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1. IntroductionIn our earlier paper [2] (see also McMullen's paper [7]), we constructed examplesof separated nets in the plane R2 which are not biLipschitz equivalent to the inte-ger lattice Z2. These examples gave a negative answer to a question raised by H.Furstenberg and M. Gromov.Furstenberg asked this question in connection with Kakutani equivalence for R2 -actions, [4]. Return times for a section of an R2 -action form a separated net, and torepresent the returns of an R2 -action by a Z2-action, one has to have a biLipschitzidenti�cation of the return times for each point with Z2 (depending measurably on thepoint). As was pointed out to us by A. Katok, one can use a standard constructionof R2 -actions to represent our example as the set of return times for points from aset of positive measure, thus showing that not every section can be used (it is worthmentioning here that an old result of Katok [6] asserts that every R2 -action admits asection whose return times are biLipschitz equivalent to Z2).Gromov's motivation for the question came from large scale geometry, and thede�nition of quasi-isometries. Two metric spaces are quasi-isometric if they containbiLipschitz equivalent separated nets; hence one would like to know if the choice ofseparated net matters, and if a given space can contain nets which are not biLip-schitz equivalent. This question is particularly interesting for spaces with cocompactisometry groups.The counterexample in [2] was based on a counterexample to another questionwhich had been posed by J. Moser and M. Reimann in the 60's, namely whetherevery positive continuous function on the plane is locally the Jacobian of a biLipschitzhomeomorphism. Using well-known properties of quasi-conformal homeomorphisms,one can actually show that any function that is not the Jacobian of a biLipschitzhomeomorphism cannot be the Jacobian of a quasi-conformal homeomorphism either.The resolution of the original question suggested several intriguing problems,which we present below. These questions came from our discussions with C. Mc-Mullen and several other mathematicians.�Supported by a Sloan Fellowship and NSF grant DMS-9803129ySupported by Sloan Fellowship and NSF grant DMS-9972047.1



1. If two �nitely generated groups are quasi-isometric, are they biLipschitz equiv-alent, (see [5, p. 23])? Here the groups are assumed to be equipped with wordmetrics. Several special cases of this question are striking. Can G � Z2 ever fail tobe biLipschitz to G? More generally: is every �nite index subgroup of G biLipschitzto G? By [12, 11] (see also [8, 1]) it is known that the answers are always a�rmativewhen the group is nonamenable.2. If G1 and G2 are uniform lattices in the same connected Lie group, mustthey be biLipschitz equivalent? (Logically speaking, this is a subcase of Problem1.) Again this is known in the nonamenable case, i.e. the case of nonsolvable Liegroups. Lattices with the same covolume are biLipschitz equivalent by an argumentusing Hall's Marriage Lemma (see Lemma 4.1). A similar argument shows thatthe the problem has an a�rmative solution when the Lie group admits biLipschitzhomeomorphisms with constant Jacobian t for every t > 0. For instance, gradednilpotent Lie groups and the isometry group of 3-dimensional Solv geometry admitbiLipschitz automorphisms which scale volume by an arbitrary factor.3. If one forms a separated net in the plane by placing a point in the center ofeach tile of a Penrose tiling, is the resulting net biLipschitz equivalent to Z2? Moregenerally, one can consider nets constructed as follows. Let P � Rn be a 2-planewith irrational slope, and let B � Rn be a bounded subset with nonempty interior.Take the set of points z 2 Zn for which the intersection (z+B)\P is