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Abstract. For every n, we construct a metric measure space that
is doubling, satisfies a Poincare inequality in the sense of Heinonen-
Koskela, has topological dimension n, and has a measurable tan-
gent bundle of dimension 1.
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1. Introduction

Since they were introduced in [HK98], PI spaces (metric measure
spaces that are doubling and satisfy a Poincaré inequality) have been
investigated extensively, leading to progress in many directions. In
spite of this, there remains a gap between the structural constraints
imposed by the existing theory and the properties exhibited by known
examples. On the one hand existing examples come from a variety of
different sources:

(1) Sub-Riemannian manifolds.
(2) Limits of sequences of Riemannian manifolds with a lower bound

on the Ricci curvature [CC00].
(3) Metric measure spaces satisfying synthetic Ricci curvature con-

ditions [Raj12].
(4) Certain Ahlfors-regular topological manifolds [Sem].
(5) Examples with “small” singular sets [Laa02, Sem96].
(6) Boundaries of hyperbolic groups [BP99].
(7) Quotient constructions [Laa00].
(8) Inverse limit constructions [CK15].
(9) Spaces obtained from the above by taking products, gluing

[HK98, Thm 6.15], or passing to nice subsets [MTW13].

On the other hand, in some respects this list is somewhat limited. For
instance, the examples in (2), (4), (5) are rectifiable, and many in (3)
are known to be rectifiable [MN, Gig, GMR], while those in (6), (7) and
(8) admit a common description as limits of inverse systems and have
very similar properties. Moreover, if (X,µ) denotes one of the above
examples, then the infinitesimal structure of (X,µ) has a special form,
in the sense that when one blows-up (X,µ) at µ-a.e. point, one gets a
metric measure space that is bilipschitz equivalent to the product of a
Carnot group with an example as in (8).

Our purpose in this paper is to construct PI spaces that have dif-
ferent characteristics from previously known examples. Before stat-
ing our theorem, we recall that any PI space (X,µ) has a measurable
(co)tangent bundle [Che99]; we will refer to its dimension as the ana-
lytic dimension of (X,µ).

Theorem 1.1. For every n, there is a complete self-similar PI space
(X∞, µ∞) with analytic dimension 1 and topological dimension n. Fur-
thermore, for some α ∈ (0, 1):
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(1) There is a surjective David-Semmes regular map π̂∞ : (Rn, dα)→
X∞, where dα is the partial snowflake metric on Rn given by

dα(p, p′) = |p1 − p′1|+
n∑
i=2

|pi − p′i|α .

In particular, letting Ln denote Lebesgue measure, for Q =
1 + (n− 1)α−1, the pushforward measure µ∞ = π̂∞# (Ln) is com-

parable to Q-dimensional Hausdorff measure HQ on X∞, and
X∞ is Ahlfors Q-regular.

(2) X∞ has topological and Assouad-Nagata dimension n (see Sec-
tion 6).

(3) (X∞,HQ) satisfies a (1, 1)-Poincaré inequality (see Section 7).
(4) (X∞,HQ) has analytic dimension 1: there is a single Lipschitz

function x∞ : X∞ → R that is a chart on all of X∞, i.e. it de-
fines the measurable differentiable structure for (X∞,HQ) (see
Section 8).

(5) Let Γ̂ be the family of horizontal lines in Rn, equipped with the

obvious measure. Then the pushforward of Γ̂ under the map
π̂∞ : Rn → X∞ gives a universal Alberti representation in the
sense of [Bat15] for (X∞, µ∞) (see Section 8).

(6) If {pk} ⊂ X∞, λk ⊂ (0,∞) are arbitrary sequences, and (Z, z)
is a pointed Gromov-Hausdorff limit of the sequence {(λkX∞, pk)}
of pointed rescalings of X∞, then (2)-(4) hold for (Z, z). More-
over, there is a collection of at most N = N(n) David-Semmes
regular maps (Rn, dα)→ X∞ whose images cover X∞.

For comparison, we note that all the previously known examples with
analytic dimension 1 have topological dimension 1 (see [BP99, Laa00,
CK15]).

We refer the reader to Section 2 for an overview of the proof of
Theorem 1.1, and to Section 11 for some generalizations.

We now pose some questions concerning the relation between the
topological and the analytical structure of PI spaces.

The examples in Theorem 1.1 have small analytic dimension and
arbitrarily large topological dimension. One may ask if the topological
dimension can be small while the analytic dimension is large. This is
not an interesting question, though: there are compact subsets X ⊂
[0, 1]n with positive Lebesgue measure such that the metric measure
space (X,Ln) is a PI space with analytic dimension n and topological
dimension 1 (see [MTW13] for the n = 2 case). Nonetheless, such
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examples are rectifiable and look on the small scale like Rn itself, in
the sense that typical blow-ups are copies of Rn. This motivates the
following revised version of the above question:

Question 1.2. Pick n ≥ 2. Is there a PI space of analytic dimension
n and Assouad-Nagata dimension 1?

The Assouad-Nagata dimension is a notion that is metric based, scale
invariant, well behaved with respect to Gromov-Hausdorff limits, and is
bounded below by the topological dimension (see Section 6); in particu-
lar, the rectifiable examples mentioned above have Assouad-Nagata di-
mension n. Rather than using Assouad-Nagata dimension in Question
1.2, one could require instead that every blow-up (i.e. weak tangent)
of X has topological dimension 1.

The spaces in Theorem 1.1 have complicated local topology. One
may wonder if there are examples with similar properties that are topo-
logical manifolds:

Question 1.3. Pick n ≥ 2. Suppose (X,µ) is a PI space homeo-
morphic to Rn, such that any pointed Gromov-Hausdorff limit of any
sequence of pointed rescalings of X is also homeomorphic to Rn. What
are the possibilities for the analytic dimension of (X,µ)? The Haus-
dorff dimension? For instance, is there such a PI space homeomorphic
to R3 (or even R2) with analytic dimension 1? Or one which is Ahlfors
Q-regular for large Q?

Organization of the paper. In Section 2 we define the metric space
X∞ in the n = 2 case and then discuss some of the key points in
the proof of Theorem 1.1. The n = 2 case of Theorem 1.1 is proven
in Sections 3-9, and the case of general n is treated in Section 10.
In Section 11 we consider a more general class of examples of direct
systems that have many of the same features.

2. Overview of the proof of Theorem 1.1

In this section we define X∞ and related objects in the n = 2 case.
We also have an informal discussion of the proof of Theorem 1.1. The
proof itself appears in Sections 3-10.

Standing assumptions: The objects and notation introduced in
this section will be retained up through Section 9.



PI SPACES WITH ANALYTIC DIMENSION 1 5

A combinatorial description of partial snowflake metrics on
R2. Pick integers m,mv with 2 ≤ m < mv.

For j ∈ Z, let Yj be the cell complex associated with the tiling of
R2 by the translates of the rectangle [0,m−j] × [0,m−jv ]. Thus the
translation group (m−jZ) × (m−jv Z) acts by cellular isomorphisms on
Yj. Given k ≥ 0, we may view Yj+k as a k-fold iterated subdivision
of Yj, where at each iteration the 2-cells are subdivided m times in
the horizontal direction and mv times in the vertical direction. Let
Φ : R2 → R2 be the linear transformation Φ((x, y)) = (m−1x,m−1

v y).
Then Φk : R2 → R2 induces a cellular isomorphism Yj → Yj+k for all
j, k ∈ Z.

We now define a metric on R2 based on the combinatorial structure of
the Yj’s. Let d̂Y∞ be the largest pseudodistance on R2 with the property

that for every j, each cell of Yj has d̂Y∞-diameter at most m−j. One

readily checks (see Lemma 5.1) that d̂Y∞ is comparable to the partial
snowflake metric

dα((p1, p2), (p′1, p
′
2)) = |p1 − p′1|+ |p2 − p′2|α ,

where α = logm
logmv

.

The definition of X∞. We will define the space X∞ as a quotient
of (R2, d̂Y∞), where the quotient is generated by certain identifications
that respect the x-coordinate. One may compare this with Laakso’s
construction of PI spaces as quotients of the product [0, 1]×C, where C
is a Cantor set [Laa00]. Henceforth we will call a 1-cell of Yj horizontal
(respectively vertical) if it is a translate of [0,m−j]×{0} (respectively
{0} × [0,m−jv ]).

Choose a large integer L (e.g. L = 100), and set m = 4 and mv = 3L.

For all k, ` ∈ Z, i ∈ {1, 2, 3}, we define the following pair of vertical
1-cells of Y1 (see Figure 1):

ak,l,i =

{
i

4
+ k

}
×
[
(3`+ i− 1)m−1

v , (3`+ i)m−1
v

]
,

a′k,l,i =

{
i

4
+ k

}
×
[
(3`+ i)m−1

v , (3`+ i+ 1)m−1
v

]
,

Note that a′k,`,i is the image of ak,`,i under the vertical translation

(x, y) 7→ (x, y + m−1
v ). The collections {ak,`,i | k, ` ∈ Z, 1 ≤ i ≤ 3},

{a′k,`,i | k, ` ∈ Z, 1 ≤ i ≤ 3} are invariant under translation by Z2 and

are contained in the union of vertical lines {(x, y) ∈ R2 | x ∈ 1
4
Z \Z}.
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a0,0,1

a'0,0,1

a0,1,1

a'0,1,1

a0,0,2

a'0,0,2

a0,1,2

a'0,1,2

a0,-1,3

a0,0,3

a'0,0,3

a0,1,3

Figure 1: L = 2 case

Next, we define an equivalence relation R on R2 by identifying ak,`,i
with a′k,`,i by the vertical translation (x, y) 7→ (x, y+m−1

v ) for all k, ` ∈
Z, 1 ≤ i ≤ 3. Note that R is invariant under translation by Z2.

Let R∞ be the equivalence relation on R2 generated by the collection
of pushforwards Φj

∗R for all j ∈ Z. We define X∞ to be the quotient
R2/R∞, and let π̂∞ : R2 → X∞ be the quotient map. We metrize X∞
using the largest pseudodistance d̂X∞ on X∞ such that for every j ∈ Z
and every 2-cell σ̂ of Yj, the projection π̂∞(σ̂) ⊂ X∞ has d̂X∞-diameter

at most m−j. It is not hard to see that d̂X∞ is the largest pseudodistance

on X∞ such that π̂∞ : (R2, d̂Y∞)→ (X∞, d̂
X
∞) is 1-Lipschitz. Henceforth

we use d̂∞ instead of d̂X∞ when there is no risk of confusion.
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X∞ as a direct limit of cell complexes. While the definition of X∞
as a quotient R2/R∞ is transparent, it does not provide a convenient
framework for understanding the structure of X∞. Instead, we will
analyze X∞ by representing it as a direct limit.

For every j ∈ Z, let Rj be the equivalence relation on R2 generated
by Φi

∗R for all i ∈ Z with i < j, and let Xj be the quotient R2/Rj

equipped with quotient topology. Since Rj−1 ⊂ Rj, the quotient maps
induce a direct system of topological spaces

. . .
π−1−→ X0

π0−→ X1
π1−→ . . .

πj−1−→ Xj
πj−→ . . .

For all i ∈ Z, j ∈ Z ∪ {∞} with i ≤ j, we denote the projection map
Xi → Xj by πji , the quotient map R2 → Xj by π̂j, and the composition

πji ◦ π̂i : Yi → Xj by π̂ji .

We metrize Xj using the largest pseudodistance d̂j on Xj such that
for every i ≤ j and every cell σ̂ of Yi, the image π̂j(σ̂) ⊂ Xj has

d̂j-diameter at most m−i.

