
Coarse Alexander duality and duality groupsMisha Kapovich�Bruce KleinerySeptember 18, 2001AbstractWe study discrete group actions on coarse Poincare duality spaces, e.g.acyclic simplicial complexes which admit free cocompact group actions byPoincare duality groups. When G is an (n � 1) dimensional duality groupand X is a coarse Poincare duality space of formal dimension n, then a freesimplicial action G y X determines a collection of \peripheral" subgroupsF1; : : : ; Fk � G so that the group pair (G;F1; : : : ; Fk) is an n-dimensionalPoincare duality pair. In particular, if G is a 2-dimensional 1-ended group oftype FP2, and G y X is a free simplicial action on a coarse PD(3) space X,then G contains surface subgroups; if in addition X is simply connected, thenwe obtain a partial generalization of the Scott/Shalen compact core theorem tothe setting of coarse PD(3) spaces. In the process we develop coarse topologicallanguage and a formulation of coarse Alexander duality which is suitable forapplications involving quasi-isometries and geometric group theory.1. IntroductionIn this paper we study metric complexes (e.g. metric simplicial complexes) whichbehave homologically (in the large-scale) like Rn , and discrete group actions on them.One of our main objectives is a partial generalization of the Scott/Shalen compact coretheorem for 3-manifolds ([35], see also [26]) to the setting of coarse Poincare dualityspaces and Poincare duality groups of arbitrary dimension. In the one ended case, thecompact core theorem says that if X is a contractible 3-manifold and G is a �nitelygenerated one-ended group acting discretely and freely on X, then the quotient X=Gcontains a compact core { a compact submanifold with (aspherical) incompressibleboundary Q � X=G so that the inclusion Q! X=G is a homotopy equivalence. Theproof of the compact core theorem relies on standard tools in 3-manifold theory liketransversality, which has no appropriate analog in the 3-dimensional coarse Poincareduality space setting, and the Loop Theorem, which has no analog even for manifoldswhen the dimension is at least 4.We now formulate our analog of the core theorem. For our purpose, the appro-priate substitute for a �nitely generated, one-ended, 2-dimensional group G will be�Supported by NSF grants DMS-96-26633, DMS-99-71404.ySupported by a Sloan Foundation Fellowship, and NSF grants DMS-95-05175, DMS-96-26911.1



a duality group of dimension1 n� 1. We recall [6] that a group G is a k-dimensionalduality group if G is of type FP , H i(G;ZG) = 0 for i 6= k, and Hk(G;ZG) istorsion-free 2. Examples of duality groups include:A. Freely indecomposable 2-dimensional groups of type FP2; for instance, torsionfree one-ended 1-relator groups.B. The fundamental groups of compact aspherical manifolds with incompressibleaspherical boundary [6].C. The product of two duality groups.D. Torsion free S-arithmetic groups [9].Instead of 3-dimensional contractible manifolds, we work with a class of metric com-plexes which we call \coarse PD(n) spaces". We defer the de�nition to the main bodyof the paper (see sections 6 and Appendix 11), but we note that important exam-ples include universal covers of closed aspherical n-dimensional PL-manifolds, acycliccomplexes X with H�c (X) ' H�c (Rn) which admit free cocompact simplicial group ac-tions, and uniformly acyclic n-dimensional PL-manifolds with bounded geometry. Werecall that an n-dimensional Poincare duality group (PD(n) group) is a duality groupG with Hn(G;ZG) ' Z. Our group-theoretic analog for the compact core will be ann-dimensional Poincare duality pair (PD(n) pair), i.e. a group pair (G;F1; : : : ; Fk)whose double with respect to the Fi's is an n-dimensional Poincare duality group,[14]. In this case the \peripheral" subgroups Fi are PD(n� 1) groups. See section 3for more details.Theorem 1.1. Let X be a coarse PD(n) space, and let G be an (n� 1)-dimensionalduality group acting discretely on X. Then:1. G contains subgroups F1; : : : Fk (which are canonically de�ned up to conjugacyby the action Gy X) so that (G; fFig) is a PD(n) pair.2. There is a connected G-invariant subcomplex K � X so that K=G is compact,the stabilizer of each component of X �K is conjugate to one of the Fi's, and eachcomponent of X �K=G is one-ended.Thus, the duality groups G which appear in the above theorem behave homolog-ically like the groups in example B. As far as we know, Theorem 1.1 is new even inthe case that X ' Rn , when n � 4. Theorem 1.1 and Lemma 11.6 implyCorollary 1.2. Let � be a n-dimensional Poincare duality group. Then any (n� 1)-dimensional duality subgroup G � � contains a �nite collection F1; : : : ; Fk of PD(n�1) subgroups so that the group pair (G; fFig) is a PD(n) pair; moreover the subgroupsF1; : : : ; Fk are canonically determined by the embedding G! �.In the next theorem we obtain a partial generalization of the Scott-Shalen theoremfor groups acting on coarse PD(3) spaces.Theorem 1.3. Suppose a metric simplicial complex X is a simply connected coarsePD(3) space. If G y X is a free simplicial action of a 2-dimensional, one-ended1By the dimension of a group we will always means the cohomological dimension over Z.2We never make use of the last assumption about Hk(G;ZG) in our paper.2



group of type FP2 on X, then there exists a complex Y and a proper homotopy equiv-alence f : X=G! Y which is a homeomorphism away from a compact subset, whereY = Q [ (E1 t : : : t Ek), and1. Q is a �nite subcomplex of Y , and Q ,! Y is a homotopy equivalence.2. The Ei's are disjoint and one-ended. For each i, Si := Ei \ Q is a closedaspherical surface, and Si ,! Ei is a homotopy equivalence.3. Each inclusion Si ,! Q is �1-injective.4. (Q;S1; : : : ; Sk) is a Poincare pair [42]. In particular, Q is a �nite Eilenberg-MacLane space for G.Corollary 1.4. If G is a group of type FP2, dim(G) � 2, and G acts freely ona coarse PD(3) space, then either G contains a surface group, or G is free. Inparticular, an in�nite index FP2 subgroup of a 3-dimensional Poincare duality groupcontains a surface subgroup or is free.Proof. Let G = F � (�iGi) be a free product decomposition where F is a �nitelygenerated free group, and each Gi is �nitely generated, freely indecomposable, andnon-cyclic. Then by Stallings' theorem on ends of groups, each Gi is one-ended, andhence is a 2-dimensional duality group. By Theorem 1.1, each Gi contains PD(2)subgroups, and by [16, 17] these subgroups are surface groups.We believe that Theorem 1.3 still holds if one relaxes the FP2 assumption to�nite generation, and we conjecture that any �nitely generated group which actsfreely, but not cocompactly, on a coarse PD(3) space is �nitely presented. We notethat Bestvina and Brady [2] construct 2-dimensional groups which are FP2 but not�nitely presented.In Theorem 1.1 and Corollary 1.2, one can ask to what extend the peripherialstructure { the subgroups F1; : : : ; Fk { are uniquely determined by the duality groupG. We prove an analog of the uniqueness theorem for peripheral structure [27] forfundamental groups of acylindrical 3-manifolds with aspherical incompressible bound-ary:Theorem 1.5. Let (G; fFigi2I) be a PD(n) pair, where G is not a PD(n�1) group,and Fi does not coarsely separate G for any i. If (G; fHjgj2J) is a PD(n) pair, thenthere is a bijection � : I ! J such that Fi is conjugate H�(i) for all i 2 I.Remark 1.6. In a recent paper [36], Scott and Swarup give a group-theortic proof ofJohannson's theorem.We were led to Theorems 1.1, 1.3 by our earlier work on hyperbolic groups withone-dimensional boundary [28]; in that paper we conjectured that every torsion-freehyperbolic group G whose boundary is homeomorphic to the Sierpinski carpet is thefundamental group of a compact hyperbolic 3-manifold with totally geodesic bound-ary. In the same paper we showed that such a group G is part of a canonically de�nedPD(3) pair and that our conjecture would follow if one knew that G were a 3-manifoldgroup. One approach to proving this is to produce an algebraic counterpart to theHaken hierarchy for Haken 3-manifolds in the context of PD(3) pairs. We say that aPD(3) pair (G;H1; : : : ; Hk) is Haken if it admits a nontrivial splitting3. One would3If k > 0 then such a splitting always exists. 3



like to show that Haken PD(3) pairs always admit nontrivial splittings over PD(2)pairs whose peripheral structure is compatible with that of G. Given this, one cancreate a hierarchical decomposition of the group G, and try to show that the terminalgroups correspond to fundamental groups of 3-manifolds with boundary. The corre-sponding 3-manifolds might then be glued together along boundary surfaces to yielda 3-manifold with fundamental group G. At the moment, the biggest obstacle in thishierarchy program appears to be the �rst step; and the two theorems above providea step toward overcoming it.Remark 1.7. It is a di�cult open problem due to Wall whether each PD(n) groupG (that admits a compact K(G; 1)) is isomorphic to the fundamental group of acompact aspherical n-manifold (here n � 3), see [29]. The case of n = 1 is quiteeasy, for n = 2 the positive solution is due to Eckmann, Linnell and M�uller [16, 17].Partial results for n = 3 were obtained by Kropholler [30] and Thomas [39]. If theassumption that G has �nite K(G; 1) is omitted then there is a counter-example dueto Davis [13]; he construct PD(n) groups (for each n � 4) which do not admit �niteEilenberg-MacLane spaces. For n � 5 the positive answer would follow from BorelConjecture [29].As an application of Theorems 1.1 and 1.3 and the techniques used in their proof,we give examples of (n � 1)-dimensional groups which cannot act freely on coarsePD(n) spaces (in particular, they cannot be subgroups of PD(n) groups), see section9 for details:1. A 2-dimensional one-ended group of type FP2 with positive Euler characteristiccannot act on a coarse PD(3) space. The semi-direct product of two �nitely generatedfree groups is such an example.2. For i = 1; :::; ` let Gi be a duality group of dimension ni and assume that fori = 1; 2 the group Gi is not a PD(ni) group. Then the product G1 � :::�G` cannotact on a coarse PD(n) space where n� 1 = n1+ :::+n`. The case when n = 3 is dueto Kropholler, [30].3. If G1 is a k-dimensional duality group and G2 is the the Baumslag-Solitargroup BS(p; q) (where p 6= �q), then the direct product G1 � G2 cannot act on acoarse PD(3+ k) space. In particular, BS(p; q) cannot act on a coarse PD(3) space.4. An (n� 1)-dimensional group G of type FPn�1 which contains in�nitely manyconjugacy classes of coarsely non-separating maximal PD(n � 1) subgroups cannotact freely on a coarse PD(n) space .Our theme is related to the problem of �nding an n-thickening of an asphericalpolyhedron P up to homotopy, i.e. �nding a homotopy equivalence P ! M whereM is a compact manifold with boundary and dim(M) = n. If k = dim(P ) thenwe may immerse P in R2k by general position, and obtain a 2k-manifold thickeningM by \pulling back" a regular neighborhood. Given an n-thickening P ! M wemay construct a free simplicial action of G = �1(P ) on a coarse PD(n) space bymodifying the geometry of Int(M) and passing to the universal cover. In particular,if G cannot act on a coarse PD(n) space then no such n-thickening can exist. Ina subsequent paper with M. Bestvina [3] we give examples of �nite k-dimensionalaspherical polyhedra P whose fundamental groups cannot act freely simplicially onany coarse PD(n) space for n < 2k, and hence the polyhedra P do not admit n-thickening for n < 2k. 4



To give an idea of the proof of Theorem 1.1, consider the case when the coarsePD(n)-space X happens to be Rn with a uniformly acyclic bounded geometry tri-angulation. We take combinatorial tubular neighborhoods NR(K) of a G-orbit Kin X and analyze the structure of connected components of X � NR(K). FollowingR. Schwartz we call a connected component C of X � NR(K) deep if C is not con-tained in any tubular neighborhood of K. When G is a group of type FPn, usingAlexander duality one shows that deep components of X � NR(K) stabilize: thereexists R0 so that no deep component of X � NR0(K) breaks up into multiple deepcomponents as R increases beyond R0. If G is an (n� 1)-dimensional duality groupthen the idea is to show that the stabilizers of of deep components of X�NR0(K) arePD(n�1)-groups, which is the heart of the proof. These groups de�ne the peripheralsubgroups F1; : : : ; Fk of the PD(n) pair structure (G;F1; : : : ; Fk) for G.When X is a coarse PD(n)-space rather than Rn , one does not have Alexanderduality since Poincare duality need not hold locally. However there is a coarse ver-sion of Poincare duality which we use to derive an appropriate coarse analogue ofAlexander duality; this extends Richard Schwartz's coarse Alexander duality fromthe manifold context to the coarse PD(n) spaces. Roughly speaking this goes asfollows. If K � Rn is a subcomplex then Poincare duality gives an isomorphismH�c (K)! Hn��(Rn ;Rn �K):This fails when we replace Rn by a general coarse PD(n) space X. We prove howeverthat for a certain constant D there are homomorphisms de�ned on tubular neighbor-hoods of K:PR+D : Hkc (ND+R(K))! Hn�k(X; YR); where YR := X �NR(K);which determine an approximate isomorphism. This means that for every R there isan R0 (one may take R0 = R+2D) so that the homorphisms a and b in the followingcommutative diagram are zero:ker(PR0) ! Hkc (NR0(K)) PR0�! Hn�k(X; YR0�D) ! coker(PR0)a # # # b #ker(PR) ! Hkc (NR(K)) PR�! Hn�k(X; YR�D) ! coker(PR)This coarse version of Poincare duality leads to coarse Alexander duality, which suf-�ces for our purposes.In this paper we develop and use ideas in coarse topology which originated inearlier work by a number of authors: [8, 20, 22, 24, 32, 33, 34]. Other recent pa-pers involving similar ideas include [10, 40, 18, 19]. We would like to stress howeverthe di�erence between our framework and versions of coarse topology in the litera-ture. In [32, 24, 25], coarse topological invariants appear as direct/inverse limits ofanti-�Cech systems. By passing to the limit (or even working with pro-categories �ala Grothendieck) one inevitably loses quantitative information which is essential inmany applications of coarse topology to quasi-isometries and geometric group theory.The notion of approximate isomorphism mentioned above (see section 4) retains thisinformation.In the main body of the paper, we deal with a special class of metric complexes,namely metric simplicial complexes. This makes the exposition more geometric, and,5



we believe, more transparent. Also, this special case su�ces for many of the appli-cations to quasi-isometries and geometric group theory. In Appendix (section 11) weexplain how the de�nitions, theorems, and proofs can be modi�ed to handle generalmetric complexes.Organization of the paper. In section 2 we introduce metric simplicial complexesand recall notions from coarse topology. Section 3 reviews some facts and de�nitionsfrom cohomological group theory, duality groups, and group pairs. In section 4 we de-�ne approximate isomorphisms between inverse and direct systems of abelian groups,and compare these with Grothendieck's pro-morphisms. Section 5 provides �nitenesscriteria for groups, and establishes approximate isomorphisms between group coho-mology and cohomologies of nested families of simplicial complexes. In section 6 wede�ne coarse PD(n) spaces, give examples, and prove coarse Poincare duality forcoarse PD(n) spaces. In section 7 we prove coarse Alexander duality and apply itto coarse separation. In section 8 we prove Theorems 1.1, 1.3, Proposition 8.11, andvariants of Theorem 1.1. In section 9 we apply coarse Alexander duality and Theo-rem 1.1 to show that certain groups cannot act freely on coarse PD(n) spaces. In thesection 10 we give a brief account of coarse Alexander duality for uniformly acyclictriangulated manifolds of bounded geometry. The reader interested in manifolds andnot in Poincare complexes can use this as a replacement of Theorem 7.5.Suggestions to the reader. Readers familiar with Grothendieck's pro-morphismsmay wish to read the second part of section 4, which will allow them to translatestatements about approximate isomorphisms into pro-language. Readers who are notalready familiar with pro-morphisms may simply skip this. Those who are interestedin �niteness properties of groups may �nd section 5, especially Theorems 5.10 andCorollary 5.13, of independent interest.Acknowledgements. We are grateful for M. Bestvina and S. Weinberger for usefulconversations about coarse Poincare duality.Contents1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Geometric Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 73 Group theoretic preliminaries . . . . . . . . . . . . . . . . . . . . . . 94 Algebraic preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Recognizing groups of type FPn . . . . . . . . . . . . . . . . . . . . . 206 Coarse Poincare duality . . . . . . . . . . . . . . . . . . . . . . . . . 287 Coarse Alexander duality and coarse Jordan separation . . . . . . . . 318 The proofs of Theorems 1.1 and 1.3 . . . . . . . . . . . . . . . . . . . 359 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4210 Appendix: Coarse Alexander duality in brief . . . . . . . . . . . . . . 4511 Appendix: Metric complexes . . . . . . . . . . . . . . . . . . . . . . . 4711.1 Metric complexes . . . . . . . . . . . . . . . . . . . . . . . . . 486



11.2 Coarse PD(n) spaces . . . . . . . . . . . . . . . . . . . . . . . 5111.3 The proof of Theorems 1.1 and 1.3 . . . . . . . . . . . . . . . 5311.4 Attaching metric complexes . . . . . . . . . . . . . . . . . . . 5411.5 Coarse �brations . . . . . . . . . . . . . . . . . . . . . . . . . 54References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602. Geometric PreliminariesMetric simplicial complexes4. Let X be the geometric realization of a connectedlocally �nite simplicial complex. Henceforth we will conate simplicial complexes withtheir geometric realizations. We will metrize the 1-skeleton X1 of X by declaring eachedge to have unit length and taking the corresponding path-metric. Such an X withthe metric on X1 will be called a metric simplicial complex. The complex X is said tohave bounded geometry if all links have a uniformly bounded number of simplices; thisis equivalent to saying that the metric space X1 is locally compact and every R-ballin X1 can be covered by at most C = C(R; r) r-balls for any r > 0. In particular,dim(X) < 1. If K � X is a subcomplex and r is a positive integer then we de�ne(combinatorial) r-tubular neighborhood Nr(K) of K to be r-fold iterated closed starof K, Str(K); we declare N0(K) to be K itself. Note that for r > 0, Nr(K) is theclosure of its interior. The diameter of K is de�ned to be the diameter of its zero-skeleton, and @K denotes the frontier of K, which is a subcomplex. For each vertexx 2 X and R 2 Z+ we let B(x;R) denote NR(fxg), the \R-ball centered at x".Coarse Lipschitz and uniformly proper maps. We recall that a map f : X ! Ybetween metric spaces is called (L;A)-Lipschitz ifd(f(x); f(x0)) � Ld(x; x0) + Afor any x; x0 2 X. A map is coarse Lipschitz if it is (L;A)-Lipschitz for some L;A.A coarse Lipschitz map f : X ! Y is called uniformly proper if there is a properfunction � : R+ ! R+ (a distortion function) such thatd(f(x); f(x0)) � �(d(x; x0))for all x; x0 2 X.Throughout the paper we will use simplicial (co)chain complexes and integer co-e�cients. If C�(X) is the simplicial chain complex and A � C�(X), then the supportof A, denoted Support(A), is the smallest subcomplex K � X so that A � C�(K).Throughout the paper we will assume that morphisms between simplicial chain com-plexes preserve the usual augmentation.If X; Y are metric simplicial complexes as above then a homomorphismh : C�(X)! C�(Y )4The de�nition of metric complexes, which generalize metric simplicial complexes, appears inAppendix 11. 7



is said to be coarse Lipschitz if for each simplex � � X, Support(h(C�(�))) hasuniformly bounded diameter. The Lipschitz constant of h ismax� diam(Support(h(C�(�)))):A homomorphism h is said to be uniformly proper if it is coarse Lipschitz and thereexists a proper function � : R+ ! R+ (a distortion function) such that for eachsubcomplex K � X of diameter � r, Support(h(C�(K))) has diameter � �(r). Wewill apply this de�nition only to chain mappings and chain homotopies5. We say thata homomorphism h : C�(X) ! C�(X) has displacement � D if for every simplex� � X, Support(h(C�(�))) � ND(�).We may adapt all of the de�nitions from the previous paragraph to mappingsbetween other (co)chain complexes associated with metric simplicial complexes, suchas the compactly supported cochain complex C�c (X).Coarse topology. Ametric simplicial complexX is said to be uniformly acyclic if forevery R1 there is an R2 such that for each subcomplex K � X of diameter � R1 theinclusion K ! NR2(K) induces zero on reduced homology groups. Such a functionR2 = R2(R1) will be called an acyclicity function for C�(X). Let C�c (X) denote thecomplex of simplicial cochains, and suppose � : Cnc (X) ! Z is an augmentation forC�c (X). Then the pair (C�c (X); �) is uniformly acyclic if there is an R0 > 0 and afunction R2 = R2(R1) so that for all x 2 X0 and all R1 � R0,Im(H�c (X;X � B(x;R1))! H�c (X;X � B(x;R2)))maps isomorphically onto H�c (X) under H�c (X;X � B(x;R2)) ! H�c (X), and � in-duces an isomorphism �� : Hnc (X)! Z.Let K � X be a subcomplex of a metric simplicial complex X. For every R � 0,we say that an element c 2 Hk(X�NR(K)) is deep if it lies in Im(Hk(X�NR0(K))!Hk(X �NR(K))) for every R0 � R; equivalently, c is deep if belongs to the image oflim �r Hk(X �Nr(K)) �! Hk(X �NR(K)):We let HDeepk (X � NR(K)) denote the subgroup of deep homology classes of X �NR(K). Hence we obtain an inverse system fHDeepk (X � NR(K))g. We say that thedeep homology stabilizes at R0 if the projection homomorphismlim �R HDeepk (X �NR(K))! HDeepk (X �NR0(K))is injective.Specializing the above de�nition to the case k = 0, we arrive at the de�nitionof deep complementary components. If R � 0, a component C of X � NR(K) iscalled deep if it is not contained within a �nite neighborhood of K. A subcomplexK coarsely separates X if there is an R so that X � NR(K) has at least two deepcomponents. A deep component C of X � NR(K) is said to be stable if for each5Recall that there is a standard way to triangulate the product �k � [0; 1]; we can use this totriangulate X � [0; 1] and hence view it as a metric simplicial complex.8