nonempty, andproject it orthogonally to P . When B has small diameter this example can also bedescribed dynamically as the set of return times for a linear R2 -action on an n-torusto a section.4. How can one characterize Jacobians of biLipschitz homeomorphisms R2 ! R2?Several authors have studied the prescribed Jacobian problem in other regularityclasses [9, 3, 10, 13]. This question is already nontrivial if one restricts one's attentionto nonconstant functions which are locally constant on the complement of a simpleclosed curve; for instance it seems plausible that in the case of a closed snowakecurve such a function is never the Jacobian of a biLipschitz homeomorphism. On theother hand it seems likely that a function that assumes one value on the subgraphof a continuous function R ! R and another value elsewhere is always the Jacobianof a biLipschitz homeomorphism. One can reduce the n = 3 case of Problem 3 to asituation similar to this.In the remainder of this paper, we settle the n = 3 case of Problem 3 for planeswith Diophantine slope. More precisely, let � 2 R satisfy the Diophantine conditionj�� pq j > Cqd (1.1)for some C > 0; d > 2 and all p; q 2 Z; recall that the set of such � has full measure,and contains all algebraic irrationals. Now take P � R3 to be the graph of the linearfunction �x + �y. Let X � P be the separated net obtained by projecting the setfz 2 Z3 : (z +B) \ P 6= ;g orthogonally to P .Theorem 1.2. X is biLipschitz homeomorphic to Z2.We prove Theorem 1.2 via a general criterion which shows that a separated net is2



biLipschitz to Z2 provided its density in large subsets approaches a limiting valuerapidly enough:Theorem 1.3. Suppose Y � R2 is a separated net. For � > 0 and each measurablesubset U � R2 , de�ne e�(U) to be the density deviationmax� �jU j#(U \ Y ) ; #(U \ Y )�jU j � : (1.4)Then de�ne E� : N ! R by letting E�(k) be the supremum of the quantities e�(U),where U ranges over all squares of the form [i; i+ k]� [j; j + k] for i; j 2 Z. If thereexists a � > 0 such that the product QmE�(2m) converges, then Y is biLipschitz toZ2.Remark 1.5. The technique from [2] can be used to produce separated nets which haveuniform asymptotic density (i.e. limk!1E(k) = 1), but which are not biLipschitz toZ2. In outline, the proof of Theorem 1.3 goes as follows. First we associate a Voronoitype tiling with the net, and then introduce a function u whose value on each tile isthe reciprocal of the area of the tile. We then use Hall's Marriage Lemma to showthat the net is biLipschitz to Z2 if the function u is the Jacobian of a biLipschitzhomeomorphism R2 ! R2 . To construct such a homeomorphism, we let Si be theimage under scaling by 2i of the usual tiling of R2 by unit squares, and then welet ui : R2 ! R be a function whose value of each square of Si is equal to theaverage of u over that square. We de�ne a sequence of biLipschitz homeomorphisms�i : R2 ! R2 such that Jac(�i) = uui , and we show that �i subconverges to abiLipschitz homeomorphism � by showing the the in�nite product Qi biLip(�i ���1i�1)converges. The biLipschitz homeomorphism � has Jacobian u� , and we get the desiredhomeomorphism by composing � with the scaling x 7! p�x.The paper is organized as follows. In section 2 we show in Corollary 2.2 thatnets in Theorem 1.2 satisfy the hypotheses of Theorem 1.3. In section 3 we give asu�cient condition for a function u : R2 ! R to be the Jacobian of a biLipschitzhomeomorphism R2 ! R2 . In section 4 we use the main result from section 3 toprove Theorem 1.3.Acknowledgements. We would like to thank the anonymous referee for cor-recting many inaccuracies in the original version of the paper. We are grateful toC. McMullen and G. Margulis for stimulating discussions.2. Density estimates for the net XOur objective in this section is to estimate the deviation of the density ofX in squaresfrom the asymptotic density of X in R2 .Note that X is biLipschitz to its vertical projection �X to the xy-plane. It is easyto see that in the 3 dimensional situation it is enough to consider the case when B isa ball; indeed, the set of points that we project to P to obtain X is the intersection ofZ3 with a slab W parallel to P . We will assume that the radius of B is small enough3



