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INVERSE LIMIT SPACES SATISFYING A POINCARÉ

INEQUALITY

JEFF CHEEGER AND BRUCE KLEINER

Abstract. We give conditions on Gromov-Hausdorff convergent in-

verse systems of metric measure graphs which imply that the measured

Gromov-Hausdorff limit (equivalently, the inverse limit) is a PI space

i.e., it satisfies a doubling condition and a Poincaré inequality in the

sense of Heinonen-Koskela [HK96]. The Poincaré inequality is actually

of type (1, 1). We also give a systematic construction of examples for

which our conditions are satisfied. Included are known examples of PI

spaces, such as Laakso spaces, and a large class of new examples.

As follows easily from [CK09], generically our examples have the

property that they do not bilipschitz embed in any Banach space with

Radon-Nikodym property. For Laakso spaces, this was noted in [CK09].

However according to [CK13] these spaces admit a bilipschitz embedding

in L1. For Laakso spaces, this was announced in [CK10a].
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1. Introduction

This paper is part of a series concerning bilipschitz embeddability and

PI spaces, i.e. metric measure spaces which satisfy a doubling condition

and a Poincaré inequality; [CK06a], [CK06b], [CK09], [CKN09], [CK10a],

[CK10b], [CKN11], [CK13]. In this paper we give a systematic construction

of PI spaces as inverse limits, or equivalently Gromov-Hausdorff limits, of

certain inverse systems of metric measure graphs which we term “admissible”

(see Section 2 for the definition). Included are known examples of PI spaces,

such as Laakso spaces ([Laa00]) and a large class of new examples.

Our main result is:

Theorem 1.1. The measured Gromov-Hausdorff limit of an admissible in-

verse system is a PI space satisfying a (1, 1)-Poincaré inequality. Moreover,

the doubling constant β and the constants τ,Λ in the Poincaré inequality

depend only on the constants 2 ≤ m ∈ N, ∆, θ, C ∈ (0,∞) in conditions

(1)–(6) for admissible inverse systems.

The limit spaces have analytic dimension 1, topological dimension 1 and

except in certain “degenerate” cases, Hausdorff dimension > 1. It follows

from [CK13] that the spaces we construct admit bilipschitz embeddings in

L1. For Laakso spaces, this was announced in [CK10a]. However, except

in the degenerate cases, they do not bilipschitz embed in any Banach space

with the Radon-Nikodym Property. For Laakso spaces, this was noted in

[CK09].

One of the novelties in this paper is a new approach to proving the

Poincaré inequality that exploits the fact that the metric measure space

is the limit of an inverse system

X0
π0←− · · ·

πi−1
←− Xi

πi←− · · · .

The argument, which is by induction, involves averaging a function on Xi+1

over the fibers of the projection map πi : Xi+1 → Xi, to produce a function
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on Xi. The averaging operator is defined by specifying, for each x ∈ Xi,

a probability measure Di(x) supported on the fiber π−1
i (x) ⊂ Xi+1; for a

generic point x ∈ Xi, the choice of Di(x) is canonical. The key point is that

under a certain condition (see Axiom (6) from Definition 2.10) this canon-

ical assignment extends to one that is continuous with respect to the weak

topology on Radon measures, and that is compatible with the operation of

taking upper gradients. This new proof of the Poincaré inequality is robust

and applies verbatim to certain higher dimensional inverse systems.

Organization of the paper. In Section 2, after we recall some standard

material, we state the six axioms which define admissible inverse systems,

discuss the role of the axioms, and draw some simple consequences. Among

a number of other things, we show in Corollary 2.16 that the topological

dimension of the inverse limit is 1.

In Section 3, for each Xi, we verify, with uniform constants, the Poincaré

inequality locally at the scale associated with Xi, as well as the (global)

doubling condition.

In Section 4, the last three axioms are reformulated in terms of what we

call “continuous fuzzy sections” of the maps πi : Xi+1 → Xi of our inverse

system. This reformulation plays a role in several places in the paper.

In Section 5, using the continuous fuzzy sections, we prove that the

Xi’s satisfy a uniform Poincaré inequality; this implies that the Gromov-

Hausdorff limit X∞ has a Poincaré inequality ([Che99, Kei03]) thereby prov-

ing Theorem 1.1.

In Section Section 6 we construct a natural probability measure on the

family of paths in Xk which are lifts of some fixed path in Xj (j < k).

In Section 7, we give a second, essentially different, proof of the Poincaré

inequality for X∞ using the probability measure on path families.

In Section 8 we show how to construct large families of examples of ad-

missible inverse systems. The construction produces a sequence of partial

inverse systems

X0
π0←− · · ·

πi−1
←− Xi

by induction on i; in the inductive step, roughly speaking, one makes inde-

pendent choices locally in Xi to produce Xi+1. Both fuzzy sections and the

measure on path families play a role in the discussion.
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In Section 9 we show that for an admissible inverse system, the cotangent

bundle of the limit has dimension 1.

In Section 10, we show that except in degenerate cases, limits of admissible

systems do not bilipschitz embed in any Banach space with the Radon-

Nikodym Property.

In Section 11 we briefly indicate how our previous discussion can be ex-

tended to certain higher dimensional inverse systems. In this case, depend-

ing which building blocks one uses, for example the Heisenberg group with

its Carnot-Caratheodory metric, the resulting inverse limit spaces need not

bilipschitz embed in L1.

2. Preliminaries

In this section we begin by collecting some standard definitions. Then we

give the axioms for an admissible inverse system, briefly indicate the role of

each of the axioms and observe some elementary consequences.

2.1. The doubling condition and the Poincaré inequality. We now

recall some relevant definitions. Let (X, d, µ) denote a metric measure space,

with µ a Borel measure on X, which is finite and nonzero on metric balls

Br(x) if 0 < r <∞.

For U measurable, we set

(2.1) fU =
1

µ(U)

∫

U

f dµ .

The measure µ is said to satisfy a doubling condition if there exists

β = β(R) such that for all x ∈ X

(2.2) µ(B2r(x)) ≤ β · µ(Br(x)) , (r ≤ R) .

If (X, d) is a metric space, f : X → R and a nonnegative Borel function

g : X → R+, we say that g is an upper gradient for f if for all rectifiable

curves c : [0, L]→ X parameterized by arclength,

(2.3) |f(c(L))− f(c(0))| ≤

∫ L

0
g(c(s)) ds .

We say that (X, d, µ) satisfies a (1, p)-Poincaré inequality if for some

Λ and τ = τ(R), we have for every bounded continuous function f and every
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upper gradient g,

(2.4)

∫

Br(x)
|f − fBr(x)| dµ ≤ τr ·

(∫

BΛr(x)
(g)p dµ

) 1
p

(r ≤ R) .

This definition and the definition of upper gradient are due to Heinonen-

Koskela [HK96].

It was shown in [Kei03, Theorem 1.3.4] that (X, d, µ) satisfies a (1, p)-

Poincaré inequality if and only if for every Lipschitz function f ,

(2.5)

∫

Br(x)
|f − fBr(x)| dµ ≤ τr ·

(∫

BΛr(x)
(Lip f(x))p dµ

) 1
p

(r ≤ R) ,

where Lip f denotes the pointwise Lipschitz constant of f :

Lip f(x) := lim sup
d(x′,x)→0

|f(x′)− f(x)|

d(x′, x)
(x′ ̸= x) .

Definition 2.6. If (2.2) and (2.4) hold, we say that (X, d, µ) is a PI space.

Remark 2.7. The examples constructed in this paper will satisfy p = 1,

which is the strongest version of the Poincaré inequality.

2.2. Axioms for admissible inverse systems. We will consider inverse

systems of connected metric measure graphs,

(2.8) X0
π0←− · · ·

πi−1
←− Xi

πi←− · · · .

Let St(x,G) denote the star of a vertex x in a graph G, i.e. the union of

the edges containing x.

We assume that each Xi is connected and is equipped with a path met-

ric di and a measure µi, such that the following conditions hold, for some

constants 2 ≤ m ∈ Z, ∆, θ, C ∈ (0,∞) and every i ∈ Z :

(1) (Bounded local metric geometry) (Xi, di) is a nonempty connected

graph with all vertices of valence ≤ ∆, and such that every edge of

Xi is isometric to an interval of length m−i with respect to the path

metric di.

(2) (Simplicial projections are open) IfX ′
i denotes the graph obtained by

subdividing each edge of Xi into m edges of length m−(i+1), then πi
induces a map πi : (Xi+1, di+1)→ (X ′

i, di) which is open, simplicial,

and an isometry on every edge.
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(3) (Controlled fiber diameter) For every xi ∈ X ′
i, the inverse image

π−1
i (xi) ⊂ Xi+1 has di+1-diameter at most θ ·m−(i+1).

(4) (Bounded local metric measure geometry.) The measure µi restricts

to a constant multiple of arclength on each edge ei ⊂ Xi, and
µi(ei,1)
µi(ei,2)

∈ [C−1, C] for any two adjacent edges ei,1, ei,2 ⊂ Xi.

(5) (Compatibility with projections)

(πi)∗(µi+1) = µi ,

where (πi)∗(µi+1) denotes the pushforward of µi+1 under πi.

(6) (Continuity) For all vertices v′i ∈ X ′
i, and vi+1 ∈ π

−1
i (v′i), the quan-

tity

(2.9)
µi+1(π

−1
i (e′i) ∩ St(vi+1,Xi+1))

µi(e′i)

is the same for all edges e′i ∈ St(v′i,X
′
i).

Definition 2.10. An inverse system of metric measure graphs as in (2.8) is

called admissible if it satisfies (1)–(6).

2.3. Discussion of the axioms and some elementary consequences.

Let us give a brief indication of the relevant consequences of each of our

axioms. Note that the first three axioms deal only with the metric and

not the measure. Indeed, taken together, Axioms (1) and (2) have the

following purely combinatorial content which is worth noting at the outset,

since it helps to picture the restricted class of inverse systems that we are

considering.

Proposition 2.11. Let {vi} denote a compatible sequence of vertices, i.e.

vi is a vertex of Xi and πi(vi+1) = vi, for all i ≥ 0. Then for all but at most

∆ values of i, the restriction of the locally surjective map πi to the open star

of vi+1 is actually 1-1.

Proof. From the local surjectivity of πi it follows that the number of edges

emanating from vi is a nondecreasing function of i. Therefore, from the

uniform bound ∆ on the degree of a vertex, of Xi, for all i, the proposition

follows. !

Axiom (1) includes the statement that πi : Xi+1 → X ′
i is a finite-to-

one simplicial map. This implies that the vertices of Xi+1 are precisely
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the inverse images of vertices of X ′
i. The second part of Axiom (1) states

that the restriction of πi to every edge is an isometry. In particular, πi :

(Xi+1, di+1)→ (Xi, di) is 1-Lipschitz, i.e. distance nonincreasing. Axiom (1)

also implies that for all K > 0, if the ball in Xi of radius ≤ K ·m−i is rescaled

to unit size, then the metric geometry has a uniform bound depending on

K but independent of i.

