>0$ we define a measure Σ_{i}^{\prime} on Slice ${ }_{i}^{\prime}$ inductively by $\Sigma_{i}^{\prime}=K_{i-1}\left(\Sigma_{i-1}^{\prime}\right)$. This is well-defined by Lemma 6.14.

For every $S \in$ Slice $_{i}^{\prime}$ and every $j>i$, we may also obtain a welldefined probability measure on Slice $_{j}^{\prime}$ which is supported on the descendents of S, by the formula

$$
\begin{equation*}
K_{j-1} \circ \ldots \circ K_{i}\left(\delta_{S}\right), \tag{6.16}
\end{equation*}
$$

where δ_{S} is a Dirac mass on S. Using this probability measure, we may speak of the measure of descendents of $S \in$ Slice $_{j}^{\prime}$.

7. Estimates on the family of measures $\left\{\Sigma_{i}^{\prime}\right\}_{i \in \mathbb{Z}}$

In this section we will prove (mostly by induction arguments) several estimates on the slice/cut measures $\left\{\Sigma_{i}^{\prime}\right\}$ and cut metrics $\left\{d_{\Sigma_{i}^{\prime}}\right\}$ that will be needed in Section 8 ,

We first observe that the slices passing through a vertex $v \in V_{i}^{\prime}$ have measure $m^{-(i+1)}$:

Lemma 7.1. For all $i \in \mathbb{Z}$, and every $v \in V_{i}^{\prime}$, the Σ_{i}^{\prime}-measure of the collection of slices containing v is precisely $m^{-(i+1)}$:

$$
\Sigma_{i}^{\prime}\left(\left\{S \in \operatorname{Slice}_{i}^{\prime} \mid v \in S\right\}\right)=m^{-(i+1)}
$$

Proof. When $i \leq 0$ this reduces to the definition of Σ_{i}^{\prime}. So pick $i>0$, $v \in V_{i}^{\prime}$, and assume inductively that the lemma is true for $i-1$.

Case 1. $v \in V_{i}$. In this case, if a slice $S \in$ Slice $_{i-1}^{\prime}$ has a child $S^{\prime} \in$ Slice $_{i}^{\prime}$ containing v, then $\pi_{i-1}(v) \in S$. By Definition 6.9, for such an S, the fraction of its children containing v is precisely $\frac{1}{m}$. Therefore by the induction hypothesis we have

$$
\Sigma_{i}^{\prime}\left(\left\{S^{\prime} \mid v \in S^{\prime}\right\}\right)=\frac{1}{m} \Sigma_{i-1}^{\prime}\left(\left\{S \in \operatorname{Slice}_{i-1}^{\prime} \mid \pi_{i-1}(v) \in S\right\}\right)=m^{-(i+1)}
$$

Case 2. $v \notin V_{i}$. Then v belongs to a unique edge $\overline{w_{1} w_{2}} \subset X_{i}$, where $w_{1}, w_{2} \in V_{i}$. In this case, a slice $S \in$ Slice $_{i-1}^{\prime}$ has a child $S^{\prime} \in$ Slice $_{i}^{\prime}$ containing v if and only if S contains $\pi_{i-1}\left(w_{1}\right)$ or $\pi_{i-1}\left(w_{2}\right)$. Since these possibilities are mutally exclusive (from the definition of slice), and each contributes a measure $\frac{1}{2} m^{-(i+1)}$ by the induction hypothesis and Definition 6.9, the lemma follows.

Recall that by Lemma 6.3, for every $S \in$ Slice $_{i}^{\prime}$ the subset $S_{\preceq}=\{x \in$ $\left.X_{i} \mid x \preceq S\right\}$ is a monotone subset of X_{i}.

Definition 7.2. Viewing Σ_{i}^{\prime} as a cut measure on X_{i} via the identification $S \longleftrightarrow S_{\preceq}$, we let $d_{\Sigma_{i}^{\prime}}$ denote the corresponding cut metric on X_{i}. Equivalently, for $x_{1}, x_{2} \in X_{i}$,

$$
d_{\Sigma_{i}^{\prime}}\left(x_{1}, x_{2}\right)=\sum_{S \in \text { Slice }_{i}^{\prime}} d_{S_{\underline{2}}}\left(x_{1}, x_{2}\right) \Sigma_{i}^{\prime}(S)
$$

where

$$
\begin{aligned}
d_{S_{\preceq}}\left(x_{1}, x_{2}\right) & =\left|\chi_{S_{\preceq}}\left(x_{1}\right)-\chi_{S_{\preceq}}\left(x_{2}\right)\right| \\
& = \begin{cases}1 & \text { if } \quad x_{1} \preceq S \prec x_{2} \quad \text { or } \quad x_{2} \preceq S \prec x_{1} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Lemma 7.3. If $x_{1}^{\prime}, x_{2}^{\prime} \in X_{i+1}$, and $\pi_{i}\left(x_{j}^{\prime}\right)=x_{j} \in X_{i}$, then

$$
\begin{equation*}
\left|d_{\Sigma_{i+1}^{\prime}}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)-d_{\Sigma_{i}^{\prime}}\left(x_{1}, x_{2}\right)\right| \leq 4 m^{-(i+1)} . \tag{7.4}
\end{equation*}
$$

Proof. For $j \in\{1,2\}$ let S_{j} be the collection of slices $S \in$ Slice $_{i}^{\prime}$ which have a child $S^{\prime} \in \operatorname{Slice}_{i+1}^{\prime}$ such that $\operatorname{Side}\left(x_{j}, S\right) \neq \operatorname{Side}\left(x_{j}^{\prime}, S^{\prime}\right)$ (see (6.2) for the definition of $\operatorname{Side}(v, S)$). From the definition of children, it follows that if $S \in S_{j}$, then x_{j} lies in $\operatorname{TSt}\left(v, X_{i}^{\prime}\right)$ for some $v \in S$. Thus, if $\overline{w_{1} w_{2}}$ is an edge of X_{i}^{\prime} containing x_{j}, then $S_{j} \subset\left\{S \in\right.$ Slice $_{i}^{\prime} \mid$ $\left.S \cap\left\{w_{1}, w_{2}\right\} \neq \emptyset\right\}$. By Lemma 7.1, we have $\Sigma_{i}^{\prime}\left(S_{j}\right) \leq 2 m^{-(i+1)}$. Now by the definition of the cut metrics, we get

$$
\left|d_{\Sigma_{i+1}^{\prime}}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)-d_{\Sigma_{i}^{\prime}}\left(x_{1}, x_{2}\right)\right| \leq \Sigma_{i}^{\prime}\left(S_{1} \cup S_{2}\right) \leq 4 m^{-(i+1)}
$$

Lemma 7.5 (Persistence of sides). Suppose $x \in X_{i}, S \in$ Slice $_{i}^{\prime}$, and $x \notin \cup_{v \in S} \mathrm{St}^{o}\left(v, X_{i}^{\prime}\right)$. Then for every $j \geq i$, every $x^{\prime} \in X_{j}$ with $\pi_{i}\left(x^{\prime}\right)=x$, and for every descendent $S^{\prime} \in$ Slice $_{j}^{\prime}$ of S, we have

$$
x^{\prime} \notin \cup_{v \in S^{\prime}} \operatorname{St}^{o}\left(v, X_{j}^{\prime}\right) \quad \text { and } \quad \operatorname{Side}\left(x^{\prime}, S^{\prime}\right)=\operatorname{Side}(x, S) .
$$

Proof. First suppose $j=i+1$. Then $x \notin \cup_{v \in \pi_{i}^{-1}(S)} \mathrm{St}^{o}\left(v, X_{i+1}\right)$ because $\pi_{i}: X_{i+1} \rightarrow X_{i}^{\prime}$ is a simplicial mapping. Clearly this implies $\operatorname{Side}\left(x^{\prime}, S^{\prime}\right)=\operatorname{Side}\left(x^{\prime}, \pi_{i}^{-1}(S)\right)=\operatorname{Side}(x, S)$.

The $j>i+1$ case now follows by induction.

Lemma 7.6 (Persistence of separation). There is a constant $A=$ $A(m) \in(0,1)$ with the following property. Suppose $j>i, x_{1}, x_{2} \in X_{i}$, $x_{1}^{\prime}, x_{2}^{\prime} \in X_{j}$, and $\pi_{i}\left(x_{1}^{\prime}\right)=x_{1}, \pi_{i}\left(x_{2}^{\prime}\right)=x_{2}$. Suppose in addition that

- $S \in$ Slice $_{i}^{\prime}$ is a slice which weakly separates x_{1} and x_{2} (see Section 6.1).
- $x_{2} \notin \cup_{v \in S} \mathrm{St}^{o}\left(v, X_{i}^{\prime}\right)$.

Then the measure of the collection of descendents $S^{\prime} \in \operatorname{Desc}\left(S, X_{j}^{\prime}\right)$ which separate x_{1}^{\prime} and x_{2}^{\prime} is at least A; here we refer to the probability measure on $\operatorname{Desc}\left(S, X_{j}\right)$ that was defined in equation 6.16).