R0 � R the component C meets exactly one deep component of X � NR0(K). Kis said to coarsely separate X into (exactly) m components if there is an R so thatX �NR(K) consists of exactly m stable deep components.Note that HDeep0 (X � NR(K)) is freely generated by elements corresponding todeep components of X �NR(K). The deep homology HDeep0 (X �NR(K)) stabilizesat R0 if and only if all deep components of X �NR0(K) are stable.If G y X is a simplicial action of a group on a metric simplicial complex, thenone orbit G(x) coarsely separates X if and only if every G-orbit coarsely separatesX; hence we may simply say that G coarsely separates X. If H is a subgroup of a�nitely generated group G, then we say that H coarsely separates G if H coarselyseparates some (and hence any) Cayley graph of G.Let Y;K be subcomplexes of a metric simplicial complex X. We say that Ycoarsely separates K in X if there is R > 0 and two distinct components C1; C2 �X�NR(Y ) so that the distance function dY (�) := d(�; Y ) is unbounded on both K\C1and K \ C2. The subcomplex Y will coarsely separate X in this case.3. Group theoretic preliminariesResolutions, cohomology and relative cohomology. Let G be group and K bean Eilenberg-MacLane space for G. IfM is a system of local coe�cients on K, thenwe have homology and cohomology groups of K with coe�cients in M: H�(K;M)and H�(K;M). Now let A be a ZG-module. We recall that a resolution of A is anexact sequence of ZG-modules:: : :! Pn ! : : :! P0 ! A! 0:Every ZG-module has a unique projective resolution up to chain homotopy equiv-alence. If M is a ZG-module, then the cohomology of G with coe�cients in M ,H�(G;M), is de�ned as the homology of chain complex HomZG(P�;M) where P� isa projective resolution of the trivial ZG-module Z; the homology of G with coe�-cients in M , H�(G;M), is the homology of the chain complex P� 
ZGM . Using the1-1 correspondence between ZG-modules M and local coe�cient systems M on anEilenberg-MacLane space K, we get natural isomorphisms H�(K;M) ' H�(G;M)and H�(K;M) ' H�(G;M). Henceforth we will use the same notation to denoteZG-modules and the corresponding local systems on K(G; 1)'s.Group pairs. We now discuss relative (co)homology following [7]. Let G be a group,and H := fHigi2I an indexed collection of (not necessarily distinct) subgroups. Werefer to (G;H) as a group pair. Let qiK(Hi; 1) f! K(G; 1) be the map induced by theinclusions Hi ! G, and let K be the mapping cylinder of f . We therefore have a pairof spaces (K;qiK(Hi; 1)) since the domain of a map naturally embeds in the mappingcylinder. Given any ZG-module M , we de�ne the relative cohomology H�(G;H;M)(respectively homology H�(G;H;M)) to be the cohomology (resp. homology) of thepair (K;qiK(Hi; 1)) with coe�cients in the local system M . As in the absolute case,one can compute relative (co)homology groups using projective resolutions, see [7].For each i 2 I, let : : :! Qn(i)! : : :! Q0(i)! Z! 09



be a resolution of Z by projective ZHi-modules, and let: : :! Pn ! : : :! P0 ! Z! 0be a resolution of Z by projective ZG-modules. The inclusions Hi ! G induce ZHi-chain mappings fi : Q�(i)! P�, unique up to chain homotopy. We de�ne a ZG-chaincomplex Q� to be �i(ZG
ZHi Q�(i)) with an augmentationQ0 ! �i(ZG
ZHi Z)induced by the augmentations Q0(i) ! Z; the chain mappings fi yield a ZG-chainmapping f : Q� ! P�. We let C� be the algebraic mapping cylinder of f : this is thechain complex with Ci := Pi�Qi�1�Qi with the boundary homomorphism given by@(pi; qi�1; qi) = (@pi + f(qi�1);�@qi�1; @qi + qi�1): (3.1)We note that each Ci is clearly projective, a copy D� of Q� naturally sits in C� as thethird summand, and the quotient C�=D� is a chain complex of projective ZG-modules.Proposition 1.2 of [7] implies that the relative homology (resp. cohomology) of thegroup pair (G;H) with coe�cients in a ZG-module M (de�ned as above using localsystems on Eilenberg-MacLane spaces) is canonically isomorphic to homology of thechain complex (C�=D�)
ZGM (resp. HomZG((C�=D�);M)).Finiteness properties of groups. The (cohomological) dimension dim(G) of agroup G is n if n is the minimal integer such that there exists a resolution of Z byprojective ZG-modules: 0! Pn ! :::! P0 ! Z! 0:Recall that G has cohomological dimension n if and only if n is the minimal integer sothat Hk(G;M) = 0 for all k > n and all ZG-modules M . Moreover, if dim(G) <1then dim(G) = supfn j Hn(G;F ) 6= 0 for some free ZG-module Fg;see [12, Ch. VIII, Proposition 2.3]. If1! G1 ! G! G2 ! 1is a short exact sequence then dim(G) � dim(G1) + dim(G2), [12, Ch. VIII, Propo-sition 2.4]. If G0 � G is a subgroup then dim(G0) � dim(G).A partial resolution of a ZG-module A is an exact sequence ZG-modules:Pn ! : : :! P0 ! A! 0:If A�: :::! An ! An�1 ! : : :! A0 ! A! 0is a chain complex then we let [A�]n denote the n-truncation of A�, i.e.An ! : : :! A0 ! A! 0:A group G is of type FPn if there exists a partial resolution of Z by �nitely generatedprojective ZG-modules: Pn ! :::! P0 ! Z! 0:The group G is of type FP (resp. FL) if there exists a �nite resolution of Z by�nitely generated projective (resp. free) ZG-modules. We will also refer to groups oftype FP as groups of �nite type. 10



Lemma 3.2. 1. If G is of type FP then dim(G) = n if and only ifn = maxfi : H i(G;ZG) 6= 0g:2. If dim(G) = n and G is of type FPn then there exists a resolution of Z by �nitelygenerated projective ZG-modules:0! Pn ! :::! P0 ! Z! 0:In particular G is of type FP .Proof. The �rst assertion follows from [12, Ch. VIII, Proposition 5.2]. We prove 2.Start with a partial resolutionPn ! Pn�1 ! :::! P0 ! Z! 0where each Pi is �nitely generated projective. By [12, Ch. VIII, Lemma 2.1], thekernel Qn := ker[Pn�1 ! Pn�2] is projective. However Pn maps onto Qn, hence Qn isalso �nitely generated. Thus replacing Pn with Qn we get the required resolution.Examples of groups of type FP and FL are given by fundamental groups of�nite Eilenberg-MacLane complexes, or more generally, groups acting freely cocom-pactly on acyclic complexes. According to the Eilenberg-Ganea theorem, if G is a�nitely presentable group of type FL then G admits a �nite K(G; 1) of dimensionmax(dim(G); 3).Let G be a group, let H := fHigi2I be an indexed collection of subgroups, and let� : �i (ZG
ZHi Z)! Zbe induced by the usual augmentation ZG! Z. Then the group pair (G;H) has �nitetype if the ZG-module Ker(�) admits a �nite length resolution by �nitely generatedprojective ZG-modules. If the index set I is �nite and the groups G and Hi are oftype FP then the group pair (G;H) is of �nite type, and one obtains the desiredresolution of Ker(�) using the quotient C�=D� where (C�; D�) is the pair given by thealgebraic mapping cylinder construction (3.1).For the next three topics, the reader may consult [5, 6, 7, 12, 14].Duality groups. Let G be a group of type FP . Then G is an n-dimensionalduality group if H i(G;ZG) = f0g when i 6= n = dim(G), and H i(G;ZG) is torsion-free, [6]. There is an alternate de�nition of duality groups involving isomorphismsH i(G;M) ' Hn�i(G;D 
M) for a suitable dualizing module D and arbitrary ZG-modules M , see [6, 12]. Examples of duality groups include:1. The fundamental groups of compact aspherical manifolds with asphericalboundary, where the inclusion of each boundary component induces a monomorphismof fundamental groups.2. Torsion-free S-arithmetic groups, [6, 9].3. 2-dimensional one-ended groups of type FP2 [5, Proposition 9.17]; for instancetorsion-free, one-ended, one-relator groups.11



4. Any group which can act freely, cocompactly, and simplicially on an acyclicsimplicial complex X, where H ic(X) vanishes except in dimension n, and Hnc (X) istorsion-free.Poincar�e duality groups. These form a special class of duality groups. If G isan n-dimensional duality group and Hn(G;ZG) = Z, then G is an n-dimensionalPoincare duality group (PD(n) group). As in the case of duality groups, there is analternate de�nition involving isomorphisms H i(G;M) ' Hn�i(G;D 
M) where Mis an arbitrary ZG-module and the orientation ZG-module D is isomorphic to Z asan abelian group. Examples include:1. Fundamental groups of closed aspherical manifolds.2. Fundamental groups of aspherical �nite Poincare complexes. Recall that an(orientable) Poincare complex of formal dimension n is a �nitely dominated complexK together with a fundamental class [K] 2 Hn(K;Z) so that the cap product oper-ation [K]\ : Hk(K;M) ! Hn�k(K;M) is an isomorphism for every local system Mon K and for k = 0; : : : ; n.3. Any group which can act freely, cocompactly, and simplicially on an acyclicsimplicial complex X, where X has the same compactly supported cohomology asRn .4. Each torsion-free Gromov-hyperbolic group G whose boundary is a homologymanifold with the homology of sphere (over Z), see [4]. Note that every such group isthe fundamental group of a �nite aspherical Poincare complex, namely the G-quotientof a Rips complex of G.Below are several useful facts about Poincare duality groups (see [12]):(a) If G is a PD(n) group and G0 � G is a subgroup then G0 is a PD(n) group ifand only if the index [G : G0] is �nite.(b) If G is a PD(n) group which is contained in a torsion-free group G0 as a �niteindex subgroup, then G0 a PD(n) group.(c) If G � H is a PD(m) group then G and H are PD(n) and PD(k) groups,where m = n + k.(d) If G o H is a semi-direct product where G is a PD(n)-group and H is aPD(k)-group, then GoH is a PD(n+ k)-group. See [6, Theorem 3.5].There are several questions about PD(n) groups and their relation with funda-mental groups of aspherical manifolds. It was an open question going back to Wall[41] whether every PD(n) group is the fundamental group of a closed aspherical man-ifold. The answer to this is yes in dimensions 1 and 2, [37, 16, 17]. Recently, Davis in[13] gave examples for n � 4 of PD(n) groups which do not admit a �nite presention,and these groups are clearly not fundamental groups of compact manifolds. Thisleaves open several questions:1. Is every �nitely presented PD(n) group the fundamental group of a compactaspherical manifold?2. A weaker version of 1: Is every �nitely presented PD(n) group the fundamentalgroup of a �nite aspherical complex? Equivalently, by Eilenberg-Ganea, one may askif every such group is of type FL.3. Does every PD(n) group act freely and cocompactly on an acyclic complex?12



We believe this question is open for groups of type FP . One can also ask if everyPD(n) group acts freely and cocompactly on an acyclic n-manifold.Poincare duality pairs. Let G be an (n�1)-dimensional group of type FP , and letH1; : : : ; Hk � G be PD(n� 1) subgroups of G. Then the group pair (G;H1; : : : ; Hk)is an n-dimensional Poincare duality pair, or PD(n) pair, if the double of G over theHi's is a PD(n) group. We recall that the double ofG over theHi's is the fundamentalgroup of the graph of groups G, where G has two vertices labelled by G, k edges withthe ith edge labelled by Hi, and edge monomorphisms are the inclusions Hi ! G.An alternate homological de�nition of PD(n) pairs is the following: a group pair(G; fHigi2I) is a PD(n) pair if it has �nite type, andH�(G; fHig;ZG) ' H�c (Rn). Fora discussion of these and other equivalent de�nitions, see [7, 14]. We will sometimesrefer to the system of subgroups fHig as the peripheral structure of the PD(n) pair,and the Hi's as peripheral subgroups. The �rst class of examples of duality groupsmentioned above have natural peripheral structure which makes them PD(n) pairs.In [28] we proved that if G is a torsion-free Gromov-hyperbolic group whose boundaryis homeomorphic to the Sierpinski carpet S, then (G;H1; :::; Hk) is a PD(3) grouppair, where Hi's are representatives of conjugacy classes of stabilizers of the peripheralcircles of S in @1G. If (G;H1; : : : ; Hk) is a PD(n) pair, where G and each Hi admita �nite Eilenberg-MacLane space X and Yi respectively, then the inclusions Hi ! Ginduce a map tiYi ! X (well-de�ned up to homotopy) whose mapping cylinderC gives a Poincare pair (C;tiYi), i.e. a pair which satis�es Poincare duality formanifolds with boundary with local coe�cients (where tiYi serves as the boundaryof C). Conversely, if (X; Y ) is a Poincare pair where X is aspherical and Y is a unionof aspherical components Yi, then (�1(X); �1(Y1); : : : ; �1(Yk)) is a PD(n) pair.Lemma 3.3. Let (G; fHig) be a PD(n) pair, where G is not a PD(n � 1) group.Then the subgroups Hi are pairwise non-conjugate maximal PD(n� 1) subgroups.Proof. If Hi is conjugate to Hj for some i 6= j, then the double Ĝ of G over theperipheral subgroups would contain an in�nite index subgroup isomorphic to thePD(n) group Hi � Z. The group Ĝ is a PD(n) group, which contradicts property(a) of Poincare duality groups listed above.We now prove that each Hi is maximal. Suppose thatHi � H � G, where H 6= Hiis a PD(n � 1) group. Then [H : Hi] < 1. Pick h 2 H � Hi. Then there exists a�nite index subgroup Fi � Hi which is normalized by h. Consider the double Ĝ ofG along the collection of subgroups fHig, and let Ĝ y T be the associated actionon the Bass-Serre tree. Since G is not a PD(n � 1) group, Hi 6= G for each i, andso there is a unique vertex v 2 T �xed by G. The involution of the graph of groupsde�ning Ĝ induces an involution of Ĝ which is unique up to an inner automorphism;let � : Ĝ! Ĝ be an induced involution which �xes Hi elementwise. Then G0 := �(G)�xes a vertex v0 adjacent to v, where the edge vv0 is �xed by Hi. So h0 := �(h) belongsto �(G) = G0 but h0 does not �x vv0. Therefore the �xed point sets of h and h0 aredisjoint, which implies that g := hh0 acts on T as a hyperbolic automorphism. Sinceh0 2 Normalizer(�(Fi)) = Normalizer(Fi), we get g 2 Normalizer(Fi). Hence thesubgroup F generated by Fi and g is a semi-direct product F = Fio hgi, and hgi ' Zsince g is hyperbolic. The group F is a PD(n) group (by property (d)) sitting as anin�nite index subgroup of the PD(n) group G, which contradicts property (a).13



