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Abstract. We prove metric differentiation for differentiability spaces in the
sense of Cheeger [Che99, Kei04a, Bat12]. As corollaries we give a new proof of

one of the main results of [Che99], a proof that the Lip-lip constant of any Lip-
lip space in the sense of Keith [Kei04a] is equal to 1, and new nonembeddability

results.
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1. Introduction

In this paper we study the metric geometry of differentiability spaces in the
sense of Cheeger [Che99, Kei04a, Bat12]. We develop the infinitesimal geometry
of Lipschitz curves and Lipschitz functions, generalizing and refining earlier work
on spaces satisfying Poincaré inequalities and differentiability spaces; using this
we formulate and establish metric differentiation for differentiability spaces. We
then give several applications of these results. They include a new proof that the
minimal generalized upper gradient of a Lipschitz function is its pointwise upper
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Lipschitz constant, which is one of the main results of [Che99], an alternate proof
that the Lip-lip constant of any differentiability space is equal to 1 [Sch13], and
new nonembeddability results.

In order to motivate the theory and place it in context, we begin with some
background. We will make some additional historical comments at the conclusion
of the introduction, after stating our results.

Metric differentiation for Rn. The first instance of metric differentiation was
for Lipschitz maps F : Rn → Z, where Z is an arbitrary metric space; this is due to
Ambrosio in the n = 1 case and Kirchheim for general n [Amb90, Kir94]. Although
Rademacher’s differentiability theorem for Lipschitz maps Rn → Rm does not apply
in this situation, and in fact the usual notion of differentiability does not even make
sense since Z has no linear structure, Ambrosio and Kirchheim introduced a new
kind of differentiation — metric differentiation — and proved that it always holds.
Metric differentiation associates to the map F a measurable Finsler metric, i.e. a
measurable assignment x0 7→ ‖ ·‖F (x0) of a seminorm (here we identify the tangent
space Tx0

Rn with Rn itself), which captures the geometry of the pullback distance
function

(1.1) %F (x1, x2) = dZ(F (x1), F (x2))

in the sense that for almost every x0 ∈ Rn, the pseudodistance %F satisfies

(1.2) %F (x, x0) = ‖x− x0‖F (x0) + o (‖x− x0‖RN ) .

A slightly different (and stronger) way to express metric differentiation is in terms
of the family of pseudodistances {%λF (x0) : Rn × Rn → [0,∞)}λ∈(0,∞) obtained by
rescaling %F centered at x0:

(1.3) %λF (x0)(x1, x2) = λ · %F (x0 + λ−1x1, x0 + λ−1(x2)) .

For almost every x0, as λ→∞ the pseudodistance %λF (x0) converges uniformly on
compact subsets of Rn × Rn to the pseudodistance associated with the seminorm
‖ · ‖F (x0). An additional aspect of metric differentiation is that for a Lipschitz
curve γ : I → Rn, the length of the path F ◦ γ : I → Z is given by integrating the
speed of γ with respect to the Finsler metric ‖ · ‖F ,

(1.4) length(F ◦ γ) =

∫
I

‖γ′(t)‖F (γ(t)) dt ,

provided that for a.e. t ∈ I, the norm ‖ · ‖F is defined at γ(t), and (1.2) holds with
x0 = γ(t). Such curves γ exist in abundance by Fubini’s theorem.

Like Rademacher’s theorem for Lipschitz maps Rn → Rm, metric differentiation
for maps Rn → Z as above can be proved by reducing to the n = 1 case. Likewise,
one ingredient in our approach to metric differentiation for differentiability spaces is
a specific form of the 1-dimensional case of metric differentiation due to Ambrosio-
Kirchheim, [AK00b].

The Rn version of metric differentiation has been applied to the theory of rec-
tifiable sets and currents in metric spaces [Kir94, AK00b, AK00a], to the theory
of Sobolev spaces with metric space targets [KS93], and in geometric group theory
[Kle99, Wen08, Wen06]. As an historical note, we mention that metric differentia-
tion was discovered independently in conversations between Korevaar-Schoen and
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the second author in 92-93, who were unaware of Kirchheim’s work at the time
[KS93].

Metric differentiation for Carnot groups. A generalization of metric differ-
entiation to Carnot groups was established by Pauls [Pau01]. If F : G → Z is a
Lipschitz map from a Carnot group G equipped with a Carnot-Caratheodory met-
ric to a metric space Z, then for any x0 ∈ G one can apply the canonical rescaling
of G to the pseudodistance %F to produce a family of rescaled pseudodistances

{%λF (x0) : G×G→ [0,∞)}λ∈(0,∞)

analogous to (1.3). Pauls showed that there is a measurable assignment x0 7→
‖ · ‖(x0) of seminorms to the horizontal subbundle of G, such that for almost every
x0 ∈ G with respect to Haar measure, as λ→∞, the rescalings %λF (x0) converge on
compact subsets of G × G to the Carnot-Caratheodory pseudodistance associated
with ‖ · ‖F (x0); however, this convergence is only asserted to hold on the subset of
pairs (x1, x2) ∈ G×G lying on horizontal geodesics. This restriction to special pairs
is necessary even in the case of the Heisenberg group, as was shown in [KM03]. Pauls
used his metric differentiation theorem to prove that nonabelian Carnot groups
cannot be bilipschitz embedded in Alexandrov spaces, generalizing an earlier result
of Semmes [DS97] (which was based on Pansu’s version of Rademacher’s theorem
for mappings between Carnot groups). Another application was a second proof
[CK10b] of the fact that the Heisenberg group cannot be biLipschitz embedded in
L1 (originally proved in [CK10a]).

Differentiability spaces. The main goal in this paper is to generalize metric dif-
ferentiation to a large class of metric measure spaces, namely differentiability spaces.
These were first introduced and studied in [Che99] without being given a name; see
in particular, Theorem 4.38, Definition 4.42 and the surrounding discussion. There
it was shown that PI spaces — metric measure spaces that are doubling and satisfy
a Poincaré inequality in the sense of Heinonen-Koskela [HK98] — are differentiabil-
ity spaces. Differentiability spaces were further studied in [Kei04a, Bat12] (under
slightly different hypotheses), where they were called spaces with a strong mea-
surable differentiable structure, and Lipschitz differentiability spaces, respectively.
Examples of differentiability spaces include PI spaces such as Carnot groups with
Carnot-Caratheodory metrics, and more generally Borel subsets of PI spaces, with
the restricted measures. We recall (see Section 2) that a differentiability space
(X,µ) has a countable collection {(Ui, φi)} of charts, where ∪i Ui has full measure
in X. Also, there are canonically defined measurable tangent and cotangent bun-
dles TX, T ∗X, and for any Lipschitz function u : X → R, there is a well-defined
differential du, which is a measurable section of T ∗X.

Remark 1.5. We emphasize that the cotangent and tangent bundles are not on
the same footing: the existence of the cotangent bundle follows quite directly from
definition of differentiability space, whereas the tangent bundle is defined as the
dual of the cotangent bundle i.e. TX = (TX∗)∗. It was observed in [CK09] that
for PI spaces, given a Lipschitz curve γ, for certain parameter values, one can define
a velocity vector γ′(t) ∈ Tγ(t)X and that such velocity vectors span the tangent
space almost everywhere; in [CK] “span” was upgraded to “are dense”. As will be
seen below, this new geometric characterization of tangent vectors was crucial to
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subsequent developments including the papers [CK], [Bat14] and the main results
of the present paper, a first example being Theorem 1.6.

For a Carnot group G with a Carnot-Caratheodory metric, the horizontal bundle
can be canonically identified with the tangent bundle TG of G viewed as a PI space.
This example indicates that in order to formulate a version of metric differentiation
for a differentiability space (X,µ), one needs to identify a measurable seminorm
on the tangent bundle TX and a family of geodesics that will play the role of the
family of horizontal geodesics. We first discuss these in the case of the identity map
X → X, initially focussing on the measurable seminorm on TX; the treatment in
this special case may be viewed as part of the intrinsic structure theory of X itself.

For the remainder of the introduction (X,µ) will denote a differentiability space.

The canonical norm on TX. We now consider several ways of defining a semi-
norm on the tangent bundle TX; as indicated above, these will be used in the for-
mulation of metric differentiation in the special case of the identity map X → X. In
the first, we choose a countable dense set {xi} ⊂ X, and let ui : X → R be distance
function ui(x) = d(x, xi). For every i, since the differential dui is a measurable
section of the cotangent bundle, by duality it defines a measurable family of linear
functions on the tangent spaces, and therefore |dui(·)| defines a measurable family
of seminorms on TX; taking supremum we may define

‖v‖1 = sup
i
|dui(v)| .

As a variations on this, we may define ‖ · ‖2 and ‖ · ‖3 by replacing the collection
of distance functions {ui} with the collections of all distance functions and all 1-
Lipschitz functions, respectively; note that this requires a little care since these
collections are uncountable, see Lemma 2.33. Finally, it was observed in [Che99]
that the pointwise upper Lipschitz constant induces a canonical measurable norm
on the cotangent bundle T ∗X, and by duality this yields a norm ‖ · ‖4 on TX.

Theorem 1.6 (See Section 6). The seminorms described above agree almost ev-
erywhere. In particular, they are all norms, and ‖ · ‖1 is independent of the choice
of the countable dense subset.

We will henceforth use ‖ · ‖ denote the norms ‖ · ‖i, 1 ≤ i ≤ 4 on the full measure
set where they are well-defined and agree.

Generic curves and pairs. We now discuss the role of curves in differentiability
spaces. For this we fix a particular choice of charts {(Ui, φi)} as above. If γ : I → X
is a Lipschitz curve, then one would like to make sense, for almost every t ∈ I, of
the velocity γ′(t) and its norm ‖γ′(t)‖, where ‖ · ‖ is the norm from Theorem 1.6
(compare (1.4)). Clearly this is impossible for an arbitrary curve γ, since it could
lie entirely in the complement of the set where the tangent bundle TX and the
norm are well-defined. To address this, we work with generic curves, and generic
pairs. Roughly speaking (see Section 3 for the precise definition) if γ : I → X is
Lipschitz curve and t ∈ I, then the pair (γ, t) is generic if for some chart (Ui, φi)
of the differentiable structure, the time t is:

• A Lebesgue density point of the inverse image γ−1(Ui).
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• An approximate continuity point of the measurable function (φi ◦ γ)′ : I →
Rni .
• A density point of γ−1(Y ), where Y ⊂ X is a full measure subset of ∪iUi

where the norm ‖ · ‖ is well-defined.

The curve γ is generic if the pair (γ, t) is generic for almost every t ∈ I. It fol-
lows readily from the definitions that for any generic pair (γ, t), both the velocity
vector γ′(t) ∈ TX and its norm ‖γ′(t)‖ are well-defined. More generally, we may
use essentially the same notions when γ is a curve fragment rather than a curve,
i.e. a Lipschitz map γ : C → X, where C ⊂ R is closed subset; this additional
generality is essential because a differentiability space might have no nonconstant
Lipschitz curves. Also, if F and C are countable collections of Lipschitz functions
and bounded Borel functions respectively, we may impose the additional require-
ment that t is an approximate continuity point of (f ◦ γ)′ and u ◦ γ for all f ∈ F ,
u ∈ C.

Metric differentiation along curves. Using the notions of genericity above,
we can formulate one aspect of metric differentiation, which is a statement about
curve fragments. This uses the concept of the length of a curve fragment, which is
straightforward extension of the length of a curve.

Theorem 1.7. Suppose γ : C → X is a curve fragment.

(1) If (γ, t) is a generic pair, then t is a point of metric differentiability of γ in
the sense that (1.3) holds with F = γ, x0 = t, and for pairs of points x1,
x2 where the right-hand side is defined, and moreover ‖γ′(t)‖ = ‖ ∂∂t‖γ(t).

(2) If γ is generic, then the length of γ is given by

length(γ) =

∫
C

‖γ′(t)‖dL ,

where ‖ · ‖ is the norm of Theorem 1.6.

Theorem 1.7 is essentially just an application of Theorem 1.6, and the method of
proof of the 1-dimensional version of metric differentiation given in [AK00b], which
exploits a countable collection of distance functions as in the definition of ‖ ·‖1; See
(2.5) and Theorem 4.3.

Remark 1.8. We point out that unlike in the Carnot group case (and in particular
Rn), in a differentiability space (for instance the Laakso spaces [Laa00]) one can
have, for a full measure set of points x ∈ X, two generic pairs (γ1, t1), (γ2, t2) such
that γi(ti) = x, the velocity vectors γ′1(t1), γ′2(t2) coincide, but the curves are not

tangent to first order in the sense that lim sups→0
d(γ1(t1+s),γ2(t2+s))

s > 0. Thus it
somewhat surprising that the tangent vector alone controls the speed of the curve.

The density of generic velocities in TX, and consequences. While the def-
inition of genericity is convenient for stating results about individual curve frag-
ments, in order to use it in statements about (X,µ) that hold at almost every
point, such as Theorem 1.7, it is crucial to know that generic curve fragments exist
in abundance. This not at all obvious because the definition of a differentiability
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space is based on the behavior of Lipschitz functions and does not involve curves
explicitly; in particular it is not even clear why X should contain any curve frag-
ments with positive length. To deduce the needed abundance, we invoke Bate’s
fundamental work on Alberti representations and differentiability spaces. Bate’s
work shows that one can characterize differentiability spaces by means of differen-
tiability of Lipschitz functions along curve fragments. The main consequence that
we will use here is that for µ-a.e. p ∈ X, the set of generic velocity vectors is dense
in TpX (see Theorem 5.3). Here a generic velocity vector is the velocity vector
γ′(t) ∈ Tγ(t)X of a generic pair (γ, t).

Theorem 1.6 and the density of velocity vectors leads directly to the following:

Corollary 1.9. If u : X → R is a Lipschitz function, then for µ-a.e. p ∈ X, the
pointwise upper Lipschitz constant Lipu(p) is the supremal normalized directional
derivative of u over generic pairs (γ, t) with γ(t) = p:

Lipu(p) = sup

{
(u ◦ γ)′(t)

‖γ′(t)‖
=

(u ◦ γ)′(t)

‖ ∂∂t‖γ(t)
| (γ, t) generic, γ(t) = p, γ′(t) 6= 0

}
.

Corollary 1.9 has two further consequences. The first is a new proof of the
characterization of the minimal generalized upper gradient in PI spaces as the
pointwise Lipschitz constant (see Section 6.3); this was one of the main results in
[Che99]. The second is a new proof of the following recent result of the third author
(see Section 6.2).

Theorem 1.10 ([Sch13]). If (X,µ) is a differentiability space, and u : X → R is a
Lipschitz function, then for µ-a.e. p ∈ X we have Lipu(p) = lipu(p). Here lipu(p)
is the pointwise lower Lipschitz constant (Definition 2.25).

We recall that [Kei04a] introduced the Lip-lip-condition for a metric measure
space, which says that for some C ∈ R, and every Lipschitz function u : X → R,
the upper and lower pointwise Lipschitz constants satisfy Lipu ≤ C lipu almost
everywhere. Keith showed that under mild assumptions on the measure, a metric
measure space satisfying a Lip-lip-condition is a differentiability space. Combining
this with Theorem 1.10, it follows that one may always take C = 1. We note
that when (X,µ) is PI space, or more generally a Borel subset of a PI space with
the restricted measure, it followed from the earlier work [Che99] that Lipu = lipu
almost everywhere. These results indicate a strong similarity between PI spaces
and differentiability spaces.

For more discussion of these results we refer the reader to the corresponding
Sections.

The structure of blow-ups. For a general differentiability space, there is no
natural rescaling as in the Carnot group case, so to formulate an analog of the con-
vergence of the rescaled pseudodistances (1.3), we consider sequences of rescalings of
X with the measure µ suitably renormalized, and take pointed Gromov-Hausdorff
limits of the metric measure spaces, as well as the chart functions and Alberti
representations. We give a brief and informal account of this here, and refer the
reader to Section 7 for more discussion. For simplicity, in the following statement
we assume in addition that X is a doubling metric space.
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Theorem 1.11. For µ-a.e. x ∈ X, if {λj} is any sequence of scale factors with
λj →∞, and x ∈ Ui, then there is a sequence {λ′j} such that the sequence

{(λjX,λ′jµ, x)
φi−→ (λjRni , φi(x))}

of pointed rescalings of the chart φi : X → Rni subconverges in the pointed measured
Gromov-Hausdorff sense to a pointed blow-up map

φ̂i : (X̂, µ̂, ?)→ (TxX, 0) ,

where (X̂, µ̂) is a doubling metric measure space. Moreover:

(1) When TxX is equipped with the norm ‖ · ‖ of Theorem 1.6, then the map

φ̂i : X̂ → TxX becomes a metric submersion (see Definition 1.12 below).

(2) For every unit vector v in the normed space (TxX, ‖ · ‖), there is an Alberti
representation of µ̂ whose support is contained in the collection of unit

speed geodesics γ : R → X̂ with the property that φ̂i ◦ γ : R → TxX has
constant velocity v; furthermore, the measure associated to each such γ is
just arclength. This Alberti representation is obtained by blowing-up suitable
Alberti representations in X.

Definition 1.12. A map f : Y → Z between metric spaces is a metric submer-
sion if it is a 1-Lipschitz surjection, and for every y1 ∈ Y , z2 ∈ Z, there is a
y2 ∈ f−1(z2) such that d(y1, y2) = d(f(y1), z2). Equivalently, given any two fibers
f−1(z1), f−1(z2) ⊂ Y , the distance function from the fiber f−1(z1) is constant and
equal to d(z1, z2) on the other fiber f−1(z2).

To aid the reader’s intuition, it might be helpful to look at the example (R2,L2),
where on R2 we consider the l1-norm; as this norm is not strictly convex, one
can obtain an Alberti representation of L2 by using unit-speed geodesics in L2

with corners, i.e. geodesics which do not lie in straight lines. Blowing-up such
representations at a generic point, one obtains an Alberti representation of L2

whose transverse measure is concentrated on the set of straight lines in R2.

There are precursors to Theorem 1.11 in [Che99] in the case of PI spaces. In
that case the blow-ups (tangent cones) are also PI spaces, the coordinate functions
blow-up to generalized linear functions, and [Che99] proved the surjectivity of the
canonical map Y → TxX. Distinguished geodesics of a different sort were discussed
in [Che99], namely the gradient lines of generalized linear functions; however, unlike
the curves in the support of the Alberti representations of Theorem 1.11 (2), these

need not be affine with respect to the blow-up chart φ̂i.

Remark 1.13. The third author [Sch13] and David [Dav14] also have results related
to Theorem 1.11 (1). They show that certain blow-up maps are Lipschitz quo-
tient maps, which is a weaker version of the metric submersion property. The pa-
per [Sch13] is concerned with the relationship between Weaver derivations [Wea00]
and Alberti representations without the assumption that one has a differentiability
space, so the setup there is much more general than the one considered here. We
point out that our results in Section 7 have natural counterparts in that general
context, under the assumption that µ is asymptotically doubling. We note that one
of the main ingredients in Theorem 1.11 is a procedure for blowing-up Alberti rep-
resentations, which has other applications. In particular, it allows one to blow-up
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Weaver derivations under the assumption that the background measure is asymp-
totically doubling. We point out that, as the metric measure space X does not
need to possess a group of dilations, it is not trivial to find a correct way to rescale
derivations and pass to a limit; however, by taking advantage of the representation
of Weaver derivations in terms of Alberti representations proven in [Sch13], one
can use Theorem 7.11 to blow-up a derivation at a generic point. Moreover, as
the blown-up Alberti representation is concentrated on the set of geodesic lines,
the blown-up derivation corresponds to a 1-normal current (in the sense of Lang)
without boundary. We refer the reader to Section 7 (in particular Theorem 7.15
and Remark 7.2) for more details.

Theorem 1.11 implies that the blow-up of any Lipschitz function at a generic
point is harmonic, in the following sense.

Definition 1.14. Suppose (W, ζ) is proper metric measure space, where ζ is a
locally finite Borel measure. Then a Lipschitz function u : W → R is p-Lip-
harmonic if for every ball B(x, r) ⊂ W , and every Lipschitz function v : W → R
that agrees with u outside B(x, r), we have∫

B(x,r)

(Lip v)p dµ̂ ≥
∫
B(x,r)

(Lipu)p dµ̂ .

Theorem 1.11 yields:

Corollary 1.15. Suppose u : X → R is a Lipschitz function. Then for µ a.e.
x ∈ X, for any blow-up sequence as in Theorem 1.11 there is a blow-up limit
û : Y → R such that:

(1) û is p-Lip-harmonic for all p ≥ 1.
(2) For any y ∈ Y , r ∈ [0,∞) we have var(u, y, r) = r · Lip(u)(x), where

var(u, y, r) is the variation of û over B(y, r):

var(u, y, r) = sup{|u(z)− u(y)| | z ∈ B(y, r)} .

In particular, Lip(û)(y) = lip(û)(y) = Lip(u)(x) for all y ∈ Y , and Lip(u)(x)
is also the global Lipschitz constant of û.

We remark that in the terminology of [Kei04a, Sec. 6], part (2) of the corollary
says that blow-ups are 1-quasilinear; this refines [Kei04a, Sec. 6], where it was
shown that blow-ups are K-quasilinear for some K.

It is an open question whether a blow-up of a differentiability space must be a PI
space, or even a differentiability space. Corollary 1.15 may be compared with the
result from [Che99], which asserts that blow-ups of Lipschitz functions are gener-
alized linear functions — p-harmonic functions with constant norm gradient. The
proof in [Che99] is quite different however — it is based on asymptotic harmonicity
and breaks down in differentiability spaces.

The results above all speak to the broader topic of the infinitesimal structure of
differentiability spaces. There are a number of open questions here. The present
state of knowledge makes it difficult to formulate compelling conjectures or ques-
tions in a precise form, but one may ask the following:
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Question 1.16. If (X,µ) is a differentiability space, is there a countable collection
{Ui} of Borel subsets of X, such that µ(X \ ∪i Ui) = 0 and every Ui admits a
measure-preserving isometric embedding in a PI space?

If the answer is yes, then blow-ups of differentiability spaces at generic points will
also be PI spaces, so one may approach this question by trying to verify that blow-
ups have various properties of PI spaces, such as quasiconvexity, a differentiable
structure, etc. It is of independent interest to gain a better understanding of the
structure of blow-ups in the PI space case. Known examples suggest that the
blown-up Alberti representations may have accessibility properties similar to the
accessibility one has in Carnot groups.

The infinitesimal geometry of Lipschitz maps. We now return to the general
case of metric differentiation. Consider a Lipschitz map F : X → Z, where Z is any
metric space, and let % = %F be the pullback distance function (1.1). Our results in
this case parallel what has been discussed above for the special case of the identity
map idX : X → X, so we will be brief and focus on the novel features; see Section
8 for the details.

The map F gives rise to a distinguished subset of the Lipschitz functions on X,
namely the set of pullbacks u◦F , where u : Z → R is Lipschitz, or equivalently, the
set of functions v : X → R that are Lipschitz with respect to the pseudodistance %.

Theorem 1.17 (Theorem 8.6). There is a canonical subbundle W% ⊂ T ∗X such
that the differential of any %-Lipschitz function v : X → R belongs to W% µ-almost
everywhere. Moreover, for any countable dense subset DX ⊂ X, the set of differ-
entials of the corresponding %-distance functions span W%.

One may construct several seminorms on TX analogous to the seminorms ‖ · ‖j ,
1 ≤ j ≤ 4, of Theorem 1.6. For instance, given a countable dense subset DX ⊂ X,
we may define a seminorm by

‖ · ‖1,% = sup{|dρx| | x ∈ DX} ,
where %x is the %-distance from x; analogs of the other three seminorms are defined
similarly, using the pseudodistance % instead of the distance function dX .

