
Spaces with nonpositive curvature and their idealboundariesChristopher B. Croke�Bruce KleineryFebruary 6, 1998AbstractWe construct a pair of �nite piecewise Euclidean 2-complexes with non-positive curvature which are homeomorphic but whose universal covers havenonhomeomorphic ideal boundaries, settling a question from [8].1.1 IntroductionThe ideal boundary of a locally compact Hadamard space1 X is a compact metrizablespace on which the isometry group of X acts by homeomorphisms. Even though theideal boundary is a well known construct with many applications in the literature (seefor example [10, 4, 2]), the action of the isometry group on the boundary has not beenstudied closely except in the case of symmetric spaces, Gromov hyperbolic spaces,Euclidean buildings, and a handful of other cases. In the Gromov hyperbolic case2the boundary behaves nicely with respect to quasi-isometries: any quasi-isometryf : X1 ! X2 between Gromov hyperbolic Hadamard spaces induces a boundaryhomeomorphism @1f : @1X1 ! @1X2 [7]. This has the consequence that the idealboundary is \geometry independent":If a �nitely generated group G acts discretely, cocompactly and isometrically ontwo Gromov hyperbolic Hadamard spaces X1; X2, then there is a G-equivariant home-omorphism @1X1 ! @1X2.In [8, p. 136] Gromov asked whether this fundamental property still holds if thehyperbolicity assumption is dropped. Sergei Buyalo [5] and the authors [6] inde-pendently answered Gromov's question negatively: [5, 6] exhibit a pair of deck groupinvariant Riemannian metrics on a universal cover which have ideal boundaries home-omorphic to S2, such that the deck group actions on the boundaries are topologically�Supported by NSF grants DMS-95-05175 and DMS-96-26-232.ySupported by a Sloan Foundation Fellowship, and NSF grants DMS-95-05175, DMS-96-26911,DMS-9022140.1Following [3] we will call complete, simply connected length spaces with nonpositive curvatureHadamard spaces.2The same statement is true of higher rank irreducible symmetric spaces and Euclidean buildingsby [9]. 1



inequivalent. Gromov also asked if @1X1 must be (non-equivariantly) homeomorphicto @1X2 whenever X1 and X2 are Hadamard spaces admitting discrete, cocompact,isometric actions by the same �nitely generated group G. In this paper we show thateven this can fail:Theorem 1 There is a pair �X1; �X2 of homeomorphic �nite 2-complexes with non-positive curvature such that the universal covers X1; X2 have nonhomeomorphic idealboundaries.We remark that if M1 and M2 are closed Riemannian manifolds with nonpositivecurvature and �1(M1) ' �1(M2), then their universal covers will have ideal boundarieshomeomorphic to spheres of the same dimension.Although some basic questions about the boundary have now been answered, anumber of related issues are wide open, except in a few special cases. It would beinteresting to know exactly which geometric features determine the ideal boundaryof a Hadamard space up to (equivariant) homeomorphism. This question has a cleananswer (see [6]) in the case of graph manifolds or the 2-complexes considered in thispaper. In order to answer the question in any generality, it appears that it will benecessary to develop a kind of \generalized symbolic dynamics" for geodesic 
ows ofnonpositively curved spaces.1.2 Notation and preliminariesA reference for the facts recalled here is [3]. If X is a Hadamard space, then wedenote the ideal boundary of X by @1X, the geodesic segment joining x1; x2 2 X byx1x2, and the geodesic ray leaving p 2 X in the asymptote class of � 2 @1X by p�.If p 2 X, �1; �2 2 @1X, then \p(�1; �2) is the angle between the initial velocities ofthe rays p�1; p�1. \T (�1; �2) := supp2X \p(�1; �2) will denote the Tits angle between�1; �2 2 @1X. If p 2 X then \p(�1; �2) = \T (�1; �2) i� the rays p�1 and p�2 bound a