Axiom (2), stating that πi is open, implies that if c is a rectifiable path

parameterized by arc length and πi(xi+1) = c(0), then there exists a lift c̃

parameterized by arc length, with c̃(0) = xi+1. In general, c̃ is not unique.

By Axiom (1), the paths c and c̃ have equal lengths and in addition, for all

i ≥ 0, xi+1 ∈ Xi+1 and r > 0, we have

(2.12)
πi(Br(xi+1)) = Br(πi(xi+1)) ,

Br(xi+1) ⊂ π
−1
i (Br(πi(xi+1))) .

Axiom (2) is actually a consequence of Axioms (4), (5) below.

Axiom (3), together with (2.12), gives

(2.13) Br(πi(xi+1)) ⊂ π
−1
i (Br+θm−(i+1)(xi+1)) ⊂ Br+θm−(i+1)(πi(xi+1)) .

This statement, which can be iterated, says that inverse images of balls

are themselves comparable to balls. It is used in the inductive arguments

which control the constants in the doubling and Poincaré inequalities.

Axioms (1)–(3) imply that for all xi+1,1, xi+1,2 ∈ Xi+1, we have

(2.14)
di(πi(xi+1,1),πi(xi+1,2)) ≤ di+1(xi+1,1, xi+1,2)

≤ di(πi(xi+1,1),πi(xi+1,2)) + 2θ ·m−(i+1) ;

compare (2.12), (2.13).

Note also that Axioms (1) and (3) together imply that for all i and all

xi ∈ Xi the cardinality card(π−1
i (xi)) satisfies

(2.15) card(π−1
i (xi)) ≤ ∆θ+1 ,

since any two points of π−1
i (xi) are connected by an edge path of length

≤ θ ·m−(i+1) and there are at most ∆θ+1 such paths which start at a give

point of π−1
i (xi).

Axiom (4) implies that on scale m−i the metric measure geometry of Xi

is bounded. As a consequence, for balls Bcm−i(xi) ⊂ Xi there is a doubling
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condition and Poincaré inequality with constants which depend only on c

and are independent of i; see for example Lemma 3.1.

Axiom (5) is used is showing that the sequence (Xi, di, µi) converges in

the measured Gromov-Hausdorff sense. It also plays a role in the inductive

arguments verifying the doubling condition and the Poincaré inequality.

Axiom (6) is the least obvious of our axioms. However, it enters crucially

in both of the proofs that we give of the bound on the constant in the

Poincaré inequality for (X∞, d∞, µ∞); see Sections 5–7. Here is a very brief

indication of the role of Axiom (6). Given Axioms (1)–(5), the disintegration

x +→ Di(x) of the measure µi+1 with respect to the mapping πi : Xi+1 →

Xi, can be used to push a function fi+1 : Xi+1 → R down to a function

fi : Xi → R. If fi+1 is Lipschitz, then Axiom (4) implies that away from the

vertices of X ′
i, the pointwise Lipschitz constant of fi is controlled by that of

fi+1. It follows from Axiom (6) that fi is continuous at vertices, and hence

the Lipschitz control holds at the vertices of X ′
i as well. This construction is

a key part of the induction step in our first proof of the Poincaré inequality.

(Absent Axiom (6), even if fi+1 is Lipschitz, the function fi need not be

continuous at the vertices of Xi.)

Dually, given Axioms (1)–(5), there is a natural probability measure Ω

on the collection Γ of lifts to Xi+1 of an edge path γ′i ⊂ X ′
i. If Axiom (6)

holds, this measure has the additional property of being independent of the

orientation of γ′i. This turns out to be required for the proof of the Poincaré

inequality based on path families.

2.4. The inverse limit. We recall that the inverse limit of the inverse

system {Xi} is the collection X∞ of compatible sequences, i.e.

X∞ = {(vi) ∈
∏

i

Xi | πi(vi+1) = vi for all i ≥ 0} .

For all i ≥ 0, one has a projection map π∞i : X∞ → Xi that sends (vj) ∈ X∞

to vi.

For any (vi), (wi) ∈ X∞, the sequence {dj(vj , wj)} is nondecreasing since

the projection maps {πj} are 1-Lipschitz, and bounded above by (2.14);

therefore we have a well-defined metric on the inverse limit given by

d∞((vi), (wi)) = lim
j→∞

dj(vj , wj) .
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The projection map π∞i : (X∞, d∞)→ (Xi, di) is 1-Lipschitz.

We now record a consequence of the above discussion:

Corollary 2.16. The inverse limit X∞ has topological dimension 1.

Proof. By the path lifting argument in the discussion of Axiom (2), one

may take an edge γ0 ⊂ X0, and lift it isometrically to a compatible family

{γj ⊂ Xj}j≥0 which produces a geodesic segment in X∞. Therefore X∞ has

topological dimension at least 1.

If Ui is the cover of Xi by open stars of vertices, and Ûi is the inverse

image of Ui under the projection map X∞ → Xi, then Ûi has 1-dimensional

nerve, and the diameter of each open set U ∈ Ûi is " m−i, see (2.13). For

any compact subset K ⊂ X∞, and any open cover U of K, some Ûi will

provide a refinement of U ; this shows that K has topological dimension ≤ 1.

As X∞ is locally compact, it follows that X∞ has topological dimension

≤ 1. !

We now discuss the measure on X∞. For every i, one obtains a subalgebra

Σi of the Borel σ-algebra on X∞ by taking the inverse image of the Borel σ-

algebra on Xi. One readily checks using (2.13) that the σ-algebra generated

by the countable union ∪iΣi is the full Borel σ-algebra on X∞. The σ-

algebra Σi has a measure µ̂i induced from µi by the projection π∞i . Axiom

(5) implies that the measures µ̂i on the increasing family {Σi} are compatible

under restriction, and by applying the Caratheodory extension theorem, one

gets that the µ̂i’s extend uniquely to a Borel measure µ∞ on X∞.

2.5. Measured Gromov-Hausdorff convergence. In view of (2.14), and

since π∞i is also surjective, it follows easily that the sequence of mappings

{π∞i : (X∞, d∞) → (Xi, di)} is Gromov-Hausdorff convergent; in particular

the Gromov-Hausdorff limit is isometric to (X∞, d∞). By bringing in Axiom

(5), we get that the sequence {π∞i : (X∞, d∞, µ∞)→ (Xi, di, µi)} is conver-

gent in the pointed measured Gromov-Hausdorff sense; for the definition,

see [Fuk87]. Hence, we obtain:

Proposition 2.17. The sequence (Xi, di, µi) converges in the pointed mea-

sured Gromov-Hausdorff sense to (X∞, d∞, µ∞).
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3. Bounded local geometry and verification of doubling

Consider an admissible inverse system as in (2.8), with constants, 2 ≤

m ∈ N, ∆, θ, C ∈ (0,∞) as in (1)–(6). The following lemma asserts the

existence of a local doubling condition, and a local Poincaré inequality. The

proof is completely standard.

Lemma 3.1. For all K > 0, there exists β′ = β′(m,∆, θ, C,K), τ =

τ(m,∆, θ, C,K), Λ(m,∆, θ, C,K), such that for balls Br(xi) ⊂ Xi, with

r ≤ K ·m−i ,

a doubling condition and (1,1)-Poincaré inequality hold , with constants β′ =

β′(m,∆, θ, C,K), τ = τ(m,∆, θ, C,K), Λ = 2.

Next we verify the doubling condition for balls of arbitrary radius.

Lemma 3.2. There is a constant β = β(∆, θ, C,R) such that for all i and

all r ≤ R, the doubling condition holds for Xi with constant β.

Proof. First, observe that since for all k, from (2.13) and by Axiom (5),

(πk)∗(µk+1) = µk, we get for xk+1 ∈ Xk+1,

(3.3) µk(Br(πk(xk+1))) ≤ µk+1(π
−1
j (Br+θm−(k+1)(xk+1))) ,

(3.4) µk+1(π
−1
k (Bs(xk))) = µk(Bs(xk)) .

First assume that R = 1. Let j be such that m−(j+1) < r
1+2θ ≤ m−j.

Let xi ∈ Xi and consider Br(xi). If j ≥ i, the conclusion follows from from

Lemma 3.1. Otherwise, for j+1 ≤ k ≤ i inductively define xk−1 = πk−1(xk).

Since, m−(j+1) ≤ r
1+2θ by (3.3), (3.4) and induction we get

(3.5) µj(B r
1+2θ

(xj)) ≤ µi(Br(xi))) ≤ µi(B2r(xi)) ≤ µj(B2r(xj)) ,

while by (3.4), we have

(3.6) µi(B2r(xi)) ≤ µj(B2r(xj)) .

Since xj ∈ Xj and r
1+2θ ≤ m−j , the conclusion follows from (3.5), (3.6) and

Lemma 3.1.

Now if R > 1, the doubling inequality with β = β(R) is equivalent to a

doubling inequality for the graph X0, which follows from the fact that it has

controlled degree. !
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4. Continuous fuzzy sections

Let P(Z) denote the space of Borel probability measures on Z with the

weak topology.

Definition 4.1. Given a map of metric spaces π : X → Y , a fuzzy section

of π is a Borel measurable map from D : X → P(Y ) such that D(x) is

supported on π−1(x), for all x ∈ X. D is called a continuous fuzzy

section if it is continuous with respect to the metric topology on X and the

weak topology of P(Y ). The fuzzy sections in this paper are all atomic, i.e.

D(x) is a finite convex combination of Dirac masses.

Here, we will observe that given an admissible inverse system {(Xi, di, µi,πi)}

as in (2.8), each of the maps πi : Xi+1 → Xi has a naturally associated con-

tinuous fuzzy section Di defined via the measures µi, µi+1, which satisfies

for some c0 > 0,

(4.2) Di(xi)(xi+1) ≥ c0 (for all i, xi ∈ Xi, xi+1 ∈ π
−1
i (xi)) ,

and has the additional property that if ei+1 ⊂ Xi+1 is an edge mapped

isomorphically onto an edge ei ⊂ Xi, then xi +→ Di(xi)(ei+1) is constant

as xi varies in the interior of ei; see (4.4). This is used in Section 5 in the

proof of the Poincaré inquality. We also observe that conversely, given an

inverse system of metric graphs (Xi, di), as in (2.8) which satisfies (1)–(3),

and a sequence of continuous fuzzy sections Di satisfying (4.2), there is a

naturally associated sequence of measures µi such that µ0 is normalized to

be 1-dimensional Lebesgue measure and (Xi, di, µi) satisfies Axioms (1)–(6).

This reformulation is used in Section 8, in which of examples of admissible

systems are constructed.

Consider an admissible inverse system as in (2.8). Let int(e′i) denote an

open edge of X ′
i, and int(ei+1) an open edge of Xi+1, which is a component

of π−1
i (int(e′i)). For xi ∈ int(e′i), xi+1 ∈ π

−1
i (xi) we define

(4.3) Di(xi)(xi+1) =
µi+1(ei+1)

µi(e′i)
.