4. Algebraic preliminariesIn this section we introduce a notion of \morphism" between inverse systems. Ap-proximate isomorphisms, which �gure prominently in the remainder of the paper, aremaps between inverse (or direct) systems which fail to be isomorphisms in a controlledway, and for many purposes are as easy to work with as isomorphisms.Approximate morphisms between inverse and direct systems. Recall thata partially ordered set I is directed if for each i; j 2 I there exists k 2 I such thatk � i; j. An inverse system of (abelian) groups indexed by a directed set I is acollection of abelian groups fAigi2I and homomorphisms (projections) pji : Ai ! Aj,i � j so that pii = id and pkj � pji = pkifor any i � j � k. (One may weaken these assumptions but they will su�ce for ourpurposes.) We will often denote the inverse system by (A�; p�) or fAigi2I . Recallthat a subset I 0 � I of a partially ordered set is co�nal if for every i 2 I there is ani0 2 I 0 so that i0 � i.Let fAigi2I and fBjgj2J be two inverse systems of (abelian) groups indexed by Iand J , with the projection maps pi0i : Ai ! Ai0 and qj0j : Bj ! Bj0. The directed setsappearing later in the paper will be order isomorphic to Z+ with the usual order.De�nition 4.1. Let � be an order preserving, partially de�ned, map from I to J .Then � is co�nal if it is de�ned on a subset of the form fi 2 I j i � i0g for somei0 2 I, and the image of every co�nal subset I 0 � I is a co�nal subset �(I 0) � J .De�nition 4.2. Let � : I ! J be a co�nal map. Suppose that (fAigi2I ; p�) and(fBjgj2J ; q�) are inverse systems. Then a family of homomorphisms fi : Ai ! B�(i),i 2 I, is an �-morphism from fAigi2I to fBjgj2J ifq�(i0)�(i) � fi = fi � pi0i (4.3)whenever i; i0 2 I and i � i0. The saturation f̂ �� of the �-morphism f� is the collectionof maps f̂ ji : Ai ! Bj of the form qj�(k) � fk � pki :In view of (4.3) this de�nition is consistent, and f̂ �� is compatible with the projectionmaps of A� and B�.Suppose that fAigi2I , fBjgj2J , fCkgk2K are inverse systems, � : I ! J , � : J ! Kare co�nal maps. Then the composition of �- and �-morphismsf� : A� ! B�; g� : B� ! C�is a -morphism for the co�nal map  = � � � : I ! K. (The composition � � �is de�ned on the subset Domain(�) \ ��1(Domain(�)) which contains fi : i � i1gwhere i1 is an upper bound for non-co�nal subset ��1(J �Domain(�)) in I.)
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De�nition 4.4. Let A� f�! B� be an �-morphism of inverse systems (A�; p�); (B�; q�).1. When I is totally ordered, we de�ne Im(f̂ j� ), the image of f� in Bj, to be[fIm(f̂ ji : Ai ! Bj) j �(i) � jg.2. Let ! : I ! I be a function with !(i) � i for all i 2 I. Then f� is an!-approximate monomorphism if for every i 2 I we haveKer(A!(i) f!(i)�! B�(!(i))) � Ker(A!(i) p��! Ai):3. Suppose I is totally ordered. If �! : J ! J is a function with �!(j) � j for allj 2 J , then f� is an �!-approximate epimorphism if for every j 2 J we have:Im(B�!(j) q��! Bj) � Im(f̂ j� ):4. Suppose I is totally ordered. If ! : I ! I and �! : J ! J are functions, then fis an (!; �!)-approximate isomorphism if both 2 and 3 hold.We will frequently suppress the functions �; !; �! when speaking of morphisms,approximate monomorphisms (epimorphisms, isomorphisms). Note that the inverselimit of an approximate monomorphism (epimorphism, isomorphism) is a monomor-phism (epimorphism, isomorphism) of inverse limits.Note that an �-morphism induces a homomorphism between inverse limits, sincefor each co�nal subset J 0 � J we have:lim �j2J Bj �= lim �j2J0 Bj :Similarly, an approximate isomorphism of inverse systems induces an isomorphism oftheir inverse limits. However the converse is not true. For instance, let Ai := Z foreach i 2 N, where N has the usual order. Letpi�ni : Ai ! Ai�n be the index n inclusion:It is clear that the inverse limit of this system is zero. We leave it to the readerto verify that the system (A�; p�) is not approximately isomorphic to zero inversesystem.We have similar de�nitions for homomorphisms of direct systems. A direct systemof (abelian) groups indexed by a directed set I is a collection of abelian groups fAigi2Iand homomorphisms (projections) pji : Ai ! Aj, i � j so thatpii = id; pkj � pji = pkifor any i � j � k. We often denote the direct system by (A�; p�). Let fAigi2I andfBjgj2J be two direct systems of (abelian) groups indexed by directed sets I and J ,with projection maps pi0i : Ai ! Ai0 and qj0j : Bj ! Bj0.De�nition 4.5. Let � : I ! J be a co�nal map. Then a family of homomorphismsfi : Ai ! B�(i), i 2 I, is a �-morphism of the direct systems fAigi2I and fBjgj2J ifq�(i0)�(i) � fi = fi0 � pi0iwhenever i � i0. We de�ne the saturation f̂ �� the same way as for morphisms ofinverse systems. 15



De�nition 4.6. Let f� : A� ! B� be an �-morphism of direct systems:f� = ffi : Ai ! B�(i); i 2 Ig:1. When I is totally ordered we de�ne Im(f̂ j� ), the image of f� in Bj, to be[fIm(f̂ ji ) j �(i) � jg.2. Let ! : I ! I be a function with !(i) � i for all i 2 I. Then f� is an!-approximate monomorphism if for every i 2 I we haveKer(Ai fi�! B�(i)) � Ker(Ai p��! A!(i)):3. Suppose I is totally ordered, and �! : J ! J is a function with �!(j) � j for allj 2 J . f� is an �!-approximate epimorphism if for every j 2 J we have:Im(Bj q��! B�!(j)) � Im(f̂ �!(j)� ):4. Suppose I is totally ordered and ! : I ! I and �! : J ! J are functions. Thenf is an (!; �!)-approximate isomorphism if both 2 and 3 hold.An inverse (direct) system A� is said to be constant if Ai = Aj and pij = idfor each i; j. An inverse (direct) system A� is approximately constant if there is anapproximate isomorphism between it and a constant system (in either direction).Likewise, an inverse or direct system is approximately zero if it is approximatelyisomorphic to a zero system. The reader will notice that approximately zero systemsare the same as pro-zero systems [1, Appendix 3], i.e. systems A� such that for eachi 2 I there exists j � i such that pij : Aj ! Ai (resp. pji : Ai ! Aj) is zero (seebelow).The proof of the following lemma is straightforward and is left to the reader.Lemma 4.7. The composition of two approximate monomorphisms (epimorphisms,isomorphisms) is an approximate monomorphism (epimorphism, isomorphism).Category-theoretic behavior of approximate morphisms andGrotendieck's pro-categories.The remaining material in this section relates to the category theoretic behaviorof approximate morphisms and a comparison with pro-morphisms, and it will not beused elsewhere in the paper.In what follows (A�; p�) and (B�; q�) will once again denote inverse systems indexedby I and J respectively. However, for simplicity we will assume that I and J are bothtotally ordered.De�nition 4.8. Let f� : A� ! B� be an �-morphism with saturation f̂ �� . Thekernel of f� is the inverse system fKigi2I where Ki := Ker(fi : Ai ! B�(i)) withthe projection maps obtained from the projections of A� by restriction. We de�nethe image of f� to be the inverse system fDjgj2J where Dj := Im(f̂ j� ), with theprojections coming from the projections of B�. Note that Dj is a subgroup of Bj,j 2 J . We also de�ne the cokernel coKer(f�) of f�, as the inverse system fCjgj2Jwhere Cj := Bj=Dj. 16



An inverse (respectively direct) system of abelian groups A� is pro-zero if for everyi 2 I there exists j � i such that pij : Aj ! Ai (resp. pji : Ai ! Aj) is zero (see [1,Appendix 3]). Using this language we may reformulate the de�nitions of approximatemonomorphisms:Lemma 4.9. Let f� : A� ! B� be a morphism of inverse systems of abelian groups.Then1. f� is an approximate monomorphism i� its kernel K� := Ker(f�) is pro-zero.2. f� is an approximate epimorphism i� its cokernel is a pro-zero inverse system.3. f� is an approximate isomorphism i� both Ker(f�) and coKer(f�) are pro-zerosystems.Proof. This is immediate from the de�nitions.For a �xed co�nal map � : I ! J , the collection of �-morphisms from A� to B�forms an abelian group the obvious way. In order to compare morphisms A� ! B�with di�erent index maps I ! J , we introduce an equivalence relation:De�nition 4.10. Let f : A� ! B� and g : A� ! B� be morphisms with saturationsf̂ �� and ĝ��. Then f� is equivalent g� if there is a co�nal function � : J ! I so that forall j 2 J , both f̂ j�(j) and ĝj�(j) are de�ned, and they coincide.This equivalence relation is compatible with composition of approximate morphisms.Hence we obtain a category Approx where the objects are inverse systems of abeliangroups and the morphisms are equivalence classes of approximate morphisms. Anapproximate inverse for an approximate morphism f� is an approximate morphism g�which inverts f� in Approx.Lemma 4.11. Suppose I; J �= Z+, D� is a sub inverse system of A� (i.e. Di � Ai,i 2 I), and let Q� be the quotient system: Qi := Ai=Di. Then1. The morphism A� ! Q� induced by the canonical epimorphisms Ai ! Qi hasan approximate inverse i� D� is a pro-zero system.2. The morphism D� ! A� de�ned by the inclusion homomorphisms Di ! Aihas an approximate inverse i� Q� is a pro-zero system.3. If f� : A� ! B� is a morphism, Ker(f�) is zero (i.e. Ker(f�)i = f0g for alli 2 I), and Im(f�) = B�, then f� has an approximate inverse.Proof. We leave the \only if" parts of 1 and 2 to the reader.When D� is pro-zero the map � : I ! I de�ned by�(i) := maxfi0 j Di � Ker(Ai ! Ai0)gis co�nal. Let g� : Q� ! A� be the �-morphism where gi : Ai=Di = Qi ! A�(i) isinduced by the projection Ai ! A�(i). One checks that g� is an approximate inversefor A� ! Q�.Suppose Q� is pro-zero. De�ne a co�nal map � : I ! I by�(i) := maxfi0 j Im(Ai ! Ai0) � Di0g;and let g� : A� ! D� be the �-morphism where gi : Ai ! D�(i) is induced by theprojection Ai ! A�(i). Then g� is an approximate inverse for the inclusion D� ! A�.17



Now suppose f� : A� ! B� is an �-morphism with zero kernel and cokernel. LetJ 0 := �(I) � J , and de�ne � 0 : J 0 ! I by � 0(j) = min��1(j). De�ne a co�nal map� : J ! J 0 by �(j) := maxfj 0 2 J 0 j j 0 � jg; let � : J ! I be the composition � 0 � �,and de�ne a �-morphism g� by gj := f�1�(j) � q�(j)j . Then g� is the desired approximateinverse for f�.Lemma 4.12. Let f� : A� ! B� be a morphism.1. If f� has an approximate inverse then it is an approximate isomorphism.2. If f� is an approximate isomorphism and I; J �= Z+ then f� has an approximateinverse.Proof. Let f� : A� ! B� and g� : B� ! A� be � and � morphisms respectively, andlet g� be an approximate inverse for f�. Since h� := g� � f� is equivalent to idA� thenfor all i there is an i0 � i so that ĥii0 is de�ned and ĥii0 = pii0 . Letting  := ��� we have,by the de�nition of the saturation ĥ��, pii0 = ĥii0 = pi(i) � hi0 . So Ker(hi0) � Ker(pii0).Thus f� is an approximate monomorphism. The proof that f� is an approximateepimorphism is similar.We now prove part 2. Let fKigi2I be the kernel of f�, let fQigi2I = fAi=Kigi2Ibe the quotient system, and let fDjgj2J be the image of f�. Then f� may be factoredas f� = t� � s� � r� where r� : A� ! Q� is induced by the epimorphisms Ai ! Ai=Ki,s� : Q� ! D� is induced by the homomorphisms of quotients, and t� : D� ! B� isthe inclusion. By Lemma 4.11, s� has an approximate inverse. When the kernel andcokernel of f� are pro-zero then r� and t� also admit approximate inverses by Lemma4.11. Hence f� has an approximate inverse in this case.Below we relate the notions of �-morphisms, approximate monomorphisms (epimor-phisms, isomorphisms) with Grothendieck's pro-morphisms. Strictly speaking this isunnecessary for the purposes of this paper, however it puts our de�nitions into per-spective. Also, readers who prefer the language of pro-categories may use Lemma 4.14and Corollary 4.15 to translate the theorems of sections 6 and 7 into pro-theorems.De�nition 4.13. Let fAigi2I ; fBjgj2J be inverse systems. The group of pro-mor-phisms proHom(A�; B�) is de�ned aslim �j2J lim�!i2I Hom(Ai; Bj)(see [23], [1, Appendix 2], [15, Ch II, x1]). The identity pro-morphism is the elementof proHom(A�; A�) determined by (idAj )j2I 2Qj lim�!i2I Hom(Ai; Aj).This yields a category6 Pro-Abelian where the objects are inverses systems of abeliangroups and the morphisms are the pro-morphisms. A pro-isomorphism is an isomor-phism in this category.By the de�nitions of direct and inverse limits, an element of proHom(A�; B�) canbe represented by an admissible \sequence"([hj�(j) : A�(j) ! Bj])j2J6By relaxing the de�nition of inverse systems, this category becomes an abelian category, [1,Appendix 4]. However we will not discuss this further.18



of equivalence classes of homomorphisms hj�(j) : A�(j) ! Bj; here two homomorphismshji : Ai ! Bj; hjk : Ak ! Bj are equivalent if there exists ` � i; k such thathji � pì = hjk � pk̀;and the \sequence" is admissible if for each j � j 0 there is an i � maxf�(j); �(j 0)g sothat qj0j � hj�(j) � p�(j)i = hj0�(j0) � p�(j0)i :Given a co�nal map � : I ! J between directed sets, we may construct7 afunction � : J ! I so that �(�(j)) � j for all j; then any �-morphism f� : A� ! B�induces an admissible sequence ([f̂ j�(j) : A�(j) ! Bj]gj2J . The corresponding elementpro(f�) 2 proHom(A�; B�) is independent of the choice of � by condition (4.3) ofDe�nition 4.2.Lemma 4.14. 1. If f : A� ! B� and g : A� ! B� are morphisms, then pro(f) =pro(g) i� f� is equivalent to g�. In other words, pro descends to a faithful functorfrom Approx to Pro-Abelian.2. When I; J �= Z+ then every pro-morphism from A� to B� arises as pro(f�)for some approximate morphism f� : A� ! B�. Thus pro descends to a fully faithfulfunctor from Approx to Pro-Abelian in this case.Proof. The �rst assertion follows readily from the de�nition of proHom(A�; B�) andDe�nition 4.10.Suppose I; J �= Z+ and � 2 proHom(A�; B�) is represented by an admissiblesequence ([hj�0(j) : A�0(j) ! Bj])j2J :We de�ne � : J ! I and another admissible sequence (�hj�(j) : A�(j) ! Bj)j2J rep-resenting � by setting �(0) = �0(0), �h0�(0) := h0�0(0), and inductively choosing �(j),�hj�(j) so that �(j) > �(j � 1), �hj�(j) := hj�0(j) � p�0(j)�(j) and qj�1j � �hj�(j) = �hj�1�(j�1) � p�(j�1)�(j) .Note that the mapping � is strictly increasing and hence co�nal. Now de�ne a co�-nal map � : Z+ ! Z+ by setting �(i) := maxfj j �(j) � ig for i � �(0) = �0(0).We then get an �-morphism f� : A� ! B� where fi := �h�(i)�(�(i)) � p�(�(i))i . Clearlypro(f�) = (�hj�(j))j2J .Corollary 4.15. Suppose I; J �= Z+ and f� : A� ! B� is a morphism. Then f� isan approximate isomorphism i� pro(f�) is a pro-isomorphism.Proof. By Lemma 4.12, f� is an approximate isomorphism i� it represents an invert-ible element of Approx, and by Lemma 4.14 this is equivalent to saying that pro(f�)is invertible in Pro-Abelian.7Using the axiom of choice we pick �(j) 2 ��1(j).
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5. Recognizing groups of type FPnThe main result in this section is Theorem 5.10, which gives a characterization ofgroups G of type FPn in terms of nested families of G-chain complexes, and Lemma5.1 which relates the cohomology of G with the corresponding cohomology of theG-chain complexes. A related characterization of groups of type FPn appears in [11].We will apply Theorem 5.10 and Lemma 5.1 in section 8.Suppose for i = 0; : : : ; N we have an augmented chain complex A�(i) of projectiveZG-modules, and for i = 1; : : : ; N we have an augmentation preserving G-equivariantchain map ai : A�(i� 1)! A�(i) which induces zero on reduced homology in dimen-sions < n. Let G be a group of type FPk, and let0 Z P0  : : : Pkbe a partial resolution P� of Z by �nitely generated projective ZG-modules. Weassume that k � n � N .Lemma 5.1. Under the above conditions we have:1. There is an augmentation preserving G-equivariant chain mapping P� ! A�(n).2. If k < n and ji : P� ! A�(0) are augmentation preserving G-equivariant chainmappings for i = 1; 2, then the compositions P� ji! A�(0)! A�(k) are G-equivariantlychain homotopic.3. Suppose k < n and f : P� ! A�(0) is an augmentation preserving G-equivariant chain mapping. Then for any ZG-module M , the mapH i(f) : H i(A�(0);M)! H i(P�;M)carries the image Im(H i(A�(n);M)! H i(A�(0);M)) isomorphically onto H i(P�;M)for i = 0; : : : k � 1. The mapHi(f) : Hi(P�;M)! Hi(A�(n);M)is an isomorphism onto the image of Hi(A�(0);M)! Hi(A�(n);M) for i = 0; : : : k�1. The map Hk(f) : Hk(P�;M)! Hk(A�(n);M)is onto the image of Hk(A�(0);M)! Hk(A�(n);M).Proof of 1. We start with the diagramP0#Z  A0(0):Then projectivity of P0 implies that we can complete this to a commutative diagramby a ZG-morphism f0 : P0 ! A0(0). Assume inductively that we have constructeda G-equivariant augmentation preserving chain mapping fj : [P�]j ! A�(i). Thenthe image of the composition Pi+1 @! Pj fj! Aj(j) ! Aj(j + 1) is contained in theimage of Aj+1(j + 1) @! Aj(j + 1) since aj+1 induces zero on reduced homology.20



So projectivity of Pj+1 allows us to extend fj to a G-equivariant chain mappingfj+1 : [P�]j+1 ! A�(j + 1).Proof of 2. Similar to the proof of 1: use induction and projectivity of the P`'s.Proof of 3. Let �� : [A�(n)]k ! P� be a G-equivariant chain mapping constructedusing the fact that Hi(P�) = f0g for i < k. Consider the compositions�k�1 : [P�]k�1 f�! [A�(0)]k�1 ! [A�(n)]k�1 ��! P�and �k : [A�(0)]k ! [A�(n)]k ��! [P�]k f�! [A�(0)]k ! A�(n):Both are (G-equivariantly) chain homotopic to the inclusions; the �rst one since P�is a partial resolution, and the second by applying assertion 2 to the chain mapping[A�(0)]k ! A�(0). Assertion 3 follows immediately from this.We note that this lemma did not require any �niteness assumptions on the ZG-modules Ai(j). Suppose now that the group G satis�es the above assumptions andlet G y X be a free simplicial action on a uniformly (n � 1)-acyclic locally �nitemetric simplicial complex X, k � n � 1. Then by part 1 of the previous lemma wehave a G-equivariant augmentation-preserving chain mapping f : P� ! C�(X). LetK � X be the support of the image of f . It is clear that K is G-invariant and K=Gis compact. As a corollary of the proof of the previous lemma, we get:Corollary 5.2. Under the above assumptions the direct system of reduced homologygroups f ~Hi(NR(K))gR�0 is approximately zero for each i < k.Proof. Given R > 0 we consider the system of chain complexes A�(0) := C�(NR(K)),A�(1) = A�(2) = ::: = A�(N) = C�(X). The mapping [A�(0)]k �k! A�(N) = C�(X)from the proof of Lemma 5.1 is chain homotopic to the inclusion via a G-equivarianthomotopy hR. On the other hand, this map factors through P�, hence it induces zeromapping of the reduced homology groups~Hi(NR(K)) 0! ~Hi(Support(Im(�k))); i < k:The support of Im(hR) is contained in NR0(K) for some R0 < 1, since hR is G-equivariant. Hence the inclusion NR(K) ! NR0(K) induces zero map of ~Hi(�) fori < k.Before stating the next corollary, we recall the following fact:Lemma 5.3. (See [12].) Let Gy X be a discrete, free, cocompact action of a groupon a simplicial complex. Then the complex of compactly supported simplicial cochainsC�c (X) is canonically isomorphic to the complex HomZG(C�(X);ZG); in particular,the compactly supported cohomology of X is canonically isomorphic to H�(X=G;ZG).In the next corollary we assume that G, P�, X, f , K are as above, in particular,X is a uniformly (n � 1)-acyclic locally �nite metric simplicial complex, k � n � 1,Pk ! :::! P0 ! Z! 0 is a resolution by �nitely generated projective ZG modules.Corollary 5.4. 1. For any local coe�cient system (ZG-module) M the family ofmaps H i(NR(K)=G;M) f iR! H i(P�;M)21



de�nes a morphism between the inverse system fH i(NR(K)=G;M)gR�0 and the con-stant inverse system fH i(P�;M)gR�0 which is an approximate isomorphism when0 � i < k.2. The map H ic(NR(K)) ' H i(NR(K)=G;ZG) f iR�! H i(P�;ZG)is an approximate isomorphism when 0 � i < k.3. The ZG-chain map fR;� : P� ! C�(NR(K))induces a homomorphism of homology groupsfR;i : ~Hi(P�;ZG)! ~Hi(NR(K))which is an approximate isomorphism for 0 � i < k.Proof. 1. According to Corollary 5.2 the direct system of reduced homology groupsf ~Hi(NR(K))g is approximately zero for each i < k. Thus for N > k we have asequence of integers R0 = 0 < R1 < R2 < ::: < RN so that the maps~Hi(NRj (K))! ~Hi(NRj+1(K))are zero for each j < N; i < k. We now apply Lemma 5.1 where A�(j) := C�(NRj (K)).2. This follows from part 1 and Lemma 5.3.3. Note that ~Hi(P�;ZG) ' f0g for i < k; this follows directly from the de�nitionof a group of type FPk. Thus the assertion follows from Corollary 5.2.There is also an analog of Corollary 5.4 which does not require a group action:Lemma 5.5. Let X and Y be bounded geometry metric simplicial complexes, whereY is uniformly (k�1)-acyclic and X is uniformly k-acyclic. Suppose C�(Y ) f! C�(X)is a uniformly proper chain mapping, and K := Support(Im(f)) � X. Then1. The induced map on cohomologyH ic(f) : H ic(NR(K))! H ic(Y )de�nes a morphism between the inverse system fH ic(NR(K))gR�0 and the constantinverse system fH ic(Y )gR�0 which is an approximate isomorphism for 0 � i < k, andan approximate monomorphism for i = k.2. The approximate isomorphism approximately respects support in the follow-ing sense. There is a function � : N ! N so that if i < k, S � Y is a sub-complex, T := Support(f�(C�(S))) � X is the corresponding subcomplex of X, and� 2 Im(H ic(Y; Y � S)! H ic(Y )), then � belongs to the image of the compositionH ic(NR(K); NR(K)�N�(R)(T ))! H ic(NR(K)) Hic(f)�����! H ic(Y ):3. The induced map ~Hi(f) : f0g ' ~Hi(Y )! ~Hi(NR(K))is an approximate isomorphism for 0 � i < k.4. All functions !; �! associated with the above approximate isomorpisms and thefunction � can be chosen to depend only on the geometry of X; Y and f .22