Remark 2.1. Our examples were partly inspired by [CK15, Sec. 11],
which gives a construction of PI spaces of topological and analytic di-
mension n. In fact, X∞ arose when we attempted to find an “anisotropic”
variant of the cube complex examples of [CK15, Sec. 11]. However,
this leads to a situation where the projection map π∞0 : X∞ → [0, 1]n

is Lipschitz with respect to the partial snowflake metric on [0, 1]n, and
is moreover a light map. This is incompatible with the existence of a
Poincaré inequality in X∞.

Discussion of the proof. We now give an indication of some of the
key points in the proof of Theorem 1.1.

The first part of the proof, which appears in Sections 3-4, develops
the combinatorial and metric structure of the direct system {Xj}. Be-
cause the equivalence relationRj may be generated by identifying pairs
of vertical 1-cells of the cell complex Yj by vertical translations, the cell
structure of Yj descends to a cell structure on Xj. This cell complex has

controlled combinatorics; because the distance d̂j is defined combina-

torially, this implies that (Xj, d̂j) is doubling at the scale m−j. A key

estimate (Proposition 4.12) compares (Xj, d̂j) with (X∞, d̂∞) is that
for every p, p′ ∈ Xj one has

(2.2) d̂j(p, p
′)− 2m−j ≤ d̂∞(π̂∞j (p), π̂∞j (p′)) ≤ d̂j(p, p

′) .

In particular, this implies that the sequence {Xj} Gromov-Hausdorff
converges to X∞.
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With the foundation laid in Sections 3-4, several parts of Theorem
1.1 follow fairly easily:

• By a short argument (Lemma 5.2), one deduces the David-

Semmes regularity of the projection π̂∞ : (R2, d̂Y∞) → X∞,
which gives part (1) of Theorem 1.1.
• The restriction of the projection π̂∞ : R2 → X∞ to the bound-

ary of the unit square ∂[0, 1]2 is injective. By an elementary
topological argument this implies that the topological dimen-
sion of X∞ is at least 2 (see Lemma 5.2).
• Using (2.2), one shows that there is a “good cover” of X∞ whose

inverse image under π∞j : Xj → X∞ approximates the decom-
position of Xj into open cells. This proves that the Assouad-
Nagata dimension of X∞ is at most 2 (see Theorem 6.2).

The remaining assertions of Theorem 1.1 have to do with the ana-
lytical structure of X∞, and are largely based on the existence of good
families of curves, whose construction we now describe.

The starting point is the observation that the first coordinate x :
R2 → R descends to a 1-Lipschitz function x∞ : X∞ → R, and hence
any horizontal geodesic segment in R2 projects to a geodesic in X∞.
Every 2-cell σ̂ of Yj is a rectangle of width m−j and height m−jv so it
yields a family Γσ̂ of geodesic segments in X∞ of length m−j; since Γσ̂
has a natural parametrization by an interval of length m−jv , it carries
a natural measure νσ̂.

If σ̂, σ̂′ are 2-cells of Yj such that the projections π̂j(σ), π̂j(σ′) share a
vertical 1-cell of Xj, then the corresponding measured families of curves
(Γσ̂, νσ̂), (Γσ̂′ , νσ̂′) may be concatenated to form a new measured family
of curves. More generally, if σ1, . . . , σ` is a sequence of 2-cells of Xj

that form a horizontal gallery1 in Xj (i.e. σi−1 shares a vertical 1-cell
with σi for all 1 < i ≤ `) then one may concatenate the corresponding
curve families. To produce an abundance of such curve families, a
crucial property is the “horizontal gallery accessibility” (Lemma 7.1),
which is an analog of the gallery diameter bound of [CK15, Sec. 11,
condition (3)]. This says that if σ, σ′ are 2-cells of Xj with controlled
combinatorial distance in Xj, then they may be joined by a horizontal
gallery of controlled length. This accessibility property is due to the
choice of the equivalence relation R: notice that if σ̂, σ̂′ are 2-cells of
Y1, then one may form a horizontal gallery between their projections

1We have borrowed the term “gallery” from the theory of Coxeter complexes
and Tits buildings.
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σ, σ′ ∈ X1 by using the vertical identifications ak,`,i ↔ a′k,`,i that define
R.

The (1, 1)-Poincaré inequality is proved using the standard approach
via “pencils” of curves [Sem]. The pencils are built by combining the
measured families of curves described above, for horizontal galleries of
different scales, see Section 7.

To prove that the analytic dimension of X∞ is 1, we define a “hor-
izontal derivative” D∞u for any Lipschitz function u : X∞ → R. By
using horizontal galleries again, we show that at an approximate con-
tinuity point p of D∞u, we have

u(q)− u(p) = (D∞u(p))(x∞(q)− x∞(p)) + o(d(q, p)) ,

see Section 8.

Remark 2.3. Rather than metrizing X∞ using d̂∞, an alternate ap-
proach is to define a metric on X∞ using a distinguished set of paths.
For instance, following [Laa00] one could define, for all p, p′ ∈ X∞, the
distance d(p, p′) to be the infimal 1-dimensional Hausdorff measure of
(π̂∞)−1(γ), where γ is a path from p to p′. This leads to an essentially
equivalent analysis, with the details organized somewhat differently.
We found the approach using d̂∞ more transparent.

Notational conventions. In the following a ≈ b will indicate that a
and b are comparable up to a uniformly bounded multiplicative factor
C, and sometimes we will also write a ≈C b to highlight C. We will
similarly use expressions like a . b and a & b.

3. The cellular structure of the direct system {Xj}

In this section we examine different aspects of the combinatorial
structure of the Xj’s. We remind the reader that we will retain the
notation from Section 2 through Section 9. The following lemma lists
the main properties of R and Rj that will be used later.

Lemma 3.1 (Properties of R).

(1) Nontrivial cosets of Φj−1
∗ R belong to the union of vertical lines

{(x, y) ∈ R2 | x ∈ m−jZ \ m−(j−1)Z}, and any two points in
the same coset lie in a vertical edge path of Yj of combinatorial
length at most 2.

(2) Cosets of Rj are contained in orbits of the action m−jZ ×
m−jv Z y R2 by translations.
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(3) For all j ∈ Z, let R̄j+1 be the equivalence relation on Xj gener-
ated by the pushforward (π̂j ◦ Φj)∗(R). Then R̄j+1 is an equiv-
alence relation on Xj, and the cosets of R̄j+1 are the fibers of
πj : Xj → Xj+1.

(4) For i = 0, 1, let σ̂i be a cell of Yj, and p̂i be an interior point of
σ̂i. If p̂0 ∼Rj p̂1, then there is a translation t ∈ m−jZ ×m−jv Z
such that t(σ̂0) = σ̂1, and q̂0 ∼Rj t(q̂0) for all q̂0 ∈ σ̂0.

Proof. (1) and (2) follow immediately from the definition of R and Φ.

(3). By (1) the nontrivial cosets of Φj−1R intersect only trivial cosets
of Rj−1. This implies that R̄j+1 is an equivalence relation on Xj, and
that its cosets are the fibers of πj : Xj → Xj+1.

(4). Since Rj is generated by Φi
∗R for i < j, it is generated by

pairwise identifications of cells of Yj by translations. This implies (4).

�

Lemma 3.2 (Cell structure of Xj).

(1) The collection of images of the open cells of Yj under the pro-
jection map π̂j : Yj → Xj defines a CW complex structure on
Xj.

(2) For every cell σ̂ of Yj, the restriction of π̂j to σ̂ is a character-
istic map for the open cell π̂j(Int(σ̂)) ⊂ Xj.

(3) If σ̂0, σ̂1 are cells of Yj then π̂j(Int(σ̂0))∩ π̂j(Int(σ̂1)) 6= ∅ if and
only if Rj identifies σ̂0 with σ̂1 by translation. In particular, If

σ̂ is a cell of Yj, then π̂j|
σ

: σ → Xj identifies certain pairs of
faces of σ̂ by translation.

(4) The cells of Yj+k project under π̂j : R2 → Xj to define a cell

complex X
(k)
j , which is the k-fold iterated subdivision of Xj.

Proof. (1)-(3). We first show that Xj is Hausdorff.

Pick p ∈ Xj. By Lemma 3.1(2) and the fact that Yj is invariant
under m−jZ×m−jv Z, there is an r > 0 such that any cell σ̂ of Yj that
intersects Nr((π̂

j)−1(p)) must intersect (π̂j)−1(p). Here Nr(S) = {q ∈
R2 | dR2(q, S) ≤ r} denotes the Euclidean metric r-neighborhood.

Claim. Nr((π̂
j)−1(p)) is a union of cosets of Rj.

Suppose q̂′ ∈ R2 and q̂′ ∼Rj q̂ for some q̂ ∈ Nr((π̂
j)−1(p)). By the

choice of r, if Int(σ̂) is the open cell of Yj containing q̂, then σ̂ contains
some point p̂ ∈ (π̂j)−1(p). By Lemma 3.1(4) there is a translation
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t ∈ m−jZ × m−jv Z such that t(q̂) = q̂′ and p̂ ∼Rj t(p̂). But then
q̂′ ∈ B(t(p̂), r) ⊂ Nr((π̂

j)−1(p)), proving the claim.

For every pair of distinct points p0, p1 ∈ Xj, the sets (π̂j)−1(p0),
(π̂j)−1(p1) are disjoint and lie in orbits of m−jZ × m−jv Z, and hence
have positive distance from each other. By the claim, if r > 0 is
sufficiently small, then π̂j(Nr((π̂

j)−1(p0))), and π̂j(Nr((π̂
j)−1(p1))) are

disjoint open subsets of Xj. This proves that Xj is Hausdorff.

Let T 2
j denote the quotient space R2/(m−jZ × m−jv Z), and πT 2

j
:

R2 → T 2
j be the quotient map. The open cells of Yj project under πT 2

j

to open cells of T 2
j , inducing the standard cell structure on T 2

j . Note

that by Lemma 3.1(2) there is a well-defined continuous map Xj → T 2
j .

Now consider a cell σ̂ of Yj. The composition Yj
π̂j→ Xj → T 2

j maps

the interior of σ̂ homeomorphically onto an open cell of T 2
j ; it follows

that π̂j : Yj → Xj maps the interior of σ̂ homeomorphically onto its
image, which is therefore an open cell. Thus the restriction of π̂j to σ̂
of Yj is a characteristic map for the open cell π̂j(Int(σ̂)).

If σ̂0, σ̂1 are cells of Yj such that π̂j(Int(σ̂0)) ∩ π̂j(Int(σ̂1)) 6= ∅, then
by Lemma 3.1(4) we have π̂j(Int(σ̂0)) = π̂j(Int(σ̂1)). This shows that
the collection of images of open cells of Yj is a decomposition of Xj

into disjoint open cells.

For any cell σ̂ of Yj, the closure of π̂j(Int(σ̂)) is just π̂j(σ̂), and
is therefore contained in the union of the images of the open cells
contained in σ̂. The closure of any open cell of Xj intersects only
finitely many open cells.

Finally, if C ⊂ Xj, then C is closed if and only if (π̂j)−1(C) is closed,
which is equivalent to (π̂j)−1(C)∩ σ̂ being closed for every cell σ̂ of Yj,
which happens if and only if C ∩ π̂j(σ̂) is closed.

Thus we have verified (1)-(3).

The proof of (4) is similar to the proof of (1).

�

Henceforth the notation Xj and X
(k)
j will refer to the cell complex

structure established in Lemma 3.2. A 1-cell of X
(k)
j is horizontal

(vertical) if it is the image of a horizontal (vertical) cell of Yj+k under
the projection map π̂j : R2 → Xj.

We now analyze the behavior of the projection maps with respect to
the combinatorial structure.
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Lemma 3.3. (1) If p, p′ ∈ Xj are distinct points and πj(p) =
πj(p

′), then there is a vertical edge path in the 1-skeleton of

X
(1)
j that contains p, p′ and has combinatorial length at most 2.

