Spaces with nonpositive curvature and their ideal boundaries

Christopher B. Croke*
Bruce Kleiner ${ }^{\dagger}$

February 6, 1998

Abstract

We construct a pair of finite piecewise Euclidean 2-complexes with nonpositive curvature which are homeomorphic but whose universal covers have nonhomeomorphic ideal boundaries, settling a question from [8].

1.1 Introduction

The ideal boundary of a locally compact Hadamard space ${ }^{1} X$ is a compact metrizable space on which the isometry group of X acts by homeomorphisms. Even though the ideal boundary is a well known construct with many applications in the literature (see for example [10, 4, 2]), the action of the isometry group on the boundary has not been studied closely except in the case of symmetric spaces, Gromov hyperbolic spaces, Euclidean buildings, and a handful of other cases. In the Gromov hyperbolic case ${ }^{2}$ the boundary behaves nicely with respect to quasi-isometries: any quasi-isometry $f: X_{1} \rightarrow X_{2}$ between Gromov hyperbolic Hadamard spaces induces a boundary homeomorphism $\partial_{\infty} f: \partial_{\infty} X_{1} \rightarrow \partial_{\infty} X_{2}$ [7]. This has the consequence that the ideal boundary is "geometry independent":

If a finitely generated group G acts discretely, cocompactly and isometrically on two Gromov hyperbolic Hadamard spaces X_{1}, X_{2}, then there is a G-equivariant homeomorphism $\partial_{\infty} X_{1} \rightarrow \partial_{\infty} X_{2}$.
In [8, p. 136] Gromov asked whether this fundamental property still holds if the hyperbolicity assumption is dropped. Sergei Buyalo [5] and the authors [6] independently answered Gromov's question negatively: $[5,6]$ exhibit a pair of deck group invariant Riemannian metrics on a universal cover which have ideal boundaries homeomorphic to S^{2}, such that the deck group actions on the boundaries are topologically

[^0]inequivalent. Gromov also asked if $\partial_{\infty} X_{1}$ must be (non-equivariantly) homeomorphic to $\partial_{\infty} X_{2}$ whenever X_{1} and X_{2} are Hadamard spaces admitting discrete, cocompact, isometric actions by the same finitely generated group G. In this paper we show that even this can fail:

Theorem 1 There is a pair \bar{X}_{1}, \bar{X}_{2} of homeomorphic finite 2-complexes with nonpositive curvature such that the universal covers X_{1}, X_{2} have nonhomeomorphic ideal boundaries.

We remark that if M_{1} and M_{2} are closed Riemannian manifolds with nonpositive curvature and $\pi_{1}\left(M_{1}\right) \simeq \pi_{1}\left(M_{2}\right)$, then their universal covers will have ideal boundaries homeomorphic to spheres of the same dimension.

Although some basic questions about the boundary have now been answered, a number of related issues are wide open, except in a few special cases. It would be interesting to know exactly which geometric features determine the ideal boundary of a Hadamard space up to (equivariant) homeomorphism. This question has a clean answer (see [6]) in the case of graph manifolds or the 2-complexes considered in this paper. In order to answer the question in any generality, it appears that it will be necessary to develop a kind of "generalized symbolic dynamics" for geodesic flows of nonpositively curved spaces.

1.2 Notation and preliminaries

A reference for the facts recalled here is [3]. If X is a Hadamard space, then we denote the ideal boundary of X by $\partial_{\infty} X$, the geodesic segment joining $x_{1}, x_{2} \in X$ by $\overline{x_{1} x_{2}}$, and the geodesic ray leaving $p \in X$ in the asymptote class of $\xi \in \partial_{\infty} X$ by $\overline{p \xi}$. If $p \in X, \xi_{1}, \xi_{2} \in \partial_{\infty} X$, then $L_{p}\left(\xi_{1}, \xi_{2}\right)$ is the angle between the initial velocities of the rays $\overline{p \xi_{1}}, \overline{p \xi_{1}} . \angle_{T}\left(\xi_{1}, \xi_{2}\right):=\sup _{p \in X} \angle_{p}\left(\xi_{1}, \xi_{2}\right)$ will denote the Tits angle between $\xi_{1}, \xi_{2} \in \partial_{\infty} X$. If $p \in X$ then $\angle_{p}\left(\xi_{1}, \xi_{2}\right)=\angle_{T}\left(\xi_{1}, \xi_{2}\right)$ iff the rays $\overline{p \xi_{1}}$ and $\overline{p \xi_{2}}$ bound a flat sector.

