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Abstract

We show that a number of different notions of dimension coincide for length
spaces with curvature bounded above. We then apply this result, showing
that if X is a locally compact C'AT(0) space with cocompact isometry group,
then the dimension of the Tits boundary and the asymptotic cone(s) of X are
determined by the maximal dimension of a flat in X.

1 Introduction

Spaces with curvature bounded above were introduced by Alexandrov in [Ale51]; see
[ABNS86] for a survey of developments in the subject prior to 1980. Gromov’s paper
[Gro87], led to an explosion of literature on singular spaces, see the bibliography of
[Bal95].

Examples of spaces with curvature bounded above (henceforth CBA spaces) in-
clude:

e Complete Riemannian manifolds with sectional curvature bounded above.
e Euclidean, spherical, and hyperbolic Tits buildings, see [Tit74, Ron89, KL97].

e Complexes with piecewise constant curvature. [DJ91, CD95, Ben91, BB94, 5",93]
construct examples with interesting geometric and topological properties.

e Limits of Hadamard spaces', such as Tits boundaries and asymptotic cones.
These have a number of applications, see for example [Mos73, BGS85, KL95,
KL97].

*Supported by a Sloan Foundation Fellowship, and NSF grants DMS-95-05175, DMS-96-26911,
DMS-9022140.

IFollowing [Bal95] we call C AT (0) spaces (complete simply connected length spaces with non-
positive curvature) Hadamard spaces.



In this paper we will study the local geometry and topology of CBA spaces. We
recall ([Nik95], [KLI7, section 2.1.3] or section 2.1) that there is a C'AT(1) space,
the space of directions ¥,X, associated with each point p in a CBA space X. We
define the geometric dimension of CBA spaces to be the smallest function? on
the class of CBA spaces such that a) GeomDim(X) = 0 if X is discrete, and b)
GeomDim(X) > 1 + GeomDim(X,X) for every p € X. In other words, to find the
geometric dimension of a CBA space we look for the largest number of times that we
can pass to spaces of directions without getting the empty set. Our results relate this

notion of dimension with several others.

Theorem A Let X be a CBA space. Then the following (possibly infinite) quantities
are equal to the geometric dimension of X:

1. sup{TopDim(K) | K C X is compact}. TopDim(Y") denotes the topological di-
mension of Y.

2. sup{k | H,(U,V') # {0} for some open pair (U,V') in X}.

3. sup{k | There are sequences R; — 0, S; C X so that d(S;,p) — 0 for some p € X,
and 7S; converges to the unit ball B(1) C E* in the Gromov-Hausdorff topology}.
J

4. sup{k | There is a biHolder embedding (with exponent 5) of an open set U C EF
into X}.

When the geometric dimension of X is finite, we have somewhat stronger conclu-
sions:

Theorem B Let X be a CBA space, and suppose GeomDim(X) is finite. Then the
following quantities are equal to GeomDim(X).

1. sup{k | Hy—1(2,X) # {0} for somep e X}.
2. sup{k | H(X, X — p) # {0} for somep € X}.

3. sup{k | For every € > 0 there is a (1 + €)-biLipschitz embedding of an open set
U C EF into X}.

4. sup{k | There is an isometric embedding of the standard sphere S*~'(1) C EF
into ¥,X, for some p € X}.

We remark that the Hausdorff dimension of a metric space is always at least as
big as its topological dimension [HW69, Chapter VII]; however, there are compact
Hadamard spaces X with GeomDim(X) = 1 which have infinite Hausdorff dimen-
sion.?

The next theorem shows that the dimension of limits of a Hadamard space X is
controlled by the dimension of flats occurring in X.

Theorem C Let X be a locally compact Hadamard space on which Isom(X) acts
cocompactly. Then the following are equal:

2Taking values in N U oo.

3The completion of a metric simplicial tree which “branches fast enough” will have infinite Haus-
dorff dimension, although it may still be compact. In this case if we remove {x € X | |¥, X| =1}
we get a countably 1-rectifiable set: a set with Hausdorff dimension 1.



1. sup{k | There is an isometric embedding E¥ — X'}. Note that this is finite.
2. sup{k | There is a quasi-isometric embedding ¢ : EF — X }.

3. 1+ GeomDim(0,X). Here 0y X denotes the geometric boundary of X equipped
with the Tits angle metric, see section 2.4 or [KL97, section 2.5.2].

4. sup{k | Hy 1(0rX) # {0}}.

5. sup{k | There is an isometric embedding of the standard sphere S*=*(1) C EF

6. The geometric dimension of any asymptotic cone of X.

Theorem C may be formulated for arbitrary families of Hadamard spaces, see
Theorem 7.1; in particular it may be adapted to a foliated setting. Theorem C
extends the main result of [AS86], see also [Gro93, pp.129-30]. Theorems A-C may
also be applied to many of the questions posed in [Gro93, pp. 127-133], see section 9
for a discussion.

A key ingredient in the proofs of the theorems is the notion of a barycentric

simplex. If X is a Hadamard space and z = (2g,...,2,) € X", the barycentric
simplex determined by z is the singular simplex o, : A, — X which maps each
a = (ag,...,q,) € A, to the unique minimum of the uniformly convex function

3" a;ld(z;, -)]?. Barycentric simplices are Lipschitz, and the restriction to each face of
A,, is also a barycentric simplex (up to simplicial reparametrization). A remarkable
feature of barycentric simplices which is not shared by some other constructions of
simplices, such as the iterated coning of [Thu] is that if n > GeomDim(X) then o, is
degenerate: 0,(A,) = 0,(Bdy(A,)) (see section 4). Since o, is Lipschitz this implies
that the image of every barycentric simplex has Hausdorff dimension < GeomDim(X);
this leads to the estimate TopDim(K) < GeomDim(X) for compact subsets K C X.
To obtain biH6lder and biLipschitz embeddings of open sets U C EF into X, we use
the “nondegenerate part” of 0,(A,), i.e. 0,(A,)\0,(Bdy(A,)); this turns out to be a
topological manifold in spite of the fact that o, is typically nowhere locally injective.

In view of Theorem A, we make the following

Conjecture(cf. [Gro93, pp. 133]) If X is a CBA space, then TopDim(X) =
GeomDim(X).
When X is separable, the conjecture follows from the method of proof of Theorem A.

It is interesting to compare Alexandrov spaces with curvature bounded above
with Alexandrov spaces with curvature bounded below (CBB spaces). The papers
[BGP92, Per94| show that a CBB space X has very restricted structure provided its
Hausdorff or topological dimension is finite: [Per94] shows in particular that X is
locally homeomorphic to its tangent cone at each point, and that X is a stratified
manifold. This implies that the links of a polyhedron with a CBB metric are homo-
topy equivalent to spaces with curvature > 1; and this is a very strong restriction
on the polyhedron. In contrast to this, Berestovskii’s result [Ber83] shows that an
upper curvature bound does not impose any restriction on topology, at least if one
works in the setting of polyhedra. Also, a CBA space with finite Hausdorff dimen-
sion need not have manifold points: build an R-tree by completing an increasing
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union 73 C 1o C ... of metric simplicial trees where Length(T;) < 1 and every
branch point free segment ¢ C T has length < %; the resulting space has Haus-
dorff dimension 1. There are other natural conditions that one can impose on a
CBA space. If a CBA space X is locally compact and has extendible geodesics?,
then one can prove statements analogous to [BGP92, 5.4,10.6] about X; however
there is a 2-dimensional locally compact Hadamard space with extendible geodesics
which is not a stratified manifold, even though it is a Gromov-Hausdorff limit of a
sequence of 2-dimensional CBA polyhedra which satisfy the same conditions. The
natural applications of CBB and CBA spaces are also different. Finite dimensional
CBB spaces arise as Gromov-Hausdorff limits of Riemannian manifolds with a lower
bound on curvature and an upper bound on dimension, and are a powerful tool for
studying (pre)compactness for families of Riemannian manifolds. There are two main
classes of “interesting” singular CBA spaces. The first one is locally finite polyhedra
with nonpositively curved metrics; these provide numerous examples with interesting
topology and fundamental groups. The second is Tits boundaries and asymptotic
cones — these are limit spaces associated with a Hadamard space, and are usually
“large”, i.e. nonseparable. The Tits boundary of a Hadamard space X is an impor-
tant tool for studying the isometry group and the geodesic flow of X. Asymptotic
cones arise in compactness arguments, for instance when studying degeneration of hy-
perbolic structures [MS84, Pau88, RS94, Bes88|, or when studying quasi-isometries
[KL95, KL97, KKL98|.

We recall that a complete length space (X,d) is convex [Gro78| if for every
pair v, : [a1,b1] = X and 7, : [ag, by] — X of constant speed geodesic segments,
the function d o (y1,72) : [a1, b1] X [ag, ba] — R is convex. It turns out that a slightly
weaker version of Theorem C holds for the more general class of convex length spaces.

Theorem D Let X be a locally compact convex length space with cocompact isometry
group. Then the following are equal:

1. sup{k | There is an isometric embedding of a k-dimensional Banach space in X}.
Note that this is finite.

2. sup{k | There is a quasi-isometric embedding ¢ : E¥ — X}.

3. sup{k | H.(U,V) # {0} for some open pair VC U C CrX}. CrX denotes the
Tits cone of X, see section 10 for the definition.

4. sup{k | There is a k-dimensional Banach space (R¥,|| - ||), sequences R; — 0,
S; C CrX so that R%_Sj converges to the unit ball in (R* .|| - ||) in the Gromov-Hausdorff
topology}.

5. sup{k | There is an asymptotic cone X, of X, and an open pair VC U C X,
such that H,(U, V) # {0}}.

6. sup{k | There is a k-dimensional Banach space (R*,|| - ||), sequences R; — 0,
Sj C X, so that 7S, converges to the unit ball in (R, |- ||) in the Gromov-Hausdorff
J
topology}.

“These assumptions are natural when studying the geodesic flow.



7. sup{k | There is a k-dimensional Banach space (R*, || - ||), sequences R; — oo,
S; C X so that R%Sj converges to the unit ball in (R*,|| - ||) in the Gromov-Hausdorff

topology}.

The proof of Theorem D is somewhat different from the proof of Theorem C
because barycentric simplices do not behave well in convex spaces (squared distance
functions are no longer uniformly convex). Instead we use the differentiation theory
for Lipschitz maps into metric spaces of Korevaar-Schoen [KS93] (see Theorem 10.7,
Corollary 10.9, and Proposition 10.18).

The paper is organized as follows. In section 2 we briefly recall background ma-
terial and introduce notation. In section 3 we use the geometric dimension to bound
topological and homological dimensions from below. In section 4 we define barycentric
simplices, and prove that they degenerate above the geometric dimension (Corollary
4.10). In section 5 we use the results of section 4 to prove that the geometric di-
mension is at least as big as the topological and homological dimensions. In section
6 we construct biHolder and biLipschitz embeddings of open sets U C E" into CBA
spaces. In section 7 we construct flats in Hadamard spaces X starting with objects
in Or X or in an asymptotic cone of X. In section 8 we combine the earlier sections to
prove Theorems A, B, and C. In section 9 we discuss questions posed in [Gro93]. In
section 10 we discuss convex length spaces, giving a short proof of (a special case of)
the metric differentiation result of [KS93] and applications to convex length spaces.

I would like to thank Werner Ballmann, Toby Colding, Chris Croke, Christoph
Hummel, and Bernhard Leeb for their interest in this work. I would especially like
to thank Werner Ballmann and Christoph Hummel for making numerous helpful
remarks on an earlier version of this paper. Theorems A-C (except for part 4 of
Theorem B) were obtained when I was visiting MSRI in 1993-94, using somewhat
different arguments.
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2 Preliminaries

We refer the reader to [KL97] for a more detailed discussion of the material in this
section.

2.1 CAT(k) spaces, spaces of directions, tangent cones, etc

Let M? denote the two-dimensional model space with constant curvature x, and let
D(k) denote the diameter of M?2. A complete metric space X is a C AT (k) space if

1. Diam(X) < D(k).

2. Every two points x1,xe € X with d(z1,22) < D(k) are joined by a geodesic
segment of length d(x1,z,). Note that some other definitions in the literature
require X to be a length space; this is inconvenient in induction arguments since
spaces of directions can be disconnected.

3. Every geodesic triangle in X with perimeter < 2D(k) is at least as thin as a
geodesic triangle in M? with the corresponding side lengths. In particular, every
two points x1, o € X with d(xy,22) < D(k) are joined by a unique geodesic
segment with length < D(k) (up to reparametrization), which we will confuse
with its image T;75.

Let X be a CAT (k) space. If p, z, y € X and d(p, z) + d(z,y) +d(p,y) < 2D(k),

then there is a well-defined geodesic triangle Apzry. The comparison angle of the
triangle Apzy at p is defined to be the angle of the comparison triangle (in M?)

for Apzy at the vertex corresponding to p; this angle is denoted Z,(z,y). The thin



triangle condition implies that if ' € pT — {p} and y € py — {p} then Z,(z',y) <
Zp(:r,y). Therefore if we let 2’ € px, v € py tend to p then Zp(:r’,y’) has a limit;
we call this the angle between pT and py at p, and denote it by Z,(z,y). If we
let v € py — {p} tend to p, then Zp(x,y’) also tends to Z,(z,y). The function
p — Z,(x,y) is upper semicontinuous. Z, defines a pseudo-metric (see definition 2.7)
on the collection of geodesic segments leaving p. We define 37 X' to be the associated
quotient metric space obtained by collapsing zero diameter subsets to points. The
space of directions at p is the completion of X7 X, and is denoted ¥, X. ¥, X is
a C'AT(1) space [Nik95] (see also [KLI7, section 2.1.3]). The tangent cone at p is
the Euclidean cone C'(X,X) over ¥,X; it is a CAT(0)-space and is denoted by C,X.
We will often identify ¥, X (as a set) with the points in C, X at unit distance from
the vertex of the cone. We have a map logy,  : B(p, D(k)) — {p} — ¥,X which
takes x € B(p, D(k)) — {p} to the direction of the segment pz. We will often use the
notation pi for logs, x . There is also a map logc x : B(p, D(k)) — C,X which
takes x € B(p, D(k)) to the unique point on the ray C(logy, y(z)) at distance d(p, z)
from the vertex. It follows from comparison inequalities that loge x is 1-Lipschitz

when £ < 0; more generally, if 7 < D(k) then loge x |B(p " is L(r, k)-Lipschitz.