(2) If σ, σ′ are 2-cells of Xj, and πj(σ)∩πj(σ′) 6= ∅, then σ∩σ′ 6= ∅.
(3) Suppose 0 ≤ j ≤ j′ < ∞ and σ̂, σ̂′ are 2-cells of Yj and Yj′

respectively. If π̂∞(σ̂) ∩ π∞(σ̂′) 6= ∅, then π̂j
′
(σ̂) ∩ π̂j′(σ̂′) 6= ∅.

Proof. (1). This follows from (1) and (3) of Lemma 3.1.

(2). Suppose that p ∈ σ, p′ ∈ σ′, and πj(p) = πj(p
′). By (1) there is

a vertical edge path in X
(1)
j of combinatorial length at most two joining

p to p′. Since the subdivision of σ in X
(1)
j has combinatorial “height”

mv, it follows that σ ∩ σ′ 6= ∅.
(3). By the definition of the direct limit, we have π̂`(σ̂) ∩ π̂`(σ̂′) 6= ∅

for some `. Letting k0 + 1 be the minimal such `, suppose we have
k0 ≥ j′. Since σ, σ′ are finite unions of 2-cells of Yk0 , we may assume
without loss of generality that j = j′ = k0. Then π̂k0(σ̂), π̂k0(σ̂′)
are disjoint 2-cells of Xk0 whose projections to Xk0+1 intersect. This
contradicts (2). Thus k0 + 1 ≤ j′, proving (3).

�

The next lemma shows that the Xj’s and the projection maps have
bounded complexity.

Lemma 3.4.

(1) πj : Xj → Xj+1 is injective on the 1-skeleton of Xj.
(2) If p ∈ Xj is a 0-cell, then π−1

j (πj(p)) = {p}, i.e. 0-cells experi-
ence no collapsing.

(3) For every p ∈ Xj, the point inverse (π̂j)−1(p) contains at most
3 points.

(4) For every j, the link of any cell in Xj contains at most 24 cells.
(5) For every j and every 0-cell v ∈ Xj, the link of v is connected:

any two cells σ, σ′ of Xj containing v may joined by a sequence
σ = τ1, . . . , τ` = σ′ of cells of Xj containing v, where τi−1 and
τi share a 1-cell.

(6) Every cell of Xj contains at most 9 open cells.
(7) There is an N = N(n) such that for every j ∈ Z, every combi-

natorial n-ball in Xj contains at most N cells.
(8) For every j ∈ Z and every 2-cell σ of Xj, the inverse image

(π̂j)−1(σ) may be covered by at most 27 2-cells of Yj.
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Proof. (1) and (2) follow from Lemma 3.1(3) and Lemma 3.3(1).

(3). By Lemma 3.1, a nontrivial coset of Rj is a nontrivial coset of
ΦiR for some i < j, and therefore contains at most 3 elements.

(4). It suffices to verify this for 0-cells. If v is a 0-cell of Xj, then
(π̂j)−1(v) contains at most 3 vertices of Yj by (3). Therefore v is con-
tained in at most 12 2-cells and 12 1-cells.

(5). If (π̂j)−1(v) contains only one point v̂ ∈ R2, then the link of v is
isomorphic to the link of v̂. Otherwise for some i < j the set (π̂j)−1(v)

is a nontrivial coset of ΦiR, and has the form {v̂, v̂ ± m
−(i+1)
v } for

some 0-cell v̂ of Yi+1, and the two vertical 1-cells emanating from v̂ are

identified by ΦiR with the vertical 1-cells emanating from v̂±m−(i+1)
v .

Thus the link of v is homeomorphic to the quotient of three disjoint
circles S1, S1

+, S
1
− by by identifying p± ∈ S1 with q± ∈ S1

±; this is
connected.

(6). This follows from Lemma 3.2(3).

(7). This follows by induction on n, using (4) and (6).

(8). Suppose τ ⊂ σ is an open cell of dimension d. By Lemma 3.2(3)
the inverse image of τ under the projection π̂j : Yj → Xj is the disjoint
union of the interiors of a collection τ̂1, . . . , τ̂` of d-cells of Yj. By (3)
we have ` ≤ 3. Combining this with (6) we get that (π̂j)−1(σ) can be
covered by at most 27 cells of Yj.

�

Let x, y denote the coordinate functions on R2. For every j ∈ Z,
define ŷj : R2 → S1(m−jv ) = R/m−jv Z to be the composition of y :
R2 → R with the quotient map R −→ R/m−jv Z. We will metrize
S1(r) = R/rZ with the quotient metric dS1(r).

Lemma 3.5 (The functions xj and yj).

(1) For all j ∈ Z ∪ {∞} the function x descends to a function
xj : Xj → R and for all j ∈ Z the function ŷj descends to a
function yj : Xj −→ S1(m−jv ) = R/m−jv Z.

(2) If σ is a 2-cell of Xj, then the image of σ under xj : Xj → R
is an interval of length m−j whose endpoints are the images of
the vertical 1-cells of σ.

(3) If p, p′ ∈ Xj and πj(p) = πj(p
′), then d(yj(p), yj(p

′)) ≤ 2m
−(j+1)
v .

(4) If σ̄ is a 2-cell of Xj+1, then the inverse image π−1
j (σ̄) ⊂ Xj

maps under yj : Xj → R/m−jv Z to a set of diameter at most

5m
−(j+1)
v .
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Proof. (1). Since the identifications generating R are given by vertical
translations by multiples of m−1

v , the cosets of R are contained in the
orbits of the translation action {e} ×m−1

v Z y R2; likewise the cosets

of Rj are contained in the orbits of {e} ×m−(j)
v Z. Therefore x and ŷj

descend to Xj = X0/Rj.

(2). We have σ = π̂j(σ̂) for some 2-cell σ̂ of Yj. Then yj(σ) = y(σ),
and the assertion is clear.

(3). If ē is a vertical 1-cell of X
(1)
j , then ē = π̂j(e) for some vertical

1-cell e of Yj+1; therefore yj(ē) has diameter m
−(j+1)
v . Applying Lemma

3.3(1) we get d(yj(p), yj(p
′)) ≤ 2m

−(j+1)
v .

(4). Pick p, p′ ∈ (πj)
−1(σ̄). Choose σ a 2-cell of X

(1)
j such that

πj(σ) = σ̄. Then there exist q, q′ ∈ σ such that πj(p) = πj(q) and

πj(p
′) = πj(q

′). Since diam(yj(σ)) = m
−(j+1)
v , by (3) we get that

diam(πj)
−1(σ̄) ≤ 5m

−(j+1)
v .

�

4. Metric structure

We now analyze the metric d̂∞ by relating it to the geometry of the
approximating cell complexes Xj. The main result in this section is
Proposition 4.12.

Let d̂j be the largest pseudodistance on Xj such that for every i ≤ j,
and every 2-cell σ̂ of Yi, the diameter of π̂j(σ̂) is ≤ m−i.

Before proceeding, we introduce some additional terminology.

A chain in a set is a sequence S1, . . . , S` of subsets such that Si−1 ∩
Si 6= ∅ for all 1 < i ≤ `.

Definition 4.1. Let σ̂1, . . . , σ̂` be a sequence, where σ̂i is a 2-cell of
Yji . Then:

• For j ∈ Z∪{∞}, the sequence {σ̂i} is a j-chain joining p, p′ ∈
Xj if the projections π̂j0(σ̂0), . . . , π̂j(σ̂`) form a chain in Xj, and
p ∈ π̂j(σ̂0), p′ ∈ π̂j(σ̂`). By convention, the empty sequence is
a chain joining every point to itself.
• The length and generation of the sequence {σ̂i} are

∑
im
−ji

and maxi ji respectively.

By Definition 4.1, for p, p′ ∈ X∞, we have

d̂∞(p, p′) = inf{length({σ̂i}) | {σ̂i} is an ∞-chain joining p, p′} ,
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and for all p, p′ ∈ Xj

d̂j(p, p
′) = inf

{
length({σ̂i})

∣∣∣∣∣ {σ̂i} is a j-chain of generation

≤ j joining p, p′

}
,

Note that it follows that d̂j restricts to a discrete metric on each
2-cell σ of Xj.

Lemma 4.2. If σ̂1, . . . , σ̂` is an ∞-chain of generation g, then it is a
j-chain for all j ≥ g.

Proof. This follows from Lemma 3.3(3). �

Lemma 4.3. Let C = C1 ∪ C2 be a collection of subsets of a set, and
S, S ′ ∈ C1. Assume that C contains a chain from S to S ′, and that every
element of C2 is contained in some element of C1. Then C1 contains a
chain from S to S ′.

Proof. Starting with a chain in C from S to S ′, one may inductively
reduce the number of elements from C2 by replacing each one with an
element of C1 that contains it. �

Definition 4.4. A gallery in X
(k)
j is a sequence of 2-cells σ1, . . . , σ` of

X
(k)
j such that σi−1 ∩ σi contains a 1-cell ei of X

(k)
j for every 1 < i ≤ `;

the gallery is vertical if for all 1 < i ≤ ` the 1-cell ei is horizontal, and
horizontal if ei is vertical for all 1 < i ≤ `.

Lemma 4.5. There exist N1 = N1(C), N2 = N2(C) such that for every

j ∈ Z, every d̂j-ball B(p, Cm−j) ⊂ Xj is contained in a combinatorial
N1-ball of Xj, and is contained in a union of at most N2 2-cells of Xj.

Proof. Fix C <∞ and p ∈ Xj.

If d̂j(p
′, p) < Cm−j, then there is a j-chain σ̂0

1, . . . , σ̂
0
`0

from p to p′

of length < Cm−j. Letting ji be the generation of σ̂0
i , this yields

m−ji < Cm−j , `0 ·m−j < Cm−j

so

(4.6) j − ji <
logC

logm

and `0 < C. Now (4.6) implies that σ̂0
i contains at most C1 = C1(C)

2-cells of Yj. The collection C of all 2-cells of Yj contained in ∪iσ̂0
i

contains at most C1 · `0 2-cells. Also C contains a j-chain σ̂1, . . . , σ̂`
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from p to p′, where ` ≤ C1`0 < C1 · C. Putting N1 = C1 · C, we
have shown that p′ lies in the combinatorial N1-ball of the open cell
containing p.

By Lemma 3.4(7) the N1-ball contains at most N2 = N2(C) cells.

�

The next two lemmas provide lower bounds on the combinatorial
length of certain types of chains of 2-cells in Xj+1.

Lemma 4.7. Let σ ⊂ Xj be a 2-cell with vertical 1-cells e1, e2. If
σ̄1, . . . , σ̄` ⊂ πj(σ) is a chain of 2-cells of Xj+1 that joins πj(e1) to
πj(e2), then ` ≥ m.

Proof. Since {σ̄i} is a chain in Xj+1, the images under xj+1 : Xj+1 →
[0, 1] form a chain in [0, 1] joining xj+1(πj(e1)) to xj+1(πj(e2)). But by
Lemma 3.5(2) the image xj+1(σ̄i) is a segment of length m−(j+1), while
|xj+1(πj(e1))− xj+1(πj(e2))| = m−j. Thus

m−j = diam(πj(e1) ∪ πj(e2)) ≤
∑
i

diam(xj+1(σ̄i)) = ` ·m−(j+1)

so ` ≥ m. �

Definition 4.8. The open star (resp. closed star) of a cell σ in a
cell complex is the union of the open (respectively closed) cells whose
closure contains σ.