Theorem 1.18 (Theorem 8.24). The seminorms agree almost everywhere, giving
rise to a canonical seminorm ‖ · ‖% on TX.

Unlike in the case of the identity map, when % = dX , the canonical seminorm
need not be a norm. Instead it induces a norm on the quotient bundle TX/W⊥%
and a dual norm ‖ · ‖∗% on the canonical subbundle W% ⊂ T ∗X; here W⊥% ⊂ TX is
the annihilator of the W% ⊂ T ∗X, .

There are two different ways to formulate metric differentiation in terms of blow-
ups. In the first, we refine Theorem 1.11 by bringing in the sequence of rescaled
pseudodistances {λj%} as well. After passing to a subsequence, these will Gromov-
Hausdorff converge (in a natural sense) to a limiting pseudodistance %̂ on Y . Then
in addition to conclusions (1) and (2) of Theorem 1.11, we have:

(3) When Y and TpX are equipped with the pseudodistance %̂ and the semi-

norm ‖ ·‖% of Theorem 1.18 respectively, the map φ̂i : Y → TpX is a metric
submersion.
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(4) For every unit vector v in the normed space (TpX, ‖ · ‖), there is an Alberti
representation of µ̂ whose support is contained in the collection of curves

γ : R → Y with the property that φ̂i ◦ γ : R → TpX has constant velocity
v, γ is a unit speed dY -geodesic, and a constant ‖v‖%-speed %̂-geodesic.

A second way to formulate the blow-up assertion is to take an ultralimit of the
map F : X → Z. We refer the reader to Section 8.3 for the statements.

One consequence of (4) is that the blown-up Alberti representations appear-
ing in Theorem 1.11 (2) may be viewed as invariants of the differentiability space
structure, in the following way. The definitions readily imply that if (X,µ) is a
differentiability space, (Z, ν) is a metric measure space, and F : (X,µ)→ (Z, ν) is
a bilipschitz homeomorphism that is also measure class preserving in the sense that
pushforward measure F∗µ and ν are mutually absolutely continuous, then (Z, ν)
is also a differentiability space. When X is doubling, for almost every p ∈ X, we
can then take a Gromov-Hausdorff limit of the the sequence of rescalings of F as
in Theorem 1.11, to obtain a bilipschitz homeomorphism

F̂ : (X̂, p̂) −→ (Ẑ, F̂ (p̂)) .

This blow-up map F̂ will preserve the blow-up measures up to scale, and will
preserve the blow-up Alberti representations from Theorem 1.11(2) up to a change
of speed that depends only on the choice of tangent vector v.

Applications to embedding. In Section 9 we apply metric differentiation to
Lipschitz maps between Carnot groups, Alexandrov spaces with curvature bounded
above or below, and the inverse limit spaces in [CK13], showing that such maps are
strongly constrained on an infinitesimal level.

Further discussion. We now make some remarks about the evolution of some
of the main ideas in this paper — generic velocities, the proof of abundance, the
structure of blow-ups, and their distinguished geodesics.

While [Che99] clarified many points at the foundation of PI spaces, the role of
curves remained somewhat mysterious, and in particular velocity vectors to curves
were not considered there. In fact, although Lipschitz curves were used in the
original definition of a PI space by Heinonen-Koskela (which is based on upper
gradients) there is an equivalent definition in which curves do not appear at all
[Kei03].

The first appearance of tangent vectors to curves in the context of PI spaces
was in [CK09]. There a notion similar to generic velocity vectors was introduced,
and it was shown that they span the tangent space at a typical point; in addition,
there was a new characterization of the minimal generalized upper gradient, which
may be viewed as a precursor to Corollary 1.9. Metric differentiation for PI spaces
was announced in [CK09, p.1020]. This was work of the first two authors, which
led to an unpublished account of metric differentiation [CK] that was similar in
several respects to the present paper. For instance, it used a notion of generic
velocity vectors, and contained a blow-up statement like Theorem 1.11 involving
a distinguished family of geodesics with constant velocity in the blow-up chart;
however, it did not use Alberti representations. We mention that is easy to see
that the collection of nongeneric Lipschitz curves γ : I → X has zero p-modulus,
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for every p. This yields a weak form of abundance of generic curves in the PI
space case. A key ingredient in [CK] was a proof of the density of the directions of
generic velocity vectors based on a much deeper argument that borrowed ideas —
a renorming argument and the equality Lipu and the minimal generalized upper
gradient — from [Che99].

Bate’s beautiful work on Alberti representations [Bat12, Bat14] greatly strength-
ened the connection between curves and differentiability, providing several different
alternate characterizations of differentiability spaces in terms of Alberti representa-
tions. His approach was partly motivated by the work of Alberti-Csornyei-Preiss on
differentiability for subsets of Rn, and an observation of Preiss that the character-
ization of the minimal generalized upper gradient in [CK09] implied the existence
of Alberti representations for PI spaces [Bat14, Sec. 10].

When [Bat12] appeared, the third author used it to give a proof of Lip = lip
based on a renorming construction, without being aware of the contents of [CK].
Independently, the first two authors recognized that [Bat12] could be used to give a
stronger and more general treatment of metric differentiation, and proposed writing
the present paper.

Acknowledgements. We would like to thank David Bate and Sean Li for drawing
our attention to an error in an earlier version of this paper.

2. Preliminaries

2.1. Standing assumptions and review of differentiability spaces. Through-
out this paper, the pair (X,µ) will denote a differentiability space; this means
that (X, dX) is a complete, separable metric space, µ is a Radon measure, and
the pair (X,µ) admits a measurable differentiable structure as recalled below, cf.
[Che99, Kei04a].

We briefly highlight the main features of a differentiability space, see below for
more discussion:

(1) There is a countable collection of charts {(Uα, φα)}α, where Uα ⊂ X is
measurable and φα is Lipschitz, such that X \ (∪αUα) is µ-null, and each
real-valued Lipschitz function f admits a first order Taylor expansion with
respect to the components of φα : X → RNα at generic points of Uα, i.e.
there exist a.e. unique measurable functions ∂f

∂φiα
on Uα such that:

(2.1) f(x) = f(x0) +

Nα∑
i=1

∂f

∂φiα
(x0)

(
φiα(x)− φiα(x0)

)
+ o (dX(x, x0)) (for µ-a.e. x0 ∈ Uα).

(2) There are measurable cotangent and tangent bundles T ∗X and TX (see
also subsection 2.5). The fibres of T ∗X are generated by the differentials
of Lipschitz functions, and the tangent bundle of TX is defined formally
by duality: part of the motivation of the present work is to give a concrete
description of TX by using velocity vectors of Lipschitz curves.
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(3) Natural dual norms ‖ · ‖Lip and ‖ · ‖∗Lip on T ∗X and TX respectively. The

norm ‖ · ‖Lip is induced by the pointwise upper Lipschitz constant, i.e. for
any real-valued Lipschitz functions f we have ‖df‖Lip = Lip f(x) for µ-
a.e. x ∈ X.

We recall that Lip f(x) denotes the (upper) pointwise Lipschitz constant of
f at x, that is:

(2.2) Lip f(x) = lim sup
r↘0

sup

{
|f(y)− f(x)|

r
: dX(x, y) ≤ r

}
.

We now give a brief review of some definitions from [Che99, Kei04a]; an expo-
sition can be found in [KM11]. Let (Z, ν) be a metric measure space. Let U be a
(countable) collection of Lipschitz functions on Z. Then U is dependent at x ∈ Z
if some finite nontrivial linear combination v of elements of U is constant to first
order at x, i.e. |v(y) − v(x)| = o(dX(x, y))). Alternatively, one can say that the
pointwise upper Lipschitz constant Lip v of v vanishes at x. The dimension of
U at x is the supremal cardinality of a subset that is linearly independent at x;
the dimension function dimU : Z → N ∪ {∞} is Borel whenever U is a countable
collection. Suppose that U ⊂ Z is a Borel set with positive ν-measure, and that
φ : U → Rn is Lipschitz. The pair (U, φ) is a chart if the component functions
φ1, . . . , φn of φ are independent at ν-a.e. x ∈ U , and if for each real-valued Lips-
chitz function f , the (n+ 1)-tuple (φ1, . . . , φn, f) is dependent at ν-a.e. x ∈ U . In

particular, there are, unique up to ν-null sets, Borel functions ∂f
∂φi

: U → R such

that the Taylor expansion (2.1) holds for ν-a.e. x0 ∈ U ; in this case we also say
that f is differentiable at x0 with respect to the {φi}ni=1.

A metric measure space (Z, ν) admits a measurable differentiable struc-
ture if there exists an countable collection of charts {(Uα, φα)}α such that Z \
(∪αUα) is ν-null. Without loss of generality, we will always assume that for each
pair (α, β), at each point of Uα∩Uβ the functions φα are differentiable with respect
to the functions φβ .

One says that a metric measure space (Z, ν) is (almost everywhere) finite
dimensional if for any countable collection U of Lipschitz functions, the dimension
dimU is finite almost everywhere. It follows from a selection argument [Che99,
Kei04a] that when ν is σ-finite, then (Z, ν) admits a measurable differentiable
structure if and only if it is finite dimensional. Thus, apart from being a standard
condition on a measure, σ-finiteness is a natural assumption in the present topic.
As the measure ν only enters through its sets of measure zero, one really only cares
about the measure class of ν; hence if ν is σ-finite, then without loss of generality
one may take ν to be finite.

We finally give a brief justification of why we assume X to be complete in
the definition of a differentiability space, which was also a working assumption in
[BS11, Bat12]. Suppose (Z, ν) is a metric measure space, where Z is not necessarily
complete. Denote by Z̄ its completion, and let ν̄ be the pushforward of ν under the
inclusion Z → Z̄. Then any Lipschitz function u ∈ Lip(Z) extends uniquely to Z̄,
and since Z is dense in Z̄, the notions of dependence and dimension for a collection
U ⊂ Lip(Z) at any x ∈ Z agree with the notions for the corresponding collection
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Ū ⊂ Lip(Z̄). Hence (Z, ν) has a differentiable structure if and only if (Z̄, ν̄) has a
measurable differentiable structure.

2.2. The metric derivative for 1-rectifiable sets. Let Z be a separable metric
space and denote by dZ the metric on Z. We say that a pseudometric % on Z is
Lipschitz compatible if there is a nonnegative constant C such that:

(2.3) % ≤ CdZ ;

we say that a function f : Z → W is %-Lipschitz if there is a nonnegative C such
that:

(2.4) dW (f(z1), f(z2)) ≤ C%(z1, z2) (∀z1, z2 ∈ Z).

Note that %-Lipschitz functions are necessarily dZ-Lipschitz; when referring to the
background metric dZ we will simply use the term Lipschitz. We denote by H1

the 1-dimensional Hausdorff measure on Z and by H1
% the 1-dimensional Hausdorff

measure associated to the pseudometric %.

We now recall metric differentiation results of [Kir94, AK00b, AT04] in the case
of 1-rectifiable sets.

Let Y be a Lebesgue measurable subset of R and let γ : Y → Z be a Lipschitz
map. We fix a countable dense subset {zi} of Z, and let ui be the pullback of the
pseudodistance function %zi(·) = %(·, zi) by the map γ. Then γ has a %-metric
differential %-mdγ : Y → [0,∞), which is uniquely determined for L1 a.e. t ∈ Y ,
and which has the following properties:

(MD1): Rescalings of the pullback pseudometric γ∗% at t converge uniformly
on compact sets to %-mdγ(t) dR, that is, the Euclidean distance scaled by
the factor %-mdγ(t).

(MD2): Consider a point t ∈ Y such that:

(1) The point t is a Lebesgue density point of Y ;

(2) The derivatives of the functions {ui}i exist at t;

(3) The derivatives {u′i}i are approximately continuous at t;

(4) The function supi |u′i| is approximately continuous at t.

Then the %-metric differential exists at t and is given by:

(2.5) %-mdγ(t) = sup
i
|u′i(t)| .

(MD3): One has an area formula [Kir94, Thm. 7]:

(2.6)

∫
Z

# {t ∈ Y : γ(t) = z} dH1
%(z) =

∫
Y

%-mdγ(t) dL1(t).

In the case in which the metric differential refers to the metric dZ we will use the
symbol md γ instead of dZ-mdγ.

2.3. Alberti representations. Alberti representations were introduced in [Alb93]
to prove the so-called rank-one property for BV functions; they were later ap-
plied to study the differentiability properties of Lipschitz functions f : RN → R
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[ACP05, ACP10] and have recently been used to obtain a description of measures
in differentiability spaces [Bat12]. We first give an informal definition.

An Alberti representation of a Radon measure µ is a generalized Lebesgue
decomposition of µ in terms of 1-rectifiable measures: i.e. one writes µ as an integral:

(2.7) µ =

∫
νγ dP (γ),

where {νγ} is a family of 1-rectifiable measures. The standard example is offered
by Fubini’s Theorem; given x ∈ RN−1, denote by γ(x) the parametrized line in
RN given by γ(x)(t) = x + ten+1; then an Alberti representation of the Lebesgue
measure LN is given by:

(2.8) LN =

∫
RN−1

H1
γ(x) dL

N−1(x).

To make the previous account more precise we introduce more terminology. For
more details we refer the reader to [Bat12] and [Sch13, Sec. 2.1]; note however, that
we slightly diverge from the treatments in [Bat12, Sch13] because we discuss also
unbounded 1-rectifiable sets: the need to do so becomes apparent in Section 7.

Definition 2.9. A fragment in X is a Lipschitz map γ : C → X, where C ⊂ R
is closed. The set of fragments in X will be denoted by Frag(X).

We need to topologize Frag(X); let F (R × X) denote the set of closed subsets
of R ×X with the Fell topology [Kec95, (12.7)]; we recall that a basis of the Fell
topology consists those sets of the form:

(2.10) {F ∈ F (R×X) : F ∩K = ∅, F ∩ Ui 6= ∅ for i = 1, . . . , n} ,

where K is a compact subset of R ×X, and {Ui}ni=1 is a finite collection of open
subsets of R×X. Note that the empty set ∅ is included in F (R×X) and that, if
X is locally compact, the topological space F (R×X) is compact. We now consider
the set Fc(R×X) = F (R×X) \ {∅} which is, if X is locally compact, a Kσ, i.e. a
countable union of compact sets. Each fragment γ can be identified with an element
of Fc(R×X) and thus Frag(X) will be topologized as a subset of Fc(R×X). We
will use fragments to parametrize 1-rectifiable subsets of X.

We now briefly discuss the topology on Radon measures that allows to make
sense of an integral like (2.7). Let Cc(X) denote the set of continuous function
defined on X with compact support; recall that the set Cc(X) is a Fréchet space.
We denote by Rad(X) the set of (nonnegative) Radon measures on X; as Rad(X)
can be identified with a subset of the dual of Cc(X), we will topologize it with
the restriction of the weak* topology. In particular, when we assert that a map
ψ : Z → Rad(X) is Borel, we mean that for each g ∈ Cc(X), the map:

(2.11) z 7→
∫
X

g(x) d (ψ(z)) (x)

is Borel.

Definition 2.12. An Alberti representation of the measure µ is a pair (P, ν) such
that:

(Alb1): P is a Radon measure on Frag(X);
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(Alb2): The map ν : Frag→ Rad(X) is Borel and, for each γ ∈ Frag(X), we
have νγ � H1

γ , where H1
γ denotes the 1-dimensional Hausdorff measure on

the image of γ;

(Alb3): The measure µ can be represented as µ =
∫

Frag(X)
νγ dP (γ);

(Alb4): For each Borel set A ⊂ X and all real numbers b ≥ a, the map
γ 7→ νγ (A ∩ γ(Dom γ ∩ [a, b])) is Borel.

We now recall some definitions regarding additional properties of Alberti repre-
sentations.

Definition 2.13. An Alberti representation A = (P, ν) is said to be C-Lipschitz
(resp. (C,D)-biLipschitz) if P -a.e. γ is C-Lipschitz (resp. (C,D)-biLipschitz).

Definition 2.14. Let σ : X → [0,∞) be Borel and f : X → R be Lipschitz. An
Alberti representation A = (P, ν) is said to be have f-speed ≥ σ (resp. > σ) if
for P -a.e. γ ∈ Frag(X) and L1 Dom γ-a.e. t one has (f ◦ γ)′(t) ≥ σ(γ(t)) md γ(t)
(resp. (f ◦ γ)′(t) > σ(γ(t)) md γ(t)).

Another property regards the direction, with respect to a finite tuple of Lipschitz
functions, of the fragments used in an Alberti representation. To measure the
direction one can use the notion of Euclidean cone:

Definition 2.15. Let θ ∈ (0, π/2), v ∈ Sn−1; the open cone Cone(v, θ) ⊂ Rn
with axis v and opening angle θ is:

(2.16) Cone(v, θ) = {u ∈ Rq : tan θ〈v, u〉 > ‖π⊥v u‖2},
where π⊥v denotes the orthogonal projection on the orthogonal complement of the
line Rv.

Definition 2.17. Given a Lipschitz function f : X → Rn, an Alberti representation
A = (P, ν) is said to be in the f-direction of the open cone Cone(v, θ) if for
P -a.e. γ ∈ Frag(X) and L1 Dom γ-a.e. t one has (f ◦ γ)′(t) ∈ Cone(v, θ).

For the purpose of this paper it will be convenient to obtain Alberti represen-
tations with biLipschitz constants close to 1. We will thus use the following result
[Sch13, Thm. 2.64]:

Theorem 2.18. Let X be a complete separable metric space and µ a Radon measure
on X. Then the following are equivalent:

(1) The measure µ admits an Alberti representation A in the f -direction of
Cone(v, θ) with g-speed > σ;

(2) For each ε > 0 the measure µ admits a (1, 1 + ε)-biLipschitz Alberti repre-
sentation A in the f -direction of Cone(v, θ) with g-speed > σ.

Moreover, one can always assume that the Alberti representation is of the form
A = (P, ν), where P is a finite Radon measure concentrated on the set of fragments
with compact domain. Additionally, one can assume that ν = hΨ where h is a
nonnegative Borel function of X and:

(2.19) Ψγ = γ]
(
L1 Dom γ

)
,

i.e. the push-forward of the restriction of the Lebesgue measure to the domain of γ.



16 JEFF CHEEGER, BRUCE KLEINER, AND ANDREA SCHIOPPA

Sometimes we will find it useful to restrict an Alberti representation A =
(P, ν) to a Borel set U ⊂ X by letting A U = (P, ν U). Other times one knows the
existence of Alberti representations on subsets {Uα}α and would like to glue them
together. This is accomplished by the following gluing principle [Sch13, Thm. 2.46]:

Theorem 2.20. Let {Uα}α be Borel subsets and suppose that for each α the mea-
sure µ Uα admits a (C,D)-biLipschitz Alberti representation in the f -direction of
Cone(v, θ) with f -speed ≥ σ (or > σ); then the measure µ

⋃
α Uα also admits

a (C,D)-biLipschitz Alberti representation in the f -direction of Cone(v, θ) with f -
speed ≥ σ (or > σ).

2.4. Results from Bate and Speight. We now recall some results [BS11, Bat12]
on the structure of measures in differentiability spaces. The original Theorems
[Che99, Kei04a] on the existence of differentiable structures required the measure
µ to be doubling. Bate and Speight [BS11] found a partial converse of this:

Theorem 2.21. If (X,µ) is a differentiability space, then:

• The measure µ is asymptotically doubling, i.e. for µ-a.e. x there are
(Cx, rx) ∈ (0,∞)2 such that:

(2.22) µ (B(x, 2r)) ≤ Cxµ (B(x, r)) (∀r ≤ rx).

As a consequence, (X,µ) is a Vitali space, i.e. the Vitali Covering Theorem
holds in (X,µ), and thus also Lebesgue’s Differentiation Theorem holds for
µ.
• Every porous subset is µ-null.

It was shown in [Bat14, Lemma 8.3] that if if (X,µ) is asymptotically doubling,
there are countably many Borel sets {Uα}α such that µ(X \

⋃
α Uα) = 0 and such

that each Uα is doubling as a metric space. Moreover, the sets {Uα}α might be
assumed to be closed or compact.

Remark 2.23. In particular, at generic points of each Uα, one can obtain blow-
ups/tangent cones of (X,µ) by using Gromov’s Compactness Theorem (see Section
7). In fact, as porous sets are µ-null, blowing-up (Uα, µ Uα) at a point p of Uα
which is a Lebesgue density point for µ, and is also a point at which Uα is not porous
in the ambient space X, will yield the same metric measure spaces as blowing-up
(X,µ).

Recently Bate [Bat12] made a deep study of the structure of measures in dif-
ferentiability spaces by using Alberti representations; in particular, he was able to
obtain several characterizations of these spaces. For the sake of brevity we just
summarize one characterization as follows:

Theorem 2.24. The metric measure space (X,µ) is a differentiability space if and
only if:

(1) The measure µ is asymptotically doubling and porous sets are µ-null;

(2) There is a Borel function τ : X → (0,∞) such that, for each real-valued
Lipschitz function f , the measure µ admits an Alberti representation with
f -speed ≥ τ Lip f .
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In [Sch13] it was shown that one may take τ = 1: in subsection 6.2 we provide
a proof of this fact which is independent of the results in [Sch13]. To put this in
perspective we recall the following definition:

Definition 2.25. Let f : X → R be Lipschitz. The lower pointwise Lipschitz
constant of f at x is:

(2.26) lip f(x) = lim inf
r↘0

sup

{
|f(y)− f(x)|

r
: dX(x, y) ≤ r

}
.

In [Kei04a] it was shown that the existence of a measurable differentiable struc-
ture follows under the assumption that (X,µ) satisfies a Lip-lip inequality: this
means that there is a K ≥ 1 such that, for each real-valued Lipschitz function f ,
one has:

(2.27) Lip f(x) ≤ K lip f(x) (for µ-a.e. x).

In particular, Theorem 2.24 implies that in a differentiability space the Lip-lip
inequality holds by replacing the constant K with the function τ ; thus, showing that
one can take τ = 1 implies that the Lip-lip inequality self-improves to an equality.
For the case of PI-spaces, the Lip-lip equality was a main result of [Che99], which
followed from the more general result that, for p > 1, Lip f is a representative of
the minimal generalized upper gradient of f .

The result of [Bat12] that we will mainly use is the existence of Alberti repre-
sentations in the directions of arbitrary cones:

Theorem 2.28. Let (U,ψ) be an N -dimensional differentiability chart for the dif-
ferentiability space (X,µ); then for each v ∈ SN−1 and each θ ∈ (0, π/2), the
measure µ U admits an Alberti representation in the ψ-direction of Cone(v, θ).

2.5. Measurable Vector Bundles. In this paper we will work with measurable
subbundles of the tangent and cotangent bundles associated to a differentiability
space. Since we deal with different (measurable) seminorms on these subbundles,
we need to introduce a bit of terminology to make the treatment precise. Let (Ω,Σ)
be a measurable space; a Σ-measurable vector bundle over Ω is a quadruple
(IV , {Nα}α∈IV , {Uα}α∈IV , {gα,β}(α,β)∈IV,∩) such that:

(1) The index set IV is countable and {Uα}α∈IV is a cover of Ω consisting of
Σ-measurable sets;

(2) Each Nα is a nonnegative integer and if Uα ∩ Uβ 6= ∅, then Nα = Nβ ;

(3) The (possibly empty set) IV,∩ consists of those pairs (α, β) ∈ IV × IV such
that Uα ∩ Uβ 6= ∅;

(4) Each gα,β is a Σ-measurable map gα,β : Uα ∩ Uβ → GL
(
RNα

)
.

If N = supαNα <∞ the bundle V is said to have finite dimension N .