Lemma 2.1 If X is a CAT (k) space, p € X, and K C C,X is a compact subset,
then there are sequences Rj € R, S; C X so that lim; . R; = 0, lim;_, d(Sj,p) =0,
and %Sj converges to K in the Gromov-Hausdorff topology.

J

Proof. First assume K = logg, x(Y) where Y C B(p, D()) is a finite set. For each
y €Y let vy, : [0,1] = X be the constant speed geodesic with 7,(0) = p, 7,(1) = y.

Then
lim d(’)’yl (t) » Yy (t))
t—0 t

= d(logcpx(yl)a 10gcpx(y2),

so if we set S 1= {73,(%) | y € Y} then R%_Sj — K in the Gromov-Hausdorff topology.

Since ¥3X is dense in ¥,X, the Euclidean cone C(¥5X) is dense in CpX :=
C(X,X); therefore if K C C,X is an arbitrary compact set then K is a Hausdorff
limit of a sequence K; C C(X;X) C C,X of finite subsets. For each i there is
a A\ € (0,00) so that \;K; (the image of K; under the \; homothety of the cone
CpX) isin Im(logc, ). Applying the preceding paragraph to each K; and a diagonal
construction we obtain the desired sequences.

0

A metric space X has curvature bounded above by « if for every p € X there

is an 7 > 0 so that the closed ball B,(r) is a C AT (k) space; a space X has curvature
bounded above (or is a CBA space) if it has curvature bounded above by & for some

k. If X is a CBA space, p € X and r > 0 is small enough that B,(r) C X is a CAT (k)
space, then we may apply all the constructions of the previous paragraph to B,(r).
One observes that ¥,X and C,X are independent of the choice of r, k. We define the

injectivity radius at p, Inj(p), to be the supremum of the radii r so that B,(r)
is a C AT (k) space for some x with D(k) > r. We have well-defined logarithm maps
logy, x : Bp(Inj(p)) — {p} — L, X and logc, x : By(Inj(p)) — CpX.



2.2 Convex functions

Definition 2.2 Let X be a complete metric space. If C' € R, a function f : X — R
is C-convex if for every unit speed geodesic v : |a,b] — X, the function t —
for(t) = $t? is conves.

In particular, if f is C-convex, then f oy has left and right derivatives for every
geodesic 7.

Lemma 2.3 Let X be a complete metric space such that every two points in X are
joined by a geodesic segment. Suppose C > 0, and f : X — R is a continuous C-
convex function which is bounded below. Then f has a unique minimum T and any
sequence vy € X with im(f(xy)) = inf f converges to .

Proof. Suppose zy is a sequence with f(zy) — inf f as k — oo. For every k, [ let zy
be the midpoint of a geodesic segment joining xy to x;. Then C-convexity of f gives

€

1 2
f(xg) + §f(ffz) - g[d(frkaxz)] :

DN |

flzm) <

Hence limy, ;o d(zg, ;) = 0 and zy is Cauchy. Then limy_, @ is the unique mini-
mum of f. O

Lemma 2.4 (Directional derivatives of convex functions) Let X be a space with
curvature bounded above, and let ¢ : X — R be an L-Lipschitz function on X
which is C-convex for some C' € R. For every p € X there is a unique L-Lipschitz
function D¢ : C,X — R such that for every x € X — {p} in the domain of
loge, x, Do(loge, x(z)) = (¢ 0 7)'(0) where v : [0,1] — X is the constant speed
parametrization of the segment px. Moreover D¢ is conver and homogeneous of de-

gree 1: (D) (Av) = N(D¢)(v) for every A € [0,00).

Proof. Replacing X with a convex ball centered at p, we may assume that log. y
is defined on all of X. Define ¢ : X — R by setting ¢(z) = (¢ o v,)'(0) where
vz : [0, 1] — X is the constant speed geodesic segment with ~,(0) = p, and v,(1) = =.
If x1, x5 € X, then

[(@1) = (w2)] = (60 7,)'(0) = (¢ ©7,)'(0)]
_ i @2 00)(0) = (0 12)()

t—0 t

A(Var (8); Y (2)) |
t

< L|lim

t—0
= Ld(IOgcpx(ffl)a 10gcpx(ff2))-

Therefore ¢ descends to a unique L-Lipschitz function D¢ : C,X — R which is
homogeneous of degree 1. The convexity of D¢ follows from the C-convexity of ¢.
O

A computation of Hessians shows that if p is in the model space M2, then the
distance function d, := d(p,-) is Cy(r,k)-convex on B,(r) when r < D(k). By
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triangle comparison this implies that if X is a CAT (k) space and p € X, then
d, is a Cy(r, k)-convex function on B,(r) when r < D(k). The directional derivative
of d, at v € B,(D(k)) — {p} is given by

(Ddy)(v) = —(v, ) = —(v,logs, x p) (2.5)
where the “inner product” is defined by (v, w), = |v||w|cos £, (v, w). Similarly, there
is a function Cy(r, k) > 0 so that the squared distance function d?) is Cy(r, k)-convex
on By(r) when r < @.

2.3 Ultralimits and asymptotic cones

A nonprincipal ultrafilter on N is a finitely additive probability measure w on N
so that w(S) € {0,1} for every subset S C N, and w(S) = 0 when S C N is finite. If
K is a compact metric space and f : N — K, then there is a unique point p € K with
the property that for every neighborhood U of p, w(f~'(U)) = 1; this point is called
the w-limit of f and is denoted f(w) or w-lim f. If {(X;,d;, *;)}ien is a sequence of
pointed metric spaces, we define a pseudo-metric (see definition 2.7) d, on

{(z;) € HX | sup di(x;,%;) < 00} C HX

by dy((z), (i) := w-limd;(z;, ;). We let X, denote the associated quotient metric
space with distance function d,,, and let x, € X, denote the image of (x;) under the
projection. The ultralimit of (X, d;, ;) is the pointed metric space (X, d,,*,);
we will also use the notation w-lim(X;, d;,*;) and sometimes suppress d; when it is
clear from the context.

Properties of ultralimits:

1. Ultralimits are complete metric spaces.

2. If (X;,d;,*;) is a Gromov-Hausdorfl precompact sequence of spaces, then
(Xu, dy, *,,) is a limit point of the sequence.

3. If {(X;,d;,*;) }ien is a sequence of pointed metric spaces and every closed
ball in (X,,d,) is compact, then there is a subset S C N with w(S) = 1 so that
the corresponding subsequence of {(X;, d;, x;) }ien converges in the Gromov-Hausdorff
topology to w-lim(Xj, d;, %;).

4. If ¢; + (X, di, %) — (Xi, diy %) is a sequence of (L;, A;) quasi-isometric em-
beddings (resp. quasi-isometries), w-limd;(¢;(*;),*;) < oo, w-limL; = L < oo,
w-limA; = A < oo, then we get induced quasi-isometric embeddings (resp. quasi-
isometries) ¢, : (X, d,) — (X,,d,); when A = 0 then ¢, is uniquely determined.

5. If K C (X,,d,,*,) is a compact subset, then there is a sequence (Kj, d;, %;) of
pointed finite metric spaces and a sequence of isometric embeddings ¢; : (K;, d;, %;) —
(X, d;, %;) so that ¢, : K, — X, maps K, isometrically onto K.

6. An ultralimit of a sequence of CAT (k) spaces is a CAT (k) space.

Let (X,d) be a metric space. An asymptotic cone of X is an ultralimit of the
form w-lim(X, \;d, %;) (sometimes written (\; X, *;) when the metric is clear from the
context) where x; € X, A; > 0, and w-lim \; = 0.
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Properties of asymptotic cones:

1. If : X — X is an (L, A) quasi-isometric embedding (resp. quasi-isometry),
then the ultralimit of the sequence ¢ : (X, \id,x;)) — (X, \id, ¢(x;)) gives an L-
biLipschitz embedding (resp. L-biLipschitz homeomorphism) between the asymptotic
cones.

2. If the isometry group of X acts with cobounded orbits on X, then the isometry
group of any asymptotic cone of X acts transitively.

2.4 The Geometric and Tits boundaries

Let X be a Hadamard space. Two unit speed geodesics® v, : [0,00) — X, 75 :
[0,00) — X are equivalent (or asymptotic) if the Hausdorff distance between
71([0,00)) and ([0, 00)) is finite. Given a geodesic ray 7; and p € X, there is
a unique geodesic ray v, : [0,00) — X asymptotic to y; with v2(0) = p. The
geometric boundary of X, 0,,.X, is the set of equivalence classes of geodesic rays
in X topologized by viewing it as the collection of geodesic rays leaving some p € X
endowed with the compact-open topology. If p € X, € € 0,,X, we let p€ denote the
image of the geodesic ray leaving p in the class .

The Tits angle between two geodesic ray 71, 7, leaving p € X is Zr (71, 72) =

limy oo Zp(71(8), 72(t)). Zr defines a metric on 05X, and we denote the resulting
metric space by 0rX.

Properties of 0rX:
1. 0pX is CAT(1)-space.
2. L7 00X X 05X — [0, 7] is a lower-semicontinuous function.
3. Ifpe X, &,& € 0rX, then Zp(&,&2) = sup,ey £o(&1,62) = M, e e p)—o0 Ly(&1, ).

2.5 Miscellany

Definition 2.6 An e-Hausdorff approximation is a map ¢ between metric spaces
(X,dx) and (Y,dy) so that |¢p*dy —dx| < € and dy (y, p(X)) < € for everyy € Y. A
sequence of metric spaces Xy, converges to a metric space X in the Gromov-Hausdorff
topology iff there is a sequence of e€x-Hausdorff approximations ¢ : X — Xy with
llmk*)w € = 0.

Definition 2.7 A pseudo-metric, or pseudo-distance function on a set X is
a function d : X x X — [0,00) which is symmetric and which satisfies the triangle
inequality.

If (X, d) is a pseudo-metric space, then we get a metric space (X,d) by letting X be
the set of maximal zero diameter subsets and setting d(S, Sz) := d(s1, s2) for any
s; € S;. We define the Gromov-Hausdorff pseudo-distance between pseudo-metric
spaces to be the Gromov-Hausdorff distance between the associated (quotient) metric
spaces.

®Geodesic rays will be parametrized at unit speed except in section 10.
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3 Geometric dimension bounds topological and ho-
mological dimension

In this section we show that the geometric dimension gives a lower bound for the
topological and homological dimensions of a CBA space.

Lemma 3.1 If X is a CBA space, p € X, and GeomDim(X,X) > n — 1, then there
are sequences R; — 0, S; C X so that d(S;,p) — 0 and R%Sj converges to the unit
ball B C E" in the Gromov-Hausdorff topology.

Proof. The statement is immediate when n = 0, so we assume that n > 0. By
induction there is a sequence of sets T, C ¥,X so that Tk — Bt c Evl

the Gromov-Hausdorff topology. If C'T}, C C), X is the Euchdean cone over T, and
*; € CTp N X, X, then the pointed spaces ( kC’Tk,*k) converge to B" ! x R in the
pointed Gromov-Hausdorff topology. Since B™ embeds isometrically in B"~! x R we
may find T}, C CT} so that (Rika,*k) converges to B". But by Lemma 2.1 each T},
is a Gromov-Hausdorff limit of a sequence R%_SJ’- where S; C X, d(S7,p) — 0. Hence

the lemma. N

Proposition 3.2 If X is a CBA space, p € X, Ry — 0, S, C X, d(Sk,p) — 0, and
R%Sk — B™ C E" in the Gromov-Hausdorff topology, then H,(X,V) # 0 for some
open set V- C X and TopDim(K) > n for some compact set K C X.

Proof. Let e; be the i unit coordinate vector in E*, and let o : E* — E" be the map
with 7" coordinate function d(e;, -)—1. Note that if § € (0, 1) is sufficiently small, then
a(0B(0,0)) Cc E*\{0} and a|B(O’5) induces an isomorphism H,(B(0,4),0B(0,d)) —
H, (B, E" \ {0}).

Let ¢ : B(0,Rr) — Sk € X be a sequence of ¢, Ri-Hausdorfl approximations
(see definition 2.6), where €, — 0. Set 2% = ¢y (Rye;), and define dy, : X — E" by
dp(7) = (Rik(d(x,lg, ) — Rg), ... ,Rik(d(xz, -) — Rg)). Triangulate B(0, Ry) C E" with
smooth simplices of diameter < ¢, Ry. For sufficiently large k define a continuous map
Y B(0, Ry) — X by starting with the restriction of ¢y to the 0-skeleton of the
triangulation, and extending it to B(0, Ry,) using barycentric simplices (see section 4).
Define ay : B(0,0) — E" by ay(x) = (dg o ¢x)(Rgx). Then «y converges uniformly
to O‘|B(0,5) and for sufficiently large k£ we have oy (0B(0,6)) C E* —\{0} and H,, (o) :
H,(B(0,0),0B(0,0)) — H,(E",E" \ {0}) is an isomorphism Hence if Vj, = d ' (E" \
{0}), we find that for k sufficiently large H, (¢y) : H,(B(0,0Ry),0B(0,0Ry)) —
H,(X,Vy) is well-defined and nontrivial. So for sufficiently large £, dk|wk(B(0 5R)
cannot be uniformly approximated by continuous maps which miss the origin 0 € E™,
so TopDim (¢ (B(0,0Ry))) > n. O
Remark. The proof shows that there are ¢, R > 0 depending on K € R and n € N
so that if B™ C E" denotes the unit ball, and a C AT (k)-space X contains a subset
S with dGH(%S, B™) <€, R' < R, then TopDim(X) > n. When x < 0 one may take
R = oo. In fact, it suffices to have a (sufficiently small) set which is sufficiently close
in the Gromov-Hausdorff topology to either a) the 0-skeleton of the first barycentric
subdivision of a regular n-simplex or b) the set {0, £ R'ey,... ,+R'e,} C E".
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4 Barycentric simplices

In this section we define a notion of simplex which provides a direct connection
between the geometric dimension of a CBA space and the topological dimension
of its separable subsets. The key result is Proposition 4.8, which implies that if
GeomDim(X) < n, then every barycentric k-simplex with & > n is degenerate (see
definition 4.7).