Lemma 4.9. Let e be a vertical 1-cell of Xj, and St(e,Xj) be the closed
star of e in Xj. Let σ̄1, . . . , σ̄` be a chain of 2-cells in Xj+1 such that:

(1) σ̄1, . . . , σ̄` ⊂ πj(St(e,Xj)).
(2) σ̄1 ∩ πj(e) 6= ∅.
(3) There is a 2-cell τ of Xj that is not contained in St(e,Xj), such

that σ̄` intersects πj(τ).

Then one of the following holds:

(a) For some σ̄i, there is a p ∈ π−1
j (σ̄i) such that d(yj(p), 0) ≤

2m
−(j+1)
v .

(b) There is a 2-cell σ of Xj that is contained in St(e,Xj), with
vertical 1-cells e, e1 such that some subchain of {σ̄i} is contained
in πj(σ) and joins πj(e) to πj(e1).

Moreover in case (a) we have

(4.10) ` ≥ 1

5
·
[
m(j+1)
v dist(yj(π

−1
j (σ̄1)), 0)− 2

]
.
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Proof. Suppose (a) holds. Since the sets {yj(π−1
j (σ̄k))}1≤k≤i each have

diameter ≤ 5m
−(j+1)
v by Lemma 3.5(4), and they form a chain in

S1(m−jv ) joining yj(π
−1
j (σ̄1)) to B(0, 2m

−(j+1)
v ) ⊂ S1(m−jv ), the triangle

inequality gives (4.10).

Now suppose (a) does not hold, i.e. for every σ̄i and every p ∈
π−1
j (σ̄i),

(4.11) d(yj(p), 0) > 2m−(j+1)
v .

We may assume without loss of generality that σ̄1, . . . , σ̄` is a minimal
chain satisfying the hypotheses of the Lemma, so that:

(i) For all i > 1, the 2-cell σ̄i does not intersect πj(e).
(ii) For all i < `, the 2-cell σ̄i does not intersect πj(τ

′) for any 2-cell
τ ′ of Xj not contained in St(e,Xj).

For every i, there is a 2-cell σi of X
(1)
j such that πj(σi) = σ̄i, and

σi ⊂ St(e,Xj). The 2-cell σi is contained in a unique 2-cell τi of Xj

that contains e.

Let τ be as in (3), and pick p̄ ∈ σ̄` ∩ πj(τ). Choose p` ∈ σ`, p ∈ τ
such that πj(p`) = πj(p) = p̄. By Lemma 3.3(1) there is a vertical edge

path γ in X
(1)
j of combinatorial length at most 2 that contains p` and p.

Because τ 6⊂ St(e,Xj), we know that e 6⊂ τ , and so τ 6= τ`. Therefore
γ must intersect ∂τ` and ∂τ . In view of (4.11) we conclude that p` and
p both lie in the interior of a vertical 1-cell e1 ⊂ τ` ∩ τ . Since e 6⊂ τ , it
follows that e1 6= e, so e1 is the second vertical 1-cell of ∂τ`.

Let i0 be the minimal i such that the subchain σ̄i, . . . , σ̄` is contained
in τ`, i.e. such that τi = . . . = τ`. Suppose i0 > 1. Choose pi0−1 ∈ σi0−1,
pi0 ∈ σi0 such that πj(pi0−1) = πj(pi0) ∈ σ̄i0−1∩ σ̄i0 ⊂ πj(τi0−1)∩πj(τ`).
Reasoning as above, we get that pi0−1 and pi0 belong to the interior
of a vertical 1-cell e′ of Xj, where e′ ⊂ ∂τi0−1 ∩ ∂τ`. We cannot have
e′ = e or e′ = e1 by the minimality of the chain σ̄1, . . . , σ̄`. This is a
contradiction. Hence i0 = 1 and σ̄1, . . . , σ̄` ⊂ τ`. Putting σ = τ` we
have shown that (b) holds. �

Proposition 4.12. For all k ∈ Z and p, p′ ∈ Xk,

(4.13) d̂∞(π∞k (p), π∞k (p′)) ≥ d̂k(p, p
′)− 2m−k .

Proof. Fix k ∈ Z, p, p′ ∈ Xk, and let p̄ = π∞k (p), p̄′ = π∞k (p′). Choose
2-cells σ̂, σ̂′ of Yk such that p ∈ π̂k(σ), p′ ∈ π̂k(σ′).

Let σ̂0
1, . . . , σ̂

0
`0

be an ∞-chain joining p̄ to p̄′. We enlarge this to
a new ∞-chain σ̂, σ̂0

1, . . . , σ̂
0
`0
, σ̂′, which we relabel as σ̂1, . . . , σ̂`, where
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` = `0 + 2. Then {σ̂i} is an ∞-chain joining p̄ to p̄′ of length

≤ length({σ̂0
i }) + 2m−k .

We will show that we can reduce the generation of the chain {σ̂i}
to k without increasing its length, so as to obtain a k-chain from p̄
to p̄′ of length at most length({σ̂i}). This implies that d̂k(p, p

′) ≤
length({σ̂0

i }) + 2m−k. Taking the infimum over all ∞-chains from p to
p′ yields (4.13).

Let j + 1 be the generation of {σ̂i}. If j + 1 ≤ k we are done, so we
assume that j ≥ k. Moreover, we may assume that there is no other
∞-chain σ̂′0, . . . , σ̂

′
`′ such that:

• σ̂′0 = σ̂0, σ̂′`′ = σ̂`.
• length({σ̂′i}) ≤ length({σ̂i}).
• The generation of {σ̂′i} is at most j + 1.
• {σ̂′i} has fewer cells of generation j + 1 than {σ̂i}.

Since {σ̂i} is an ∞-chain, by Lemma 3.3 the sequence σ̂1, . . . , σ̂` is a
(j + 1)-chain.

Before proceeding further, we first indicate the rough idea of the
argument. Although it takes values in S1(m−jv ), we view yj : Xj →
S1(m−jv ) as a “height function”. Since mv is much larger than m, a
string of cells in σ̂1, . . . , σ̂` of maximal generation j+1 > k cannot move
efficiently in the “vertical” direction, i.e. it cannot change yj efficiently.
Thus any such string is forced to move roughly horizontally, and it
may then be replaced by cells of lower generation without increasing
length({σ̂i}). This contradicts the choice of {σ̂i}.

We now resume the proof of the proposition.

Let σ̂i1 , . . . , σ̂i2 be a maximal string of consecutive cells from {σ̂i} of
generation j+1, so that both σ̂i1−1 and σ̂i2+1 have generation ≤ j. For
1 ≤ i ≤ `, let σi = π̂j(σ̂i), σ̄i = π̂j+1(σ̂i). For i1 ≤ i ≤ i2 let τ̂i be the
unique 2-cell of Yj containing σ̂i, and put τi = π̂j(τ̂i).

Step 1. If e is a vertical 1-cell of Xj, and σ̄i3 ∩ πj(e) 6= ∅ for some

i1 ≤ i3 ≤ i2, then dist(yj((πj)
−1(σ̄i3)), 0) < 11m ·m−(j+1)

v .

Let σ̄i4 , . . . , σ̄i5 be a maximal subsequence of σ̄i1 , . . . , σ̄i2 such that:

• i4 ≤ i3 ≤ i5, i.e. σ̄i3 belongs to the subsequence.
• The cells σ̄i4 , . . . , σ̄i5 are all contained in πj(St(e,Xj)).
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Claim. At least one of the two cells σ̄i4 , σ̄i5 must intersect πj(τ), for
some 2-cell τ of Xj that is not contained in St(e,Xj).

Proof of claim. Suppose the claim were false.

Assume first that σi4−1 has generation j + 1. By the maximality of
σ̄i3 , . . . , σ̄i5 , we have σ̄i4−1 6⊂ πj(St(e,Xj)), so τi4−1 6⊂ St(e,Xj). Then
∅ 6= σ̄i4−1 ∩ σ̄i4 ⊂ πj(τi4−1) ∩ σ̄i4 , proving the claim. Thus we may
assume that σi4−1 has generation ≤ j, and likewise for σi5+1.

Since σi4−1 is a union of 2-cells of Xj, for some 2-cell τ of Xj, we have
τ ⊂ σi4−1 and σ̄i4 ∩ πj(τ) 6= ∅. If τ 6⊂ St(e,Xj), then the claim follows,
so we assume that τ ⊂ St(e,Xj), and in particular e ⊂ τ . Likewise we
may assume that σi5+1 contains a 2-cell τ ′ of Xj that contains e. Now
σi4−1 ∩ σi5+1 6= ∅, so we may shorten the j + 1-chain {σ̂i} by deleting
σ̂i4 , . . . , σ̂i5 , which is a contradiction. Thus the claim holds. �

We now assume without loss of generality that the claim holds for
σ̄i5 . Hence σ̄i3 , . . . , σ̄i5 satisfies the hypotheses of Lemma 4.9.

First suppose that conclusion (a) of Lemma 4.9 holds. Then (4.10)
gives

(4.14) i5 − i3 + 1 ≥ 1

5
·
[
m(j+1)
v dist(yj(π

−1
j (σ̄i3)), 0)− 2

]
.

Because σ̄i3 , σ̄i5 ⊂ St(e,Xj), we have τi3 , τi5 ⊂ St(e,Xj), so e ⊂ τi3∩τi5 .
It follows that we obtain a (j + 1) chain with fewer cells of generation
j+ 1 by replacing σ̂i3 , . . . , σ̂i5 with the two cells τi3 , τi5 . This new chain
has length

length({σ̂i}`i=1)− length(σ̂i3 , . . . , σ̂i5) + length(τ̂i3 , τ̂i5)

= length({σ̂i}`i=1)−m−(j+1)(i5 − i3 + 1)− 2m−j

= length({σ̂i}`i=1)−m−(j+1)((i5 − i3 + 1)− 2m) .

By the minimality of {σ̂i}`i=1 we obtain

(i5 − i3 + 1)− 2m ≤ 0

Using (4.14) we get

dist(yj(π
−1
j (σ̄i3)), 0) ≤ (10m+ 2)m−(j+1)

v < 11m ·m−(j+1)
v .

Now suppose Case (b) of Lemma 4.9 holds, and let σ be as in (b).
Then the subchain given by (b) satisfies the hypotheses of Lemma 4.7,
and so it contains at least m cells; we may replace these with σ and
obtain a new j + 1-chain with length at most length({σ̂i}, and fewer
cells of generation j + 1. This contradicts the choice of {σ̂i}.
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This completes Step 1.

Step 2. We have

(4.15) dist(yj(π
−1
j (σ̄i3)), 0) < 16m ·m−(j+1)

v

for all i1 ≤ i3 ≤ i2.

Suppose i3 violates (4.15). Choose i4 maximal such that i3 ≤ i4 ≤ i2
and τi = τi3 for all i3 ≤ i ≤ i4. Since we obtain a comparison chain by
replacing σ̂i3 , . . . , σ̂i4 with τ̂i3 , we get that

m−(j+1)(i4 − i3 + 1) = length(σ̂i3 , . . . , σ̂i4) < length(τ̂i3) = m−j ,

i.e. i5− i3 + 1 < m. Applying Lemma 3.5(4) and the fact that the sets
yj(π

−1
j (σ̄i)) form a chain in S1(m−jv ), we get

(4.16) dist(yj(π
−1
j (σ̄i4)), 0) ≥ 11m ·m−(j+1)

v .

First suppose i4 < i2, i.e. that gen(σ̂i4+1) = j + 1. Then τi4+1 6= τi4
and πj(τi4+1)∩ πj(τi4) 6= ∅. By (4.16) it follows that σ̄i4 must intersect
πj(e) for some vertical 1-cell e of τi4 . But then (4.16) contradicts Step
1.