Thus, Di is continuous on int(e′i), and in fact, constant in the sense that for

xi,1, xi,2 ∈ int(e′i), xi+1,1 ∈ ei+1 ∩ π
−1
i (xi,1),

(4.4) Di(xi,1)(xi+1,1) = Di(xi,2)(xi+1,2) .
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Next, suppose v′i is a vertex of X ′
i and e′i is an edge of X ′

i with v′i as one of

its end points. If vi+1 ∈ π
−1
i (v′i) then vi+1 is a vertex of Xi+1 and we define

(4.5)

Di(v
′
i)(vi+1) =

µi+1(π
−1
i (e′i) ∩ St(vi+1,Xi+1))

µi(e′i)

=
∑

ei+1∈St(vi+1)

µi+1(ei+1)

µi(e′i)
.

By (2.9) of Axiom (6) (the continuity condition) Di(x′i)(xi+1) is well defined

independent of the choice of e′i with end point v′i.

Lemma 4.6. Di is a continuous fuzzy section satisfying (4.2).

Proof. This follows immediately from (4.3), (4.5) that Di is continuous

Remark 4.7. Note that Di is simply the disintegration of µi+1 with respect

to the map πi : Xi+1 → Xi.

From (2.15), together with Axioms (3) and (4), it follows that Di satisfies

the lower bound (4.2). !

The next proposition provides a sort of converse to the previous lemma.

Proposition 4.8. Suppose the inverse system in (2.8) satisfies (1)–(3).

Let Di denote a continuous fuzzy section of πi, i = 0, 1, . . ., satisfying (4.2)

and (4.4). Let µ0 denote 1-dimensional Lebesgue measure and define µi

inductively by (4.3). Then µi satisfies (4)–(6) for all i.

Proof. Axiom (5) follows directly from the definition of µi via (4.3) and

the fact that Di(xi) is a probability measure for all xi. Axiom (6) follows

directly from the assumption that the fuzzy section Di is continuous.

To verify Axiom (4), let ei,1, ei,2 denote edges of Xi with a common vertex

vi of Xi. Define vk by downward induction, by setting vk−1 = πk−1(vk). Let

j ≥ 0 be either the largest value of k such that vk is a vertex of X ′
k which is

not a vertex of Xk, or if there is no such k, put j = 0. In either case, it is

clear that µj(πj ◦ · · · πi−1(ei,1)) = µj(πj ◦ · · · πi−1(ei,2)).

From Proposition 2.11 we get:

(∗) For all but at most ∆ values of k, the (locally surjective) map πk−1 is

1-1 in a neighborhood of vk.
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Suppose, as in (*), the (locally surjective) map πk is 1-1 in a neighborhood

of vk+1, and ek+1,1, ek+1,2, are edges with common vertex vk+1. Since Dk is

continuous, by (4.3), we have

(4.9)
µk+1(ek+1,1)

µk+1(ek+1,2)
=

µk(πk(ek+1,1)

µk(πk(ek+1,2))
.

For the remaining values of k, by (4.2),

(4.10) c0 ≤
µk+1(ek+1,1)

µk+1(ek+1,2)
≤ c−1

0 .

It follows that (4) holds with C = (c0)∆. !

5. Proof of the Poincaré inequality and of Theorem 1.1

In this section i ≥ 0 will be fixed.

Given fi+1 : Xi+1 → R, we can perform integration of fi+1 over the fibers

{π−1
i (xi)}xi∈Xi of πi : Xi+1 → Xi with respect to the family of measures

{Di(xi)}xi∈Xi , to produce a function on Xi which we denote by IDifi+1.

Thus,

(5.1) IDifi+1(xi) :=
∑

xi+1∈π
−1
i (xi)

Di(xi)(xi+1)fi+1(xi+1) .

By (4.3), (5.1), for all Ai ⊂ Xi, we have

(5.2)

∫

Ai

IDifi+1 dµi =

∫

π−1
i (Ai)

fi+1 dµi+1 ;

this also expresses the fact that Di is the disintegration of µi+1 with respect

to πi and µi is the pushforward of µi+1 by πi.

Now suppose fi+1 is Lipschitz and let Lip fi+1(xi+1) denote the pointwise

Lipschitz constant at xi+1 ∈ Xi+1. Let e′i denote an edge of X ′
i and ei+1 ⊂

π−1
i (e′i) an edge ofXi+1. Since by (4.4), the function Di(xi)(xi+1) is constant

as xi varies in int(e′i) and xi+1 varies in π−1
i (xi) ∩ int(ei+1), and since the

restriction of πi to ei+1 is an isometry, it follows that that the restriction of

IDifi+1 to int(e′i) is Lipschitz, and

(5.3)

Lip(IDifi+1)(xi) ≤
∑

xi+1∈π
−1
i (xi)

Di(xi)(xi+1) Lip fi+1(xi+1)

= IDi(Lip fi+1)(xi) .
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The following lemma depends crucially on the continuity assumption,

Axiom (6) (as well as on Axiom (4)); see also (4.5).

Lemma 5.4. If fi+1 : Xi+1 → R is Lipschitz then so is IDifi+1 and for all

xi ∈ Xi (including xi = v′i, a vertex of X ′
i), we have

(5.5) Lip(IDifi+1)(xi) ≤ IDi(Lip fi+1)(xi) .

Proof. Clearly, it suffices to check that (5.5) holds for xi = v′i a vertex of

X ′
i. Let v

′
i a vertex of e′i, yi ∈ int(e′i) and vi+1 ∈ π

−1
i (v′i). Then,

(5.6)

IDifi+1(yi) =
∑

vi+1∈π
−1
i (v′i)

∑

yi+1∈π
−1
i (yi)∩St(vi+1,Xi+1)

Di(yi)(yi+1)fi+1(yi+1) .

and since the fuzzy section Di is continuous,

(5.7)

IDifi+1(v
′
i) =

∑

vi+1∈π
−1
i (v′i)

Di(vi)(vi+1)fi+1(vi+1)

=
∑

vi+1∈π
−1
i (v′i)

∑

yi+1∈π
−1
i (yi)∩St(vi+1,Xi+1)

Di(yi)(yi+1)fi+1(vi+1) .

By subtracting (5.7) from (5.6), dividing through by di(yi, v′i) = di+1(yi+1, vi+1)

and letting yi → v′i, we easily obtain (5.5). !

Remark 5.8. We could as well have worked throughout with upper gradients.

If gi+1 is an upper gradient for fi+1 : Xi+1 → R, then a similar argument

based on the continuity of Di shows that IDigi+1 is an upper gradient for

fi = IDifi+1.

Proposition 5.9. Given an admissible inverse system as in (2.8), for all

i and R, a (1, 1)-Poincaré inequality holds for balls Br(xi) ⊂ Xi, with τ =

τ(δ, θ, C) and Λ = 2(1 + θ).

Proof. Without essential loss of generality, it suffices to assume R = 1.

Given 0 < r ≤ 1, let j be such that

m−(j+1) < r ≤ m−j .

Let Br(xi) ⊂ Xi. If r ≤ m−i then Lemma 3.1 applies. Thus, we can assume

m−i < r.

For j + 1 ≤ k < i, inductively define

(5.10) xk = πk ◦ · · · ◦ πi−1(xi) ,
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(5.11)
Uj+1 = Br(xj+1) ,

Uk = π−1
k (Uk−1) j + 1 ≤ k < i .

By (2.12), and induction, we have

(5.12) Br(xi) ⊂ Ui ⊂ B(1+θ)r(xi) .

Given a Lipschitz function fi : Xi → R, set

(5.13) fk−1 = IDk−1fk j + 1 ≤ k < i ,

(5.14) f̂k = fk−1 ◦ π
−1
k−1 .

Then for all Ak−1 ⊂ Xk−1 and Ak := π−1
k−1(Ak−1), we have

(5.15) (fk)Ak
= (fk−1)Ak−1 = (f̂k)Ak

.

In particular, since (f̂i)Ui = (fi−1)Ui−1 , we get
∫

Ui

|fi − (fi)Ui | dµi ≤

∫

Ui

|fi − f̂i| dµi +

∫

Ui

|f̂i − (f̂i)Ui | dµi

=

∫

Ui

|fi − f̂i| dµi +

∫

Ui−1

|fi−1 − (fi−1)Ui−1 | dµi−1 ,

and by induction,

(5.16)
∫

Ui

|fi−(fi)Ui | dµi ≤
i∑

k≥j+2

∫

Uk

|fk−f̂k| dµk+

∫

Br(xj+1)
|fj+1−(fj+1)Br(xj+1)

| dµj .

By (2.13) and induction, we have

Ui ⊂ B(1+θ)r(xi) .

Using Lemma 3.1, Lemma 5.4, (5.12) and induction, for τ = τ(∆, θ, C), the

Poincaré inequality on Br(xj) gives following estimate for the second term

on the r.h.s of (5.16).

(5.17)

∫

Br(xj)
|fj − (fj)Br(xj)

| dµi ≤ τr ·
∫

Br(xj)
Lip fj dµj

≤ τr ·

∫

Ui

Lip fi dµi

≤ τr ·

∫

B(1+θ)r(xi)
Lip fi dµi .

Next we estimate the remaining terms on the r.h.s. of (5.16). For all

j + 2 ≤ k ≤ i, let {xk−1,t} denote a maximal m−k-separated subset of
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Uk−1. It follows from the local doubling condition that the collection of

balls, {Bm−k(xk,t)} covers Uk and has multiplicity bounded by a constant

M(β), with β the local doubling constant in Lemma 3.1.

Set Ui,k,t = (πk ◦ · · · πi−1)−1(B(1+θ)m−k (xk,t)). By (5.15), we have

(fk − f̂k)π−1
k−1(Bm−k(xk−1,t)

) = 0 .

Thus, we get
∫

π−1
k−1(Bm−k (xk−1,t))

|(fk − f̂k)| dµk

=

∫

π−1
k−1(Bm−k (xk−1,t))

|(fk − f̂k)− (fk − f̂k)B
m−k (xk−1,t)| dµk

≤

∫

π−1
k−1(Bm−k (xk−1,t))

|(fk − f̂k)− (fk − f̂k)B(1+θ)m−k (xk−1,t)| dµk

≤ 2

∫

B(1+θ)m−k (xk,t)
|(fk − f̂k)− (fk − f̂k)B(1+θ)m−k (xk,t)| dµk

≤ 4τ(1 + θ)m−k ·
∫

B(1+θ)m−k (xk,t)
Lip fk dµk

≤ 4τ(1 + θ)m−k ·

∫

Ui,k,t

Lip fk dµk

where the penultimate inquality comes from using Lip (fk − f̂k) ≤ 2Lip fk
and applying the Poincaré inquality on B(1+θ)m−k (xk,t). By summing this

estimate over t and k, and using
⋃

t Ui,k,t ⊂ B2(1+θ)r(xi), the proof is com-

pleted. !