Let X be a space with curvature bounded above.

Definition 4.1 We say that z = (2, ... ,2,) € X" is (k,r)-admissible if k € R,

r< Dg“), the closed ball B(z;,r) is a CAT (k) space, and d(z;,z;) <1 for0 <1i,5 <n.

z is admissible if it is (k,r)-admissible for some (k,r).

Lemma 4.2 Let z = (z9,...,2,) € X" be (k,r)-admissible, and let Y, be the
CAT (k) space N; B(z;,1). Then for every a in the standard n-simplex A,, = {(aw, ... ,a,) €
R | oy >0, > o = 1}, the function ¢q := Y a;d? has a unique minimum point
in Y. This minimum point y is characterized by the property that > o;d,. (y)D(d,,)
is a nonnegative function on C,X, where D(d,,) : C,X — R denotes the directional
derivative of d,;, see Lemma 2.4. Denoting this minimum point by o,(c), we obtain
a Lipschitz map o, : A,, — X. The map o, is independent of the choice of (k,r),
and we call it the barycentric simplex determined by z. If 7 : Ay, — A, s a
k-face of A,, then o, o T coincides with the barycentric simplex determined by the

sub-(k + 1)-tuple of z selected by T.

Proof. Existence of minimum of ¢,. Since z is (k, r)-admissible, the squared distance
functions d2, are all C-convex on Y}, where C' > 0 depends on &,r (see section 2).
Therefore ¢, is C-convex on Y, for every o € A,,, and so we may apply Lemma 2.3
to see that ¢, has a unique minimum in Y,, and that this minimum does not depend
on the choice of (k, 7).

0, is Lipschitz. Pick y € Y,, and let 7 : [0,{] — Y, be the unit speed geodesic
from o,(«) to y. The function ¢, 0~ :[0,]] — R is C-convex with a minimum at 0,
so the left derivate of ¢, oy at [ is at least Cl; in particular, if y # o0,(«) then the
derivative of ¢, at y, D(¢,) = > 2a;d,,(y)D(d,,), attains negative values. On the
other hand, if y = 0,(a') for some o/ € A, then the left derivate of ¢, oy at [ is
< 0 since 0,(c/) minimizes ¢, . Therefore the left derivate of (¢, — ¢or) © 7y at [ is
> CI. d2. is 2r-Lipschitz on Y, 80 ¢q — ¢ is 2r||ac — o||n-Lipschitz on ;. This gives
Cl < 2rlla—o||p or d(o.(),0,(c))) =1 < Z||v — o[, and so o is Lipschitz. The
final statement of the lemma is immediate from the definition of o,. O

We will need to define maps by using the minima of more general families of
functions. The following lemma provides an appropriate setup.

Lemma 4.3 Let X be a complete metric space. Let fy, ..., fn be bounded Lipschitz
functions on X, let Q C R, and for every o € R*™ define ¢ : X — R by
bo = D a;fi. Suppose v : Q — R is a continuous positive function such that for
every a € )
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1. ¢ ((—oo,v(a) +inf ¢y)) C X is a geodesically convexr subset®.
2. ¢o is v(a)-convex on ¢ ((—o0, v(a) + inf ¢,)).

Then
1. For each o € 2, ¢q attains a minimum at a unique point in X.

2. If op : Q0 — X is the map taking each o € S to the minimum of ¢, then oy
15 locally Lipschitz.

If in addition a) X has curvature bounded above, b) the f;’s are all C-convex for
some C € R, ¢) Df; : C,X — R denotes the derivative of f; at x (see Lemma 2.4),
and d) o € §; then

3. x € X is the minimum of ¢, iff > ;D f; is a nonnegative function on C,X.
We omit the proof as it is similar to the proof of Lemma 4.2.

Lemma 4.4 Let X be a CAT(1) space, let CX be the Euclidean cone over X, and
identify X with the unit sphere in CX. Let f : X — R be a Lipschitz function
whose homogeneous extension f : CX — R is convexr. Then

1. If v : [0,0] — X is a unit speed geodesic, then (f ov)" + fovy > 0 in the sense
of distributions. Equivalently, for every t € (0,0) and every e > 0 there is a
d > 0 so that fory is (—(fovy)(t) —€)-conver in the interval [t —6,t+ 0] C [0, 0)].

2. For every p >0, f~1((—o0, —p)) is a geodesically convex subset of X, and f is
p-conver on f=((—o0, —p)).

Proof. 1. We may take X = ~([0,6]) and 6 € (0,7). Then we may identify C'X with
a sector in R?. The first statement is obvious for smooth functions and follows for
general functions by a smoothing argument.

2. If x1, 29 € X and f(x1), f(z2) < 0 then the segment joining z; to x5 in the
Hadamard space C'X cannot pass through the vertex o of C'X, since convexity of f
would force f(0) < 0, which is absurd. Therefore dy (1, x3) < m, and f~!((—o0,0))
is geodesically convex. The second statement now follows from the first. O

Lemma 4.5 If fo,..., f, are functions on a CAT(1) space X which satisfy the con-
ditions of Lemma 4.4, then together they satisfy the conditions of Lemma 4.3 for
Q:={aeR""™ |q; >0, inf ¢, < 0} and a suitable function v.

Proof. First note that the |f;|’s are bounded by some B since X has diameter < 7
and f; is Lipschitz; by 1 of Lemma 4.4 this tells us that the f; are (—B)-convex. For
a € ), the nonnegative linear combination » | «; f; satisfies the hypotheses of Lemma
4.4, so for every p > 0, ¢, ((—o00, —p)) is geodesically convex, and ¢, is p-convex on
$ot((—o0, —)). So if we set v(a) = —1% inf ¢, then conditions 1 and 2 of Lemma 4.3
will be satisfied. O

SEvery two points are joined by path in the subset whose length equals the distance between
them.
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Definition 4.6 If fy,... , f, are functions on a CBA space X, then (fo,..., fn) is
an admissible (n + 1)-tuple if
1. Each f; is C-convex for some C' € R.

2. fo,..., fn satisfy the conditions of Lemma 4.3 with with Q = A, and a suitable
function v.

We call the map oy : A, — X constructed in Lemma 4.3 the simplex deter-
mined by (fo,..., fn). Note that a (k,r)-admissible (n + 1)-tuple z = (20, ... ,2n) €
X"t defines an admissible (n + 1)-tuple (d2,,...,d2 ) on Y, := N; B(z,r) whose
simplex is just the barycentric simplex of z.

Definition 4.7 Let (fo, ..., fa) be admissible. Then oy : A, — X is degenerate
if 07(Ay) = op(Bdy(A,)). Otherwise os is nondegenerate, and any x € o(A,) —
of(Bdy(A,)) is a nondegenerate point. When z € X"*! is admissible then we
will apply the same terminology to the barycentric simplex o, : A, — X. Note that
by part 3 of Lemma 4.5 it follows that x € X is a nondegenerate point of oy iff

1. There is an a € A, so that D¢, : X, X — R is nonnegative.

2. For every a € Bdy(A,) we have infy_x D¢, < 0.

Proposition 4.8 Let X be a CBA space. If (fo,..., [fn) is admissible and z €
or(Ay) is a nondegenerate point then GeomDim(¥,X) > n — 1. In particular
if 2 = (20y...,20) € X" is admissible and x € 0,(A,) is nondegenerate then
GeomDim(¥X,X) >n — 1.

Proof. The idea of the proof is to construct a Lipschitz map o, : Bdy(A,) — 2, X
which indicates, for each a € Bdy(4A,), the direction of fastest decrease for the
function ¢, = > oy f;. We then construct a Lipschitz map ¢ : ¥, X — R*™! with the
property that goo, maps the fundamental cycle of Bdy(A,) to a cycle in R*** which
is nontrivial in H,_{(W) where W C R""! is suitably chosen. It then follows that
g o o4(Bdy(Ay)) has positive (n — 1)-dimensional Hausdorff measure, which means
that at least one of the top-dimensional faces of o, is nondegenerate. We then argue
by induction, concluding that GeomDim(¥,X) > n — 1.

Pick a = (ap, ..., o) € A, so that © = op(@). Let g; := Df; : ¥, X — R be
the directional derivative of f; at x, and let g := (go,... ,0,) : 2. X — R**'. By 3
of Lemma 4.3 we know that >  @;g; is nonnegative on ¥,X; in particular, for every
v € ¥, X we have g;(v) > 0 for some i. As z is a nondegenerate point of oy, we have
inf > ;g; < 0 for every o € Bdy(A,). In view of Lemma 4.5, we may apply Lemma
4.3 to go, ..., gn With Q@ = Bdy(A,), to get a Lipschitz map o, : Bdy(A,) — £, X.
The composition p = g o o, : Bdy(A,) — R has the following properties:

e For every a € Bdy(A,), p(ca) has at least one nonnegative coordinate and at
least one negative coordinate.

o If I C {0,...,n}, and a € Bdy(A,) lies in the face corresponding to I (i.e.
a; = 0 for j & I), then the i coordinate of p(c) is negative for some i € I.

Set
W = {t € R""!|There exists i so that ¢; < 0 and j so that t; > 0},
and for each subset I C {0,... ,n}, set Wy ={t € W| t; <0 for some i € I}.
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Lemma 4.9 1. The map —id| A Bdy(A,) — W is a homotopy equivalence.

Bay(
2. Wy is contractible when I is a proper subset of {0,... ,n}.
3. If u: Bdy(A,) — W is a continuous map with H,_i(u) : H,—1(Bdy(A,)) —
H,_1(W) nonzero then u(Bdy(A,)) C W has positive (n — 1)-dimensional Hausdorff
measure.

Proof. Let RZ™ = {t € R**! | ¢; > 0 for all i}, RAT = {t € R*™*! | ¢; > 0 for all i}
be the nonpositive and positive orthants respectively; and define R%™ and RZM sim-
ilarly. We have 17 = R*! \ (R:F! URZ!). Note that 1, deformation retracts to its
intersection with Bdy(R:™) = RUF\ RH! by moving points in the (=1,..., —1) di-
rection until they hit Bdy(R“*'); moreover this retraction r; : W; — W;N Bdy(R*"!)
is Lipschitz. Also, W; N Bdy(R%"") deformation retracts to its intersection with
—Bdy(A,) via the (locally Lipschitz) radial retraction ) : W; N Bdy(R*) —
Wi N (=Bdy(A,)). But W, N (=Bdy(A,)) is the image of the I-face of Bdy(A,)
under —idgn+1 when I is a proper subset of {0,... ,n} and —Bdy(A,) otherwise, so
1 and 2 follow.

If u: Bdy(A,) — W is continuous and H,, (u) # 0 then Tio,...,n} 0 T{0,..m} O U :
Bdy(A,) — —Bdy(A,) is nontrivial in H, i, so it is surjective; since rf{o’"_’n} and
"0, ny are both locally Lipschitz this implies that the (n — 1)-dimensional Hausdorff
measure of u(Bdy(A,)) is positive. This completes the proof of Lemma 4.9. O

We have shown that the Lipschitz map p : Bdy(A,) — R**! has image contained
in W, and the image of the I-face of Bdy(A,) under p is contained in the contractible
subset W;. Since p : Bdy(A,) — W is homotopic to any other continuous map

satisfying these conditions, p is homotopic to —idgn+1 By, in particular p maps
the fundamental class of Bdy(A,) to a nontrivial element of H, ,(W). By 3 of

Lemma 4.9 we conclude that p(Bdy(A,)) — and hence also o,(Bdy(A,)) — has positive

(n — 1)-dimensional Hausdorff measure. This means that for some i € {0,... ,n},
the image of the (n — 1)-face {t € Bdy(A,) | t; = 0} of Bdy(A,) under o, has
positive (n — 1)-dimensional Hausdorff measure. Then (go,...,¢i—1, Git1,--- Gn) 1S

an admissible n-tuple whose simplex A,_; — X, X is nondegenerate, for its image

has positive (n — 1)-dimensional Hausdorff measure. By induction we conclude that
GeomDim(¥,X) >n — 1. O

Corollary 4.10 If X is a CBA space with GeomDim(X) = n < oo, then for ev-

ery admissible (k + 1)-tuple (fo,..., fx), the image of oy has finite n-dimensional
Hausdorff measure.

Proof. By Proposition 4.8, each face of o, of dimension > n is degenerate, so of(Ay)
is the image of the n-skeleton of Ay. As oy is Lipschitz Corollary 4.10 follows. g

Lemma 4.11 If X is a CBA space with GeomDim(X) > n, then there is an admis-
sible z € X" with o, nondegenerate.

Proof. Pick p € X so that GeomDim(X,X) > n. By Lemma 3.1 we may find sequences
Ry — 0 and S, C X satisfying the hypotheses of Proposition 3.2. Following the proof
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of Proposition 3.2, the map ¥ : B(0,R;) — X is constructed using barycentric
simplices and TopDim (U (B(0, Rx))) > n. But this forces the image of one of the
barycentric simplices o to have topological dimension at least n; therefore [HW69,
Chapter VII] Image(o) has Hausdorff dimension > n, and so o is nondegenerate.

Alternatively one can show directly that if the (n + 1)-tuple 2% := (2§,... ,2F) €

[B(0, Ry,)]"** consists of the vertices of a regular n-simplex inscribed in B(0, Ry),
then ¢p(2%) = (dr(2F), ..., de(2F)) € X" is admissible and nondegenerate when k

is sufficiently large.
U

5 Topological dimension

In this section, we use the fact that barycentric simplices degenerate in dimensions
greater than GeomDim(X) to show that the homological dimension of X and the
topological dimension of compact subsets of X are both < GeomDim(X).