By the Cartan-Hadamard theorem [1, 3], the universal cover of a connected, complete, length space with nonpositive curvature is a Hadamard space with the natural metric. Let Z be a complete, connected space with nonpositive curvature, and let $\pi: \tilde{Z} \rightarrow Z$ be the universal cover. If $Y \subset Z$ is a closed, connected, locally convex subset, then the induced length metric on Y has nonpositive curvature, $\pi^{-1}(Y) \subset \tilde{Z}$ is a disjoint union of closed convex components isometric to \tilde{Y}, and the induced map $\pi_{1}(Y) \rightarrow \pi_{1}(Z)$ is a monomorphism.

1.3 Torus complexes

The following piecewise Euclidean 2-complexes were suggested to us by Bernhard Leeb, after a discussion of the graph manifold geometry in [6].

Let T_{0}, T_{1}, T_{2} be flat two-dimensional tori. For $i=1,2$, we assume that there are (primitive) closed geodesics $a_{i} \subset T_{0}$ and $b_{i} \subset T_{i}$ with length $\left(a_{i}\right)=$ length $\left(b_{i}\right)$, and we glue T_{i} to T_{0} by identifying a_{i} with b_{i} isometrically. We assume that a_{1} and a_{2} lie in distinct free homotopy classes, and intersect once at an angle $\alpha \in\left(0, \frac{\pi}{2}\right]$. The resulting

2-complex \bar{X} is nonpositively curved as a length space because gluing of nonpositively curved spaces along locally convex subsets produces a nonpositively curved space [3]. We refer to \bar{X} as a torus complex. For $i=1,2$ let $\bar{Y}_{i}:=T_{0} \cup T_{i} \subset \bar{X}$. Notice that \bar{Y}_{i} and T_{0} are closed, locally convex subsets of \bar{X}. Therefore the inclusions $\bar{Y}_{i} \subset \bar{X}$ and $T_{0} \subset \bar{X}$ induce monomorphisms of fundamental groups.

1.4 The structure of the universal cover

Let $\pi: X \rightarrow \bar{X}$ be the universal covering of $\bar{X} . X$ is a Hadamard space by the Cartan-Hadamard theorem. A block is a connected component of $\pi^{-1}\left(\bar{Y}_{i}\right) \subset X$, and a wall is a connected component of $\pi^{-1}\left(T_{0}\right) \subset X$. Let \mathcal{B} and \mathcal{W} denote the (locally finite) collection of blocks and walls in X. Each block (resp. wall) is a closed, connected, locally convex subset of X. Hence by 1.2 each block (resp. wall) is a convex subset of X which is intrinsically isometric to the universal cover of \bar{Y}_{i} (resp. $\left.T_{0}\right)$. If $W \in \mathcal{W}, B \in \mathcal{B}$, then either $W \cap B=\emptyset$ or $W \cap B=W$ since $W \cap B$ is open and closed in W; W is contained in precisely two blocks, one covering \bar{Y}_{1} and the other covering \bar{Y}_{2}. If $B_{1}, B_{2} \in \mathcal{B}$ are distinct blocks and $B_{1} \cap B_{2} \neq \emptyset$, then (after relabelling if necessary) B_{i} covers \bar{Y}_{i} and so $B_{1} \cap B_{2}$ consists of a (convex) union of walls; therefore $B_{1} \cap B_{2}=W$ for some $W \in \mathcal{W}$. When $B_{1} \cap B_{2} \neq \emptyset$ we will say that the blocks B_{1} and B_{2} are adjacent.
\bar{Y}_{i} is a "flat" S^{1} bundle over a bouquet of two circles, so the universal cover Y_{i} of \bar{Y}_{i} (and hence each block) is isometric to the metric product of a simplicial tree with R. A singular geodesic of a block B is the inverse image of a vertex under the projection of B to its tree factor. Note that singular geodesics of adjacent blocks which lie in the common wall intersect at angle α.