Proof. Since S weakly separates x_{1} and x_{2} but $x_{2} \notin S$, without loss of generality we may assume that $x_{1} \preceq S \prec x_{2}$, since the case $x_{2} \prec S \preceq x_{1}$ is similar.

If $x_{1} \notin \cup_{v \in S} \mathrm{St}^{o}\left(v, X_{i}^{\prime}\right)$, then by Lemma 7.5. for all $S^{\prime} \in \operatorname{Desc}\left(S, X_{j}^{\prime}\right)$ we have $x_{1}^{\prime} \prec S^{\prime} \prec x_{2}^{\prime}$, so we are done in this case.

Therefore we assume that there exist $v \in S$ and $v^{\prime} \in \pi_{i}^{-1}(v)$ such that $x_{1} \in \operatorname{St}^{o}\left(v, X_{i}^{\prime}\right), x_{1}^{\prime} \in \operatorname{St}\left(v^{\prime}, X_{i+1}\right)$, and $x_{1}^{\prime} \preceq v^{\prime}$. If $S^{\prime} \in \operatorname{Slice}_{i+1}^{\prime}$ is a child of S containing a child of v^{\prime} of type (2), then $x_{1}^{\prime} \notin \cup_{w \in S^{\prime}} \operatorname{St}^{o}\left(w, X_{i+1}^{\prime}\right)$; moreover the collection of such slices S^{\prime} form a fraction at least $\frac{1}{2} \cdot \frac{m-1}{m}$ of the children of S. Therefore we are done when $j=i+1$; if $j \geq i+2$, then we may apply Lemma 7.5 to each such slice S^{\prime}, we conclude that for every $S^{\prime \prime} \in \operatorname{Desc}\left(S^{\prime}, X_{j}^{\prime}\right)$, we have $x_{1}^{\prime} \prec S^{\prime \prime} \prec x_{2}^{\prime}$. Thus we may take $A=\frac{1}{2} \cdot \frac{m-1}{m}$. This proves the lemma.

Lemma 7.7. Suppose $x_{1}, x_{2} \in X_{i}, j>i, x_{1}^{\prime}, x_{2}^{\prime} \in X_{j}, \pi_{i}\left(x_{1}^{\prime}\right)=x_{1}$, $\pi_{i}\left(x_{2}^{\prime}\right)=x_{2}$, and $\left\{x_{1}, x_{2}\right\}$ is not contained in the trimmed star of any vertex $v \in V_{i}$. Then $d_{\Sigma_{j}^{\prime}}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \geq A m^{-(i+2)}$, where A is the constant from Lemma 7.6.

Proof. Choose $v_{1} \in V_{i}$ such that $x_{1} \in \operatorname{TSt}\left(v_{1}, X_{i}\right)$.
Observe that of the children W of v_{1}, a measure at least $\frac{1}{2 m}$ lie weakly on each side of x_{1} and satisfy $x_{2} \notin \cup_{v \in W} \operatorname{St}^{o}\left(v, X_{i}^{\prime}\right)$, in view of our assumption on x_{1} and x_{2}, i.e.

$$
\begin{aligned}
& w_{\operatorname{Ch}\left(v_{1}\right)}\left(\left\{W \in \operatorname{Ch}\left(v_{1}\right) \mid W \preceq x_{1}, x_{2} \notin \cup_{v \in W} \operatorname{St}^{o}\left(v, X_{i}^{\prime}\right)\right\}\right) \geq \frac{1}{2 m}, \\
& w_{\operatorname{Ch}\left(v_{1}\right)}\left(\left\{W \in \operatorname{Ch}\left(v_{1}\right) \mid W \succeq x_{1}, x_{2} \notin \cup_{v \in W} \operatorname{St}^{o}\left(v, X_{i}^{\prime}\right)\right\}\right) \geq \frac{1}{2 m} .
\end{aligned}
$$

Suppose $S \in$ Slice $_{i-1}^{\prime}$ and $v_{1} \in \pi_{i-1}^{-1}(S)$. Then each child $S^{\prime} \in$ Slice $_{i}^{\prime}$ of S contains some child of v_{1}, and $\operatorname{Side}\left(x_{2}, S^{\prime}\right)$ is independent of this choice, because x_{2} lies outside $\operatorname{TSt}\left(v_{1}, X_{i}\right)$. Furthermore, if $x_{2} \in \operatorname{St}\left(v_{2}, X_{i}\right)$ for some $v_{2} \in\left(V_{i} \cap \pi_{i-1}^{-1}(S)\right) \backslash\left\{v_{1}\right\}$, then S^{\prime} contains a child of v_{2}, and a fraction at least $\frac{1}{m}$ of this set of children $W \in \operatorname{Ch}\left(v_{2}\right)$ satisfies $x_{2} \notin \cup_{v \in W} \mathrm{St}^{o}\left(v, X_{i}^{\prime}\right)$. Thus a fraction at least $\frac{1}{2 m^{2}}$ of the children of S satisfy the assumptions of Lemma 7.6.

Since the set of $S \in$ Slice $_{i-1}^{\prime}$ with $v_{1} \in \pi_{i-1}^{-1}(S)$ has Σ_{i-1}^{\prime}-measure m^{-i} by Lemma 7.1, by the preceding reasoning, we conclude that $d_{\Sigma_{j}^{\prime}}\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \geq A m^{-(i+2)}$.

Lemma 7.8. Suppose $i, j \in \mathbb{Z}, i \leq j, x_{1}, x_{2} \in X_{j}, e$ is an edge of X_{i}, and $\pi_{i}\left(x_{1}\right), \pi_{i}\left(x_{2}\right) \in e$. Then

$$
\begin{equation*}
d_{\Sigma_{j}^{\prime}}\left(x_{1}, x_{2}\right) \leq m^{-i} \tag{7.9}
\end{equation*}
$$

We remind the reader that we are suppressing superscripts when the domain is clear from the context; thus $\pi_{i}\left(x_{1}\right)$ in the above context really refers to the image of x_{1} under the projection map $\pi_{i}^{j}: X_{j} \rightarrow X_{i}$, and when $i=j$, we have $\pi_{i}\left(x_{1}\right)=\pi_{i}^{j}\left(x_{1}\right)=\pi_{i}^{i}\left(x_{1}\right)=x_{1}$.

Proof. Let v_{1}, v_{2} be the endpoints of e, where $v_{1} \prec v_{2}$. We may assume without loss of generality that $\pi_{i}\left(x_{1}\right) \preceq \pi_{i}\left(x_{2}\right)$.

By Definition 7.2 , the distance $d_{\Sigma_{j}^{\prime}}\left(x_{1}, x_{2}\right)$ is the Σ_{j}^{\prime}-measure of the set

$$
Y=\left\{S \in \text { Slice }_{j}^{\prime} \mid x_{1} \preceq S \prec x_{2} \quad \text { or } \quad x_{2} \preceq S \prec x_{1}\right\} .
$$

If $S \in$ Slice $_{i}^{\prime}$ and $S \cap e=\emptyset$, then S does not weakly separate $\pi_{i}\left(x_{1}\right), \pi_{i}\left(x_{2}\right)$, so by Lemma 7.5, no descendent $S^{\prime} \in \operatorname{Desc}\left(S, X_{j}^{\prime}\right)$ can weakly separate x_{1} and x_{2}, i.e. $Y \cap \operatorname{Desc}\left(S, X_{j}^{\prime}\right)=\emptyset$. For $v \in V_{i}^{\prime}$ let

$$
\operatorname{Slice}_{i}^{\prime}(v)=\left\{S \in \operatorname{Slice}_{i}^{\prime} \mid v \in S\right\}
$$

and let $\Sigma_{i}^{\prime}\left\llcorner\operatorname{Slice}_{i}^{\prime}(v)\right.$ be the restriction of Σ_{i}^{\prime} to $\operatorname{Slice}_{i}^{\prime}(v)$. Thus, using the diffusion operators K_{l} from 6.12), the above observation implies that

$$
\begin{aligned}
\Sigma_{j}^{\prime}(Y) & =K_{j-1} \circ \ldots \circ K_{i}\left(\Sigma_{i}^{\prime}\right)(Y) \\
& =\sum_{v \in e n V_{i}^{\prime}} K_{j-1} \circ \ldots \circ K_{i}\left(\Sigma_{i}^{\prime}\left\llcorner\operatorname{Slice}_{i}^{\prime}(v)\right)(Y)\right.
\end{aligned}
$$

$$
\begin{equation*}
\leq(m-1) m^{-(i+1)}+\sum_{v \in\left\{v_{1}, v_{2}\right\}} K_{j-1} \circ \ldots \circ K_{i}\left(\Sigma_{i}^{\prime}\left\llcorner\operatorname{Slice}_{i}^{\prime}(v)\right)(Y)\right. \tag{7.10}
\end{equation*}
$$

because the mass of $\Sigma_{i}^{\prime}\left\llcorner\operatorname{Slice}_{i}^{\prime}(v)\right.$ is $m^{-(i+1)}$ by Lemma 7.1. The remainder of the proof is devoting to showing that the total contribution from the summation over $v \in\left\{v_{1}, v_{2}\right\}$ in 7.10 is at most $m^{-(i+1)}$.