Now suppose i4 = i2. Then gen(σ̂i4+1) ≤ j, and so σi4+1 contains
a 2-cell τ of Xj such that σ̄i4 ∩ πj(τ) 6= ∅. If τ = τi3 = τi4 , then
we may discard σ̂i3 , . . . , σ̂i4 , contradicting the minimality of the chain
σ̂1, . . . , σ̂`. Therefore τ 6= τi3 , and reasoning as above we find that
σ̄i4 ∩ πj(e) 6= ∅ for some vertical 1-cell of τi3 . Using (4.16), we again
get a contradiction to Step 1.

Step 3. Shifting σ̄i1 , . . . , σ̄i2 toward the 1-skeleton of Xj.

Pick i1 ≤ i ≤ i2. Since σi ⊂ π−1
j (σ̄i), by Step 2 and Lemma 3.5(4)

we have

dist(yj(σi), 0) ≤ dist(yj(π
−1
j (σ̄i)), 0) + diam(yj(π

−1
j (σ̄i)))

< (16m+ 5) ·m−(j+1)
v .

Hence there is vertical gallery (see Definition 4.4) µi1, . . . , µi`i in X
(1)
j

with `i < 16m + 5 that starts from σi = µi1, such that µi`i contains

a horizontal 1-cell e′i of X
(1)
j that is contained in a horizontal 1-cell ei

of Xj, see Figure ???. Since the gallery is vertical, we have xj(σi−1) =
xj(e

′
i−1), xj(σi) = xj(e

′
i) ⊂ R.

Claim. e′i−1 ∩ e′i 6= ∅ for all i1 < i ≤ i2.
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Proof of claim. The images xj(σi−1), xj(σi) ⊂ R are intervals of length
m−(j+1) that have an endpoint in common because xj(σi−1) = xj+1(σ̄i−1),
xj(σi) = xj+1(σ̄i), and σ̄i−1 ∩ σ̄i 6= ∅. We may therefore choose 0-cells

vi−1, vi of X
(1)
j such that vi−1 ∈ e′i−1, vi ∈ e′i, and xj(vi−1) = xj(vi).

Choose 0-cells pi−1, pi of X
(1)
j such that pi−1 ∈ σi−1, pi ∈ σi, πj(pi−1) =

πj(pi), xj(pi−1) = xj(pi) = xj(vi−1) = xj(vi). We may join pi−1 to

pi with a vertical edge path in X
(1)
j of combinatorial length at most

2 by Lemma 3.3(1). Using the vertical cells in the vertical galleries

{µi−1n}, {µin}, we get vertical edge paths γi−1, γi in X
(1)
j joining vi−1

to pi−1 and vi to pi, respectively, where γi−1, γi have combinatorial
length < 16m + 5. Concatenating γi−1, γ, γi we get a vertical edge
path joining vi−1 to vi of combinatorial length < 32m + 12 = 140.
Since mv = 3L ≥ 300, this forces vi−1 = vi, proving the claim. �

Claim. σi1−1 ∩ e′i1 6= ∅ and e′i2 ∩ σi2+1 6= ∅.

Proof of claim. There is a 2-cell τ ⊂ σi1−1 of Xj such that πj(τ)∩ σ̄i1 6=
∅. We may find 0-cells p, pi1 of X

(1)
j such that p ∈ τ , pi1 ∈ σi1 , and

πj(p) = πj(pi1). There is a vertical edge path γ in X
(1)
j from p to pi1

of combinatorial length at most 2, and a vertical edge path γi1 in X
(1)
j

of combinatorial length < 16m joining pi1 to an endpoint vi1 of e′i1 .
Combining γ and γi1 we get a vertical edge path of length < 16m + 2

in X
(1)
j starting at p ∈ τ and ending in the 1-skeleton of Xj. This

implies that vi1 ∈ ∂τ . Hence σi1−1 ∩ e′i1 6= ∅ and the claim holds. �

Combining the two claims, we get that

(4.17) σ1, . . . , σi1−1, e
′
i1
, . . . , e′i2 , σi2+1, . . . , σ`

forms a chain in Xj. Therefore, after modifying σ̂i for i1 ≤ i ≤ i2 if
necessary, we may assume without loss of generality that σi = µi`i , and
in particular σi contains e′i.

Step 4. The final contradiction.

Pick i3 such that i1 ≤ i3 ≤ i2.

Suppose some interior point of ei3 is contained in σi1−1∪σi2+1. Since
σi1−1∪σi2+1 is a subcomplex of Xj, this implies that ei3 is contained in
σi1−1∪σi2+1. Therefore applying Lemma 4.3 we may delete the edge e′i3
from the collection (4.17), and it will still contain a chain, and likewise
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we may delete σ̂i3 from the collection σ̂1, . . . , σ̂` and it will still contain
a chain; this contradicts the minimality of {σ̂i}.

Now suppose ei3 is contained in e′i1∪. . .∪e
′
i2

. Taking the union of the
collection (4.17) with ei3 and applying Lemma 4.3, it follows that we
may remove from the collection (4.17) each e′i that is contained in ei3 ,
and add ei3 , and the resulting collection will contain a chain from σ1 to
σ`. Therefore we may remove from σ̂1, . . . , σ̂` each σ̂i with i1 ≤ i ≤ i2
such that e′i ⊂ ei3 , and add the 2-cell τ̂i3 , and the resulting collection
will contain a j+1-chain that has length at most length({σ̂i}) and fewer
cells of generation j + 1, contradicting the definition of σ̂1, . . . , σ̂`.

Therefore ei3 is not contained in σi1−1 ∪ σi1 ∪ . . . ∪ σi2 ∪ σi2+1. But
then we may remove from the j+1-chain σ̂1, . . . , σ̂` some 2-cell σ̂i, with
i1 ≤ i ≤ i2 and e′i ⊂ ei3 and still have a chain. This contradicts the
minimality of σ̂1, . . . , σ̂`.

We conclude that j + 1 ≤ k, completing the proof of Proposition
4.12.

�

The following two corollaries of Proposition 4.12 relate the distance
in X∞ or Xj with the combinatorial distance.

Corollary 4.18. For every C there is an N = N(C) such that if

p, p′ ∈ Xj and d̂∞(π∞j (p), π∞j (p′)) < Cm−j, then there is a chain of at
most N cells of Xj joining p to p′.

Proof. This follows from Proposition 4.12 and Lemma 4.5. �

Corollary 4.19. For p0, p1 ∈ X∞ let

(4.20) J(p0, p1) =

{
j

∣∣∣∣∣ (π∞j )−1(p0), (π∞j )−1(p1) do not

intersect adjacent cells of Xj

}
,

and let J(p0, p1) = inf J(p0, p1), where as usual the infimum of the
empty set is ∞. Then

(4.21) m−J(p0,p1) ≤ d̂∞(p0, p1) ≤ 2m ·m−J(p0,p1),

where by convention we let m−J(p0,p1) = 0 when J(p0, p1) =∞.

Proof. Note that J(p0, p1) = inf J(p0, p1) = 1 + sup(Z \ J(p0, p1)).
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If k 6∈ J(p0, p1), then (π∞k )−1(p0) and (π∞k )−1(p1) intersect adjacent

cells, and this gives d̂∞(p0, p1) ≤ 2m−k by the definition of d̂∞. Thus

d̂∞(p0, p1) ≤ 2 inf{m−k | k 6∈ J(p0, p1)}
≤ 2m · inf{m−(k+1) | k 6∈ J(p0, p1)}
= 2m · sup{m−k | k ∈ J(p0, p1)}
= 2m ·mJ(p0,p1) .

If k ∈ J(p0, p1) then then any k-chain connecting (π∞k )−1(p0) with
(π∞k )−1(p1) must contain at least 3 cells, and hence

(4.22) d̂k((π
∞
k )−1(p0), (π∞k )−1(p1)) ≥ 3m−k.

The lower bound in (4.21) then follows applying Proposition 4.12. �

We remark that the following lemma is not really essential to the
discussion. Even without knowing that d̂∞ is a distance, we could
quotient out the sets of zero diameter and work in the resulting metric
space, cf. Section 11.

Lemma 4.23. Keeping the notation from Corollary 4.19, the set J(p0, p1)

is nonempty iff p0 6= p1; in particular d̂∞ is a distance function on X∞.

Proof. Clearly J(p0, p1) 6= ∅ =⇒ p0 6= p1. We will show that if
J(p0, p1) is empty then p0 = p1.

For all j ∈ Z, since j 6∈ J(p0, p1), the sets (π∞j )−1(p0), (π∞j )−1(p1)
intersect adjacent cells of Xj, and therefore the values of xj on these
sets agree to within error 2m−j. Since x∞(pi) = xj((π

∞
j )−1(pi)), we get

that |x∞(p0) − x∞(p1)| ≤ 2m−j. As this holds for all j we conclude
that x∞(p0) = x∞(p1).

Let t = x∞(p0) = x∞(p1).

If t ∈ ∪j∈Z (m−jZ) select j0 ∈ Z such that t ∈ m−j0Z, and otherwise
let j0 ∈ Z be arbitrary. Then t 6∈ m−(j+1)Z \m−jZ for every j ≥ j0,
and by the definition ofRj, it follows that (π∞j0 )−1(pi) contains a unique
element p̂i ∈ Xj0 for i = 0, 1.

Let j1 ≥ 0 be arbitrary.

Claim. p̂0 may be joined to p̂1 by a chain of at most four 2-cells of

X
(j1)
j0

.

Pick j ≥ j0, to be determined later.
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If t ∈ m−jZ, we define t± = t ± m−j; if t 6∈ m−jZ then for some
kj ∈ Z we have t ∈ (kjm

−j, (kj + 1)m−j), and then we let t− = kjm
−j,

t+ = (kj + 1)m−j. Let gj = min({` | t− ∈ m−`Z}, {` | t+ ∈ m−`Z}) .
Since |t± − t| ≤ m−j, we will have

(4.24) min(gj − j0, j − j0) > j1

for all but finitely many j, so we assume (4.24) holds.

Choose adjacent cells τ0, τ1 of Xj such that τi ∩ (π∞j )−1(pi) 6= ∅, and

cells τ̂0, τ̂1 of Xj0 such that πjj0(τ̂i) = τi. Let v ∈ τ0 ∩ τ1 be a 0-cell of

Xj, and choose v̂i ∈ τ̂i such that πjj0(v̂i) = v.

Case 1: xj(v) = t. As πjj0 is injective on x−1
j (t), we have v̂0 = v̂1, so

τ̂0∩ τ̂1 6= ∅. Thus p̂0, p̂1 may be joined by a chain of at most two 2-cells

of X
(j−j0)
j0

, and hence also by a chain of at most two 2-cells of X
(j1)
j0

,
proving the claim.

Case 2: xj(v) 6= t. Then xj(v) ∈ {t−, t+}. Since πjj0(v̂i) = v it

follows that v̂0 may be joined to v̂0 by a vertical edge path in X
(gj−j0)
j0

of combinatorial length at most 2. Hence p̂0 may be joined to p̂1 may

be joined by a chain of at most four 2-cells of X
(j1)
j0

, and the claim holds
in this case.

Since j1 is arbitrary, the claim forces p̂0 = p̂1.

�

5. David-Semmes regularity of the projection R2 → X∞
and the lower bound on the topological dimension

In this section we prove part (1) of Theorem 1.1, and the lower bound
in part (2), in the n = 2 case.

Let d̂Y∞, α, and dα be as in Section 2. We recall that L2 denotes
Lebesgue measure on R2, and for j ∈ Z ∪ {∞} we let µj = (π̂j)#L2.

Lemma 5.1. There is a constant C such that C−1 dα ≤ d̂Y∞ ≤ C dα.
Moreover, the Q-dimensional Hausdorff measure is uniformly compa-
rable to a Lebesgue measure.