A section σ of V is a collection {σα}IV of Σ-measurable maps σα : Uα → RNα
such that:

(2.29) gα,β ◦ σα = σβ .
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A measurable subbundle of V is a measurable choice of a hyperplane in each fibre.
More precisely, let Gr

(
RN , k

)
denote the Grassmanian of unoriented k-dimensional

planes in RN ; then a subbundle W of V is a pair ({Mα}IV , {φα}IV ) such that:

(1) Each nonnegative integer Mα satisfies Mα ≤ Nα and if (α, β) ∈ IV,∩, then
Mα = Mβ ;

(2) Each φα is a Σ-measurable map φα : Uα → Gr
(
RNα ,Mα

)
;

(3) For each pair (α, β) ∈ IV,∩ the following compatibility condition holds:

(2.30) gα,β (φα(x)) = φβ(x) (∀x ∈ Uα ∩ Uβ).

We now turn to the construction of seminorms on V (or on a subbundle).
Let Sem

(
RN
)

denote the set of seminorms on RN , and let Sem+∞
(
RNα

)
=

Sem
(
RNα

)
∪{+∞}, which is viewed as the one-point compactification of Sem

(
RNα

)
.

The element +∞ is interpreted as the real-valued function on RN which assigns
value +∞ to any non-zero vector and value 0 to the null vector. A seminorm (resp. a
generalized seminorm) ‖ · ‖ on V is a collection {‖ · ‖α}α∈IV of Σ-measurable maps

‖ · ‖α : Uα → Sem
(
RNα

)
(resp. Sem+∞

(
RNα

)
) which satisfy, for each (α, β) ∈ IV,∩

and each v ∈ RNα , the following compatibility condition:

(2.31) ‖v‖α (x) = ‖gα,β(v)‖β (x) (∀x ∈ Uα ∩ Uβ).

We will essentially work with measurable bundles where Ω = X, a complete
separable metric space, and where Σ is the Borel σ-algebra. However, in the case
of a metric measure space (X,µ), we implicitly identify vector bundles, sections
and seminorms which agree µ-a.e. For example, consider two Borel vector bun-
dles V = (IV , {Nα}α∈IV , {Uα}α∈IV , {gα,β}(α,β)∈IV,∩) and V ′ = (I ′V , {N ′α′}α′∈I′V ,
{U ′α′}α′∈I′V , {g

′
α,β}(α′,β′)∈I′V,∩) over X; we identify them if:

(1) Whenever µ(Uα ∩ U ′α′) > 0 one has Nα = N ′α′ ;

(2) Whenver µ(Uα∩U ′α′) > 0 there are a µ-full measure subset Vα,α′ ⊂ Uα∩U ′α′
and a Borel map Gα,α′ : Vα,α′ → GL

(
RNα

)
, such that, if µ(Uβ ∩ U ′β′) > 0,

one has:

(2.32) Gβ,β′ ◦ gα,β(x) = gα′,β′ ◦Gα,α′(x) (for µ-a.e. x ∈ Vα,α′ ∩ Vβ,β′).

To construct seminorms on measurable vector bundles we will use often the
following lemma.

Lemma 2.33. Let V be a measurable vector bundle over X and let {‖ · ‖τ}τ∈T be

a countable collection of seminorms on V. Then for x ∈ Uα and v ∈ RNα let

(2.34) ‖v‖T,α (x) = sup
τ∈T
‖v‖τ,α (x);

then {‖ · ‖T,α}α∈IV defines a seminorm ‖ · ‖T on V, which we call the supremum

of the seminorms {‖ · ‖T }τ∈T . Moreover, suppose that there are a seminorm ‖ · ‖
on V and a C ≥ 0 such that:

(2.35) ‖ · ‖τ ≤ C ‖ · ‖

holds uniformly in τ . Then ‖ · ‖T is a seminorm on V and one has:

(2.36) ‖ · ‖T ≤ C ‖ · ‖ .
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Suppose now that µ is a σ-finite Borel measure on X and let {‖ · ‖ω .}ω∈Ω be a
collection of seminorms on V which is allowed to be uncountable. Then there is a
µ-a.e. unique generalized seminorm ‖ · ‖Ω, called the essential supremum of the
collection {‖ · ‖ω .}ω∈Ω, which satisfies the following properties:

(Ess-sup1): For each section σ of V and each ω ∈ Ω one has:

(2.37) ‖σ‖Ω ≥ ‖σ‖ω µ-a.e.;

(Ess-sup2): If ‖ · ‖′Ω is another generalized seminorm satisfying (2.37), then
one has:

(2.38) ‖ · ‖′Ω ≥ ‖ · ‖Ω µ-a.e.

Moreover, if there are a seminorm ‖ · ‖ on V and a C ≥ 0 such that:

(2.39) ‖ · ‖ω ≤ C ‖ · ‖

holds µ-a.e. and uniformly in ω, then ‖ · ‖Ω can be taken to be a seminorm satisfying:

(2.40) ‖ · ‖Ω ≤ C ‖ · ‖ µ-a.e.

Proof. The proof that ‖ · ‖T defines a generalized seminorm, which is also a norm
under the additional assumption (2.35), follows by unwinding the definition of a
measurable vector bundle. To prove the second part of Lemma 2.33 we use the
approach of [EK05, Prop. 5.4.7].

We first observe that (Ess-sup1) and (Ess-sup2) are properties that hold up
to µ-null sets, and thus we can construct ‖ · ‖Ω independently on each V|Uα, where
V|Uα denotes the union of the fibres of V over the points x ∈ Uα. We can therefore
assume that the cardinality of IV is one and identify V with the product U × RN .
Without loss of generality we can also assume that µ is a probability measure on U .
We take a norm ‖ · ‖ on RN , and denote by SN−1 and HN−1 the corresponding unit
ball and (N−1)-dimensional Hausdorff measure. We finally let π be the probability
measure

(2.41) µ⊗HN−1 SN−1/HN−1(SN−1).

We also observe that, by possibly increasing Ω, we can assume that the collection
{‖ · ‖ω .}ω∈Ω is upward-filtering, i.e. for all pairs(ω, ω′) ∈ Ω2 there is an ω′′ ∈ Ω
satisfying:

(2.42) ‖ · ‖ω′′ = max {‖ · ‖ω , ‖ · ‖ω′} .

We now consider the increasing homeomorphism:

(2.43)

ϕ :R→ (0, 1)

t 7→ et

et + 1
,

and observe that the random variables {ϕ (‖ · ‖ω)}
ω∈Ω

are all nonnegative and have
π-expectations satisfying:

(2.44) E [ϕ (‖ · ‖ω)] ≤ 1.

Thus the supremum:

(2.45) q = sup [E [ϕ (‖ · ‖ω)] : ‖ · ‖ω ∈ Ω}
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is finite, and we let T = {‖ · ‖ωn} denote a maximizing sequence:

(2.46) lim
n→∞

E
[
ϕ
(
‖ · ‖ωn

)]
= q.

The proof is completed by showing that ‖ · ‖T satisfies (Ess-sup1) and (Ess-sup2).

We first address (Ess-sup1): suppose that one has ‖ · ‖ω > ‖ · ‖T on a set of pos-

itive measure. Then, considering the sequence of norms
{

max
{
‖ · ‖ωn , ‖ · ‖ω

}}
⊂ Ω

one contradicts (2.46).

We now address (Ess-sup2) and take a norm ‖ · ‖′Ω satisfying (2.37). Let A ⊂ U
be a set of positive µ-measure: we claim that one has:
(2.47)
lim
n→∞

E
[
χA×RNϕ

(
‖ · ‖ωn

)]
= sup {E [χA×RNϕ (‖ · ‖ω)] : ω ∈ Ω} = E [χA×RNϕ (‖ · ‖T )] .

In fact, if any of the equalities in (2.47) failed, using that ϕ is positive and that
the collection {‖ · ‖ω .}ω∈Ω is upward-filtering, one would contradict (2.46). As ϕ is
increasing, we have

(2.48) E
[
χA×RNϕ

(
‖ · ‖′Ω

)]
≥ E

[
χA×RNϕ

(
‖ · ‖ωn

)]
,

and from (2.47) it follows that:

(2.49) E
[
χA×RNϕ

(
‖ · ‖′Ω

)]
≥ E [χA×RNϕ (‖ · ‖T )] ,

from which (2.38) follows. �

3. Generic points and generic velocities

In this Section we fix a complete separable metric space X and introduce a notion
of genericity for pairs (γ, t) ∈ Frag(X)×R; this notion of genericity will be specified
in terms of a quadruple (F , C,S, DX) such that: F is a countable collection of real-
valued Lipschitz functions defined on X, C is a countable collection of real-valued
bounded Borel functions defined on X, DX is a countable dense subset of X, and
S is a countable collection of Lipschitz compatible pseudometrics on X which will
always include the metric dX .

Definition 3.1. We say that the pair (γ, t) is (F , C,S, DX)-generic if:

(Gen1): The point t is a Lebesgue density point of Dom(γ);

(Gen2): For each f ∈ F the derivative (f ◦ γ)′ exists and is approximately
continuous at t;

(Gen3): For each u ∈ C the function u ◦ γ is approximately continuous at t;

(Gen4): For each x ∈ DX and each % ∈ S the derivative (%x ◦ γ)′ exists and
is approximately continuous at t;

(Gen5): For each % ∈ S the function supx∈DX |(%x ◦ γ)′(t)| is approximately
continuous at t.

In the case in which S consists only of dX we will just write (F , C, DX). Whenever
a default choice of the set DX is assumed, we will omit DX from the notation.

Remark 3.2. We remark that the proof of [AT04, Thm. 4.1.6] shows that at a point
t where (Gen1), (Gen4) and (Gen5) hold, the %-metric derivative %-mdγ(t) exists
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and equals supx∈DX |(%x ◦ γ)′(t)|. Thus, if (γ, t) is (F , C,S, DX)-generic, for each
% ∈ S the %-metric derivative exists and is approximately continuous at t.

We point out that, in the case of a differentiability space (X,µ), Definition 3.1 has
a natural interpretation in terms of the µ-tangent bundle TX. Let {(Uα, φα)} be an
atlas for (X,µ) and suppose that F contains the components of all the coordinate
functions {φα}, and that C contains all the characteristic functions {χUα}. Suppose
now that (γ, t) is (F , C,S, DX)-generic and that γ(t) ∈

⋃
α Uα; then γ′(t) is a well-

defined element of TX. We are thus led to the following definition.

Definition 3.3. A (F , C,S, DX)-generic velocity vector is an element of TX
of the form γ′(t), where (γ, t) is (F , C,S, DX)-generic and γ(t) ∈ ∪α Uα. As above,
in the case in which S consists only of dX , we will just write (F , C, DX), and we
will omit DX from the notation if a default choice of the set DX is assumed.

We now establish measurability for generic pairs.

Lemma 3.4. The set

(3.5) G(F , C,S, DX) = {(γ, t) : (γ, t) is (F , C,S, DX)-generic}

is a Borel subset of Frag(X)× R.

Proof. We prove that G(F , C,S, DX) is Borel by showing that certain sets are Borel.
Let DOM denote the set of pairs (γ, t) such that t ∈ Dom γ:

(3.6) DOM = {(γ, t) ∈ Frag(X)× R : t ∈ Dom γ} ;

then DOM is closed. Fix δ > 0 and consider the set of pairs (γ, t) where t becomes
isolated below scale δ:

(3.7) ISOL(δ) = {(γ, t) ∈ DOM : Dom γ ∩ (t− δ, t+ δ) contains only one point} ;

then ISOL(δ) is closed and ISOL =
⋃
δ∈Q>0

ISOL(δ) is Borel and consists of the

pairs (γ, t) where t is an isolated point of Dom γ. We can thus attempt to define, for
a Lipschitz compatible pseudometric %, the %-metric derivative and, for f Lipschitz,
the derivative of f at pairs in DOM \ ISOL. Consider the set:

MDIFF(%) = {(γ, t) ∈ DOM \ ISOL : %-mdγ(t) exists}

=
⋂

ε∈Q>0

⋃
(δ,θ)∈Q>0×Q≥0

{
(γ, t) ∈ DOM \ ISOL : ∀s1, s2 ∈ (t− δ, t+ δ) ∩Dom γ,

|%(γ(s1), γ(s2))− θ|s1 − s2|| ≤ ε|s1 − s2|
}

;

(3.8)

this set is Borel as all the sets in the curly brackets are closed in DOM \ ISOL.
Modifying the definition of MDIFF by constraining θ to lie in a specified interval
we also conclude that the map:

(3.9)
MDer(%) : MDIFF→ [0,∞)

(γ, t) 7→ %-mdγ(t)
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is Borel. Consider now a real-valued Lipschitz function f defined on X; the set
DIFF(f) where (f ◦ γ)′(t) exists is Borel because we can write it as:

DIFF(f) = {(γ, t) ∈ DOM \ ISOL : f ◦ γ is differentiable at t}

=
⋂

ε∈Q>0

⋃
(δ,θ)∈Q>0×Q

{
(γ, t) ∈ DOM \ ISOL : ∀s1, s2 ∈ (t− δ, t+ δ) ∩Dom γ,

|f ◦ γ(s1)− f ◦ γ(s2)− θ(s1 − s2)| ≤ ε|s1 − s2|
}

(3.10)

where the sets in curly brackets are closed in DOM \ ISOL. Constraining the θ
appearing in the definition of DIFF(f) to lie in a given interval we conclude that
the map:

(3.11)
Der(f) : DIFF(f)→ R

(γ, t) 7→ (f ◦ γ)′(t)

is Borel. Regarding condition (Gen5) we need also to take a sup of derivatives
when they exist; so let Ω be a countable set of Lipschitz functions; then the set:

(3.12) DIFF(Ω) =
⋂
f∈Ω

DIFF(f)

and the map:

(3.13)
|Der(Ω)| : DIFF(Ω)→ R

(γ, t) 7→ sup
f∈Ω
|(f ◦ γ)′(t)|

are Borel.

We now turn to questions pertaining to the approximate continuity of a function
at a point in the domain of a fragment. For L ≥ 0 we will denote by SUB(L) the
closed set of those fragments whose domain lies in [−L,L]. Suppose now that we
are given a Borel set B ⊂ DOM and a Borel map ψ : B → R. For (ε, δ, L) ∈ (Q>0)3

let:

Ψ̃(ε, δ, L,B, ψ) =

{
(γ, t, s) ∈ Frag(X)× R2 : γ ∈ SUB(L),

(γ, t), (γ, s) ∈ B, |t− s| ≤ δ and |ψ(γ, t)− ψ(γ, s)| ≤ ε
}

;

(3.14)

the set Ψ̃(ε, δ, L,B, ψ) is Borel and [Kec95, Thm. 17.25] shows that the map:

(3.15)

Leb(ε, δ, L,B, ψ) : B → R

(γ, t) 7→ L1

((
Ψ̃(ε, δ, L,B, ψ)

)
(γ,t)

)
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is Borel. It is then easy to prove that the sets of pairs (γ, t) where some map is
approximately continuous at t is Borel; in fact, first define:

ACONT(ψ) =
⋃

L∈Q>0

⋂
ε∈Q>0

⋃
δ∈Q>0

⋂
r∈Q>0

{
(γ, t) ∈ B : γ ∈ SUB(L),

and for each r ≤ δ one has Leb(ε, r, L,B, ψ)(γ, t) ≥ 2(1− ε)r
}
,

(3.16)

which is a Borel set; then, for example, ACONT(MDer(dX)) consists of the pairs
(γ, t) where md γ exists and is approximately continuous at t. In order to handle
the approximate continuity for a Borel map u : X → R we introduce the notation
Ev(u) to denote the Borel map which evaluates u at γ(t):

(3.17)
Ev(u) : DOM→ R

(γ, t) 7→ u ◦ γ(t).

Letting ψ : DOM→ R to be the function which trivially maps each pair (γ, t) to 0,
we see that ACONT(ψ) = LEBDENS is the set of pairs (γ, t) where t is a Lebesgue
density point of Dom γ.

We finally conclude that G(F , C,S, DX) is Borel by observing that:

G(F , C,S, DX) =
⋂
%∈S

ACONT(MDer(%)) ∩
⋂
f∈F

ACONT(Der(f))

∩
⋂
u∈C

ACONT(Ev(u)) ∩
⋂

x∈DX ,%∈S
ACONT(Der(%x))

∩
⋂
%∈S

ACONT (|Der|({%x}x∈DX )) ∩ LEBDENS.

(3.18)

�

4. Metric Differentials and seminorms on TX

In this Section we discuss the first instance of metric differentiation, Theorem
4.3. The point is that in the presence of a differentiable structure, the H1

%-measure
of a fragment γ can be recovered using a seminorm (canonically associated to %) on
the tangent bundle TX associated to the differentiable structure. Let (X,µ) be a
differentiability space with atlas {(Uα, φα)}, and fix a countable dense set DX ⊂ X.

Definition 4.1. Let Φ be a countable collection of Lipschitz functions on X; we
say that a Borel subset V ⊂

⋃
α Uα is a Φ-differentiability set if:

(Diff1): The set V has full µ-measure: µ (
⋃
α Uα \ V ) = 0;

(Diff2): For each (x, f) ∈ V ×Φ, if x ∈ Uα, then f is differentiable at x with
respect to the coordinate functions φα.

Let ΦDX ,% = {%x : x ∈ DX} and let V be a ΦDX ,%-differentiability set. Using
Lemma 2.33, we obtain a seminorm ‖ · ‖DX ,% on TX by defining, for y ∈ V and
v ∈ TyV :

(4.2) ‖v‖DX ,% = sup
x∈DX

|d%x |y (v)| .
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Theorem 4.3. Let (F , C,S, DX) be as in Section 3 and let V be a ΦDX ,%-differentiability
set. Assume that F contains all the components of the coordinate functions φα, that
C contains the characteristic functions {χUα}α ∪ {χV }, and that % ∈ S. If γ′(t) is
an (F , C,S, DX)-generic velocity vector and if γ(t) ∈ V , then the metric differential
%-mdγ(t) exists and equals ‖γ′(t)‖DX ,%. In particular, if a fragment γ lies in V , we
have:

(4.4) H1
%(Im γ) =

∫
Dom γ

‖γ′(t)‖DX ,% dt.

Proof. To fix the ideas suppose that γ(t) ∈ Uα. Because of conditions (Gen4)–
(Gen5), the argument in [AT04, Thm. 4.1.6] implies that

(4.5) %-mdγ(t) = sup
x∈DX

|(%x ◦ γ)′(t)| ;

as γ(t) ∈ V , for each x ∈ DX the pseudodistance function %x is differentiable at γ(t)
with respect to the coordinate functions φα; note also that φα ◦ γ is differentiable
at t by condition (Gen2). Thus,

(4.6) (%x ◦ γ)′(t) =
∑
i

∂%x
∂φiα

(γ(t))
(
φiα ◦ γ

)′
(t) = d%x |γ(t) (γ′(t)),

which implies

(4.7) sup
x∈DX

|(%x ◦ γ)′(t)| = ‖γ′(t)‖DX ,% .

Formula (4.4) follows from the area formula (2.6) for the pseudometric % by observ-
ing that for a fragment γ which lies in V , for L1-a.e. t ∈ Dom γ, the velocity vector
γ′(t) is (F , C,S, DX)-generic. �

In Section 8 (Theorem 8.24) we will show that for different choices DX and D̃X

of the countable dense set, the seminorms ‖ · ‖DX ,% and ‖ · ‖D̃X ,% are the same. The
proof uses the density of directions at generic points which is discussed in the next
Section. For the case in which % = dX this follows from Theorem 6.1.

5. Density of generic directions at generic points

In this Section we show that for µ-a.e. x ∈ X the set of vectors in TxX which
can be represented by (F , C,S, DX)-generic velocity vectors contains a dense set of
“directions” in TxX. We make this idea precise with the following definition:

Definition 5.1. If V is a finite-dimensional vector space, we say that a subset
W ⊂ V contains a dense set of directions if:

(5.2) [0,∞)W = {tw | t ∈ [0,∞), w ∈W} = V .

We now fix an atlas {(Uα, φα)}α for the differentiability space (X,µ) and let Nα
denote the dimension of the chart (Uα, φα). For each α let {Cone(vα,k, θα,k)}k∈N
denote a collection of open cones with {vα,k} ⊂ SNα−1 dense in the unit sphere
and limk→∞ θα,k = 0. Using Theorem 2.28, we find Alberti representation Ak =
(Pk, νk) of µ such that, for each α, the restriction Ak Uα is in the φα-direction of
Cone(vα,k, θα,k).
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Theorem 5.3. Let Γ0 ⊂ Frag(X) be a Borel set such that, for each k one has
Pk (Frag(X) \ Γ0) = 0; and let (F , C,S, DX) be as in Definition 3.3. Then there is
µ-measurable subset Y ⊂ X with full µ-measure such that, for each x ∈ Y , the set
of velocity vectors

(5.4) Gx =

{
v ∈ TxX | v = γ′(t) for γ ∈ Γ0

such that γ′(t) is (F , C,S, DX)-generic

}
,

contains a dense set of directions in TxX.

Proof. Let Zk ⊂ X × Frag(X)× R consist of those triples (x, γ, t) satisfying:

(1) γ′(t) is an (F , C,S, DX)-generic velocity vector;

(2) γ(t) = x and γ ∈ Γ0;

(3) If γ′(t) ∈ Uα, then (φα ◦ γ)′(t) ∈ Cone(vα,k, θα,k).

Using Lemma 3.4 we conclude that Zk is Borel, and therefore its projection Yk ⊂ U
on X is Suslin [Kec95], and hence µ-measurable. Note that for each γ ∈ Γ0, as νk is
absolutely continuous with respect to H1

γ , one has νk(γ)(X \Yk) = 0, and therefore
µ(X \ Yk) = 0. We conclude that Y =

⋂
k Yk is a µ-full measure µ-measurable

subset of X. Let x ∈ Y ∩Uα, and let v ∈ TxX; then for each ε > 0 we can find a k
such that, for each w ∈ Cone(vα,k, θα,k), there is a tw ∈ [0,∞) with:

(5.5) ‖v − tww‖l2 ≤ ε‖v‖l2 ;

but as x ∈ Y ∩Uα, there are a fragment γk ∈ Γ0 and a tk ∈ R such that the vector
γ′k(tk) ∈ TxX is (F , C,S, DX)-generic and (φα ◦ γk)′(tk) ∈ Cone(vα,k, θα,k); thus
there is an sk ∈ [0,∞) with

(5.6) ‖v − sk(φα ◦ γk)′(tk)‖l2 ≤ ε‖v‖l2 ,

which implies [0,∞)Gx = TxX. �

6. Consequences of density of generic directions

In this section we prove the equality of various seminorms on TX (Theorem 1.6),
the equality Lipu = lipu a.e. (Theorem 1.10), and give a new proof that in PI
spaces the minimal generalized upper gradient agrees with the pointwise Lipschitz
constant.

6.1. Equality of natural seminorms on TX. The main result in this subsection
is the proof of Theorem 1.6, which is based on the following result.

Theorem 6.1. Let (X,µ) be a differentiability space and DX ⊂ X a countable
dense set. Then the seminorm ‖ · ‖DX ,dX on TX provided by (4.2) (taking % = dX)

coincides with the norm ‖ ·‖∗Lip (see Section 2.1); in particular, the norm ‖ · ‖DX ,dX
does not depend on the choice of DX .
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Notation: After proving Theorem 1.6, we will change to the notation ‖ · ‖TX ,
‖ · ‖T∗X or simply ‖ · ‖ to denote the canonical norms on TX and T ∗X.

Theorem 6.1 can be regarded as an infinitesimal version of metric differentiation
for the identity map id : X → X; its proof uses the following lemma:

Lemma 6.2. Suppose that (V, ‖ · ‖) is a finite dimensional normed vector space,

with dual space (V ∗, ‖ · ‖∗). Let W be a subset of the closed unit ball B(‖ · ‖) ⊂ V ,
such that:

(H1): For every w ∈W , there is a linear functional αw ∈ V ∗ with ‖αw‖∗ ≤ 1,
such that αw(w) = 1;

(H2): The set W contains a dense set of directions.