In the borderline case $i=j$, equation (7.10) reduces to

$$
\Sigma_{i}^{\prime}(Y)=\sum_{v \in e \cap V_{i}^{\prime}}\left(\Sigma_{i}^{\prime}\left\llcorner\operatorname{Slice}_{i}^{\prime}(v)\right)(Y),\right.
$$

and the contribution to the sum from the $v=v_{2}$ is zero, since no slice $S \in \operatorname{Slice}_{i}^{\prime}\left(v_{2}\right)$ can satisfy $x_{1} \preceq S \prec x_{2}$. Therefore we are done in this case, and we will henceforth assume $i<j$.

Suppose $\pi_{i}\left(x_{1}\right) \notin \operatorname{St}^{o}\left(v_{1}, X_{i}^{\prime}\right)$. If $S \in \operatorname{Slice}_{i}^{\prime}\left(v_{1}\right)$, then no descendent $S^{\prime} \in \operatorname{Desc}\left(S, X_{j}^{\prime}\right)$ can weakly separate x_{1}, x_{2} by Lemma 7.5. Therefore

$$
K_{j-1} \circ \ldots \circ K_{i}\left(\Sigma_{i}^{\prime}\left\llcorner\operatorname{Slice}_{i}^{\prime}\left(v_{1}\right)\right)(Y)=0\right.
$$

so we are done in this case. Hence we may assume that $\pi_{i}\left(x_{1}\right) \in$ $\mathrm{St}^{o}\left(v_{1}, X_{i}^{\prime}\right)$, and by similar reasoning, that $\pi_{i}\left(x_{2}\right) \in \mathrm{St}^{\circ}\left(v_{2}, X_{i}^{\prime}\right)$. This implies by Lemma 7.5 that if $v_{1} \in S \in \operatorname{Slice}_{i}^{\prime}$ and $S^{\prime} \in \operatorname{Desc}\left(S, X_{j}^{\prime}\right)$ then $S^{\prime} \prec x_{2}$; similarly, if $v_{2} \in S \in \operatorname{Slice}_{i}^{\prime}$ and $S^{\prime} \in \operatorname{Desc}\left(S, X_{j}^{\prime}\right)$, then $x_{1} \prec S^{\prime}$.

By (7.10), the lemma will follow if we prove the following two claims:
Claim 1. $K_{j-1} \circ \ldots \circ K_{i}\left(\Sigma_{i}^{\prime}\left\llcorner\operatorname{Slice}_{i}^{\prime}\left(v_{1}\right)\right)(Y) \leq \frac{1}{2}\left(m^{-(i+1)}+m^{-(j+1)}\right)\right.$.
Claim 2. $K_{j-1} \circ \ldots \circ K_{i}\left(\Sigma_{i}^{\prime}\left\llcorner\operatorname{Slice}_{i}^{\prime}\left(v_{2}\right)\right)(Y) \leq \frac{1}{2}\left(m^{-(i+1)}-m^{-(j+1)}\right)\right.$.
Proof of Claim 1. For each $i \leq k \leq j$, let w_{k}^{\prime} be the unique vertex in V_{k}^{\prime} such that $\pi_{k}\left(x_{1}\right) \in \operatorname{St}^{o}\left(w_{k}^{\prime}, X_{k}^{\prime}\right)$ and $w_{k}^{\prime} \preceq \pi_{k}\left(x_{1}\right)$. Likewise, let w_{k} be the unique vertex in V_{k} such that $\pi_{k}\left(x_{1}\right) \in \operatorname{St}^{o}\left(w_{k}, X_{k}\right)$ and $w_{k} \preceq \pi_{k}\left(x_{1}\right)$. Thus $w_{k}^{\prime} \in \operatorname{St}^{\circ}\left(w_{k}, X_{k}\right)$. Let k_{0} be the maximum of the integers $k \in[i, j]$ such that $\pi_{i}\left(w_{\bar{k}}^{\prime}\right)=v_{1}$ for all $i \leq \bar{k} \leq k$. It follows that $w_{k}^{\prime}=w_{k}$ for all $i \leq k \leq k_{0}$.

For $i \leq k \leq j$, let A_{k} be the collection of slices $S \in$ Slice $_{k}^{\prime}$ which contain w_{k}, and let B_{k} be the collection of slices $S \in$ Slice $_{k}^{\prime}$ which contain a child of w_{k} of type (3). We now define a sequence of measures $\left\{\alpha_{k}\right\}_{i \leq k \leq k_{0}}$ inductively as follows. Let α_{i} be the restriction of Σ_{i}^{\prime} to $\left\{S \in\right.$ Slice $\left._{i}^{\prime} \mid v_{1} \in S\right\}$. For $k<k_{0}$, we define α_{k+1} to the restriction of $K_{k} \alpha_{k}$ to Slice $_{k+1}^{\prime} \backslash B_{k+1}$, where K_{k} is the diffusion operator 6.12).

Since by Lemma 7.5 the set of descendents $\operatorname{Desc}\left(B_{k}, X_{j}^{\prime}\right)$ is disjoint from Y, it follows that

$$
\begin{equation*}
K_{j-1} \circ \ldots \circ K_{i}\left(\Sigma _ { i } ^ { \prime } \llcorner \operatorname { S l i c e } _ { i } ^ { \prime } (v _ { 1 })) \left\llcornerY=\left(K_{j-1} \circ \ldots K_{k} \alpha_{k}\right)\llcorner Y\right.\right. \tag{7.11}
\end{equation*}
$$

for all $k \leq k_{0}$.
Note that by the definition of the diffusion operator K_{k-1} we have

$$
\begin{align*}
\alpha_{k}\left(A_{k}\right) & \geq \frac{1}{m} \cdot \alpha_{k-1}\left(A_{k-1}\right) \tag{7.12}\\
\left(K_{k-1} \alpha_{k-1}\right)\left(B_{k}\right) & \geq \frac{(m-1)}{2 m} \cdot \alpha_{k-1}\left(A_{k-1}\right) \tag{7.13}
\end{align*}
$$

for all $i<k \leq k_{0}$. This yields $\alpha_{k}\left(A_{k}\right) \geq m^{-(k+1)}$ for all $i \leq k \leq k_{0}$. Hence for all $i<k \leq k_{0}$ we get

$$
\begin{aligned}
\alpha_{k}\left(\text { Slice }_{k}^{\prime}\right) & =\alpha_{k-1}\left(\text { Slice }_{k-1}^{\prime}\right)-\left(K_{k-1} \alpha_{k-1}\right)\left(B_{k}\right) \\
& \leq \alpha_{k-1}\left(\text { Slice }_{k-1}^{\prime}\right)-\frac{(m-1)}{2 m} \cdot m^{-k}
\end{aligned}
$$

and so

$$
\begin{aligned}
\alpha_{k_{0}}\left(\text { Sice }_{k_{0}}^{\prime}\right) & \leq m^{-(i+1)}-\frac{(m-1)}{2 m} \cdot\left(m^{-(i+1)}+\ldots+m^{-k_{0}}\right) \\
& =\frac{1}{2} m^{-(i+1)}+\frac{1}{2} m^{-\left(k_{0}+1\right)}
\end{aligned}
$$

This gives Claim 1 when $k_{0}=j$, by (7.11).
We now assume that $k_{0}<j$. Then $w_{k_{0}+1} \prec w_{k_{0}+1}^{\prime}$. By Lemma 7.5, every descendent $S^{\prime} \in$ Slice $_{j}^{\prime}$ of a slice $S \in A_{k_{0}+1} \cup B_{k_{0}+1}$ will satisfy $S^{\prime} \prec x_{1}$, so $S^{\prime} \notin Y$. Therefore if we define $\alpha_{k_{0}+1}$ to be the restriction of $K_{k_{0}} \alpha_{k_{0}}$ to Slice ${ }_{k_{0}+1}^{\prime} \backslash\left(A_{k_{0}+1} \cup B_{k_{0}+1}\right)$, then

$$
K_{j-1} \circ \ldots \circ K_{i}\left(\Sigma_{i}^{\prime}\left\llcorner\operatorname{Slice}_{i}^{\prime}\left(v_{1}\right)\right)(Y)=K_{j-1} \circ \ldots \circ K_{k_{0}+1}\left(\alpha_{k_{0}+1}\right)(Y) .\right.
$$

Also, as in (7.12)-(7.13), we get

$$
\begin{aligned}
K_{k_{0}} \alpha_{k_{0}}\left(A_{k_{0}+1} \sqcup B_{k_{0}+1}\right) & \geq\left(\frac{1}{m}+\frac{(m-1)}{2 m}\right) \alpha_{k_{0}}\left(A_{k_{0}}\right) \\
& \geq\left(\frac{1}{m}+\frac{(m-1)}{2 m}\right) m^{-\left(k_{0}+1\right)} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
K_{j-1} \circ \ldots \circ K_{k_{0}+1}\left(\alpha_{k_{0}+1}\right)(Y) & \leq \alpha_{k_{0}+1}\left(\operatorname{Slice}_{k_{0}+1}^{\prime}\right) \\
& =\alpha_{k_{0}}\left(\operatorname{Sice}_{k_{0}}^{\prime}\right)-K_{k_{0}} \alpha_{k_{0}}\left(A_{k_{0}+1} \sqcup B_{k_{0}+1}\right) \\
& \leq \frac{1}{2} m^{-(i+1)}+\frac{1}{2} m^{-\left(k_{0}+1\right)}-\left(\frac{1}{m}+\frac{(m-1)}{2 m}\right) m^{-\left(k_{0}+1\right)} \\
& \leq \frac{1}{2} m^{-(i+1)}-\frac{1}{2} m^{-\left(k_{0}+1\right)}
\end{aligned}
$$

so Claim 1 holds.