that W does not contain a vertical interval of length 1. The general case can bereduced to this one by splitting the slab W into a union of thin slabs, and observingthat our density estimates are additive1.Observe that Z := W \ Z3 can be represented as the set of points (x; y; z) 2 Z3satisfying jz � �x� �yj < � for an appropriate �. Since W does not contain verticalintervals of length 1, it follows that � < 12 , Z projects to the xy-plane injectively,and hence �X is biLipschitz homeomorphic to the vertical projection of Z to the xy-plane, by a bijection which displaces points by a distance at most 12 . We denote theprojection of Z to the xy-plane by �Z. Since there is a bounded displacement bijectionbetween �Z and �X, the reader may verify that it su�ces to obtain density estimates for�Z; the discrepancy between the densities in large squares is due to boundary e�ectswhich do not a�ect the convergence of the product in the statement of Theorem 1.3.Pick constants r; � < 1=2. SetS := fi 2 Z j d(r + i�;Z) < �g:Proposition 2.1. There are constants C0 and c > 0 such that for any j and k,j1k#(S \ [j; j + k))� 2�j � C0kcLet � = 2�, and for any measurable U � R2 , let e(U) be as in the statement ofTheorem 1.3, with Y = �Z.Corollary 2.2. For all j1; j2 2 Z, k 2 N, if U is a square of the form [j1; j1 + k] �[j2; j2 + k], then je�(U) � 1j � C1kc for some constant C1. It follows that the productQiE�(2i) converges, where E� is de�ned as in the Theorem 1.3.The corollary can be deduced from the proposition by breaking the square U intorows.The remainder of this section is devoted to the proof of Proposition 2.1.Let pnqn denote the convergents of the irrational number �.Lemma 2.3. For any n; k, j#(S \ [k; k + qn � 1])� 2�qnj � 3.Proof. This is an easy quantative re�nement of a standard argument showing thatthe sequence fi� mod 1g is equidistributed in the circle S = R=Z. We will assumethat � � pnqn > 0, the other case is absolutely analogous. Consider a �nite sequencexi = �(i + k � 1) mod 1 2 S, i = 1; 2; : : : qn. Then #(S \ [k; k + qn � 1]) is nothingbut the number of xi's that belong to the interval of length 2� centered at �r mod 1in S.Consider another sequence yi = (k � 1)�+ ipnqn mod 1, i = 1; 2; : : : qn. Note that0 < xi � yi < qn(� � pnqn ) (where the �rst inequality means that yn preceeds xn withrespect to the natural orientation of S.) This means that there are no other xj onthe segment between yi and xi. Indeed, otherwise j(i� j)��mj < qn�� pn for someinteger m, and this contradicts to the fact that pnqn is the best approximation for � by1Finicky readers may note that the discrepancy between the density estimate for closed slabs andfor open slabs is negligible. 4



rationals with denominators not exceeding qn. Hence the points xi and yi alternatein S. This means that there is exactly one member of the sequence fxig between anytwo neighboring (with respect to their positions in S, as opposed to their indices)points yi0 and yi00 .It is clear that the qn points y1; y2; : : : yqn are equispaced in S, and hence thenumber of these points in any interval of length 2� di�ers from 2qn� by no more than1. Since xi's and yi's alternate, the number of xi's in any interval di�ers from thenumber of yi's in the same interval by no more than two. This completes the proofof the lemma.We now return to the proof of Proposition 2.1. Recall thatj�� pkqk j < 1qkqk+1 (2.4)for all k � 0. Combining this with (1.1), we getqk+1 < Cqd�1k = Cqhk (2.5)where h := d� 1 > 1.If l 2 Z and qn � l < qn+1, then from (2.5) we get qn > ( lC ) 1h ; if moreover qnjl, wemay divide any interval of the form [j; j + l) into lqn < C 1h l1� 1h intervals of length qn,and apply Lemma 2.3 to each of these, gettingj#(S \ [j; j + l))� 2�lj < C 1h1 l1� 1h = C2lh1 (2.6)where C2 = C 1h1 , h1 = 1� 1h 2 (0; 1). Given any interval [j; j+k), let qn be the largestdenominator � k, and set a := [ kqn ]. Then aqn > k2 , and we may apply (2.6) to getj#(S \ [j; j + aqn))� 2�(aqn)j < C2(aqn)h1 < C2kh1:Repeating this estimate inductively to the leftover interval [j + aqn; k), we get thatj#(S \ [j; j + k))� 2�kj < C2(kh1 + (k2)h1 + : : : ) = C3kh1where C3 := C21� 12h1 :3. A su�cient condition for a function to be a JacobianThe main result of this section is:Proposition 3.1. Let u : R2 ! R be a positive function which is constant on eachopen unit square with vertices in Z2, and let � > 0 be given. For any square S in R2 ,let e(S) be the quantity 5



max( �1jSj RS u; 1jSj RS u� )where jSj denotes the area of the square S. De�ne an \error" function E : N ! R byletting E(k) be the supremum of e(�) over the collection of k � k squares of the form[i; i+ k]� [j; j + k], where i; j 2 Z. If the productYi E(2i)converges, then there is a biLipschitz homeomorphism � : R2 ! R2 with Jac(�) = ua.e.The proof of Proposition 3.1 is based on the following:Proposition 3.2. There is a constant C1 with the following property. Let T :=[0; 2] � [0; 2] � R2 , and let u : T ! (0;1) be a function which is constant in eachsquare (i; i + 1)� (j; j + 1), i; j = 0; 1. Then there is a biLipschitz homeomorphism� : T ! T which �xes @T pointwise, so that Jac(�) = �u a.e., where 1� = 1jT j RT u,and BiLip(�) � �maxuminu �C1 .To prove Proposition 3.2, we will need two lemmas.Let k � k1 denote the l1 norm on R2 , so k(x; y)k1 := max(jxj; jyj). Let Sr denotethe square fx 2 R2 j kxk1 � rg.Lemma 3.3. Suppose u1 : Sr ! R and u2 : Sr ! R are a continuous positivefunctions of k � k1, and RSr u1 = RSr u2. Then there is a biLipschitz homeomorphism� : Sr ! Sr which �xes @Sr pointwise, so that Jac(�) = u1u2�� a.e., andbiLip(�) � �maxu1minu1 �C2 �maxu2minu2 �C2where C2 is independent of u and r.Proof. We �rst treat the case where u2 � 1 and RSr u1 = RSr u2 = jSrj. Set u := u1.De�ne f : [0; r]! [0; r] by f(t) := 12 �ZSt u� 12 ;so f(0) = 0 and f(r) = r. Now de�ne � : Sr ! Sr by�(x) = f(kxk1) xkxk1when kxk1 6= 0, and �(0) = 0. The map � is di�erentiable on Sr nf(x; y) j jxj = jyjg,and calculation shows thatkD�k(x) � k1max�f(kxk1)kxk1 ; f 0(kxk1)�6



and k[D�(x)]�1k � k1max� kxk1f(kxk1) ; 1f 0(kxk1)�where k1 is independent of u. These quantities are bounded by k2maxuminu where k2 isindependent of u. Hence biLip(�) � k2maxuminu : (3.4)When maxuminu is close to 1, then one gets thatk(D�� I)k � k3 �maxuminu � 1� ;which implies that k[D�]�1k � �maxuminu �k4 ;where k3 and k4 are independent of u. Combining this with (3.4) we get thatbiLip(�) � �maxuminu �C2 (3.5)when C2 is su�ciently large.In the general case, we set �ui := uijSrjRSr ui ;so RSr ui = jSrj. Applying the special case above, we obtain biLipschitz homeomor-phisms  1 : Sr ! Sr and  2 : Sr ! Sr with Jac( i) = �ui a.e., whose biLipschitzconstants satisfy (3.5) (with u replaced by ui). Then � :=  �12 �  1 : Sr ! Sr hasJacobian u1u2�� a.e. and biLip(�) � �maxu1minu1 �C2 �maxu2minu2 �C2
Lemma 3.6. We use the notation A(r1; r2) for the annulus B(0; r2)�B(0; r1). Pick0 < a < b, and set A := A(a; b). If u1 : A! R and u2 : A! R are positive Lipschitzfunctions with ZA u1 = ZA u2 = jAj;then there is a biLipschitz homeomorphism � : A! A withJac(�) = u1u2 � � a:e:;and 7