at sector.By the Cartan-Hadamard theorem [1, 3], the universal cover of a connected, com-plete, length space with nonpositive curvature is a Hadamard space with the naturalmetric. Let Z be a complete, connected space with nonpositive curvature, and let� : ~Z ! Z be the universal cover. If Y � Z is a closed, connected, locally convexsubset, then the induced length metric on Y has nonpositive curvature, ��1(Y ) � ~Zis a disjoint union of closed convex components isometric to ~Y , and the induced map�1(Y )! �1(Z) is a monomorphism.1.3 Torus complexesThe following piecewise Euclidean 2-complexes were suggested to us by BernhardLeeb, after a discussion of the graph manifold geometry in [6].Let T0; T1; T2 be 
at two-dimensional tori. For i = 1; 2, we assume that there are(primitive) closed geodesics ai � T0 and bi � Ti with length(ai) = length(bi), and weglue Ti to T0 by identifying ai with bi isometrically. We assume that a1 and a2 lie indistinct free homotopy classes, and intersect once at an angle � 2 (0; �2 ]. The resulting2



2-complex �X is nonpositively curved as a length space because gluing of nonpositivelycurved spaces along locally convex subsets produces a nonpositively curved space [3].We refer to �X as a torus complex. For i = 1; 2 let �Yi := T0 [ Ti � �X. Notice that�Yi and T0 are closed, locally convex subsets of �X. Therefore the inclusions �Yi � �Xand T0 � �X induce monomorphisms of fundamental groups.1.4 The structure of the universal coverLet � : X ! �X be the universal covering of �X. X is a Hadamard space by theCartan-Hadamard theorem. A block is a connected component of ��1( �Yi) � X,and a wall is a connected component of ��1(T0) � X. Let B and W denote the(locally �nite) collection of blocks and walls in X. Each block (resp. wall) is a closed,connected, locally convex subset of X. Hence by 1.2 each block (resp. wall) is aconvex subset of X which is intrinsically isometric to the universal cover of �Yi (resp.T0). If W 2 W, B 2 B, then either W \ B = ; or W \ B = W since W \ B isopen and closed in W ; W is contained in precisely two blocks, one covering �Y1 andthe other covering �Y2. If B1; B2 2 B are distinct blocks and B1 \B2 6= ;, then (afterrelabelling if necessary) Bi covers �Yi and so B1 \ B2 consists of a (convex) union ofwalls; therefore B1 \ B2 = W for some W 2 W. When B1 \ B2 6= ; we will say thatthe blocks B1 and B2 are adjacent.�Yi is a \
at" S1 bundle over a bouquet of two circles, so the universal cover Yiof �Yi (and hence each block) is isometric to the metric product of a simplicial treewith R. A singular geodesic of a block B is the inverse image of a vertex underthe projection of B to its tree factor. Note that singular geodesics of adjacent blockswhich lie in the common wall intersect at angle �.The nerve of B (the simplicial complex recording (multiple) intersections of blocks)is a simplicial tree. (This is just the Bass-Serre tree of the amalgamated free productdecomposition �1( �X) = �1( �Y1) ��1(T0) �1( �Y2).) To see this note that if � > 0 issu�ciently small and B� is the collection of (open) �-tubular neighborhoods of blocks,then Nerve(B�) is isomorphic to Nerve(B). Using a partition of unity subordinateto this cover of jNerve(B�)j one gets a continuous map � : X ! jNerve(B�)j. Anymap 
 : S1 ! jNerve(B)j can be \lifted" to X up to homotopy: there is a 
̂ :S1 ! X so that p � 
̂ is homotopic to 
. Since �1(X) is trivial, this implies that�1(jNerve(B)j) is trivial. In particular, every wall separates X. We will say thata wall (resp. block) separates two blocks B1; B2 2 B if the edge (resp. vertex)of jNerve(B)j corresponding to the wall (resp. vertex) lies between the vertices ofjNerve(B)j corresponding to B1 and B2.Our plan is to show that the subspace [B2B @1B � @1X can be characterizedpurely topologically3, and that its topology is di�erent depending on whether � = �2or not. It will then follow that a torus complex with � < �2 and a torus complex with� = �2 have universal covers with nonhomeomorphic ideal boundaries.3At �rst glance one might think that [B2B @1B is a path component of @1X , but this turnsout not to be the case. It is a \safe" path component, see 1.7.