Proof of Claim 2. The proof is similar to that of Claim 1, except that one replaces v_{1} with v_{2}, and reverses the orderings. However, in the case when $k_{0}=j$, one simply notes that any slice $S^{\prime} \in A_{k_{0}}=A_{j}$ satisfies $x_{1} \preceq S^{\prime}, x_{2} \preceq S^{\prime}$, so $S^{\prime} \notin Y$. Therefore we may remove the measure contributed by $A_{k_{0}}$ from our estimate, making it smaller by $m^{-(j+1)}$.

Corollary 7.14. Suppose $i, j \in \mathbb{Z}, i \leq j, x_{1}, x_{2} \in X_{j}, v \in V_{i}$, and $\left\{x_{1}, x_{2}\right\} \subset\left(\pi_{i}^{j}\right)^{-1}\left(\operatorname{St}\left(v, X_{i}\right)\right)$. Then

$$
\begin{equation*}
d_{\Sigma_{j}^{\prime}}\left(x_{1}, x_{2}\right) \leq 2 m^{-i} \tag{7.15}
\end{equation*}
$$

Proof. First suppose there is an $x \in X_{j}$ such that $\pi_{i}^{j}(x)=v$. Then $\left\{\pi_{i}^{j}(x), \pi_{i}^{j}\left(x_{1}\right)\right\}$ lies in an edge of X_{i}, so by Lemma 7.8 we have $d_{\Sigma_{j}^{\prime}}\left(x, x_{1}\right) \leq$ m^{-i}, and similarly $d_{\Sigma_{j}^{\prime}}\left(x, x_{2}\right) \leq m^{-i}$. Therefore 7.15 holds.

In general, construct a new admissible inverse system $\left\{Y_{k}\right\}$ satisfying Assumption 5.1 by letting Y_{k} be the disjoint union of X_{k} with a copy of \mathbb{R} when $i<k \leq j$, and $Y_{k}=X_{k}$ otherwise. Then extend the projection $\operatorname{map} \pi_{i}: X_{i+1} \rightarrow X_{i}$ to $\pi_{i}: Y_{i+1} \rightarrow Y_{i}=X_{i}$ by mapping $Y_{i+1} \backslash X_{i+1} \simeq \mathbb{R}$ to a monotone geodesic containing v. Then for $i<k<j$ extend $\pi_{j}: X_{j+1} \rightarrow X_{j}$ to $\pi_{j}: Y_{j+1} \rightarrow Y_{j}$ by mapping $Y_{j+1} \backslash X_{j+1} \simeq \mathbb{R}$ isomorphically to $Y_{j} \backslash X_{j} \simeq \mathbb{R}$. Then there is a system of measures $\left\{\Sigma_{k, Y}^{\prime}\right\}$ for the inverse system $\left\{Y_{k}\right\}$, and it follows that the associated cut metric $d_{\Sigma_{j}^{\prime}}^{Y}$ is the same for pairs $x_{1}, x_{2} \subset X_{j} \subset Y_{j}$. Since v belongs to the image of $\pi_{i}^{j}: Y_{j} \rightarrow Y_{i}$, we have $d_{\Sigma_{j}^{\prime}}^{X}\left(x_{1}, x_{2}\right)=d_{\Sigma_{j}^{\prime}}^{Y}\left(x_{1}, x_{2}\right) \leq$ $2 m^{-i}$.

8. Proof of Theorem 1.16 under Assumption 5.1

We will define a sequence $\left\{\rho_{i}: X_{\infty} \times X_{\infty} \rightarrow[0, \infty)\right\}$ of pseudodistances on X_{∞}, such that ρ_{i} is induced by a map $X_{\infty} \rightarrow L_{1}$, and ρ_{i} converges uniformly to some $\rho_{\infty}: X_{\infty} \times X_{\infty} \rightarrow[0, \infty)$. By a standard argument, this yields an isometric embedding $\left(X_{\infty}, \rho_{\infty}\right) \rightarrow L_{1}$. (The theory of ultralimits [?, ?] implies the metric space $\left(X_{\infty}, \rho_{\infty}\right)$ isometrically embeds in an ultralimit V of L_{1} spaces; by Kakutani's theorem [?] the space V is isometric to an L_{1} space, and so ρ_{∞} isometrically embeds in L_{1}.) To complete the proof, it suffices to verify that ρ_{∞} has the properties asserted by the theorem. (Alternately, one may construct a cut measure Σ_{∞} on X_{∞} as weak limit, and use the corresponding cut metric to provide the embedding to L_{1}.)

Let $\rho_{i}=\left(\pi_{i}^{\infty}\right)^{*} d_{\Sigma_{i}^{\prime}}$ be the pullback of $d_{\Sigma_{i}^{\prime}}$ to X_{∞}. By Lemma 7.3 we have $\left|\rho_{i+1}-\rho_{i}\right| \leq 4 m^{-(i+1)}$, so the sequence $\left\{\rho_{i}\right\}$ converges uniformly to a pseudo-distance $\rho_{\infty}: X_{\infty} \times X_{\infty} \rightarrow[0, \infty)$.

Lemma 8.1.

(1) $\rho_{\infty}\left(x, x^{\prime}\right) \leq \bar{d}_{\infty}\left(x, x^{\prime}\right)$.
(2) $\rho_{\infty}\left(x, x^{\prime}\right) \geq \frac{A}{2 m^{3}} \cdot \bar{d}_{\infty}\left(x, x^{\prime}\right)$.
(3) $\rho_{\infty}\left(x, x^{\prime}\right)=\bar{d}_{\infty}\left(x, x^{\prime}\right)$ if x, x^{\prime} lie on a monotone geodesic.

Proof. (1). Suppose $x, x^{\prime} \in X_{\infty}$, and for some $i \in \mathbb{Z}$ the projections $\left\{\pi_{i}(x), \pi_{i}\left(x^{\prime}\right)\right\}$ are contained in $\operatorname{St}\left(v, X_{i}\right)$. By Corollary 7.14 we have $\rho_{\infty}\left(x, x^{\prime}\right) \leq 2 m^{-i}$. Now (1) follows from the definition of \bar{d}_{∞}, see Lemma 2.4.
(2). Suppose $x \neq x^{\prime}$, and let $j \in \mathbb{Z}$ be the minimum of the indices $k \in \mathbb{Z}$ such that $\pi_{k}(x), \pi_{k}\left(x^{\prime}\right)$ are not contained in the trimmed star of any vertex $v \in X_{k}$. Then $\bar{d}_{\infty}\left(x, x^{\prime}\right) \leq 2 m^{-(j-1)}$ by Lemma 2.7, while $\rho_{\infty}\left(x, x^{\prime}\right) \geq A m^{-(j+2)}$ by Lemma 7.7. Thus

$$
\rho_{\infty}\left(x, x^{\prime}\right) \geq \frac{A}{2 m^{3}} \cdot \bar{d}_{\infty}\left(x, x^{\prime}\right)
$$

(3). If $x, x^{\prime} \in X_{\infty}$ lie on a monotone geodesic γ, then γ will project homeomorphically under π_{i} to a monotone geodesic $\pi_{i}(\gamma)$, which contains at least $\bar{d}_{\infty}\left(x_{1}, x_{2}\right) m^{(i+1)}-2$ vertices of V_{i}^{\prime}. By Lemma 7.1 we have $\rho_{i}\left(x_{1}, x_{2}\right) \geq \bar{d}_{\infty}\left(x_{1}, x_{2}\right)-2 m^{-(i+1)}$. Since i was arbitrary we get $\rho_{\infty}\left(x, x^{\prime}\right)=\bar{d}_{\infty}\left(x, x^{\prime}\right)$.

This completes the proof of Theorem 1.16 under Assumption 5.1.

We recall the three conditions from Assumption 5.1:
(1) π_{i} is finite-to-one for all $i \in \mathbb{Z}$.
(2) $X_{i} \simeq \mathbb{R}$ and $\pi_{i}: X_{i+1} \rightarrow X_{i}^{\prime}$ is an isomorphism for all $i \leq 0$.
(3) For every $i \in \mathbb{Z}$, every vertex $v \in V_{i}$ has neighbors $v_{ \pm} \in V_{i}$ with $v_{-} \prec v \prec v_{+}$. Equivalently, X_{i} is a union of monotone geodesics (see Definition 2.13).

In this section these three conditions will be removed in turn.
9.1. Removing the finiteness assumption. We now assume that $\left\{X_{i}\right\}$ is an admissible inverse system satisfying conditions (2) and (3) of Assumption 5.1, but not necessarily the finiteness condition (1).