Proof of Theorem 1.1. We have observed in Proposition 2.17 that {(Xn, dn, µn)}

converges to (X∞, d∞, µ∞) in the measured Gromov-Hausdorff sense. Since

the doubling condition and Poincaré inequality with uniform constants pass

to measured Gromov-Hausdorff limits [Che99], [Kei03], the theorem follows

from Propositions 3.2, 5.9. !

6. A probability measure on the lifts of a path

In this section we define a probability measure Ω on the set of lifts to

Xi (i > k) of a path γk in Xk and establish a particular property which

is a consequence of Axiom (6); see Proposition 6.13. This property plays

a role in Section 7, in which we give an alternative proof of the Poincaré
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inequality. The measure Ω has an interpretation in terms of Markov chains

which is explained in Remark 6.15 at the end of the section; it also enters

in Section 8, in which we construct examples of admissible inverse systems.

We begin with the case i = k+1 from which the general case follows easily.

A vertex path in X ′
k is a sequence of vertices v′0,k, . . . , v

′
N+1,k such that

each pair of consecutive vertices are the vertices of an edge ofX ′
k. Associated

to a vertex path is the path γ′k = e′0,k ∪ · · · ∪ e′N,k, which we will always

assume is parameterized by arclength. Similarly, we define a path γk+1 =

e0,k+1 ∪ · · · ∪ eN,k+1 in Xk+1 associated to v0,k+1, . . . , vN+1,k+1. We denote

by Γ, the (finite) collection of all γk+1 that are lifts of γ′k.

Below, given e′k and a lift ek+1, by slight abuse of notation (compare (4.3))

we write

(6.1) Dk(e
′
k)(ek+1) :=

µk+1(ek+1)

µk(e′k)
.

Define a measure Ω on Γ by setting

(6.2)

Ω(γk+1) := Dk(e
′
0,k)(e0,k+1)×

(
Dk(e′1,k)(e1,k+1)

Dk(v′1,k)(v1,k+1)

)

×· · ·×

(
Dk(e′N,k)(en,k+1)

Dk(v′N,k)(vN,k+1)

)

,

where by (4.5), we can write

(6.3) Dk(v
′
j,k)(vj,k+1) =

∑

ej,k+1∈π
−1
k (e′j,k)∩St(vj,k+1)

µk+1(ej,k+1)

µk(e′j,k)
.

For a path, γ′k = e′0,k, consisting of a single edge, and a lift, γk+1 = e0,k+1,

we just have

(6.4) Ω(e0,k+1) = Dk(e
′
0,k)(e0,k+1) .

Since Dk(x′0,,k)( · ) is a probability measure, it follows directly from the def-

initions that Ω is a probability measure in this case.

We now check an important property of Ω which in particular, implies

that Ω is a probability measure for arbitrary γ′k; see (6.5). Let ψ′
k denote a

path consisting of N + 1 edges obtained from γ′k by adjoining a single edge

e′N+1,k. Let Ψ denote the collection of all lifts of ψ′
k and let Ωψ′

k+1
denote

the measure on Ψ (defined as in (6.2)). Ψ denote the collection of lifts of

ψ′
k containing the fixed lift γk+1 of γ′k. Then it follows from (6.1) and (6.2),
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together with (6.3) applied to the vertices v′N+1,k, vN+1,k+1, that

(6.5) Ωψ′

k+1
(Ψ) = Ω(γk+1) .

It now follows by induction that Ω is a probability measure for arbitrary γ′k;

compare Remark 6.15.

Remark 6.6. Note that if we understand (6.3) to be the definitionDk(v′j,k)(vj,k+1)

then the discussion to this point has not made use of Axiom (6).

Recall that Axiom (6) implies thatDk(v′j,k)(vj,k+1) depends only on v′j,k, vj,k+1,

and in particular (compare (6.3)) we also have

(6.7) Dk(v
′
j,k)(vj,k+1) =

∑

ej−1,k+1∈π
−1
k (e′j−1,k)∩St(vj,k+1)

µk+1(ej−1,k+1)

µk(e′j−1,k)
.

If we rewrite the expression in (6.2) for Ω as

(6.8) Ω(γk+1) =
Dk(e′0,k)(e0,k+1)× · · ·×Dk(e′N,k)(eN,k+1)

Dk(v′1,k)(v1,k+1)× · · ·×Dk(v′N,k)(vN,k+1)
,

we easily obtain:

Proposition 6.9. For an admissible inverse system, the measure Ω is in-

variant under the operation of reversing the orientations of γ′k, γk+1.

It follows immediately from Proposition 6.9, that (6.5) also holds if the

additional edge is adjoined at the begining of γ′k rather than at the end. From

this and an argument by induction, we get the following: For arbitrary γ′k,

if ψ′
k is any path containing γ′k, γk+1 is any fixed lift of γ′k and Ψ denotes

the collection of all lifts of ψ′
k containing γk+1 then (6.5) holds. This gives:

Corollary 6.10. If e′j,k is any edge contained in γ′k, ej,k+1 ∈ π−1(e′j,k) and

Γ denotes the collection of lifts of γ′k which contain ej,k+1, then

(6.11) Ω(Γ) = Dk(e
′
j,k)(ej,k+1) =

µk+1(ej,k+1)

µk(e′j,k)
.

Next, we give a consequence of (6.11) which is used in the alternate proof

of the Poincaré inequality given in Section 7.

Suppose that γ′k is the subdivision of a path in Xk consisting of the union

of L edges e0,k ∪ · · · ∪ eL,k of Xk. (Thus, γ′k has L ·m edges e′j,k.) Assume

that γ′k is parameterized by arclength. Define Φ : Γ× [0, L ·m−k]→ Xk by

Φ(γk+1, t) = γk+1(t)



INVERSE LIMITS SATISFYING A POINCARÉ INEQUALITY 19

Let L denote Lebesgue measure on Xk+1.

We claim that on any fixed eℓ,k in the domain of γk, we have

Φ∗(Ω× L) =
m−k

µk+1(π
−1
k (eℓ,k))

· µk+1 ,

where Φ∗ denotes push forward under the map Φ. To see it, note that for

any ej,k+1 we have

L = µk+1 ·
m−(k+1)

µk+1(ej,k+1)
,

If e′j,k ⊂ eℓ,k and ej,k+1 ⊂ π
−1
k (e′j,k), then on ej,k+1 we have by (6.11)

Φ∗(Ω× L) =
µk+1(ej,k+1)

µk(e′j,k)
· L .

Combining the previous two relations gives

(6.12)

Φ∗(Ω× L) =
m−(k+1)

µk(e′j,k)
· µk+1

=
m−k

µk+1(π
−1
k (eℓ,k))

· µk+1 ,

where the last equality follows by because µk is a constant multiple of

Lebesgue measure on eℓ,k and (πk)∗(µk+1) = µk.

Finally, we give a generalization of the above. Put πik = πk ◦ · · · ◦ πi−1.

Write Xi
k for Xk with each of its edges subdivided into edges of length

m−(i−1). Then πik is maps edges of Xi to edges of (Xi
k)

′ It is easy to see that

after rescaling of the metric and measure on both Xi
k and Xi by a factor

mi−1, Axioms (1)–(6) are satisfied (where the verification of Axiom (6) is

by induction). In addition, the Xi
k with rescaled metric has the property

that the rescaled µi is a constant multiple of L on the edges of the rescaled

Xk (which have length mi−k−1 in the rescaled metric). As a consequence,

by the same argument which led to (6.12), we get:

Proposition 6.13. Let γk denote a path in Xk which is the union of edges

ek of Xk and let γik denote its subdivision in Xi
k. If Γ denotes collection of

lifts of γik ⊂ Xi
k to Xi, then there is a probability measure Ω on Γ such that

(6.14) Φ∗(Ω× L) =
m−k

µi((πik)
−1(eℓ,k))

· µi (on eℓ,k).
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Remark 6.15. The definition of Ω in (6.8) can be understood in terms of

Markov chains. This gives a more general perspective on why it is a prob-

ability measure. Associated to γ′k+1 is a discrete time Markov chain whose

collection of states is
⋃N

j=0(π
−1
k (e′k,j), j). The probability of being in a state

(ej,k+1, j) at time 0 is 0 unless j = 0, in which case the probability is

D(e0,k)(e0,k+1). The probability of transition from a state (ej1,k+1, j1) at

time j to a state (ej2,k+1, j2) at time j + 1 is 0 unless j1 = j, j2 = j + 1

and there exists γk+1 ∈ Γ such that ej,k+1, ej+1,k+1 are consecutive edges

of γk+1 with common vertex vj+1,k+1, and such that ej1,k+1 = ej,k+1 and

ej2,k+1 = ej+1,k+1. In this case the transition probability is

D(e′j+1,k)(ej+1,k+1)

D(v′j+1,k)(ej+1,k+1)
:=

µk+1(ej,k+1)∑
ej,k+1∈π

−1
k (e′j,k)∩St(vj,k+1)

µk+1(ej,k+1)
;

For this Markov chain, the probability of observing a sequence of states

(ej0,k+1, 0), (ej1,k+1, 1), . . . , (ejN ,k+1, N) is zero unless there exists γk+1 =

e0,k+1 ∪ · · · ∪ eN,k+1 ∈ Γ, with ej0,k+1 = e0,k+1, . . . , ejN ,k+1 = eN,k+1, in

which case this probability is Ω(γk+1).

Note that the in above discussion we need not assume that Axiom (6)

holds. However, this assumption is required for Proposition 6.9 whose con-

sequence, Proposition 6.13, is crucial for the alternate proof of the Poincaré

inequality given in the next section.

7. A proof of the Poincaré inequality using measured path

families

In this section we give an second proof based on measured path families

that the Poincaré inequality holds for (X∞, d∞, µ∞).1 This is closer in spirit

to other proofs of the Poincaré inequality [Sem].

Suppose k ≤ i, vk is a vertex of Xk, e0,k, e1,k are edges belonging to

the star of vk in Xk, and Zℓ = (πik)
−1(eℓ,k) ⊂ Xi for ℓ ∈ {0, 1}. Let γk :

[0, 2m−k]→ Xi
k denote a unit speed parametrization of the path e0,k ∪ e1,k

and γik its subdivision in Xi
k. Let Γ denote the space of lifts γi : [0, 2m−k]→

Xi of γik and let Ω denote the probability measure on Γ constructed in

1 As a matter of convenience, some of the notational conventions of this section are

somewhat at variance with those of other sections and (given that this is our second proof

of the Poincaré inequality) the style of presentation is slightly more informal.
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Section 6. Let Φ : Γ × [0, 2m−k] → Z0 ∪ Z1 ⊂ Xi denote the tautological

map (s, γi) +→ γi(s).

Recall from (2.3) the definition of an upper gradient g of a function f on

a metric space.