Proof. Since f is uniformly proper, using the uniform (k � 1)-acyclicity of Y anduniform k-acyclicity of X, we can construct a direct system f�Rg of uniformly properchain mappings between the truncated chain complexes[0 C0(NR(K)) : : : Ck(NR(K))] �R! [0 C0(Y ) : : : Ck(Y )]so that the compositions f � �R are chain homotopic to the inclusions[0 C0(NR(K)) : : : Ck(NR(K))]! [0 C0(NR0(K)) : : : Ck(NR0(K))](for R0 = !(R)) via chain homotopies of bounded support. Moreover the restrictionof the composition �R �f to the (k�1)-truncated chain complexes is chain homotopicto the identity via a chain homotopy with bounded support.We �rst prove that the morphism of inverse systems de�ned byH ic(f) : H ic(NR(K))! H ic(Y )is an approximate monomorphism. Suppose� 2 Ker(H ic(f) : H ic(NR0(K))! H ic(Y ))where R0 = !(R). Then H i(f � �R0)(�) = 0. But the restriction of H i(f � �R0)(�) toNR(K) is cohomologous to the restriction of � to NR(K).Since the restriction of the composition �R � f to the (k � 1)-truncated chaincomplex [C�(Y )]k�1 is chain homotopic to the identity, it follows thatH ic(f) : H ic(NR(K))! H ic(Y )is an epimorphism for R � 0 and i < k.Part 2 of the lemma follows immediately from the uniform properness of �R andthe coarse Lipschitz property of the chain homotopies constructed above.We omit the proof of part 3 as it is similar to that of part 2.Lemma 5.6. Let (X; d) and (X 0; d0) be bounded geometry uniformly acyclic metricsimplicial complexes, Z � X a subcomplex; suppose f : (Z; djZ) ! (X 0; d0) is auniformly proper mapping, and set K := f(Z). Then f \induces" approximate iso-morphisms of the direct and inverse systemsfH�(NR(Z))gR�0 ! fH�(NR(K))gR�0;fH�c (NR(Z))gR�0 ! fH�c (NR(K))gR�0:As in part 2 of Lemma 5.5 these approximate isomorphisms respect support, and as inpart 4 of that lemma, the functions !; �! can be chosen to depend only on the geometryof X, X 0, and f .
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Proof. We argue as in the previous lemma. Since f is uniformly proper, using theuniform acyclicity of X and X 0 we construct direct systems f�Rg, f�rg of uniformlyproper chain mappings between the chain complexesC�(NR(Z)) �R! C�(N�(R)(K))(extending f� : C�(Z)! C�(K)) andC�(Nr(K)) �r! C�(N�(r)(Z));so that the compositions ��(R) � �R; ��(r) � �r (regarded as maps C�(NR(Z)) !C�(N!(R)(Z)); C�(Nr(K)) ! C�(N�!(r)(K)) for certain !(R) � �(R), �!(r) � �(r))are chain homotopic to the inclusionsC�(NR(Z))! C�(N!(R)(Z)); C�(Nr(K))! C�(N�!(r)(K))via chain homotopies of bounded support. Thus the induced maps of homology (andcompactly supported cohomology) groups are approximate inverses of each other.Note that in the above discussion we used �niteness assumptions on the group Gto make conclusions about (co)homology of families of G-invariant chain complexes.Our next goal is to use existence of a family of chain complexes A�(i) of �nitelygenerated projective ZG modules as in Lemma 5.1 to establish �niteness properties ofthe group G (Theorem 5.10). We begin with a homotopy-theoretic analog of Theorem5.10.Proposition 5.7. Let G be a group, and let X(0) a1! X(1) a2! : : : an+1! X(n + 1) be adiagram of free, simplicial G-complexes where X(i)=G is compact for i = 0; : : : n+1.If the maps ai are n-connected for each i, then there is an (n + 1)-dimensional free,simplicial G-complex Y where Y=G is compact and Y is n-connected.Proof. We build Y inductively as follows. Start with Y0 = G where G acts on Y0by left translation, and let j0 : Y0 ! X(0) be any G-equivariant simplicial map.Inductively apply Lemma 5.8 below to the composition Yi ji! X(i) ! X(i + 1) toobtain Yi+1 and a simplicial G-map ji+1 : Yi+1 ! X(i+ 1). Set Y := Yn+1.Lemma 5.8. Let Z and A be locally �nite simplicial complexes with free cocompactsimplicial G-actions, where dim(Z) = k, and Z is (k � 1)-connected. Let j : Z !A, be a null-homotopic G-equivariant simplicial map. Then we may construct a k-connected simplicial G-complex Z 0 by attaching (equivariantly) �nitely many G-orbitsof simplicial 8 (k + 1)-cells to Z, and a G-map j 0 : Z 0 ! A extending j.Proof. By replacing A with the mapping cylinder of j, we may assume that Z is asubcomplex of A and j is the inclusion map. Let Ak denote the k-skeleton of A.Since Z is (k � 1)-connected, after subdividing Ak if necessary, we may construct aG-equivariant simplicial retraction r : Ak ! Z. For every (k + 1)-simplex c in A, weattach a simplicial (k + 1)-cell c0 to Z using the composition of the attaching mapof c with the retraction r. It is clear that we may do this G-equivariantly, and therewill be only �nitely many G-orbits of (k+ 1)-cells attached. We denote the resulting8A simplicial cell is a simplicial complex PL-homeomorphic to a single simplex.24



simplicial complex by Z 0, and note that the inclusion j : Z ! A clearly extends (aftersubdivision of Z 0) to an equivariant simplicial map j 0 : Z 0 ! A.We now claim that Z 0 is k-connected. Since we built Z 0 from Z by attaching(k + 1)-cells, it su�ces to show that �k(Z) ! �k(Z 0) is trivial. If � : Sk ! Zis a simplicial map for some triangulation of Sk, we get a simplicial null-homotopy� : Dk+1 ! A extending �. Let Dk+1k denote the k-skeleton of Dk+1. The compositionDk+1k �! A r! Z ! Z 0 extends over each (k+1)-simplex � ofDk+1, since �j� : �! Ais either an embedding, in which case r � �j@� : @� ! Z 0 is null homotopic by theconstruction of Z 0, or �j� : �! A has image contained in a k-simplex of A, and thecomposition @� �! A r! Zis already null-homotopic. Hence the composition Sk �! Z ,! Z 0 is null-homotopic.The next lemma is a homological analog of Lemma 5.8 which provides the induc-tive step in the proof of Theorem 5.10.Lemma 5.9. Let G be a group. Suppose 0  Z � P0  : : :  Pk is a partialresolution by �nitely generated projective ZG-modules, and Z � A0  : : : Ak+1 isan augmented chain complex of �nitely generated projective ZG-modules. Let j : P� !A� be an augmentation preserving chain mapping which induces zero on homologygroups9. Then we may extend P� to a partial resolution P 0�:0 Z � P0  : : : Pk  Pk+1where Pk+1 is �nitely generated free, and j extends to a chain mapping j 0 : P 0� ! A�.Proof. By replacing A� with the algebraic mapping cylinder of j, we may assumethat P� is embedded as a subcomplex of A�, j is the inclusion, and for i = 0; : : : ; k,the chain group Ak splits as a direct sum of ZG-modules Ai = Pi � Qi where Qiis �nitely generated and projective. Applying the projectivity of Qi, we constructa chain retraction from the k-truncation [A�]k of A� to P�. Choose a �nite set ofgenerators a1; : : : ; a` for the ZG-module Ak+1. We let Pk+1 be the free module ofrank `, with basis a01; : : : ; a0̀ , and de�ne the boundary operator @ : Pk+1 ! Pk by theformula @(a0i) = r(@(ai)). To see that Hk(P 0�) = 0, pick a k-cycle � 2 Zk(P�). Wehave � = @� for some � =P ciai 2 Ak+1. Then � = r(@�) =P cir(@ai) =P ci@a0i;so � is null-homologous in P 0�. The extension mapping j 0 : P 0� ! A� is de�ned bya0i 7! ai; 1 � i � `.Theorem 5.10. Suppose for i = 0; : : : ; N we have an augmented chain complexA�(i) of �nitely generated projective ZG-modules, and for i = 1; : : : ; N we havean augmentation preserving G-equivariant chain map ai : A�(i � 1) ! A�(i) whichinduces zero on reduced homology in dimensions � n � N .Then there is a partial resolution0 Z F0  : : : Fnof �nitely generated free ZG-modules, and a G-equivariant chain mapping f : F� !A(n). In particular, G is a group of type FPn.9We declare that Hk(P�) := Zk(P�). 25



Proof. De�ne F0 to be the group ring ZG, with the usual augmentation Z  ZG.Then construct Fi and a chain map Fi ! Ai(i) by applying the previous lemmainductively.Corollary 5.11. Suppose that G y X is a free simplicial action of a group G ona metric simplicial complex X. Suppose that we have a system of (nonempty) G-invariant simplicial subcomplexes X(0) � X(1) � ::: � X(N) so that:(a) X(i)=G is compact for each i,(b) The induced mappings ~Hi(X(k))! ~Hi(X(k+1)) are zero for each i � n � Nand 0 � k < N .Then the group G is of type FPn.Proof. Apply Theorem 5.10 to A�(i) := C�(X(i)).Note that the above corollary is the converse to Corollary 5.2. ThusCorollary 5.12. Suppose that G y X is a group action on a uniformly acyclicbounded geometry metric simplicial complex, K := G(?), where ? 2 X. Then G is oftype FP if and only if the the direct system of reduced homology groups f ~H�(NR(K))gis approximately zero.Combining Theorem 5.10 and Lemma 5.1 we get:Corollary 5.13. Suppose for i = 0; : : : ; 2n+1 we have an augmented chain complexA�(i) of �nitely generated projective ZG-modules, and for i = 1; : : : ; 2n+ 1 we haveaugmentation preserving G-equivariant chain maps ai : A�(i � 1) ! A�(i) whichinduce zero on reduced homology in dimensions � n. Then:1. There is a partial resolution F�:0 Z F0  : : : Fnby �nitely generated free ZG-modules and a G-equivariant chain mapping f� : F� !A�(n). In particular G is of type FPn.2. For any ZG-module M , the map H i(f) : H i(A�(n);M) ! H i(F�;M) carriesthe image Im(H i(A(2n);M) ! H i(A(n);M)) isomorphically onto H i(F�;M) fori = 0; : : : n� 1.3. The map Hi(f) : Hi(P�;M) ! Hi(A�(2n);M) is an isomorphism onto theimage of Hi(A�(n);M)! Hi(A�(2n);M).We now discuss a relative version of Corollaries 5.4 and 5.13. Let X be a uniformlyacyclic bounded geometry metric simplicial complex, and G be a group acting freelysimplicially on X; thus G has �nite cohomological dimension since X is acyclic anddim(X) < 1. Let K � X be a G-invariant subcomplex so that K=G is compact;and let fC�g�2I be the deep components of X � K. De�ne YR := X �NR(K),Y�;R := C� \ YR. We will assume that the systemf ~Hj(Y�;R)gR�0is approximately zero for each j; �. In particular, f ~H0(Y�;R)gR�0 is approximatelyzero, which implies that each C� is stable. Let H� denote the stabilizer of C� in26



G. Choose a set of representatives C�1 ; : : : ; C�k from the G-orbits in the collectionfC�g. For notational simplicity we relabel �1; : : : ; �k as 1; : : : ; k. Let Hi = H�i bethe stabilizer of Ci = C�i. This de�nes a group pair (G;H1; :::; Hk). Let P� be a�nite length projective resolution of Z by ZG-modules, and for each i = 1; : : : ; k, wechoose a �nite length projective resolution of Z by ZHi-modules Q�(i). Using theconstruction described in section 3 (see the discussion of the group pairs) we convertthis data to a pair (C�; D�) of �nite length projective resolutions (consisting of ZG-modules). We recall that D� decomposes in a natural way as a direct sum ��D�(�)where each D(�) is a resolution of Z by projective ZH�-modules. Now constructa ZHi-chain mapping C�(Y�i;0) ! D�(�i) using the acyclicity of D�(�i). We thenextend this G-equivariantly to a mapping C�(Y0) ! D�, and then to a ZG-chainmapping �0 : (C�(X); C�(Y0))! (C�; D�). By restriction, this de�nes a morphism ofinverse systems �R : (C�(X); C�(YR))! (C�; D�).Lemma 5.14. The mapping �� induces approximate isomorphisms between relative(co)homology with local coe�cients:H�(G; fHig;M)! H�(C�(X); C�(YR);M) ' H�(X=G; YR=G;M)H�(X=G; YR=G;M) ' H�(C�(X); C�(YR);M)! H�(G; fHig;M)for any ZG-module M .Proof. We will prove the lemma by showing that the maps �R form an \approximatechain homotopy equivalence" in an appropriate sense.For each i we construct a ZHi-chain mapping D�(i) ! C�(Yi;R) using part 1 ofLemma 5.1 and the fact that f ~Hj(Y�;R)gR�0is an approximately zero system. We then extend these to ZG-chain mappingsfR : (C�; D�)! (C�(X); C�(YR)):Using part 2 of Lemma 5.1, we can actually choose the mappings fR so that theyform a compatible system chain mappings up to chain-homotopy. The composition�R � fR : (C�; D�)! (C�; D�)is ZG-chain mapping, hence it is chain-homotopic to the identity. The compositionfR � �R : C�(X; YR)! C�(X; YR)need not be chain homotopic to the identity, but it becomes chain homotopic tothe projection map when precomposed with the restriction C�(X; YR0) ! C�(X; YR)where R0 � R is suitably chosen (by again using part 2 of Lemma 5.1 and the factthat f ~Hj(Y�;R)gR�0is an approximately zero system). This clearly implies the induced homorphisms on(co)homology are approximate isomorphisms.27



6. Coarse Poincare dualityWe now introduce a class of metric simplicial complexes which satisfy coarse versionsof Poincare and Alexander duality, see Theorems 6.7, 7.5, 7.7.>From now on we will adopt the convention of extending each (co)chain complexindexed by the nonnegative integers to a complex indexed by the integers by settingthe remaining groups equal to zero. So for each (co)chain complex fCi; i � 0g we getthe (co)homology groups Hi(C�); H i(C�) de�ned for i < 0.De�nition 6.1 (Coarse Poincar�e duality spaces). A coarse Poincar�e dualityspace of formal dimension n is a bounded geometry metric simplicial complex Xso that C�(X) is uniformly acyclic, and there is a constant D0 and chain mappingsC�(X) �P! Cn��c (X) P! C�(X)so that1. P and �P have displacement � D0 (see section 2 for the de�nition of displace-ment).2. �P � P and P � �P are chain homotopic to the identity by D0-Lipschitz10 chainhomotopies � : C�(X)! C�+1(X), �� : C�c (X)! C��1c (X).We will often refer to coarse Poincare duality spaces of formal dimension n ascoarse PD(n) spaces. Throughout the paper we will reserve the letter D0 for theconstant which appears in the de�nition of a coarse PD(n) space; we let D := D0+1.Note that for each coarse PD(n) space X we haveH�c (X) ' Hn��(X) ' Hn��(Rn) ' H�c (Rn):We will not need the bounded geometry and uniform acyclicity conditions until The-orem 7.7. Later in the paper we will consider simplicial actions on coarse PD(n)spaces, and we will assume implicitly that the actions commute with the operators �Pand P , and the chain homotopies � and ��.The next lemma gives important examples of coarse PD(n) spaces:Lemma 6.2. The following are coarse PD(n) spaces:1. An acyclic metric simplicial complex X which admits a free, simplicial, cocom-pact action by a PD(n) group.2. An n-dimensional, bounded geometry metric simplicial complex X, with anaugmentation � : Cnc (X)! Z for the compactly supported simplicial cochain complex,so that (C�c (X); �) is uniformly acyclic (see section 2 for de�nitions).3. A uniformly acyclic, bounded geometry metric simplicial complex X which is atopological n-manifold.Proof of 1. Let 0  Z  P0  : : :  Pn  0 be a resolution of Z by �nitelygenerated projective ZG-modules. X is acyclic, so we have ZG-chain homotopyequivalences P� �' C�(X) and Hom(P�;ZG) ' C�c (X) where � is augmentation pre-serving. Hence to construct the two chain equivalences needed in De�nition 6.1, it10See section 2. 28



su�ces to construct a ZG-chain homotopy equivalence p : P� ! Hom(Pn��;ZG) ofZG-modules (since the operators are G-equivariant conditions 1 and 2 of De�nition6.1 will be satis�ed automatically). For this, see [12, p. 221].Proof of 2. We construct a chain mapping P : C�(X)! Cn��c (X) as follows. We�rst map each vertex v of X to an n-cocycle � 2 Cnc (X;X � B(v; R0)) which maps to1 under the augmentation �, (such a � exists by the uniform acyclicity of (C�c (X); �)),and extend this to a homomorphism C0(X) ! Cnc (X). By the uniform acyclicity of(C�c (X); �) we can extend this to a chain mapping P . By similar reasoning we obtain achain homotopy inverse �P , and construct chain homotopies �P �P � id and P � �P � id.Proof of 3. X is acyclic, and therefore orientable. An orientation of X determinesan augmentation � : Cnc (X)! Z. The uniform acyclicity ofX together with ordinaryPoincare duality implies that (C�c (X); �) is uniformly acyclic. So 3 follows from 2.We remark that if Gy X is a free simplicial action then these constructions canbe made G-invariant.When K � X is a (nonempty) subcomplex we will consider the direct system oftubular neighborhoods fNR(K)gR�0 of K and the inverse system of the closures oftheir complements fYR := X �NR(K)gR�0:We get four inverse and four direct systems of (co)homology groups:fHkc (NR(K))g; fHj(X; YR)g; fHkc (X;NR(K))g; fHj(YR)gfHkc (YR)g; fHj(X;NR(K))g; fHkc (X; YR)g; fHj(NR(K))gwith the usual restriction and projection homomorphisms. Note that by excision, wehave isomorphisms Hj(X; YR) ' Hj(NR(K); @NR(K)); etc:Extension by zero de�nes a group homomorphism Ckc (NR+D(K)) ext� Ckc (X).When we compose this withCkc (X) P! Cn�k(X) proj! Cn�k(X; YR)we get a well-de�ned induced homomorphismPR+D : Hkc (NR+D(K))! Hn�k(X; YR)where D is as in De�nition 6.1. We get, in a similar fashion, homomorphismsHkc (NR+D(K)) PR+D�! Hn�k(X; YR) �PR�! Hkc (NR�D(K)) (6.3)Hkc (YR) PR�! Hn�k(X;NR+D(K)) �PR+D�! Hkc (YR+2D) (6.4)Hkc (X;NR+D(K)) PR+D�! Hn�k(YR) �PR�! Hkc (X;NR�D(K)) (6.5)29