To prove Theorem 1.16 without the finiteness assumption, we observe that the construction of the distance function $\rho_{\infty}: X_{\infty} \times X_{\infty} \rightarrow \mathbb{R}$ can be reduced to the case already treated, in the sense that for any two points $x_{1}, x_{2} \in X_{\infty}$, we can apply the construction of the cut metrics to finite valence subsystems, and the resulting distance $\rho_{\infty}\left(x_{1}, x_{2}\right)$ is independent of the choice of subsystem. The proof is then completed by invoking the main result of [BDCK66]. We now give the details.

Definition 9.1. A finite subsystem of the inverse system $\left\{X_{j}\right\}$ is a collection of subcomplexes $\left\{Y_{j} \subset X_{j}\right\}_{j=-\infty}^{i}$, for some $i \geq 0$, such that $\pi_{j}\left(Y_{j+1}\right) \subset Y_{j}$ for all $j<i$, and $\left\{Y_{j}\right\}_{j \leq i}$ satisfies Assumption 5.1 for indices $\leq i$. In other words:
(1) π_{j} is finite-to-one for all $j \leq i$.
(2) $Y_{j} \simeq \mathbb{R}$ and $\pi_{j}: Y_{j+1} \rightarrow Y_{j}^{\prime}$ is an isomorphism for all $j \leq 0$.
(3) Y_{j} is a union of (complete) monotone geodesics for all $j \leq i$.

Suppose $i \geq 0$ and V is a finite subset of $V_{i}^{\prime} \subset X_{i}$. Then there exists a finite subsystem $\left\{Y_{j}\right\}_{j=-\infty}^{i}$ such that Y_{i} contains V. One may be obtain such a system by letting Y_{i} be a finite union of monotone geodesics in X_{i} which contains V, and taking $Y_{j}=\pi_{j}^{i}\left(Y_{i}\right)$ for $j<i$. The inductive construction of the slice measures in the finite valence case may be applied to the finite subsystem $\left\{Y_{j}\right\}$, to obtain a sequence of slice measures which we denote by $\Sigma_{j, Y}^{\prime}$, to emphasize the potential dependence on Y.

Lemma 9.2. Suppose $i \geq 0, V \subset V_{i}^{\prime}$ is a finite subset, and let $\left\{Y_{j}\right\}_{j \leq i_{Y}}$ and $\left\{Z_{j}\right\}_{j \leq i_{Z}}$ be finite subsystems of $\left\{X_{j}\right\}$, where $i \leq \min \left(i_{Y}, i_{Z}\right)$ and $V \subset Y_{i} \cap Z_{i}$. If $\Sigma_{i, Y}^{\prime}, \Sigma_{i, Z}^{\prime}$ denote the respective slice measures, then

$$
\Sigma_{i, Y}^{\prime}\left(\left\{S \in \operatorname{Slice}_{i, Y}^{\prime} \mid S \supset V\right\}\right)=\Sigma_{i, Z}^{\prime}\left(\left\{S \in \operatorname{Slice}_{i, Z}^{\prime} \mid S \supset V\right\}\right)
$$

i.e. the slice measure does not depend on the choice of subsystem containing V.

Proof. If $i \leq 0$ then $Y_{i}=Z_{i}$ and $\Sigma_{i, Y}^{\prime}=\Sigma_{i, Z}^{\prime}$ by construction. So assume that $i>0$, and that the lemma holds for all finite subsets of $V_{\bar{i}}^{\prime}$ for all $\bar{i}<i$.

Suppose $S^{\prime} \in$ Slice $_{i, Y}^{\prime}$ is a child of $S \in$ Slice $_{i-1, Y}^{\prime}$, and $V \subset S^{\prime}$. Then for every $v \in V$, either
(a) $v \in V_{i}$, in which case $\pi_{i-1}(v) \in S$, or
(b) $v \in V_{i}^{\prime} \backslash V_{i}$, in which case v is an interior point of some edge $\overline{u_{1} u_{2}}$ of $Y_{i} \subset X_{i}$, and S contains precisely one of the points $\pi_{i-1}\left(u_{1}\right)$, $\pi_{i-1}\left(u_{2}\right)$.

For a given set $V \subset V_{i}^{\prime}$, we may obtain a finite collection of finite subsets $\bar{V}_{1}, \ldots, \bar{V}_{k} \subset V_{i-1}^{\prime}$ by taking the union over $v \in V$ of either $\left\{\pi_{i-1}(v)\right\}$ in case (a) or one of the singletons $\left\{\pi_{i-1}\left(u_{1}\right)\right\},\left\{\pi_{i-1}\left(u_{2}\right)\right\}$ in case (b). By the above observation, the slices $S \in$ Slice $_{i-1, Y}^{\prime}$ with children containing V are the slices which contain precisely one of the sets $\bar{V}_{1}, \ldots, \bar{V}_{k} \subset V_{i-1}^{\prime}$. By the definition of $\Sigma_{i, Y}^{\prime}$ given by 6.12):

$$
\begin{align*}
\Sigma_{i, Y}^{\prime}(& \left(\left\{S^{\prime}\right.\right. \\
& \left.\left.\in \operatorname{Slice}_{i, Y}^{\prime} \mid S^{\prime} \supset V\right\}\right) \tag{9.3}\\
& \sum_{S \in \text { Sice }_{i-1, Y}^{\prime}} K_{S}\left(\left\{S^{\prime} \in \text { Slice }_{i, Y}^{\prime} \mid S^{\prime} \supset V\right\}\right) \Sigma_{i-1, Y}^{\prime}(S)
\end{align*}
$$

The nonzero terms in the sum come from the slices $S \in$ Slice $_{i-1, Y}^{\prime}$ which contain precisely one of the finite subsets $\bar{V}_{1}, \ldots, \bar{V}_{k} \subset V_{i-1}^{\prime}$. If $S \in$ Slice $_{i-1, Y}^{\prime}$ contains \bar{V}_{l}, then from the definition of K_{S}, the quantity $K_{S}\left(\left\{S^{\prime} \in \operatorname{Slice}_{i}^{\prime} \mid S^{\prime} \supset V\right\}\right)$ depends only on V_{l}. Therefore by the induction assumption, it follows that the nonzero terms in (9.3) will be the same as the corresponding terms in the sum defining $\Sigma_{i, Z}\left(\left\{S^{\prime} \in\right.\right.$ Slice $\left.\left._{i, Y}^{\prime} \mid S^{\prime} \supset V\right\}\right)$.

Lemma 9.4. If $\left\{Y_{j}\right\}_{j \leq i}$ is a finite subsystem such that Y_{i} contains $\left\{x_{1}, x_{2}\right\} \subset X_{i}$, then the cut metric $d_{\Sigma_{i, Y}^{\prime}}\left(x_{1}, x_{2}\right)$ does not depend on the choice of $\left\{Y_{j}\right\}_{j \leq i}$.

Proof. Let $\gamma_{1}, \gamma_{2} \subset Y_{i}$ be monotone geodesics containing x_{1} and x_{2} respectively. Then $d_{\Sigma_{i, Y}^{\prime}}\left(x_{1}, x_{2}\right)$ is the total $\Sigma_{i, Y}^{\prime}$-measure of the slices $S \in$ Slice $_{i, Y}^{\prime}$ such that either $x_{1} \preceq S \prec x_{2}$ or $x_{2} \preceq S \prec x_{1}$. But every such slice S contains precisely one point from γ_{1}, and one point from γ_{2}. As the choice of γ_{1}, γ_{2} was arbitrary, Lemma 9.2 implies that cut metric $d_{\Sigma_{i, Y}^{\prime}}\left(x_{1}, x_{2}\right)$ does not change when we pass from $\left\{Y_{j}\right\}_{j \leq i}$ to another subsystem which contains $\left\{Y_{j}\right\}_{j \leq i}$. This implies the lemma, since the union of any two finite subsystems containing $\left\{x_{1}, x_{2}\right\}$ is a finite subsystem which assigns the same cut metric to $\left(x_{1}, x_{2}\right)$.

We now define a sequence of pseudo-distances $\left\{\rho_{i}: X_{\infty} \times X_{\infty} \rightarrow\right.$ $[0, \infty)$ by letting $\rho_{i}\left(x_{1}, x_{2}\right)=d_{\Sigma_{i, Y}}\left(\pi_{i}^{\infty}\left(x_{1}\right), \pi_{i}^{\infty}\left(x_{2}\right)\right)$ where $\left\{Y_{j}\right\}_{j \leq i}$ is any finite subsystem containing $\left\{\pi_{i}^{\infty}\left(x_{1}\right), \pi_{i}^{\infty}\left(x_{2}\right)\right\}$. By Lemma 9.4 the pseudo-distance is well-defined. As in the finite valence case:

- Lemma 7.3 implies that $\left\{\rho_{i}\right\}$ converges uniformly to a pseudodistance $\rho_{\infty}: X_{\infty} \times X_{\infty} \rightarrow[0, \infty)$.
- $\frac{A}{2 m^{3}} \bar{d}_{\infty} \leq \rho_{\infty} \leq \bar{d}_{\infty}$, since this may be verified for each pair of points $x_{1}, x_{2} \in X_{\infty}$ at a time, by using finite subsystems.
- If $V \subset X_{\infty}$ is a finite subset, then the restriction of ρ_{i} to V embeds isometrically in L_{1} for all i, and hence the same is true for ρ_{∞}.

