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Abstract

We construct a pair of finite piecewise Euclidean 2-complexes with non-
positive curvature which are homeomorphic but whose universal covers have
nonhomeomorphic ideal boundaries, settling a question from [8].

1.1 Introduction

The ideal boundary of a locally compact Hadamard space! X is a compact metrizable
space on which the isometry group of X acts by homeomorphisms. Even though the
ideal boundary is a well known construct with many applications in the literature (see
for example [10, 4, 2]), the action of the isometry group on the boundary has not been
studied closely except in the case of symmetric spaces, Gromov hyperbolic spaces,
Euclidean buildings, and a handful of other cases. In the Gromov hyperbolic case?
the boundary behaves nicely with respect to quasi-isometries: any quasi-isometry
f : X1 — Xy between Gromov hyperbolic Hadamard spaces induces a boundary
homeomorphism Ou f : 0 X1 — 050Xy [7]. This has the consequence that the ideal
boundary is “geometry independent”:

If a finitely generated group G acts discretely, cocompactly and isometrically on
two Gromouv hyperbolic Hadamard spaces X1, X, then there s a G-equivariant home-
omorphism Ox X1 — 0xXo.

In [8, p. 136] Gromov asked whether this fundamental property still holds if the
hyperbolicity assumption is dropped. Sergei Buyalo [5] and the authors [6] inde-
pendently answered Gromov’s question negatively: [5, 6] exhibit a pair of deck group
invariant Riemannian metrics on a universal cover which have ideal boundaries home-
omorphic to S?, such that the deck group actions on the boundaries are topologically
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IFollowing [3] we will call complete, simply connected length spaces with nonpositive curvature
Hadamard spaces.

2The same statement is true of higher rank irreducible symmetric spaces and Euclidean buildings
by [9].



inequivalent. Gromov also asked if 0., X; must be (non-equivariantly) homeomorphic
to 0, X2 whenever X; and X, are Hadamard spaces admitting discrete, cocompact,
isometric actions by the same finitely generated group G. In this paper we show that
even this can fail:

Theorem 1 There is a pair X1, Xo of homeomorphic finite 2-complexes with non-
positive curvature such that the universal covers X1, Xo have nonhomeomorphic ideal
boundaries.

We remark that if M; and M, are closed Riemannian manifolds with nonpositive
curvature and 7y (M;) =~ 7 (M;), then their universal covers will have ideal boundaries
homeomorphic to spheres of the same dimension.

Although some basic questions about the boundary have now been answered, a
number of related issues are wide open, except in a few special cases. It would be
interesting to know exactly which geometric features determine the ideal boundary
of a Hadamard space up to (equivariant) homeomorphism. This question has a clean
answer (see [6]) in the case of graph manifolds or the 2-complexes considered in this
paper. In order to answer the question in any generality, it appears that it will be
necessary to develop a kind of “generalized symbolic dynamics” for geodesic flows of
nonpositively curved spaces.

1.2 Notation and preliminaries

A reference for the facts recalled here is [3]. If X is a Hadamard space, then we
denote the ideal boundary of X by 0,,X, the geodesic segment joining x;, xo € X by
7173, and the geodesic ray leaving p € X in the asymptote class of ¢ € 0,,X by pé.
Ifpe X, &, & € 05X, then £,(&,£) is the angle between the initial velocities of
the rays p&i, p&1. Zr(&1,&) = sup,ex Zp(§1,&2) will denote the Tits angle between
€1, & € 05, X. If p € X then £, (€1,&) = Zr(&1, &) iff the rays p&; and p&; bound a
flat sector.

By the Cartan-Hadamard theorem [1, 3], the universal cover of a connected, com-
plete, length space with nonpositive curvature is a Hadamard space with the natural
metric. Let Z be a complete, connected space with nonpositive curvature, and let
7 : Z — Z be the universal cover. If Y C Z is a closed, connected, locally convex
subset, then the induced length metric on Y has nonpositive curvature, 7~ (V) C Z
is a disjoint union of closed convex components isometric to Y, and the induced map
m(Y) — m(Z) is a monomorphism.