Hkc (X; YR) PR�! Hn�k(NR+D(K)) �PR+D�! Hkc (X; YR+2D) (6.6)Note that the homomorphisms in (6.3), (6.5) determine �-morphisms between inversesystems and the homomorphisms in (6.4), (6.6) determine �-morphisms between di-rect systems, where �(R) = R � D, �(R) = R + D (see section 4 for de�nitions).These operators inherit the bounded displacement property of P and �P , see condition1 of De�nition 6.1. We let !(R) := R+ 2D, where D is the constant from De�nition6.1.Theorem 6.7 (Coarse Poincare duality). Let X be a coarse PD(n) space, K �X be a subcomplex as above. Then the morphisms P�; �P� in (6.3), (6.5) are (!; !)-approximate isomorphisms of inverse systems and the morphisms P�; �P� in (6.4),(6.6) are (!; !)-approximate isomorphisms of direct systems (see section 4). In par-ticular, if X 6= NR0(K) for any R0 then the inverse systems fHnc (NR(K))gR�0 andfHn(YR)gR�0 are approximately zero.Proof. We will verify the assertion for the homomorphism P� in (6.3) and leave therest to the reader. We �rst check that P� is an !-approximate monomorphism. Let� 2 Z�c (NR+2D(K))be a cocycle representing an element [�] 2 Ker(PR+2D), and let �1 2 C�c (X) be theextension of � by zero. Then we haveP (�1) = @� + �where � 2 Cn��(X) and � 2 Cn��(X �NR+D(K)). Applying �P and the chain homo-topy �, we get ��(�1) + ��(�1) = �P � P (�1)� �1 = �P (@� + �)� �1so �1 = � �P (�) + �P (�)� ��(�1)� ��(�1):The second and fourth terms on the right hand side vanish upon projection toH�c (NR(K)), so [�] 2 Ker(H�c (NR+2D(K))! H�c (NR(K)).We now check that P� is an !-approximate epimorphism. Let[�] 2 Im(Hn��(X;X �NR+2D(K))! Hn��(X;X �NR(K)));then � lifts to a chain � 2 Cn��(X) so that @� 2 Cn��(X �NR+2D(K)). Let [� ] 2Hn��(X; YR+2D) be the corresponding relative homology class. Applying P and thechain homotopy ��, we get P ( �P (�))� � = @ ��(�) + ��(@�):Since ��(@�) vanishes in Cn��(X;X �NR(K)), we get that[�] = PR+D( �PR+2D([� ])):The proof of the last assertion about fHnc (NR(K))gR�0 and fHn(YR)gR�0 follows sincethey are approximately isomorphic to zero systems H0(X; YR) and H0(X;NR(K)).30



Corollary 6.8. Suppose W be a bounded geometry uniformly acyclic metric simpli-cial complex (with metric dW ), Z � W and f : (Z; dW jZ) ! (X; dX) be a uniformlyproper map to a coarse PD(n) space X.1. NR(f(Z)) = X for some R i� fHnc (NR(Z))gR�0 is approximately isomorphicto the constant system Z.2. If W is a coarse PD(k)-space for k < n then NR(f(Z)) 6= X for any R.3. If W = Nr(Z) for some r and W is a coarse PD(n)-space then NR(f(Z)) = Xfor some R. The thickness R depends only on r, and the geometry of W , X, and f .Proof. 1. Let K = f(Z). The mapping f induces an approximate isomorphism be-tween the inverse systems fHnc (NR(Z))gR�0 and fHnc (NR(K))gR�0 (see Lemma 5.6),and the latter is approximately isomorphic to fH0(X;X �NR(K))gR�0 by coarsePoincare duality. Note that H0(X;X �NR(K)) = 0 unless NR(K) = X, in whichcase H0(X;X �NR(K)) = Z. In the latter case fHnc (NR(Z))gR�0 is approximatelyisomorphic to Z. In the former case fHnc (NR(Z))gR�0 is approximately zero.2. If W is a coarse PD(k)-space then by applying Theorem 6.7 to Z � W weget that fHnc (NR(Z))gR�0 is approximately zero (recall our convention that bothhomology and cohomology groups are de�ned to be zero in negative dimensions).Thus 2 follows from 1.3. This follows by applying part 1 twice.7. Coarse Alexander duality and coarse Jordan separationIn this section as in the previous one, we extend complexes indexed by the nonnegativeintegers to complexes indexed by Z, by setting the remaining groups equal to zero.LetX,K,D, YR, and ! be as in the preceeding section. Composing the morphismsP� and �P� with the boundary operators for long exact sequences of pairs, we obtainthe compositions AR+DH�c (NR+D(K)) PR+D�����! Hn��(X; YR) @' ~Hn���1(YR) (7.1)and �AR+D ~Hn���1(YR+D) @�1' Hn��(X; YR+D) �PR+D�����! H�c (NR(K)): (7.2)Similarly, composing the maps from (6.3)-(6.4) with boundary operators and theirinverses, we get: H�c (YR) AR�! ~Hn���1(NR+D(K)) (7.3)and ~Hn���1(NR(K)) �AR�! H�c (YR+D): (7.4)Theorem 7.5 (Coarse Alexander duality). 1. The morphisms A� and �A� in(7.1)-(7.4) are (!; !)-approximate isomorphisms.2. The maps A� in (7.1) and (7.3) have displacement at most D. The map �A�in (7.2) (respectively (7.4)) has displacement at most D in the sense that if � 2Zn���1(YR+D) (� 2 Zn���1(NR(K)), and � = @� for � 2 Cn��(X), then the supportof �AR+D([�]) (respectively �AR([�])) is contained in ND(Support(�)).31



Like ordinary Alexander duality, this theorem follows directly from Theorem 6.7, andthe long exact sequence for pairs.Combining Theorem 7.5 with Corollary 5.4 we obtain:Theorem 7.6 (Coarse Alexander duality for FPk groups). Let X be a coarsePD(n) space, and let G, P�, G y X, f , and K be as in the statement of Corollary5.4. Then1. The family of compositions~Hn�i�1(YR+D) �A! H ic(NR(K)) f iR�! H i(P�;ZG)de�nes an approximate isomorphism when i < k, and an approximate monomorphismwhen i = k. Recall that for i < k we have a natural isomorphism H i(P�;ZG) 'H i(G;ZG).2. The family of compositions~Hi(P�;ZG)! ~Hi(NR(K)) �AR�! Hn�i�1c (YR+D)is an approximate isomorphism when i < k, and an approximate epimorphism wheni = k. Recall that ~Hi(P�;ZG) = f0g for i < k since G is of type FPk.Theorem 7.7 (Coarse Alexander duality for maps). Suppose X is a coarsePD(n) space, X 0 is a bounded geometry uniformly (k � 1)-acyclic metric simpli-cial complex, and f : C�(X 0) ! C�(X) is a uniformly proper chain map. LetK := Support(f(C�(X 0)), YR := X �NR(K). Then:1. The family of compositions~Hn�i�1(YR+D) �A! H ic(NR(K)) Hic(fR)�����! H ic(X 0)de�nes an approximate isomorphism when i < k, and an approximate monomorphismwhen i = k.2. The family of compositions~Hi(X 0)! ~Hi(NR(K)) �AR�! Hn�i�1c (YR+D)is an approximate isomorphism when i < k, and an approximate epimorphism wheni = k.113. Furthermore, these approximate isomorphisms approximately respect supportin the following sense. There is a function � : N ! N so that if i < k, S � X 0 issubcomplex, T := Support(f�(C�(S))) � X is the corresponding subcomplex of X, and� 2 Im(H ic(X 0; X 0 � S)! H ic(X 0)), then � belongs to the image of the composition~Hn�i�1(YR \N�(R)(T ))! ~Hn�i�1(YR) Hic(f)� �A�����! H ic(X 0):4. If k = n + 1, then Hnc (X 0) = f0g unless NR(K) = X for some R.11The function ! for the above approximate isomorphisms depends only on the distortion of f ,the acyclicity functions for X and X 0, and the bounds on the geometry of X and X 0.32



Proof. Parts 1, 2 and 3 of Theorem follow from Lemma 5.5 and Theorem 7.5. Part4 follows since for i = n, f ~Hn�i�1(YR+D)g = f0g is approximately isomorphic to theconstant system fHnc (X 0)g.We now give a number of corollaries of coarse Alexander duality.Corollary 7.8 (Coarse Jordan separation for maps). Let X and X 0 be n-dimensional and (n� 1)-dimensional coarse Poincar�e duality spaces respectively, andlet g : X 0 ! X be a uniformly proper map. Then1. g(X 0) coarsely separates X into (exactly) two components.2. For every R, each point of NR(g(X 0)) lies within uniform distance from eachof the deep components of YR := X �NR(g(X 0)).3. If Z � X 0, X 0 6� NR(Z) for any R and h : Z ! X is a uniformly propermap, then h(Z) does not coarsely separate X. Moreover, for any R0 there is anR1 > 0 depending only on R0 and the geometry of X;X 0, and h such that preciselyone component of X �NR0(h(Z)) contains a ball of radius R1.Proof. We have the following diagram:~H0(YR) Hn�1c (g)� �A�����! Hn�1c (X 0) = Z"lim �R ~HDeep0 (YR)where the family of morphismsHn�1c (g)� �A gives rise to an approiximate isomorphism.Thus lim �R ~HDeep0 (YR) = Zwhich implies 1. Let x 2 NR(K). Then there exists a representative � of a generatorof Hn�1c (X 0) such that Hn�1c (g)(�) 2 Cn�1c (X) is supported uniformly close to x. Weapply Part 3 of Theorem 7.7 to the class [Hn�1c (g)(�)] to prove 2.To prove part 3, we �rst note that by Corollary 6.8 we have X � NR(h(Z)) 6= ;for all R. By Lemma 5.6 and coarse Alexander duality (Theorem 7.5) the inversesystem f ~H0(X �NR(h(Z)))gR�0 is approximately zero. But this means that there isprecisely one deep component of X�NR(f(Z)) for every R; it also implies the secondhalf of part 3.As a special case of the above corollary we have:Corollary 7.9 (Coarse Jordan separation for submanifolds). Let X andX 0 ben-dimensional and (n � 1)-dimensional uniformly acyclic PL-manifolds respectively,and let g : X 0 ! X be a uniformly proper map. Then the assertions 1, 2 and 3 fromthe preceeding theorem hold.Similarly to the Corollary 7.8 we get:Corollary 7.10 (Coarse Jordan separation for groups). Let X be a coarsePD(n)-space and G be a PD(n�1)-group acting freely simplicially on X. Let K � Xbe a G-invariant subcomplex with K=G compact. Then:1. G coarsely separates X into (exactly) two components.33



2. For every R, each point of NR(K) lies within uniform distance from each ofthe deep components of X �NR(K).Lemma 7.11. Let W be a bounded geometry metric simplicial complex which ishomeomorphic to a union of W = [i2IWi of k half-spaces Wi ' Rn�1+ along theirboundaries. Assume that for i 6= j, the union Wi [Wj is uniformly acyclic and isuniformly properly embedded in W . Let g :W ! X be a uniformly proper map of Winto a coarse PD(n) space X. Then g(W ) coarsely separates X into k components.Moreover, there is a unique cyclic ordering on the index set I so that for R su�cientlylarge, the frontier of each deep component C of X �NR(g(W )) is at �nite Hausdor�distance from g(Wi) [ g(Wj) where i and j are adjacent with respect to the cyclicordering.Proof. We have Hn�1c (W ) ' Zk�1, so, arguing analogously to Corollary 7.8, we seethat g(W ) coarsely separates X into k components. Applying coarse Jordan separa-tion and the fact that no Wi coarsely separates Wj in W , we can de�ne the desiredcyclic ordering by declaring that i and j are consecutive i� g(Wi)[g(Wj) coarsely sep-arates X into two deep components (Corollary 7.8), one of which is a deep componentof X � g(W ). We leave the details to the reader.Lemma 7.12. Suppose G is a group of type FPn�1 of cohomological dimension �n � 1, and let P�, f , G y X, K � X and YR be as in Theorem 7.6. Then everydeep component of YR is stable for R � D; in particular, there are only �nitely manydeep components of YR modulo G. If dim(G) < n � 1 then there is only one deepcomponent.Proof. The compositionlim �R ~HDeep0 (YR)! ~HDeep0 (YD) f iD� �AD�����! Hn�1(P�;ZG) (7.13)is an isomorphism by Theorem 7.6. Therefore~HDeep0 (YR)! ~HDeep0 (YD)is a monomorphism for any R � D, and hence every deep component of YD is stable.If dim(G) < n � 1 then Hn�1(P�;ZG) = f0g, and by (7.13) we conclude that YDcontains only one deep component.Another consequence of coarse Jordan separation is:Corollary 7.14. Let G y X be a free simplicial action of a group G of type FPon a coarse PD(n) space X, and let K � X be a G-invariant subcomplex on whichG acts cocompactly. By Lemma 7.12 there is an R0 so that all deep components ofX�NR0(K) are stable; hence we have a well-de�ned collection of deep complementarycomponents fC�g and their stabilizers fH�g. If H � G is a PD(n � 1) subgroup,then one of the following holds:1. H coarsely separates G.2. H has �nite index in G, and so G is a PD(n� 1) group.3. H has �nite index in H� for some �.In particular, G contains only �nitely many conjugacy classes of maximal, coarselynonseparating PD(n� 1) subgroups. 34



Proof. We assume that H does not coarsely separate G. Pick a basepoint ? 2 K, andlet W := H(?) be the H-orbit of ?. Then by Corollary 7.10 there is an R1 so thatX � NR1(W ) has two deep components C+; C� and both are stable. Since H doesnot coarsely separate G, we may assume that K � NR2(C�) for some R2. ThereforeC+ has �nite Hausdor� distance from some deep component C� of X �NR0(K), andclearly the Hausdor� distance between the frontiers @C+ and @C� is �nite. Either Hpreserves C+ and C�, or it contains an element h which exchanges the two. In thelatter case, h(C�) is within �nite Hausdor� distance from C�; so in this case K iscontained in Nr(W ) for some r, and this implies 2. When H preserves C+ then wehave H � H�, and since H acts cocompactly on @C+, it also acts cocompactly on@C� and hence [H� : H] <1.8. The proofs of Theorems 1.1 and 1.3Sketch of the proof of Theorem 1.1. Consider an action G y X as in thestatement of Theorem 1.1. Let K � X be a G-invariant subcomplex with K=Gcompact. By Lemma 7.12 the deep components of X � NR(K) stabilize at someR0, and hence we have a collection of deep components C� and their stabilizers H�.Naively one might hope that for some R � R0, the tubular neighborhood NR(K)is acyclic, and the frontier of NR(K) breaks up into connected components whichare in one-to-one correspondence with the C�'s, each of which is acyclic and hasthe same compactly supported cohomology as Rn�1 . Of course, this is too much tohope for, but there is a coarse analog which does hold. To explain this we �rst notethat the systems ~H�(NR(K)) and H�c (NR(K)) are approximately zero and approx-imately constant respectively by Corollary 5.4. Applying coarse Alexander duality,we �nd that the systems H�c (YR) and ~H�(YR) corresponding to the complementsYR := X �NR(K) are approximately zero and approximately constant, respectively.Instead of looking at the frontiers of the neighborhoods NR(K), we look at metric an-nuli A(r; R) := NR(K)�Nr(K) for r � R. One can try to compute the (co)homologyof these annuli using a Mayer-Vietoris sequence for the covering X = NR(K) [ Yr;however, the input to this calculation is only approximate, and the system of annulidoes not form a direct or inverse system in any useful way. Nonetheless, there are�nite direct systems of nested annuli of arbitrary depth for which one can understandthe (co)homology, and this allows us12 to apply results from section 5 to see that theH�'s are Poincare duality groups.The proof of Theorem 1.1. We now assume that G is a group of type FP actingfreely simplicially on a coarse PD(n) space X. This implies that dim(G) � n, soby Lemma 3.2 there is a resolution 0 ! Pn ! : : : ! P0 ! Z ! 0 of Z by �nitelygenerated projective ZG-modules. We may construct G-equivariant (augmentationpreserving) chain mappings � : C�(X)! P� and f : P� ! C�(X) using the acyclicityof C�(X) and P�; the composition � � f : P� ! P� is ZG-chain homotopic to theidentity. If L � X is a G-invariant subcomplex for which L=G is compact, then we12There is an extra complication in calculating Hn�1c for the annuli which we've omitting fromthis sketch. 35



get an induced homomorphismH�(G;ZG) H�(�)�! H�(X=G;ZG)! H�(L=G;ZG) ' H�c (L);abusing notation we will denote this composition by H�(�).Let K � X be a connected, G-invariant subcomplex so that K=G is compact andthe image of f is supported in K. For R � 0 set YR := X �NR(K). Corollary 5.4tells us that the families of mapsf0g ! f ~H�(P�;ZG)g ! f ~H�(NR(K))g (8.1)H�c (f) : H�c (NR(K))! H�(G;ZG) ' H�(P ;ZG): (8.2)de�ne approximate isomorphisms. Applying Theorems 7.6 we get approximate iso-morphisms f0g ! Hkc (YR) for all k (8.3)and �k;R : ~Hk(YR)! Hn�k�1(P�;ZG) ' Hn�k�1(G;ZG) for all k: (8.4)We denote ��;D by ��.We now apply Lemma 7.12 to see that every deep component of X � ND(K) isstable. Let fC�g denote the collection of deep components of X � ND(K), and setYR;� := YR \ C� and ZR;� := X � YR;�. Note that for every �, and D < r < R wehave ZR;� \ Yr;� = NR(K)�Nr(K) \ C�.Lemma 8.5. 1. There is an R0 so that if R � R0 then YR;� = X � ZR;� andZR;� = NR�R0(ZR0;�).2. The systems f ~Hk(YR;�)g, f ~Hk(ZR;�)g, fHkc (YR;�)g, fHkc (ZR;�)g are approxi-mately zero for all k.Proof. Pick R0 large enough that all shallow components of X�ND(K) are containedin NR0�1(K). Then for all R � R0, @C� \ YR = ; and hence YR;�, like YR itself,is the closure of its interior; this implies that YR;� = X �X � YR;� = X � ZR;�.We also have ZR;� = NR(K) t (t� 6=�C�) for all R � R0. Since t� 6=�NR(C�) �NR0+R(K) [ (t� 6=�C�), we getNR(ZR0;�) = NR0+R(K) [ (t� 6=�NR(C�))= NR0+R(K) [ (t� 6=�C�)= ZR0+R;�:Thus we have proven 1.To prove 2, we �rst note that f ~H0(YR;�)g is approximately zero by the stabilityof the deep components C�. When R � R0 then ZR;� is connected (since NR(K) andeach C� are connected), and this says that f ~H0(ZR;�)g is approximately zero. WhenR � R0 then YR is the disjoint union t�YR;�, so we have direct sum decompositions36