Lemma 5.1 Let X be a CBA space.

1. Any continuous map ¢ from a finite polyhedron P to X may be uniformly
approzimated by a Lipschitz map ¢1; if GeomDim(X) < n then we may arrange that
¢1(P) has finite n-dimensional Hausdorff measure.

2. Suppose K C X is compact. For every e > 0 the inclusion v : K — X can be

e-approximated by a Lipschitz map 1, : K — X which factors as K P S X where
P is a finite polyhedron, f, g are Lipschitz, and the f-inverse image of each simplex
of P has diameter < €; in particular the image of i, has finite Hausdorff dimension. If
K has zero k-dimensional Hausdorff measure then we may arrange that Dim(P) < k;
if GeomDim(X) = n < oo then we may arrange that Dim(P) < n.

Proof. 1. Pick € > 0. After barycentrically subdividing P enough times, we may
assume that ¢ maps the vertices of each simplex 7 of P to an admissible (j + 1)-
tuple in X (definition 4.1), and ¢(7) C X has diameter < . Then we may define
¢ : P — X to be the unique Lipschitz map whose restriction to each simplex of P
is just the barycentric simplex determined by its vertices. Then d(¢, ¢;) < €, and if
GeomDim(X) < n then ¢;(P) has finite n-dimensional Hausdorff measure since it
coincides with the image of the n-skeleton of P by Corollary 4.10.

2. Choose € > 0 so that any tuple of points in K with pairwise distance < € is
admissible. Let U = {B,,(5)}icr be a finite open cover of K by open $-balls (in X)
centered at points in K, let Y := UjerB,,(5) € X, let Nerve(U) be the simplicial
complex whose simplices correspond to the subsets of ¢/ with nonempty intersection,
and let |[Nerve(U)| be the polyhedron of Nerve(U). Using barycentric simplices as
in 1 above, we get a Lipschitz map oy, from |Nerve(d)| to X. By choosing a locally
Lipschitz partition of unity {p; };c; subordinate to U, we get a locally Lipschitz map
pu =Y — |Nerve(U)|. The composition i, := (oy 0 py) |K satisfies the conditions in 2.
If K has zero k-dimensional Hausdorff measure, then so does py(K) C |Nerve(U)],
since py is Lipschitz on K. So we can define a Lipschitz map 7 from py (K) to the
(k — 1)-skeleton of |Nerve(U)| with the property that 7(¢) lies in the closed simplex
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determined by ¢ for every t € py(K) (starting with a top dimensional simplex 7 of P,
project away from a missed interior point to Bdy 7, etc). Now oy omo py i K=K
factors as K —2% |(Nerve(U))p—1| =% X as desired.

If GeomDim(X) < n, then we already know that we can approximate ig : K — K
with a Lipschitz map j; whose image has finite n-dimensional Hausdorff measure, in
particular zero (n+ 1)-dimensional Hausdorff measure. So we may apply the previous
paragraph to get a map j, from j; (K) to X which approximates the inclusion j; (K) —
X, and which factors through a polyhedron of dimension < n; the composition js o j;
is the desired approximation of 7. O

Proposition 5.2 Let X be a CBA space. Then
1. If k > GeomDim(X), then H,(U,V) = {0} for all open pairs (U, V) in X.
2. sup{TopDim(Y) | Y C X is compact} < GeomDim(X).

Proof. 1. Suppose k > n = GeomDim(X) and let (U, V') be an open pair in X. Given
la] € Hi(U,V), there is a compact pair (K, L) and a map ¢ : (K,L) — (U,V) so
that [o] € Im Hy(¢). Pick € > 0. According to Lemma 5.1, we may approximate the
inclusion ¢(K) — X with maps 4, : $(K) — X which factor through finite polyhedra
of dimension < n. If d(¢q,¢) is sufficiently small then ¢; will be homotopic to ¢
(as a map of pairs) by the geodesic homotopy. In this case we have Im Hy(¢) =
Im Hy(¢1) = {0}.
2. If K C X is compact, we may apply 2 of Lemma 5.1 to get a map f from K to
a polyhedron P of dimension < n so that Diam(f (7)) < € for every simplex 7 of P.
This shows that open covers of K with order < n+ 1 are cofinal, so TopDim(K) < n.
|

Proposition 5.3 Let X be a CBA space with GeomDim(X) = n < co. Let I be a
finite set, let U; C X be open sets such that all intersections U;; N...NU;, are either
empty or contractible, and suppose U;c;U; C 'Y where Y s a contractible open set.
Then if NierU; = 0, there is a subset J C I with |J| < n+1 so that Nie,U; = 0.

Proof. Let k be the largest integer so that every subset I' C I with |[I'| < k gives
ﬂiepUi 7§ @ Pick J C I with |J| = k+1 so that mieri == @, let V = {Ui}ie], and V =
UiesU;. The simplicial complex Nerve()) is isomorphic to Bdy(Ag). As nonemp-
ty intersections are contractible, Mayer-Vietoris sequences show that Hy_;(V) ~
Hy_1(Bdy(Ag)) # {0}. From the exact sequence of the pair (Y, V) we get Hy,(Y, V) #
{0}. By Corollary 5.2 we have k < n. O

6 Minimum sets and subsets homeomorphic to R”

In this section we study the images of barycentric simplices. The main results are
Theorem 6.3, which produces biHolder images of open sets U C E" in spaces with
nondegenerate n-simplices, and Theorem 6.8, which gives biLipschitz images of open
sets U C E" in CBA spaces with geometric dimension n.
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6.1 General minimum sets

If X is a geodesic metric space and f = (fo, ..., fu) : X — R*"! is a map with convex
component functions, then f(X) C R**! is not necessarily convex, but the “bottom”
of f(X) behaves like a convex set in many respects. We will use this idea to produce
nice subsets of X.

Notation. If t,#' € R", we say that t < ¢’ (resp. t <) if t; <t} (vesp t; < ¢}) for all
1 < i< n. CH(Y) denotes the convex hull of Y C R".

Definition 6.1 If S C R", then an element s € S C R" is minimal if there is no
s" € S with ' < s. Minset(S) denotes the set of minimal elements of S; Minset(S)
is a closed subset of S. If J C {1,... ,n}, let 7; : R" — R/ be the corresponding
projection. The J-face of S is ;' (Minset(m;(S))). s € Minset(S) is nondegener-
ate if it does not lie in the J-face of S for any nonempty proper subset J C {1,... ,n};
Nondeg(S) denotes the set of nondegenerate points of S.

Let X be a bounded complete length space with unique geodesic segments joining
pairs of points. Given zg,z; € X and A € [0, 1], we let (1 — A)zg + Az; denote ()
where 7 : [0,1] — X is the unique constant speed geodesic joining x¢ to z;.

Definition 6.2 Suppose C' > 0, and let fy,..., [, be L-Lipschitz C-convex non-
negative functions on X. Set f := (fo,...,fu) : X — R, S = f(X) C
R o= {t € R*™ | ¢, > 0 for all i}, Minset(f) := f~(Minset(S)), Nondeg(f) =
fL(Nondeg(S)).

Theorem 6.3 1. If for 1 < k < N, s, € S are distinct, A\, > 0, ch\;l A = 1,
then there is an s' € S with s" <> A\gsy.

2. Minset(S) = Minset(S).

3. If v € Minset(f) then there is a system of weights a € A, := {t € R*" |
t; > 0 for alli and Y t; = 1} so that x is a strict minimum for Y a;f;. More-
over, setting ¢(t) :== > ait;, s = f(x), we have

o(s—5) 2 gzl s = o i (6.4)
for every s' € S, where ||+ ||1= is the 1 norm on R*"'. Consequently Minset(f)
is precisely the image of the barycentric simplex oy : A,, — X, and Nondeg(f)
is nonempty iff oy is nondegenerate.

4. If CH(S) is the convex hull of S and p € Bdy(CH(S)) admits a supporting
linear functional Y, cit; with a; > 0 for all 0 < i < n, then p € Minset(S).

f|Minset(f) : Minset(f) — R""! is a Lipschitz homeomorphism onto Minset(S)
with %-Holder inverse. The image f(Minset(f)) = Minset(S) is a Lipschitz

graph over a closed subset of the hyperplane H = {t € R”+1| dot; = 0}.
Nondeg(S) projects to an open subset of H, so Nondeg(f) is biHélder to an
open subset of R™.
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Corollary 6.5 If X is a CBA space with GeomDim(X) > n, then there is an open
set U CE", and a %—Hé'lder embedding U — X with Lipschitz inverse.

Proof of Corollary 6.5. By Lemma 4.11 there is an admissible z € X" *! so that the

barycentric simplex o, is nondegenerate. Setting f = (fo,..., fn) = (dZ,,...,d?)
we see by 3 of Theorem 6.3 that Nondeg(f) is nonempty; hence 5 of Theorem 6.3
applies. O

Proof. 1. Since 30 | Aesr = Aysy + (1= A)(On, (lf—’j\l)sk), 1 follows from the strict
convexity of the f;’s and induction.

2. Let s € S be minimal in S, and pick a sequence z; € X so that f(x;) — s. By
the argument of Lemma 2.3, x) is Cauchy and so f(limg_,o 2x) = s, which proves 2.

3. Suppose x € Minset(f), s = f(x). s is minimal in CH(S), for otherwise by
1, s would not be minimal in S. Therefore the convex set CH(S) is disjoint from

the open convex set U = {t € R**! |t < s}, and hence there is a ¢ € (R**1)*\ {0},
B(t) = > ayty, so that inf (CH(S)) > sup ¢(U). So we have a; > 0 and without loss
of generality we may assume »  a; = 1. ¢ is the supporting linear functional sought
in 3. The C-convex function ¢ o f attains a minimum at x, so for every 2’ € X we
have

(60 1)) > (60 () + S (e, )

If & = f(a') € S, then || s — §' ||;«< Ld(x,2"), so the inequality (6.4) follows.

4. Suppose p € Bdy(CH(S)) is supported by a linear functional Y , a;t; with
a; > 0. Since S is a bounded subset of R every p € C'H(S) is a convex combination
Z,ivzl prSe of at most m + 2 elements 5, € S, pup > 0, Yo = 1. If p ¢ S then
N > 2, and uniform convexity of the f; gives us s’ € S with s’ < p, contradicting
the assumption that CH(S) is supported by > «;t; at p. Hence p € S and clearly

p € Minset(S) so by 2 we have p € S, proving 4.
5. Pick 1, z9 € Minset(f), and set d = d(z1,x3), d = d(f(z1), f(z2)). For each

1 we have

1 1 1 1 C.d
(= hl < Zf Zf — 2 ()2
fz(2$1 + 2552) < 2fz($1) + 2fz($2) 5 (2)
by the C-convexity of f;, and
1 1 d'
Sfilen) + S filwe) = filwn) < 5
by the triangle inequality. Hence
1 1 C.d, d'
(= - (=) = fi(zy) < —.

Since x1; € Minset(f), we have fi(%:r1+%:r2) > fi(xy) forsome 0 < i < n,sod > CTdQ.
This shows that f|MZ.nset(f)
inverse. This proves the first claim of 5.

To see that Minset(S) C R**! is a Lipschitz graph over a closed subset of the
hyperplane H := {t € R**! | 3" t; = 1}, note that if p € Minset(S) then Minset(S)
is disjoint from the union of the orthants {t € R**! | ¢ < p} and {t € R*™! | p < t}.

satisfies a reverse Holder inequality, and so f has a Holder
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Now suppose p € Nondeg(S). By 3, p lies on the boundary of CH(S) so CH(S)
can be supported at p by a linear functional ¢(t) := > a;t;, oy > 0. If ¢'(t) =
> alt; is any supporting functional for CH(S) at p, then o} > 0 for all i; otherwise
a convex combination of ¢ and ¢’ would give another supporting linear functional
"(t) = > alt; where of > 0 for all ¢ and o) = 0 for some i, contradicting the
nondegeneracy of p. By an obvious limiting argument, any point p' € Bdy(CH(S))
sufficiently close to p also has the property that every supporting linear functional
has positive coefficients; consequently, a neighborhood U of p in Bdy(CH(S)) is a
convex hypersurface contained in Nondeg(S) by 4, and this neighborhood projects
to an open set in H. O

6.2 Top dimensional minimum sets

We now specialize the setup of section 6.1 to the case when X is a CAT (k) space
with the property that d(z;,x2) is less than D(k) (the diameter of the model space
M? with constant curvature k) for all z1, 2o € X, the C-convex functions fy,... , fu
are the squares of distance functions d,,, z; € X, and GeomDim(X) = n.

Theorem 6.6 If K is a compact subset of Nondeg(f), then there is a constant L, > 0
so that for every v € K and every x' € X we have

A(f(@), f(@)) > Lad(z, ) (6.7)

In particular, f|K : K — R s a biLipschitz homeomorphism onto its image. By
part 5 of Theorem 6.3, Nondeg(S) is the graph (over the hyperplane H ) of a Lipschitz
function defined on an open subset of H. Therefore Nondeg(f) is locally biLipschitz
to an open subset of E".