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1.5 ItinerariesFor each p 2 X n [W2WW; � 2 @1X, we get a sequence of blocks Bi called thep-itinerary (simply the itinerary if the basepoint p is understood) of �, as follows.Let Bi be the ith block that the ray p� enters; the ray enters a block B if it reachesa point in B n [W2WW . We will denote the p-itinerary of p� by Itin(p�) or Itin(�).Lemma 2 The itinerary of any � 2 @1X is the sequence of successive vertices of ageodesic segment or geodesic ray in the simplical tree Nerve(B).Proof. Blocks are convex, so a geodesic cannot revisit any block which it left. Thetopological frontier of any B 2 B is the union of the walls contained in B, so ageodesic segment which leaves B must arrive at a wall W � B, and then enter theblock B0 2 B adjacent to B along W . The collection B is locally �nite, so the lemmafollows. �Note that � 2 @1X has a �nite itinerary i� � 2 @1B for some B 2 B.1.6 Local components of @1XSince each block B is isometric to the product of simplicial tree with R, @1B ishomeomorphic to the suspension of a Cantor set. A pole of B is one of the twosuspension points in @1B.Lemma 3 If B1; B2 2 B, then one of the following holds:1. @1B1 \ @1B2 = ;.2. B1 \ B2 = W 2 W and @1B1 \ @1B2 = @1W .3. There is a B 2 B such that B \ Bi = Wi 2 W and @1B1 \ @1B2 is the set ofpoles of B.Proof. Suppose B1; B2 2 B are distinct blocks, � 2 @1B1 \ @1B2, and W 2 W isa wall separating B1 from B2. Choose basepoints bi 2 Bi, w 2 W . If xk 2 b1� isa sequence tending to in�nity, and yk 2 b2� is a sequence with d(yk; xk) < C, thenwe can �nd a zk 2 xkyk \W since W separates B1 from B2. Therefore wzk � Wconverges, and the limit ray w� lies in W . Hence � 2 @1W .Note that if W1; W2 � B 2 B, then @1W1 \ @1W2 is just the set of poles of B;and � 2 @1X cannot be a pole of two adjacent blocks simultaneously.The lemma follows, since @1B1 \ @1B2 6= ; now implies that the combinatorialdistance between B1 and B2 in Nerve(B) is � 2. �Lemma 4 Suppose � lies on the ideal boundary of a block B 2 B, and assume � isnot a pole of any block other than B. Then the path component of � in a suitableneighborhood 
 of � is contained in @1B.Proof. Case I: � 2 @1B is a pole of B. Choose p 2 B n [W2WW . Recall (see section1.3) that � is the angle between singular geodesics of adjacent blocks lying in thecommon wall, so � is the minimum Tits angle between � and any pole of a block4



adjacent to B. Let 
 := f�0 2 @1X j \p(�0; �) < �2 g, where \p(�; �0) is the anglebetween the initial velocities of the two rays p�; p�0. We de�ne an exit from B tobe a singular geodesic E � B of a block adjacent to B. A ray p�0 exits from B viaE if p�0 \ B is a geodesic segment ending at E, and the ray p�0 continues into theblock containing E. For each exit E from B, let 
E be the set of �0 2 
 such thatp�0 exits B via E.Sublemma 5 
E is an open and closed subset of 
.Proof. Openness. If �0 2 
E, then p�0\B is a segment ending at some e 2 E, and p�0enters the block B0 adjacent to B which contains E. But then any su�ciently nearby(in the cone topology) ray p�00 also leaves B at a point close to e; clearly this pointmust lie on E as the collection of exits is discrete. Therefore 
E is open in @1X.Closedness. Let E 0 � E be the set of \exit points" for elements of 
E: theendpoints of segments p�0 \B, where �0 2 
E. E 0 is bounded, for otherwise we could�nd a sequence ek 2 E 0 with limk!1 d(ek; p) =1, and get a limit ray pe1 � B withe1 2 @1E � @1B \ @1B0, and \p(�; e1) � �2 ; this is absurd since e1 is a pole of B0and so \p(e1; �) = \T (e1; �) � �. Now suppose �0k 2 