Then:

(1) For all w ∈W one has ‖αw‖∗ = 1;

(2) The set W is a dense subset of the unit sphere S(‖ · ‖);

(3) The seminorm on V defined by supw∈W |αw(·)| agrees with ‖ · ‖.

Proof. Note that by (H1) each αw has unit norm (which implies (1)) and that each
vector w ∈W has unit norm, which implies that W ⊂ S(‖ · ‖). Let v ∈ S(‖ · ‖); by
(H2), for each ε > 0 there are a wε ∈W and a tε ∈ [0,∞):

(6.3) ‖v − tεwε‖ ≤ ε;

let βv a unit norm functional on V assuming the norm at v. Then (6.3) implies:

(6.4) |1− tεβv(wε)| ≤ ε;

as |βv(wε)| ≤ 1, the previous equation implies tε ≥ 1 − ε. On the other hand,
evaluating with αwε , (6.3) gives

(6.5) |αwε(v)− tε| ≤ ε;

as the functional αwε has unit norm, tε ≤ 1 + ε. We thus conclude that

(6.6) ‖v − wε‖ ≤ ‖v − tεwε‖+ ‖(1− tε)wε‖ ≤ 2ε,

implying (2). Note that, as the functionals αw have unit norm,

(6.7) sup
w∈W

‖αw(·)‖ ≤ ‖ · ‖.

On the other hand, for each v ∈ V \ {0} and each ε > 0, choose wε ∈W with

(6.8)

∥∥∥∥ v

‖v‖
− wε

∥∥∥∥ ≤ ε;
then

(6.9) αwε

(
v

‖v‖

)
≥ 1− ε,

implying that:

(6.10) sup
w∈W

‖αw(·)‖ ≥ (1− ε)‖ · ‖,

from which (3) follows. �
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Proof of Theorem 6.1. Let V be a differentiability set for the countable collection
of Lipschitz functions {dX(·, x) : x ∈ DX}. We let F contain the components of
the coordinate functions, C contain the characteristic functions of the charts, and
S = {dX}. Let Y be the set provided by Theorem 5.3; we will show that for each
p ∈ Y ∩ V the norm ‖ · ‖TX and the seminorm ‖ · ‖DX ,dX coincide on the fibre

TpX. Let γ′(t) ∈ Gp(F , C, DX) with γ′(t) 6= 0; then md γ(t) 6= 0. Without loss of
generality we assume that p belongs to the chart Uα and we consider a functional∑Nα
i=1 ai dφ

i
α |p∈ T ∗pX; then:

(6.11)

∣∣∣∣∣
〈
Nα∑
i=1

ai dφ
i
α |p,

γ′(t)

md γ(t)

〉∣∣∣∣∣ =

∣∣∣∑Nα
i=1 ai

(
φiα ◦ γ

)′
(t)
∣∣∣

md γ(t)
;

choose sn ↘ 0 such that t+ sn ∈ Dom γ and note that∣∣∣∣∣
Nα∑
i=1

ai
(
φiα ◦ γ

)′
(t)

∣∣∣∣∣ = lim
n→∞

∣∣∣∑Nα
i=1 ai

((
φiα ◦ γ

)
(t+ sn)−

(
φiα ◦ γ

)
(t)
)∣∣∣

sn

≤ lim sup
n→∞

∣∣∣∑Nα
i=1 ai

((
φiα ◦ γ

)
(t+ sn)−

(
φiα ◦ γ

)
(t)
)∣∣∣

dX(γ(t+ sn), γ(t))

× lim sup
n→∞

dX(γ(t+ sn), γ(t))

sn

≤

∥∥∥∥∥
Nα∑
i=1

ai dφ
i
α |p

∥∥∥∥∥
T∗X

md γ(t);

(6.12)

we thus conclude that:

(6.13)

∣∣∣∣∣
〈
Nα∑
i=1

ai dφ
i
α |p,

γ′(t)

md γ(t)

〉∣∣∣∣∣ ≤
∥∥∥∥∥
Nα∑
i=1

ai dφ
i
α |p

∥∥∥∥∥
T∗X

,

which implies γ′(t)
md γ(t) ∈ B(‖ · ‖TX (x)).

Let

(6.14) Wp =

{
γ′(t)

md γ(t)
: γ′(t) 6= 0 and γ′(t) ∈ Gp(F , C, DX)

}
;

by Theorem 5.3 the set Wp contains a dense set of directions in TpX. Theorem 4.3
implies then

(6.15) ‖γ′(t)‖DX ,dX = md γ(t),

and so we can find a sequence
{∑Nα

i=1 ai,k dφ
i
α |p

}
⊂ B (‖ · ‖T∗X) such that:

(1) We have:

(6.16) lim
k→∞

〈
Nα∑
i=1

ai,k dφ
i
α |p, γ′(t)

〉
= md γ(t);

(2) For each k there is an xk ∈ DX with:

(6.17) d (dX(·, xk)) |p=
Nα∑
i=1

ai,k dφ
i
α |p .
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By compactness we can find a subsequence of
{∑Nα

i=1 ai,k dφ
i
α |p

}
converging to

ωγ′(t) ∈ B (‖ · ‖T∗X). Now, (6.16) implies that

(6.18) ωγ′(t)

(
γ′(t)

md γ(t)

)
= 1;

so for w ∈Wp of the form γ′(t)
md γ(t) let αw = ωγ′(t); applying Lemma 6.2 we conclude

that:

(6.19) ‖ · ‖TX (p) = sup
w∈Wp

|αw(·)| ;

but Lemma 6.2 implies also that Wp is dense in S (‖ · ‖TX .) and by (6.18) we
conclude that for w′ ∈Wp:

(6.20) sup
w∈Wp

|αw(w′)| = 1 = ‖w′‖DX ,dX ,

from which we have ‖ · ‖TX (p) = ‖ · ‖DX ,dX (p). �

Proof of Theorem 1.6. Let ‖ · ‖1-‖ · ‖3 be the seminorms as in Theorem 1.6, con-
structed using Lemma 2.33, and let ‖ · ‖4 be the dual Lip norm ‖ · ‖∗Lip. Clearly we

have ‖ · ‖1 ≤ ‖ · ‖2 ≤ ‖ · ‖3.

We claim that

(6.21) ‖ · ‖3 ≤ ‖ · ‖∗Lip µ− a.e.

To see this, recall that by Lemma 2.33 there is a countable collection {fi} of 1-
Lipschitz functions such that for µ-a.e. p ∈ X, the differentials dfi(p) ∈ T ∗pX are
well-defined, and

‖ · ‖3(p) = sup
i
|dfi(p)| .

Recalling that for µ a.e. p ∈ X we have ‖dfi(p)‖Lip = Lip fi(p), we get that for µ
a.e. p ∈ X, every i, and every v ∈ TpX,

|dfi(v)| ≤ ‖dfi‖Lip · ‖v‖∗Lip = Lip fi(p) · ‖v‖∗Lip ≤ ‖v‖∗Lip

since fi is 1-Lipschitz. Taking supremum gives (6.21).

By Theorem 6.1 we have ‖ · ‖1 = ‖ · ‖∗Lip µ-a.e., so Theorem 1.6 follows. �

6.2. A new proof of lip f = Lip f in differentiability spaces. In this subsection
we provide a proof, independent of the one given in [Sch13], of the following result:

Theorem 6.22. Let (X,µ) be a differentiability space and f : X → R Lipschitz.
The for all (ε, σ) ∈ (0, 1)2 there is a (1, 1 + ε)-biLipschitz Alberti representation of
µ with f -speed ≥ σ Lip f . In particular,

(6.23) Lip f(x) = lip f(x) for µ-a.e. x.
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The equality (6.23) generalizes one of the main results in [Che99, Thm. 6.1],
which is a consequence of the fact that, in a PI-space (X,µ), the function Lip f
is a representative of the minimal generalized upper gradient gf of f . This last
statement does not make sense in a general differentiability space as one might
have gf < Lip f on a positive measure set, e.g. because X might not contain
enough curves and one might then have gf = 0. However, in a differentiability
space the concept of the maximal slope of f along fragments passing at time t = 0
through x and having 0 as a density point of their domain, remains useful and can
be interpreted as the size of the gradient of f . The result (6.23) is also proven
in [Sch13] in a conceptually different way, and there it is also shown that in a
differentiability space one has Lip f = |df |, where |df | is the local norm of the form
df , which is the Weaver differential form associated to the function f . The proof
of Theorem 6.22 relies on the following lemma.

Lemma 6.24. Let ‖ · ‖l2 denote the standard l2-norm on RN , and let ‖ · ‖′ denote
another norm on RN satisfying:

(6.25)
1

C
‖ · ‖l2 ≤ ‖ · ‖

′ ≤ C ‖ · ‖l2 .

Then the diameter of the set Cone(v, θ) ∩ S
(
‖ · ‖′

)
, with respect to the norm ‖ · ‖′,

is at most

(6.26) 4C2(1− cos θ + sin θ).

Proof. Let v1, v2 ∈ Cone(v, θ) ∩ S
(
‖ · ‖′

)
; then we can find u1, u2 ∈ S (‖ · ‖l2) such

that: vi = ui
‖ui‖ ; now

(6.27) ‖u1 − u2‖l2 ≤ 2(1− cos θ + sin θ)

by using the definition of Euclidean cone. Observe also that (6.25) implies:

(6.28)
∣∣‖u1‖′ − ‖u2‖′

∣∣ ≤ ‖u1 − u2‖′ ≤ 2C(1− cos θ + sin θ);

thus ∥∥∥∥ u1

‖u1‖′
− u2

‖u2‖′

∥∥∥∥′ =

∥∥∥∥ u1

‖u1‖′
− u2

‖u1‖′
+

u2

‖u1‖′
− u2

‖u2‖′

∥∥∥∥′
≤
‖u1 − u2‖′

‖u1‖′
+

‖u2‖′

‖u1‖′ ‖u2‖′
∣∣‖u1‖′ − ‖u2‖′

∣∣
≤ C ‖u1 − u2‖′ + C

∣∣‖u1‖′ − ‖u2‖′
∣∣

≤ 4C2(1− cos θ + sin θ).

(6.29)

�

Proof of Theorem 6.22. We fix an N -dimensional chart (U, φ) and a countable
dense set DX ⊂ X. We will show that, for each (ε, σ) ∈ (0, 1)2, the measure
µ U admits a (1, 1 + ε)-biLipschitz Alberti representation with f -speed ≥ σ Lip f ;
the result about µ will then follow by applying the gluing principle Theorem 2.20.

We first consider the special case in which f is of the form 〈v∗0 , φ〉 for some
v∗0 ∈ RN \ {0}. For each η ∈ (0, 1) we can use Egorov and Lusin Theorems to find
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disjoint compact sets Cα ∈ U , and dual norms ‖ · ‖α and ‖ · ‖∗α on RN such that:

(6.30) µ

(
U \

⋃
α

Cα

)
= 0;

(6.31)

1

1 + η
‖ · ‖TX ≤ ‖ · ‖α ≤ (1 + η) ‖ · ‖TX (on the fibres of TX|Cα);

1

1 + η
‖ · ‖T∗X ≤ ‖ · ‖

∗
α ≤ (1 + η) ‖ · ‖T∗X (on the fibres of T ∗X|Cα).

By Theorem 6.1 we can also assume that on the fibres of each TX|Cα one has:

(6.32) ‖ · ‖TX = ‖ · ‖DX ,dX .

Having fixed α, we will show that µ Cα admits a (1, 1 + ε)-biLipschitz Alberti
representation with 〈v∗0 , φ〉-speed ≥ σ ‖v∗0‖T∗X for each σ ∈ (0, 1); the result about
µ U will follow again by using Theorem 2.20. As we can rescale v∗0 , we can assume
that ‖v∗0‖

∗
α = 1; we will denote by v0 ∈ S (‖ · ‖α) a vector where v∗0 assumes the

norm. We let M denote a constant such that:

(6.33)
1

M
‖ · ‖l2 ≤ ‖ · ‖α ≤M ‖ · ‖l2 .

We fix ε0 ∈ (0, 1) and θ ∈ (0, π/2) and, using 2.28 and Theorem 2.18. we find
a (1, 1 + ε0)-biLipschitz Alberti representation A of µ Cα in the φ-direction of

Cone
(

v0

‖v0‖l2
, θ
)

. Let F contain the components of φ and {f}, and let C contain

χU . Using the Alberti representation A and (6.32) we conclude that for µ Cα-a.e. p
there is an (F , C)-generic velocity vector γ′(t) ∈ TpX such that:

(6.34)

md γ(t) = ‖γ′(t)‖TX ∈ [1, 1 + ε0];

(φ ◦ γ)′(t) ∈ Cone

(
v0

‖v0‖l2
, θ

)
.

In particular, (6.34) and (6.31) imply that:

(6.35) ‖γ′(t)‖α ∈
[

1

1 + η
, (1 + η)(1 + ε0)

]
.

We now use Lemma 6.24 to get

(6.36)

∥∥∥∥ (φ ◦ γ)′(t)

‖(φ ◦ γ)′(t)‖α
− v0

∥∥∥∥
α

≤ 4M2(1− cos θ + sin θ);

as

(6.37) |1− ‖(φ ◦ γ)′(t)‖α| ≤ max

(
1− 1

1 + η
, (1 + η)(1 + ε0)− 1

)
,

we obtain

‖(φ ◦ γ)′(t)− v0‖α ≤ 4M2(1− cos θ + sin θ)

+ max

(
1− 1

1 + η
, (1 + η)(1 + ε0)− 1

)
= a(η, ε0, θ),

(6.38)
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where limη,ε0,θ→0 a(η, ε0, θ) = 0. Recall that t ∈ Dom γ is a Lebesgue density point,
and assume that 〈v∗0 , φ〉 ◦ γ, which is ML(φ)(1 + ε0)-Lipschitz because of (6.33),
has been extended to a neighbourhood of t by using MacShane’s Lemma:

〈v∗0 , φ〉 ◦ γ(t+ h)− 〈v∗0 , φ〉 ◦ γ(t) =

∫ t+h

t

(〈v∗0 , φ〉 ◦ γ)
′
(s) ds

≥
∫

[t,t+h]∩Dom γ

(〈v∗0 , φ〉 ◦ γ)
′
(s)

−ML(φ) (1 + ε0)L1([t, t+ h] ∩Dom γ)︸ ︷︷ ︸
o(h)

=

∫
[t,t+h]∩Dom γ

〈v∗0 , v0〉 ds

+

∫
[t,t+h]∩Dom γ

〈v∗0 , (φ ◦ γ)′(s)− v0〉 ds+ o(h)

≥ L1([t, t+ h] ∩Dom γ)− h a(η, ε0, θ) + o(h),

(6.39)

where in the last step we used the approximate continuity of (φ ◦ γ)′(s) at t. Now
(6.39) implies that

(6.40) (〈v∗0 , φ〉 ◦ γ)′(t) ≥ 1− a(η, ε0, θ)

(1 + η)2(1 + ε0)
md γ(t) Lip〈v∗0 , φ〉(γ(t)),

and it suffices to choose η, ε0, θ small enough to guarantee

(6.41)

1− a(η, ε0, θ)

(1 + η)2(1 + ε0)
≥ σ;

ε ≥ ε0.

We now consider the general case in which df is not constant. We let V ⊂ U
be a full-measure Borel subset where f is differentiable with respect to the chart
functions φ. On the set where df = 0 we have Lip f = 0, so we can assume that
df 6= 0 on V . We fix η > 0 and use Lusin and Egorov Theorems to find disjoint
compact sets Cα ⊂ V and v∗α ∈ RN \ {0} such that µ (V \

⋃
α Cα) = 0 and:

(6.42) ‖df(x)− v∗α‖T∗X ≤ ‖df(x)‖T∗X (∀x ∈ Cα).

We fix σ′ ∈ (0, 1) and, using the special case f = 〈v∗α, φ〉, we obtain a (1, 1 + ε)-
biLipschitz Alberti representation Aα = (Pα, να) of µ Cα with 〈v∗α, φ〉-speed ≥
σ′ ‖v∗α‖T∗X ; then for Pα-a.e. γ we have:

(f ◦ γ)′(t) ≥ (〈v∗α, φ〉 ◦ γ)′(t)− ηmd γ(t) ‖df‖T∗X
≥ (σ′ ‖v∗α‖T∗X − η ‖df‖T∗X) md γ(t)

≥ (σ′ − (1 + σ′)η) Lip f(γ(t)) md γ(t),

(6.43)

and it suffices to choose η small enough and σ′ close to 1 to guaratee that σ′− (1 +
σ′)η ≥ σ.

The proof of (6.23) is now immediate. Let F contain the components of the chart
functions and f , and let C contain the characteristic functions of the charts. Now,
for each σ ∈ (0, 1), we conclude that for µ-a.e. x ∈ X there is an (F , C)-generic
velocity vector γ′(t) ∈ TxX with

(6.44) (f ◦ γ)
′
(t) ≥ σ Lip f(γ(t)) md γ(t);
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observing that

(6.45)
∣∣(f ◦ γ)

′
(t)
∣∣ ≤ lip f(γ(t)) md γ(t),

we conclude that the Borel set

(6.46) {x ∈ X : lip f(x) ≥ σ Lip f(x)}

has full µ-measure, and then let σ ↗ 1. �

6.3. A new proof of gf = Lip f in PI-spaces. In this subsection we give a new
proof of the characterization of the minimal generalized upper gradient gf of a
Lipschitz function f in a PI-space. We will assume that the reader is familiar with
the material in [Che99]; in particular, we will denote by H1,p(X,µ) the Sobolev
space introduced by Cheeger in [Che99, Sec. 2]. One of the main results in [Che99]
states that, if p ∈ (1,∞) and if (X,µ) is a PI-space, then H1,p(X,µ) is reflexive.
Since we will use the reflexivity of H1,p(X,µ), throughout this subsection the power
p will be taken to lie in (1,∞). Our goal is to give a new proof of [Che99, Thm. 6.1]:

Theorem 6.47. If (X,µ) is a PI-space and if f ∈ Lip(X)∩H1,p(X,µ), then Lip f
is a representative of the minimal generalized upper gradient of f (which is then
independent of the power p > 1).

We first give some remarks on how the new proof differs from the original one.
The original proof contained two steps:

(S1): Proof of Theorem 6.47 under the additional assumption that (X,µ) is
a length space.

(S2): Removing the assumption that (X,µ) is a length space.

The argument for (S1) was motivated by the observation that, whenever (X,µ) is
a length space and g is a continuous upper gradient of f , then g ≥ Lip f holds at
each point. Therefore the strategy in [Che99] was to prove an approximation result
[Che99, Thm. 5.3] which states that for any f ∈ Lip(X) ∩ H1,p(X,µ) there is a
sequence (fk, hk) ⊂ H1,p(X,µ)×Lp(µ) such that fk → f in H1,p(X,µ), the function
vk is a continuous upper gradient of fk, and vk → gf in Lp(µ). This approximation
result is probably the most technical part of Cheeger’s original proof.

The first simplification of the new argument is that one does not need to handle
first the case in which (X,µ) is a length space. The strategy of the proof is motivated
by the observation (Lemma 6.48) that if g is a bounded upper gradient of f , then
g ≥ Lip f holds µ-a.e.: this is where Alberti representations are used. Had the
minimal generalized upper gradient been defined by minimizing the p-energy on
bounded upper gradients, then Theorem 6.47 would have followed directly from
Lemma 6.48. However, as an upper gradient in Lp(µ) can be infinite on a null
set, one needs, roughly speaking, to approximate f in Lip(X) ∩ H1,p(X,µ) by
functions which have bounded upper gradients. Here we use an instance of the
argument “modulus equals capacity” [Zie69] which appears also in the proof of
[Che99, Thm. 5.3]: however, as we do not need to build approximations which use
continuous upper gradients, there are fewer technical details to handle.

The following lemma relates bounded upper gradients and Alberti representa-
tions.
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Lemma 6.48. If (X,µ) is a PI-space, u : X → R is Lipschitz, and g is a bounded
upper gradient of u, then

(6.49) g ≥ Lipu µ-a.e.

Proof. For each ε > 0 we can find countably many disjoint compact sets {Kα} and
nonnegative real numbers {λα} such that:

(1) For each x ∈ Kα one has g(x) ∈ [λα, λα + ε);

(2) The {Kα} cover X in measure: µ (X \
⋃
αKα) = 0.

By Theorem 6.22 for µ Kα-a.e. x there is a (1, 1 + ε)-biLipschitz fragment γ:

(1) The domain Dom γ is a subset of [−1,∞);

(2) One has γ(0) = x and:

(6.50) lim
r↘0

L1 (Dom γ ∩ (−r, r))
2r

= 1;

(3) The point 0 is an approximate continuity point of (u ◦ γ)′ and

(6.51) (u ◦ γ)′(0) ≥ 1

1 + ε
Lipu(x).

Let [c, d] be the minimal interval containing Dom γ and let {(ai, bi)} denote the set
of component of [c, d] \ Dom γ; we extend γ on each interval (ai, bi) by choosing a
C-quasigeodesic joining γ(ai) to γ(bi): note that this is possible because a PI-space
is C-quasiconvex for some C [Che99, Sec. 17]1. Then:∣∣∣∣∫ r

0

(u ◦ γ)′(s) ds

∣∣∣∣ = |u (γ(r))− u(x)| ≤
∫ r

0

g ◦ γ md γ(t) dt

≤ (λα + ε)(1 + ε)r + o(r);

(6.52)

dividing by r and letting r ↘ 0 we get:

(6.53) Lipu(x) ≤ (1 + ε)2 (g(x) + ε) ,

and the result follows letting ε↘ 0. �

Remark 6.54. Note that in Lemma 6.48 we had to work with bounded upper gra-
dients to establish (6.52); in fact, to apply the Fundamental Theorem of Calculus,
one needs curves, and the Kα might only contain fragments, and thus, filling-in
the fragments in Kα using that a PI-space is quasiconvex might produce curves
where g is unbounded or infinite on a set of positive length. Note also that in a PI-
space one can use curves instead of fragments in building Alberti representations;
this follows from a general observation in [Sch14] that if µ is a Radon measure on a
quasiconvex metric space X, a Lipschitz Alberti representation of µ can be replaced
by one which gives the same derivation and whose probability measure has support
contained in the set of curves in X.

To prove Theorem 6.47 we can just consider, as in [Che99], upper gradients
which are lower semicontinuous. In fact, the Vitali-Carathéodory Theorem [Rud87,
Thm. 2.25] states that for any h ∈ L1(µ) and any ε > 0 there are functions u and
v such that u ≤ h ≤ v, u is upper semicontinuous and bounded from above, v is

1This result is due to Semmes.



34 JEFF CHEEGER, BRUCE KLEINER, AND ANDREA SCHIOPPA

lower semicontinuous and bounded from below, and ‖u − v‖L1(µ) < ε. Thus, any
upper gradient of f can be replaced, up to slighly increasing the Lp(µ)-norm, by
one which is lower semicontinous and bounded below by a small positive constant.
We thus only need to prove:

Theorem 6.55. Suppose (X,µ) is a PI-space, u is a real-valued Lipschitz function
defined on X and g is a lower-semicontinuous upper gradient of u. Then:

(6.56) g ≥ Lipu µ-a.e.

To prove Theorem 6.55 we recall a consequence of the Poincaré inequality, which
follows from the characterization of the Poincaré inequality in terms of the maximal
function associated to an upper gradient [HK98, Lem. 5.15]. Suppose that g is an
upper gradient for the function u and that g ∈ Lp(µ); consider for N ∈ (0,∞) the
set:

(6.57) A(g,N) =

{
x ∈ X : sup

r>0
−
∫
B(x,r)

gp dµ ≤ Np

}
;

then if x, y ∈ A(g,N) are Lebesgue points of u, one has

(6.58) |u(x)− u(y)| ≤ CNd(x, y),

where C is a universal constant that depends only on the PI-space (X,µ).