Hk(YR) = ��Hk(YR;�) and Hkc (YR) = ��Hkc (YR;�) which are compatible projectionhomomorphisms. This together with (8.3) and (8.4) implies that f ~Hk(YR;�)g andfHkc (YR;�)g are approximately zero for all k. By part 1 and Theorem 7.5 we get thatfHkc (ZR;�)g and f ~Hk(ZR;�)g are approximately zero for all k.Lemma 8.6. There is an Rmin > D so that for any R � Rmin and any integerM , there is a sequence R � R1 � R2 � ::: � RM with the following property. LetA(i; j) := NRj (K)�NRi(K) � YRi, and A�(i; j) := A(i; j) \ C�. Then for each1 < i < j < M ,1. The image of ~Hk(A(i; j)) ! ~Hk(A(i � 1; j + 1)) maps isomorphically ontoHn�k�1(G;ZG) under the composition ~Hk(A(i�1; j+1))! ~Hk(YD) �k! Hn�k�1(G;ZG)for 0 � k � n� 1. The homomorphism ~Hn(A(i; j))! ~Hn(A(i� 1; j + 1)) is zero.2. Hk(�) : Hk(G;ZG) ! Hkc (A(i; j)) maps Hk(G;ZG) isomorphically onto theimage of Hkc (A(i� 1; j + 1))! Hkc (A(i; j)) for 0 � k < n� 1.3. There is a system of homomorphisms Hn�1c (A�(i; j)) ��i;j�! Z (compatible withthe inclusions A�(i; j)! A�(i�1; j+1)) so that the image of Hn�1c (A�(i�1; j+1))!Hn�1c (A�(i; j)) maps isomorphically to Z under ��i;j.4. For each �, ~H0(A�(i; j)) 0! ~H0(A�(i� 1; j + 1)):Proof. We choose Rmin large enough so that for any R � Rmin, the following inductiveconstruction is valid. Let R1 := R. Using the approximate isomorphisms (8.1), (8.2),(8.3), (8.4), and Lemma 8.5, we inductively choose Ri+1 so that:A. ~Hk(NRi(K)) 0! ~Hk(NRi+1(K)) for 0 � k � n.B. Im( ~Hk(YRi+1)! ~Hk(YRi)) maps isomorphically to Hn�k�1(G;ZG) under �k;Rifor 0 � k < n, and Im( ~Hk(YRi+1)! ~Hk(YRi)) is zero when k = n.C. Im(H�c (NRi+1(K))! H�c (NRi(K))) maps isomorphically onto H�(G;ZG) un-der H�c (f).D. H�c (YRi) 0! H�c (YRi+1).E. For each �, Hn�1c (YRi;�) 0! Hn�1c (YRi+1;�), and Hn�1c (ZRi+1;�) 0! Hn�1c (ZRi;�).F. For each �, ~H0(YRi+1;�) 0! ~H0(YRi;�) and ~H0(ZRi;�) 0! ~H0(ZRi+1;�).Now take 1 < i < j < M , and consider the map of Mayer-Vietoris sequences forthe decompositions X = NRj (K) [ YRi and X = NRj+1(K) [ YRi�1 :~Hk+1(X)! ~Hk(A(i; j))! ~Hk(NRj (K))� ~Hk(YRi) ! ~Hk(X)# # 0 # # #~Hk+1(X)! ~Hk(A(i� 1; j + 1))! ~Hk(NRj+1(K))� ~Hk(YRi�1) ! ~Hk(X)# �kjA(i�1;j+1) # �kHn�k�1(G;ZG)! Hn�k�1(G;ZG)Since ~H�(X) = f0g, conditions A and B and the diagram imply the �rst part ofassertion 1. The same Mayer-Vietoris diagram for k = n implies the second part.Let 0 � k < n � 1. Consider the commutative diagram of Mayer-Vietoris se-quences: 37



Hk(G;ZG)! Hk(G;ZG)Hk(�) # Hk(�) #Hkc (X)! Hkc (NRj+1(K))�Hkc (YRi�1)! Hkc (A(i� 1; j + 1)) ! Hk+1c (X)# # 0 # # #Hkc (X)! Hkc (NRj (K))�Hkc (YRi)! Hkc (A(i; j)) ! Hk+1c (X)Assertion 2 now follows from the fact that Hkc (X) �= Hk+1c (X) = 0, conditions C andD, and the diagram.Assertion 3 follows from condition E, the fact that Hnc (X) ' Z, and the followingcommutative diagram of Mayer-Vietoris sequences (��i;j is the coboundary operator inthe sequence):Hn�1c (ZRj+1;�)�Hn�1c (YRi�1;�)! Hn�1c (A�(i� 1; j + 1)) �i�1;j+1�����! Hnc (X)! 00 # 0 # # #Hn�1c (ZRj ;�)�Hn�1c (YRi;�)! Hn�1c (A�(i; j)) �i;j�����! Hnc (X)! 0Assertion 4 follows from condition F and the following commutative diagram:~H1(X)! ~H0(A�(i; j))! ~H0(ZRj ;�)� ~H0(YRi;�) ! ~H0(X)# # 0 # 0 # #~H1(X)! ~H0(A�(i� 1; j + 1))! ~H0(ZRj+1;�)� ~H0(YRi�1;�) ! ~H0(X)Corollary 8.7. If G is an (n� 1)-dimensional duality group, then each deep compo-nent stabilizer is a PD(n� 1) group.Proof. Fix a deep component C� of X � ND(K), and let H� be its stabilizer inG. Let R = D, M = 4k + 2, and apply the construction of Lemma 8.6 to getD � R1 � R2 � : : : � R4k+2 satisfying the conditions of Lemma 8.6.Pick 1 < i < j < M . The mappings ~H`(A(i; j)) ! ~H`(A(i � 1; j + 1)) are zerofor each ` = 1; :::; n by part 1 of Lemma 8.6, since Hk(G;ZG) = 0 for k < n � 1.Because A(p; q) is the disjoint union q�A�(p; q) for all 0 < p < q < M , we actuallyhave ~H`(A�(i; j)) 0! ~H`(A�(i � 1; j + 1)) for 1 � ` � n. By part 4 of Lemma 8.6the same assertion holds for ` = 0. Applying Theorem 5.10 to the chain complexesC�(A�(i; j)), we see that when k > 2n + 5, H� is a group of type FP (n). Sincedim(H�) � dim(G) = n� 1 it follows that H� is of type FP (see section 3).The mappings Hc̀(A�(i� 1; j + 1))! Hc̀(A�(i; j)) are zero for 0 � ` < n� 1 bypart 2 of Lemma 8.6 and the fact that A(p; q) = q�A�(p; q). By parts 1 and 2 ofLemma 5.1, we have Hk(H�;ZH�) = f0g for 0 � k < n�1, and Hn�1(H�;ZH�) ' Zby part 3 of Lemma 8.6. Hence H� is a PD(n� 1) group.Remark. For the remainder of the proof, we really only need to know that each deepcomponent stabilizer is of type FP . 38



Proof of Theorem 1.1 concluded. Let C1; : : : ; Ck be a set of representatives for theG-orbits of deep components of X � NR(K), and let H1; : : : ; Hk � G denote theirstabilizers. Since G and each Hi is of type FP , the group pair (G; fHig) has �nitetype (section 3). By Lemma 5.14, we haveH�(G; fHig;ZG) ' lim�!R H�c (X; YR);while limRH�c (X; YR) ' limRHn��(NR(K)) by Coarse Poincare duality, andlim�!R H�(NR(K)) ' H�(X) ' H�(pt)since homology commutes with direct limits. Therefore the group pair (G; fHig)satis�es one of the criteria for PD(n) pairs (see section 3), and we have provenTheorem 1.1.We record a variant of Theorem 1.1 which describes the geometry of the actionGy X more explicitly:Theorem 8.8. Let G y X be as in Theorem 1.1, and let K � X be a G-invariantsubcomplex with K=G compact. Then there are R0; R1; R2 so that1. The deep components fC�g�2I of X � NR0(K) are all stable, there are only�nitely many of them modulo G, and their stabilizers fH�g�2I are PD(n�1) groups.2. For all � 2 I, the frontier @C� is connected, and NR1(@C�) has precisely twodeep complementary components, E� and F�, where E� has Hausdor� distance atmost R2 from C�. Unless G is a PD(n� 1) group, the distance function d(@C�; �) isunbounded on K \ F�.3. The Hausdor� distance between X �q�E� and K is at most R2.Proof. This is clear from the discussion above.We remark that there are �1 6= �2 2 I so that the Hausdor� distancedH(@C�1 ; @C�2) <1i� G is a PD(n� 1) group.Lemma 8.9. Let Gy X be as Theorem 1.1, and let K; C�; H�; Ci; Hi be as in theconclusion of the proof of Theorem 1.1. If X is simply connected and the groups Hiadmit �nite K(Hi; 1)'s, then G admits a �nite K(G; 1). There exists a contractiblecoarse PD(n) space X 0 on which G acts freely and simplicially with the followingproperties:1. There is a G-equivariant proper homotopy equivalence � : X ! X 0 which is ahomeomorphism away from a �nite tubular neighborhood of K.2. There is a contractible subcomplex K 0 � X 0 on which G acts cocompactly. Allcomponents of X 0 �K 0 are deep and stable.3. The mapping � induces a bijection between the deep components C� and com-ponents of X 0 �K 0. 39



Proof. For each 1 � i � k, letWi be the universal cover of a �nite Eilenberg-MacLanespace for Hi, and specify an Hi-equivariant map  i : @Ci ! Wi, where @Ci is thefrontier of Ci. We can G-equivariantly identify the disjoint union q�2G(i)@C� withthe twisted product G�Hi @Ci, and obtain an induced G-equivariant mapping	 : [� @C� = [i(q�2G(i) @C�)! qi (G�Hi Wi):Let K+ := X � q�C�. We now cut X open along the disjoint union @C := q� @C�to obtain a new complex �X := K+ q (q�C�)which contains two copies @+C � K+ and @�C � q�C� of @C. We let 	� be thecorresponding copies of the mapping 	. Now de�ne K 0 as the union (along @+C) ofK+ and the mapping cylinder of 	+ and de�ne Y 0 as the union (along @�C) of q�C�and the mapping cylinder of 	�. Finally obtain X 0 gluing K 0 and Y 0 along the copiesof W := qi(G �Hi Wi). The group G still acts on X 0 freely and simplicially andclearly K 0=G is compact. By applying Van-Kampen's theorem and Mayer-Vietorissequences, it follows that X 0 and K 0 are uniformly contractible. Assertion 1 is clearfrom the construction of X 0. The remaining assertions follow easily from the �rst.Proof of Theorem 1.3. By the main theorem deep components stabilizers Hi arePD(2)-groups and hence are surface groups by [17, 16]. Theorem 1.3 now followsby applying Lemma 8.9 (where the complexes Wi in the proof are homeomorphic toR2).In Proposition 8.11 we generalize the uniqueness theorem of the peripheral struc-ture from 3-dimensional manifolds to PD(n) pairs.Theorem 8.10. (Johannson [27], see also [38].) Let M be a compact connectedacylindrical 3-manifold with aspherical incompressible boundary components S1; : : : ; Sm.Let N be a compact 3-manifold homotopy-equivalent toM , with incompressible bound-ary components Q1; : : : ; Qn, and ' : �1(M) ! �1(N) be an isomorphism. Then 'preserves the peripheral structures of �1(M) and �1(N) in the following sense. Thereis a bijection � between the set of boundary components of M and the set of boundarycomponents on N so that after relabelling via � we have:'(�1(Si)) is conjugate to �1(Qi)) in �1(N).Proposition 8.11. Let (G; fHigi2I) be a PD(n) pair, where G is not a PD(n� 1)group, and Hi does not coarsely separate G for any i. Now let G y X be a freesimplicial action on a coarse PD(n) space, and let (G; fLjgj2J) be the group pairobtained by applying Theorem 1.1 to this action. Then there is a bijection � : I ! Jso that Hi is conjugate to L�(i) for all i 2 I.Proof. Under the assumptions above, each Hi and Lj is a maximal PD(n� 1) sub-group (see Lemma 3.3). By Corollary 7.14, each Hi is conjugate to some Lj, and byLemma 3.3 this de�nes an injection � : I ! J . Consider the double Ĝ of G overthe Lj's. Then the double of G over the Hi's sits in Ĝ, and the index will be in�niteunless � is a bijection.We now establish a relation between the acylindricity assumption in Theorem8.10 and coarse nonseparation assumption in Proposition 8.11. We �rst note that40



if M is a compact 3-manifold with incompressible aspherical boundary componentsS1; : : : ; Sm, then M is acylindrical i� �1(Si) \ g(�1(Sj))g�1 = feg whenever i 6= j ori = j but g =2 �1(Si).Lemma 8.12. Suppose G is a duality group and G y X is a free simplicial actionon a coarse PD(n) space, and let (G; fHjgj2J) be the group pair obtained by applyingTheorem 1.1 to this action. Assume that Hi \ (gHjg�1) = feg whenever i 6= j ori = j but g =2 Hi. Then no Hi coarsely separates G.Proof. Let K0 � X be a connected G-invariant subcomplex so that K0=G is compactand all deep components of X � K0 are stable. Now enlarge K0 to a subcomplexK � X by throwing in the shallow (i.e. non-deep) components of X � K0; then Kis connected, G-invariant, K=G is compact, and all components of X � K are deepand stable. Let fC�g denote the components of X �K, and let Ci be a componentstabilized by Ci. We will show that @Ci does not coarsely separate K in X. SinceK ,! X is a uniformly proper embedding, G y K is cocompact, and Hi y @Ci iscocompact, this will imply the lemma.For all components C� and all R, the intersection Hi \ H� acts cocompactly onNR(@Ci) \ �C�, where H� is the stabilizer of C�; when � 6= i the group Hi \ H� istrivial, so in this case Diam(NR(@Ci) \ �C�) <1. For each R there are only �nitelymany � { moduloHi { for which NR(@Ci)\C� 6= ;, so there is a constant D1 = D1(R)so that if � 6= i then Diam(NR(@Ci)\C�) < D1. Each @C� is connected and 1-ended,so we have an R1 = R1(R) so that if � 6= i, and x; y 2 @C� �NR1(@Ci), then x maybe joined to y by a path in @C� �NR(@Ci).By Corollary 7.10, there is a function R2 = R2(R) so that if x; y 2 K�NR2(@Ci)then x may be joined to y by a path in X �NR(@Ci).Pick R, and let R0 = R2(R1(R)). If x; y 2 K�NR0(@Ci) then they are joined by apath �xy in X�NR1(R)(@Ci). For each � 6= i, the portion of �xy which enters C� maybe replaced by a path in @C� �NR(@Ci). So x may be joined to y in K �NR(@Ci).Thus @Ci does not coarsely separate K in X.Lemma 8.13. Let M be a compact 3-manifold with @M 6= ;, with aspherical incom-pressible nonempty boundary components S1; : : : ; Sm. Then M is acylindrical if andonly if �1(M) is not a surface group and no Hi = �1(Si) � �1(M) = G coarselyseparates G.Proof. The implication) follows from Lemma 8.12. To establish( assume that Mis not acylindrical. This implies that there exists a nontrivial decomposition of �1(M)as a graph of groups with a single edge group C which is a cyclic subgroup of someHi. Thus C coarsely separates G. Since [G : Hi] = 1 it follows that Hi coarselyseparates G as well.Corollary 8.14. Suppose G is not a PD(n � 1) group, both (G; fHigi2I) and(G; fLjgj2J) are PD(n) pairs, no Hi coarsely separates G, and each Lj admits a�nite Eilenberg-MacLane space. Then there is a bijection � : I ! J so that Hi isconjugate to L�(i) for all i 2 I. Thus the peripheral structure of G in this case isunique. 41



Proof. Under the above assumptions the double Ĝ of G with respect to the collectionof subgroups fLjgj2J admits a �nite Eilenberg-MacLane space K(Ĝ; 1). Thus wecan take as a coarse PD(n)-space X the universal cover of K(Ĝ; 1). Now applyProposition 8.11.9. ApplicationsIn this section we discuss examples of (n � 1)-dimensional groups which cannot acton coarse PD(n) spaces.2-dimensional groups with positive Euler characteristic. Let G be a group oftype FP2 with cohomological dimension 2. If the �(G) > 0 then G cannot act freelysimplicially on a coarse PD(3) space. To see this, note that by Mayer-Vietoris someone-ended free factor G0 of G must have �(G0) > 0. If G0 acts on a coarse PD(3)space then G0 contains a collection H of surface subgroups so that (G0;H) is a PD(3)pair. Since the double of a PD(3) pair is a PD(3) group ( which has zero Eulercharacteristic) by Mayer-Vietoris we have �(G0) � 0, which is a contradiction.Bad products. Suppose G =Qki=1Gi where each Gi is a duality group of dimensionni, and G1; G2 are not Poincare duality groups. Then G cannot act freely simpliciallyon a coarse PD(n) space, where n� 1 =Pki=1 ni.Proof. Let Gy X be a free simplicial action on a coarse PD(n) space.Step 1. G contains a PD(n � 1) subgroup. This follows by applying Theorem1.1 to G y X, since otherwise G y X is cocompact and Lemma 5.3 would giveHn(G;ZG) ' Z, contradicting dim(G) = n� 1.We apply Theorem 1.1 to see that Gy X de�nes deep complementary componentstabilizers H� � G which are PD(n� 1) groups.Step 2. Any PD(n�1) subgroup V � G virtually splits as a productQki=1 Vi whereVi � Gi is a PD(ni) subgroup. Consequently each Gi contains a PD(ni) subgroup.Lemma 9.1. A PD(m) subgroup V of am-dimensional product groupW :=Qki=1Wicontains a �nite index subgroup V 0 which splits as a product V 0 = Qki=1 Vi whereVi � Wi is a Poincare duality group of dimension dim(Wi).Proof. Look at the kernels of the projectionsp̂j : W !Yi 6=j Wirestricted to V . The dimension of the middle group in a short exact sequence hasdimension at most the sum of the dimensions of the other two groups. Applying thisto the exact sequence 1!Wj \ V ! V ! p̂j(V )! 1we get that Wj \ V has the same dimension as Wj. Hence Qj(Wj \ V ) has the samedimension as V , so it has �nite index in V (see section 3). Therefore Qj(Wj \ V ) isa PD(n) group and so the factor groups (Wj \ V ) are PD(dim(Wj)) groups.Step 3. No PD(n � 1) subgroup V � G can coarsely separate G. This followsimmediately from step 2 and: 42