Proof. The metric on Y = R2 is uniformly comparable to a product
metric dhor × dvert; dhor is just the standard metric on R; on the other
hand, dvert is the largest pseudodistance which makes each cell of gen-
eration j ∈ Z of the standard mv-adic subdivision of R have diameter
at most m−j. Specifically, for any x, x′ ∈ R, the distance dvert(x, x

′)
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is the infimum of the quantities
∑

i length(σi), where σ1, . . . , σ` is a
chain of mv-adic intervals joining x to x′, and length(σi) = m−ji when
σi has generation ji (cf. Section 4); since |x − x′| ≤

∑
im
−ji
v =∑

i(length(σi))
1
α one readily checks that dvert is uniformly comparable

to the snowflake of the standard metric on R by the power α = logm
logmv

.

Finally, as dY∞-balls of radius r have Lebesgue measure ≈ rQ, we
conclude that HQ ≈ L2 �

Lemma 5.2 (David-Semmes regularity of π̂∞).

(1) The projection map π̂∞ : (R2, d̂Y∞) → (X∞, d̂∞) is a David-
Semmes regular map.

(2) (X∞, d̂∞) is Ahlfors Q-regular, where Q = 1 + α−1.

(3) (X∞, d̂∞) has topological dimension at least 2.

Proof. (1). Suppose σ is a 2-cell of Yj. Then by the definition of d̂∞, the

pullback of (π̂∞)∗d̂∞ is a pseudodistance on R2 with respect to which

the diameter of σ is ≤ m−j. From the definition of d̂Y∞ we therefore

have d̂Y∞ ≤ (π̂∞)∗d̂∞, so π̂∞ : (R2, d̂Y∞)→ (X∞, d̂∞) is 1-Lipschitz.

Pick p̄ ∈ X∞, r > 0.

We want to show that (π̂∞)−1(B(p̄, r)) may be covered by a con-

trolled number of balls of radius comparable to r in (R2, d̂Y∞). To
that end, we choose j ∈ Z such that m−(j+1) < r ≤ m−j, and pick
p ∈ (π∞j )−1(p̄).

Since (π∞j )−1(B(p̄,m−j)) ⊂ B(p, 3m−j) by Proposition 4.12, we have

(π̂∞)−1(B(p̄, r)) ⊂ (π̂∞)−1(B(p̄,m−j))

= (π̂j)−1(π∞j )−1(B(p̄,m−j)) ⊂ (π̂j)−1(B(p, 3m−j)) .

Note that B(p, 3m−j) is contained in a controlled number of 2-cells of
Xj by Lemma 3.4(7), and the inverse image of each of these may be
covered by at most 27 cells of Yj by Lemma 3.4(8). Since a cell of Yj
has d̂Y∞-diameter ≤ m−j < m · r, we are done.

(2). This follows immediately from (1) since regular maps preserve
Ahlfors-regularity.

(3). By (1) the point inverses (π̂∞)−1(p̄) have controlled cardi-
nality; in particular, they are totally disconnected. Therefore π̂∞

cannot decrease the topological dimension (see for example [Eng78,
Thm. 1.24.4]); therefore, the topological dimension of X∞ is at least
that of R2.
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One may give a more concrete proof that X∞ has topological di-
mension ≥ 2 along the following lines. Let f be the restriction of
π̂∞ : R2 → X∞ to the boundary of [0, 1]2; note also that f is injec-
tive. To see this, suppose that p, p′ ∈ ∂[0, 1]2 are distinct points with
f(p) = f(p′). Then x(p) = x∞(f(p)) = x∞(f(p′)) = x(p′), and by
the definition of the equivalence relation we must have x(p) = x(p′) ∈
m−jZ \ m−(j−1)Z for some j ∈ Z. In view of the definition of R∞,
by inspection we get a contradiction to the fact that p, p′ ∈ ∂[0, 1]2.
Letting γ = f(∂[0, 1]2) ⊂ X∞ be the image, we apply the Tietze ex-
tension theorem to extend g = f−1 : γ → ∂[0, 1]2 to a continuous map
ĝ : X∞ → R2. By degree theory, the origin is a stable value of the
composition

[0, 1]2
π̂∞−→ X∞

ĝ−→ R2 ,

so ĝ cannot be approximated by a map to R2 \ {0}. Therefore X∞ has
topological dimension at least 2.

�

6. The upper bound on the Assouad-Nagata dimension

The proof of the upper bound on the topological dimension is more
subtle than the proof of the lower bound. Note that the existence of
a map R2 → X∞ with finite point inverses is not by itself enough to
imply that X∞ has topological dimension 2: recall that the Peano curve
[0, 1]→ [0, 1]2 is a finite-to-one surjective map, showing that such maps
can increase the topological dimension.

We now recall the definition of the Assouad-Nagata dimension. Let
C be a cover of a metric space X. Then C is r-bounded if diam(C) ≤ r
for all C ∈ C, and C has r-multiplicity at most k if every ball of radius
r intersects at most k elements of C.

Definition 6.1. [Ass82, LS05] The Assouad-Nagata dimension of a
metric space X is the infimum of the integers n ≥ 0 such that for some
c > 0 and every r > 0, there is a cover C of X that is cr-bounded and
has r-multiplicity at most n+ 1.

Note that the Assouad-Nagata dimension is bounded below by the
topological dimension [LS05, Prop. 2.2].

Theorem 6.2. The Assouad-Nagata dimension of X∞ is at most 2.

Proof. We exhibit “good coverings” in the sense of [LS05, Prop. 2.5](4):
we will show that for every k ∈ Z, there is a cover C0 ∪ C1 ∪ C2 of X∞
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such that Ci is m−k-bounded and has m−(k+1)-multiplicity 1 for all
i ∈ {0, 1, 2}. This implies that the Assouad-Nagata dimension of X∞
is at most 2.

Consider the family Ω2 of 2-cells of Xk; from each σ ∈ Ω2 produce
a subset cσ by taking the closure of the subset of σ(1) obtained by
removing those points p ∈ σ(1) which satisfy one of the following:

(6.3)

dR
(
x(p),minx(σ(1))

)
≤ m−(k+1)/2,

dR
(
x(p),maxx(σ(1))

)
≤ m−(k+1)/2,

dS1 (yk(p), 0) ≤ 3m−(k+1)
v .

Note that diam π̂∞k (cσ) ≤ m−k. Consider now different cells σ0, σ1 ∈
Ω2; for i = 0, 1 let pi ∈ π̂∞k (cσi); as cσi does not meet the 1-skeleton of
Xk, any cell τ of Xk+1 intersecting (π̂∞k )−1(pi) must intersect a given
cell τi which belongs to the set of those subcells of π̂k+1

k (σi) which meet
π̂k+1
k (cσi). Let τ ′i be a cell adjacent to τi; recall that Xk+1 is obtained

from Xk by quotienting by (π̂k ◦ Φk)∗R0; and thus (6.3) guarantees
that either τ ′0 and τ ′1 are not adjacent or the sets x(τ ′1) and x(τ ′0) are at
distance at least m−(k+1). Thus, applying Corollary 4.19 and the fact
that x is 1-Lipschitz, we obtain

(6.4) d̂∞(π̂∞k (cσ0), π̂∞k (cσ1)) ≥ m−(k+1).

Let Ω1 be the collection of 1-cells of Xk; from e ∈ Ω1 produce a

subset ce as follows: let e(1) be the subdivision of e in X
(1)
k and let Ce

be the collection of those points p which belong to a 2-cell of X
(1)
k which

intersects e; then, if e is vertical, ce is obtained from Ce by taking the
points p ∈ Ce satisfying:

(6.5)
dR(x(p), x(e)) ≤ m−(k+1)/2

dS1(yk(τ), 0) ≥ 5m−(k+1)
v ;

if e is horizontal, ce is obtained from Ce by taking the points p ∈ Ce
satisfying:

(6.6)
dR(x(p), {maxx(e),minx(e)}) ≥ m−(k+1)

dS1(yk(p), 0) ≤ 3m−(k+1)
v .

Let e0, e1 be distinct cells in Ω1. Then either x(e0) and x(e1) are at
distance m−(k+1) apart, or there are no adjacent cells τi of Xk+1 such
that τi ∩ π̂k+1

k (cei) 6= ∅. Thus by Corollary 4.19 we conclude that:

(6.7) d̂∞
(
π̂k+1
k (e0), π̂k+1

k (e1)
)
≥ m−(k+1).
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Let Ω0 be the collection of vertices of Xk. For v ∈ Ω0 consider the
set Cv consisting of those 2-cells of X

(1)
k within combinatorial distance

5 from a cell containing v; then cv consists of those points p ∈ Cv
satisfying:

(6.8)
dR(x(p), x(v)) ≤ m−(k+1)

dS1(yk(p), 0) ≤ 5m−(k+1)
v .

Then diam π̂∞k (cv) ≤ m−(k+1). Let v0 and v1 distinct vertices. If x(v0) 6=
x(v1) then d̂∞(π̂∞k (cv0), π̂∞k (cv1)) ≥ m−(k+1). Otherwise, there are no
adjacent cells τi of Xk+1 such that τi ∩ π̂k+1

k (cvi) 6= ∅. Thus Corollary
4.19 gives:

(6.9) d̂∞(π̂∞k (cv0), π̂∞k (cv1)) ≥ m−(k+1).

The families {π̂∞k (cσ)}σ∈Ω2
, {π̂∞k (ce)}e∈Ω1

and {π̂∞k (cv)}e∈Ω0
provide

a good covering of X∞. �

7. The Poincaré inequality

In this section we prove that (X∞, µ) satisfies a Poincaré inequality.
Following Semmes [Sem], we do this by showing that any two points
p, q ∈ X∞ can be joined by a “pencil” — a good measured family of
curves. To obtain such a family, we first construct a string of horizon-
tal galleries that connects p to q; we then convert this to a measured
family of curves by replacing each 2-cell with the corresponding (ap-
propriately normalized) measured family of horizontal geodesics, and
then concatenating.

7.1. Construction of galleries.

Lemma 7.1. For each C > 0 there is an L = L(C) such that the
following holds. For every j ∈ Z, and every pair σ0, σ1 of 2-cells of Xj

such that

(7.2) d̂∞
(
π∞j (σ0), π∞j (σ1)

)
≤ Cm−j;

there is a horizontal gallery T in Xj whose combinatorial length is at
most L and which starts at σ0 and ends at σ1.

Proof. We first show that if σ0 ∩ σ1 6= ∅ there is a horizontal gallery
S of length at most L0 starting at σ0 and ending at σ1. If σ0 and σ1

share a vertical 1-cell we can just take S = {σ0, σ1}. If σ0 and σ1 share
a horizontal 1-cell, we know by the definition of Rj−1 that there is a
horizontal gallery S of length at most C0 = C0(m,mv) which starts
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at σ0 and ends at σ1. If σ0 and σ1 share only a 0-cell, we know by
Lemma 3.4 (5) that we can find a gallery S joining them and of length
at most C1 = C1(m,mv). This can be turned into a horizontal gallery
of length at most C0C1 by replacing consecutive cells which share a
horizontal edge by a horizontal gallery of length at most C0 connecting
them. Thus one can take L0 = C0C1.

We now turn to the general case. By Corollary 4.18 there is a chain
T0 in Xj consisting of at most N(C) 2-cells, which starts at σ0 and
ends at σ1. For any pair of consecutive 2-cells in T0 we can use the
discussion in the previous paragraph to construct a horizontal gallery
connecting them. We thus obtain a horizontal gallery T of length at
most N(C)L0 starting at σ0 and ending at σ1. �

Next, using Lemma 7.1, we will show that one can connect any pair
of points p, q ∈ X∞ by stringing together geometrically shrinking se-
quences of horizontal galleries. This is made precise in the following
definition.