The nerve of \mathcal{B} (the simplicial complex recording (multiple) intersections of blocks) is a simplicial tree. (This is just the Bass-Serre tree of the amalgamated free product decomposition $\pi_{1}(\bar{X})=\pi_{1}\left(\bar{Y}_{1}\right) *_{\pi_{1}\left(T_{0}\right)} \pi_{1}\left(\bar{Y}_{2}\right)$.) To see this note that if $\epsilon>0$ is sufficiently small and \mathcal{B}_{ϵ} is the collection of (open) ϵ-tubular neighborhoods of blocks, then $\operatorname{Nerve}\left(\mathcal{B}_{\epsilon}\right)$ is isomorphic to $\operatorname{Nerve}(\mathcal{B})$. Using a partition of unity subordinate to this cover of $\left|\operatorname{Nerve}\left(\mathcal{B}_{\epsilon}\right)\right|$ one gets a continuous map $\phi: X \rightarrow\left|\operatorname{Nerve}\left(\mathcal{B}_{\epsilon}\right)\right|$. Any map $\gamma: S^{1} \rightarrow|\operatorname{Nerve}(\mathcal{B})|$ can be "lifted" to X up to homotopy: there is a $\hat{\gamma}$: $S^{1} \rightarrow X$ so that $p \circ \hat{\gamma}$ is homotopic to γ. Since $\pi_{1}(X)$ is trivial, this implies that $\pi_{1}(|\operatorname{Nerve}(\mathcal{B})|)$ is trivial. In particular, every wall separates X. We will say that a wall (resp. block) separates two blocks $B_{1}, B_{2} \in \mathcal{B}$ if the edge (resp. vertex) of $|\operatorname{Nerve}(\mathcal{B})|$ corresponding to the wall (resp. vertex) lies between the vertices of $|\operatorname{Nerve}(\mathcal{B})|$ corresponding to B_{1} and B_{2}.

Our plan is to show that the subspace $\cup_{B \in \mathcal{B}} \partial_{\infty} B \subset \partial_{\infty} X$ can be characterized purely topologically ${ }^{3}$, and that its topology is different depending on whether $\alpha=\frac{\pi}{2}$ or not. It will then follow that a torus complex with $\alpha<\frac{\pi}{2}$ and a torus complex with $\alpha=\frac{\pi}{2}$ have universal covers with nonhomeomorphic ideal boundaries.

[^1]
1.5 Itineraries

For each $p \in X \backslash \cup_{W \in \mathcal{W}} W, \xi \in \partial_{\infty} X$, we get a sequence of blocks B_{i} called the p-itinerary (simply the itinerary if the basepoint p is understood) of ξ, as follows. Let B_{i} be the $i^{\text {th }}$ block that the ray $\overline{p \xi}$ enters; the ray enters a block B if it reaches a point in $B \backslash \cup_{W \in \mathcal{W}} W$. We will denote the p-itinerary of $\overline{p \xi}$ by $\operatorname{Itin}(\overline{p \xi})$ or $\operatorname{Itin}(\xi)$.

Lemma 2 The itinerary of any $\xi \in \partial_{\infty} X$ is the sequence of successive vertices of a geodesic segment or geodesic ray in the simplical tree Nerve(B).

Proof. Blocks are convex, so a geodesic cannot revisit any block which it left. The topological frontier of any $B \in \mathcal{B}$ is the union of the walls contained in B, so a geodesic segment which leaves B must arrive at a wall $W \subset B$, and then enter the block $B^{\prime} \in \mathcal{B}$ adjacent to B along W. The collection \mathcal{B} is locally finite, so the lemma follows.

Note that $\xi \in \partial_{\infty} X$ has a finite itinerary iff $\xi \in \partial_{\infty} B$ for some $B \in \mathcal{B}$.

1.6 Local components of $\partial_{\infty} X$

Since each block B is isometric to the product of simplicial tree with $R, \partial_{\infty} B$ is homeomorphic to the suspension of a Cantor set. A pole of B is one of the two suspension points in $\partial_{\infty} B$.