Lemma 9.2. For i = 1; 2 let Ai � Bi be �nitely generated groups, with [Bi : Ai] =1. Then A1 � A2 does not coarsely separate B1 �B2.Proof. Suppose that x = (x1; x2); y = (y1; y2) are points in the Cayley graphs ofB1; B2 which are at distance at least R from A := A1�A2. Without loss of generalitywe may assume that d(x1; A1) � R=2. We then pick a point x02 2 B2 with distanceat least R=2 from A2 and connect x2 to x02 by a path x2(t) the the Cayley graph ofB2. The path (x1; x2(t)) does not intersect NR2 (A). Applying similar argument to ywe reduce the proof to the case where d(xi; Ai) � R=2 and d(yi; Ai) � R=2, i = 1; 2.Now connect x1 to y1 by a path x1(t), and y2 to x2 by a path y2(t); it is clear that thepaths (x1(t); x2); (y1; y2(t)) do not intersect NR4 (A). On the other hand, these pathsconnect x to (y1; x2) and y to (y1; x2).Step 4. By steps 1 and 2 we know that each Gi contains a PD(ni) subgroup. LetLi � Gi be a PD(ni) subgroup for i > 1. Set L := G1 � (Qki=2 Li). Observe that Lis not a PD(n� 1) group since G1 is not a PD(n1) group. Therefore no �nite indexsubgroup of L can be a PD(n� 1) subgroup, see section 3.Step 5. Choose a basepoint ? 2 X. We now apply Theorem 8.8 to the actionL y X with K := L(?), and we let Ri, C�, H� E�, and F� be as in the Theorem8.8. Since L has in�nite index in G, the distance function d(@C�; �) is unboundedon G(?) \ E� for some � 2 I, while part 2 of Theorem 8.8 implies that d(@C�; �) isunbounded on K \F�. Hence H� coarsely separates G, which contradicts step 3.Baumslag-Solitar groups. Pick p 6= �q, and let G := BS(p; q) denote theBaumslag-Solitar group with the presentationha; b j bapb�1 = aqi: (9.3)If G1 is a k-dimensional duality group then the direct product G1 � G does not actfreely simplicially on a coarse PD(3 + k) space.We will prove this when G1 = feg. The general case can be proved using straight-forward generalization of the argument given below, once one applies the \Bad prod-ucts" example above to see that G1 must be a PD(k) group if G1�G acts on a coarsePD(3 + k) space. Assume that Gy X is a free simplicial action on a coarse PD(3)space. Choosing a basepoint ? 2 X, we obtain a uniformly proper map G! X.We recall that the presentation (9.3) de�nes a graph of groups decomposition ofG with one vertex labelled with Z, one oriented edge labelled with Z, and where theinitial and �nal edge monomorphisms embed the edge group as subgroups of indexp and q respectively. The Bass-Serre tree T corresponding to this graph of groupshas the following structure. The action G y T has one vertex orbit and one edgeorbit. For each vertex v 2 T , the vertex stabilizer Gv is isomorphic to Z. The vertexv has p incoming edges and q outgoing edges; the incoming (respectively outgoing)edges are cyclically permuted by Gv with ine�ective kernel the subgroup of index p(respectively q).Let �� be the presentation complex corresponding to the presentation (9.3), andlet � denote its universal cover. Then � admits a natural G-equivariant �bration� : � ! T , with �bers homeomorphic to R. For each vertex v 2 T , the inverse43



image ��1(v) has a cell structure isomorphic to the usual cell structure on R, andGv acts freely transitively on the vertices. For each edge e � T , the inverse image��1(e) � � is homeomorphic to a strip. The cell structure on the strip may beobtained as follows. Take the unit square in R2 with the left edge subdivided into psegments and the right edge subdivided into q segments; then glue the top edge tothe bottom edge by translation and take the induced cell structure on the universalcover. The edge stabilizer Ge acts simply transitively on the 2-cells of ��1(e).We may view � as a bounded geometry metric simplicial complex by taking a G-invariant triangulation of �. Given k distinct ideal boundary points �1; : : : ; �k 2 @1Tand a basepoint ? 2 T , we consider the geodesic rays ?�i � T , take the disjoint unionof their inverse images Yi := ��1(?�i) � � and glue them together along the copiesof ��1(?) � ��1(?�i). The resulting complex Y inherits bounded geometry metricsimplicial complex structure from �. The reader will verify the following assertions:1. Y is uniformly contractible.2. For i 6= j, the union Yi [ Yj � Y is uniformly contractible and the inclusionYi [ Yj ! Y is uniformly proper.3. The natural map Y ! � is uniformly proper.4. The cyclic ordering induced on the Yi's by the uniformly proper compositionC�(Y ) ! C�(�) ! C�(X) (see Lemma 7.11) de�nes a continous G-invariant cyclicordering on @1T .Let a be the generator of Gv for some v 2 T . Setting ek := (pq)k, the sequencegk := aek { viewed as elements in Isom(T ) { converges to the identity as k !1. Sothe sequence of induced homeomorphisms of the ideal boundary of T converges to theidentity. The invariance of the cyclic ordering clearly implies that gk acts trivially onthe ideal boundary of T for large k. This implies that gk acts trivially on T for largek. Since this is absurd, G cannot act discretely and simplicially on a coarse PD(3)space.Remark 9.4. The complex � { and hence BS(p; q) { can be uniformly properly em-bedded in a coarse PD(3) space homeomorphic to R3 . To see this we proceed asfollows. First take a proper PL embedding T ! R2 of the Bass-Serre tree into R2 .For each co-oriented edge �!e of T � R2 we take product cell structure on the half-slabP (�!e ) := ��1(e) � R+ where R+ is given the usual cell structure. We now performtwo types of gluings. First, for each co-oriented edge �!e we glue the half-slab P (�!e )to � by identifying ��1(e) � 0 with ��1(e) � �. Now, for each pair �!e1 ; �!e2 of adja-cent co-oriented edges, we glue P (�!e1 ) to P (�!e2 ) along ��1(v)�R+ where v = e1 \ e2.It is easy to see that after suitable subdivision the resulting complex X becomes abounded geometry, uniformly acyclic 3-dimensional PL manifold homeomorphic toR3 .Higher genus Baumslag-Solitar groups. Note that BS(p; q) is the fundamentalgroup of the following complex K = K1(p; q). Take the annulis A with the boundarycircles C1; C2. Let B be another annulus with the boundary circles C 01; C 02. Map C 01; C 02to C1; C2 by mappings f1; f2 of degrees p and q respectively. Then K is obtained bygluing A and B by f1 t f2. Below we describe a \higher genus" generalization ofthis construction. Instead of the annulus A take a surface S of genus g � 1 withtwo boundary circles C1; C2. Then repeat the above construction of K by gluing44



the annulus B to S via the mappings C 01 ! C1; C 02 ! C2 of the degrees p; q respec-tively. The fundamental group G = Gg(p; q) of the resulting complex Kg(p; q) hasthe presentationha1; b1; :::; ag; bg; c1; c2; t : [a1; b1]:::[ag; bg]c1c2 = 1; tcq2t�1 = cp1i:One can show that the group Gg(p; q) is torsion-free and Gromov-hyperbolic [28].Note that the universal cover ~K of the complex Kg(p; q) does not �ber over theBass-Serre tree T of the HNN-decomposition of G. Nevertheless there is a properlyembedded c1-invariant subcomplex in ~K which (c1-invariantly) �bers over T with the�ber homeomorphic to R. This allows one to repeat the arguments given above forthe group BS(p; q) and show that the group Gg(p; q) cannot act simplicially freelyon a coarse PD(3) space (unless p = �q). However in [28] we show that Gg(p; q)contains a �nite index subgroup isomorphic to the fundamental group of a compact3-manifold with boundary.Groups with too many coarsely non-separating Poincare duality subgroups.By Corollary 7.14, if G is of type FP , and G y X is a free simplicial action on acoarse PD(n) space, then there are only �nitely many conjugacy classes of coarselynon-separating maximal PD(n� 1) subgroups in G.We now construct an example of a 2-dimensional group of type FP which has in�-nitely many conjugacy classes of coarsely non-separating maximal surface subgroups;this example does not �t into any of the classes described above. Let S be a 2-toruswith one hole, and let fa; bg � H1(S) be a set of generators. Consider a sequence ofembedded loops k � S which represent a+ kb 2 H1(S), for k = 0; 1; : : : . Let � be a2-torus with two holes. Glue the boundary torus of S � S1 homeomorphically to oneof the boundary tori of ��S1 so that the resulting manifoldM is not Seifert �bered.Consider the sequence Tk � M of embedded incompressible tori corresponding tok � S1 � S � S1 �M . Let L � �1(M) be the in�nite cyclic subgroup generated bythe homotopy class of 0. Finally, we let G be the double of �1(M) over the cyclicsubgroup L, i.e. G := �1(M) �L �1(M). Then the reader may verify the following:1. Let Hi � �1(M) � G be the image of the fundamental group of the torus Tifor i > 0 (which is well-de�ned up to conjugacy). Then each Hi is maximal in G, andthe Hi's are pairwise non-conjugate in G.2. Each Hi � �1(M) coarsely separates �1(M) into precisely two deep compo-nents.3. For each i > 0, the subgroup Hi � �1(M) coarsely separates some conjugateof L in �1(M).4. It follows from 3 that Hi is coarsely non-separating in G for i > 0.5. G is of type FP and has dimension 2.Therefore G cannot act freely simplicially on a coarse PD(3) space.10. Appendix: Coarse Alexander duality in briefWe will use terminology and notation from section 2.Theorem 10.1. Let X and Y be bounded geometry uniformly acyclic metric simpli-cial complexes, where X is an n-dimensional PL manifold. Let f : C�(Y )! C�(X) be45



a uniformly proper chain map, and let K � X be the support of f(C�(Y )) � C�(X).For every R we may compose the Alexander duality isomorphism A:D: with the in-duced map on compactly supported cohomology:~Hn�k�1(X �NR(K)) A:D:�! Hkc (NR(K)) Hkc (f)�����! Hkc (Y ); (10.2)we call this composition AR. Then1. For every R there is an R0 so thatKer(AR0) � Ker( ~Hn�k�1(X �NR0(K))! ~Hn�k�1(X �NR(K))): (10.3)2. AR is an epimorphism for all R � 0.3. All deep components ofX�K are stable, and their number is 1+rank(Hn�1c (Y )).4. If Y is an (n�1)-dimensional manifold, then for all R there is a D so that anypoint in NR(K) lies within distance D of both the deep components of X �NR(K).The functions R0 = R0(R) and D = D(R) depend only on the geometry of Xand Y (via their dimensions and acyclicity functions), and on the coarse Lipschitzconstant and distortion of f .Proof. Step 1. We construct a coarse Lipschitz chain map g : C�(X) ! C�(Y )as follows. For each vertex x 2 X; y 2 Y we let [x]; [y] denote the correspondingelement of C0(X); C0(Y ). To de�ne g0 : C0(X)! C0(Y ) we map [x] for each vertexx 2 X � C0(X) to [y], where we choose a vertex y 2 Y � C0(Y ) for which thedistance d(x; Support(f(y))) is minimal, and extend this homomorphism Z-linearlyto a map C0(X) ! C0(Y ). Now assume inductively that gj : Cj(X) ! Cj(Y )has been de�ned by j < i. For each i-simplex � 2 Ci(X), we de�ne gi(�) to bea chain bounded by gi�1(@�) (where Support(gi(�)) lies inside the ball supplied bythe acyclicity function of Y ). Using a similar inductive procedure to construct chainhomotopies, one veri�es:a) For every R there is an R0 so that the compositionC�(NR(K)) g�! C�(Y )! C�(K)! C�(NR0(K)) (10.4)is chain homotopic to the inclusion by an R0-Lipschitz chain homotopy with displace-ment < R0.b) There is a D so that C�(Y ) f! C�(K) g! C�(Y )is a chain map with displacement at most D and g � f is chain homotopic to idC�(Y )by a D-Lipschitz chain map with displacement < D.Step 2. Pick R, and let R0 be as in a) above. If� 2 Ker(Hkc (NR0(K)) Hkc (f)�����! Hkc (Y ));then � is in the kernel of the compositionHkc (NR0(K)) Hkc (f)�����! Hkc (Y ) Hkc (g)�����! Hkc (NR(K))46



which coincides with the restriction Hkc (NR0(K)) ! Hkc (NR(K)) by a) above. Simi-larly, the compositionHkc (Y ) Hkc (g)�����! Hkc (NR(K)) Hkc (f)�����! Hkc (Y )is the identity, so Hkc (f) is an epimorphism. Applying the Alexander duality isomor-phism to these two assertions we get parts 1 and 2.Step 3. Let C be a deep component of X �K. Suppose C1; C2 are deep compo-nents of X � NR(K) with Ci � C. Picking points xi 2 Ci, the di�erence [x1] � [x2]determines an element of ~H0(X�NR(K)) lying inKer( ~H0(X�NR(K))! ~H0(X�K).Hence AR([x1]� [x2]) = A0(pR([x1]� [x2])) = A0(0) = 0where pR : ~H0(X � NR(K)) ! ~H0(X � K) is the projection. Since C1 and C2 aredeep, for any R0 � R there is a c 2 ~H0(X � NR0(K)) which projects to [x1] � [x2] 2~H0(X �NR(K)). But then AR0(c) = 0 and part 1 forces [x1]� [x2] = 0. This provesthat C1 = C2, and hence that all deep components of X �K are stable. The numberof deep components of X �K is1 + rank(lim �R ~H0(X �NR(K));and by part 1 this clearly coincides with 1 + rank(Hn�1c (Y )). Thus we have proved2. Step 4. To prove part 4, we let C1; C2 be the two deep components of X � Kguaranteed to exist by part 3. Pick x 2 NR(K), and let R0 be as in part 1. Since f iscoarse Lipschitz chain map, there is a y 2 Y with d(x; Support(f([y]))) < D1 whereD1 is independent of x (but does depend on R). Choose a cocycle � 2 Cn�1c (Y )representing the generator of Hn�1c (Y ) which is supported in an (n � 1)-simplexcontaining y. Then the image �0 of � under Cn�1c (Y ) Cn�1c (g)�! Cn�1c (NR0(K)) is acocycle supported in B(x;D2)\NR0(K) where D2 depends on R0 but is independentof x. Applying the Alexander duality isomorphism13 to [�0] 2 Hn�1c (NR0(K)), we getan element c 2 ~C0(X �NR0(K)) which is supported in B(x;D2+1)\ (X �NR0(K)),and which maps under AR0 to [�] 2 Hn�1c (Y ). Picking xi 2 Ci far from K, we have[x1]�[x2] 2 ~H0(X�NR0(K)) and AR0([x1]�[x2]) = �[�]. By part 1 it follows that theimages of c and [x1]�[x2] under the map ~H0(X�NR0(K))! ~H0(X�NR(K)) coincideup to sign. In other words, support(c) \ Ci 6= ;, so we've shown that d(x; Ci) < D2for each i = 1; 2.11. Appendix: Metric complexesIn this section we discuss the de�nition of metric complexes, and explain how onecan modify statements and proofs from the rest of the paper so that they work withmetric complexes rather than metric simplicial complexes.We have several reasons for working with objects more general than metric sim-plicial complexes. First of all, Poincare duality groups are not known to act freely13That is ultimately induced by taking the cap product with the fundamental class of H lfn (X),the locally �nite homology group of X . 47



cocompactly on acyclic simplicial complexes (or even on simplicial complexes thatare acyclic through dimension n + 1). Second, many maps arising in our arguments(e.g. retraction maps and chain maps associated with uniformly proper maps) arechain mappings which are not realizable using PL maps. Also one would like to havenatural constructions like mapping cylinders for chain mappings of geometric origin.11.1. Metric complexesDe�nition 11.1. A metric space X has bounded geometry if there is a constanta > 0 such that for every x; x0 2 X we have d(x; x0) > a, and for every R � 0, everyR-ball contains at most N = N(R) points.In the remainder of this section X and X 0 will denote bounded geometry metricspaces.A free module over X is a triple (M;�; p) where M is the free Z-module withbasis �, and � p! X is a map.14 We will refer to the space X as the control space,and p as the projection map. A free module over X has �nite type if #p�1(x) isuniformly bounded independent of x 2 X. We will often suppress the basis � andthe projection p in our notation for free modules over X. A D-morphism from a freemodule (M;�; p) over X to a free module (M 0;�0; p0) over X 0 is a pair (f; f̂) wheref : X ! X 0 is a map, f̂ :M !M 0 is module homomorphism such that for all � 2 �,f̂(�) 2 span((p0)�1(B(f(p(�)); D)). A morphism (f; f̂) is coarse Lipschitz (resp.uniformly proper) if the map of control spaces f is coarse Lipschitz (resp. uniformlyproper). When X = X 0 we say that (f; f̂) has displacement (at most) D if f = idXand (f; f̂) de�nes a D-morphism.A chain complex over X is a chain complex C� where each Ci is a free module overX, and the boundary operators @i : Ci ! Ci�1 have bounded displacement (dependingon i). A chain map (resp. chain homotopy) between a chain complex C� over X anda chain complex C 0� over X 0 is a chain map (resp. chain homotopy) C� ! C 0� whichinduces bounded displacement morphisms Ci ! C 0i (resp. Ci ! C(i+1)0) for each i.Note that any chain complex over X has a natural augmentation � : C0 ! Z whichmaps each element of �0 to 1 2 Z. A metric complex is a pair (X;C�) where1. X is a bounded geometry metric space and C� is a chain complex over X.2. Each (Ci;�i; pi) is a free module over X of �nite type.3. The projection map p0 is onto.The space X is called the control space of the metric complex (X;C�).Example 11.2. If Y is a metric simplicial complex, we may de�ne two closely relatedmetric complexes:1. Let X be the zero skeleton of Y , equipped with the induced metric. We orienteach simplex in Y , and let C� be the simplicial chain complex, where the basis �i isjust the collection of oriented i-simplices. We then de�ne the projection pi : �i ! Xby setting pi(�) equal to some vertex of �, for each � 2 �i.14This de�nition can be generalized to the category of projective modulesM overX by consideringthe pair (M; supp) where supp : M ! (bounded subsets of X) is the support map for the elementsm 2 P . 48



2. Let X 0 be the zero skeleton of the �rst barycentric subdivision Sd(Y ), equippedwith the induced metric. We consider the subcomplex of the singular chain complexof Y generated by the singular simplices of the form � : �k ! Y where � is ana�ne isomorphism from the standard k-simplex to a k-simplex in Y ; these mapsform the basis �0k for C 0k, and we de�ne p0 : �� ! X by projecting each � 2 �� to itsbarycenter.If C� is a chain complex over X, and W � C�, then the support of W , supp(W ),is the image under p of the smallest subset of �� whose span contains W .If K � X we de�ne the (sub)complex over K, denoted C[K], to be the metricsubcomplex (K;C 0�) where the basis �0� for the chain complex C 0� is the largest subsetof �� such that p(�0�) � K and span(�0�) is a sub-complex of the chain complex C�.In other words, the triple (C 0i;�0i; p0i) can be described inductively as follows. Startwith �00 = p�10 (K), and inductively let�0i := f� 2 �i j pi(�) 2 K and @i(�) 2 C 0i�1g:By abusing notation we shall refer to the homology groups H�(C�[K]) (resp. com-pactly supported cohomology groups) as the homology (resp. compactly supportedcohomology ) of K.If L � X then [C�(L)]k, the \k-skeleton of C� over L", is de�ned as the k-trancation of C�[L]: C0[L] C1[L] ::: Ck[L]:If (X;C�) is a metric complex, K � X, then we have a chain complex C�[X;K](and hence homology groups H�[X;K]) for the pair [X;K] de�ned by the formulaC�[X;K] := C�[X]=C�[K]. Likewise, we may de�ne the cochain complexes C�[X;K] :=Hom(C�[X;K];Z) and cohomology of pairs H�[X;K]. The compactly supportedcochain complex C�c [X;L] of [X;L] is the direct limit limH�[X;X�K] where K � Xranges over compact subsets disjoint from L. The compactly supported cochain com-plex is clearly isomorphic to the subcomplex of C�[X;L] consisting of cochains �with �(�) = 0 for all but �nitely many � 2 ��. The support of � 2 C�[X] isfp�(�) j � 2 ��, �(�) 6= 0g. Note that there is a constant D depending on k suchthat for all � 2 Ck[X;L], we have Supp(�) � ND(X � L).If K � X, we de�ne an equivalence relation on p�10 (K) � �0 by saying that� � �0 if � � �0 is homologous to zero in C�[K]. We call the equivalence classesof the relation the components of K. By abusing notation we will also refer to theprojection of such component to X is called a \component" of K. Note that uniform0-acyclicity of (X;C�) implies that there exists r0 > 0 so that for each \component"L � K, there exists a component of C0[Nr0(L)] which contains C0[L].With this in mind, deep components of X�K, stable deep components and coarseseparation in X are de�ned as in Section 2. For instance, a component L � �0 ofX �K is deep if p0(L) is not contained in NR(K) for any R.The deep homology classes and stabilization of the deep homology of the comple-ment X �K are de�ned similarly to the case of metric simplicial complexes.The relation between the deep components and the deep 0-homology classes is thesame as in the case of metric simplicial complexes.49