biLip(�) � �max u1minu1 (1 + Lip(u1))�C3 �max u2minu2 (1 + Lip(u2))�C3 (3.7)for C3 = C3( ba); moreover, when u1j@A = u2j@A, then � can be chosen to �x @Apointwise.Proof. We �rst assume that u2 � 1, and set u := u1. Using polar coordinates, wede�ne I : [a; b]� [0; 2�]! R byI(r; �) := Z �0 u(r; ��)d��:Then de�ne �1 : A! A to be the polar coordinate shear�1(r; �) := �r; 2�I(r; �)I(r; 2�) � :The map �1 clearly de�nes a biLipschitz homeomorphism of A andJac(�1)(r; �) = 2�u(r; �)I(r; 2�)for a.e. (r; �). Now de�ne f : [a; b]! [a; b] by the relationZA(a;t) u(r; �) = Area(A(a; f(t)));and �2 : A ! A by �2(r; �) = (f(r); �). Then �2 satis�es Jac(�2)(r; �) = I(r;2�)2� fora.e. (r; �). So we can set � = �2 � �1, and for a.e. (r; �),Jac(�)(r; �) = [Jac(�2)(�1(r; �)] [Jac(�1)(r; �)]= �I(r; 2�)2� � �2�u(r; �)I(r; 2�) � = u(r; �):We now estimate biLip(�).One gets biLip(�1) � k1max(maxuminu ; (1 + Lip(u))) where k1 is independent of u.When maxuminu � 1, then at points of di�erentiability one hask (D�1 � I) k � k2 �maxuminu � 1 + Lip(u)�which gives k[D�1]�1k � �maxuminu (1 + Lip(u))�k3 ;where k2 and k3 are independent of u. It follows thatbiLip(�1) � �maxuminu (1 + Lip(u))�k48



where k4 is independent of u. One easily gets thatbiLip(�2) < k5maxuminu ; (3.8)where k5 is independent of u, and when maxuminu � 1 thenk(D�2 � I)k � k6 �maxuminu � 1� ;which implies k[D�2]�1k � �maxuminu �k7 (3.9)in this case. Combining (3.8) with (3.9) we getbiLip(�2) � �maxuminu �k8 (3.10)where k8 is independent of u. ThereforebiLip(�) � biLip(�1)biLip(�2) � �maxuminu (1 + Lip(u))�k4k8 : (3.11)We now return to the general case when u2 6� 1. Applying the special caseabove, we get homeomorpisms  1 : A ! A and  2 : A ! A with Jac( i) = uialmost everywhere, whose biLipschitz constants are controlled as in (3.11). Then thecomposition  :=  �12 �  1 has Jacobian u1u2� a.e., and satis�es (3.7) with C3 = k4k8.It remains only to observe that  ij@A is determined by uij@A, and therefore  will�x @A pointwise when u1j@A = u2j@A.Proof of Proposition 3.2. We will produce � as a composition of homeomorphisms 1;  2;  3 which are constructed by applying Lemmas 3.3 and 3.6.We �rst introduce some notation. Let Tij := (i; i + 1) � (j; j + 1) for i; j = 0; 1.Let Sij � Tij be the square with side length p2 � 1 with the same center as Tij;note that Sij is the largest square concentric with Tij which is contained in the ballB((1; 1); 1) � T . Let S 0 be the square of side length p2 with center at (1; 1); so S 0is contained in B((1; 1); 1) and contains the squares Sij. Let A � T be the annuluscentered at (1; 1) with radii 1�p22 and 1; note that A contains the squares Sij. Finally,let S be the square of side length 2�p2 with center (1; 1); the \hole" B((1; 1); 1� p22 )of A is inscribed in S.We may assume that ess inf u = minu, ess sup u = maxu, and that RT u = jT j.Set v1 := u, and let m := minu. Let v2 : T ! R be a continuous positive functionsatisfyinga. RTij v2 = RTij v1 for i; j = 0; 1;b. v2 � m on the complement of [Sij;9



c. The restriction of v2 to Sij is constant on the boundary of each square concentricwith Sij; andd. max v2minv2 � �maxuminu �k1 and 1 + Lip(v2) � �maxuminu �k1 ;where k1 is independent of u. Now let v3 : T ! R be a continuous positive functionsatisfyinge. RT v3 = jT j;f. v3 � m on S and on the complement of S 0;g. v3 is constant on the boundary of each square concentric with T ;h. max v3minv3 � �maxuminu �k2 and 1 + Lip(v3) � �maxuminu �k2 ;where k2 is independent of u. Finally, set v4 � 1.We now apply Lemma 3.3 to the restrictions v1jTij and v2jTij and obtain a home-omorphism  1 : T ! T with Jac( 1) = v1v2� 1 a.e. andbiLip( 1) � �maxuminu �C2k1 :Since v2(x) = v3(x) = m � 1 form 2 T�A, it follows that RA v2 = RA v3 � jAj. Henceif we set �v2 := v2jAjRA v2 and �v3 := v3jAjRA v3 , then Lip(�v2) � Lip(v2) and Lip(�v3) � Lip(v3).We may therefore apply Lemma 3.6 with u1 = �v2 and u2 = �v3 to get  2 : T ! T withJac( 2) = �v2�v3� 2 = v2v3� 2 a.e. andbiLip( 2) � �maxuminu �4k2C3 :Finally, we apply Lemma 3.3 with u1 = v3 and u2 = v4 to get  3 : T ! T withJac( 3) = v3v4� 3 a.e. and biLip( 3) � �maxuminu �k2C2 :Then � :=  3 �  2 �  1 satis�es the requirements of Proposition 3.2 where C1 :=C2k1 + 4k2C3 + k2C2.Proof of Proposition 3.1. We may assume without loss of generality that � = 1, sincewe may postcompose a biLipschitz homeomorphism �0 : R2 ! R2 whose Jacobiansatis�es Jac(�0) = u� with the map x 7! p�x, to get � : R2 ! R2 with Jac(�) = u.For each nonnegative integer q, let uq : R2 ! R be a function whose value on eachopen square of the form (m2q; (m + 1)2q) � (n2q; (n + 1)2q), m; n 2 Z, is equal tothe average of u over that square. For each q 2 N , we apply Proposition 3.2 to eachof the above squares, to obtain a biLipschitz homeomorphism  q : R2 ! R2 withJac( q) = vq := uq�1uq� q a.e. andbiLip( q) � �max vqmin vq �C1 � �E(2q�1)2E(2q)2�C1 :Then �q :=  q � : : : �  1 : R2 ! R2 will have Jacobian10



uuq � �q = uuq ;and biLip(�q) � " qYi=1 E(2i)#4C1 � " 1Yi=1 E(2i)#4C1 <1:Hence biLip(�q) is uniformly bounded and we may apply Arzela-Ascoli to get thedesired biLipschitz homeomorphism � : R2 ! R2 .4. Proof of Theorem 1.3For j 2 N , let Sj be the tiling of R2 produced by rescaling the standard unit tiling bythe factor 12j . Pick i large enough that no tile of Si contains more than one elementof Y . Now form a tiling T = fTygy2Y whose tiles are indexed by Y , where Ty is aunion of tiles from Si which are closer to y than to any other point of Y . The tiles ofT have uniformly bounded diameters and inradii, and y is an interior point of Ty forevery y 2 Y . Let u : R2 ! R be a function that takes the value 1jTyj on the interiorof Ty, for all y 2 Y . Observe that if U � R2 is a square of side length k, then RU uagrees with #(Y \ U) to within an error � c1k. Hence our assumption on Y impliesthat u satis�es the hypotheses of Proposition 3.1. Therefore by Proposition 3.1, u isthe Jacobian of a biLipschitz homeomorphism. The following lemma then completesthe proof of Theorem 1.3.Lemma 4.1. Let T = fTigi2I be a tiling of the plane by tiles with uniformly boundeddiameters and inradii. Let u : R2 ! R be the function such that u(x) = 1jTij for a.e.x 2 Ti, and suppose u = Jac(�) for some biLipschitz homeomorphism � : R2 ! R2 .Let X = fxigi2I be a separated net where xi lies in the interior of Ti for each i 2 I.Then X is biLipschitz homeomorphic to Z2.Proof. This is an application of Hall's Marriage Lemma, which has been used forsimilar problems by several authors (see [7, 12]). Consider a bi-partite graph � whoseset of vertices is Z2SX, and there is an edge between (z1; z2) 2 Z2 and xi 2 X i� theintersection of �(Ti) with the square [z1�0:5; z1+0:5]�[z2�0:5; z2+0:5] is non-empty.Notice that the area of each set �(Tj) is 1. Hence, for every k, any collection of kpoints in Z2 is connected with at least k elements in X, because otherwise k squaresof the form [z1 � 0:5; z1 + 0:5[�[z2 � 0:5; z2 + 0:5] would be entirely covered by lessthan k tiles of the form �(Tj), and this is impossible since the total area of the tilesis at most k � 1. By the same reason, for every k, any collection of k points of X isconnected with at least k points in Z2. Hence by Hall's Marriage Lemma, our graph� contains a bijection F : X ! Z2.Notice that �(X) is also a separated net, which is biLipschitz equivalent to X.To complete the argument, it is enough to show that �(X) in its turn is biLipschitzequivalent to Z2. To see this consider the bijection F � ��1 : �(X) ! Z2. If F ���1(�(xi)) = (z1; z2), then (by de�nitions of F and �), the distance dist(�(xi); (z1; z2))is bounded byp0:5+BiLip(�) sup diam(Ti). Now it remains to notice that a bijection11
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