Lemma 3 If $B_{1}, B_{2} \in \mathcal{B}$, then one of the following holds:

1. $\partial_{\infty} B_{1} \cap \partial_{\infty} B_{2}=\emptyset$.
2. $B_{1} \cap B_{2}=W \in \mathcal{W}$ and $\partial_{\infty} B_{1} \cap \partial_{\infty} B_{2}=\partial_{\infty} W$.
3. There is a $B \in \mathcal{B}$ such that $B \cap B_{i}=W_{i} \in \mathcal{W}$ and $\partial_{\infty} B_{1} \cap \partial_{\infty} B_{2}$ is the set of poles of B.

Proof. Suppose $B_{1}, B_{2} \in \mathcal{B}$ are distinct blocks, $\xi \in \partial_{\infty} B_{1} \cap \partial_{\infty} B_{2}$, and $W \in \mathcal{W}$ is a wall separating B_{1} from B_{2}. Choose basepoints $b_{i} \in B_{i}, w \in W$. If $x_{k} \in \overline{b_{1} \xi}$ is a sequence tending to infinity, and $y_{k} \in \overline{b_{2} \xi}$ is a sequence with $d\left(y_{k}, x_{k}\right)<C$, then we can find a $z_{k} \in \overline{x_{k} y_{k}} \cap W$ since W separates B_{1} from B_{2}. Therefore $\overline{w z_{k}} \subset W$ converges, and the limit ray $\overline{w \xi}$ lies in W. Hence $\xi \in \partial_{\infty} W$.

Note that if $W_{1}, W_{2} \subset B \in \mathcal{B}$, then $\partial_{\infty} W_{1} \cap \partial_{\infty} W_{2}$ is just the set of poles of B; and $\xi \in \partial_{\infty} X$ cannot be a pole of two adjacent blocks simultaneously.

The lemma follows, since $\partial_{\infty} B_{1} \cap \partial_{\infty} B_{2} \neq \emptyset$ now implies that the combinatorial distance between B_{1} and B_{2} in $\operatorname{Nerve}(\mathcal{B})$ is ≤ 2.

Lemma 4 Suppose ξ lies on the ideal boundary of a block $B \in \mathcal{B}$, and assume ξ is not a pole of any block other than B. Then the path component of ξ in a suitable neighborhood Ω of ξ is contained in $\partial_{\infty} B$.

Proof. Case I: $\xi \in \partial_{\infty} B$ is a pole of B. Choose $p \in B \backslash \cup_{W \in \mathcal{W}} W$. Recall (see section 1.3) that α is the angle between singular geodesics of adjacent blocks lying in the common wall, so α is the minimum Tits angle between ξ and any pole of a block
adjacent to B. Let $\Omega:=\left\{\xi^{\prime} \in \partial_{\infty} X \left\lvert\, \angle_{p}\left(\xi^{\prime}, \underline{\xi}\right)<\frac{\alpha}{2}\right.\right\}$, where $\angle_{p}\left(\xi, \xi^{\prime}\right)$ is the angle between the initial velocities of the two rays $\overline{p \xi},{\overline{p \xi^{\prime}}}^{2}$. We define an exit from B to be a singular geodesic $E \subset B$ of a block adjacent to B. A ray $\overline{p \xi^{\prime}}$ exits from B via E if $\overline{p \xi^{\prime}} \cap B$ is a geodesic segment ending at E, and the ray $\overline{p \xi^{\prime}}$ continues into the block containing E. For each exit E from B, let Ω_{E} be the set of $\xi^{\prime} \in \Omega$ such that $\overline{p \xi^{\prime}}$ exits B via E.

Sublemma $5 \Omega_{E}$ is an open and closed subset of Ω.
Proof. Openness. If $\xi^{\prime} \in \Omega_{E}$, then $\overline{p \xi^{\prime}} \cap B$ is a segment ending at some $e \in E$, and $\overline{p \xi^{\prime}}$ enters the block B^{\prime} adjacent to B which contains E. But then any sufficiently nearby (in the cone topology) ray $\overline{p \xi^{\prime \prime}}$ also leaves B at a point close to e; clearly this point must lie on E as the collection of exits is discrete. Therefore Ω_{E} is open in $\partial_{\infty} X$.