By the main result of [BDCK66], if Z is a metric space such that every finite subset isometrically embeds in L_{1}, then Z itself isometrically embeds in L_{1}. Therefore $\left(X_{\infty}, \rho_{\infty}\right)$ isometrically embeds in L_{1}.
9.2. Removing Assumption 5.1(2). Now suppose $\left\{X_{i}\right\}$ is an admissible inverse system satisfying Assumption 5.1(3), i.e. it is a union of monotone geodesics. We will reduce to the case treated in Section 9.1 by working with balls, and then take an ultralimit as the radius tends to infinity.
Lemma 9.5. Suppose $p \in X_{\infty}, R \in(0, \infty)$ and $R<m^{-(i+1)}$. Then there is an admissible inverse system $\left\{Z_{j}\right\}$ satisfying (2) and (3) of Assumption 5.1, and an isometric embedding of the rescaled ball:

$$
\phi:\left(B(p, R), m^{(i-1)} \bar{d}_{\infty}\right) \rightarrow Z_{\infty}
$$

which preserves the partial order, i.e. if $x, y \in B(p, R)$ and $x \preceq y$, then $\phi(x) \preceq \phi(y)$.

Proof. Since $R<m^{-(i+1)}$, by Lemma 2.5 there is a $v \in V_{i}$ such that $\pi_{i}(B(p, R)) \subset \operatorname{TSt}\left(v, X_{i}\right)$.

We now construct an inverse system $\left\{Y_{j}\right\}$ as follows. For $j \geq i$, we let Y_{j} be the inverse image of $\operatorname{St}\left(v, X_{i}\right)$ under the projection $\pi_{i}^{j}: X_{j} \rightarrow X_{i}$. We let $Y_{j} \simeq \mathbb{R}$ for $j<i$. To define the projection maps, we take $\pi_{j}^{Y}=$ $\left.\pi_{i}^{X}\right|_{Y_{j+1}}$ for $j \geq i$, and let $\pi_{j}^{Y}: Y_{j+1} \rightarrow Y_{j}^{\prime}$ be a simplicial isomorphism for $j<i-1$. Finally, we take $\pi_{i-1}^{Y}: Y_{i}=\operatorname{St}\left(v, X_{j}\right) \rightarrow Y_{i-1}^{\prime} \simeq \mathbb{R}$ to be an order preserving simplicial map which is an isomorphism on edges, thus the star $Y_{i}=\operatorname{St}\left(v, X_{i}\right)$ is collapsed onto two consecutive edges $\overline{w_{-} w}, \overline{w w_{+}}$in Y_{i-1}^{\prime}, where $w=\pi_{i-1}(v), w_{-} \prec w$, and $w \prec w_{+}$. Thus $\left\{Y_{j}\right\}$ is an admissible inverse system, but it need not satisfy (2) or (3) of Assumption 5.1.

Next, we enlarge $\left\{Y_{j}\right\}$ to a system $\left\{\hat{Y}_{j}\right\}$. We first attach, for every $k \geq i$, and every vertex $z \in\left(\pi_{i-1}^{k}\right)^{-1}\left(w_{-}\right)$, a directed ray γ_{z} which is directed isomorphic to $(-\infty, 0]$ with the usual subdivision and order. We then extend the projection maps so that if $\pi_{k}(z)=z^{\prime}$ then $\gamma_{z} \subset Y_{j+1}$ is mapped direction-preserving isomorphically to a ray in X_{j}^{\prime} starting at z^{\prime}. Then similarly, we attach directed rays to vertices $z \in\left(\pi_{i-1}^{k}\right)^{-1}\left(w_{+}\right)$, and extend the projection maps.

Finally, we let $\left\{Z_{j}\right\}$ be the system obtained from $\left\{\hat{Y}_{j}\right\}$ by shifting indices by $(i-1)$, in other words $Z_{j}=Y_{j-i-1}$.

Then $\left\{Z_{j}\right\}$ satisfies (2) and (3) of Assumption 5.1. For all $j \geq i$, we have compatible direction preserving simpliicial embeddings $X_{j} \supset$ $\left(\pi_{i}^{j}\right)^{-1}\left(\operatorname{St}\left(v, X_{i}\right)\right) \rightarrow Z_{j-i+1}$. We will identify points with their image under this embedding. If $x, x^{\prime} \in B(p, R)$ and $x=x_{0}, \ldots, x_{k}=x^{\prime}$ is a chain of points as in Lemma 2.4 which nearly realizes $\bar{d}_{\infty}^{X}\left(x, x^{\prime}\right)$, then the chain and the associated stars will project into $\operatorname{St}\left(v, X_{i}\right)$; this implies that $\bar{d}_{\infty}^{Z}\left(x, x^{\prime}\right) \leq m^{(i-1)} \bar{d}_{\infty}^{X}\left(x, x^{\prime}\right)$. Similar reasoning gives $m^{(i-1)} \bar{d}_{\infty}^{X}\left(x, x^{\prime}\right) \leq \bar{d}_{\infty}^{Z}\left(x, x^{\prime}\right)$.

If $\gamma \subset B(p, R)$ is a monotone geodesic segment, then $\pi_{i}(\gamma)$ is a monotone geodesic segment in $\operatorname{St}\left(v, X_{i}\right)$ with endpoints in $\operatorname{St}\left(v, X_{i}\right)$, and so $\pi_{i}(\gamma) \subset \operatorname{St}\left(v, X_{i}\right)$. Thus the embedding also preserves the partial order as claimed.

Fix $p \in X_{\infty}$. Then for every $n \in \mathbb{N}$, since $m^{n}<m^{(n+1)}$, Lemma 9.5 provides an inverse system $\left\{Z_{j}^{n}\right\}_{j \in \mathbb{Z}}$ and an embedding

$$
\phi_{n}:\left(B\left(p, m^{n}\right), m^{-n-3} \bar{d}_{\infty}\right) \rightarrow Z_{\infty}^{n}
$$

Let $f_{n}: Z_{\infty}^{n} \rightarrow L_{1}$ be a 1-Lipschitz embedding satisfying the conclusion of Theorem 1.16, constructed in Section 9.1, and let ψ_{n} : $\left(B\left(p, m^{n}\right), \bar{d}_{\infty}\right) \rightarrow L_{1}$ be the composition $f_{n} \circ \phi_{n}$, rescaled by m^{n+3}. Next we use a standard argument with ultralimits, see [?]. Then the ultralimit

$$
\omega-\lim \psi_{n}: \omega-\lim \left(B\left(p, m^{n}\right), \bar{d}_{\infty}\right) \rightarrow \omega-\lim L_{1}
$$

yields the desired 1-Lipschitz embedding, since X_{∞} embeds canonically and isometrically in $\omega-\lim \left(B\left(p, m^{n}\right), \bar{d}_{\infty}\right)$, and an ultralimit of a sequence of L_{1} spaces is an L_{1} space [?].
9.3. Removing Assumption 5.1(3). Let $\left\{X_{i}\right\}$ be an admissible inverse system.

Lemma 9.6. $\left\{X_{i}\right\}$ may be enlarged to an admissible inverse system $\left\{\hat{X}_{i}\right\}$ such that for all $i \in \mathbb{Z}, \hat{X}_{i}$ is a union of monotone geodesics.

Proof. We first enlarge X_{i} to \hat{X}_{i} as follows. For each $i \in \mathbb{Z}$, and each $v \in V_{i}$ which does not have a neighbor $w \in V_{i}$ with $w \prec v$ (respectively $v \prec w$), we attach a directed ray γ_{v}^{-}(respectively γ_{v}^{+}) which is directed isomorphic to $(-\infty, 0]$ (respectively $[0, \infty)$) with the usual subdivision and order. The resulting graphs \hat{X}_{i} have the property that every vertex $v \in \hat{X}_{i}^{\prime}$ is the initial vertex of directed rays in both directions. Therefore we may extend the projection maps $\pi_{i}: X_{i+1} \rightarrow X_{i}$ by mapping $\gamma_{v}^{ \pm} \subset$ X_{i+1} direction-preserving isomorphically to a ray starting at $\pi_{i}(v) \in$ X_{i}^{\prime}. The resulting inverse system is admissible.