Proof. Let N,M be natural numbers and S = A(g,N) ∩ B(x,M); it suffices to
show that (6.56) holds µ S-a.e. Fix ε > 0 and let:
(6.59)

un(x) = inf

{∫
γ

(g ∧ n+ ε) dH1
γ + u(y) : γ is a Lipschitz curve joining x to y ∈ S

}
.

As (X,µ) is C-quasiconvex for some C, the function un is C(n+ ε)-Lipschitz. Note
also that hn = g ∧ n+ ε is an upper gradient of un. We let {xj,m}j∈Jm be a finite
1
m -dense set in S, which exists because X is proper. Using the fact that the hn
are lower-semicontinuous and uniformly bounded away from zero (compare [Zie69,
3.3,3.4] and [Che99, Lem. 5.18]), it follows that for each m ∈ N there is an Nm ∈ N
such that, for n ≥ Nm, one has:

(6.60) un(xj,m) = u(xj,m) (∀j ∈ Jm).

Let vn be obtained by truncating un so that

(6.61) |vn(x)| ≤ sup
y∈B(x,M)

|un(y)| ;

thus, for n ≥ Nm one has:

(6.62) vn(xj,m) = u(xj,m) (∀j ∈ Jm).

Note that hn is an upper gradient of vn and that (6.58) implies that the functions
vNm , when restricted to S, are uniformly C(N + ε)-Lipschitz; therefore, (6.61)
implies that vNm → u uniformly on S. As the Banach space H1,p(µ B(x,M))
is reflexive, by applying Mazur’s Lemma we can find Lipschitz functions wn and
integers Qn such that:

(1) The sequence {wn} converges to the function w in H1,p(µ B(x,M)) and
w = u on S;
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(2) Each function wn is a convex combination of finitely many of the functions
vNm ;

(3) The function g ∧Qn + ε is an upper gradient for wn.

We then recall that in a PI-space there is a constant C such that, for each Lips-
chitz function f , one has Cgf ≥ Lip f µ-a.e. As wn → w in H1,p(µ B(x,M)),
one has that the generalized minimal upper gradients {gwn−w} converge to 0 in
Lp(µ B(x,M)); by the locality property of generalized minimal upper gradients
[Che99, Cor. 2.25], as u = w on S, we have that {gwn−u} converges to 0 in Lp(µ S);
we thus conclude that Lip(wn − u) → 0 in Lp(µ S). As |Lipwn − Lipu| ≤
Lip(wn − u), we can then pass to a subquence such that Lipwn → Lipu µ S-a.e.
Now, by Lemma 6.48 we have that g ∧Qn + ε ≥ Lipwn holds µ S-a.e., and thus
g ≥ Lipu holds µ S-a.e. �

7. The geometry of blow-ups/tangent cones

In this section we show that, if (X,µ) is a differentiability space, blowing-up the
measure µ at a generic point yields measures which possess Alberti representations
concentrated on distinguished geodesic lines on which the blow-ups of the chart
functions have constant derivatives, and are harmonic. This generalizes the fact
that in PI-spaces the blow-ups are generalized linear functions. Weaker versions
of the results presented here, where the blow-up of the measure is not discussed,
have been obtained in [Sch13], and [Dav14]. The result in [Sch13] is more general
than [Dav14] because it applies also in the context of Weaver derivations: we point
out that the results in this section, under the assumption that µ is asymptotically
doubling, have natural counterparts in that context. We first recall some notions
of blow-ups of metric measure spaces and Lipschitz functions. Note that we use
the terminology blow-up to avoid a conflict with the word tangent which is used for
different objects in this paper; often, instances of what we call blow-ups are called
tangent cones / tangent spaces in the literature.

7.1. Blow-ups of metric measure spaces and Lipschitz maps.

Definition 7.1. A blow-up of a metric space X at a point p is a (complete)
pointed metric space (Y, q) which is a pointed Gromov-Hausdorff limit of a sequence
( 1
rn
X, p) where rn ↘ 0: the notation 1

rn
X means that the metric on X is rescaled

by 1/rn; the class of blow-ups of X at p is denoted by Bw-up(X, p).

Remark 7.2. In Subsection 8.3 we discuss blow-ups of metric spaces in a more
general context which requires the notion of ultralimits: under suitable assumptions
on X, a sequence ( 1

rn
X, p) will always be precompact and the two notions will

agree. This is the case, for example, if X is a doubling metric space. However,
in the context of differentiability spaces we merely know (Theorem 2.21) that µ
is asymptotically doubling, and that porous sets are µ-null. This implies that, for
µ-a.e. p ∈ X, there is a compact set Sp such that: Sp is metrically doubling, and
for each ε > 0, there is an r0 > 0 such that, for each r ≤ r0, the set Sp ∩B(p, r) is
εr-dense in B(p, r). This allows essentially to reduce the existence of blow-ups to
the case in which X is doubling.
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Recall that if the sequence ( 1
rn
X, p) converges to (Y, q) in the pointed Gromov-

Hausdorff sense, there is a pointed metric space (Z, z) such that there are isometric
embeddings ιn : ( 1

rn
X, p)→ (Z, z) and ι : (Y, q)→ (Z, z), and, for each R > 0, one

has:

(7.3)

lim
n→∞

sup
y∈B(z,R)∩ι(Y )

dist

(
ιn

(
1

rn
X

)
, {y}

)
= 0,

lim
n→∞

sup
y∈B(z,R)∩ιn( 1

rn
X)

dist (ι (Y ) , {y}) = 0.

In particular, each q′ ∈ Y can be approximated by a sequence p′n ∈ 1
rn
X such

that ιn(p′n)→ ι(q′) in Z. This notion can be made independent of the embedding
in Z and one can represent each point q′ ∈ Y by some sequence (p′n) ⊂ X of
points converging to p (compare the treatment with ultralimits in subsection 8.3).
Moreover, if (p′n) represents q′, and if (p̃′n) represents q̃′, we have:

(7.4) dY (q′, q̃′) = lim
n→∞

dX(p′n, p̃
′
n)

rn
.

Definition 7.5. Let (X,µ) be a metric measure space; a blow-up of (X,µ) at p
is a triple (Y, ν, q) such that one has ( 1

rn
X, p)→ (Y, q) ∈ Bw-up(X, p), and, having

chosen a pointed metric space (Z, z) and isometric embeddings ιn : ( 1
rn
X, p) →

(Z, z) and ι : (Y, q)→ (Z, z) such that (7.3) holds, one has:

(7.6) (ιn)]
µ

µ (B(p, rn))

w*−−→ ι]ν. (convergence in the weak* topology).

The set of blow-ups of (X,µ) at p will be denoted by Bw-up(X,µ, p).

Remark 7.7. Note that if µ is asymptotically doubling and if porous sets are µ-null,
then for µ-a.e. p ∈ X one has Bw-up(X,µ, p) 6= ∅. In fact, at a generic point p,
for each sequence of scaling factors rn ↘ 0, there is a subsequence rnk such that
( 1
rnk

X, p) → (Y, q) ∈ Bw-up(X, p), and there is a doubling measure ν such that

(7.6) holds.

We finally discuss blow-ups of Lipschitz mappings which take values into Eu-
clidean spaces.

Definition 7.8. Let (X,µ) be a metric measure space and ψ : X → RN a Lipschitz
map; then a blow-up of (X,µ, ψ) at p is a tuple (Y, ν, ϕ, q) such that one has
that (Y, ν, q) ∈ Bw-up(X,µ, p), where the blow-up is realized by considering scaling
factors rn ↘ 0, and where ϕ : Y → RN is a Lipschitz function such that, whenever
(p′n) ⊂ X represents q′, one has:

(7.9) ϕ(q′) = lim
n→∞

ψ(p′n)− ψ(p)

rn
.

The set of blow-ups of (X,µ, ψ) at p will be denoted by Bw-up(X,µ, ψ, p).

Remark 7.10. If µ is asymptotically doubling and porous sets are µ-null, then for
µ-a.e. p ∈ X one has that Bw-up(X,µ, ψ, p) 6= ∅ by an application of Ascoli-Arzelá.
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7.2. Blowing up Alberti representations. We can now state the main result
of this Section.

Theorem 7.11. Let (U,ψ) be an N -dimensional differentiability chart for the dif-
ferentiability space (X,µ); then for µ U -a.e. p, for each blow-up (Y, ν, ϕ, q) ∈
Bw-up(X,µ, ψ, p) and for each unit vector v0 ∈ TpX, the measure ν admits an
Alberti representation A = (Q,Φ) where:

(1) Q is concentrated on the set Lines(ϕ, v0) of unit speed geodesic lines in Y
with (ϕ ◦ γ)′ = v0;

(2) For each γ ∈ Lines(ϕ, v0) the measure Φγ is given by:

(7.12) Φγ = H1
γ .

Suppose that X ′ ⊂ X and that the measures µ′ and µ X ′ are in the same
measure class. Then an application of measure differentiation shows that for µ X ′-
a.e. p the sets Bw-up(X ′, µ′, p) and Bw-up(X,µ, p) coincide. Given (Y, ν, ϕ, q) ∈
Bw-up(X,µ, ψ, p) we will then obtain the Alberti representations of ν by blowing-up
Alberti representations of measures µ′ � µ which admit Alberti representations of
a special form.

Definition 7.13 (Simplified Alberti representations). We say that the Alberti rep-
resentation A = (P,Ψ) of the measuure µ′ is simplified if there are (C0, D0, τ0) ∈
(0,∞)3 such that:

(1) The measure P is finite and is supported on the set of (C0, D0)-biLipschitz
fragments whose domain is a subset of [0, τ0];

(2) Denoting by M(X) the set of finite Radon measures on X, Ψ is the Borel
map:

(7.14)
Ψ : Frag(X)→M(X)

γ 7→ γ]
(
L1 Dom γ

)
.

To prove Theorem 7.11 we will use the following technical result about blow-ups
of a simplified Alberti representation A.

Theorem 7.15. Suppose that the simplified Alberti representation A of the finite
measure µ′ � µ is in the ψ-direction of a cone C and that it has 〈v0, ψ〉-speed
≥ σ0 ‖v0‖T∗X . Then there is a Borel set U with full µ′-measure such that for
each p ∈ U , for each (Y, ν, ϕ, q) ∈ Bw-up(X,µ, ψ, p) and each R0 > 0 the measure
ν B(q,R0) admits an Alberti representation AR0

= (QR0
,Φ) such that:

(1) The finite Radon measure QR0
has support contatined in a compact set

SR0 ⊂ Frag(Y ) of geodesic segments;

(2) The total mass of QR0 is bounded by D0

2R0
(As(µ, p))

log2 R0+1
, where As(µ, p)

denotes the asymptotic doubling constant of µ at p, i.e.:

(7.16) As(µ, p) = lim sup
r↘0

µ (B(p, 2r))

µ (B(p, r))
;

(3) The set SR0
consists of those geodesic segments γ which have domain con-

tained in
[
0, 4R0

C0

]
, image contained in B̄(q, 2R0), which have both endpoints
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lying outside of B(q, 3
2R0), which intersect B̄(q,R0), which have constant

speed θγ ∈ [C0, D0], which satisfy:

(7.17) sgn(s2 − s1) 〈v0, ϕ ◦ γ(s2)− ϕ ◦ γ(s1)〉
≥ σ0θγ(s2 − s1) Lip (〈v0, ψ〉) (p) (∀s1, s2 ∈ Dom γ),

and such that there is a wγ ∈ C̄ for which the following holds:

(7.18) ϕ ◦ γ(s2)− ϕ ◦ γ(s1) = (s2 − s1)wγ (∀s1, s2 ∈ Dom γ);

(4) For each γ ∈ SR0
the measure Φγ is given by:

(7.19) Φγ =
1

θγ
H1
γ B(q, r0).

We now introduce a bit of terminology to split the measure on fragments in a
good and a bad part.

Definition 7.20. Let ε > 0 and S > 0; we denote by R̃eg(ψ, C, v0, σ0, [C0, D0], τ0, ε, S)
the set of pairs (γ, p) ∈ Frag(X)×X such that:

(Reg1): The fragment γ is [C0, D0]-biLipschitz with domain contained in
[0, τ0];

(Reg2): There is a t ∈ Dom γ with p = γ(t) and for each r1, r2 ≤ S one has:

(7.21) L1 (Dom γ ∩ [t− r1, t+ r2]) ≥ (1− ε)(r1 + r2);

(Reg3): There are a θ ∈ [C0, D0] and w ∈ C such that if r ≤ S and s1, s2 ∈
[t− r, t+ r] ∩Dom γ one has:

(7.22)
|d(γ(s1), γ(s2))− θ|s1 − s2|| ≤ ε|s1 − s2|

|ψ ◦ γ(s1)− ψ ◦ γ(s2)− w(s1 − s2)| ≤ ε|s1 − s2|;

(Reg4): If r ≤ S and s1, s2 ∈ [t− r, t+ r] with s1 ≤ s2 then:

(7.23) 〈v0, ψ ◦ γ(s2)− ψ ◦ γ(s1)〉 ≥ (σ0 − ε)θ Lip (〈v0, ϕ〉) (p)(s2 − s1).

In the following we will usually fix a choice of (ψ, C, v0, σ0, [C0, D0], τ0) and vary
(ε, S) ∈ (0,∞)2; we thus introduce the shorter notation PAR(ε, S) for (ψ, C, v0, σ0, [C0, D0], τ0, ε, S).

We denote by Reg(PAR(ε, S)) the subset of those (γ, p) ∈ R̃eg(PAR(ε, S)) such
that:

(Reg5): For all r1, r2 ≤ S one has:

(7.24) L1

(
γ−1

(
R̃eg(PAR(ε, S))

)
γ
∩ [t− r1, t+ r2]

)
≥ (1− ε)(r1 + r2),

where then notation
(

R̃eg(PAR(ε, S))
)
γ

denotes the γ-section of the set R̃eg(PAR(ε, S)).

Lemma 7.25. The set Reg(PAR(ε, S)) is a Borel subset of Frag(X)×X.

Proof. We first show that the set R̃eg(PAR(ε, S)) is Borel. The set of fragments
satisfying (Reg1) is closed in Frag(X). Now consider the set

(7.26) IMG = {(γ, p) ∈ Frag(X)×X : p ∈ γ(Dom γ)} ,



METRIC DIFFERENTIATION 39

which is closed in Frag(X) × X; let IMG(C0, D0, τ0) denote the closed subset of
those (γ, p) ∈ IMG such that γ satisfies (Reg1); then the map:

(7.27)
Inv : IMG(C0, D0, τ0)→ R

(γ, p) 7→ γ−1(p)

is continuous. Using an argument similar to that used to prove that the map defined
at (3.15) is Borel, we see that, for fixed r1, r2 > 0, the map:

(7.28)
ψr1,r2 : Frag(X)× R→ R

(γ, t) 7→ L1 (Dom γ ∩ [t− r1, t+ r2])

is Borel; then the set of pairs (γ, p) satisfying (Reg1)–(Reg2) is Borel since it can
be written as:
(7.29) ⋂

r1,r2∈[0,S]∩Q

{
(γ, p) ∈ IMG(C0, D0, τ0) : ψr1,r2

(
γ, γ−1(p)

)
≥ (1− ε)(r1 + r2)

}
.

That the set of pairs satisfying (Reg3)–(Reg–4) is Borel follows by arguments
similar to those used in the proof of Lemma 3.4, compare (3.8), (3.10).

Consider the set:

(7.30) TRIP = {(γ, p, t) ∈ Frag(X)×X × R : t ∈ Dom γ, γ(t) = p} ,

which is closed in Frag(X)×X×R. We now fix r1, r2 ≥ 0 and define the Borel set:
(7.31)

Ar1,r2 =
{

(γ, p, t) ∈ R̃eg(PAR(ε, S))× R ∩ TRIP : γ−1(p) ∈ [t− r1, t+ r2]
}

;

using [Kec95, Thm. 7.25] we get that the map:

(7.32)
Ωr1,r2 : Frag(X)× R×M(X)→ R

(γ, t, µ) 7→ µ
(

(Ar1,r2)(γ,t)

)
is Borel. The proof that Reg(PAR(ε, S)) is Borel is completed by observing that
(Reg5) can be expressed as:

(7.33) Ωr1,r2
(
γ, γ−1(p),Ψ(γ)

)
≥ (1− ε)(r1 + r2) (∀r1, r2 ∈ [0, S] ∩Q).

�

Consider the map Ψ defined in (7.14); we can decompose the measures Ψ(γ) as
follows:

(7.34)
ΨPAR(ε,S)(γ) = Ψ(γ) (Reg(PAR(ε, S)))γ ;

Ψc
PAR(ε,S)(γ) = Ψ(γ) (Reg(PAR(ε, S)))

c
γ .

Lemma 7.35. The maps ΨPAR(ε,S) and Ψc
PAR(ε,S) are Borel. Thus, given an

Alberti representation A of the finite measure µ′ satisfying the assumptions of The-
orem 7.15, we can define the finite Radon measures:

(7.36)

µ′PAR(ε,S) =

∫
Frag(X)

ΨPAR(ε,S)(γ) dP (γ)

µ′cPAR(ε,S) =

∫
Frag(X)

Ψc
PAR(ε,S)(γ) dP (γ),
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which satisfy:

(7.37) µ′PAR(ε,S) + µ′cPAR(ε,S) = µ′,

and:

(7.38) lim
S↘0

∥∥∥µ′cPAR(ε,S)

∥∥∥
M(X)

= 0.

Proof. By [Kec95, Thm. 7.25] the map:

(7.39)
Ω : Frag(X)×M(X)→ R

(γ, µ) 7→ µ (Reg(PAR(ε, S)))γ

is Borel, and thus ΨPAR(ε,S) is Borel as ΨPAR(ε,S)(γ) can be written as Ω (γ,Ψ(γ));
the proof for Ψc

PAR(ε,S) is similar.

Now note that
∥∥∥Ψc

PAR(ε,S)(γ)
∥∥∥ ≤ τ0 and that, for each γ, one has

(7.40) lim
S↘0

∥∥∥Ψc
PAR(ε,S)(γ)

∥∥∥ = 0,

as for L1-a.e. t ∈ Dom γ there is an S(t) such that, for s ≤ S(t), one has (γ, γ(t)) ∈
Reg(PAR(ε, S)). Then (7.38) follows by the Dominated Convergence Theorem. �

The following lemma follows from a standard argument in measure differentia-
tion.

Lemma 7.41. Let {εm} ⊂ (0,∞) be a sequence with
∑
m εm <∞; then there are

a Borel U ⊂ X and a sequence of pairs {(sm, Sm)}m ⊂ (0,∞)2 such that:

(1) One has µ(X \ U) ≤
∑
m εm and, for each m, one also has sm ≤ Sm;

(2) For each x ∈ U and for each r ≤ sm, one has:

(7.42) µ′cPAR(εm,Sm) (B(x, r)) ≤ εmµ′ (B(x, r)) .

Proof of Theorem 7.15. We fix a sequence εm such that
∑
m εm <∞: the set U is

the intersection of the set provided by Lemma 7.41 and the set of points p where
the limit:

(7.43) lim
r↘0

µ′ (B(x, rn))

µ (B(x, rn))

exists and is finite. Having fixed a point p ∈ U , we let rn be a sequence converging
to 0 such that the rescalings

(7.44)

(
1

rn
X,

µ′

µ′ (B(p, rn))
,
ψ − ψ(p)

rn
, p

)
converge to (Y, ν, ϕ, q) in the measured Gromov-Hausdorff sense. We let Xn = 1

rn
X.

As in the following we consider simultaneously different metric spaces, we will use
subscripts to denote objects which “live” in a given metric space, e.g. BXn(p,R0)
denotes the ball of radius R0 and center p in the metric space Xn.

By the theory of measured Gromov-Hausdorff convergence we can find a compact
metric space Z, which is a convex compact subset of some Banach space (e.g. `∞),
which satisfies the following properties:
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(Z1): There are isometric embeddings:

(7.45)
Jn :

(
B̄Xn(p, 4R0), p

)
→ (Z, qZ)

J∞ :
(
B̄Y (q, 4R0), q

)
→ (Z, qZ);

in the following we will often implicitly identify balls like BXn(p, r) and
BY (q, r) with their images in Z;

(Z2): There are compact sets Kn, K̃n ⊂ Z and a sequence ηn ↘ 0 such that:

(7.46)

B̄Xn(p,R0) ⊂ Kn ⊂ B̄Xn(p,R0 + ηn)

B̄Xn(p, 2R0) ⊂ K̃n ⊂ B̄Xn(p, 2R0 + ηn)

dZ,H(Kn, B̄Y (q,R0)) ≤ ηn
dZ,H(K̃n, B̄Y (q, 2R0)) ≤ ηn,

where dZ,H(·, ·) denotes the Hausdorff distance between subsets of Z;

(Z3): There is an L(ψ)-Lipschitz function ψZ : Z → RN such that, de-
noting by ψXn the restriction ψZ |B̄Xn(p, 2R0) and by ψY the restriction
ψZ |B̄Y (q, 2R0), one has:

(7.47)
ψXn ◦ Jn =

ψ − ψ(p)

rn
ψY ◦ J∞ = ϕ;

(Z4): Letting µn and µ∞ denote, respectively, the measures

(7.48)
Jn]

µ′ BXn(p,R0)

µ′ (BX(p, rn))

J∞]ν BY (q,R0),

one has µn
w*−−→ µ∞.

We chose Z convex to “fill-in” fragments to Lipschitz curves; specifically, let
Curves(Z) denote the set of Lipschitz maps γ : K → Z, where K ⊂ R is a (possibly
degenerate) compact interval; we topologize Curves(Z) with the Vietoris topology.
Let

(7.49) Fill : Frag(Z)→ Curves(Z)

be the map which extends a fragment γ to a Lispchitz curve, with domain the
minimal compact interval I(γ) containing Dom γ, by extending γ linearly on each
component of I(γ) \Dom γ. The map Fill is continuous.

Let ΓXn ⊂ Frag(X) denote the set of those [C0, D0]-biLipschitz fragments which
intersect B̄X(p, 2R0rn); note that ΓXn is closed. We define maps:

(7.50) Repn : ΓXn → Frag(Z)

by composing Jn ◦
(
γ|γ−1(B̄X(p, 2R0))

)
, where we naturally identify γ with a frag-

ment in Xn, with the unique affine map Aγ : R → R which has dilating factor 1
rn

and which maps the point:

(7.51) min
{
t : t ∈ γ−1(B̄X(p, 2R0))

}
to 0. Note that Repn is continuous.
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We will now refer back to the map Ψ defined in (7.14), adding subscripts regard-
ing the metric space. From the definition of Repn we see that:

(7.52) rnΨZ (Repn(γ)) = Jn]ΨXn(γ) B̄Xn(p, 2R0)

Let g ∈ Cc(Z) so that:

(7.53) lim
n→∞

∫
g dµn =

∫
g dµ∞;

then ∫
g dµn =

1

µ′ (BX(p, rn))

∫
BXn (p,R0)

g ◦ Jn dµ′

=
1

µ′ (BX(p, rn))

∫
BXn (p,R0)

g ◦ Jn d(µ′PAR(εm,Sm) + µ′cPAR(εm,Sm));

(7.54)

Note that
(7.55)∣∣∣∣∣ 1

µ′ (BX(p, rn))

∫
BXn (p,R0)

g ◦ Jn dµ′cPAR(εm,Sm)

∣∣∣∣∣ ≤ ‖g‖∞ µ′cPAR(εm,Sm) (BX(p, rnR0))

µ′ (BX(p, rn))
;

for n sufficiently large rnR0 ≤ sm so that by (7.42) and using that µ′ is doubling
we conclude that:

(7.56) lim
n→∞

1

µ′ (BX(p, rn))

∫
BXn (p,R0)

g ◦ Jn dµ′cPAR(εm,Sm) = 0.