Closedness. Let $E^{\prime} \subset E$ be the set of "exit points" for elements of Ω_{E} : the endpoints of segments $\overline{p \xi^{\prime}} \cap B$, where $\xi^{\prime} \in \Omega_{E}$. E^{\prime} is bounded, for otherwise we could find a sequence $e_{k} \in E^{\prime}$ with $\lim _{k \rightarrow \infty} d\left(e_{k}, p\right)=\infty$, and get a limit ray $\overline{p e_{\infty}} \subset B$ with $e_{\infty} \in \partial_{\infty} E \subset \partial_{\infty} B \cap \partial_{\infty} B^{\prime}$, and $\angle_{p}\left(\xi, e_{\infty}\right) \leq \frac{\alpha}{2}$; this is absurd since e_{∞} is a pole of B^{\prime} and so $\angle_{p}\left(e_{\infty}, \xi\right)=\angle_{T}\left(e_{\infty}, \xi\right) \geq \alpha$. Now suppose $\xi_{k}^{\prime} \in \Omega_{E}$ and $\lim _{k \rightarrow \infty} \xi_{k}^{\prime}=\xi_{\infty}^{\prime} \in \Omega$. We have, after passing to a subsequence if necessary, that $\overline{p \xi_{k}^{\prime}} \cap B=\overline{p e_{k}}$ where $e_{k} \in E$ and $\lim _{k \rightarrow \infty} e_{k}=e_{\infty} \in E$. Then $\overline{p \xi_{\infty}^{\prime}} \cap B$ contains $\overline{p e_{\infty}}$; if $\overline{p \xi_{\infty}^{\prime}} \cap B \neq \overline{p e_{\infty}}$ then clearly $\overline{p \xi_{\infty}^{\prime}}$ contains a segment of E, forcing $\overline{p e_{\infty}} \subset E$, which contradicts the choice of p. Thus we have $\xi_{\infty}^{\prime} \in \Omega_{E}$.

It follows that the connected (or path) component of ξ in Ω is contained in $\partial_{\infty} B$, since any subset $C \subseteq \Omega$ containing ξ and intersecting Ω_{E} admits a separation $C=$ $\left(C \cap \Omega_{E}\right) \cup\left(C \backslash \Omega_{E}\right)$ into open subsets of C, and any $\xi^{\prime} \in \Omega \backslash \partial_{\infty} B$ lies in Ω_{E} for some E.

Case II: $\xi \in \partial_{\infty} W$ where W is the wall separating two adjacent blocks B_{1}, B_{2}, and ξ is not a pole. Pick $p \in W$ not lying on a singular geodesic. Let ψ be the minimum Tits distance between ξ and a pole of $B_{i}, i=1,2$, and set

$$
\Omega:=\left\{\xi^{\prime} \in \partial_{\infty} X \left\lvert\, \angle_{p}\left(\xi^{\prime}, \xi\right)<\frac{\psi}{2}\right.\right\} .
$$

Let E be a singular geodesic of B_{1} or B_{2} which is contained in W. We say that the ray $\overline{p \xi^{\prime}}$ exits W via E if $\overline{p \xi^{\prime}} \cap W$ ends at a point in E, and $\overline{p \xi^{\prime}}$ then immediately enters the block corresponding to E. Let Ω_{E} be the set of $\xi^{\prime} \in \Omega$ so that $\overline{p \xi^{\prime}}$ exits W via E. One checks as in case I that Ω_{E} is closed and open in Ω, so we conclude that the connected component of ξ in Ω is contained in $\partial_{\infty} W$.
Case III: $\xi \in \partial_{\infty} B$ does not lie in the boundary of any block other than B. Let ϕ be the minimum Tits angle between ξ and a pole of B, and set

$$
\Omega:=\left\{\xi^{\prime} \in \partial_{\infty} X \left\lvert\, \angle_{p}\left(\xi^{\prime}, \xi\right)<\frac{\phi}{2}\right.\right\} .
$$