Proof. If v € Nondeg(f) and 0 < 7 < n, then there is a y € X so that Z,(y, z;) < §
for every j # i. Upper semicontinuity of the angle function x — Z,(y, ;) (see section

2.1) implies that there is an r, < ¥ so that Z,(y, z;) < r, for every j # i when 2

is sufficiently close to . Hence by the compactness of K, we may conclude that the

points in K are “uniformly nondegenerate” in the sense that there is an r < 3 so

that for every # € K and every 0 < i < n there is a v € ¥, X with Z,(v,72}) < r for
J# i

We now show that the failure of a reverse Lipschitz condition (6.7) implies that
GeomDim(¥,X) > n for some x € K, which contradicts our assumption that
n = GeomDim(X) > 1+ GeomDim(X,X). Choose sequences zy € K, x} € X — {x;}

so that limy_,oo %w = 0. Note that limg_,o d(zg,x}) = 0, for otherwise the

C-convexity of the f;’s implies that the midpoint my, of the segment ;2] will satisty
f(mi) < f(xy) for sufficiently large k, contradicting xy, e Mmset(f). Hence the com-

parison angles éwk (., 2;) satisfy limy_, o éwk (@), z:) = %, so imsupy,_, oo Ly, (2}, 2i) <
Y

5. Applying the preceding paragraph, for each 0 S i < n and every k choose

vj € Y, X such that Z,, (v, z5zj) < r < Z for j # i. Hence for sufficiently large
k, we have that No<i<, Bz (r) C ﬂogigankzz( ) =0, NjiBgz(r) # 0 for every i,
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and Up<;<pBzz(r) C Bﬁ(ﬂ). By Proposition 5.3 we have GeomDim(X,, X) > n,
== T CBk
which is a contradiction. O

Let X, z;, f; be as in the previous theorem.

Theorem 6.8 Suppose xy € Nondeg(f), and let sy = f(xo) be a point where the
convex hypersurface f(Nondeg(f)) = Nondeg(S) is differentiable. Let ¢ = > ayt;
be the supporting linear functional for Minset(S) at sy, oy > 0, D o = 1, let
P = ¢ (¢(xy)) be the supporting hyperplane, Q = Cy P C C, R and g =

<f|Minset(f)) : Minset(S) — Minset(f). Then

1. g has a well-defined tangent cone Cys g : Cs,P = Cs Minset(S) = Q —
Cry X, in the sense that if v, € Minset(f), s, = f(xr) € Minset(S) \ {so},
1

lim, o0 S; = So, and mlogs0 sp € C,,RFY converges to v € Q, then

mmgmo(:rk) converges to (Cs,g)(v). Hence Minset(f) has a well-defined

tangent cone QQ = Im(Cs,g9) at xy which is isometric to E*. Cs,g is an affine
map.

2. With respect to a suitable Euclidean metric d, on R**', we find that

lim d(g(s1),9(s2))

=1.
81,5250 d1 (51, 82)

In particular, for every e > 0 we have an open subset U C E" and a (1 + ¢€)-
biLipschitz embedding U — X.

3. Toz € Q).

We remark that the top dimensionality (the number of functions is 1+GeomDim(X))
of the nondegenerate minimum set is essential in Theorem 6.8, see example 6.14.
Proof. The idea of the proof is that near sq, Nondeg(S) can be viewed as a graph
over P of a function with small Lipschitz constant; this together with Theorem 6.6
forces f|Mmset(f) to be “approximately affine” and Minset(f) to be “approximately
convex” near x.

Lemma 6.9 (f is approximately affine) There is a function e(r) with lim,_,o €(r) =
0 with the following property. If x1,29 € Minset(f), s; = f(x;) € Minset(S);
d(x;, ko) < 15 A1, Ay are weights; s3 € Minset(S) satisfies s3 < A\1$1 + Aaso; f(x3) =
s3; then

d(.ﬁU3, )\11‘1 + )\2.7/'2) S 6(7")d(1‘1, ,TQ)MiTL()\l, )\2) (610)

and

1—¢(r) < d(z1, 25)

d($2,$3)
————= < 1+4¢€r),l —€(r) <
)\Qd(.ITI,JTQ) ( ) ( )

< 7)\1d(:r1,x2) < 1+ ¢€(r). (6.11)

In particular, the comparison triangles for A(xy, xq, x3) and A(sy, s, $3) have an-
gles tending to {0, 7} asr — 0.
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Proof. Since Nondeg(S) is (locally) a convex hypersurface and sy € Nondeg(S) is a
differentiable point, the supporting hyperplanes at points s € Nondeg(S) tend to P
as s — sg. Therefore if mp : R*' — P is the orthogonal projection, we have

li d(817 52)

im

d(si,s0)—0 d(ﬂ'p(Sl), 7TP(52))
and Nondeg(S) N By, (r) is the graph over P of a function with Lipschitz constant

tending to zero with r. Hence if A\, Ay are weights, s1, s9, s3 € Nondeg(S), s; € By, (r)
and s3 < A\1S; + A2so, we have

d(Sg, )\151 + )\282) S 61(7")d(51, Sg)Min()\l, )\2)

where lim, o €, (r) = 0. With z; = ¢(s;) we get Lid(zs, Ayz1+Aoxa) < d(f(x3), f( Az +
AoT9)) = d(ss, f(Ax1+Aax2)) by Theorem 6.6, but since f( Az +Aax2) < Aps;+Aasg
we have

=1

d(Sg, f()\lxl + )\21‘2)) S 261 (T)d(Sl, Sg)Min()\l, )\2)

(6.10) now follows from the fact that f is Lipschitz. (6.11) follows from (6.10) (after
adjusting €(r) if necessary) and the triangle inequality. O

It follows easily from (6.10) and (6.11) that if s, € Minset(S)\ {so} is a sequence

with limg_, s = s, and (Jl(s+logs0 S, € C’SORn“ converges to some v € @, then

k:SO)
d2o2k) and limy_,e m log,, @i, exist. We therefore

setting xp = g(sk), limg o0 e
have a well-defined map Cy,g9 : Q@ — Cs,X. The estimates (6.10) and (6.11) also
imply that C,,¢ is an affine map in the sense that for every v,v, € Q we have
(Cso9)(Ar1v1 + Agv2) = Ai(Cso9)(v1) + A2(Cse9)(v2) for any weights Aj, As. Hence

Q) = (Cs,9)(Q) is a convex subset. Also, the fact that g is locally biLipschitz near sy

(Theorem 6.6) implies that Cy, g is biLipschitz.

If y1,7% : R — @ are two constant speed geodesics with d(vi(t),12(¢)) < C,
then 17, = (Cys,9) o 71 and 179 = (Cs,9) © 72 are constant speed geodesics in the
Hadamard space Q which satisfy d(n,(t), 72(t)) < L,C since g is Ly *-Lipschitz; there-
fore d(n(t),n2(t)) is constant and the 7;’s bound a flat strip. Hence it follows that Q

is flat, and we have proved 1 of Theorem 6.8.

We now prove 2. Let (-,-)¢ be the inner product on () induced from Q by Cs, 9;
let (-,-); be the inner product on CyR"™! which extends (-, )¢, which defines the
same (Q+ as the standard inner product, and which agrees with the standard inner
product on Q+. Let d; be the distance function on R*™! ~ C, R"™ defined by (-, );.

We now have that

lim d(g(s1),9(s0))

§1—S0 d1 (51, SU)

— lim <d(9(31)79(30)) d(51,30)> —1
d(s1,50)  di(s1,80)
This implies the third assertion of theorem 6.8 since if sy, s € Minset(S) are suffi-

ciently close to so, there will be an s3 € Minset(S) with d(ss, so) >> max(d(s1, so), d(s2, S0))
and with Z, (sq,s3) << 1; so by (6.10) and (6.11) we get

‘d(9(31)79(82))
d1(31, 50)

$1—>S0

— 1| << 1.

[t remains to prove 3.
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Lemma 6.12 For 0 < i < n let Df; : Cpu X — R denote the derivative of f;,
Df;(w) = —2d(x, z){w, ToZ) (cf section 2.2). Then S a;Df; is zero on Q, where
B(t) = D agt; is the supporting linear functional for Minset(Q) at sy. Consequently
Df; is affine on Q for each i.

Proof. If w € Q, w = (C4,9)(v), then

Zaszz Zalsz Cs,9)(v)) = Dé(v) =

Lemma 6.13 For 0 <i<n, Z9Z € Q.

Proof. The affineness of the D f; on @ implies that if wy, ws € QN Yo X are opposite
directions in the flat Q, then A(wl, :Wz;) + Z(w, mo—z;) = 7. Therefore 1f:Kz]> ¢ Q, we
have max{/(w, Zoz}) | w € QN¥4, X} < 7, so the (n— 1) sphere QN Y,, X lies in the
contractible set Bz (m). By Proposition 5.3 this implies that GeomDim(%,,X) > n,
which contradicts our assumption that GeomDim(X) = n. Hence the lemma. O

This completes the proof of Theorem 6.8 O

Example 6.14 This example shows that the top dimensionality assumption of The-
orem 6.8 is necessary. If z € X", f;:=d2 and p € Minset(f) is a nondegenerate
point so that f(p) is a differentiable point of f(Minset(f)), then C,X need not con-
tain an n-flat. Start with the standard upper hemisphere ST C S?, and pick equally
spaced points &, &1, & € 0S%. Letting B C S3 be a spherical cap centered at the North
pole N € Si, let U; be the geodesic cone over B with vertex at &, and set U = UU;.
Modify the metric on ST\ U so that it has curvature K < 1, and so that it is in polar
coordinate form with radius 5. Then we have a CAT (1) space Y, and let X be the
Euclidean cone over Y with vertex o. Now if we take z; € X to lie on the ray o,
then the vertex o € CoX will correspond to a differentiable point of d,(Minset(z)),
but C, X doesn’t contain any flats.

7 The Tits boundary, asymptotic cones, flats, and
the geometric dimension

For properties of geometric boundaries, Tits boundaries, ultralimits, and asymptotic
cones, see section 2 or [KL97]. In this section w will be a fixed non-principal ultrafilter
on N.

Theorem 7.1 Let {(X;,d;)}icr be a family of Hadamard spaces. Then the following
are equivalent:

1. There are sequences iy € I, x, € X;,, xx € Fy C X, so that (Fy,*)
converges to (E",0) in the pointed Gromov-Hausdorff topology. FEquivalently,

w-lim(X;, , %) contains an r-flat.
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2. There are sequences 1, € I, Ry € R, S, C X;,, so that limy_, R, = 00, and
RikSk converges to B(1) C E" in the Gromov-Hausdorff topology. Equivalently,

w—lim( - Xy % ) contains an isometric copy of B(1).

3. There are sequences i, € I, %, € X;,, Ay — o0 so that w—lim( X

i *k) 1S @

CAT(0) space with geometric dimension > r.

4. There are sequences iy, € I, %, € X;,, so that Op(w-lim(X,,,*x)) has geometric
dimension > r — 1.

Remark. In 2, we really only use the fact that the RikSk contain subsets which
converge to {+ey,...,+e,, 0} CE", where ¢; is the i'* standard basis vector.

Corollary 7.2 If the X;’s have uniformly bounded geometry (in the sense that {(X;, )
iel, xe X;} is a Gromov-Hausdorff precompact family of pointed metric spaces),
then there is an ry € N such that for any sequences A\, € R, o, € I, %, € X;, with
w-lim A, = 0 we have

1. GeomDim(w-lim(5- = Xi, %)) <

’
2. GeomDim(0r(w- lzm(XZk, K)) <7

Proof of Corollary 7.2. The uniformly bounded geometry of the X;’s implies that
there is an ry € N so that for any sequence 7 € I and any sequence of basepoints
*; € X,,, w-lim(X;, , %) contains no r-flats with = > 7,. Therefore the corollary
follows from Theorem 7.1. O

Proof of theorem 7.1.

Clearly 1 implies 2 , 3 , and 4.

3 = 2. Let X, = w-lim(+- -Xi,,*). Since GeomDim(X,) > r we can find
p € X, so that GeomDim(X%, X) > r — 1. By Lemma 3.1, there are sequences
T; C X,, R; € R so that limy_,, d(p,Tj) — 0, and IJT converges to B(1) C E in
the Gromov-Hausdorff topology. Th1s means that for each 57 we can find sequences
iheN, X, €R T/ C Xy so that T] converges to Tj in the Gromov-Hausdorff

topology. Passing to a suitable subsequence of the double sequence T,g we get a
sequence Sy as described in 2.

4 = 2. Let Y be the Euclidean cone over 0y (w-lim(X;,, %)), with vertex o. By
Lemma 3.1, there are subsets 1}, C Y and a sequence A\, — 0 so that iTk converges
to B(1) C E™ in the Gromov-Hausdorff topology, and d(T},0) — 0. Since any finite
metric space Z C Y is a Hausdorff limit of rescaled finite metric spaces in X; (this
follows easily from the definition of the Tits metric), we get sequences 5\]- — 00,
T; C w-lim(X;,, %) so that %T] converges to B(1) C E" in the Gromov-Hausdorff

)
topology. Each T} is the Gromov-Hausdorff limit of a suitable sequence of elements
of {S;}ier so 2 follows.

2 = 1. We will show that for a suitable choice of basepoints x;, € X; the
ultralimit w-lim(X;, , %) contains an r-flat. To simplify notation slightly we assume
that I = N and that i, = k € N. We will also assume that » > 2 since the implication
is trivial otherwise.
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By assumption X} D R%Sk — B(1) C E" in the Gromov-Hausdorff topology, so
we can find a sequence ¢ : E" D B(0, R) — Xy, of e, Rx-Hausdorff approximations
(definition 2.6) where ¢, — 0. For 1 < i < r let ¢; € E" be the " standard basis
vector, let z,:fz = ¢p(Rre;) and let Zy = {zk '}1<1<,n C Xk Define fr : Xy — R
to be the average distance from Z; C Xy, ie. fr(p) = 5 ZzEZk d(p,z). fris 1-
Lipschitz and convex. Choose %, € Xj so that fi(xx) < € + infy, fr. We will
extract an ultralimit of the configuration {*kzkii}lgigr of geodesic segments to get a
configuration of geodesic rays and then we will show that these geodesic rays span an
r-flat.

Lemma 7.3 limy_, . — 7 d(*k, 9 (0)) = 0.