E and limk!1 �0k = �01 2 
.We have, after passing to a subsequence if necessary, that p�0k\B = pek where ek 2 Eand limk!1 ek = e1 2 E. Then p�01\B contains pe1; if p�01\B 6= pe1 then clearlyp�01 contains a segment of E, forcing pe1 � E, which contradicts the choice of p.Thus we have �01 2 
E. �It follows that the connected (or path) component of � in 
 is contained in @1B,since any subset C � 
 containing � and intersecting 
E admits a separation C =(C \
E)[ (C n
E) into open subsets of C, and any �0 2 
 n@1B lies in 
E for someE.Case II: � 2 @1W where W is the wall separating two adjacent blocks B1, B2, and �is not a pole. Pick p 2 W not lying on a singular geodesic. Let  be the minimumTits distance between � and a pole of Bi, i = 1; 2, and set
 := f�0 2 @1X j \p(�0; �) <  2 g:Let E be a singular geodesic of B1 or B2 which is contained in W . We say that theray p�0 exits W via E if p�0 \W ends at a point in E, and p�0 then immediatelyenters the block corresponding to E. Let 
E be the set of �0 2 
 so that p�0 exits Wvia E. One checks as in case I that 
E is closed and open in 
, so we conclude thatthe connected component of � in 
 is contained in @1W .Case III: � 2 @1B does not lie in the boundary of any block other than B. Let � bethe minimum Tits angle between � and a pole of B, and set
 := f�0 2 @1X j \p(�0; �) < �2 g:Pick p 2 B n [W2WW . Since � is not a pole of B, the ray p� determines an isomet-rically embedded Euclidean half-plane H � B, the intersection of the 
at planes inB containing it. Let B0 be the collection of blocks adjacent to B. If B0 2 B0 then5



B0\H (= W \H where W = B\B0 is the wall between B and B0) is either empty, asingular geodesic of B, or a 
at strip with �nite width bounded by singular geodesics,for otherwise we would have � 2 @1B0. Removing the singular geodesics and [B02B0B0from H, we get a subset H0 whose connected components are a countably in�nitecollection of open strips. If S � H0 is such a strip, we let 
S be the set of �0 2 
 sothat p�0 \ S 6= ;. As in cases I and II, 
S is closed and open in 
. This forces theconnected component of � in 
 to be contained in @1H � @1B, as desired. �1.7 Vertices and safe pathsWe say that � 2 @1X is a vertex if there is a neighborhood U of � such that thepath component of � in U is homeomorphic to the cone over a Cantor set, with �corresponding to the vertex of the cone. By Lemma 4 the set of vertices in [B2B @1Bis precisely the set of poles in [B2B @1B (a priori there may be other vertices in@1X).A path c : [0; 1]! @1X is safe if c(t) is a vertex for only �nitely many t 2 [0; 1].Since being joinable by a safe path is an equivalence relation on pairs of points, andsince @1B1 [ @1B2 is safe path connected when B1 is adjacent to B2, it follows that[B2B @1B is safe path connected.Lemma 6 [B2B @1B is a safe path component of @1X.Proof. First note that if c : [0; 1]! @1X is a path, c(t) is not a vertex when t 2 (0; 1),B 2 B, and c(0) 2 @1B is not a pole of any block other than B, then c([0; 1]) � @1B.This follows from Lemma 4, the fact that @1B is closed in @1X, and a continuityargument.Now if B0 2 B, c : [0; 1] ! @1X is a safe path starting in @1B0, and 0 = t0 <t2 : : : < tk = 1 are chosen so that c(t) is a vertex only if t = ti for some i, then oneproves by induction on i that the intervals [ti�1; ti] are mapped into [B2B @1B. �Lemma 7 Pick B0 2 B and p 2 B0 n [W2WW . Let c : [0; 1]! @1X be a path, andsuppose c(0) has an in�nite p-itinerary. Then either c(t) has the