Pick $p \in B \backslash \cup_{W \in \mathcal{W}} W$. Since ξ is not a pole of B, the ray $\overline{p \xi}$ determines an isometrically embedded Euclidean half-plane $H \subset B$, the intersection of the flat planes in B containing it. Let \mathcal{B}^{\prime} be the collection of blocks adjacent to B. If $B^{\prime} \in \mathcal{B}^{\prime}$ then
$B^{\prime} \cap H\left(=W \cap H\right.$ where $W=B \cap B^{\prime}$ is the wall between B and B^{\prime}) is either empty, a singular geodesic of B, or a flat strip with finite width bounded by singular geodesics, for otherwise we would have $\xi \in \partial_{\infty} B^{\prime}$. Removing the singular geodesics and $\cup_{B^{\prime} \in \mathcal{B}^{\prime}} B^{\prime}$ from H, we get a subset H^{0} whose connected components are a countably infinite collection of open strips. If $S \subset H^{0}$ is such a strip, we let Ω_{S} be the set of $\xi^{\prime} \in \Omega$ so that $\overline{p \xi^{\prime}} \cap S \neq \emptyset$. As in cases I and II, Ω_{S} is closed and open in Ω. This forces the connected component of ξ in Ω to be contained in $\partial_{\infty} H \subset \partial_{\infty} B$, as desired.

1.7 Vertices and safe paths

We say that $\xi \in \partial_{\infty} X$ is a vertex if there is a neighborhood U of ξ such that the path component of ξ in U is homeomorphic to the cone over a Cantor set, with ξ corresponding to the vertex of the cone. By Lemma 4 the set of vertices in $\cup_{B \in \mathcal{B}} \partial_{\infty} B$ is precisely the set of poles in $\cup_{B \in \mathcal{B}} \partial_{\infty} B$ (a priori there may be other vertices in $\left.\partial_{\infty} X\right)$.

A path $c:[0,1] \rightarrow \partial_{\infty} X$ is safe if $c(t)$ is a vertex for only finitely many $t \in[0,1]$. Since being joinable by a safe path is an equivalence relation on pairs of points, and since $\partial_{\infty} B_{1} \cup \partial_{\infty} B_{2}$ is safe path connected when B_{1} is adjacent to B_{2}, it follows that $\cup_{B \in \mathcal{B}} \partial_{\infty} B$ is safe path connected.

Lemma $6 \cup_{B \in \mathcal{B}} \partial_{\infty} B$ is a safe path component of $\partial_{\infty} X$.
Proof. First note that if $c:[0,1] \rightarrow \partial_{\infty} X$ is a path, $c(t)$ is not a vertex when $t \in(0,1)$, $B \in \mathcal{B}$, and $c(0) \in \partial_{\infty} B$ is not a pole of any block other than B, then $c([0,1]) \subset \partial_{\infty} B$. This follows from Lemma 4 , the fact that $\partial_{\infty} B$ is closed in $\partial_{\infty} X$, and a continuity argument.

Now if $B_{0} \in \mathcal{B}, c:[0,1] \rightarrow \partial_{\infty} X$ is a safe path starting in $\partial_{\infty} B_{0}$, and $0=t_{0}<$ $t_{2} \ldots<t_{k}=1$ are chosen so that $c(t)$ is a vertex only if $t=t_{i}$ for some i, then one proves by induction on i that the intervals $\left[t_{i-1}, t_{i}\right]$ are mapped into $\cup_{B \in \mathcal{B}} \partial_{\infty} B$.

Lemma 7 Pick $B_{0} \in \mathcal{B}$ and $p \in B_{0} \backslash \cup_{W \in \mathcal{W}} W$. Let $c:[0,1] \rightarrow \partial_{\infty} X$ be a path, and suppose $c(0)$ has an infinite p-itinerary. Then either $c(t)$ has the same p-itinerary as $c(0)$ for all $t \in I$, or there is a $\bar{t} \in I$ so that $c(\bar{t})$ has a finite itinerary. In particular, by Lemma 6, if c is a safe path then $c(t)$ has the same p-itinerary as $c(0)$ for all $t \in I$.