Lemma 7.1. Let k < i, Z0, Z1 are as above. Let u : Xi → R denote a

Lipschitz function and g : Xi → R an upper gradient for u. Then

∣∣∣∣−
∫

Z0

u dµi −−

∫

Z1

u dµi

∣∣∣∣ ≤ Ĉm−k−

∫

Z0∪Z1

g dµi .

Proof. With Axiom (4) and (6.14) of Proposition 6.13 (which is used twice

below) we get:

∣∣∣∣−
∫

Z0

u dµi − −

∫

Z1

u dµi

∣∣∣∣

=

∣∣∣∣∣
−

∫

[0,m−k]×Γ
(u ◦ Φ) d(L × Ω)−−

∫

[m−k,2m−k ]×Γ
(u ◦ Φ) d(L ×Ω)

∣∣∣∣∣

≤ −

∫

[0,m−k]×Γ

∣∣∣u(γi(t))− u(γi(t+m−k))
∣∣∣ 2 dL(t) dΩ(η)

≤ −

∫

[0,m−k]×Γ

∫

[0,m−k]
g ◦ γi(t+ s) dL(s) dL(t) dΩ(η̂)

=

∫

[0,m−k]

(

−
∫

[0,m−k]×Γ
g ◦ γi(t+ s) dL(t) dΩ(γi)

)

dL(s)

≤ Ĉ

∫

[0,m−k]

(
−

∫

Z0∪Z1

g dµi

)
dL(s)

= Ĉ m−k−

∫

Z0∪Z1

g dµi .

!

Theorem 7.2. (X∞, d∞, µ∞) satisfies a Poincaré inequality.

Proof. It suffices to prove that (Xi, di, µi) satisfies a Poincaré inequality for

every i ∈ Z, with constant indendent of i; see [Che99], [Kei03]. We fix

i ∈ Z, and let u : Xi → R denote a Lipschitz function with upper gradient

g : Xi → R. For every k ≤ i, let U i
k denote the collection of subsets of Xi

of the form U i
k = (πik)

−1(ek), where ek is an edge of Xk. Let ui,k : Xi → R



22 JEFF CHEEGER AND BRUCE KLEINER

denote a step function such that for every U i
k ∈ U i

k,

ui,k(xi) = −

∫

U i
k

u dµi ,

for µi-a.e. xi ∈ U i
k. In particular, ui,i satisfies

ui,i(xi) = −
∫

ei

u dµi ,

for all edges ei of Xi and µi-a.e. xi ∈ ei.

Let k < i, and U i
k = (πik)

−1(ek) ∈ U i
k. If two elements U i

0,k+1 =

(πik+1)
−1(e0,k+1), U i

1,k+1 = (πik+1)
−1(e1,k+1) ∈ U i

k+1 are contained in some

Uk, then by Axiom (3) (the diameter bound on fibres) e0,k+1, e1,k+1 are at

distance ≤ C = C(θ)m−k in Xk+1, and so by Lemma 7.1 and induction, we

have ∣∣∣∣∣
−

∫

U i
0,k+1

u dµi −−

∫

U i
1,k+1

u dµi

∣∣∣∣∣
≤ Ĉ ·m−k−

∫

CU i
k

g dµi ,

where CU i
k denotes of a tubular neighborhood of radius C(θ)m−k around

ek; see (2.13).

Since at most a definite number of elements of U i
k+1 are contained in a

fixed U i
k (see (2.15)) this gives for all k ≤ i− 1,

(7.3)

∫

U i
j

|ui,k − ui,k+1| dµi ≤ C1m
−k

∫

CU i
k+1

g dµk .

where C1 = C1(m,∆, θ).

Now suppose j ≤ i, vj is a vertex of Xj , and let Z = (πij)
−1(St(vj,Xj)) ⊂

Xi. By (7.3) (with notation as above) we have

(7.4)

∫

Z
|ui,i − ui,j | dµi ≤

i−1∑

k=j

∫

Z
|uk,j+1 − uk,j| dµk

≤
i−1∑

k=j

C1m
−j

∫

CZ
g dµi ≤ C1m

−j

∫

CZ
g dµi .

Applying the Poincaré inequality for each edge ei of Z gives

(7.5)

∫

Z

|u− ui,i| dµi ≤ m−i

∫

Z

g dµi .
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Since Xj has a valence bound independent of j, it follows from Lemma 7.1

that

(7.6)

∫

Z
|ui,j − uZ | dµi ≤ Ĉm−j

∫

Z
g dµi .

Combining (7.4), (7.5), and (7.6) we obtain

(7.7)

∫

Z

|u− uZ | dµi ≤

∫

Z

(|u− ui,i|+ |ui,i − ui,j |+ |ui,j − uZ |) dµi

≤ Cm−j ·

∫

CZ
g dµi .

Since Xi has valence bounded independent of i and edges of length m−i,

it suffices to prove the Poincaré inequality for balls Br(xi) where r is at least

comparable to m−i, since otherwise Br(xi) lies in the star of some vertex

vi ∈ Xi, and the result is trivial; see Lemma 3.1. Thus, we may assume

that there is a j ≤ k with m−j comparable to r and a vertex vj ∈ Xj

such that πij(Br(xi)) ⊂ St(vi,Xi). Letting Z = (πij)
−1(St(vj ,Xj)), we have

Br(xi) ⊂ Z and µi(Z)/µk(Br(xi) has a definite bound; see Axiom (4). Then

−

∫

Br(xi)
|u− uBr(xj)| dµi ≤ C −

∫

Z
|u− uZ | dµi ≤ C m−j−

∫

CZ
g dµi

≤ C m−j−
∫

BCr(xi)
g dµi .

This suffices to complete the proof. !

8. Construction of admissible inverse systems

In view of Theorem 1.1, it is natural to ask for explicit examples of ad-

missible inverse systems and whether (and in what sense) it is possible to

classify them. In this section we will content ourselves with giving an induc-

tive procedure for constructing admissible inverse systems, which makes it

clear that combinatorially distinct admissible inverse systems exist in great

abundance. We will also give a simple example of an inverse system of met-

ric graphs satisfying Axioms (1)–(3) which cannot be given the structure

of an admissible inverse system, i.e. for this inverse system, a sequence of

measures µk, satisfying Axioms (4)–(6) does not exist; see Example 8.15.
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8.1. Admissible edge inverses; the simplest special case. Given an

admissible inverse system {Xi}i∈Z+ , one may think of Xk+1 as the union

the subgraphs π−1
k (ek), where ek ⊂ Xk ranges over all edges of Xk. The

following definition axiomatizes the properties of these subgraphs, up to

rescaling of the metric and the measure.

Definition 8.1. An admissible edge inverse is a map (Y1, d1, ν1)
π
−→

(Y0, d0, ν0) of finite metric measure graphs, satisfying the following condi-

tions for some integer m ≥ 2:

(A) (Y0, d0, ν0) is a copy of the unit interval [0, 1] with the usual metric

and measure. Y1 is a nonempty, finite, possibly disconnected graph,

such that every edge e1 ⊂ Y1 is isometric to an interval of length 1
m .

The restriction of d1 to every component of Y1 is the associated path

metric. The restriction of the measure ν1 to e1 is a nonzero multiple

of the arclength.

(B) If Y ′
0 denotes the result of subdividing Y0 ≃ [0, 1] into m edges of

length 1
m , then π : Y1 → Y ′

0 is open, and its restriction to any edge

e1 ⊂ Y1 maps e isometrically onto an edge of Y ′
0 .

(C) (Compatibility with projections) The pushforward π∗(ν1) is ν0.

(D) (Continuity) For every vertex v ∈ Y ′
0 , and every w ∈ π−1(v) ⊂ Y1,

the quantity

ν1(π−1(e0) ∩ St(w, Y1))

ν0(e0)

is the same for all edges e ⊂ St(v, Y ′
0).

Note that if {Xi}i≥0 is an admissible inverse system with subdivision

parameter m, then for any i and any edge e ⊂ Xi, the restriction of πi to

π−1
i (e) yields an admissible edge inverse πi : π

−1
i (e) → e, modulo rescaling

the metric and normalizing the measure.

Fix m,n ≥ 2, and an admissible edge inverse π : (Y1, ν1) → (Y0, ν0) with

subdivision parameter m. We now assume further that if v ∈ {0, 1} is an

endpoint of Y0 ≃ [0, 1] then π−1(v) has cardinality n. For each such end

point, choose and identification of the set of inverse images with the set
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{1, . . . , n}. Moreover, assume that

Y1 is connected and d1 is a length metric on Y1.(8.2)

If v ∈ {0, 1} is an endpoint of Y0 ≃ [0, 1] and w ∈ π−1(v),

then w has degree 1, and the unique edge containing w has(8.3)

ν1 measure
1

mn
.

8.2. Inductive construction of admissible inverse systems. Fix m

and N < ∞ and assume that for each integer n with 1 ≤ n ≤ N we

have a finite nonempty family G(n) of edge inverses as above as above such

that for v an endpoint of Y0, the cardinality of π−1(v) is n. The existence of

such families will be shown in a subsequent subsection. In fact, with suitable

choice of parameters, we will show that it is possible to choose finite families

G(n) with arbitrarily large cardinality.

Choose a sequence, {n(k)}, with n(k) ≤ N for all k. Using elements of the

family Gn(k) as building blocks, we can construct inverse systems of metric

measure graphs, using the procedure described below.

We begin with a connected metric measure graph (X0, d0, µ0), with d0 the

length metric, for which the degree is bounded and such that the restriction

of (d0, µ0) to every edge of X0 is a copy of [0, 1] with the usual Lebesgue

measure L.

Then we iterate the following procedure to construct Xk+1 and a map

πk : Xk+1 → Xk, for every k:

• We choose n = n(k) ≤ N and corresponding family G(n(k)) as

above.

• We construct the inverse image π−1
k (Vk) of the vertex set Vk ⊂ Xk.

This is defined to be Vk × {1, . . . , n}, and he projection map is the

projection on the first factor, πk : Vk × {1, . . . , n}→ Vk ⊂ Xk.

• For each edge ek ⊂ Xk, we choose a copy of some admissible edge

inverse (Y0, Y1,π) ∈ G(n(k)), with the metrics rescaled by m−k, the

measures rescaled by µk(ek). Then we identify Y0 with ek and iden-

tify the inverse images of the endpoints {0, 1} = Y0 with the inverse

images of the end points of ek using the identifications of these sets
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with {1, . . . , n}. Finally, modulo the above identifications, we define

the projection map πk : π−1
k (ek) → ek ⊂ Xk to be the projection

map π : Y1 → Y0,

• We define dk+1 to be the path metric on Xk+1 which agrees with the

given metric on edges.

Lemma 8.4. Any inverse system constructed as above is admissible, where

the parameters ∆, θ, C depend only on {G(n)} (n ≤ N) and the degree bound

for X0.