1.3 Torus complexes

The following piecewise Euclidean 2-complexes were suggested to us by Bernhard
Leeb, after a discussion of the graph manifold geometry in [6].

Let Ty, T1, T, be flat two-dimensional tori. For i = 1,2, we assume that there are
(primitive) closed geodesics a; C T and b; C 1; with length(a;) = length(b;), and we
glue T; to 1 by identifying a; with b; isometrically. We assume that a; and ay lie in
distinct free homotopy classes, and intersect once at an angle a € (0, §]. The resulting
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2-complex X is nonpositively curved as a length space because gluing of nonpositively
curved spaces along locally convex subsets produces a nonpositively curved space [3].
We refer to X as a torus complex. For i = 1,2 let Y; := T, UT; C X. Notice that
Y; and T are closed, locally convex subsets of X. Therefore the inclusions ¥; C X
and T, C X induce monomorphisms of fundamental groups.

1.4 The structure of the universal cover

Let 7 : X — X be the universal covering of X. X is a Hadamard space by the
Cartan-Hadamard theorem. A block is a connected component of 77!(V;) C X,
and a wall is a connected component of 7~ (7p) C X. Let B and W denote the
(locally finite) collection of blocks and walls in X. Each block (resp. wall) is a closed,
connected, locally convex subset of X. Hence by 1.2 each block (resp. wall) is a
convex subset of X which is intrinsically isometric to the universal cover of Y; (resp.
Ty). W € W, B € B, then either WNB =0 or WNB =W since WN B is
open and closed in W; W is contained in precisely two blocks, one covering Y; and
the other covering Ys. If By, B, € B are distinct blocks and B; N By # 0, then (after
relabelling if necessary) B; covers Y; and so By N By consists of a (convex) union of
walls; therefore B; N By = W for some W € W. When B, N By # () we will say that
the blocks B, and B, are adjacent.

Y; is a “flat” S! bundle over a bouquet of two circles, so the universal cover Y;
of ¥; (and hence each block) is isometric to the metric product of a simplicial tree
with R. A singular geodesic of a block B is the inverse image of a vertex under
the projection of B to its tree factor. Note that singular geodesics of adjacent blocks
which lie in the common wall intersect at angle a.

The nerve of B (the simplicial complex recording (multiple) intersections of blocks)
is a simplicial tree. (This is just the Bass-Serre tree of the amalgamated free product
decomposition m(X) = (Y1) #r,(7) m(Y2).) To see this note that if € > 0 is
sufficiently small and B, is the collection of (open) e-tubular neighborhoods of blocks,
then Nerve(B,) is isomorphic to Nerve(B). Using a partition of unity subordinate
to this cover of |Nerve(B.)| one gets a continuous map ¢ : X — |Nerve(B)|. Any
map v : S' — |Nerve(B)| can be “lifted” to X up to homotopy: there is a ¥ :
St — X so that p o4 is homotopic to 7. Since m;(X) is trivial, this implies that
7 (|Nerve(B)|) is trivial. In particular, every wall separates X. We will say that
a wall (resp. block) separates two blocks By, By € B if the edge (resp. vertex)
of |Nerve(B)| corresponding to the wall (resp. vertex) lies between the vertices of
|Nerve(B)| corresponding to By and Bs.

Our plan is to show that the subspace Upcp 0B C 05X can be characterized
purely topologically®, and that its topology is different depending on whether o = 5
or not. It will then follow that a torus complex with o < 7 and a torus complex with
a = F have universal covers with nonhomeomorphic ideal boundaries.

3 At first glance one might think that Ugep 0.0 B is a path component of 9., X, but this turns
out not to be the case. It is a “safe” path component, see 1.7.