We also introduce some notation to deal with regularity in Z and X; so we let:

(7.57)

PARX(ε, S) = (ψ, C, v0, σ0, [C0, D0], τ0, ε, S)

PARZ(ε, S) =

(
ψ, C, v0, σ0, [C0, D0],

4R0

C0
, ε, S

)
;

in particular, inspection of conditions (Reg1)–(Reg5) shows that:

(7.58)
1

µ′ (BX(p, rn))

∫
BXn (p,R0)

g ◦ Jn dµ′PARX(εm,Sm)

=
1

µ′ (BX(p, rn))

∫
ΓXn

dP (γ)

∫
Z

g rnχBXn (p,R0) dΨPARZ(εm,Sm/rn) (Repn(γ)) .

Let Γ̃Xn be the Borel subset of those γ ∈ ΓXn such that:

(7.59) χBXn (p,R0)ΨPARZ(εm,Sm/rn) (Repn(γ)) 6= 0;

then (7.59) implies that there is a pγ = γ(t) ∈ (Reg(PARX(εm, Sm)))γ∩BX(p, rnR0).

Note that the set Bγ,n = γ−1
(
B̄X(p, 2rnR0)

)
has diameter at most 4R0rn

C0
; let

aγ , bγ be minimal such that the interval [tγ − aγ , tγ + bγ ] contains γ−1(Bγ,n).
For n-sufficiently large one has aγ , bγ ≤ Sm so that by (Reg2) the εm(aγ + bγ)-
neighbhourhood of Bγ,n contains [tγ − aγ , tγ + bγ ]. A similar conclusion holds for
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the smallest interval containing γ−1 (BXn(p,R0)) from which we get:

(7.60)

rn
∥∥ΨPARZ(εm,Sm/rn) (Repn(γ)) BXn(p,R0)−ΨZ (Fill ◦Repn(γ)) BZ(qz, R0)

∥∥
≤ εmrn

2R0

C0
.

Note also that:

(7.61) γ

(
Dom γ ∩ [tγ −

rnR0

D0
, tγ +

rnR0

D0
]

)
⊂ BX(p, 2rnR0);

as for n sufficiently large one has rnR0

D0
≤ Sm, we have:

(7.62) rnΨPARZ(εm,Sm/rn) (Fill ◦Repn(γ)) (BXn(p, 2rnR0)) ≥ 2(1− εm)
rnR0

D0
.

For n sufficiently large we also have 3rnR0

C0
≤ Sm which implies:

(7.63)

L1

(
Dom γ ∩

[
tγ , tγ +

3rnR0

C0

])
≥ (1− εm)

3R0

C0
rn

L1

(
Dom γ ∩

[
tγ −

3rnR0

C0
, tγ

])
≥ (1− εm)

3R0

C0
rn;

so we can find s1,γ ≤ tγ ≤ s2,γ with:

(7.64)

|tγ − si,γ | ≥ (1− εm)
3rnR0

C0
(for i = 1, 2)

dX(p, γ(si,γ)) ≥
(

(1− εm)
3R0

C0
−R0

)
rn (for i = 1, 2);

in particular, for m sufficiently large (7.64) implies that the maximum and minimum
point in Bγ,n are mapped by γ outside of BX(p, 3

2R0). Thus, the endpoints of

Fill ◦Repn(γ) lie out of BZ(qZ ,
3
2R0).

We now obtain an upper estimate for P (Γ̃Xn) (note that we assume that n is
sufficiently large depending on m):

2(1− εm)
rnR0

D0
P (Γ̃Xn) ≤ rn

∫
Frag(X)

ΨPARZ(εm,Sm/rn) (Repn(γ)) (BX(p, 2rnR0)) dP (γ)

≤ µ′ (BX(p, 2R0rn)) ;

(7.65)
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in particular, using (7.60),

lim
n→∞

1

µ′ (BX(p, rn))

∣∣∣∣∣
∫

Γ̃Xn

dP (γ)

∫
g rnχBXn (p,R0)dΨPARZ(εm,Sm/rn) (Repn(γ))

−
∫

Γ̃Xn

dP (γ)

∫
g rnχBZ(qZ ,R0) dΨPARZ(εm,Sm/rn) (Fill ◦Repn(γ))

∣∣∣∣∣
≤ lim sup

n→∞
‖g‖∞ P (Γ̃Xn) rnεm

2R0

C0

≤ lim sup
n→∞

‖g‖∞
εm

1− εm
D0

C0

µ′ (BX(p, 2rnR0))

µ′ (BX(p, rn))

= O(εm),

(7.66)

where in the last step we used that µ′ is doubling. As n→∞ we can send m→∞
so that the left hand side of (7.66) converges to 0.

Let Ωm ⊂ Curves(Z) denote the set of D0-Lipschitz curves so that there are a
θγ ∈ [C0, D0] and a w ∈ C̄ such that (note the constant C2 will be specified later):

(Ω1): For all s1, s2 ∈ Dom γ one has:

(7.67) |dZ(γ(s1), γ(s2))− θγ |s1 − s2|| ≤ C2εm;

(Ω2): The domain of γ is a subset
[
0, 4R0

C0

]
;

(Ω3): The image of γ is contained in the C2εm-neighbourhood of B̄Xn(p, 2R0);

(Ω4): For all s1, s2 ∈ Dom γ one has:

(7.68) |ψZ ◦ γ(s1)− ψZ ◦ γ(s2)− w|s1 − s2|| ≤ C2εm;

(Ω5): For all s1, s2 ∈ Dom γ with s2 ≥ s1 one has:

(7.69) 〈v0, ψZ ◦ γ(s2)− ψZ ◦ γ(s1)〉 ≥ (σ0−εm)θγ Lip (〈v0, ϕ〉) (p)(s2−s1)−C2εm.

Note that the set Ωm is compact. We also define Ω∞ by requiring in (Ω3)
that γ lies in B̄Y (p, 2R0) and that the error term εm is replaced by 0. In view of

(Reg1)–(Reg5), for an appropriate choice of C2 one has Fill ◦Repn(Γ̃Xn) ⊂ Ωm
for n ≥ N(m). If we let Pn denote the Radon measure on Curves(Z):

(7.70) Pn =
1

µ′ (BX(p, rn))
rn Fill ◦Repn(γ)]P Γ̃Xn ;

we have that Pn has support contained in Ωm for n ≥ N(m). By (7.65) the total
mass of Pn is bounded by:

(7.71)
D0

2(1− εm)R0

µ′ (BX(p, 2R0rn))

µ′ (BX(p, rn))
.

Moreover, an application of Ascoli-Arzelá shows that the set Ω =
⋃
m Ωm ∪ Ω∞

is compact; we can thus find a subsequence nm ≥ N(m) such that Pnm
w*−−→ QR0

.

The previous discussion on the properties of the fragments in Γ̃Xn implies that the
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support sptQR0
of QR0

is a subset of SR0
⊂ Ω∞ and that point (2) in the statement

of this Theorem follows from (7.71). We now observe that:

1

µ′ (BX(p, rn))

∫
Γ̃Xnm

dP (γ)

∫
grnχBZ(qZ ,R0) dΨZ

(
Fill ◦Repnm(γ)

)
=

∫
Ω

dPnm(γ)

∫
gχBZ(qZ ,R0) dΨZ(γ);

(7.72)

fix a ξ ∈ (0, 1), and let ψξ be a continuous function, which takes values in [0, 1] and
which equals 1 on B̄Z(qZ , R0 + ξ) and which vanishes out of BZ(qZ , R0 + 2ξ); then:

(7.73)

∣∣∣∣∫
Ω

dPnm(γ)

∫
g
(
χBZ(qZ ,R0) − ψξ

)
dΨZ(γ)

∣∣∣∣ ≤ Pnm(Ω)‖g‖∞
2ξ

C0
;

as the map γ 7→
∫
gψξ dΨZ(γ) is continuous:

(7.74) lim
m→∞

∫
Ω

dPnm(γ)

∫
gψξ dΨZ(γ) =

∫
Ω

dQR0
(γ)

∫
gψξ dΨZ(γ).

Also,
(7.75)∣∣∣∣∫

Ω

dQR0
(γ)

∫
gψξ dΨZ(γ)−

∫
Ω

dQR0
(γ)

∫
g dΨZ(γ) BY (q,R0)

∣∣∣∣ ≤ QR0
(Ω)‖g‖∞

ξ

C0
;

so we conclude that:

(7.76) lim
m→∞

∫
g dµnm =

∫
SR0

dQR0

∫
g dΨZ(γ) BY (q,R0);

in particular, if we let:

(7.77) Φγ = ΨZ(γ) BY (q,R0) =
1

θγ
H1
γ ,

we get that (QR0
,Φ) gives an Alberti representation of ν BY (q,R0). It might be

worth noting that in (7.77) we used that γ is a geodesic with constant speed θγ and
that the function γ 7→ θγ is continuous. �

Lemma 7.78. There is a Borel U ⊂ X with full µ-measure such that, for each
p ∈ U , for each (Y, ν, ϕ, q) ∈ Bw-up(X,µ, ψ, p), for each R0 > 0 and each v0 ∈
S(‖ · ‖p,Lip∗), the measure ν B(q,R0) admits an Alberti representation (QR0

,Φ)
which satisfies the following conditions:

(1) The measure QR0 is a finite Radon measure with total mass at most

1

2R0
(As(µ, p))

log2 R0+1
;

(2) The support of QR0
is contatined in a compact set SR0

⊂ Frag(Y ) which
consists of the unit-speed geodesic segments γ whose domain lies in [0, 4R0],
whose image lies in B̄(q, 2R0), which have both endpoints lying outside of
B(q, 3

2R0), which intersect B̄(q,R0), and which satisfy:

(7.79) ϕ ◦ γ(s2)− ϕ ◦ γ(s1) = (s2 − s1)v0 (∀s1, s2 ∈ Dom γ);

(3) For each γ ∈ SR0 the measure Φγ is given by:

(7.80) Φγ = H1
γ B(q,R0).
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Proof. By Theorem 6.22 we can choose Borel maps vn : X → TX 2 with 1 ≤
‖vn‖TX ≤ 1 + 1

n and such that:

(1) For each x ∈ X the closure of the set {vn(x)}n contains S(‖ · ‖p,Lip∗);

(2) For each n there is a measure µ′n in the same measure class of µ and there are
countably many disjoint compact sets {Kn,α} whose union has µ-negligible
complement and such that the function vn is constant on each Kn,α;

(3) The measure µ′n Kn,α admits a simplified and (1, 1+ 1
n )-biLipschitz Alberti

representationAn,α in the ψ-direction of the cone C (vn Kn,α/‖vn Kn,α‖2, π/2n)
with 〈vn Kn,α, ψ〉-speed ≥ (1− 1/n).

Let Un be a Borel subset of
⋃
αKn,α with full µ-measure and such that, for each

p ∈ Un ∩ Kn,α, the conclusion of Theorem 7.15 holds taking A = An,α. Let
U =

⋂
Un and fix p ∈ U and (Y, ν, ϕ, q) ∈ Bw-up(X,µ, ψ, p). Choose a sequence nm

such that vnm(p)→ v0 and let QR0,nm , Φnm and SR0,nm be the measures and sets of
geodesics provided by Theorem 7.15. By Ascoli-Arzelá the set Ω = SR0

⋃
m SR0,nm

is a compact subset of Frag(Y ); as the measures QR0,nm are uniformly bounded

and supported in Ω, we can pass to a subsequence such that QR0,nm
w*−−→ QR0

. Note
also that QR0

is supported in SR0
. For g ∈ Cb(Y ) one proves that:

(7.81) lim
m→∞

∫
Ω

dQR0,nm(γ)

∫
g d(Φnm)γ =

∫
SR0

dQR0
(γ)

∫
g dΦγ

by using an argument similar to the one used to derive the estimates (7.73) and
(7.75). Thus the pair (QR0

,Φ) provides the desired Alberti representation. �

To prove Theorem 7.11 we need to introduce a bit more of terminology. We
can regard parametrized Lipschitz curves in Y , whose domain is a possibly infinite
interval of R, as elements of Fc(R×X) by identifying them with their graph. We
denote by Geo(Y ) the set of unit speed geodesic segments, half-lines or lines in Y ;
note that Geo(Y ) is a Kσ. Moreover, if we let:

(7.82)
Φ : Geo(Y )→ Rad

γ 7→ H1
γ ,

then, for each g ∈ Cc(Y ), the map:

(7.83)

Φg : Geo(Y )→ R

γ →
∫
gdΦγ =

∫
R
g ◦ γ(t) dt

is continuous.

Proof of Theorem 7.11. Let U be the µ-full measure subset provided by Lemma
7.78 and consider p ∈ U and (Y, ν, ϕ, q) ∈ Bw-up(X,µ, ψ, p). Fix a diverging
sequence of radii {Rn} with Rn > 2Rn−1 and let QRn and SRn be the corresponding
measures and sets provided by Lemma 7.78. Note that SRn can also be regarded
as a compact subset of Fc; in particular, for i ≤ n we define the sets:

(7.84) Sn,i = {γ ∈ SRn : dist(γ, q) ∈ (Ri−1, Ri]} ,

2A choice of the representative of TX is implied.
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where we take R0 = 0, and observe that the sets Sn,i are Borel. We also consider
the following Borel subsets of Fc × R:

(7.85) S̃i,n = {(γ, t) : t ∈ Dom γ, γ ∈ Si,n, d (γ(t), q) ∈ (Ri−1, Ri]} ;

note that the sets S̃i,n have compact sections, i.e. for γ ∈ Fc, each section (S̃i,n)γ is
compact. By the Lusin-Novikov Uniformization Theorem [Kec95, Thm. 18.10] we

can find Borel maps τi,n : Si,n → R such that (γ, τi,n(γ)) ∈ S̃i,n. In particular, we

can define a Borel map Trann : Geo(Y )→ Geo(Y ) by requiring that for γ ∈ S̃i,n the
geodesic segment Trann(γ) is the composition of γ with the translation by τn,i(γ).

Note that if γ ∈ S̃i,n the extremes of Dom γ are at distance at least 3
2Rn−Ri from

τn,i(γ) and so

(7.86)

[
−Rn

2
,
Rn
2

]
⊂ Dom Trann(γ) ⊂ [−3Rn, 3Rn].

Let Qn = Trann]QRn and denote by K(m, i) the set of geodesic segments γ whose

domain is contained in [−3Rm, 3Rm], and which intersect B̄(q,Ri) in a point pγ =
γ(tγ) where tγ is at distance at most 2Ri from 0. The set K(∞, i) is defined
similarly by requiring γ to be a geodesic line. Note that the sets:

(7.87) K(i) = K(∞, i) ∪
⋃
m

K(m, i)

are compact and that Qn is concentrated on the set
⋃
i≤nK(n, i). We now obtain

an upper bound on Qn (K(i)):
(7.88)

ν (B(q, 2Ri)) =

∫
Geo(Y )

H1
γ (B(q, 2Ri)) dQn(γ) ≥

∫
K(i)

H1
γ (B(q, 2Ri)) dQn(γ);

if γ ∈ Trann (Sn,l) and if l ≤ i and n ≥ i, one has H1
γ (B(q, 2Ri)) ≥ Ri

2 so from
(7.88) we obtain:

(7.89) Qn (K(i)) ≤ 2
ν (B(q, 2Ri))

Ri
.

In particular, we can pass to a subsequence and find a Radon measure Q on Geo(Y )

such that for each i one has Qn K(i)
w*−−→ Q K(i); in particular Qn

w*−−→ Q. More-
over, as Qn is concentrated on

⋃
iK(n, i), the measure Q has support contained

in Lines(ϕ, v0). To show that (Q,Φ) gives an Alberti representation of ν we take
g ∈ Cc(Y ) and choose i sufficiently large so that spt g ⊂ B(q,Ri):

(7.90)

∫
Y

g dν =

∫
K(i)

dQn(γ)

∫
g dH1

γ =

∫
K(i)

Φg(γ) dQn(γ),

and

(7.91) lim
n→∞

∫
K(i)

Φg(γ) dQn(γ) =

∫
K(i)

Φg(γ) dQ(γ) =

∫
Geo(Y )

dQ(γ)

∫
g dH1

γ .

�

We now state an immediate consequence of Theorem 7.11 in terms of the canon-
ical maps from blow-ups of X to the fibres of TX.
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Definition 7.92. Let (Y, ν, ϕ, q) ∈ (X,µ, ψ, p) be realized by choosing scales rn ↘
0; suppose that the Lipschitz function f : X → R is differentiable at p with respect
to the {ψi}Ni=1. Then the maps:

(7.93)
f − f(p)

rn
:

1

rn
X → R

converge to the map g : Y → R given by:

(7.94) g(y) =

N∑
i=1

∂f

∂ψi
(p)ϕ(y).

In particular, we obtain a canonical map E : Y → TpX by letting:

(7.95)

〈
N∑
i=1

ai dψ
i |p, E(y)

〉
=

N∑
i=1

aiϕ(y).

Corollary 7.96. Let p ∈ U be a point where the conclusion of Theorem 7.11 holds;
then the canonical map E : Y → TpX is surjective. Moreover, for each q̃ ∈ Y there
is a line γ ∈ Lines(ϕ, v0) passing through it, and there is a cγ ∈ R such that:

(7.97) E (γ(t)) = v0(t− cγ) (∀t ∈ R).

Corollary 7.96 generalizes [Che99, Sec. 13] where the surjectivity of the map E
was proven for the case in which (X,µ) is a PI-space. The surjectivity of the map
E in the case in which (X,µ) is a differentiability space has already been proven in
[Sch13, Dav14].

7.3. Harmonicity of blow-up functions. In this subsection we prove Corollary
1.15.

Proof of Corollary 1.15. Let u : X → R be a Lipschitz function, and suppose that
x ∈ X a point of differentiability of u where x is as in the statement of Theorem
1.11. Choose a unit vector ξ ∈ (TxX, ‖ · ‖TX (x)) supporting du ∈ T ∗xX, i.e.

(7.98) du(ξ) = ‖du(x)‖T∗X = ‖du(x)‖T∗X · ‖ξ‖TX .

Since x is a point of differentiability, the blow-up û of u will be of the form û = α◦φ̂i
for some α ∈ T ∗xX. Now consider an Alberti representation for µ̂ as in Theorem
1.11 (2), which is supported on unit speed geodesics γ with (ûi ◦ γ)′ ≡ ξ. Fix such

a unit speed geodesic γ : R→ X̂. Note that for all t ∈ R
(7.99)

(û◦γ)′(t) = α
(

(φ̂i)
′(t)
)

= α(ξ) = ‖û(x)‖T∗X and Lip(û)(γ(t)) = (Lip(û◦γ))(t) .

If v : X̂ → R is Lipschitz and agrees with û outside a compact subset K ⊂ X̂, then
for all t ∈ R we have Lip(v ◦ γ)(t) ≤ Lip(v)(γ(t)), and for L-a.e. t ∈ R \K we have

(7.100) Lip(v ◦ γ) = |(v ◦ γ)′(t)| = |(û ◦ γ)′(t)| = Lip(û ◦ γ)(t) = Lip(û)(γ(t)) .
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Therefore if γ−1(K) ⊂ [a, b], then∫
γ−1(K)

[Lip(v)(γ(t))]
p
dt−

∫
γ−1(K)

[Lip(û)(γ(t))]
p
dt

≥
∫
γ−1(K)

[Lip(v ◦ γ)(t))]
p
dt

−
∫
γ−1(K)

[Lip(û ◦ γ)(t))]
p
dt

=

∫
[a,b]

[Lip(v ◦ γ)(t))]
p
dt

−
∫

[a,b]

[Lip(û ◦ γ)(t))]
p
dt

≥
∫

[a,b]

|(v ◦ γ)′(t)|p dt

−
∫

[a,b]

|(û ◦ γ)′(t)|p dt

≥ 0

(7.101)

by Jensen’s inequality. Integrating this with respect to the measure on curves
coming from the Alberti representation, we get that

(7.102)

∫
K

[Lip(v)]
p
dµ̂ ≥

∫
K

[Lip(û)]
p
dµ̂ .

�

8. Lipschitz mappings f : X → Z and metric differentiation

8.1. The canonical subbundle determined by a pseudodistance. In this
subsection we associate a canonical subbundleW% of T ∗X to a Lipschitz compatible
pseudometric %; we denote by C% the Lipschitz constant of %, that is, % ≤ C%dX .

Definition 8.1. Let Φ be a countable set of %-Lipschitz functions and let V be a
Φ-differentiability set; we define a subbundle WΦ of T ∗X by letting, for x ∈ V , the
fibre WΦ(x) equal the linear span of {df(x) : f ∈ Φ}.

The collection Sub(%) of subbundles associated to countable sets of %-Lipschitz
functions has a partial order �: we say that WΦ � WΦ′ if for µ-a.e. x ∈ X one has
WΦ(x) ⊆ WΦ′(x).

Lemma 8.2. The poset (Sub(%),�) contains a maximal element W% which we call
the canonical subbundle associated to %.

Proof. As the constructions depend only on the measure class of µ, we can assume
that µ is a probability measure. We basically follow the argument used in the
proof of Lemma 2.33: to each WΦ ∈ Sub(%) we associate a “size”, which is the
expectation of the random variable dimWΦ:

(8.3) ‖WΦ‖ =

∫
dimWΦ(x) dµ(x);
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note that the finite dimensionality of T ∗X implies that

(8.4) S = sup
WΦ∈Sub(%)

‖WΦ‖ <∞.

Let WΦn be a maximizing sequence and let Φ∞ =
⋃
n Φn; then ‖WΦ∞‖ = S.

Suppose, by contradiction, that for some WΦ ∈ Sub(%) one has WΦ 6� WΦ∞ ; then
there is a positive measure set V such that, if x ∈ V , one has

(8.5) WΦ∞(x) ( span (WΦ(x) ∪WΦ∞(x)) ;

but then we obtain the contradiction ‖WΦ∪Φ∞‖ > S. �

Let DX ⊂ X be a countable dense set and ΦDX ,% = {%x : x ∈ DX}; we let
WDX ,% = WΦDX,%

. We now show that WDX ,% equals W%: this is a stronger result

than [Kei04b, Thm. 2.7] because it applies to subbundles associated to Lipschitz
compatible pseudometrics.

Theorem 8.6. For any countable dense set DX ⊂ X we have WDX ,% =W%.

We offer two conceptually different proofs of Theorem 8.6.

Proof of Theorem 8.6 via a measurable Hahn-Banach. As WDX ,% � W%, assume
by contradiction that there is a positive measure Borel set U such that, for each
x ∈ U one has:

(8.7) WDX ,%(x) (W%(x).

Without loss of generality we can assume that there are 1-Lipschitz functions
{φi}Ni=1 such that (U, {φi}Ni=1) is a differentiability chart. Let

(8.8) Ũ =

{
(x, a) ∈ U × RN :

N∑
i=1

aidφi(x) ∈ W%(x) ∩ S(‖ · ‖T∗X (x)), and

dist‖ · ‖T∗X(x)

(
N∑
i=1

aidφi(x),WDX ,%(x)

)
≥ 1

2

}
.

Note that the distances in the fibre T ∗xX are computed with respect to the norm

‖ · ‖T∗X (x). The set Ũ is Borel and by (8.7) for each x ∈ U the section Ũx is
nonempty (compare [Rud91, Lem. 4.22]) and compact. By the Lusin-Novikov Uni-
formization Theorem [Kec95, Thm. 18.10] we obtain a unit-norm Borel section ω
of W% | U satisfying:

(8.9) dist‖ · ‖T∗X(x) (ω(x),WDX ,%(x)) ≥ 1

2
(∀x ∈ U).