Proof. Note that X0 is assumed to have bounded degree and n(k) ≤ N for

all k. Also, for fixed k, {G(n))} is a finite collection, and each Y1 ∈ G is a

finite graph, so that in particular, there is a uniform bound on the degree for

at vertices of elements of G(n) for all n. It then follows from (8.3) that there

is a uniform bound on the degree of vertices of Xk which is independent of

k. It now clear that Axioms (1) and (2) hold.

Axiom (3) the bound on fibre diameters follows directly from the con-

nectedness assumption (8.2).

Axiom (4), local bounded metric measure geometry, follows from the

finiteness discussion above, together with (8.3). Namely, by (8.3), for vk ∈ Vk

and wk+1 ∈ π
−1
k (vk) up to scaling of the metric and the measure, the local

geometry at wk+1 is the same as the local geometry at vk.

Axiom (5) is immediate from (C), while Axiom (6) follows from (D) and

(8.3). !

8.3. Relaxing some of the conditions. Next point out some generaliza-

tions of the construction above, in which some of the conditions are relaxed.

We can relax (8.3), requiring instead that G contains nonempty subsets

of edge inverses satisfying (8.3), and that the rest have the weaker property

that for each vertex v ∈ Y1 projecting to one of the endpoints 0, 1, of Y0, the

ν1 measure of the edges leaving v is exactly 1
mn . For subsequent purposes

note that in terms of the continuous fuzzy section defined as (4.5), this can

be written equivalently as follows. Let 0, 1 denote the vertices of Y0 = [0, 1],

ℓ ∈ {0, 1}, and let w ∈ π−1(ℓ). Then ℓ ∈ {0, 1},

(8.5) D(ℓ)(w) =
1

n
.
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The remainder of the discussion of this subsection applies equally well to

the general case (discussed subsequent subsections) in which (8.5) is replaced

by the assumption that for either endpoint ℓ ∈ {0, 1}, of Y0 = [0, 1], D(ℓ)( · )

is an arbitrary probability measure taking positive values on every point of

π−1(ℓ); compare (8.6).

We may drop the requirement (8.2), and instead ask that G contain a

nonempty subset Gc for which the corresponding Y1 is connected. Then

to ensure the point inverses π−1
k (v) have controlled diameter, it suffices to

ensure that the set of edges e ⊂ Xk for which the inverse image π−1
k (e) is

chosen from Gc forms a C̃m−k net in Xk, where C̃ is independent of k.

Let ℓ ∈ {0, 1} denote the endpoints of Y0 = [0, 1]. Denote by Gℓ, G1, the

subset of G for which every vertex of π−1(ℓ) has degree 1. Put G0∩G1 = G0,1.

To ensure the existence of the valence bound∆ as in Axiom (1), we can fix a

number K, and whenever an edge e ⊂ Xk has a vertex whose degree exceeds

K and choose the edge inverse from Gℓ, the vertex has degree exceeding K

(or from G0,1 if both vertices have degree exceeding K).

Thus, if G contains a nonempty subsets Gc, Gc ∩G0 Gc ∩ G1 Gc ∩ G0,1 we

can start by making choices from these subsets at sufficiently many edges to

form a C̃m−k net, and then, for the remaining edges make arbitrary choices

from G.

8.4. Admissible edge inverses; the general case. Next, we give the

definition of admissible edge inverses in the general case.

We will retain (A)–(D). However, we are going to use the reformulation

of (C) in terms of continuous fuzzy sections.

As discussed in the special case which we have already treated, the con-

nectedness assumption (8.2) is dropped. (As before, in the inductive con-

struction, for each k, we will assume as before that the edges with connected

Y1 form a C̃m−k-net where C̃ is independent of k.)

For some N1, the inverse images of the endpoints ℓ ∈ {0, 1} of Y0 = [0, 1]

are assumed to have cardinalities, n0, n1 ≤ N1, where possibly n0 ̸= n1.

We choose identifications of π−1(ℓ) with 1, . . . , nℓ. Let the continuous fuzzy

section D be defined in terms of ν0, ν1 as in (4.3)–(4.5); see also Proposition

4.8.. In place of (8.5), we simply assume that D(ℓ) is an arbitrary probability
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measure on π−1(ℓ) such that

(8.6) D(ℓ)(w) > c′0 > 0 ,

for all w ∈ π−1(ℓ).

Suppose we choose to regard D(0)( · ) and D(1)( · ) as having been spec-

ified. Then as (4.4), (4.5), the measure ν1 provides an extension of D as a

continuous fuzzy section to all of Y1. Conversely, any such extension pro-

vides a measure ν1 satisfying (C) i.e. the pushforward of ν1 under π is ν0;

see (4.3) and Proposition 4.8 . With this much understood, it will be con-

venient to formulate the rest of the discussion of this section in terms of D

(rather than ν1).

We let Gc ∩ G0, Gc ∩ G1 and Gc ∩ G0,1 retain their previous meanings.

Similarly, (8.3) is dropped with the proviso that as before, we will only

consider collections G such that Gc ∩G0, Gc ∩G1 and Gc ∩G0,1 are nonempty,

so that in the inductive construction, we are at liberty make choices from

these subsets when the degree of vertices exceeds a preselected K and/or to

ensure that edges with connected edge inverses form C̃m−k-dense subset of

Xk. The existence of such G is guaranteed by the following Proposition 8.7.

Proposition 8.7. Assume that the cardinalities n0, n1 of π−1(ℓ) satisfy nℓ ≤

N1, ℓ ∈ {0, 1}. Let D be specified arbitrarily on π−1(0) ∪ π−1(1) subject to

the condition that (8.6) holds for some c′0 > 0. Let G denote the collection

of edge inverses for which D has the specified restriction to π−1(0)∪ π−1(1)

and such that in addition, Y1 has ≤ m ·N1 edges and for all i/m ∈ Y ′
0 and

w ∈ π−1(i/m),

(8.8) D(i/m)(w) ≥ c′0 .

Then Gc ∩ G0,1 has cardinality ≥ m− 1.

Proof. Fix some i/m be a vertex of Y ′
0 which is not an end point. (Each such

choice will determine a different Y1 as in the proposition.) The combinatorial

structure of Y1 is specified by stipulating that:

1) π−1(i/m) consists of a single vertex w.

2) For every w0,s ∈ π−1(0) the segment [0, i/m] ⊂ Y ′
0 from v0 to y′ has a

unique lift γs with initial point w0,s (and final point w).
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3) For every w1,t ∈ π−1(v1) , the segment [i/m, 1] ⊂ Y ′
0 has a unique lift

γt with final point w1,t (and initial point w).

D is given as follows. D(i/m)(w) = 1. If w ∈ γs, w ̸= w thenD(π(w))(w) =

D(0)(w0,s). If w ∈ γt, w ̸= w then D(π(w))(w) = D(1)(w1,t). !

Remark 8.9. Although Proposition 8.7 shows the existence of G with Gc ∩

G0,1 ̸= ∅, it has the drawback that the combinatorial and metric structure of

Y1 depends only on n0, n1. However, as we will see below, in the general case,

we actually do obtain many more examples of admissible inverse systems

that in the simplest special case.

Remark 8.10. Fix ℓ ∈ {0, 1}, say ℓ = 0. There is an obvious 1-1 correspon-

dence between arbitrary admissible edge inverses (Y1, d1, ν1)
π
−→ (Y0, d0, ν0)

with subdivision parameter m and admissible edge inverses (Ŷ1, d̂1, ν̂1)
π
−→

(Ŷ0, d̂0, ν̂0) with subdivision parameter m+1, such that all vertices in π−1(0)

have degree 1. Here, after suitable rescaling of the metric and the measure,

we regard (Y0, d0, ν0) as π̂−1([1/(m+1), . . . , 1]). Also, each vertex in π̂−1(0)

is connected to the corresponding vertex in π̂−1(1/(m + 1)) by a unique

edge which projects under π̂ to [0, 1/(m + 1)]. Note that with the obvious

identifications, D(ℓ) |π−1(ℓ) remains unchanged, for ℓ both ℓ = 0 and ℓ = 1.

If the edge inverse with subdivision parameter m is connected, then so is

the new one with subdivision parameter m+1. Of course, the construction

can also be done with the end point ℓ = 1, of with both end points (in

which case one obtains an edge inverse with subdivision parameter m + 2,

for which the inverse images of both endpoints have degree 1).

8.5. General inductive construction. Choose constants, c′0 > 0, 0 <

c0 < < c′0, N1, N2 ≥ m ·N1, C̃ and K. It will be clear that the constants

in Axioms (1)–(6), and hence, the constants in the doubling condition and

Poincaré inquality, can be estimated in terms of these parameters.

For each vertex vk of Xk, we specify arbitrarily the cardinality n(vk) of

π−1
k (vk) subject only to n(vk) ≤ N1. We also choose an ordering of π−1

k (vk).

Finally, we choose an ordering of the vertices of Xk.

For each vk we choose a probability measure Dk on π−1
k (vk) such that

(8.11) Dk(vk)(vk+1) ≥ c′0 ,

for all vk, vk+1 ∈ π
−1
k (vk).
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For each edge ek, the ordering of its vertices induces an identification of

ek with Y0 = [0, 1] and the specified Dk on the boundary of ek induces a

probability measure D on π−1(0) ∪ π−1(1).

Denote by G the collection of admissible edge inverses with at most N2

edges, such that D on Y1, extends D on π−1(0) ∪ π−1(1) and such that in

addition

(8.12) D(y)(w) ≥ c0 ,

for all y ∈ Y0 = [0, 1] and w ∈ π−1(y). By Proposition 8.7, Gc ∩ G0,1 has

cardinality ≥ m− 1; compare however Remark 8.13.

Now we proceed mutadis mutandis as we did earlier. Namely, forXk select

for each edge we select an admissible edge inverse from the corresponding G,

subject to the stipulation that where necessary, we select from Gc, Gc ∩G0,

etc. In this way the construction of (Xk+1, dk+1, µk+1) is completed.

Remark 8.13. It will be clear from the discussion of subsequent subsections

that the cardinality of G with Gc∩G0,1 will tend to infinity as any of N1, N2

1/c′0, C̃ or K goes to infinity.

Remark 8.14. It will be seen below that if we assume that the values of D

on π−1(0) ∪ π−1(1) can all be expressed as fractions (possibly not in lowest

terms) with denominator d, then c0 can be estimated from below in terms

of c′0, N2, d; see Proposition 8.20.

Example 8.15. It is easy to construct examples of πk : Xk+1 → Xk, such

that for no choice of Dk on the inverse images of the vertices, is there an

extension of Dk to a continuous fuzzy section to Xk+1. For instance, let

m ≥ 2 and letXk consist of 2 oriented edges e, f with a common intitial point

x and a common final points y. Let π−1
k (x) = {p, q} and π−1

k (y) = {r, s}.

Let π−1(e) consist of two paths with disjoint interiors, one of which joins p

to r and one of which joins q to s. Let π−1(f) consist of a path joining p

to r, a path joining q to r and and a path joining q to s, such that all 3 of

these paths have disjoint interiors.