Proof. Suppose $\xi_{k} \in \partial_{\infty} X$ is a sequence with $\lim _{k \rightarrow \infty} \xi_{k}=\xi \in \partial_{\infty} X$, and a certain block B is in the itinerary of $\overline{p \xi_{k}}$ for every k. Then either

1. Itin (ξ) contains B
or
2. $\operatorname{Itin}(\xi)$ is finite and only contains blocks lying between B_{0} and B.

To see this, suppose B^{\prime} is in $\operatorname{Itin}(\xi)$ and $x \in \overline{p \xi} \cap \operatorname{Int}\left(B^{\prime}\right)$. Then $x=\lim _{j \rightarrow \infty} x_{j}$ where $x_{j} \in \overline{p \xi_{j}} \cap \operatorname{Int}\left(B^{\prime}\right)$ for sufficiently large j, so B^{\prime} is in $\operatorname{Itin}\left(\xi_{j}\right)$ for sufficiently large j. This means that B^{\prime} lies between B_{0} and B, for otherwise B would have to lie between B_{0} and B^{\prime}, forcing $B \in \operatorname{Itin}(\xi)$.

The lemma now follows, since if B is in $\operatorname{Itin}(c(0))$ but not in $\operatorname{Itin}(c(t))$ for all $t \in[0,1]$, then setting $t_{0}:=\inf \{t \mid B \notin \operatorname{Itin}(c(t))\}$ we get a ray $\overline{p c\left(t_{0}\right)}$ with finite itinerary by the reasoning of the preceding paragraph.

Corollary 8 There is a unique safe path component of $\partial_{\infty} X$ which is dense, namely $\cup_{B \in \mathcal{B}} \partial_{\infty} B$.

Proof. By Lemma 6 we know that $\cup_{B \in \mathcal{B}} \partial_{\infty} B$ forms a safe path component. $\cup_{B \in \mathcal{B}} \partial_{\infty} B$ is dense in $\partial_{\infty} X$ since any initial segment $\overline{p x}$ of a ray $\overline{p \xi}$ may be continued as a ray $\overline{p \xi^{\prime}}=\overline{p x} \cup \overline{x \xi^{\prime}}$ where the continuation $\overline{x \xi^{\prime}}$ lies in a block (one of at most two) containing x.

By Lemma 7, if $\xi \in \partial_{\infty} X$ has an infinite p-itinerary, then any safe path starting at ξ consists of points with the same p-itinerary. Clearly the collection of points with a given p-itinerary isn't dense in $\partial_{\infty} X$. The corollary follows.

1.8 Detecting block boundaries

Call an arc $I \subset \cup_{B \in \mathcal{B}} \partial_{\infty} B$ an edge if its endpoints are both vertices, but no interior point of I is vertex of $\partial_{\infty} X$. Edges are contained in the boundary of a single block $B \in \mathcal{B}$ (see the proof of Lemma 6). Clearly the endpoints of an edge $I \subset \cup_{B \in \mathcal{B}} \partial_{\infty} B$ are either the poles of a single block, or $I \subset \partial_{\infty} W$ where $W=B_{1} \cap B_{2}$ and the endpoints of I are poles of B_{1} and B_{2}. So two points in $\cup_{B \in \mathcal{B}} \partial_{\infty} B$ are the poles of a single block (resp. adjacent blocks) iff they are the endpoints of more than one edge (resp. a unique edge). A subset of $\cup_{B \in \mathcal{B}} \partial_{\infty} B$ is the boundary of a block $B \in \mathcal{B}$ iff it is the union of all edges intersecting the poles of B.

1.9 Limiting behavior of poles

Pick $B \in \mathcal{B}$, and consider the set \mathcal{P} of poles of blocks adjacent to B. If $\eta \in \partial_{\infty} B$ is a pole of B, then we have $\angle_{T}(\xi, \eta) \in\{\alpha, \pi-\alpha\}$ for every $\xi \in \mathcal{P}$. Let $\mathcal{P}_{\alpha}:=\{\xi \in$ $\left.\mathcal{P} \mid \angle_{T}(\xi, \eta)=\alpha\right\}$, and $\mathcal{P}_{\pi-\alpha}:=\left\{\xi \in \mathcal{P} \mid \angle_{T}(\xi, \eta)=\pi-\alpha\right\}$. Call each arc of $\partial_{\infty} B$ joining the poles of B a longitude.