1.5 Itineraries

For each p € X \ Upenw W, £ € 05X, we get a sequence of blocks B; called the
p-itinerary (simply the itinerary if the basepoint p is understood) of £, as follows.
Let B; be the i*" block that the ray pé enters; the ray enters a block B if it reaches
a point in B \ Uy eywW. We will denote the p-itinerary of p€ by Itin(p) or Itin(€).

Lemma 2 The itinerary of any & € 0X is the sequence of successive vertices of a
geodesic segment or geodesic ray in the simplical tree Nerve(B).

Proof. Blocks are convex, so a geodesic cannot revisit any block which it left. The
topological frontier of any B € B is the union of the walls contained in B, so a
geodesic segment which leaves B must arrive at a wall W C B, and then enter the
block B’ € B adjacent to B along W. The collection B is locally finite, so the lemma
follows. g

Note that £ € 0,X has a finite itinerary iff £ € 0,,B for some B € B.

1.6 Local components of 0,,X

Since each block B is isometric to the product of simplicial tree with R, 0,,B is
homeomorphic to the suspension of a Cantor set. A pole of B is one of the two
suspension points in 0y B.

Lemma 3 If By, B; € B, then one of the following holds:

1. 05 B1 N 0By = 0.

2. BINBy, =W €W and 0,081 N 0so By = 0 W.

3. There is a B € B such that BN B; = W; € W and 0,,B1 N 0,,Bs is the set of
poles of B.

Proof. Suppose B;, B, € B are distinct blocks, £ € 0,,B1 N 0xBz, and W € W is
a wall separating B; from B,. Choose basepoints b; € B;, w € W. If x;, € b€ is
a sequence tending to infinity, and y, € b€ is a sequence with d(yg, z) < C, then
we can find a zp € Ty N W since W separates By from B,. Therefore wz, C W
converges, and the limit ray wé lies in W. Hence & € 0,,W.

Note that if Wi, Wy C B € B, then 0,,W; N 0,,W5 is just the set of poles of B;
and £ € 0, X cannot be a pole of two adjacent blocks simultaneously.

The lemma follows, since 0, B N 0o By # () now implies that the combinatorial
distance between B; and B, in Nerve(B) is < 2. O

Lemma 4 Suppose £ lies on the ideal boundary of a block B € B, and assume £ is
not a pole of any block other than B. Then the path component of & in a suitable
netghborhood €2 of € is contained in 0w B.

Proof. Case I: £ € 0B is a pole of B. Choose p € B \ Uy eywW. Recall (see section

1.3) that « is the angle between singular geodesics of adjacent blocks lying in the
common wall, so « is the minimum Tits angle between & and any pole of a block
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adjacent to B. Let Q := {{' € 0 X | £,(&,€) < §}, where £,(£,¢') is the angle
between the initial velocities of the two rays p€, p€’. We define an exit from B to
be a singular geodesic £ C B of a block adjacent to B. A ray p¢’ exits from B via
E if pf' N B is a geodesic segment ending at E, and the ray p€ continues into the
block containing E. For each exit F from B, let Qg be the set of £ € Q such that

p€' exits B via E.
Sublemma 5 Qg is an open and closed subset of Q.

Proof. Openness. If € € Qy, then p€’ N B is a segment ending at some e € E, and p€’
enters the block B’ adjacent to B which contains £. But then any sufficiently nearby
(in the cone topology) ray p€” also leaves B at a point close to e; clearly this point
must lie on E as the collection of exits is discrete. Therefore Qg is open in 0, X.