Suppose there exists a continuous fuzzy section Dk. Using Axiom (6) (the

continuity condition) and the structure of π−1
k (e) it follows that D(x)(p) =

D(y)(r), while from the structure of π−1
k (f), it follows that Dk(p) > Dk(r).
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Having described the inductive construction in the general case, we de-

vote the remainder of this section to the construction of large families of

admissible edge inverses.

8.6. Quotients of edge inverses. Let (Y0, Ŷ1, π̂) be an admissible edge

inverse as in the previous subsection and assume Y ′
0 ̸= Y1. Form a quotient

space Y1 of Ŷ1, by choosing some edge e′j in the interior of Y ′
0 and identifying

a pair of distinct inverse images of π̂−1(e′j) by the unique isometry such that

the map π̂ factors through the quotient map σ : Ŷ1 → Y1 i.e. π̂ = π ◦ σ for

some π. Then if we equip Y1 with the induced metric on edges and push-

forward measure, σ∗(ν̂1) = ν1, we obtain a new admissible edge inverse

(Y0, Y1,π).

Note that with the obvious identification of inverse images of end points

of [0, 1], we have

(8.16) D(ℓ) |π−1(ℓ) = D(ℓ) | π̂−1(ℓ) .

We also can also identity a pair of edges in π̂−1([0, 1/m]) provided they

have the same left-hand end point or a pair in π̂−1([(m − 1)/m, 1]) if they

have the right-hand end point, and do same the construction.

We refer to any edge inverse which is obtained by starting with (Y0, Ŷ1, π̂)

and iterating the above constructions a quotient of (Y0, Ŷ1, π̂).

Similarly, the above argument can be repeated by identifying vertices in

the inverse images of interior vertices of Y ′
0 in place of edges. We also refer

to the result as a quotient of (Y0, Y1,π).

In particular, the quotient construction can be applied to a an admissible

edge inverse as in Proposition 8.7. More importantly, it can be applied to

“special admissible edge inverse” as defined in the next section. In fact, we

will show that every admissible edge inverse arises as a quotient of a special

one.

Remark 8.17. It is easy to verify that both (Y1, d1, ν1)
σ
−→ (Y0, d0, ν0) and

(Ŷ1, d̂1, ν̂1)
σ
−→ (Y1, d1, ν1), satisfy Axioms (1)–(6).

8.7. Special admissible edge inverses. In this section we define a class of

admissible edge inverses (called “special”) whose combinatorial and metric

classification can be reduced to the problem of describing the supports of
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all probability matrices with specified marginals. For the case in which the

marginals take rational values, this can be done in terms of the Birkoff-Von

Neumann theorem. For each possible support, the Birkoff-Von Neumann

theorem also provides a canonical representative probability matrix whose

entries have a definite lower bound. This is required to control the measure

of the associated special edge inverse.

It will be clear that the cardinality of the collection of combinatorially

distinct admissible edge inverses with specified marginals will be arbitrarily

large if the parameters on which the associated matrix depends are sufficienly

large. Moreover, by taking quotients as in the last section one obtains a much

larger class of combinatorially distinct examples. In a subsequent subsection

we will see that all examples of admissible edge inverses arise as quotients

of special ones.

A special edge inverse is an edge inverse such that:

1. Each component of π−1((0, 1)) is an open interval γ. (Thus, the closures

of to such components intersect only at some point of π−1(0) and some point

of π−1(1).)

2. If γ is a component of π−1((0, 1)) then D(π(w))(w) is the same for all

w ∈ γ.

For w ∈ γ as above, we call D(π(w))(w) the weight of γ.

Suppose we are give a special admissible edge inverse. Let n1, n2 denote

the cardinalities of π−1(0) = {w0,t} and π−1(1) = {w1,s} respectively. Define

an n1 × n2 probability matrix Ps,t, whose s, t-th entry is the sum of the

weights of all those γ as above with initial point w0,t and final point w1,s.

Then Ps,t has the property that its marginals are given by D(0)(w0,t) and

D(1)(w1,s).

Conversely, suppose we are given an n1 × n2 probability matrix Ps,t and

positive integers cs,t for each nonzero entry ps,t > 0. Then there is a unique

special admissible edge inverse with cs,t paths γ connecting w0,t to w1,s

for each (s, t), such that each such γ connecting w0,s and w1,t has weight

ps,t/cs,t. The resulting special edge inverse has the property that D(0)(w0,t)

and D(1)(w1,s) are given by the marginals of Ps,t.

Therefore, we get the following.
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Proposition 8.18. The combinatorial classification of special admissible

edge inverses with a specified D on the inverse images of the end points, is

equivalent to the classification of the supports of probability matrices with

specified marginals.

Consider the simplest special case treated at the beginning of this section,

in which n1 = n2 = n and marginals, all equal to 1
n . In that case, Ps,t is

a so called doubly stochastic matrix and there is a representation theorem,

the Birkoff-Von Neumann theorem, which describes all such matrices.

Theorem 8.19. (Birkoff-Von Neumann) The space of all doubly stochastic

matrices has dimenson (n − 1) × (n − 1). Any such matrix is a convex

combination of permutation matrices.

Remark 8.20. Note that while the combinatorial a metric structure of the

associated special admissible edge inverse is determined by the support of

the corresponding probability matrix Ps,t, a bound on D (or equivalently on

the ratio of ν1 to Lebesgue measure) is determined by a lower bound on the

actual entries and the constants cs,t, (which are bounded in terms of N2).

For the case of doubly stochastic matrices the support is determined just

by the collection of nozero coefficients representation in the representation

supplied by the Birkoff-Von Neumann theorem. By choosing all such coef-

ficients to be equal, we obtain matrix with the given support and a definite

lower bound on the entries. Note that in the application to edge inverses,

it is the entries which determine Dk+1. Therefore, in what follows, we will

always assume without further mention that this canonical choice has been

made.

Below we will show that the classification of probability matrices with

rational entries can also be reduced to the case of doubly stochastic matrices

described above. Therefore, we have canonical representatives with a lower

bound on the entries for each possible support in this case as well.

Given a d × d doubly stochastic matrix, for some integer a replace the

first a rows by a single row which is equal to their sum and whose column

marginal remains unchanged. By suitably iterating this operation we obtain

a matrix whose row marginals are any sequence of length < d, of positive

rational numbers with denominator d whose sum is equal to 1. Then we

can repeat the same operations with columns in place of rows. In this way
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we can obtain a matrix with any specified row and column marginals all of

whose entries are rational numbers with denominator d. (We do not assume

that these fractions are in lowest terms.)

In fact, every probability matrix with rational marginals such that every

entry has denominator d arises in this way. To see this, let P = (ps,t) denote

an n1 × n2 probability matrix with rational entries and marginals (ρs) and

(τt). Let d denote the least common denominator for {ρs} ∪ {τt}. Write

ρs = αs/d, τt = βt/d. For each s, replace the s-th row by αs identical

rows, each with entries ps,t/αs. This operation yields a d × n2 probability

matrix whose for which the row marginal has entries 1/d and whose column

marginal remains unchanged. Now by repeating this operation with columns

in place of rows, we obtain a doubly stochastic d × d probability matrix P̃

i.e. all entries of the row and column marginals are equal to 1/d. Clearly,

the original matrix Ps,t can be obtained from the doubly stochastic matrix

P̃ as in the previous paragraph.

In this sense, we have reduced the representation of arbitrary probability

matrices with rational marginals to the Birkoff-Von Neumann theorem.

Remark 8.21. Suppose we are given the support of an n1 × n2 probability

matrix and a specified row marginal (ρs).Then there is a unique probability

matrix P denote with the given row marginal such that all entries in any

given row are the same.

As a consequence, given Xk and a maximal collection of disjoint edges

C = {ek}, the metric measure structure of the special edge inverses over

these ek and in particular, the combinatorial structure, can be specified

arbitrarily, the only caveat being that when necessary, we choose an arbi-

trary element of G0,G1 or G0,1; see Remark 8.10 and compare Remark 8.15.

The corresponding collection of row and column marginals determins Dk

on π−1
k (vk), all vertices vk of Xk. Then the edge inverses of the remain-

ing edges can be chosen as in the general inductive step. (The required

C̃m−k-dense set of connected edge inverses can be chosen from either C or

its complement.)

8.8. Arbitrary edge inverses are quotients of special ones. We now

show:
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Proposition 8.22. For any admissible edge inverse (Y1, d1, ν1)
π
−→ (Y0, d0, ν0),

there is a (canonically associated) special admissible edge inverse, (Ŷ1, d̂1, ν̂1)
π̂
−→

(Y0, d0, ν0), of which (Y1, d1, ν1)
π
−→ (Y0, d0, ν0) is the quotient.

Proof. Regard, Y ′
0 as a path γ′0, and let Γ denote the collection of lifts

to Y1, as in Section 6. For each γ1 ∈ Γ take a copy Iγ1 of Y ′
0 and form

the quotient space Ŷ1 of
⋃
γ1∈Γ

Iγ1 by the equivalence relations generated

as follows: For all γ1,1, γ1,2 ∈ Γ, identify Iγ1,1(0) with Iγ1,2(0) if and only

if γ1,1(0) = γ1,2(0). Similarly, identify Iγ1,1(1) with Iγ1,2(1) if and only if

γ1,1(1) = γ1,2(1). Give Ŷ1 the path metric on components. There is a

natural projection σ : Ŷ1 → Y1. Put π̂ = σ ◦ π. Then the restriction of σ to

π̂−1(0) ∪ π̂−1(1) is 1-1 and onto π−1(0) ∪ π−1(1).

It should be clear that the only remaining point is to specify the measure

ν̂1 such that σ∗(ν̂1) = ν1. To this end, we use an appropriate continuous

fuzzy section D̂0 of π̂ defined as follows. For all y′0 in the interior of Y ′
0 ,

γ1 ∈ Γ and y1 ∈ π̂−1 ∩ Iγ1 , we put

(8.23) D̂(y′0)(y1) = Ω(γ1) ,

where Ω is the probability measure on Γ defined in (6.8). in Then there is

a unique extension of D̂0 to a continuous fuzzy section of π̂ on all of Y ′
0 . It

then follows from (6.11) that σ∗(D̂0) = D0, which implies σ∗(ν̂1) = ν1. This

suffices to complete the proof. !

9. Analytic dimension 1

In this section, we assume familiarity with certain material from [Che99]

(see in particular Sections 2 and 4) including the fact that a PI space (X, d, µ)

has a measurable cotangent bundle TX∗. In particular, there is a µ-a.e. well

defined fibre TX∗
x. We also, use the Sobolev spaces H1,p and the fact that

they are reflexive.

We show:

Theorem 9.1. If (X∞, d∞, µ∞) is the measure Gromov-Hausdorff limit of

an admissible inverse system, then the dimension of the fibre of the cotangent

bundle is 1 µ-a.e..
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Proof. Without essential loss of generality, we can assume X0 = R. (Other-

wise, we restrict attention to the inverse image of each individual open edge

in X0.)