Using Hahn-Banach in each fibre T ∗xX and an argument similar to the one above,
we obtain a Borel section ξ of TX | U such that:

(8.10)
‖ξ‖TX ≤ 2;

〈ω(x), ξ(x)〉 = 1 (∀x ∈ U),

and such that ξ(x) is annihilated by the functionals in WDX ,%(x). Up to shrinking

U we can assume that there are Ñ ≤ N , (1, %)-Lispchitz functions {ψi}Ñi=1 and



METRIC DIFFERENTIATION 51

bounded Borel maps si : U → R satisfying:

(8.11)

‖si‖ ≤ C;

ω =

Ñ∑
i=1

sidψi.

Let F contain the φi, the ψi and the components of the chart functions; let C
contain χU , the si and the characteristic functions of the charts; let S contain dX
and %; by Theorem 5.3 we obtain an µ-measurable subset V ⊂ U of full µ-measure
with Gx(F , C,S, DX) containing a dense set of directions in TxX for each x ∈ V .
In particular, fix ε > 0 and let γ′(t) ∈ TxX be an (F , C,S, DX)-generic velocity
vector such that:

(8.12) ‖ξ(x)− γ′(t)‖TX ≤ ε;
then

(8.13) |〈d%x, γ′(t)〉| ≤ C%ε+ |〈d%x, ξ(x)〉| = C%ε;

by Theorem 4.3 we conclude that:

(8.14) %-mdγ(t) ≤ C%ε.
However, ‖γ′(t)‖TX ≤ 2 + ε and so

(8.15) 〈ω, γ′(t)〉 ≥ 1

2
− ε(2 + ε);

note also that

(8.16) |〈ω, γ′(t)〉| =

∣∣∣∣∣∣
Ñ∑
i=1

si (γ(t)) (ψi ◦ γ)′(t)

∣∣∣∣∣∣ ≤ ÑC max
i
|(ψi ◦ γ)′(t)| ;

now choose sn ↘ 0 with t+ sn ∈ Dom γ; we have:
(8.17)

|ψi ◦ γ(t+ sn)− ψi ◦ γ(t)| ≤ %(γ(t+sn), γ(t)) ≤ o(sn)+

∫
[t,t+sn]∩Dom γ

%-mdγ(τ) dτ ;

dividing by sn and letting n↗∞ we get:

(8.18) |(ψi ◦ γ)′(t)| ≤ %-mdγ(t).

Combining (8.14), (8.15) and (8.18) we conclude that:

(8.19)
1

2
− ε(2 + ε) ≤ Ñ C C%ε

which yields a contradiction if ε is sufficiently small. �

Proof of Theorem 8.6 via Weaver derivations. We show that if K ⊂ X is compact
and if f is %-Lipschitz, for µ-a.e. x ∈ K one has df(x) ∈ WDX ,%(x). Fix n ∈ N and
choose a finite susbset {xk}k∈In ⊂ DX such that each x ∈ K lies within dX -distance
at most 1

n from some xk. To fix the ideas, suppose that f is (C, %)-Lipschitz and
define fn : K → R by:

(8.20) fn(x) = inf {f(xk) + C%(x, xk) : k ∈ In} .
The functions {fn}n are uniformly (C, %)-Lipschitz and hence uniformly (C C%, dX)-
Lipschitz. By [Sch13, Thm. 4.1] the exterior derivative operator d associated to the
diffentiable structure is weak* continuous. In particular, let L2(µ K, T ∗X) denote
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the L2-space of sections of T ∗X | K. Note that the dual of L2(µ K, T ∗X) is
L2(µ K, TX) and that these spaces are both reflexive by finite dimensionality
of T ∗X. Then as the fn → f pointwise in K, we have that dfn → df weakly in
L2(µ K, T ∗X), and Mazur’s Lemma and a standard argument give tail convex
combinations gn of the functions fn with dgn → df µ K-a.e. So the proof is
completed if we show that each dgn is a section of WDX ,%, which happens if each
dfn is a section of WDX ,%. But for each n there are closed subsets {Ci}i∈In of K,
such that fn | Ci = f(xi) + C%xi , which gives dfn | Ci = Cd%xi . �

We now associate to W% two a priori different norms on TX. Roughly speaking,
we maximize the seminorms induced by sections of W%. Recall that if f is %-
Lipschitz we can define the “big Lip” with respect to %:

(8.21) %-Lipf(x) = lim sup
r↘0

sup

{
|f(x)− f(y)|

r
: %(x, y) ≤ r

}
,

and that the map x 7→ %-Lipf(x) is Borel.

Let Sec1(%) denote the set of those sections ω of W% which are locally the differ-
ential of a (1, %)-Lipschitz function; i.e. ω ∈ Sec1(%) if and only if there are count-
ably many disjoint Borel sets {Vβ}β and countably many (1, %)-Lipschitz functions

{fβ}β such that µ
(
X \

⋃
β Vβ

)
= 0 and ω | Vβ = dfβ | Vβ . To each ω ∈ Sec1(%) we

associate a seminorm pω on TX by letting:

(8.22) pω(v) = |〈ω, v〉| .

We observe that pω ≤ C% ‖ · ‖TX and denote by ‖ · ‖%,LIP the essential supremum

(Lemma 2.33) of the collection {‖ · ‖ω}ω∈Sec1(%).

Another way of obtaining seminorms on TX is to use arbitrary sections of W%

and rescale them by the local %-Lipschitz constant; note, however, that if u, v are
both %-Lipschitz, one can have du = dv and %-Lipu 6= %-Lipv on a set of positive
measure. We are thus led to use a slightly more complicated framework. Let Sec∗(%)
denote the set of countable pairs ω̃ = {(Vβ , fβ)} where the Vβ are disjoint Borel sets

with µ
(
X \

⋃
β Vβ

)
= 0, and the fβ are %-Lipschitz functions. To each ω̃ ∈ Sec∗(%)

we associate a seminorm pω̃ on TX by letting, for x ∈ Vβ and v ∈ TxX:

(8.23) pω̃(v) =

{
0 if %-Lipfβ(x) = 0
|〈dfβ(x),v〉|
%-Lipfβ(x) otherwise;

we denote by ‖ · ‖%,Lip the essential supremum (Lemma 2.33) of the collection

{‖ · ‖ω}ω∈Sec∗(%).

Theorem 8.24. Let DX ⊂ X be a countable dense set. Then one has:

(8.25) ‖ · ‖DX ,% = ‖ · ‖%,LIP = ‖ · ‖%,Lip ;

in particular, if D′X ⊂ X is another countable dense set:

(8.26) ‖ · ‖DX ,% = ‖ · ‖D̃X ,% ;

in the sequel, we will denote the canonical norm (8.25) by ‖ · ‖%.
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Proof. Each pseudodistance function %x gives rise to an element of Sec1(%) and
so ‖ · ‖DX ,% ≤ ‖ · ‖%,Lip; to each ω ∈ Sec1(%) one can associate ω̃ ∈ Sec∗(%) with

pω ≤ pω̃ and so ‖ · ‖%,LIP ≤ ‖ · ‖%,Lip. We thus just prove that:

(8.27) ‖ · ‖%,Lip ≤ ‖ · ‖DX ,% .

It suffices to show that for any ω̃ = {(Vβ , fβ)} ∈ Sec∗(%) one has

(8.28) pω̃ ≤ ‖ · ‖DX ,% .

Let F contain the components of the chart functions and the functions {fβ}β ; let
C contain the characteristic functions of the charts and the characteristic functions
{χVβ}β ; let S contain dX and %. Let V be an {fβ}β-differentiability set and fix β; let
V ′β = V ∩Vβ ; by Theorem 5.3 there is a full µ-measure µ-measurable subset Wβ ⊂ V ′β
such that, for each x ∈Wβ the set of (F , C,S, DX)-generic velocity vectors contains
a dense set of directions. In particular, for each v ∈ TxX and ε > 0 we can find an
(F , C,S, DX)-generic velocity vector γ′(t) ∈ TxX with ‖v − γ′(t)‖TX ≤ ε. Assume
that %-Lipfβ(x) > 0; note that the derivative (fβ ◦γ)′(t) exists and is approximately
continuous at t. Without loss of generality assume that (fβ ◦ γ)′(t) 6= 0; then we
can find sn ↘ 0 such that t+ sn ∈ Dom γ and %(γ(t+ sn), γ(t)) = rn > 0. We now
obtain the estimate:

|(fβ ◦ γ)(t+ sn)− (fβ ◦ γ)(t)| ≤

≤ sup

{
|fβ(y)− fβ(x)|

rn
: %(y, x) ≤ rn

}
× %(γ(t+ sn), γ(t))

≤ (%-Lipfβ(x) +O(1/n))

(∫
[t,t+sn]∩Dom γ

%-mdγ(τ) dτ

+ o(sn)

)
;

(8.29)

dividing by sn and letting n ↗ ∞ we get, by approximate continuity of %-mdγ at
t:

(8.30) |(fβ ◦ γ)′(t)| ≤ %-Lipfβ(x) %-mdγ(t).

Now Theorem 4.3 implies that %-mdγ(t) = ‖γ′(t)‖DX ,% and so:

|〈dfβ , γ′(t)〉| ≤ %-Lipfβ(x) ‖γ′(t)‖DX ,%
≤ %-Lipfβ(x) ‖v‖DX ,% + εC% %-Lipfβ(x);

(8.31)

let L denote the global Lipschitz constant of fβ ; then:

(8.32) |〈dfβ , v〉| ≤ %-Lipfβ(x) ‖v‖DX ,% + εC% %-Lipfβ(x) + εL ‖v‖TX ;

so (8.28) follows by letting ε↘ 0. �

8.2. Metric Differentiation for Lipschitz maps. We now reformulate the re-
sults of the previous subsection for a Lipschitz map F : X → Z; throughout this
subsection % will denote the pull-back pseudometric F ∗dZ . Putting together The-
orems 8.6 and 8.24 we obtain:

Theorem 8.33. Associated to the map F there is a canonical subbundle WF of
T ∗X such that:
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(1) For each g ∈ F ∗ (Lip(Z)) (i.e. g = h ◦ F for some h ∈ Lip(Z)) the section
dg lies in WF ;

(2) For each countable dense set DX ⊂ X the subbundle WF coincides with the
subbundle spanned by the sections {d%x : x ∈ DX}.

Suppose now that F contains the components of the chart functions of (X,µ), that C
contains the characteristic functions of the charts, and suppose also that S contains
the pseudometric %. The subbundleWF induces a canonical seminorm ‖ · ‖F = ‖ · ‖%
on TX such that, for each (F , C,S)-generic velocity vector γ′(t) one has:

(8.34) ‖γ′(t)‖F = lim
s→0

dZ(F ◦ γ(t+ s), F ◦ γ(t))

|s|
.

Remark 8.35. In practice, it does not matter whether metric differentiation is for-
mulated in terms of pseudometrics or Lipschitz maps. In fact, consider a Lipschitz
compatible pseudometric % on X and associate to it the Lipschitz map:

(8.36)
F : X → l∞(DX)

y 7→ {%x(y)}x∈DX ;

then we get ‖ · ‖% . = ‖ · ‖F and W% =WF .

We now specialize the discussion to the case in which (Z, ν) is a differentiability
space; throughout the remainder of this subsection we will fix choices of countable
dense sets DX ⊂ X and DZ ⊂ Z. The case of interest is when the measure F]µ is
absolutely continuous with respect to ν. Using the Radon-Nikodym Theorem we
can find a Borel subset V0 ⊂ Z such that F]µ V0 and ν V0 are in the same measure
class. The case of interest is when ν(V0) > 0, which we will assume throughout the
remainder of this subsection.

Let U0 = F−1(V0) and suppose that g ∈ Lip(Z) is differentiable at z0 with
respect to the Lipschitz functions {ψi}Mi=1; suppose now that z0 = F (x0) and that
the functions {ψi ◦ F}Mi=1 are differentiable at x0 with respect to the functions
{φj}Nj=1. We then obtain the chain rule:
(8.37)

g ◦F (x)− g ◦F (x0) =

M∑
i=1

N∑
j=1

∂g

∂ψi
(z0)

∂(ψi ◦ F )

∂φj
(
φj(x)− φj(x0)

)
+ o (dX(x, x0)) .

The following Corollary is a consequence of the chain rule (8.37):

Corollary 8.38. Let {(Uα, φα)}α be an atlas for (X,µ) and {(Vβ , ψβ)}β an atlas

for (Z, ν). Then the subbundle WF | U0 is spanned by the sections
{
d(ψiβ ◦ F )

}
β,i

.

Definition 8.39. As the measures F]µ V0 and ν V0 are in the same measure
class, we obtain a pull-back map:

(8.40) F ∗ : T ∗Z | V0 → T ∗X | U0,

which maps each section dg of T ∗Z | V0 to the section F ∗dg = d(g◦F ) of T ∗X | U0.
We define the push-forward map:

(8.41) F∗ : TX | U0 → TZ | V0
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by duality; that is, for x ∈ U0, v ∈ TxX and g ∈ Lip(Z) we let:

(8.42)
〈
F∗(v), dg |F (x)

〉
= 〈v, (F ∗dg)x〉 .

We conclude this subsection by proving:

Theorem 8.43. Let W⊥F denote the annihilator of WF : i.e. the fibre W⊥F (x) con-
sists of those vectors in TxX which are annihilated by the functionals in WF (x).
The seminorm ‖ · ‖F induces a norm on the quotient bundle TX/W⊥F which we will
still denote by ‖ · ‖F . Then F∗ induces an injective isometry:

(8.44) F∗ :
(
TX/W⊥F | U0, ‖ · ‖F

)
→ (TZ | V0, ‖ · ‖TZ).

The proof of Theorem 8.43 uses the following generalization of Theorem 5.3,
whose proof is omitted.

Lemma 8.45. Suppose that F contains the components of the {φα}α and of the
{ψβ ◦ F}β; suppose that C contains the {χUα}α, the {χVβ}β and χU0

; suppose that
S contains %. Suppose also that F ′ contains the components of the {ψβ}β and that
C′ contains the {χVβ} and χV0 . Let

(8.46)

Gx(F , C,S;F ′,S ′) =

{
v ∈ TxX : v = γ′(t), where γ′(t) is (F , C,S)-generic

and (F ◦ γ)′(t) is (F ′, C′)-generic

}
;

then there is a full µ-measure µ-measurable subset U1 ⊂ U0 such that, for each
x ∈ U1, Gx(F , C,S;F ′,S ′) contains a dense set of directions.

Proof of Theorem 8.43. We apply Lemma 8.45 and show that for each x ∈ U1 and
each v ∈ TxX one has:

(8.47) ‖v‖F = ‖F∗(v)‖TZ ;

by density of directions, we just need to show (8.47) for v = γ′(t) where γ′(t) is
(F , C,S)-generic and (F ◦ γ)′(t) is (F ′, C′)-generic. By Theorem 4.3 applied in X
to the pseudometric % we get:

(8.48) ‖γ′(t)‖F = %-mdγ(t);

note that by the definition of the %-metric differential we have:

(8.49) %-mdγ(t) = mdF ◦ γ(t);

finally, applying again Theorem 4.3 in Z to the metric dZ , we get:

(8.50) ‖F∗γ′(t)‖TZ = ‖(F ◦ γ)′(t)‖TZ = mdF ◦ γ(t).

�



56 JEFF CHEEGER, BRUCE KLEINER, AND ANDREA SCHIOPPA

8.3. Metric differentiation and blow-ups. In this subsection we generalize the
results of Section 7 in the case in which one considers either a Lipschitz compatible
pseudometric % on X or a Lipschitz map F : X → Z.

Definition 8.51. Let % be a Lipschitz compatible pseudometric on X and (U,ψ)
be an N -dimensional differentiability chart. A blow-up of (X,µ, ψ, %) at p along
the scales rn ↘ 0 is a tuple (Y, ν, ϕ, %̃, q) such that:

(1) The tuple (Y, ν, ϕ, q) is a blow-up of (X,µ, ψ) at p, i.e. the tuples:

(8.52)

(
1

rn
X,

µ

µ (B(p, rn))
,
ψ − ψ(p)

rn
, p

)
converge to (Y, ν, ϕ, q) in the measured Gromov-Hausdorff sense;

(2) %̃ is a Lipschitz compatible pseudometric on Y and if the points y, y′ ∈ Y
are represented, respectively, by the sequences [xn], [x′n] ⊂ X, then:

(8.53) %̃(y, y′) = lim
n→∞

%(xn, x
′
n)

rn
.

We denote by Bw-up(X,µ, ψ, %, p) the set of blow-ups of (X,µ, ψ, %) at p.

Theorem 8.54. Let (U,ψ) be an N -dimensional differentiability chart for the dif-
ferentiability space (X,µ), and let % be a Lipschitz compatible pseudometric. Then
for µ U -a.e. p, for each blow-up (Y, ν, ϕ, %̃, q) ∈ Bw-up(X,µ, ψ, %, p), and for each
unit vector v0 ∈ TpX, the measure ν admits an Alberti representation A = (Q,Φ)
where:

(1) Q is concentrated on the set Lines(ϕ, v0, %̃) of unit speed geodesic lines in
Y with:

(8.55)
(ϕ ◦ γ)′ = v0;

%̃(γ(t), γ(s)) = ‖v0‖% |t− s|;

(2) For each γ ∈ Lines(ϕ, v0, %̃) the measure Φγ is given by:

(8.56) Φγ = H1
γ .

Proof. The proof follows the method used to prove Theorem 7.11; we just:

(1) add in condition (Reg3) that:

(8.57)
∣∣∣%(γ(s1), γ(s2))− ‖γ′(t)‖% |s1 − s2|

∣∣∣ ≤ ε|s1 − s2|;

(2) require in Lemma 7.41 that U consists of points at which the map x 7→
‖ · ‖% (x) is approximately continuous.

�

We now discuss what happens in the case of a Lipschitz map F : X → Z. When
we defined blow-ups of the chart functions there was no issue with the target space
because RN possesses a group of dilations. For a general map F : X → Z we first
need to use ultramits [KL97, Sec. 2.4] to blow-up Z; we recall here the relevant
constructions.
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Definition 8.58. Let (Z, z0) denote a pointed metric space and let rn ↘ 0; we
define a blow-up (W,w0) of (Z, z0) along the scales rn ↘ 0 as an ultralimit of the

sequence of pointed metric spaces
(

1
rn
Z, z0

)
. Specifically, we choose a nonprincipal

ultrafilter ω and consider the set W̃ of those sequences [zn] ⊂ Z such that:

(8.59) lim sup
n→∞

dZ(zn, z0)

rn
<∞.

We define a pseudometric dW̃ on W̃ by:

(8.60) dW̃ ([zn], [z′n]) = lim
ω

dZ(zn, z
′
n)

rn
.

On W̃ we consider the equivalence relation:

(8.61) [zn] ∼ [z′n]⇐⇒ dW̃ ([zn], [z′n]) = 0;

then dW̃ induces a metric dW on the quotient space W = W̃/ ∼, and the base
point w0 is the equivalence class of the constant sequence [z0]. We denote the set
of blow-ups of Z at z0 by Bw-up(Z, z0).

Consider now the case of a Lipschitz map F : X → Z; having fixed scales rn ↘ 0,
we construct blow-ups (Y, q) ∈ Bw-up(X, p) and (W,w0) ∈ Bw-up(Z,F (p)). We
then obtain a Lipschitz map G : (Y, q) → (W,w0) by blowing up the graph of F
at (p, F (p)). Specifically, if [xn] ⊂ X represents the point y ∈ Y , we let G(y)
be the equivalence class of the sequence [F (xn)]. In general, we say that a tu-
ple (Y, ν, ϕ, q;G,W,w0) is a blow-up of (X,µ, ψ;F,Z) at p if: (Y, ν, ϕ, q) ∈
Bw-up(X,µ, ψ, p), (W0, w0) ∈ Bw-up(Z,F (p)), and G is obtained by blowing up
F : X → Z at p. We denote the set of blow-ups of (X,µ, ψ;F,Z) at p by
Bw-up(X,µ, ψ, p;F,Z).

Applying Theorem 8.54 to the pseudometric F ∗dZ we get:

Theorem 8.62. Let (U,ψ) be an N -dimensional differentiability chart for the dif-
ferentiability space (X,µ), and let F : X → Z be a Lipschitz map. Then for
µ U -a.e. p, for each blow-up (Y, ν, ϕ, q;G,W,w0) ∈ Bw-up(X,µ, ψ, p;F,Z), and
for each unit vector v0 ∈ TpX, the measure ν admits an Alberti representation
A = (Q,Φ) where:

(1) Q is concentrated on the set Lines(ϕ, v0, G) of unit speed geodesic lines in
Y with:

(8.63)
(ϕ ◦ γ)′ = v0;

dW (G ◦ γ(t), G ◦ γ(s)) = ‖v0‖F |t− s|;
(2) For each γ ∈ Lines(ϕ, v0, G) the measure Φγ is given by:

(8.64) Φγ = H1
γ .

Remark 8.65. In [Che99, Sec. 10] it was shown that if (X,µ) is a PI-space and if f
is a real-valued Lipschitz map defined on X, at µ-a.e. p, blowing-up f at p always
produces a generalized linear function g; in particular, the corresponding space Y
contains through each point a geodesic line γ on which the blow-up F is affine, and
such that γ behaves as an integral curve of the gradient of F . Applying Theorem
8.62 to the case in which F = f , one gets, through each point of Y , many geodesic
lines on which the blow-up G is affine, and these geodesic lines can be used to
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obtain a Fubini-like decomposition of the measure ν. Among these geodesic lines,
those where the slope of G is maximal correspond to the vector v0 which is the
derivative of f at p with respect to the coordinate functions ψ.

9. Examples

In this Section we provide some examples of how metric differentiation can be
used to constrain the infinitesimal geometry of a Lipschitz map F : X → Y , where
X is a differentiability space. We will use a class of examples of differentiability
spaces introduced in [CK13].

Definition 9.1 (Admissible inverse systems). We consider an inverse system of
metric measure graphs:

(9.2) · · · πi−1←−−− Xi
πi←− Xi+1

πi+1←−−− · · · ,

where the index i can range either over Z or over N∪{0}: in the former case we will
say that the inverse system is signed, and in the latter case that it is unsigned.
Having fixed an integer m ≥ 2 and parameters ∆, C, θ ∈ (0,∞), we say that the
inverse system {Xi, πi} is admissible if it satisfies the following axioms:

(Ad1): Each metric space (Xi, di) is a nonempty connected graph with ver-
tices of valence ≤ ∆ and such that each edge of Xi is isometric to an interval
of lenght m−i with respect to the path metric di;

(Ad2): Let X ′i denote the graph obtained by subdividing each edge of Xi

into m edges of length m−(i+1). Then πi induces a map πi : (Xi+1, di+1)→
(X ′i, di) which is open, simplicial and an isometry on every edge;

(Ad3): For each xi ∈ X ′i the inverse image π−1
i (xi) ⊂ Xi+1 has di+1-diameter

at most θm−(i+1);

(Ad4): Each graph Xi is equipped with a measure µi which restricts to a
multiple of arclength on each edge; if e1, e2 are two adjacent edges of Xi

we have:

(9.3)
µi(e1)

µi(e2)
∈ [C−1, C];

(Ad5): The measures {µi} are compatible with the projections {πi}: πi]µi+1 =
µi;

(Ad6): Let St(x,G) denote the star of a vertex x in a graph G, i.e. the union
of all the edges containing x. Then, for each vertex v′i ∈ X ′i and each
vi+1 ∈ π−1

i (v′i), the quantity:

(9.4)
µi+1

(
π−1
i (e′i) ∩ St(vi+1, Xi+1)

)
µi(e′i)

is the same for all edges e′i ∈ St(v′i, X
′
i);

(Ad7): If the inverse system {Xi, πi} is unsigned we will assume that X0 '
[0, 1], µ0 = L1 [0, 1] and we will denote by ϕi the map:

(9.5) ϕi = π1 ◦ · · · ◦ πi−1.
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If the inverse system {Xi, πi} is signed we require the existence of open
surjective maps ϕi : Xi → R which are, regarding R as a graph of edges{

[km−i, (k + 1)m−i]
}
k∈Z, simplicical and restrict to isometries on every

edge. Moreover, we require that the {ϕi} are compatible with the {πi}:
(9.6) ϕi ◦ πi = ϕi+1 (∀i).