Definition 7.3. Let p, q ∈ X∞. A string of galleries connecting p to
q consists of four sequences {σj}j≥j0 , {τj}j≥j0 , {Gj}j>j0 , {Tj}j>j0 which
satisfy the following additional conditions for some constant C0:

(G1): d̂∞(p, q) ≈C0 m
−j0 ;

(G2): σj and τj are cells of Xj and σj0 = τj0 ;
(G3): We have the following control on the distances from p and
q:

(7.4)
d̂∞
(
p, π∞j (σj)

)
≤ C0m

−j;

d̂∞
(
q, π∞j (τj)

)
≤ C0m

−j;

(G4): For each j ≥ j0 the vertical faces of σj and τj are ordered:

we denote those of σj by e
(0)
j , e

(1)
j , and those of τj by f

(0)
j and

f
(1)
j . We also require e

(1)
j0

= f
(0)
j0

;

(G5): Gj (resp. Tj) is a collection ofm horizontal galleries {G(1)
j , · · · ,G(m)

j }
(resp. {T (1)

j , · · · , T (m)
j }); let {e(0)

j−1,1, · · · , e
(0)
j−1,m} (resp. {f (1)

j−1,1, · · · , f
(1)
j−1,m})

denote the 1-cells in the first subdivision of e
(0)
j−1 (resp. f

(1)
j−1);

then G(i)
j (resp. T (i)

j ) is a horizontal gallery of at most C0 cells

which connects e
(1)
j (resp. πj−1(f

(1)
j−1,i)) to πj−1(e

(0)
j−1,1) (resp. f

(1)
j ).

Lemma 7.5. Suppose p, q ∈ X∞ and d̂∞(p, q) ∈ [m−j0−1,m−j0). Then
there is a string of galleries connecting p to q where the constant C0

does not depend on the pair p, q.
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Proof. As d̂∞(p, q) < m−j0 by Proposition 4.12 we conclude that:

(7.6) dj0
(
(π∞j0 )−1(p), (π∞j0 )−1(q)

)
< 3m−j0 ,

and thus (π∞j0−1)−1(p) and (π∞j0−1)−1(q) intersect adjacent cells of Xj0−1;
we can therefore find a C0 independent of p, q and a single cell σj0 = τj0
of Xj0 such that (7.4) holds with j = j0. For each j choose σj and τj
such that (π∞j )−1(p) ∩ σj 6= ∅ and (π∞j )−1(q) ∩ τj 6= ∅. We now choose
a first and a last vertical edge for each σj and τj as in (G4). We
now construct the collection of galleries {Gj}j>j0 and {Tj}j>j0 . By
symmetry we just focus on the construction of Gj. By the choice of the
cells {σj}j≥j0 we have that:

(7.7) dj (σj, πj−1(σj−1)) ≤ C0m
−j;

therefore, by possibly enlarging C0, for each i ∈ {1, · · · ,m} we can
choose by Lemma 7.1 a horizontal gallery consisting of at most C0 cells

(7.8) G(i)
j = {θ1, · · · , θL} ⊂ Xj

which joins e
(1)
j to πj−1(e

(0)
j−1,i). �

Corollary 7.9. Let p, q ∈ X∞ be such that d̂∞(p, q) ∈ [m−j0−1,m−j0);
then there is a universal constant C1 such that, for each M > j0, there
is a horizontal gallery GM = {σ0, · · · , σL} consisting of 2-cells of XM

and whose length is at most C0m
−j0, where one has:

(7.10)
d̂∞(π∞M(σ0), p) ≤ C0m

−M ;

d̂∞(π∞M(σL), q) ≤ C0m
−M .

Proof. We use Lemma 7.5 to take a string of galleries connecting p to q
of length at most C(C0)m−j0 , where C0 is the constant in Lemma 7.5.
We now truncate this string to obtain a horizontal gallery in XM :

T =

{
σM ,G(1)

M , πM−1(σM−1), πM−1(G(1)
M−1), · · · ,

πMj0 (σj0) = πMj0 (τj0), πMj0+1(T (1)
j0+1), · · · , τM

}
;

(7.11)

we now inductively modify T to increase the minimal generation of
cells in T to end up with a gallery consisting of only 2-cells of XM . At

the first step, we take the end cell σ of G(1)
j0+1 in Xj0+1, and the first

cell τ of T (1)
j0+1 in Xj0+1; as both cells intersect some vertical faces of a

pair of 2-cells in πM−1
j0

(σj0), we can find a horizontal gallery S in Xj0+1

connecting σ to τ whose length is at most C(H)m−j0 . We then replace
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πMj0 (σj0) by πMj0+1(S). A similar process is applied now to replace the
cells of T of generation j0 +1 by cells of generation j0 +2. The increase
in length is of a factor C(H)m−j0−1 for each cell of generation j0 + 1.
Continuing inductively, one obtains a gallery T consisting of cells of
generation M and whose length is ≤ C(C0, H,m)m−j0 . �

7.2. Constructing Semmes pencils.

Definition 7.12. A measured family of curves (Γ, IΓ,ΩΓ, νΓ) is a mea-
surable function Γ : IΓ × ΩΓ → X, where IΓ is an interval of R, such
that νΓ is a probability measure on ΩΓ, and there is an L such that for
each ω ∈ ΩΓ the map t 7→ Γ(t, ω) is a Lipschitz curve in X of Lipschitz
constant at most L.

We say that a measured family of curves (Γ, IΓ,ΩΓ, νΓ) joins a set
S0 to a set S1 if for νΓ-a.e. ω ∈ ΩΓ one has Γ(min IΓ, ω) ∈ S0 and
Γ(max IΓ, ω) ∈ S1. Given a subinterval I ⊂ IΓ we denote by ΓI the
restriction Γ : I × ΩΓ → X.

To a measured family of curves (Γ, IΓ,ΩΓ, νΓ) we associate a measure
µΓ by:

(7.13) µΓ = Γ|#(L1 × νΓ).

In the following we will often simply write Γ instead of (Γ, IΓ,ΩΓ, νΓ).
We finally define the support of Γ by:
(7.14)

spt Γ = {p ∈ X∞ : ∀r > 0 νΓ({ω : Γ(IΓ, ω) ∩B(p, r) 6= ∅}) > 0} .

Definition 7.15. For a metric measure space (X,µ) recall the defini-
tion of the Riesz potential µp centered at p:

(7.16) µp =
d(p, ·)

µ(B(p, d(p, ·)))
µ.

We will denote the Riesz potential of (X,µ∞) centered on p ∈ X∞
by µ∞,p. To prove the Poincaré inequality and to establish a bound on
the analytic dimension we rely on the following theorem.

Theorem 7.17. There is a universal constant C depending only on
(m,mv) such that the following holds.

(C1): For p, q ∈ X∞, there is a measured family of curves Γ
joining p to q;

(C2): The Lipschitz constant of Γ is at most C and L1(IΓ) ≤
Cd̂∞(p, q);
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(C3): The measure µΓ is controlled by the Riesz potentials cen-
tered at p and q:

(7.18) µΓ ≤ C(µ∞,p B(p, Cd(p, q)) + µ∞,q B(q, Cd(p, q))).

Proof. Using Lemma 7.5, we take a string of galleries S = { {σj}j≥j0 ,
{τj}j≥j0 , {Gj}j>j0 , {Tj}j>j0 } connecting p to q. The idea of the proof
is based on the following observations: first, one can use S to string
together horizontal segments to obtain Lipschitz paths joining p to q.
Secondly, the Fubini representations of the measures on the cells of
S give rise to a “natural” transverse measure on the family of quasi-
geodesics connecting p to q. To ease the exposition, we have divided
the proof in two steps. In the first we discuss how to build a mea-
sured family of curves joining π∞j0 (σj0) to p. In the second we join
together two measured families of curves connecting the points p and
q to π∞j0 (σj0) = π∞j0 (τj0).

Step 1: Construction of a measured family of curves joining π∞j0 (σj0)
to p.

We now construct a measured family of curves (Γp, Ip,Ωp, νp) joining
π∞j0 (σj0) to p. We let:

(7.19) Ip =

[
0,
∑
j0≤s

m−s

]
,

and introduce the intervals:

(7.20)

Ai =

[ ∑
j0≤s<i

m−s,
∑
j0≤s<i

m−s +
m−i

2

]
(i ≥ j0)

Bi =

[ ∑
j0≤s<i−1

m−s +
m−i+1

2
,
∑
j0≤s<i

m−s

]
(i > j0).

Note that by convention a sum over an empty set of indices is taken to
be 0; for example, Aj0 = [0,m−j0/2] and Bj0+1 = [m−j0/2,m−j0 ]. For

later convenience let Ai = [a
(0)
i , a

(1)
i ] and Bi = [b

(0)
i , b

(1)
i ]. We choose a

cell σ̂j0 ⊂ Yj0 such that π̂j0(σ̂j0) = σj0 and let ê
(0)
j0

and ê
(1)
j0

denote its

vertical faces. Let Ωp denote the subset of ê
(1)
j0

obtained by removing

points p′ such that y(p′) = km−jv for (k, j) ∈ Z2. Note that Ωp has full

H1-measure in ê
(1)
j0

. Let νp = H1 Ωp .

We define a map Ĥj0 : Aj0 × Ωp → σ̂j0 by letting Ĥj0(·, p′) denote
the unique constant velocity horizontal curve in σ̂j0 starting at p′ and
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ending in ê
(0)
j0

. We let Γp|Aj0 ×Ωp = π̂∞j0 ◦ Ĥj0 . Then Fubini’s Theorem
implies that:

(7.21) (Ĥj0)#(L1 × νp Aj0 × Ωp) = mj0
v L2 σ̂j0 .

Note that the Lipschitz constant of Ĥj0 is at most 2.

As there is a uniform bound on the number of cells of Yj0 that project
to σj0 , we conclude from (7.21) that:

(7.22) (Γp)|#(L1 × νp Aj0 × Ωp) ≈ mj0
v µ spt(Γp|Aj0 × Ωp).

Let Gj0+1 = {G(i)
j0+1}1≤i≤m and note that for p′ ∈ Ωp there is a

unique i = i(p′) such that the point π̂j0+1
j0
◦ Ĥj0(a

(1)
j0
, p′) belongs to

the last cell of G(i)
j0+1. We now write G(i)

j0+1 = {θ1, · · · , θL} and for

each 1 ≤ k ≤ L choose a cell θ̂k ⊂ Yj0+1 such that π̂j0+1(θ̂k) = θk.
Intuitively, the collection of cells Cj0+1 = {θk}1≤k≤L induces a bro-

ken horizontal path Ĵ(·, p′) : Bj0+1 → Yj0+1. More precisely, ob-

serve that θ̂L ∩ (π̂∞j0+1)−1(π̂∞j0 (Ĥj0(a
(1)
j0
, p′)) consists of a single point

p′θL . Then there is a unique horizontal constant velocity path ξθL :

[b
(0)
j0+1, b

(0)
j0+1 + L−1m−j0/2] → θ̂L which starts at p′θL and ends on the

vertical 1-cell of θ̂L other than the one containing p′θL . Let q′θL =

ξθL(b
(0)
j0+1 + L−1m−j0/2). Then again θ̂L−1 ∩ (π̂∞j0+1)−1(π̂∞j0+1(q′θL)) con-

sists of a single point p′θL−1
. This happens because p′ ∈ Ωp forces the

points p′θL and q′θL to lie outside the 0-skeleton of the cells contain-
ing them. We then observe that there is a unique horizontal constant

velocity path ξθL−1
: [b

(0)
j0+1 + L−1m−j0/2, b

(0)
j0+1 + 2L−1m−j0/2] → θ̂L−1

which starts at p′θL−1
and ends on the 1-cell opposite to the one con-

taining p′θL−1
. The construction of the paths ξθL−2

, · · · , ξθ1 continues by

backward induction, constructing ξθk knowing q′θk+1
as we did for θL−1,

and we omit the details. We then let for 1 ≤ k ≤ L:

(7.23) Ĵ(·, p′)|(b(0)
j0+1 +kL−1m−j0/2, b

(0)
j0+1 +(k+1)L−1m−j0/2) = ξk−L,

and extend Ĵ(·, p′) to Bj0+1 so that it is continuous from the left and

Ĵ(b
(0)
j0+1, p

′) = p′θL . We then let

(7.24) Γp|Bj0+1 × Ωp = π̂∞j0+1 ◦ Ĵ.