Lemma 9 Each longitude of $\partial_{\infty} B$ intersects $\overline{\mathcal{P}}_{\alpha}$ (resp. $\overline{\mathcal{P}}_{\pi-\alpha}$) in a single point ξ with $\angle_{T}(\xi, \eta)=\alpha\left(\operatorname{resp} \angle_{T}(\xi, \eta)=\pi-\alpha\right)$.
 $\overline{p \xi}$ may be extended to a segment $\overline{p y}=\overline{p x} \cup \overline{x y}$ so that $\overline{p y} \cap W=\{y\}$ for some wall $W \subset B$. Then $\overline{p y}$ may be extended as a ray $\overline{p \xi^{\prime}}=\overline{p y} \cup \overline{y \xi^{\prime}}$ where $\overline{y \xi^{\prime}} \subset W$ and $\xi^{\prime} \in \mathcal{P}_{\alpha}$. Therefore $\xi \in \overline{\mathcal{P}}_{\alpha}$. Since $\angle_{T}(\cdot, \eta)$ is a continuous function on $\partial_{\infty} B$, each longitude intersects \mathcal{P}_{α} in a single point. Similar reasoning applies to $\mathcal{P}_{\pi-\alpha}$.

From the lemma we see that any longitude l of $\partial_{\infty} B$ intersects $\overline{\mathcal{P}}$ in two points if $\alpha<\frac{\pi}{2}$ and one point if $\alpha=\frac{\pi}{2}$.

1.10 Distinguishing torus complexes

Let \bar{X}_{1} be a torus complex with $\alpha<\frac{\pi}{2}$, and let \bar{X}_{2} be a torus complex with $\alpha=\frac{\pi}{2}$. Let X_{1} and X_{2} be their respective universal covers. A homeomorphism $f: \partial_{\infty} X_{1} \rightarrow \partial_{\infty} X_{2}$ would carry safe path components to safe path components, block boundaries to block boundaries (Corollary 8 and section 1.8), poles to poles, and longitudes to longitudes. But then section 1.9 gives a contradiction.

References

[1] S.B. Alexander, R.L. Bishop, The Hadamard-Cartan theorem in locally convex metric spaces, L'Enseignement Math., 36, (1990), 309-320.
[2] W. Ballmann, Axial isometries of manifolds of nonpositive curvature, Math. Annalen, 252, (1982), 131-144.
[3] W. Ballmann, Lectures on spaces of nonpositive curvature, DMV seminar, Band 25, Birkhäuser.
[4] G. Besson, G. Courtois, S. Gallot, Entropies et rigidits des espaces localement symtriques de courbure strictement ngative, Geom. Funct. Anal. 5 (1995), no. 5, 731-799.
[5] S. Buyalo, Geodesics in Hadamard spaces, St. Petersburg Math Journal, to appear.
[6] C. Croke, B. Kleiner, Isometry groups of Hadamard spaces and their induced boundary actions, preprint.
[7] M. Gromov, Hyperbolic groups, in: Essays in group theory, 75-263, Math. Sci. Res. Inst. Publ., 8, Springer, New York-Berlin, 1987.
[8] M. Gromov, Asymptotic invariants of infinite groups, in Geometric Group theory, Niblo and Rollers eds, LMS, 1993.
[9] B. Kleiner, B. Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Publ. IHES, 86, (1997), 115-197.
[10] G. D. Mostow, Strong rigidity of locally symmetric spaces, Ann. of Math. Studies, vol. 78.
[11] K. Ruane, Ph. D Thesis, Florida State University, 1996.

[^0]: *Supported by NSF grants DMS-95-05175 and DMS-96-26-232.
 ${ }^{\dagger}$ Supported by a Sloan Foundation Fellowship, and NSF grants DMS-95-05175, DMS-96-26911, DMS-9022140.
 ${ }^{1}$ Following [3] we will call complete, simply connected length spaces with nonpositive curvature Hadamard spaces.
 ${ }^{2}$ The same statement is true of higher rank irreducible symmetric spaces and Euclidean buildings by [9].

[^1]: ${ }^{3}$ At first glance one might think that $\cup_{B \in \mathcal{B}} \partial_{\infty} B$ is a path component of $\partial_{\infty} X$, but this turns out not to be the case. It is a "safe" path component, see 1.7.