If \bar{d}_{∞}^{X} and $\bar{d}_{\infty}^{\hat{X}}$ are the respective metrics, then for all $x, x^{\prime} \in X_{\infty} \subset$ \hat{X}_{∞}, we clearly have $\bar{d}_{\infty}^{\hat{X}}\left(x, x^{\prime}\right) \leq \bar{d}_{\infty}^{X}\left(x, x^{\prime}\right)$. Note that if $x, x^{\prime} \in X_{\infty}$ and $\left\{\pi_{j}(x), \pi_{j}\left(x^{\prime}\right)\right\}$ belong to the trimmed star of a vertex $v \in \hat{X}_{j}$, then in fact v is a vertex of X_{j} (since the trimmed star of a vertex in $\hat{X}_{j} \backslash X_{j}$ does not intersect $\left.X_{j}\right)$. Thus by Lemma 2.7 we have $\bar{d}_{\infty}^{\hat{X}}\left(x, x^{\prime}\right) \geq$ $\frac{2 m^{2}}{(m-2)} \bar{d}_{\infty}^{X}\left(x, x^{\prime}\right)$. (We remind the reader of our standing assumption after Remark 2.1, requiring $m \geq 3$.) Therefore if $f: \hat{X}_{\infty} \rightarrow L_{1}$ is the embedding given by Section 9.2 , then the composition $X_{\infty} \hookrightarrow \hat{X}_{\infty} \xrightarrow{f}$ L_{1} satisfies the requirements of Theorem 1.16.
10. The Laakso examples from Laa00 and Example 1.4

In Laa00 Laakso constructed Ahlfors Q-regular metric spaces satisfying a Poincare inequality for all $Q>1$. In the section we will show that the simplest example from [Laa00] is isometric to Example 1.4 .
10.1. Laakso's description. We will (more or less) follow Section 1 of Laa00, in the special case that (in Laakso's notation) the Hausdorff dimension $Q=1+\frac{\log 2}{\log 3}, t=\frac{1}{3}$, and $K \subset[0,1]$ is the middle third Cantor set.

Define $\phi_{0}: K \rightarrow K, \phi_{1}: K \rightarrow K$ by

$$
\phi_{0}(x)=\frac{1}{3} x, \quad \phi_{1}(x)=\frac{2}{3}+\frac{1}{3} x .
$$

Then ϕ_{0} and ϕ_{1} generate a semigroup of self-maps $K \rightarrow K$. Given a binary string $a=\left(a_{1}, \ldots, a_{k}\right) \in\{0,1\}^{k}$, we let $|a|=k$ denote its length. For every a, let $K_{a} \subset K$, be the image of K under the corresponding word in the the semigroup:

$$
K_{a}=\phi_{a_{1}} \circ \ldots \circ \phi_{a_{k}}(K) .
$$

Thus for every $k \in \mathbb{N}$ we have a decomposition of K into a disjoint union $K=\sqcup_{|a|=k} K_{a}$.

For each $k \in \mathbb{N}$, let $S_{k} \subset[0,1]$ denote the set of $x \in[0,1]$ with a finite ternary expansion $x=. m_{1} \ldots m_{k}$ where the last digit m_{k} is nonzero. In other words, if V_{j} is the set of vertices of the subdivision of $[0,1]$ into intervals of length 3^{-j} for $j \geq 0$, then $S_{k}=V_{k} \backslash V_{k-1}$.

For each $k \in \mathbb{N}$ we define an equivalence relation \sim_{k} on $[0,1] \times K$ as follows. For every $q \in S_{k}$, and every binary string $a=\left(a_{1}, \ldots, a_{k}\right)$, we identify $\{q\} \times K_{\left(a_{1}, \ldots, a_{k}, 0\right)}$ with $\{q\} \times K_{\left(a_{1}, \ldots, a_{k}, 1\right)}$ by translation, or equivalently, for all $x \in K$, we identify $\phi_{a_{1}} \circ \ldots \circ \phi_{a_{k}} \circ \phi_{0}(x)$ and $\phi_{a_{1}} \circ \ldots \circ \phi_{a_{k}} \circ \phi_{1}(x)$.

Let \sim be the union of the equivalence relations $\left\{\sim_{k}\right\}_{k \in \mathbb{N}}$; this is an equivalence relation. We denote the collection of cosets $([0,1] \times K) / \sim$ by F, equip it with the quotient topology, and let $\pi:[0,1] \times K \rightarrow F$ be the canonical surjection. The distance function on F is defined by
$d\left(x, x^{\prime}\right)=\inf \left\{\mathcal{H}^{1}(\gamma) \mid \gamma \subset[0,1] \times K, \pi(\gamma)\right.$ contains a path from x to $\left.x^{\prime}\right\}$, where \mathcal{H}^{1} denotes 1-dimensional Hausdorff measure.
10.2. Comparing F with Example 1.4 . For every $k \in \mathbb{N}$ we will construct 1-Lipschitz maps $\iota_{k}: X_{k} \rightarrow F, f_{k}: F \rightarrow X_{k}$ such that $f_{k} \circ \iota_{k}=\mathrm{id}_{X_{k}}$, such that the image of ι_{k} is const $\cdot 3^{-k}$-dense in F. This implies that ι_{k} is an isometric embedding for all k, and is a const $\cdot 3^{-k}{ }_{-}$ Gromov-Hausdorff approximation. Therefore F is the Gromov-Hausdorff limit of the sequence $\left\{X_{k}\right\}$, and is isometric to $\left(X_{\infty}, d_{\infty}\right)$.

For every k, there is a quotient map $K \rightarrow\{0,1\}^{k}$ which maps the subset $K_{\left(a_{1}, \ldots, a_{k}\right)} \subset K$ to $\left(a_{1}, \ldots, a_{k}\right)$. This induces quotient maps $K \times[0,1] \rightarrow\{0,1\}^{k} \times[0,1]$, and $f_{k}: F \rightarrow X_{k}$, where X_{k} is the graph from Example 1.4. When X_{k} is equipped with the path metric described in the example, the map f_{k} is 1 -Lipschitz, because any set $U \subset[0,1] \times K$ with diameter $<3^{-k}$ projects under the composition $[0,1] \times K \rightarrow F \xrightarrow{f_{k}} X_{k}$ to a set $\bar{U} \subset X_{k}$ with $\operatorname{diam}(\bar{U}) \leq \operatorname{diam}(U)$.

For every k, there is an injective map $\{0,1\}^{k} \rightarrow K$ which sends $\left(a_{1}, \ldots, a_{k}\right)$ to the smallest element of K_{a}, i.e. $\phi_{a_{1}} \circ \ldots \circ \phi_{a_{k}}(0)$. This induces maps $[0,1] \times\{0,1\}^{k} \rightarrow[0,1] \times K$ and $\iota_{k}: X_{k} \rightarrow F$. It follows from the definition of the metric on F that ι_{k} is 1-Lipschitz, since geodesics in X_{k} can be lifted piecewise isometrically to segments in $[0,1] \times K$.

We have $f_{k} \circ \iota_{k}=\operatorname{id}_{X_{k}}$. Therefore ι_{k} is an isometric embedding. Given $x \in[0,1] \times K$, there exist $i \in\left\{0, \ldots, 3^{k}\right\}, a \in\{0,1\}^{k}$ such that $x \in W=\left[\frac{i-1}{3^{k}}, \frac{i}{3^{k}}\right] \times K_{a}$. Now W / \sim is a subset of F which intersects $\iota_{k}\left(X_{k}\right)$, and which has diameter $\leq 3^{-k} \operatorname{diam}(F)$ due to the selfsimilarity of the equivalence relation, so ι_{k} is a $3^{-k} \operatorname{diam}(F)$-GromovHausdorff approximation.

11. Realizing metric spaces as inverse limits: further GENERALIZATION

In this section we consider the realization problem in greater generality.

Let $f: Z \rightarrow Y$ be a 1-Lipschitz map between metric spaces. We assume that for all $r \in(0, \infty)$, if $U \subset Y$ and $\operatorname{diam}(U) \leq r$, then the r-components of $f^{-1}(U)$ have diameter at most $C r$.

Remark 11.1. Some variants of this assumption are essentially equivalent. Suppose $C_{1}, C_{2}, \bar{C}_{1} \in(0, \infty)$. If for all $r \in(0, \infty)$ and every subset $U \subset Y$ with $\operatorname{diam}(U) \leq r$, the $C_{1} r$-components of $f^{-1}(U)$ have
diameter $\leq C_{2} r$, it follows easily that the $\bar{C}_{1} r$-components of $f^{-1}(U)$ have diameter $\leq C_{2} r \cdot \max \left(1, \frac{\bar{C}_{1}}{C_{1}}\right)$.

11.1. Realization as an inverse limit of simplicial complexes.

 Fix $m \in(1, \infty)$ and $A \in(0,1)$. For every $i \in \mathbb{Z}$, let \mathcal{U}_{i} be an open cover of Y such that for all $i \in \mathbb{Z}$:(1) The cover \mathcal{U}_{i+1} is a refinement of \mathcal{U}_{i}.
(2) Every $U \in \mathcal{U}_{i}$ has diameter $\leq m^{-i}$.
(3) For every $y \in Y$, the ball $B\left(y, A m^{-i}\right)$ is contained in some $U \in \mathcal{U}_{i}$.

Next, for all $i \in \mathbb{Z}$ we let $f^{-1}\left(\mathcal{U}_{i}\right)=\left\{f^{-1}(U) \mid U \in \mathcal{U}_{i}\right\}$, and define $\hat{\mathcal{U}}_{i}$ to be the collection of pairs (\hat{U}, U) where $U \in \mathcal{U}_{i}$ and \hat{U} is an $m^{-i_{-}}$ component of $f^{-1}(U)$.