Proof. We have lim supk_mo}% JrOee) < limsupy_, o 7= fk(qbk( )) = 1. On the other
hand lim infj,_, o, + I [d (2, %) +d (%, 21, ° )] > lim 1nfk%Oo R Ld(zh, 2" ") =2, 50 lim infy_, Rikfk(*k) >
1. Combining these inequalities we get limy_, o — I fe(xr) = 1, limg o0 I [d(zL,*k) +

d(xk, 2;")] = 2, limg 00 o . LA, 2h2,") = l1mkHooR d(*k, 9 (0 )zk U ¢r(0)z,") = 0.
This forces limy_, oo — I d(*k, 9(0)) = 0 when r > 2 since limy_, 4¢k( )(zk ,zkij) =3z
when ¢ # 7. O

Now consider the ultralimit (X, %,) := w-lim(Xg,*¢). We have geodesic rays

w- hmvkkzjEZ with ideal boundary points £ € 9,X,,. If we let f(-) = d(z,-) —
d(z,:fl,*k) be the normalized distance function, then w-lim £ is the Busemann func-
tion bex: of the geodesic ray x,£¥. Therefore ,, is a minimum of b := £ 37 (b +bg—s)
because if x, = w-limz, € X, then

b(*y) = 0 = w-lim(—e€;) < w-lim[fi(xg) — fio (k)] = w—lim% Z[f,i(:rk) + £ ()

i
1

=5 [bfz(:rw) + be-i ()] =: b(wy,).

On the other hand, by Lemma 7.3 we have w-lim é*k(zk ' 250 = z (Z denotes

the comparison angle, see section 2.1) when 1 < i # j < r, so we conclude that
Lp(EH, ) < Zfor 1 < i # j < r. Set w = x,& € X, X,. We have
Lo, (W, wH) < Zp(65,657) < Z. The directional derivative of b in the direction of
v e X, X, is (see equation 2.5)

With v = w?7 we find that the directional derivative is < 0 since (w*?, w*7) > 0 when
i # j and (w?, w*) + (w7 w) > 0. Asx, minimizes b we have equality everywhere,
forcing Z, (w',w™") = ZLp(&,67") = 7 and Z,, (v, w¥) = Lp(E*,65) = £ for
i # j. This easily implies that the convex hull of the rays x,{** is an r-flat F,, C X,
(to see this, assume inductively that the convex hull CH ({%,£*'}i<y) is an m-flat £,
in X, and observe that the nonnegative convex function b§+(m+1) + bg_(mﬂ) is zero on

F, so the convex hull CH (F,, U {x,£*("tD} is isometric to F,, x R~E"*). O
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Corollary 7.4 If X is a locally compact CAT(0) space with cocompact isometry
group, then every compact subset of any asymptotic cone of X has topological di-
mension < TopDim(X).

8 Proofs of Theorems A, B, and C

Proof of Theorem A. For 1 <i < 4 let n; € NU {oo} denote the i’ quantity in the
statement of Theorem A. Lemma 3.1 proves GeomDim(X) < nj. Proposition 5.2
proves n; < GeomDim(X) and ny, < GeomDim(X); Proposition 3.2 proves nz < ng
and ng < ny. Obviously ny < ny. Theorem 6.3 proves GeomDim(X) < ny. d

Proof of Theorem B. Let n = GeomDim(X). By Lemma 4.11 there is a z € X!
which is (k,r)-admissible for some k, r, such that o, is nondegenerate. By 3 of
Theorem 6.3 if we let f; := d2 : NB,,(r) — R, then Nondeg(f) is nonempty. By 1
of Theorem 6.8 we have p € X whose space of directions contains an isometrically
embedded standard (n — 1)-sphere Z C ¥,X. Since Z is an absolute neighborhood
retract, there is an open neighborhood V' C ¥,X of Z so that H,,_,(Z) — H,,_1(V)
is & monomorphism. Then H,, (V) — H,,_1(3,X) is also a monomorphism since
H,(X,X,V) =0 by Theorem A. So H,, 1(3,X) # 0. We may find a map ¢ : 7 —
X — {p} so that ¢(Z) is in the domain Y of logy, y and logy; x o¢ is arbitrarily close
to the inclusion Z — ¥, X. Identifying Z with the unit sphere S" ' C E" by an
isometry, we define a map ¢ : E* D B" — Y by declaring that if A € [0,1], z € S"1,
then ¢(Az) is the unique point on the segment po(z) at distance Ad(p, #(x)) from p.
Hence we get a map of pairs ¢ : (B, S" ') — (Y,Y — {p}) which is nontrivial on
H, since its boundary is nontrivial. Hence H, (X, X — {p}) # {0} by excision. This
shows that each of the quantities in the statement of Theorem B is > GeomDim(.X).
The remaining inequalities are contained in Theorem A. |

Proof of Theorem C. See Theorem 7.1. 4

9 Questions from Asymptotic Invariants of infi-
nite groups.

On pp.127-33 of [Gro93] Gromov discusses a number of issues relating to the large-

scale geometry of Hadamard spaces. The main results of this paper — especially the

more general version of Theorem C formulated in Theorem 7.1 — settle many of the

questions raised in Gromov’s discussion provided one replaces topological dimension
(Gromov’s “dim”) with compact topological dimension:

Definition 9.1 If Z is a topological space, then the compact topological dimen-
sion of Z is

CTopDim(Z) := sup{TopDim(K) | K C Z is compact}.

We now comment on some of the questions.
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DimCon,X < DimX, [Gro93, p.129]. We reformulate this as follows: if X is an
arbitrary Hadamard space, then CTopDim(X,,) < CTopDim(X) for any asymptotic
cone of X. To see this, suppose X, is an asymptotic cone of X and CTopDim(X,,) >
k. Then by Theorem A we have sequences R; — 0, S; C X,, so that d(p, S;) — 0 for
some p € X, and R%_Sj — B(1) C E* in the Gromov-Hausdorff topology. From the
properties of ultralimits (see section 2.3 property 5) we see that there are sequences
R; — 0, T; C X so that RL;TJ — B(1) C F¥ in the Gromov-Hausdorff topology. By
the remark after Proposition 3.2 we get CTopDim(X) > k.

Ezistence of regular points, [Gro93, p.132-3]. Gromov defines a point p in a CBA
space to be regular if the tangent cone C,X satisfies DimC,X > DimX, and asks
when regular points exist. If we replace Dim with CTopDim, then Theorem A gives

CTopDim(X) = GeomDim(X) = sup GeomDim(C,X) = sup CTopDim(C,X).
peX peX
So regular points always exist when CTopDim(X) < co. In the general case CTopDim(X)
can be locally finite even when CTopDim(X) = oo; for example, take the disjoint u-

nion E' UE2 U..., and glue on a segment of length 1 starting at 0 € E! and ending
at 0 € EF.

Rank’s and Rank™’s, [Gro93, pp.127-33]. Gromov gives seven definitions of rank for
Hadamard spaces and then raises the issue of whether they coincide for Hadamard
spaces with cocompact isometry groups, or, more generally, if the “plusified” ranks
Rank}, ..., Rank’,, agree for arbitrary Hadamard spaces. Theorem 7.1 in this paper
settles this question completely for Rank], ..., Rank},, provided one uses compact
topological dimension instead of the usual topological dimension.

Let (X,d) be a Hadamard space. To see that the ranks Rankj,..., Rankj},
(redefined using CTopDim instead of TopDim) are equal we will apply Theorem 7.1
to the one-element family of spaces (X,d). For 1 < i < 4 let r; € NU oo be the
supremum of the 7’s which satisfy the i statement in Theorem 7.1. Let X* be the
plusification of X, i.e. the collection of ultralimits of the form w-lim(X,d, ;) where
*; 1s a sequence in X.

Notice that 7 is exactly the same as Rank},X. Similarly, Rank},X = ry since
by Theorem A, part 1 we have GeomDim(0rZ) = CTopDim(0rZ) for any Hadamard
space Z.

Suppose RankX > r. Then there is an X’ € X" and an asymptotic cone (X'),, of
X' with CTopDim((X'),,) > r. Therefore by Theorem A, there are sequences Ry — 0,
Sk C (X'), so that S is finite, and RikSk converges to B(1) C E" in the Gromov-
Hausdorff topology. Each Sy is a Gromov-Hausdorff limit of a sequence R%,Skl where
Si € X' is finite and Ry, — oo (see section 2.3 property 5); and each Sy C X' is
a Gromov-Hausdorff limit of a sequence of finite subsets of X itself. By a diagonal
construction we find sequences R, — oo and T, C X so that R%Tk — B(1) C E
in the Gromov-Hausdorff topology. Hence 2 of Theorem 7.1 is satisfied for this r.
Taking suprema we get Rank; X < ry.

Note that Rank],,X < Rank]X since an r-quasiflat in X’ € X+ produces a
biLipschitz embedded copy of E" in asymptotic cones of X’. But r; = Rank},X <
Rank;’HX < Rank;’X < 1y so the Rank™’s are all equal to the r;’s.
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10 Convex length spaces

A convex (length) space is a complete length space (X, d) such that if y; : [a1,b;] = X
and 7y, : [a2,bs] — X are constant speed geodesics, then the function d o (7y1,72) :
[a1,b1] X [ag,bs] — R is convex. Convex spaces were introduced by Busemann (see
[Busb5]); the literature about them seems to be quite limited: [Rin61, Gro78, Bow95,
AB90]. Hadamard spaces are convex length spaces, as are Banach spaces with a
strictly convex norm. Our goal in this section is to prove Theorem 1. In section 10.1
we discuss elementary properties of convex spaces, in section 10.2 we give a proof
of a special case of the differentiation theorem from [KS93], and in section 10.3 we
construct flats in convex spaces whose asymptotic cone contains a flat.

10.1 Background

We recall some basic facts about convex spaces, omitting proofs whenever the stan-
dard proofs in the Hadamard space case extend without significant modification to
convex length spaces.

Let X be a convex space. Two geodesic rays’ 7, : [0,00) = X, 75 : [0,00) — X
are asymptotic if d(y,(t), 72(¢)) is bounded. Given any p € X and any geodesic ray
71 1 [0,00) — X there is a unique geodesic ray 7, with 7,(0) = p which is asymptotic
to v1. Asymptoticity is an equivalence relation on geodesic rays, and we use C, X
to denote the set of equivalence classes. For any p € X we may view C X as a
subset of {y € C([0,00), X) | 7(0) = p}; the compact-open topology on C(]0,c0), X)
induces a subspace topology on C., X, which is independent of p. The geometric
boundary, 0,,X, is the subset of C',, X determined by the unit speed geodesic rays.
The union X := X U d,X inherits a natural topology, which is compact when X is
locally compact. The Tits distance between two geodesic rays 7y, 72 is

drits(71,72) := lim d(n (1), 7(1)

t—00 t

dpits defines a metric on Cy, X; we call the resulting metric space the Tits cone and
denote it by CpX. dpj, is lower semicontinuous with respect to the product topology
on Uy X x CyX. The Tits boundary is the subset 0 X C CrpX determined by
the unit speed geodesic rays. If p € X, and € € 97X, then p€ denotes (the image of)
the geodesic ray with initial point p. We define Busemann functions for unit speed
geodesic rays as in the Hadamard case; unlike the Hadamard case, the Busemann
functions of asymptotic geodesic rays need not differ by a constant. However, the
following properties still hold:

Lemma 10.1 1. If pg, xx € X, and the geodesic segments pxy converge to a geodesic
ray P C X, then the Busemann function be of the ray po§ satisfies

be > lim sup (., -) — d(y, py)] (10.2)

k—o0
Recall that in the Hadamard case be is the limit of the normalized distance functions

"In this section all geodesics rays will be parametrized at constant (not necessarily unit) speed.
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2. If pe X, £ € 0pX, be is the Busemann function for the ray p€, and the unit
speed geodesic ray v : [0,00) = X is a “gradient line” for be:

then v is asymptotic to pE.

8. Ifpe X, &, & € 0r X, be, denotes the Busemann function of p;, and p&, Upé,
forms a geodesic, then be, +be, > 0 on X. In this case if v € X and (be, +be,)(x) =0,
then x&, U x&, is a geodesic parallel to p& U psy.

We will use the following result:

Theorem 10.3 ([Rin61, p.432, par. 7 and p. 463, par.20], [Bow95, Lemma 1.1 and
remark after its proof]) If X is a convez length space, and v, vo : R — X are constant
speed geodesics with d(7,(t),v2(t)) < C, then v, and 2 bound a flat Minkowskian strip
(a convex subset isometric to the region in a normed plane bounded by two parallel
lines.).

A weaker converity condition. Convexity is not preserved by limit operations: a
sequence of strictly convex norms on R® may converge to a non-strictly convex norm.
To remedy this defect we introduce a weaker convexity condition below: we only
insist on the convexity of the distance function when it is restricted to a distinguished
collection of geodesic segments.

Definition 10.4 A family G of constant speed geodesics (or geodesic segments) in a
length space X is adequate if

a) Each pair of points in X is joined by a geodesic segment in G;

and

b) G is closed under precomposition with affine maps: if v € G, v : [a,b] — X,
and « : [¢,d] — [a,b] is affine, then yo« : [c,d] — X isin G.

Definition 10.5 A length space X with distance function d is convex with respect
to an adequate family of geodesics G in X if do (y1,72) is convex for all pairs
Y1, 72 € G. X s often convex if it is convex with respect to some adequate family
of geodesics.

If for each ¢ € N, Xj is a length space convex with respect to G;, then for any choice
of basepoints *x; € X;, the ultralimit (X, *;) is convex with respect to the adequate
family

G, = {w-lim~; | 3C > 0 such that Vi € N, v, : [a,b] — X;, d(7i(a),*;), d(7:(b),*;) < C}.

In particular, any asymptotic cone of an often convex length space is an often convex
length space.

Lemma 10.6 (B. Leeb) Let (X,d) be a locally compact convex length space. If \; —
0, and (X,,dy,,*,) = w-lim(X, \id, %) (i.e. X, is an asymptotic cone with fized
basepoints), then there is a canonical isometric embedding i : CpX — X, and a
1-Lipschitz retraction p : X, — i(CrX).
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Proof. Given a geodesic ray v : [0,00) = X, (’y()\%)) defines a point i(7) in X,. This
clearly defines an isometric embedding ¢ : C7X — X,. To obtain the retraction p,
we use the compactification X := X U9, X and let p((x;)) € CrX be the ultralimit
of z; € X normalized by w-lim \;d(z;, %). O

10.2 Differentiating maps into metric spaces

The next result is a slight reformulation of a special case of the differentiation theory
of [KS93, section 1.9]. Since this case is somewhat simpler than the general L? version
in [KS93], we give a proof here.