same p-itinerary asc(0) for all t 2 I, or there is a �t 2 I so that c(�t) has a �nite itinerary. In particular,by Lemma 6, if c is a safe path then c(t) has the same p-itinerary as c(0) for all t 2 I.Proof. Suppose �k 2 @1X is a sequence with limk!1 �k = � 2 @1X, and a certainblock B is in the itinerary of p�k for every k. Then either1. Itin(�) contains Bor2. Itin(�) is �nite and only contains blocks lying between B0 and B.To see this, suppose B0 is in Itin(�) and x 2 p�\Int(B0). Then x = limj!1 xj wherexj 2 p�j \ Int(B0) for su�ciently large j, so B0 is in Itin(�j) for su�ciently large j.This means that B0 lies between B0 and B, for otherwise B would have to lie betweenB0 and B0, forcing B 2 Itin(�).The lemma now follows, since if B is in Itin(c(0)) but not in Itin(c(t)) for allt 2 [0; 1], then setting t0 := infft j B =2 Itin(c(t))g we get a ray pc(t0) with �niteitinerary by the reasoning of the preceding paragraph. �6



Corollary 8 There is a unique safe path component of @1X which is dense, namely[B2B @1B.Proof. By Lemma 6 we know that [B2B @1B forms a safe path component. [B2B @1Bis dense in @1X since any initial segment px of a ray p� may be continued as a rayp�0 = px[x�0 where the continuation x�0 lies in a block (one of at most two) containingx. By Lemma 7, if � 2 @1X has an in�nite p-itinerary, then any safe path startingat � consists of points with the same p-itinerary. Clearly the collection of points witha given p-itinerary isn't dense in @1X. The corollary follows. �1.8 Detecting block boundariesCall an arc I � [B2B @1B an edge if its endpoints are both vertices, but no interiorpoint of I is vertex of @1X. Edges are contained in the boundary of a single blockB 2 B (see the proof of Lemma 6). Clearly the endpoints of an edge I � [B2B @1Bare either the poles of a single block, or I � @1W where W = B1 \ B2 and theendpoints of I are poles of B1 and B2. So two points in [B2B @1B are the poles of asingle block (resp. adjacent blocks) i� they are the endpoints of more than one edge(resp. a unique edge). A subset of [B2B @1B is the boundary of a block B 2 B i� itis the union of all edges intersecting the poles of B.1.9 Limiting behavior of polesPick B 2 B, and consider the set P of poles of blocks adjacent to B. If � 2 @1B isa pole of B, then we have \T (�; �) 2 f�; � � �g for every � 2 P. Let P� := f� 2P j \T (�; �) = �g, and P��� := f� 2 P j \T (�; �) = � � �g. Call each arc of @1Bjoining the poles of B a longitude.Lemma 9 Each longitude of @1B intersects �P� (resp. �P���) in a single point � with\T (�; �) = � (resp \T (�; �) = � � �).Proof. Pick p 2 B, � 2 @1B with \T (�; �) = �. Any initial segment px of the rayp� may be extended to a segment py = px [ xy so that py \W = fyg for some wallW � B. Then py may be extended as a ray p�0 = py [ y�0 where y�0 � W and�0 2 P�. Therefore � 2 �P�. Since \T (�; �) is a continuous function on @1B, eachlongitude intersects P� in a single point. Similar reasoning applies to P���. �From the lemma we see that any longitude l of @1B intersects �P in two points if� < �2 and one point if � = �2 .1.10 Distinguishing torus complexesLet �X1 be a torus complex with � < �2 , and let �X2 be a torus complex with � = �2 . LetX1 andX2 be their respective universal covers. A homeomorphism f : @1X1 ! @1X2would carry safe path components to safe path components, block boundaries to blockboundaries (Corollary 8 and section 1.8), poles to poles, and longitudes to longitudes.But then section 1.9 gives a contradiction.7
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