We obtain inverse systems of simplicial complexes $\left\{L_{i}=\operatorname{Nerve}\left(\mathcal{U}_{i}\right)\right\}_{i \in \mathbb{Z}}$, and $\left\{K_{i}=\operatorname{Nerve}\left(\hat{\mathcal{U}}_{i}\right)\right\}_{i \in \mathbb{Z}}$, where we view $\hat{\mathcal{U}}_{i}$ as an open cover of Z indexed by the elements of $\hat{\mathcal{U}}_{i}$. There are canonical simplicial maps $K_{i} \rightarrow L_{i}$ which send $(\hat{U}, U) \in \hat{\mathcal{U}}_{i}$ to $U \in \mathcal{U}_{i}$.

We may define a metric $d_{K_{\infty}}$ on the inverse limit K_{∞} by taking the supremal metric on K_{∞} such that for all $i \in \mathbb{Z}$ and every vertex $v \in K_{i}$, the inverse image of the closed $\operatorname{star} \operatorname{St}\left(v, K_{i}\right)$ under the projection $K_{\infty} \rightarrow K_{i}$ has diameter $\leq m^{-i}$. Let \bar{K}_{∞} be the completion of $\left(K_{\infty}, d_{K_{\infty}}\right)$.

For every $z \in Z$ and $i \in \mathbb{Z}$, there is a canonical (possibly infinite dimensional) simplex σ_{i} in K_{i} corresponding to the collection of $U \in \hat{\mathcal{U}}_{i}$ which contain z. The inverse images $\left(\pi_{i}^{\infty}\right)^{-1}\left(\sigma_{i}\right) \subset \bar{K}_{\infty}$ form a nested sequence of subsets with diameter tending to zero, so they determine a unique point in the complete space \bar{K}_{∞}. This defines a map $\phi: Z \rightarrow$ \bar{K}_{∞}.

Proposition 11.2. ϕ is a bilipschitz homeomorphism.

Proof. If $z, z^{\prime} \in Z$ and $d\left(z, z^{\prime}\right) \leq A m^{-i}$, then $f(z), f\left(z^{\prime}\right) \in U$ for some $U \in \mathcal{U}_{i}$, and hence $z, z^{\prime} \in \hat{U}$ for some m^{-i}-component $\hat{U} \in \hat{\mathcal{U}}_{i}$ of U. It follows that $d_{K_{\infty}}\left(\phi(z), \phi\left(z^{\prime}\right)\right) \leq m^{-i}$.

If $z, z^{\prime} \in Z$ and $d_{K_{\infty}}\left(\phi(z), \phi\left(z^{\prime}\right)\right) \leq m^{-i}$, it follows from the definitions that $d\left(z, z^{\prime}\right) \lesssim m^{-i}$.

There is another metric \bar{d}_{∞} on Z, namely the supremal metric with the property that every element of $\hat{\mathcal{U}}_{i}$ has diameter at most m^{-i}. Reasoning similar to the above shows that \bar{d}_{∞} is comparable to d_{Z}.
11.2. Factoring f into "locally injective" maps. Let $\left\{\mathcal{U}_{i}\right\}_{i \in \mathbb{Z}}$ be a sequence of open covers as above.

For every $i \in \mathbb{Z}$, we may define a relation on Z by declaring that $z, z^{\prime} \in Z$ are related if $f(z)=f\left(z^{\prime}\right)$ and $\left\{z, z^{\prime}\right\} \subset \hat{U}$ for some $(\hat{U}, U) \in$ $\hat{\mathcal{U}}_{i}$. We let \sim_{i} be the equivalence relation this generates. Note that \sim_{i+1} is a finer equivalence relation than \sim_{i}.

For every $i \in \mathbb{Z}$, we have a pseudo-distance d_{i} on Z defined by letting d_{i} be the supremal distance function $\leq d_{Z}$ such that $d_{i}\left(z, z^{\prime}\right)=0$ whenever $z \sim_{i} z^{\prime}$. Then $d_{i} \leq d_{i+1} \leq d_{Z}$, so we have a well-defined limiting distance function $d_{\infty}: Z \times Z \rightarrow[0, \infty)$. We let Z_{i} be the metric space obtained from $\left(Z, d_{i}\right)$ by collapsing zero diameter subsets to points. We get an inverse system $\left\{Z_{i}\right\}_{i \in \mathbb{Z}}$ with 1-Lipschitz projection maps, and a compatible family of mappings $f_{i}: Z_{i} \rightarrow Y$ induced by f.

The map f_{i} is "injective at scale $\simeq m^{-i}$ " in the following sense. If $z \in Z$, and $\bar{B} \subset Z_{i}$ is the image of the ball $B\left(z, A m^{-i}\right)$ under the canonical projection map $Z \rightarrow Z_{i}$, then the restriction of f_{i} to \bar{B} is injective.

Proposition 11.3. If $z, z^{\prime} \in Z$ and $d_{i}\left(z, z^{\prime}\right)<m^{-i}$, then $d\left(z, z^{\prime}\right) \lesssim$ m^{-i}. Consequently $d_{\infty} \simeq d_{Z}$.

Proof. If $z_{1}, z_{2} \in Z$ and $z_{1} \sim_{i} z_{2}$, then z_{1}, z_{2} belong to the same $m^{-i_{-}}$ component of $f^{-1}\left(\overline{B\left(f\left(z_{1}\right), 2 m^{-i}\right)}\right)$), and hence $d\left(z_{1}, z_{2}\right) \leq 2 C m^{-i}$.

If $z, z^{\prime} \in Z$ and $d_{i}\left(z, z^{\prime}\right)<m^{-i}$, then there are points $z=z_{0}, \ldots, z_{k}=$ $z^{\prime} \in Z$ such if

$$
J=\left\{j \in\{1, \ldots, k\} \mid z_{j-1} \not \chi_{i} z_{j}\right\}
$$

then

$$
\sum_{j \in J} d\left(z_{j-1}, z_{j}\right)<m^{-i}
$$

Since f is 1-Lipschitz, it follows that $f\left(z_{j}\right) \in B\left(f(z), m^{-i}\right)$ for all $j \in\{1, \ldots, k\}$. Moreover, the z_{j} 's lie in the same $2 m^{-i}$-component of $f^{-1}\left(B\left(f(z), m^{-i}\right)\right)$, so $d\left(z, z^{\prime}\right) \leq 2 C m^{-i}$.

References

[Ass80] Patrice Assouad. Plongements isométriques dans L^{1} : aspect analytique. In Initiation Seminar on Analysis: G. Choquet-M. Rogalski-J. SaintRaymond, 19th Year: 1979/1980, volume 41 of Publ. Math. Univ. Pierre et Marie Curie, pages Exp. No. 14, 23. Univ. Paris VI, Paris, 1980.
[BDCK66] Jean Bretagnolle, Didier Dacunha-Castelle, and Jean-Louis Krivine. Lois stables et espaces L^{p}. Ann. Inst. H. Poincaré Sect. B (N.S.), 2:231259, 1965/1966.
[BP99] M. Bourdon and H. Pajot. Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings. Proc. Amer. Math. Soc., 127(8):2315-2324, 1999.
[CKa] J. Cheeger and B. Kleiner. in preparation.
[CKb] J. Cheeger and B. Kleiner. Metric differentiation for PI spaces. In preparation.
[CK06a] J. Cheeger and B. Kleiner. Differentiating maps into L^{1} and the geometry of BV functions. To appear in Ann. Math., preprint available at http://arxiv.org/abs/math/0611954, 2006.
[CK06b] J. Cheeger and B. Kleiner. Differentiating maps to L^{1} and the geometry of BV functions. Preprint, 2006.
[CK06c] J. Cheeger and B. Kleiner. Generalized differentiation and bi-Lipschitz nonembedding in L^{1}. C.R.A.S Paris, (5):297-301, 2006. To appear.
[CK06d] J. Cheeger and B Kleiner. On the differentiability of lipschtz maps from metric measure spaces into banach spaces. In Inspired by S.S $\dot{\dot{j}}$ Chern, A Memorial volume in honor of a great mathematician, volume 11 of Nankai tracts in Mathematics, pages 129-152. World Scientific, Singapore, 2006.
[CK08] J. Cheeger and B. Kleiner. Differentiation of Lipschitz maps from metric measure spaces to Banach spaces with the Radon Nikodym Property. to appear in GAFA, Geom. Funct. Anal, 2008.
[CK09] J. Cheeger and B. Kleiner. Metric differentiation and monotonicity and maps to L^{1}. 2009.
[CKN09] J. Cheeger, B. Kleiner, and A. Naor. A $(\log n)^{\Omega(1)}$ integrality gap for the Sparsest Cut SDP. To appear in Proceedings of 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2009), 2009.
[DL97] Michel Marie Deza and Monique Laurent. Geometry of cuts and metrics, volume 15 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 1997.
[Kir94] B. Kirchheim. Rectifiable metric spaces: local structure and regularity of the Hausdorff measure. Proc. Amer. Math. Soc., 121(1):113-123, 1994.
[Laa00] T. Laakso. Ahlfors Q-regular spaces with arbitrary $Q>1$ admitting weak Poincaré inequality. Geom. Funct. Anal., 10(1):111-123, 2000.
[LP01] Urs Lang and Conrad Plaut. Bilipschitz embeddings of metric spaces into space forms. Geom. Dedicata, 87(1-3):285-307, 2001.