We will use dy, || - ||o, and By(z,7) to denote the Euclidean metric, the Euclidean
norm, and a Euclidean ball, respectively.

Theorem 10.7 (Korevaar-Schoen) Suppose d : U x U — R is a pseudo-distance
(definition 2.7) on an open subset U C R" which is L-Lipschitz with respect to dy,
i.e. d < Ldy. Then there is a measurable function p: U x R* — R so that for a.e.
xzeU,

i) p(x,-) is a semi-norm on R,
and
ii) for every v € R* — {0} we have

lim sup
r—0

{d(y, Y+ 1)

. —plz,v) |y € Bo(x,r)} = 0. (10.8)

In other words, the pseudo-distance d behaves infinitesimally like a measurable Finsler
pseudo-metric.

Corollary 10.9 Let U, d, and p: U x R* — [0,00) be as in Theorem 10.7, and for
every v € R" define a pseudo-metric d,, on R* by d, . (y, 2) = d(x+7ry,x+71z). Then
for a.e. x € U the family of pseudo-metrics %dw,r converges uniformly on compact
subsets of R* x R™ asr — 0 to the pseudo-metric defined by the semi-norm p(x,-). In
particular, if K C R" is a compact subset, then the pseudo-metric spaces (K, %dw, 0)
converge in the Gromov-Hausdorff topology to K with the pseudo-metric determined

by p(z,-).

Proof of Corollary 10.9. Pick o € U so that (10.8) holds, and let d, : R* xR" — [0, c0)
be the pseudo-metric defined by p(z, ). The pseudo-metrics %dw are L-Lipschitz, and
by (10.8) they converge pointwise on R® x R" to d,; therefore they converge uniformly
on compact sets.

If K C R* is compact, then idg : (K, +d,,) — (K,dy) is an €(r)-Hausdorff
approximation where lim, _,q€(r) = 0. O
Proof of Theorem 10.7. The proof is based on a covering argument, and is analogous
to the proof of the Rademacher-Stepanoff theorem on the differentiability of Lipschitz
functions f : R* - R
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Since (truncated) cylinders will be used repeatedly below, we will use the notation
Cyl(a,b,t), a,b € R*, t € (0,00) to denote the cylinder with core segment ab
and thickness ¢:

Cyl(a,b,t) :={s+n|s€ab,nLab, ||nl <t}
The caps of the cylinder C'yl(a,b,t) are the subsets
{a+n|n Lab, |n| <t}

and o
{b+n|n L ab, [|n]o <t}

We now introduce functions that compare the pseudo-distance function d with the
Euclidean distance function dy; these functions are analogous to directional deriva-
tives. Define measurable functions p: U x R* = R, p: U X R* — R by

d
p(x,v) = lim inf{i(y’y * o) |y € Bo(x,r)}
- r—0 r

and

p(z,v) = limsup
r—0

{wmefgo(x,r)}.

Observe that p(z,-) and p(z, -) are L-Lipschitz with respect to dy for each z € U:
\p(z,v1) — p(x,v2)| < Lljvy — 2o (10.10)

and
[Pz, v1) = p(a,v2)| < Lo — v2lo (10.11)

for every vy, vy € R”.

Given z € U, v € R* — {0}, p,v € (0,00), we let C(x,v, u,v) be the collection of
cylinders Cyl(y,y + rv,rv) C U where r > 0, y € By(z, ), and

d
M < pla,v) + p. (10.12)
Note that since d < Ldy, if we take a cylinder Cyl(y,y + rv,rv) € C(x,v, u,v), and

a pair of points u,v € Cyl(y,y + rv,rv) — one from each cap of Cyl(y,y + rv,rv) —
then by the triangle inequality for d we have

d(u,v)

r

< p(z,v) + p+ 2Lv. (10.13)

Elements of C(z,v, u,v) are somewhat off-centered cylinders with direction v where
the d-distance between caps is approximately infimal (among such cylinders).
For given v € R* — {0}, v € (0, 00), cylinders of the form Cyl(y,y + rv,rv) with
y € By(z,r) are contained in the closed ball By(z,7(1 + ||v||o + ~)) and have uniform
density there:
L (Cylly,y + rv,1v)) (rlloflo) (war (rv)" ") c(n)[Joflor" "

U P I ) o e ) G e e P
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Lemma 10.15 Suppose v € R* — {0} and x € U is an approzimate continuity point
of p(-,v) : U — R. Then p(x,av) < |al|p(x,v) for every a € R.

Proof of lemma. Our goal is to show that if r € (0,00) is sufficiently small and
y € By(z,r), then w S lalp(z,v). To prove this we thicken the segment

y(y + rawv) into the cylinder Cyl(y,y+ rav,rv), and estimate the d-distance between
its caps.

The lemma is obvious when v = 0 or a = 0, so we assume henceforth that v # 0,
a # 0.

Pick €; € (0,00), 11 € (0,00). Since z € U is an approximate continuity point
of p(-,v), the density of the set {z | |p(z,v) — p(z,v)| < €1} in By(x,r) tends to
1 as 7 tends to zero. In view of the density estimate (10.14), the density of {z |
lp(z,v) — p(x,v)| < €1} in cylinders of form Cyl(y,y + rav,rvy), y € By(z,r), also
tends to 1 as r — 0. Choose r; € (0,00) so that the latter density is > 1 — ¢, when
r<ri.

Fix a cylinder C = Cyl(y,y + rav,rvy) where r < ry, y € By(x,r). Let T =
{z € Interior(C) | |p(z,v) — p(z,v)| < €}. Pick pg,v2 € (0,00), and let D be
the collection of cylinders in C(,v, ji3, ) which are contained in C, where  ranges
over 7. The density estimate (10.14) implies that D is a Vitali cover® of T So
by a standard covering argument there is a disjoint subcollection D' C D so that
LT \ (UpepD)) = 0. Hence Upep'D has density > 1 — ¢; in C. By Fubini’s
theorem, there is a segment y/(y’ + rawv) with endpoints in the caps of C' so that the
density of (UpepD) Ny'(y' + rawv) in the segment y'(y' + raw) is > 1 — ;. Applying
the cap separation estimate (10.13), the Lipschitz estimate d < Ldy, and the triangle
inequality for d, we get

d(y',y' + raw)
r

< la|(p(z,v) + €1 + po + 2Lvy)

and so

d(y,y + rav)

. < la|(p(z,v) + €1 + po + 2Lvy) + 2Lvy. (10.16)

If € € (0,00) is given and €y, s, vq, V2 are chosen so that the right hand side of
(10.16) is < |a|p(z,v) + €, and 7y is chosen accordingly, then we have

d(y,y + rav
% < |alp(z,v) + €
provided r < 7 and y € By(x,r). This proves the lemma. O

Proof of theorem 10.7 continued. Define Uy C U to be the set of all € U which are
approximate continuity points of p(-,v) for all v € Q"; since Q" is countable we have
LU —Uy) = 0. If x € Uy, then Lemma 10.15 and the triangle inequality for d imply

8A Vitali cover of a set S C R" is a collection of measurable sets Y; C R® with the following
property: there is a density § > 0 so that for every s € S and every r > 0, there is an ' < r and an
i so that Y; C By(s,r') and the density % is > 4.
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the inequality p(z,v1 4+ v2) < p(z,v1) + p(z,v2) for vy, v, € Q*. If v € Q*, @ € Q,
then by Lemma 10.15 we have

plz, av) <oz, av) < |ofp(z,v) (10.17)

If || # 0 then we may replace o with o~ in (10.17), thereby deducing that p(z, av) =
la|p(z,v) for every a € Q, v € Q*. Since p(x,-) : R* — [0,00) is L-Lipschitz, the
homogeneity and subadditivity of p(z,-) |Qn extends to R"; so p(z,-) is a semi-norm
on R". Letting p = p, we have proved Theorem 10.7. 4

Proposition 10.18 Let X be a metric space, let U C E" be an open subset, and
suppose f U — X 1is a Lipschitz map. Then either

a) There is a p € f(U), and sequences Ry € (0,00), Sy C X so that Ry — 0,
d(p, Sx) — 0, and —Sk converges in the Gromov- Hausdorﬁ topology to the unit ball
in a normed space (R” 1),

or

b) H*(f(U)) = 0.

Proof. This is a consequence of Corollary 10.9 and a covering argument.

Notation. If S is a collection of subsets of a pseudo-metric space Z with distance
function ¢, then
|S|| := sup Diam(S).
ses

If o € [0,00), then
HE(Z,S) Zwa [Diam(S
Ses
where w, is a universal constant. The a-dimensional Hausdorff measure of (Z,6) is

HE(Z) := lim ionf{Hg"(Z, S) | S is a countable cover of Z, ||S|| < €}.
€e—

When 6 is clear from the context we will omit it from the notation.
Let dx be the distance function on X, and let d : U x U — [0, 00) be the pullback
of dx by f:
d(uy, ug) := dx (f(u1), f(uz)).
Applying Theorem 10.7 to d, let p : U x R* — [0,00) be the measurable function

which satisfies 1) and ii) for a.e. © € U, and let Uy C U be the set where i) and ii)
hold.

We first show that if z € Uy and p(z,-) : R* — R is a norm on R”, then a) holds.
Set || - || :== p(x,-), and let B be the unit ball || - [|7*([0,1]) € R*. By Corollary 10.9,
(z 4+ rB, +d) converges to B in the Gromov-Hausdorff topology, so a) holds.

Let U, be the set of x € Uy for which p(z,-) is not a norm. We will show that if
LU\ Uy) = 0 then H}(U) = 0; this clearly implies b).

Lemma 10.19 Given = € Uy and € € (0,00) there is an rq € (0,00) so that every
ball By(x,r) with r < o admits a cover C with

HY(Bo(x,r),C) < eL™(By(x,1)) (10.20)

33



Proof of lemma. Let || - || := p(x,-), and let d; be the pseudo-distance function on
R™ associated with the semi-norm || - ||;. By assumption || - [|; is not a norm, so it
is zero on some 1-dimensional subspace V- C R™. Let || - || : R*/V — [0, 00) denote
the induced semi-norm on the quotient space R"/V, and let dy be the corresponding
distance function. If A € (0,1), the set 7(By(0,1)) € R"/V can be covered by
Ci1(5)™ ! dy-balls of radius A, since (R"/V,||-||2) is a normed vector space of dimension
< n—1. By Corollary 10.9 the family of pseudo-metric spaces (By(x, ), 2d) converges
to (By(0,1),d;), which is isometric to (7(By(0,1)), ds) via 7 : R* — R"/V. Therefore
when r is sufficiently small (By(z,7), d) can be covered by C1(5)"~" d-balls of radius
2r\; for such a covering C we have

Hiy(Bo(r,7),C) = wy [diamy(C)]"

cec
S CQ)\TTL.
If A is sufficiently small (10.20) will be satisfied. O

Proof of Proposition 10.18 continued. Since U is a countable union of sets with finite
Lebesgue measure and HJ; is countable subadditive, it suffices to treat the case that
L"(U) < oo. We assume that £"(U;) = L"(U). Pick € > 0. By Lemma 10.19 there is
a Vitali cover D of U; by Euclidean balls contained in U, such that each ball B € D
admits a cover Cp satistying a) H}(B,Cp) < eL"(B) and b) Diam,(C) < € for every
C € Cy. By the Vitali covering lemma there is a disjoint subcollection D’ C D so
that En(Ul - UBED’B) = 0. Lettlng C, = UBED’CB we get

Hy(Upep B,C')

< ) eL™(B) = eL"(U).

Since d < Ld,,

and therefore we can find a cover C" of U — Ugep B with a) Diam,C < € for every
C € C and b) HJ(U —Upep B,C") < eL™(U). So H(U,C'uC"”) < 2¢L™(U), and we
conclude that H}(U) = 0. O

Proposition 10.21 Let X be an often convex space®, let V .C U C X be open subsets,
and suppose H, (U, V') # {0}. Then there is a p € X, and sequences Ry € (0,00),
Sy C X so that Ry — 0, d(p, Sk) — 0, and R%Sk converges in the Gromov-Hausdorff
topology to a unit ball in a normed space (R, || -||).

Proof. By Proposition 10.18 is suffices to show that H,(U,V) = {0} for every open
pair in X provided the image of every Lipschitz map from R¥ into X has zero k-
dimensional Hausdorff measure when £ > n. We prove this by modifying the proofs
of Lemma 5.1 and Proposition 5.2.

9We don’t really need X to be often convex. It’s enough to be able to cone off Lipschitz maps o :
A, = X at a point € X to obtain a Lipschitz o’ : A,,11 = X with Diam(Imo') < C-Diam(Im o).
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Given a finite polyhedron P and a map o{ of its O-skeleton (P)y into X, we may
produce a Lipschitz map o : P — X as follows. Let Sd P be the first barycentric sub-
division of P. Extend oj to a map oy : (Sd P)y — X by letting oy(v) = oj(w) where
v € (SdP)y\ (P)y, and w is a vertex of the P-simplex determined by v. Inductively
extend 0,1 : (SdP)j_1 = X to g; : (SdP); — X by coning at barycenters. This
gives us a Lipschitz map o : P — X with the property that for each simplex 7 of P,
Diam(o(1)) < Diam(o,(Vertex(r))).