Closedness. Let E' C E be the set of “exit points” for elements of €z: the
endpoints of segments p’ N B, where ¢’ € Qp. E' is bounded, for otherwise we could
find a sequence e, € E’ with limy_,o, d(eg, p) = 00, and get a limit ray pe, C B with
oo € OxoF C 05BN 0B, and Z,(, ex) < 5; this is absurd since ey, is a pole of B’
and so Z,(€x, &) = Lr(ex, &) > a. Now suppose &, € Qp and limy_,. &, = & € Q.
We have, after passing to a subsequence if necessary, that p—fl’JWB = pei, where ¢, € F
and limg_,,, e = ex € E. Then @ﬂB contains pe; if p&L N B # pe then clearly
pEl contains a segment of E, forcing pe, C E, which contradicts the choice of p.
Thus we have £ € Qp. O

It follows that the connected (or path) component of £ in 2 is contained in 0B,
since any subset C' C {2 containing ¢ and intersecting g admits a separation C =
(CNQE)U(C\Qg) into open subsets of C, and any & € Q\ 0B lies in Qg for some
E.

Case II: £ € 0,,W where W s the wall separating two adjacent blocks By, By, and &
15 not a pole. Pick p € W not lying on a singular geodesic. Let ¢ be the minimum
Tits distance between & and a pole of B;, i = 1,2, and set

Y
Q:={ €0 X |4, < 5}

Let E be a singular geodesic of By or By which is contained in W. We say that the
ray p§' exits W via E if p{’ N W ends at a point in E, and p{" then immediately
enters the block corresponding to E. Let Qp be the set of £ € €2 so that p¢&’ exits W
via E. One checks as in case I that (g is closed and open in €2, so we conclude that

the connected component of £ in €2 is contained in O, W .

Case 1II: £ € 0B does not lie in the boundary of any block other than B. Let ¢ be
the minimum Tits angle between £ and a pole of B, and set

¢
Q= {€ € 0.X | 4,(€,6) < 2},

Pick p € B\ UwewW. Since € is not a pole of B, the ray pé determines an isomet-
rically embedded Euclidean half-plane H C B, the intersection of the flat planes in

B containing it. Let B’ be the collection of blocks adjacent to B. If B’ € B’ then



B'NH (= WNH where W = BN B’ is the wall between B and B') is either empty, a
singular geodesic of B, or a flat strip with finite width bounded by singular geodesics,
for otherwise we would have £ € 0,,B'. Removing the singular geodesics and Uprc B’
from H, we get a subset H° whose connected components are a countably infinite
collection of open strips. If S C H? is such a strip, we let {25 be the set of £ € € so
that p€' NS # (). As in cases I and II, Qg is closed and open in €. This forces the
connected component of £ in € to be contained in 0, H C 0s B, as desired. O

1.7 Vertices and safe paths

We say that £ € 0,,X is a vertex if there is a neighborhood U of £ such that the
path component of £ in U is homeomorphic to the cone over a Cantor set, with &
corresponding to the vertex of the cone. By Lemma 4 the set of vertices in Ugep Ox B
is precisely the set of poles in Upep 0B (a priori there may be other vertices in
050 X).

A path ¢: [0,1] = 05X is safe if ¢(¢) is a vertex for only finitely many ¢t € [0, 1].
Since being joinable by a safe path is an equivalence relation on pairs of points, and
since 0y B U 05 B> is safe path connected when B is adjacent to Bs, it follows that
Upen Os B is safe path connected.

Lemma 6 Ugcp 0,0 B is a safe path component of 0, X .

Proof. First note that if ¢ : [0,1] — 0xX is a path, ¢(t) is not a vertex when ¢t € (0, 1),
B € B, and ¢(0) € 0B is not a pole of any block other than B, then ¢([0,1]) C 0 B.
This follows from Lemma 4, the fact that 0, B is closed in 0,,X, and a continuity
argument.

Now if By € B, ¢ : [0,1] — 05X is a safe path starting in 0By, and 0 =ty <
ty... <t = 1 are chosen so that ¢(t) is a vertex only if ¢ = ¢; for some 4, then one
proves by induction on i that the intervals [¢;_;,?;] are mapped into Upep 0 B. O

Lemma 7 Pick By € B and p € By \ UwewW. Let ¢ :[0,1] = 05X be a path, and
suppose ¢(0) has an infinite p-itinerary. Then either c(t) has the same p-itinerary as
c(0) for allt € I, or there is a t € I so that c(t) has a finite itinerary. In particular,
by Lemma 6, if ¢ is a safe path then c(t) has the same p-itinerary as ¢(0) for allt € 1.