An immediate consequence of the axioms (Ad1)–(Ad7) is that the metric mea-
sure spaces (Xi, di, µi) converge in the measured Gromov-Hausdorff sense3 to a
metric measure space (X∞, d∞, µ∞) which is called the inverse limit of the ad-
missible inverse system. If {Xi, πi} is unsigned, then (X∞, d∞) is compact geodesic
and µ∞ is a doubling probability measure; if {Xi, πi} is signed, (X∞, d∞) is proper
geodesic and µ∞ is a doubling measure. In both cases there are 1-Lipschitz maps
π∞,k : X∞ → Xk satisfying:

(9.7)
πk−1 ◦ π∞,k = π∞,k−1

π∞,k]µ∞ = µk.

For j > k we will use the short-hand notation πj,k to denote the map πk ◦· · ·◦πj−1.
Moreover, the maps ϕi : Xi → R or [0, 1] pass to the limit giving a 1-Lipschitz map
ϕ∞ : X∞ → R or [0, 1] satisfying:

(9.8) ϕ∞(q) = ϕi(π∞,i(q)) (∀q ∈ X∞, ∀i ∈ Z or N ∪ {0})
We now define a special class of paths in Xi or X∞.

Definition 9.9. Let I ⊆ R be connected and γ : I → Xi continuous, where we
allow i = ∞. We say that γ is a monotone geodesic if ϕi ◦ γ : I → R or [0, 1]
is either a strictly increasing or decreasing affine map. In particular, the axioms
(Ad1)–(Ad7) imply that γ is a constant speed geodesic in (Xi, di). Moreover, by
axioms (Ad2) and (Ad7), if j > i and if γi : I → Xi is a monotone geodesic, then
for each qj ∈ π−1

j,i (γi(I)), one can lift γi to obtain a monotone geodesic γj : I → Xj

passing through qj and satisfying πj,i ◦ γj = γi.

We now summarize some important consequences of the axioms (Ad1)–(Ad7).

Theorem 9.10. Let {Xi, πi} be an admissible inverse system and let X∞ denote
the inverse limit; then:

(1) The metric measure space (X∞, d∞, µ∞) admits a (1, 1)-Poincaré inequal-
ity; in particular, it is a differentiability space with a single differentiability
chart (X∞, ϕ∞);

(2) If {Xi, πi} is unsigned, then µ∞ admits an Alberti representation (P,H1
γ),

where P is a probability measure supported in the set of monotone geodesics
γ : [0, 1]→ X∞ which satisfy:

(9.11) ϕ∞ ◦ γ(t) = t (∀t ∈ [0, 1]).

If {Xi, πi} is signed, then µ∞ admits an Alberti representation (Q,H1
γ),

where Q is a Radon measure supported in the set of monotone geodesic
(lines) γ : R→ X∞ which satisfy:

(9.12) ϕ∞ ◦ γ(t) = t (∀t ∈ R).

3If {Xi, πi} is signed we consider the convergence in the pointed sense by choosing basepoints
{qi}i∈Z satisfying πi(qi+1) = qi.
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(3) For each i, there is an isometric embedding ιi : Xi → X∞ such that π∞,i ◦
ιi = idXi , and ιi(Xi) is C(θ,∆, C)m−i-dense in X∞. Moreover, having
fixed a basepoint q ∈ Y∞, we can choose the {ιi} so that ιi−1(Xi−1) ⊂ ιi(Xi)
and q ∈ ιi(Yi).

The proof of Theorem 9.10 is contained in [CK13]; note, however, that in [CK13]
only the case of what we call unsigned inverse systems is discussed: the modifica-
tions for the case of signed inverse systems are straightforward. Alberti representa-
tions are not explicitly mentioned in [CK13], but part (2) in Theorem 9.10 follows
from the discussion in [CK13, Sec. 6].

We now describe the blow-ups of a inverse limit space: these can be described
using signed inverse systems. Recall that if X is a metric space, for σ > 0 the
notation σX denotes the metric space (X,σdX).

Theorem 9.13. Let X∞ be the inverse limit of an admissible inverse system
{Xi, πi} and let ψ = ϕ∞; if the system is unsigned assume also that p 6∈ ψ−1 ({0, 1}).
Then each element of Bw-up(X∞, µ∞, ψ, p) is of the form (σY∞, c · ν∞, σ · ϕ, q)
where:

(1) The metric measure space (Y∞, d∞, ν∞) is the inverse limit of a signed
admissible inverse system {Yi, πi}, and ϕ is the function ϕ∞ corresponding
to Y∞;

(2) The parameters σ anc c satisfy:

(9.14)

σ ∈ [1,m]

c =
1

ν∞ (BY∞(q, 1/σ))
;

(3) The basepoint q satisfies ϕ(q) = 0.

For p ∈ X∞ let ∂ψ |p∈ TpX∞ denote the tangent vector to a unit-speed monotone
increasing geodesic segment passing through p. Note that ∂ψ |p provides a basis of
TpX∞.

Theorem 9.15. Let X∞ be the inverse limit of an admissible inverse system
{Xi, πi}. Let F : X∞ → Z be Lipschitz. Then there is a full µ∞-measure sub-
set SF ⊂ X∞ such that, for each p ∈ SF and each (σY∞, c · ν∞, σ ·ϕ, q;G,W,w0) ∈
Bw-up(X∞, µ∞, ψ, p;F,Z), one has that G maps each unit-speed monotone geo-
desic line γ : R→ Y∞ to a (possibly degenerate4) geodesic line in W with constant
speed σ−1 ‖∂ψ |p‖F .

Proof. We apply Theorem 8.62 and consider a blow-up (σY∞, c·ν∞, σ·ϕ, q;G,W,w0)
at a point p where the conclusion of that Theorem holds. By reparametrizing geo-
desic lines we obtain an Alberti representation (Q,Φ) of c ·ν∞ with Q concentrated
on the set Ω of monotone increasing geodesic lines in Y∞ which are mapped by G
to geodesic lines of constant speed σ−1 ‖∂ψ |p‖F . Let γ : R → Y∞ be a unit-speed
monotone increasing geodesic line, and consider the monotone geodesic line:

(9.16) γj = π∞,j ◦ γ : R→ Yj .

4This happens iff
∥∥∂ψ |p∥∥F = 0, i.e. when G ◦ γ is constant.
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The map π∞,j can be used to push-forward monotone geodesic lines from Y∞ to Yj ;
thus, (π∞,j]Q,Φ) gives an Alberti representation of c · νj . As Yj is a graph and as

νj restricts to a multiple of arclength on each edge, there must be a γ̃j ∈ Ω which,
up to composition with a translation by some aj ∈ R, lifts γj . By Axiom (Ad3)
we conclude that:

(9.17) dY∞(γ(t), γ̃j(t+ a)) ≤ C(θ,m)m−j (∀t ∈ R);

letting j ↗∞ we conclude that G ◦ γ is a geodesic line in W with constant speed
σ−1 ‖∂ψ |p‖F . �

We now study Lipschitz maps F : X∞ → Z where Z is a CBB(κ)-space, i.e. a
metric space with curvature bounded from below by κ. For a review of the prop-
erties of CBB(κ)-spaces used here we refer the reader to [Pau01, Sec. 6.2]. The
properties of CBB(κ)-spaces that we will use are:

(1) Blow-ups of CBB(κ)-spaces are CBB(0)-spaces;

(2) In a CBB(0)-space geodesics do not branch; i.e. suppose that γi : [0, 1] →
CBB(0) (i = 1, 2) is a geodesic and that, for some ε > 0, one has γ1|[0, ε] =
γ2|[0, ε]; then one of the sets γi([0, 1]) (i = 1, 2) contains the other.

Theorem 9.18. Let F : X∞ → Z be Lipschitz where Z is a CBB(κ)-space. Let:

(9.19)
SF,0 =

{
p ∈ SF : ‖∂ψ |p‖F = 0

}
SF,> =

{
p ∈ SF : ‖∂ψ |p‖F > 0

}
;

then:

(1) For µ∞-a.e. p ∈ SF,0, for each blow-up (σY∞, c · ν∞, σ · ϕ, q;G,W,w0) ∈
Bw-up(X∞, µ∞, ψ, p;F,Z) one has G(Y∞) = {w0};

(2) For µ∞-a.e. p ∈ SF,>0, for each blow-up (σY∞, c · ν∞, σ · ϕ, q;G,W,w0) ∈
Bw-up(X∞, µ∞, ψ, p;F,Z) there is a geodesic Γ : R → W with constant
speed σ−1 ‖∂ψ |p‖F and such that the following diagram commutes:

(9.20)

Y∞ W

R
��

ϕ

//G
::ttttttttttttttttt

Γ

Proof. Let p ∈ SF,0: then G maps monotone geodesic lines of Y∞ to points; since
each ιi(Yi) is connected and Cm−i-dense in Y∞, we conclude that all monotone
geodesics are mapped to w0.

Let now p ∈ SF,> and consider the family of maps

(9.21) Gk = G ◦ ιk : Yk → Y∞;

we will first show that Gk+1 collapses the fibres of πk : Yk+1 → Y ′k, i.e. that
whenever q1,k+1, q2,k+1 ∈ π−1(qk), then Gk+1(qi,k+1) = Gk(qk) for i = 1, 2. By
(Ad3) we can take a unit-speed geodesic segment γk+1 joining q1,k+1 to q2,k+1.
We can divide Dom γk+1 into maximal subintervals I0 ∪ · · · ∪ IN such that each
γk+1|Il is either a monotone increasing or a monotone decreasing geodesic. We
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now consider, for l < N , adjacent subintervals Il and Il+1 and assume, without loss
of generality, that γk+1|Il is increasing and γk+1|Il+1 is decreasing. Let tl be the
terminal point of Il and let e be an edge of Y ′l containing πk (γk+1(tl)) and a point
q′k satisfying:

(9.22) ϕk(q′k) > ϕk (πk (γk+1(tl))) .

Lift e to an edge ẽ of Yk+1 containing γk+1(tl); then we can construct monotone
geodesics γl,k+1 and γl+1,k+1 such that the image of γi,k+1 contains γk+1(Il) ∪ ẽ
for i = l, l + 1. By Theorem 9.15 the curves {Gk+1 ◦ γi,k+1}i=l,l+1 are geodesics
in a CBB(0) space and so they cannot branch. In particular, if sl ∈ Il and sl+1 ∈
Il+1 are such that ϕk+1 (γk+1(sl)) = ϕk+1 (γk+1(sl+1)), then Gk+1 (γk+1(sl)) =
Gk+1 (γk+1(sl+1)). Thus, by induction on l, we conclude that the value ofGk+1 (γk+1(t))
is determined by the value of ϕk+1 (γk+1(t)); therefore, Gk+1(q1,k+1) = Gk+1(q2,k+1).
As ιk(qk) can be identified with a point ιk+1(q0,k+1) with πk(q0,k+1) = qk, we con-
clude that Gk+1(q1,k+1) = Gk(qk).

Let γ : R → Y∞ be a monotone increasing unit speed geodesic of Y∞ which
satisfies:

(9.23)
γ(0) = q

ϕ (γ(t)) = t (∀t ∈ R).

We take Γ = G◦γ and observe that Theorem 9.15 implies that Γ is a geodesic in W
with constant speed σ−1 ‖∂ψ |p‖F . Let q̃ ∈ Y∞ and fix j > 0; we can find q̃j ∈ Yj
such that:

(9.24)
dY∞(q̃, ιj(q̃j)) ≤ C(θ,∆, C,m)m−j

ϕ(q̃) = ϕj(q̃j);

we now consider the monotone geodesic line γj = π∞,j ◦ γ in Yj , and observe that,
by axioms (Ad3), (Ad7) and by Theorem 9.10(3), we have:

(9.25)
dY∞(γ(t), ιj (γj(t))) ≤ C(θ,∆, C,m)m−j (∀t ∈ R)

ϕj (γj(t)) = t (∀t ∈ R).

Choose k ∈ Z such that m−k is larger than the distance between q̃j and γj(R);
then there is a vertex v ∈ Yk such that πj,k(qj) lies in St(v) and πj,k ◦ γj passes
through v. By further decreasing k we can then arrange that πj,k(qj) ∈ πj,k (γj(R));
by compatibility with {ϕi} we conclude that πj,k(q̃j) = πj,k (γj (ϕ(q̃j))). Using
inductively the argument on the collapse of the fibres we get:

(9.26) Gj(q̃j) = Gj (γj (ϕ(q̃j))) ,

from which we get:

(9.27) dW (G(q̃), G (γ (ϕ(q̃)))) ≤ 2L(F )× Cm−j ,
and the result follows letting j ↗∞. �

We now study Lipschitz maps F : X∞ → Z where Z is a CBA(κ)-space, i.e. a metric
space with curvature bounded from above by κ. For a review of the properties of
CBA(κ)-spaces used here we refer the reader to [Pau01, Sec. 6.1]. The properties
of CBA(κ)-spaces that we will use are:

(1) Blow-ups of CBA(κ)-spaces are CAT(0)-spaces, i.e. the condition about
triangle comparison holds globally;
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(2) If Z is a CAT (0) space and γi : [0,∞) → Z (i = 1, 2) are geodesic rays
with the sets {γi ([0,∞))}i=1,2 at bounded distance from each other, and

such that γ1(0) = γ2(0), then the sets {γi ([0,∞))}i=1,2 coincide.

Theorem 9.28. Let F : X∞ → Z be Lipschitz, where Z is a CBA(κ)-space. Using
the same notation as in Theorem 9.18:

(1) For µ∞-a.e. p ∈ SF,0, for each blow-up (σY∞, c · ν∞, σ · ϕ, q;G,W,w0) ∈
Bw-up(X∞, µ∞, ψ, p;F,Z) one has G(Y∞) = {w0};

(2) For µ∞-a.e. p ∈ SF,>0, for each blow-up (σY∞, c · ν∞, σ · ϕ, q;G,W,w0) ∈
Bw-up(X∞, µ∞, ψ, p;F,Z) there is a geodesic Γ : R → W with constant
speed σ−1 ‖∂ψ |p‖F and such that the following diagram commutes:

(9.29)

Y∞ W

R
��

ϕ

//G
::ttttttttttttttttt

Γ

Proof. The proof follows the same line of reasoning as that of Theorem 9.18: the
only difference is that a new argument is required to show that Gk+1 collapses the
fibres of πk : Yk+1 → Y ′k. We will first show the following: suppose that there are
monotone geodesic segments γi,k+1 : [0, T ]→ Yk+1 (i = 1, 2) satisfying:

(1) γ1,k+1(0) = γ2,k+1(0);

(2) πk (γ1,k+1(t)) = πk (γ2,k+1(t)) for each t ∈ [0, T ];

then for each t ∈ [0, T ] one has Gk+1 (γ1,k+1(t)) = Gk+1 (γ2,k+1(t)). Without loss
of generality, we can assume that the geodesics γi,k+1 are increasing; we take a
monotone ray:

(9.30) γk : [0,∞)→ Yk

which coincides with πk ◦ γi,k+1 when restricted to [0, T ]. Using (Ad2), we lift γk
in Yk+1 to extend each γi,k+1 to a ray:

(9.31) γi,k+1 : [0,∞)→ Yk.

By (Ad3) we have:

(9.32) dYk+1
(γ1,k+1(t), γ2,k+1(t)) ≤ θ ·m−(k+1) (∀t ∈ R);

by Theorem 9.15 the maps {Gk+1 ◦ γi,k+1}i=1,2 are geodesic rays in a CAT(0)-space

which issue from the same point, which are at bounded distance from each other,
and which have the same speed; therefore, we conclude that:

(9.33) Gk+1 (γ1,k+1(t)) = Gk+1 (γ2,k+1(t)) (∀t ∈ R).

Now take a unit-speed geodesic segment γk+1 joining q1,k+1 to q2,k+1. We can
divide Dom γk+1 into maximal subintervals I0 ∪ · · · ∪ IN such that each γk+1|Il
is either a monotone increasing or a monotone decreasing geodesic. Using the
previous argument on pairs (γk+1|Il, γk+1|Il+1) for l < N , we conclude that if
s1, s2 ∈ Dom γk+1 are such that:

(9.34) ϕk+1 (γk+1(s1)) = ϕk+1 (γk+1(s2)) ,
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then one has Gk+1 (γk+1(s1)) = Gk+1 (γk+1(s2)), from which the claim about the
collapse of the fibres follows. �

We now consider Lipschitz maps F : X∞ → G, where G is a Carnot group
equipped with the Carnot-Caratheodory distance corresponding to the choice of a
norm ‖ · ‖h on the horizontal layer h of its Lie algebra g. We refer to [Pau01] for
more background on Carnot groups. For the moment, we recall that there is a
canonical 1-Lipschitz projection πG : G→ h, that the blow-up of G at any point g
is unique and can be canonically identified with G, and that the basepoint can be
taken to be the identity 0G ∈ G.

Theorem 9.35. Let F : X∞ → G be Lipschitz, and let η = πG ◦ F . Using the
same notation as in Theorem 9.18:

(1) For µ∞-a.e. p ∈ SF,0, for each for each blow-up (σY∞, c·ν∞, σ·ϕ, q;G,G, 0G) ∈
Bw-up(X∞, µ∞, ψ, p;F,G) one has G(Y∞) = {0G};

(2) Let p ∈ SF,>0 be an approximate continuity point for the derivatives ∂ψη
and let v(p) = ∂ψη(p) ∈ h. Considering a blow-up (σY∞, c·ν∞, σ·ϕ, q;G,G, 0G) ∈
Bw-up(X∞, µ∞, ψ, p;F,G), and denoting by Γ : R→ h ⊂ G the horizontal
line Γ(t) = exp(v(p) · t), the following diagram commutes:

(9.36)

Y∞ G

R
��

σϕ

//G
::tttttttttttttttttt

Γ

Moreover, one has ‖v(p)‖h = ‖∂ψ |p‖F .

Proof. We focus on the case p ∈ SF,>. A modification of the argument of Theorem
9.15 implies that, whenever p is an approximate continuity point of the derivative
∂ψη, G maps unit-speed geodesic lines of σY∞ to left translates of the line Γ(t) =
exp(v(p) · t). Moreover, these translates must have constant speed ‖∂ψ |p‖F , which
implies that ‖v(p)‖h = ‖∂ψ |p‖F . One can then argue as in 9.18, as horizontal lines
in G with the same velocity vector cannot branch. �

We now focus on Lipschitz maps F : G→ Z and recall a few more things about
Carnot groups. Let N denote the dimension of g and recall that the exponential
map exp : g ' RN → G can be used to identify (topologically) G with RN . We will
use this identification to introduce coordinates on G and to transfer the Lebesgue
measure from RN to G. Moreover, given v ∈ h \ {0} we will denote by v⊥ its
orthogonal complement with respect to the standard product on RN . For w ∈ v⊥
denote by Γv,w the geodesic line:

(9.37) Γv,w(t) = exp(vt) · w;

recall also that, given g ∈ G, there are unique (t, w) ∈ R×v⊥ such that exp(tv)·w =
g. We will denote by πG,v the map g 7→ t, which is 1/ ‖v‖h-Lipschitz. Using the

identification G ' RN , we will denote by µG the multiple of Lebesgue measure
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which gives unit measure to the unit ball5 of G. The metric measure space (G, µG)
is then a differentiability space and, for each v ∈ h \ {0}, one gets an Alberti
representation of the form:

(9.38) µ = C ×
∫
v⊥

H1
Γv,w dL

N−1(w),

where LN−1(w) denotes the Lebesgue measure on v⊥, and C is a constant. A
global chart for the differentiable structure is (G, πG) and, for each g ∈ G, the set
Bw-up(G, µG, πG, g) consists of the single tuple (G, µG, πG, 0G). Using the Alberti
representations (9.38), we can restate 8.62 for Carnot groups: this is just Pauls’
metric differentiation Theorem [Pau01, Thm. 4.7].

Theorem 9.39. If F : G → Z is Lipschitz, then there is a full µG-measure Borel
subset SF such that, for each g ∈ SF and each blowup (G, µG, πG, 0G;G,W,w0) ∈
Bw-up(G, µG, πG, g;F,Z), G maps each Γv,w to a geodesic line of W with constant
speed ‖v‖F (g).

We now study maps F : G→ X∞.

Theorem 9.40. Let F : G→ X∞ be Lipschitz and let:

(9.41)
SF,0 = {g ∈ SF : ‖ · ‖F (g) = 0}
SF,> = {g ∈ SF : ‖ · ‖F (g) 6= 0} ;

then:

(1) For µG-a.e. g ∈ SF,0, for each blow-up (G, µG, πG, 0G;G, σY∞, q) ∈ Bw-up(G, µG, πG, g;F,X∞)
one has G(Y∞) = {q};

(2) For µG-a.e. g ∈ SF,>0 the set of those v ∈ h with ‖v‖F (g) = 0 lies in
a (dim h − 1)-dimensional hyperplane of h. Moreover, for each blow-up
(G, µG, πG, 0G;G, σY∞, q) ∈ Bw-up(G, µG, πG, g;F,X∞), if we denote by
γ : R→ Y∞ a unit-speed monotone increasing geodesic satisfying:

(9.42)
ϕ (γ(t)) = t (∀t ∈ R)

γ(0) = q,

then, if for v ∈ h satisfying ‖v‖F (g) 6= 0 we let γv(t) = γ
(
t× σ−1v · ∂πG(ψ ◦ F )(g)

)
,

the following diagram commutes:

(9.43)

G Y∞

R
��

πG,v

//G
::ttttttttttttttttt

γv

Proof. We focus on the case in which g ∈ SF,> is a point of approximate continuity
of ∂πG(ψ ◦ F ). Then the map G ◦ Γv,w satisfies:

(9.44)
dϕ (G ◦ Γv,w(t))

dt
= σ−1v · ∂πG(ψ ◦ F )(g),

5With respect to the Carnot-Caratheodory metric.
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where we remind the reader that ψ = ϕX∞ and ϕ = ϕY∞ . In particular,

(9.45) ‖v‖F (g) = |v · ∂πG(ψ ◦ F )(g)| ,

which implies that the set of those v ∈ h which are annihilated by ‖ · ‖F (g) is the
hyperplane:

(9.46) v · ∂πG(ψ ◦ F )(g) = 0.

Suppose now that ‖v‖F (g) 6= 0 and consider the monotone geodesic:

(9.47) γv,w,k = π∞,k ◦G ◦ Γv,w;

if two monotone geodesics γ1, γ2 : R→ Yk satisfying

(9.48) dYk(γ1(0), γ2(0)) ≤ m−k

2

are distinct, then at some point t ∈ R one must have:

(9.49) dYk(γ1(t), γ2(t)) ≥ m−k/2.

In particular, if w1, w2 ∈ G are at distance < m−kσ/(2L(F )) in G, then the maps
γv,w1,k and γv,w2,k coincide. As the set π−1

G,v(0) is connected, we conclude that:

(9.50) π∞,k ◦G ◦ Γv,w(t) = π∞,k ◦ γ
(
t× σ−1 ‖v‖F (g)

)
.

The result follows letting k ↗∞. �
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