If [�] 2 HDeep0 (C�[X � K]) and � 2 �0, then � belongs to a deep component ofX�K and this component does not depend on the choice of � representing [�]. Vice-versa, if L � �0 is a deep component of X � K then each � 2 Span(L) determinesan element of HDeep0 (C�[X �K]).The deep homologyHDeep0 (C�[X�NR(K)]) stabilizes at R0 i� all deep componentsof X �NR0(K) are stable.Note also that for each k 2 Z+ there exists r > 0 so that the following holds foreach K � X:Suppose that L� � X, � 2 A, is a collection of \components" of X �K so thatd(L�; L�) � r for all � 6= �. Then[C�([�2AL�)]k = ��2A[C�(L�)]k:An action of a group G on a metric complex (X;C�) is a pair (�; �̂) where G �y Xand G �̂y �� are actions, �̂ induces an action G y C� by chain isomorphisms, andp� : �� ! X is G-equivariant with respect to � and �̂. For many of our results a moregeneral notion of action (or quasi-action) would su�ce here. An action Gy (X;C�)is free (resp. discrete, cocompact) provided the action G �y X is free (resp. discrete,cocompact). We can identify C�c [X] with HomZG(C�;ZG) whenever G acts freelycocompactly on a metric complex (X;C�), [12, Lemma 7.4].We say that a metric complex (X;C�) is uniformly k-acyclic if for each R there isan R0 = R0(R) such that for all x 2 X the inclusionC�[B(x;R)]! C�[B(x;R0)]induces zero in reduced homology ~Hj for all j = 0 : : : k. We say that (X;C�) isuniformly acyclic if it is uniformly k-acyclic for every k. Observe that a group G actsfreely cocompactly on a uniformly (k � 1)-acyclic metric complex i� it is a group oftype FPk, and it acts freely cocompactly on a uniformly acyclic metric complex i� itis a group of type FP1.The following lemma implies that for uniformly 0-acyclic metric complexes (X;C�),the metric space X is \uniformly properly equivalent" to a path-metric space.Lemma 11.3. Suppose (X;C�) is a uniformly 0-acyclic metric complex. For anysubset Y � X and any r > 0 let Gr(Y ) be the graph with vertex set Y , with y; y0 2 Yjoined by an edge i� d(y; y0) < r. Let dGr : Y � Y ! Z [ f1g be the combinato-rial distance in Gr (the distance between points in the distinct components of Gr isin�nite). Then the following hold:1. Let r0 be the displacement of @1 : (C1;�1; p1) ! (C0;�0; p0). If r � r0,then (X; dGr) idX! (X; d) is a uniform embedding (here Gr = Gr(X)). In particular,dGr(x; x0) <1 for all x; x0 2 X.2. For all R there exists R0 = R0(R) such that if K � X, �; �0 2 �0, andd(p0(�); p0(�0)) � R, then either � and �0 belong to the same component of X �K,or d(p0(�); K) < R0 and d(p0(�0); K) < R0.Proof. Pick r � r0. To prove 1, it su�ces to show that for all R there is an N suchthat if d(x; x0) < R then dGr(x; x0) < N . 50



Pick R and x; x0 2 X with d(x; x0) < R. Choose � 2 p�10 (x) and �0 2 p�10 (x0). Bythe uniform 0-acyclicity of X, there is an R0 = R0(R) such that ���0 represents zeroin H0[B(x;R0)]. So � � �0 =X ai�iwhere �i 2 p�11 (B(x;R0)) and @�i 2 C0[B(x;R0)] for all i. Let Z � X be the set ofvertices lying in the same component of Gr(B(x;R0)) as x. ThenX�i2p�11 (Z) ai@1�ihas augmentation zero, forcing �0 2 p�10 (Z). It follows that dGr(x; x0) � #B(x;R0) �N = N(R).Part 2 follows immediately from the uniform 0-acyclicity of X.Suppose that X is a bounded geometry metric space, consider the sequence ofRips complexes X ! Rips1(X)! Rips2(X)! Rips3(X)! :::of X. The arguing analogously to the proof of Lemma 5.9 one provesProposition 11.4. X is the control space of a uniformly acyclic complex C� i� thesequence of Rips complexes Rj(X) is uniformly pro-acyclic.Using the above de�nitions, one can translate the results from sections 2 and 5into the language of metric complexes by1. Replacing metric simplicial complexes X with metric complexes (X;C�).2. Replacing simplicial subcomplexes K � X with subsets of the control spaceX. 3. Replacing tubular neighborhoods NR(K) of simplicial subcomplexes of metricsimplicial complexes with metric R-neighborhoods NR(K) of subsets K of the controlspace X.4. Replacing the simplicial chain complex C�(K) (resp. C�c (K)) with C�[K] (resp.C�c [K]), and likewise for homology and compactly supported cohomology.5. Replacing coarse Lipschitz and uniformly proper PL maps (resp. chain maps,chain homotopies) with coarse Lipschitz and uniformly proper chain maps (resp. chainmaps, chain homotopies) between metric complexes.11.2. Coarse PD(n) spacesA coarse PD(n) space is a uniformly acyclic metric complex (X;C�) equipped withchain maps (X;C�c ) P! (X;Cn��) and (X;C�) �P! (X;Cn��c )over idX , and chain homotopies �P � P �� id and P � �P ��� id over idX .As with metric simplicial complexes, we will assume implicitly that any groupaction Gy (X;C�) on a coarse PD(n) space commutes with P; �P ; �, and ��.51



Remark 11.5. Most of the results only require actions to commute with the operatorsP and �P up to chain homotopies with bounded displacement (in each dimension).It follows from our assumptions that if G y (X;C�) is a free action on a coarsePD(n) space, then the cohomological dimension of G is � n: for any ZG-moduleM we may compute H�(G;M) using the cochain complex HomZG(C�;M) which isZG-chain homotopy equivalent to the complex HomZG(Cn��c ;M), which vanishes indimensions > n.Example 11.6. Suppose G is a PD(n) group. Then (see [12]) there is a resolution0 Z A0  A1  : : :of Z by �nitely generated free ZG-modules, ZG-chain mappingsA� �P! HomZG(An��;ZG)and HomZG(An��;ZG) P! A�, and ZG-chain homotopies P � �P �� id and �P �P ��� id.For each i, let ��i be a free basis for the ZG-module Ai, and let�i := fg� j g 2 G; � 2 ��ig � Ai:De�ne a G-equivariant map pi : �i ! G by sending g� 2 �i to g, for every g 2 G,� 2 ��i. Then (Ai;�i; pi) is a free module over G (equipped with a word metric andregarded here as a metric space) for each i, and the pair (G;A�) together with themaps P; �P; �; �� de�ne a coarse PD(n) space on which G acts freely cocompactly(recall that HomZG(A�;ZG) ' A�c). Conversely, if G y (X;C�) is a free cocompactaction of a group G on a coarse PD(n) space, then G is FP1, cdim(G) � n (by theremark above), and the existence of the duality operators implies that Hk(G;ZG) =f0g for k 6= n and Hn(G;ZG) ' Z; these conditions imply that G is a PD(n) group[12, Theorem 10.1]Remark 11.7. If Gy X is any group acting freely on a coarse PD(n) space (X;C�),then dim(G) � n. To prove this note that we can use the action Gy C� to computethe cohomology H�(G;M) of G. Then the ZG-chain homotopy equivalence C� $ C�cimplies that Hk(G;M) = 0 for k � n.The material from sections 6 and 7 now adapts in a straighforward way to themore general setting of coarse PD(n)-spaces, with the caveat that the displacement,distortion function, etc, may depend on the dimension (since the chain complexeswill be in�nite dimensional in general). For instance, we have the coarse Jordanseparation theoremTheorem 11.8. Let (X;C�) and (X 0; C�) be coarse PD(n) and PD(n � 1) spacesrespectively, and let g : X 0 ! X be a uniformly proper map. Then1. g(X 0) coarsely separates X into (exactly) two components.2. For every R, each point of NR(g(X 0)) lies within uniform distance from eachof the deep components of YR := X �NR(g(X 0)).3. If Z � X 0, X 0 6� NR(Z) for any R and h : Z ! X is a uniformly propermap, then h(Z) does not coarsely separate X. Moreover, for any R0 there is anR1 > 0 depending only on R0 and the geometry of X;X 0, and h such that preciselyone component of X �NR0(h(Z)) contains a ball of radius R1.52



11.3. The proof of Theorems 1.1 and 1.3We now explain how to modify the main argument in section 8 for metric complexes.For simplicity we will assume that �0 = X. One can reduce to this case byreplacing the X with �0, and modifying the projection maps pi accordingly (in aG-equivariant fashion).The direct translation of the proof using the rules 1-5 above applies until Lemma8.5. The only part of the lemma that is needed later is part 2, so we explain how todeduce this.First note that the system f ~H0(YR;�)g is approximately zero as before. Likewise,for every k, the k-skeleton of the chain complex C�(YR) decomposes as a direct sum��[C�(YR;�)]k for R su�ciently large, since the distance between the subsets YR;� fordi�erent � tends to in�nity as R !1 by Lemma 11.3. This implies that as before,fHj(YR;�)g is approximately zero for every j.Let r0 := displacement(@1 : (C1;�1; p1)! (C0;�0; p0)):We now claim that for each R there is an R0 such that NR(C�) is contained inC� [NR0(K). (Here and below C� � X are the components of X�NR0(K) followingthe notation of Section 8.) To see this, pick x 2 C�, x0 2 X with d(x; x0) � R, andapply part 1 of Lemma 11.3 to get a sequence x = x1; : : : ; xj = x0 with d(xi; xi+1) � r0and j �M =M(R). By Lemma 11.3 either xj 2 C� (and we're done) or there is ani such that d(xi; ND(K)) < r = r(r0). In the latter case we have x0 2 Nr+Mr0(K),which proves the claim.Following the proof of Lemma 8.5, there is an R0 such that for R � R0, wehave ZR;� = NR(K) [ ([� 6=�C�). >From the claim in the previous paragraph, itnow follows that for every R � R0 there is an R0 such that ZR;� � NR0(ZR0;�) andNR(ZR0;�) � ZR0;�. Therefore the homology and compactly supported cohomologyof the systems fZR;�g and fNR(ZR0;�)g are approximately isomorphic, and similarstatements also apply to the complements of these systems. Part 2 of Lemma 8.5 nowfollows from coarse Alexander duality.The only issue in the remainder of the proof that requires di�erent treatment forgeneral metric complexes is the application of Mayer-Vietoris sequences for homologyand compactly supported cohomology. If (X;C�) is a metric complex, and X = A[B,then the Mayer-Vietoris sequences! Hk[A \B]! Hk[A]�Hk[B]! Hk(X) @! Hk�1[A \ B]!! Hk�1c [A \ B] �! Hkc [X]! Hkc [A]�Hkc [B]! Hkc [A \B]!need not be exact in general. By the Barratt-Whitehead Lemma [21, Lemma 7.4], inorder for the sequences to be exact through dimension k, it su�ces for the inclusionof pairs (B;A \ B) ! (X;A) to induce isomorphisms in homology and compactlysupported cohomology through dimension k+ 2. One checks that there is a constantr = r(k) (depending on the displacements of the boundary operators @1; : : : ; @k+1)such that this will hold provided d(A � B;X � A) � r. So the proof of Lemma53



8.6 goes through provided one chooses the numbers R1 � : : : � RM to be wellenough separated that the Mayer-Vietoris sequences hold through the relevant rangeof dimensions.11.4. Attaching metric complexesSuppose that Y � X is a pair of spaces of bounded geometry so that the inclusionY ! X is uniformly proper.Let P;Q be metric complexes over X and Y respectively:Q : 0 Z Q0  Q1  : : : Qn  :::;the complex P : 0 Z P 00 � P 000  P 01 � P 001 : : : P 0n � P 00n  :::has the boundary maps @0j � @00j : Pj ! P 0j�1 � P 00j�1, whereP 0 : 0 Z P 00  P 01 : : : P 0n  :::is a subcomplex over Y . Let � : P 0 ! Q; �j : P 0j ! Qj; j = 0; 1; :::; be a chainmap over Y , called the \attaching map." We will de�ne a complex R = Att(P;Q; �)determined by \attaching" P to Q via �; the complex R will be a metric complexover X. This construction is similar to attaching a cell complex A to a complex Bvia an attaching map f : C ! B, where C is a subcomplex of A.We let Rj := P 00j �Qj, this determines free generators for Rj; the boundary map@j : Rj ! Rj�1 = P 00j�1 �Qj�1 is given by@jP 00 := @00 � (� � @0);the restriction of @ to Q is the boundary map @Q of the complex Q. (It is clear that@ �@ = 0.) The control maps to X are de�ned by restricting the control map for P tothe (free) generators of P 00j and using the control map of Q for the (free) generatorsof Qj.The following lemma is straightforward and is left to the reader.Lemma 11.9. Suppose that we are given a complex P over X, complexes Q; T overY , a chain homotopy-equivalence h : Q! T and attaching maps � : P 0 ! Q; : P 0 !T are such that  = h � �, where all the chain homotopies in question have boundeddisplacement � Const(j). Then the metric complexes Att(P;Q; �); Att(P; T;  ) arechain homotopy-equivalent with bounds on the displacement of the chain homotopydepending only on Const(j).11.5. Coarse �brationsThe goal of this section is to de�ne a class of metric spaces W which are \coarsely�bered" over coarse PD(n) metric simplicial complexes X so that the \coarse �bers"Yx are control spaces of PD(k) spaces. We will show that under a mild restriction54



on the base X and the �bers Yx, the metric space W is the control space of a coarsePD(n+ k) space.Suppose that X is an n-dimensional metric simplicial complex equipped with anorientation of its 1-skeleton, and L; A 2 R. Assume that for each vertex x 2 X(0)we are given a metric space Yx, and (L;A)-quasi-isometries fpq : Yp ! Yq for eachpositively oriented edge [pq] in X. We will assume that each Yx is the control spaceof a metric complex (Yx; Qx) where the complexes Qx are uniformly acyclic (withacyclicity function independent of x) 15; in particular, there exists C < 1 so thatthe C-Rips complex of each Yx is connected. It follows that fpq induce morphismsf̂pq : Qp ! Qq which are uniform proper chain homotopy-equivalences with thedisplacements independent of p; q.The family of maps fpq : Yp ! Yq together with the metric on X determine ametric space W = W (X; fYpg; ffpqg) which \coarsely �bers" over X with the �bersYp: As a set, W is the disjoint union tx2X(0)Yx. Declare the distance between y; fpq(y)(for each y 2 Yp) equal 1 and then induce the quasi-path metric on W by consideringchains where the distance between the consecutive points is at most max(C; 1). It isclear that W has bounded geometry.The reader will verify that the embeddings Yp ! W are uniformly proper, wherethe distortion functions are independent of p. Let projX : W ! X denote the \coarse�bration"; projX : Yx ! fxg.Example 11.10. Suppose that we have a short exact sequence1! H ! G! K ! 1of �nitely generated groups where the group H has �nite type. This exact sequencedetermines a coarse �bration with the total space G, base K and �bers H � fkg,k 2 K. (Each group is given a word metric.)Example 11.11. The following example appears in [31]. Suppose that we have agraph of groups � := fGv; hvw : Ee� ! Ee+g, where Gv are vertex groups, Ee� arethe edge subgroups for the edge e; we assume that each edge group Ee� has �nitetype and each edge group has �nite index in the corresponding vertex group. LetG = �1(�) be the fundamental group of this graph of groups, L � T be a geodesic inthe tree T dual to the graph of groups �. There is a natural projection p : G ! T ,let W := p�1(L). Then W can be described as a coarse �bration whose base consistsof the vertices of L and whose �bers are copies of the edge groups.Examples of the above type as well as a question of Papasoglu motivate construc-tions and the main theorem of this section.Our next goal is to de�ne a metric complex R with the control space W . Wede�ne the complex R inductively.Let R0 := �x2X(0)Qx. The (free) generators of R0 are the free generators ofQx; x 2 X(0). De�ne the control map to W by sending generators of (Qx)0 to thepoints of Yx via the control map for the complex Qx.15For much of what follows this assumption can be relaxed.55



Orient each edge e � X(1), e = [e�e+]. To construct R1 �rst consider the complexP 1 := �e2X(1)C�(e)
Qe� . We have the attaching map �1�1 : �e2X(1)C�(@e)
Qe� � P 1 ! R0given by the identity mapsC0(e�)
Qe� ! C0(e�)
Qe� � R0and by C0(e+)
Qe� ! Qe� f̂e�e+! Qe+:We then de�ne R1 as Att(P 1; R0; �1) by attaching P 1 to R0 via �1, see section 11.4.Note that Att(C�(e)
Qe� ; R0; �1) is nothing but the mapping cone of the restrictionof �1 to C�(e)
Qe�.Let x0 be any point in X(0). Then using uniform acyclicity of Qx's and Lemma11.9 one constructs (inductively, by attaching one C�(e) 
 Qe� at a time) a properchain homotopy-equivalenceR1 h! C�(X(1))
Qx0 �h! R1with uniform control of the displacement of h; �h, h��h �= id; �h�h �= id as functions of thedistance from projX(supp(�)) to x0. These displacement functions are independentof x0.We continue inductively. Suppose that we have constructed Rm. We also assumethat for each x0 2 X(0) there is a proper chain homotopy-equivalenceRm h! C�(X(m))
Qx0 �h! Rmwith uniform control of the displacement for the chain homotopies h��h �= id; �h�h �= idas functions of the distance from projX(supp(�)) to x0. (Here h = hx0; �h = �hx0 dependon x0 and m.) These displacement functions are independent on x0.For each m + 1-simplex �m+1 in X we choose a vertex v = v(�m+1). We de�nePm+1 as ��m+12X(m+1)C�(�)
Qv(�m+1):Note that we have the maps C�(@�) 
 Qv(�m+1) ! Rm constructed using the maps�hv. These maps composed with @ 
 id de�ne the attaching maps�m+1 : Pm+1 ! Rm:Now we de�ne the complexRm+1 as Att(Pm+1; Rm; �m+1). The proper chain homotopy-equivalences Rm+1 h! C�(X(m+1))
Qx0 �h! Rm+1are constructed using uniform acyclicity of Qx's, the induction hypothesis and Lemma11.9.As the result we get the complex R := Rn which is a metric complex over W . Wealso get the proper chain homotopy-equivalences hv; �hv between R and C�(X) 
 Qv(v 2 X(0)) with uniform control over the displacement of the chain homotopies hv ��hv �= id; �hv � hv �= id as functions of the distance from projX(supp(�)) to v. Thesefunctions in turn are independent of v. 56



Lemma 11.12. Assume that the complexes X, Homc(Qx;Z) and Homc(C�(X);Z)are uniformly acyclic. Then the metric chain complexes R and Homc(R;Z) are alsouniformly acyclic.Proof. The K�unneth formula for C�(X)
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