Proof. Suppose §, € 0,,X is a sequence with limy o & = § € 0,X, and a certain
block B is in the itinerary of p&; for every k. Then either

1. Itin(€) contains B

or

2. Itin(&) is finite and only contains blocks lying between By and B.
To see this, suppose B' is in Itin(§) and = € p€NInt(B'). Then x = lim;_,o z; where
x; € p&; N Int(B') for sufficiently large j, so B’ is in Itin(¢;) for sufficiently large j.
This means that B’ lies between B,y and B, for otherwise B would have to lie between
By and B', forcing B € Itin(§).

The lemma now follows, since if B is in Itin(c(0)) but not in Itin(c(t)) for all

t € [0,1], then setting ¢, := inf{t | B ¢ Itin(c(t))} we get a ray pc(ty) with finite
itinerary by the reasoning of the preceding paragraph. 0
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Corollary 8 There is a unique safe path component of 0o X which is dense, namely
UBeB aOOB

Proof. By Lemma 6 we know that Ugcp 0. B forms a safe path component. Ugeg 0B
is dense in 0,,X since any initial segment pZ of a ray p€ may be continued as a ray
p€ = prUr€’ where the continuation 2’ lies in a block (one of at most two) containing
x.

By Lemma 7, if £ € 0,,X has an infinite p-itinerary, then any safe path starting
at & consists of points with the same p-itinerary. Clearly the collection of points with
a given p-itinerary isn’t dense in J,,X. The corollary follows. 4

1.8 Detecting block boundaries

Call an arc I C Ugep OB an edge if its endpoints are both vertices, but no interior
point of I is vertex of 0,,X. Edges are contained in the boundary of a single block
B € B (see the proof of Lemma 6). Clearly the endpoints of an edge I C Ugep 0noB
are either the poles of a single block, or I C J,,W where W = By N By and the
endpoints of I are poles of B; and By. So two points in Ugep O, B are the poles of a
single block (resp. adjacent blocks) iff they are the endpoints of more than one edge
(resp. a unique edge). A subset of Uges OB is the boundary of a block B € B iff it
is the union of all edges intersecting the poles of B.

1.9 Limiting behavior of poles

Pick B € B, and consider the set P of poles of blocks adjacent to B. If n € 0B is
a pole of B, then we have Z;(§,n) € {a,m — o} for every £ € P. Let P, := {£ €
P | Zr(&n) = a}, and Py :={£ € P | Lr(&,n) = m — a}. Call each arc of 0,,B
joining the poles of B a longitude.

Lemma 9 Each longitude of 0x B intersects Py, (resp. Pr_a) in a single point & with
Zr(§m) = a (resp Lr(§,n) =7 — a).

Proof. Pick p € B, £ € 0,,B with Z¢(&§,n) = . Any initial segment pz of the ray
p€ may be extended to a segment py = pz U Ty so that py N W = {y} for some wall
W C B. Then py may be extended as a ray p€ = py U y€ where y& C W and
¢ € P,. Therefore & € P,. Since Z7(-,n) is a continuous function on d4 B, each
longitude intersects P, in a single point. Similar reasoning applies to P, _,. O

From the lemma we see that any longitude [ of ., B intersects P in two points if

x e o
a < 5 and one point if & = 7.

1.10 Distinguishing torus complexes

Let X, be a torus complex with a < 5, and let X, be a torus complex with oo = 5. Let
X and X, be their respective universal covers. A homeomorphism f : 0,0 X7 — 05 X>
would carry safe path components to safe path components, block boundaries to block
boundaries (Corollary 8 and section 1.8), poles to poles, and longitudes to longitudes.
But then section 1.9 gives a contradiction.
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