We may use the extension process defined above in the proof of Lemma 5.1 instead
of using barycentric simplices; in particular if K C X is a compact set with zero k-
dimensional Hausdorff measure, then the inclusion 7, : K — X can be approximated
by maps which factor as K — P — X where Dim(P) < k. Pick « € H,(U, V). Then
« is in the image of H,(f) for some map of pairs f : (M,N) — (U,V) where M is
a polyhedron of dimension n. Adapting the argument of Lemma 5.1 part 1 to our
often convex space, we may approximate f with a Lipschitz map f;; by assumption
Im f; has zero n-dimensional Hausdorff measure, and when d(f, f) is sufficiently
small f : (M, N) — (U, V) will be homotopic (as a map of pairs) to f. The inclusion
imf ¢ Im fi — X may be approximated by a map ¢ : Im f; — X which factors
through a polyhedron of dimension < n. Hence if d(g, i1 f,) is sufficiently small we
get

H,(f) = Hu(f1) = Hu(g o f) = Hu(g) o Hu(f1) =0

so [a] = 0. O

10.3 Producing flats in convex length spaces

The next result links the large-scale geometry of convex spaces with their local struc-
ture.

Proposition 10.22 Let (X,d) be a locally compact convex length space with cocom-
pact isometry group. Suppose there are sequences Ry, € (0,00), S, C X, and a normed
vector space (R™,|| -||), so that Ry — oo, and R%Sk converges to B(1) < (R™, || - ||)
in the Gromov-Hausdorff topology; equivalently, suppose that (R™,|| - ||) can be iso-
metrically embedded in some asymptotic cone X, of X. Then there is an isometric
embedding of some n-dimensional Banach space in X. If n is the mazimum!® dimen-
sion of Banach spaces which isometrically embed in X, then (R, || - ||) itself can be
wsometrically embedded in X .

Proof. The proof is very similar to the proof of Theorem 7.1: for each k we find a
(approximate) minimum py of the average distance from a finite set of points Fy, C Sk,
and then extract a convergent subsequence of the set of segments {pgs | s € Fi} to
produce a configuration of rays that “spans” a flat subspace in X.

Let B C (R", | -||) be the unit ball || - [|71([0,1]), and let dg denote the induced

distance function on B. Suppose F' C 0B is a centrally symmetric (—F = F') finite
collection of points where || - || is differentiable. By assumption there are sequences

101f the unit ball in a Banach space V' can be covered by m balls of radius 1, then Dim (V) < m.
Therefore the local compactness of X and cocompactness of Isom(X) implies that there is a bound
on the dimension of Banach spaces which isometrically embed in X.
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Ry, — 00, ¢, — 0 and a sequence ¢y, : (B, Rydp) — (Sk, d) of Ryep-Hausdorff approx-
imations (see definition 2.6). Define f; : X — R by

1
fil) = 1 > d(gi(),-).

zelF

As in the proof of Theorem 7.1 (Lemma 7.3) we would like to claim that f; attains
a minimum at a point close to ¢ (0); unfortunately the lack of uniform convexity of
fr makes it difficult to control the location of the minima of fi. Instead we will work
with an approximate minimum py of f which is close to ¢4 (0) (Lemma 10.29).

Lemma 10.23

Fu(66(0)) < inf fi+ > Ruci. (10.24)

Proof of lemma. Using the fact that ¢y is an ¢ Rx-Hausdorff approximation, we have

d(¢r (), y) + d(y, ¢r(=2)) = d(¢x(2), ox(—)) (10.25)
Rye;. Ryep,
Z deB(JI, —JZ‘) - Rkﬁk = [deB(JI, 0) - ] + [deB(—JI, 0) - 9 ] (1026)
Therefore for every y € X
fuly) > % S [Redis(r,0) — %] (10.27)
el

And since d(¢g (), ¢x(0)) < Rpdg(x,0) + Rier we have

Fo(4(0)) < 7 S [Red(z,0) + Rucr]. (10.28)
el

Combining (10.27) and (10.28) we get (10.24). O

Pick a sequence A\, € (0, 00) such that Ay — oo and Agep — 0.

Lemma 10.29 For each k we may choose a point pp € B(¢(0), %I;—I’:) such that for
every y € X — {pr} we have

Je(w) — fr(or)

> —2)\€ 10.30
Ay = e (1050

Proof of lemma. Consider the closed set

Vo= (o0 u {v e X\ fontony | L ROOD (]

d(y, ¢x(0))
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By (10.24) we have Y, C B(¢x(0), %f—l’:) Therefore f; attains a minimum at some

pr € Yi. But then (10.30) holds for every y € X, for otherwise we get

fe(y) = fiu(or(0) = (fi(y) — fe(or)) + (fr(pr) — fe(#x(0)))

< =Aeex(d(y, pi) + d(pr, ¢1(0))) < —Aer(d(y, ¢x(0)))
soy € Yy and fi(y) < fr(px) which is absurd. O

After composing ¢, with a suitable sequence of isometries, and after passing to
a suitable subsequence, we may assume that p, converges to a point p,, and the
geodesic segments prdr () converge to geodesic rays Poodoo (), where ¢oo () € 050 X.
Let by (z) denote the Busemann function of the ray po¢oo(x). By Lemma 10.1 we
have

Dpoe () 2 lim supld(ox(2), -) — d(¢x (), pr)]

k—00

for each x € F'. Letting

fe = fi = fr(pr) 7 Z (9k(z), ) — d(¢k(z), pr)]

zel

we have

limsup i < fro i= 7 = S

k—o0 eF

By Lemma 10.29 we have, for every y € X
lim inf[fi (y) — fi(pr)]

k—00
> lim inf(—2\gex)d(y, pr) = 0
k—00

SO Poo Minimizes foo.
Our next goal is to show that f, is minimal along each of the rays py¢oo(),
x e F.

Lemma 10.31 For each v € OB let b, denote the Busemann function of the ray
t — tv. For every v € OB there is a geodesic ray poo€ 5o that for every y € Poof — Poo,
and every x € F' we have

bon@)(y) _ i ds(tv, @) — dp(0, )

d(Pooyy) — 1550 / = b, (v) (10.32)

In other words the Busemann function by_(z) decreases at least as fast along poodoo ()
as dp(z,-) (initially) decreases along Ov (this rate is the same as the value of b, at
v).

Proof of lemma. Pick «, | € (0,00). We will first show that there is a y; € X so that
d(poo, y1) = L and

b €T d
Doue ) (1) _ Sdp(te,0)|_, +a foreveryz e F

d(pooayl) —dt
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Choose t > 0 small enough that w < Ldp(tv,z) + « for all z € F. Since

bk : (B, Rpdp) — (Sk, d) is an ¢, Ry-Hausdorff approximation,

. L01(10), 61(2) = d(94(0), ()

k— o0 Rk

d
t [Edg(tv,x) + a] + 2¢y.

Letting (when k is sufficiently large) vy, € pror(tv) be the point with d(pe,yx) = I,
and letting z; € ppdx(z) be the point with

d(ze,pr) (Y, Pr)
d(ok(x),pe)  d(¢k(tv), pr)

the convexity of d gives

d(yk; Zk) ( (
d(yk;pk) (¢

Hence
[y, ) — d(pk, 21,)]

d(pr, yr)

_ d(Yk, 2k) (pkazk) d(gx(tv), ¢x(x))  d(pk, ()
)

d(pe,ye)  d(Pr, yn d(¢k(tv), pr) d(pr, Px(tv))

dg(tv,z) — dg(0,x)
d(tv,0)

as k — oo.

Passing to subsequences if necessary, we have ¥ — Yoo, 2k — Zoo € PooPoo(T),
d(yooapoo) = la and

b¢oo (yOO) < [d(yom Zoo) - d(poo; Zoo)]
d(yompoo) - d(yompoo)

d
< %dB(tv,x)L:O +a forallz € F.

« can be made arbitrarily small, [ there is a y(I) with d(y(1), poo) = [ and Yoo W)

d(y(1),pec) —
%dB(tv,x)L:O. Taking a limit of the segments p,y(l) as [ — 0o we get a ray poo&

satisfying the conditions of the lemma. O

Elements x € F were chosen so that dg(z,-) is differentiable at 0 € B. By the
triangle inequality the function dp(z,-) + dp(—=x,-) attains a minimum at 0 € B, so
its derivative is zero there. Hence if v € OB and p.£ are as in Lemma 10.31, then
for every y € poo€ we have

d
(Bone (@) Do) (¥) < = (di(, tv) + d(~, tv)) |,y p)

=0.
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Summing over x € F we get

foly) = L D (boue@) + Do) (¥)
2|F|

zel

<0 = foolpeo) = inf foo.

Therefore we have fo(y) = 0 and by (1) (y) = %dg(x,tv) |t:0d(y,poo) for all y € pooé
and every x € F'.

Pick z¢o € F. Applying the reasoning in the previous paragraph with v =
we conclude that p& is a “gradient line” for by (zy), forcing pooé = Poodoo(0) by
Lemma 10.1. Hence by (—20)(¥) = —Dpo(@0)(¥) = d(Pso, ) for every y € poodoo(T0),
which means that pudeo (o) U Poodoo(—20) is a geodesic. By Lemma 10.1 we get
bpoo (o) T Do (—20) = 0 on X, and the convex set C' = f1(0) is ruled by geodesics

parallel t0 Poo(—%0)Poo U Poo®Poo(0). Therefore we may define an isometric R-action
U, :Rx C — C on C by flowing in the direction of ¢u ().

Lemma 10.33 The R-actions {V,}.cr commute.

Proof. Pick xy, m, € F, p € C. For each t € R, ¥, () : C — C maps each

geodesic to a parallel geodesic; in particular if we flow the geodesic ¢oo(—x2)pPoo(T2)
by U, (=T) and ¥, (T) we get a pair of geodesics which bound a flat strip Yr
(Theorem 10.3) containing ¢o,(—=2)pdso(x2). The pointed Hausdorff limit of (Y, p)
as T — oo is a flat (Minkowski) plane containing the geodesics ¢oo(—1)pdso (1) and
Boo(—2)PPoo(22). So clearly the flows W, (¢,) and W, (t2) commute at p for every
t1, to € R. Il
Proof of Proposition 10.22 continued. Let V be the free R-vector space on the set
F. By Lemma 10.33 we get an action p : V' x C' — C by setting p(}_, cptivi,¢) =
[®y,(t1) 0...0 P, (ty)] (c). The action p has the property that for every = € F,
c € C, the map t — p(tx,c) is a unit speed geodesic, and for every 1, x5 € F

d d d
e (p(t52, ) = b o) (B (D)) = dplatw)] o (1034)

Therefore we may apply Proposition 2.3 of [Bow95] to see that each V-orbit in C
is a convex subset isometric to a normed space. The Busemann functions by (,) are
affine functions on each orbit V(¢), and (10.34) implies that they span a space of
dimension > Dim(Span(F)); therefore Dim(V (c)) > Dim(Span(F')). Since || - || is
differentiable at a dense set of points in 0B, we may pick F' so that Span(F) = R";
this proves Proposition 10.22 except for the last claim.

Now assume that the V-orbit V' (p) has dimension < n (which will be true if n is
the maximal dimension of a flat in X). We have by_ (;)(pso) = 0 for every € F.. We
have an affine map o := p(-,ps) : V= V(pwo), and a corresponding map & : V" — R”
given by a(>_ tiz;) = Y t;v;. We also have affine maps 3 := (by (2))zer : V(Poo) =V
and 3 : (bg)zer : R* — V. By 10.34 we have foa = foa. Provided Span{b,} = R™,
3 is an isomorphism onto its image; and since Dim (V) < n we conclude that 3 is
also an isomorphism. If 37! is a left inverse for 3, then 3710 §: R" — V(ps) is an
affine isomorphism which preserves distance in each direction z € F'.
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Now take a nested sequence Fy C F5, C ... C F), C ... C 0B so that UF; C 0B
is dense, for every ¢ we have —F; = F;, and dp(z,-) is differentiable at 0 for every
x € F;. Then by the reasoning of the preceding paragraph we will get a sequence

U, : (R*, ]| -|]) = X of affine maps so that ¥; is isometric in each direction = €
F;. Passing to a convergent subsequence modulo Isom(X), we get our isometric
embedding ¥, : (R*, |- [|) = X. O

10.4 The proof of Theorem D

Proof of Theorem D. Let n; be the i* number listed in the statement of the theorem,
1 <1< 7. Clearly ny > ny.

(ngy > ny and n3 > n;). An isometric embedding ¢ : (R, || - ||) — X induces an
isometric embedding ¢ : (R*,||-||) — CrX, so clearly ny > n;. Since R¥ is an absolute
retract, there is a retraction p : Cp X — (CrX), so the map ¢ : (R, R — {0}) —
(CrX, p (¢ (RF — {0}))) induces a monomorphism on homology, and hence nz > k.
Therefore ng > n;.

(ns > ny.) If ¢ : (RE)||-]]) — X is a quasi-isometric embedding, and %; € X
is any sequence of basepoints, then there is a sequence of isometries g; : X — X so
that d(g; o $(0),%;) is bounded. Hence for any sequence of scale factors \; — 0 the
asymptotic cone (X, *,) := w-lim(\; X, x;) receives biLipschitz embeddings

w-lim(g; 0 ¢) : w-lim(RF, \g|| - ||) =~ (R*, || - ||) = X..

Reasoning as in the preceding paragraph we conclude that ns > n,.
(ny > nz.) This is proposition 10.22.

(ng > ns.) Recall from section 10.1 that any asymptotic cone X, of X is an often
convex space. The inequality ng > ns follows from Proposition 10.21.

(ns > ng, and ng > ny) By Lemma 10.6 we have an isometric embedding of Cr X
into any asymptotic cone of X with fixed basepoints X, := w-lim(\;X, %), and a
retraction X, — CrX. So clearly the two inequalities hold.

(n7 > ng). Recall that every compact set C' of an ultralimit w-lim(Z;, ;) is a
Gromov-Hausdorff limit of a sequence of finite sets W; C Z;. If ng > k there is an
asymptotic cone X, := w-lim(\;X;, x;), sequences R; — 0, S; C X, so that %Sj

J
converges to the unit ball in (R¥, || -||) in the Gromov-Hausdorff topology. For each j
there is a sequence T]l C X so that )\iT} — S;. Passing to a suitable subsequence of
the double sequence T]l and picking scale factors accordingly we get n; > k. O
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