Let f : R → R denote the identity map viewed as a 1-Lipschitz function

on R. Let fi = f ◦πi−1 : Xi → R. From Axioms (1) and (2) in the definition

of admissible inverse systems, it is clear that dfi defines a trivialization of the

cotangent bundle of Xi. Let π∞i : X∞ → Xi denote the natural projection

and set f∞ = f ◦ π∞i .

It is easy to see that any L-Lipschitz function h : X∞ → R, is the uniform

limit as i→∞ of 2L-Lipschitz functions of the form hi = h̃i◦π∞i where h̃i is

a 2L-Lipschitz function on Xi. It follows that dh̃i is a bounded measurable

function times dfi and hence, that dhi is a bounded measurable function

times df∞. Clearly, the same holds for any finite linear combination of the

hi.

By the reflexivity of the Sobolev space H1,p it follows that there is a a se-

quence ĥi of such combinations which converges to h in H1,p. It follows that

df is a bounded measurable function times df∞, which suffices to complete

the proof. !

10. Bi-Lipschitz nonembedding in Banach spaces with the RNP

Recall that a Banach space V is said to have the Radon-Nikodym Property

if every Lipschitz map f : R→ V is differentiable almost everywhere. Sepa-

rable dual spaces such as Lp for 1 < p <∞ and ℓ1 have the Radon-Nikodym

Property but L1 does not.

In this section we show that except in degenerate cases, the Gromov-

Hausdorff limit (X∞, d∞) of an admissible inverse system does not bilipschitz

embed in any Banach spaces with the Radon-Nikodym property. However

it follows directly from the main result of [CK13] these spaces do bilipschitz

embed in L1.

Since by Theorem 1.1, (X∞, d∞, µ∞) is a PI space, according to [CK09],

it will suffice to give conditions on (X∞, d∞, µ∞) which guarantee that for

a subset of positive µ∞ measure, some tangent cone is not bilipschitz to a

Euclidean space. According to the following lemma, in our situation, the
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only possibility for the dimension of this Euclidean space is 1; compare

Corollary 2.16.

Let (Xi,πi, µi) denote an admissible inverse system with subdivision pa-

rameter m ≥ 2. Let V ≥3
i ⊂ Xi denote the set of vertices of Xi with degree

at least 3. Given a vertex vi ∈ Xi, we define the halfstar of vi in Xi to be

the union St 1
2
(vi,Xi) ⊂ Xi of the segments of length 1

2m
−i emanating from

vi.

Lemma 10.1. Let (Xi,πi, µi) denote an admissible inverse system with

subdivision parameter m ≥ 2.

(1) Let x∞ ∈ X∞ and assume π∞i (x∞) is a vertex of Xi. Then there

is a subset Y∞ ⊂ X∞ which projects isometrically under π∞i to the

halfstar St 1
2
(π∞i (x∞),Xi).

(2) Let x∞ ∈ X∞. Then every tangent cone of X∞ at x∞ is homeomor-

phic to R if and only if every such tangent cone is isometric to R.

This holds if and only if

lim inf
i→∞

mi · di(π
∞
i (p∞), V ≥3

i ) =∞ .

(3) For all x∞ ∈ X∞, every tangent cone at x∞ has topological dimen-

sion 1.

Proof. (1). Let Yi = St 1
2
(π∞i (x∞),Xi). Given a geodesic path of length

1
2m

−i emanating from π∞i (x∞), we can lift it to a path in Xi+1 starting

at π∞i+1(x∞); see the discussion of Axiom (2) in Section 1. By taking the

union of one such lift for each path, we obtain a lift Yi+1 of Yi. Iterating this

produces a compatible sequence {Yj ⊂ Xj}j≥i that projects isometrically

to St 1
2
(π∞i (x∞),Xi) under the projections πji : Xj → Xi. Then the inverse

limit of {Yj} is the desired subset.

(2). If lim inf i→∞ mi ·di(π∞i (p∞), V ≥3
i ) = D <∞, then using path lifting

one gets sequences ij →∞, {xj,∞} ⊂ X∞, such that π∞ij (xj,∞) ∈ Y ≥3
ij

, and

d(xj,∞, p∞) < 2Dm−ij . Then by (1), for every j the rescaled pointed space

(X∞,mijd∞, p∞) contains an isometric copy of a “tripod” of size 1
2 within

the ball B(p, 2(D + 1)) ⊂ (X∞,mijd∞). (By a tripod of size 1
2 , we mean

3 line segments, each of length 1
2 , emanating from a single point, equipped

with the path metric.) Therefore any pointed Gromov-Hausdorff limit of a
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subsequence of the sequence {(X∞,mijd∞, p∞)}j will contain an isometric

copy of such a tripod, and hence cannot be homeomorphic to R.

Suppose conversely, that lim inf i→∞ mi · di(π∞i (p∞), V ≥3
i ) = ∞. Let

Di = mi · di(π∞i (p∞), V ≥3
i ). Then Di → ∞, so we can choose sequences

{ji}, {Ri} such that:

• ji − i→∞ and Ri →∞ as i→∞.

• Bm−iRi
(π∞ji (p∞)) ⊂ Xji contains only degree 2 vertices and is there-

fore isometric to an interval.

It follows that the pointed sequence {(Xji ,m
idji ,π

∞
ji
(p∞))} converges to

(R, 0) in the pointed Gromov-Hausdorff topology, and also to any tan-

gent cone at (X∞, p∞), since the projection map π∞ji : (X∞,mid∞) →

(Xji ,m
idji) is a Cmi−ji-Hausdorff approximation.

(3). It is easy to see that up to rescaling of the metric, a tangent cone at

a point of X∞ is itself the pointed Gromov-Hausdorff limit of an admissible

inverse system. Then, by Corollary 2.16, it follows that every such tangent

cone has topological dimension 1. !

Thus we obtain the following:

Theorem 10.2. If {(Xi, di, µi)} is an admissible inverse system, and a

positive µ∞ measure set of points x∞ ∈ X∞ satisfy

(10.3) lim inf
i→∞

mi · di(π
∞
i (x∞), V ≥3

i ) <∞ ,

then (X∞, d∞) does not bilipschitz embed in any Banach space with the

Radon-Nikodym Property.

Proof. By Lemma 10.1, any tangent cone at such a point x∞ has topological

dimension 1, and contains an isometric copy of a tripod. Therefore it cannot

be homeomorphic to Rn for any n. Now [CK09] implies that X∞ does not

bilipschitz embed in any Banach space with the Radon-Nikodym Property.

!

Remark 10.4. Examples which fail to satisfy (10.3) are “degenerate” in an

obvious sense.
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11. Higher dimensional inverse systems

In this section we consider higher dimensional inverse systems, where

each Xi is a cube complex. We would like to point out that there are other

ways of generalizing to higher dimension; in particular, one can construct

examples of inverse systems where X0 is the Heisenberg group with the

Carnot metric, the mappings πi : Xi+1 → Xi are “branched mappings”, and

the inverse limit is a PI space.

We recall that the star of a face C in a polyhedral complex X is the

union St(C,X) of the faces containing it. A gallery in an n-dimensional

polyhedral complex is a sequence C0, . . . , CN of top dimensional faces where

Ci−1 ∩ Ci is a codimension 1 face for all 1 ≤ i ≤ N .

Fix n ≥ 1. We consider an inverse system

(11.1) X0
π0←− · · ·

πi−1
←− Xi

πi←− · · · .

such that each Xi is a connected cube complex equipped with a path met-

ric di and a measure µi, such that the following conditions hold, for some

constants 2 ≤ m ∈ Z, ∆, θ, C ∈ (0,∞) and every i ∈ Z :

(1) (Bounded local metric geometry) (Xi, di) is a nonempty connected

cube complex that is a union of n-dimensional faces isometric to the

n-cube [0,m−i]n (with respect to the path metric di), such that every

link contains at most ∆ faces.

(2) (Simplicial projections are open) If X ′
i denotes the cube complex

obtained by subdividing each cube of Xi into mn subcubes isometric

to [0,m−(i+1)]n, then πi induces a map πi : (Xi+1, di+1) → (X ′
i, di)

which is open, cellular (with respect to the cube structure), and an

isometry on every face.

(3) (Gallery diameter of fibers is controlled) For every xi ∈ X ′
i, any two

points in the inverse image π−1
i (xi) ⊂ Xi+1 can be joined by a gallery

of n-cubes C0, . . . , CN , where N ≤ ∆.

(4) (Bounded local metric measure geometry.) The measure µi restricts

to a constant multiple of Lebesgue measure on each n-cube Ci ⊂ Xi,

and µi(Ci,1)
µi(Ci,2)

∈ [C−1, C] for any two adjacent n-cubes Ci,1, Ci,2 ⊂ Xi.
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(5) (Compatibility with projections)

(πi)∗(µi+1) = µi ,

where (πi)∗(µi+1) denotes the pushforward of µi+1 under πi.

(6) (Continuity across codimension 1 faces) For every pair of codimen-

sion 1 faces c′i ⊂ X ′
i, and ci+1 ⊂ π

−1
i (v′i), the quantity

(11.2)
µi+1(π

−1
i (C ′

i) ∩ St(ci+1,Xi+1))

µi(C ′
i)

is the same for all n-cubes C ′
i ⊂ St(c′i,X

′
i).

The biggest difference between the axioms above and Definition 2.10 is

in Axiom (3) above, where path diameter has been replaced by gallery di-

ameter. Note that the gallery diameter is the same a path diameter in the

case of graphs. A bound on the path diameter would be sufficient to verify

most of the properties that hold for admissible inverse systems of graphs.

However, it is not sufficient to recover the main result — the (1, 1)-Poincare

inequality as the following example illustrates.

Example 11.3. Consider the 2-dimensional inverse system with subdivision

parameter m = 2, where:

• X0 is the unit square [0, 1]2.

• X1 is obtained by taking two copies of the subdivided complex X ′
0

and gluing them together along their central vertices.

• All projection maps πi : Xi+1 → X ′
i with i > 0 are isomorphisms.

ThenX∞ is isometric toX1, and does not satisfy a (1, 1)-Poincare inequality;

this is because the gluing locus — a singleton — has zero 1-capacity.

Let X∞ be the inverse limit of an inverse system satisfying (1)-(6) above.

The proof of the Poincaré inequality for X∞ using path families carries over

in a straightforward way, when one uses geodesic paths that intersect each

n-cube C in a segment parallel to an edge of C. So does the proof using

continuous fuzzy sections.

Remark 11.4. What is essential in Axioms (1) and (4) is that they imply

that Xi is doubling and satisfies a (1, 1)-Poincaré inequality on scale m−i. In

the above example, this doesn’t hold. However, if Axiom (4) is appropriately

modified, then Axiom (3) can be left as is.
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