Note that Γp(·, p′)|Bj0+1 is a Lipschitz curve joining π̂∞j0 (Ĥj0(a
(1)
j0
, p′)) to

a point on the last face e
(1)
j0+1 of σj0+1, and whose Lipschitz constant is
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at most 2L ≤ 2C. Taking into account that for i1 6= i2 the cardinality
of the set:

(7.25)
{

(θ, θ′) ∈ G(i1)
j0+1 × G

(i2)
j0+1 : µ

(
π̂∞j0+1(θ) ∩ π̂∞j0+1(θ′)

)
> 0
}

is uniformly bounded, an argument similar to the one which yielded (7.22)
gives:

(7.26) (Γp)|#(L1 × νp Bj0+1 × Ωp) ≈ mj0+1
v µ spt(Γp|Bj0+1 × Ωp).

The construction then continues by induction on the intervals Ai, Bi.
Note that the choice of Ωp guarantees that, knowing Γp(·, p′)|

⋃
s≤iAs∩⋃i

s=j0+1 Bs, there is a unique extension Γp|Bi+1×Ωp which is obtained

using steps similar to those we used to construct Γp|Bj0+1 × Ωp. The

point is again that (π̂∞i+1)−1(Γ(a
(1)
i , p′)) does not intersect the 0-skeleton

of Yi+1 and so the extension to Bi+1 is uniquely determined. In partic-
ular, one has also the following analogue of (7.26):

(7.27) (Γp)|#(L1 × νp Bi+1 × Ωp) ≈ mi
vµ spt(Γp|Bi+1 × Ωp).

Similarly, knowing Γp(·, p′)|
⋃
s≤iAi∩

⋃
s≤i+1 Bi, there is a unique exten-

sion Γp|Ai+1×Ωp which is constructed similarly to how we constructed
Γp|Aj0 × Ωp. Moreover, one has the following analogue of (7.22):

(7.28) (Γp)|#(L1 × νp Ai+1 × Ωp) ≈ mi+1
v µ spt(Γp|Ai+1 × Ωp).

We finally let Γp(
∑∞

s=j0
m−s, ·) = p because Γp(a

(1)
i , p′)→ p and Γp(b

(1)
i , p′)→

p uniformly in p′ as i↗∞. Thus Γp(·, p′) is a Lipschitz curve of Lips-
chitz constant at most 2C which joins π̂∞j0 (p′) to p. Note that because
of the choice of the string of galleries S (compare (7.4)), there is a
universal constant C0 such that:

(7.29) spt Γp|(Ai ∪Bi)× Ωp ⊂ B(p, C0m
−i).

Let µΓp denote the measure (Γp)|#(L1 × νp [0,
∑∞

s=j0
m−s] × Ωp).

Thus (7.28) and (7.27) imply that:

(7.30)
dµΓp

dµ

∣∣ (X∞ \B(p, C0m
−j)) .

j∑
i=−∞

mi
v . mj

v,

which gives

(7.31) µΓp . µ∞,p B(p, Cm−j0),

where µ∞,p denotes the Riesz potential centered on p.

Step 2: Joining two measured families of curves. We use Step 1 to
build measured families of curves Γp and Γq joining π∞j0 (σj0) = π∞j0 (τj0)
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to p and q respectively. Note that by condition (G4) in the properties

of the string S, both Γp and Γq start at π∞j0 (e
(1)
j0

) = π∞j0 (f
(0)
j0

), where e
(1)
j0

denotes the last face of σj0 and f
(0)
j0

the first face of τj0 .

We now want to concatenate the reverse of Γp and Γq. In fact, Γp is
defined on Ip×Ωp and Γq on Iq ×Ωp where Ωp is a full-measure subset

of e
(1)
j0

and for p′ ∈ Ωp we have Γp(min Ip, p
′) = Γq(min Iq, p

′) = p′.
Note also that the transverse measures νp and νq agree; we can thus
concatenate the reverse of Γp and Γq obtaining a measured family of
curves Γpq. More precisely let:

(7.32) IΓpq = Ip ∪ (Iq + max Ip −min Iq),

and define:
(7.33)

Γpq(t, ω) =

{
Γp(max IΓp − t) if t ∈ [0,L1(IΓp)]

Γq(t−min IΓq + max IΓp) if t ∈ [L1(IΓp),L1(IΓp) + L1(IΓq)].

For the measure νpq we take νp. Now (C1) follows from the choice of
the string S, and (C2) follows since Γp and Γq are 2C-Lipschitz and
because IΓpq is given by (7.32). Note that:

(7.34) µΓ = (Γpq)|#(L1 × νpq IΓpq × Ωp) = µΓp + µΓq ,

and so we get (7.18) in (C3) by using (7.30). �

Theorem 7.35. The metric measure space (X∞, µ) admits a (1, 1)-
Poincaré inequality.

Proof. The (1, 1)-Poincaré inequality can be proven by appealing to a
result [Sem, Thm. 1.22]. As (X∞, µ) is Ahlfors-regular2, one has to
show the existence of a universal constant C such that the following
holds: for any pair of points p, q ∈ X∞ and any pair (u, g), u being a
real-valued Borel function on X∞ and g an upper gradient of u, one
has the estimate:

(7.36) |u(p)− u(q)| ≤ C

(∫
B(p,Cd(p,q))

g dµ∞,p +

∫
B(q,Cd(p,q))

g dµ∞,q

)
.

Let Γ be a measured family of curves joining p to q as in Theorem 7.17.
Then for each ω ∈ ΩΓ one has:

(7.37) |u(p)− u(q)| ≤
∫
IΓ

g(Γ(t, ω)) dt;

2actually by the discussion in [Hei01, Chap. 4] it is enough to assume µ doubling
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integrating (7.37) in νΓ one obtains:

(7.38) |u(p)− u(q)| ≤
∫
g dµΓ,

and (7.36) follows from (7.18). �

8. The analytic dimension

In this section we prove parts (4) and (5) of Theorem 1.1, see Theo-
rem 8.5.

We let Lipb(X) denote the set of bounded real-valued Lipschitz func-
tions defined on X, which is a Banach algebra with norm given by:

(8.1) max

(
‖f‖∞, sup

x1 6=x2

|f(x1)− f(x2)|
d(x1, x2)

)
.

Definition 8.2. Consider a bounded linear operator D : Lipb(X) →
L∞(µ) where µ is a Radon measure on the metric space X. Suppose
that F : X → Y is Lipschitz; then one obtains the pushforward
F#D : Lipb(Y )→ L∞(F#µ) of D as follows; given u ∈ Lipb(Y ), F#Du
is determined by the requirement:

(8.3)

∫
Y

g F#DudF#u =

∫
X

g ◦ F D(u ◦ F ) dµ (∀g ∈ L1(F#µ)).

The collection of metric measure spaces {(Xj, µj)}j∈Z and maps
{πj}j∈Z∪{∞} gives rise to a direct system of operators {Dj}j∈Z as fol-

lows. Let D̂ be the horizontal derivative operator:

(8.4) D̂ : Lipb(R2)→ L∞(L2);

we then let Dj = π̂j#D̂ for j ∈ Z∪{∞}. Note that if k ≥ j, π̂k = πkj ◦π̂j
and so πkj,#Dj = Dk. In fact, the operators Dj are derivations in
the sense of Weaver [Wea00], i.e. satisfy a product rule and a weak*
continuity axiom. These properties are easy to verify, but will not
be used in the following, except in the alternative argument given in
Remark 8.24.

Theorem 8.5. (X∞, µ) has analytic dimension 1 and (X∞, x∞) is a
differentiability chart. Moreover, (5) in Theorem 1.1 holds.

Proof. Let f be a Lipschitz function; as the analytic dimension is a
local property, we will assume f to be bounded. Consider an approx-
imate continuity point p of D∞f and fix M ∈ N; using that p is an
approximate continuity point of D∞f , for each ε > 0 one can choose
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r0(ε) such that, for any r ≤ r0, any i ≤ M + blogm(1/r)c and any cell
σ̂i of Yi satisfying

(8.6) π̂∞i (σ̂i) ⊂ B(p, 2Cr),

one has:

(8.7) −
∫
π̂∞i (σ̂i)

|D∞f(p)−D∞f | dµ ≤ ε.

Let q ∈ X∞ satisfy d(p, q) ≤ r. We let:

(8.8) u = f − f(p)−D∞f(p)(x∞ − x∞(p));

we will show that:

(8.9) |u(p)− u(q)| . (m−M + ε)r,

from which the Theorem follows as M and ε are arbitrary.

Let Mr = blogm(1/r)c+M ; we use Corollary 7.9 to obtain a horizon-
tal gallery GMr = {σ1, · · · , σLr} of 2-cells of XMr such that π∞Mr

(GMr)
“almost connects” p to q. More precisely, one has:

(8.10)
d(π∞Mr

(σ1), p) ≤ Crm−M

d(π∞Mr
(σLr), q) ≤ Crm−M ;

and

(8.11) Lrm
−Mr ≤ Cr,

where C is a universal constant.

For j ∈ Z let Sj denote the 1-skeleton of Yj; then Sj is π̂j-saturated,
i.e. (π̂j)−1(π̂j(Sj)) = Sj; as Sj is L2-null, we conclude that π̂j(Sj) is µj-
null. Note that π̂j restricts to a homeomorphism mapping Yj \Sj onto
Xj \ π̂j(Sj); in particular, π̂j maps open cells of Yj homeomorphically
onto open cells of Xj. Let v ∈ Lipb(Xj) and σ be an open cell of Xj;
using the definition of pushforward, we conclude that Djv coincides

µj-a.e. with the horizontal derivative D̂(v ◦ π̂j), i.e.:

(8.12) Djv = D̂(v ◦ π̂j) ◦ (π̂j)−1 (on σ).

Consider two adjacent cells σi, σi+1 of GMr ; as σi and σi+1 share a
vertical face, the Fubini representation of µMr (σi ∪ σi+1) and the
fundamental Theorem of Calculus imply
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(8.13)

∣∣∣∣−∫
σi

(u ◦ π∞Mr
) dµMr −−

∫
σi+1

(u ◦ π∞Mr
) dµMr

∣∣∣∣
. m−Mr−

∫
σi∪σi+1

|DMr(u ◦ π∞Mr
)| dµMr .

The goal is now to replace the derivative DMr(u ◦ π∞Mr
) with D∞u

in the right hand side of (8.13). Fix a 2-cell σ of XMr and let σ̂ be
the 2-cell of YMr such that π̂Mr(σ̂) = σ. The map π̂Mr restricts to
a homeomorphism between the interiors of σ̂ and σ; we now define
g ∈ L1(µMr) by letting:

(8.14) g =

{
χσ

µMr (σ)

(
sgn(DMr(u ◦ π∞Mr

))
)

on the interior of σ

0 elsewhere;

then we have:

(8.15) g ◦ π̂Mr =
χσ̂
L2(σ̂)

sgn(DMr(u ◦ π∞Mr
)) ◦ π̂Mr ,

and using the definition of pushforward (8.3) we get:

(8.16) −
∫
σ

|DMr(u ◦ π∞Mr
)| dµMr ≤ −

∫
σ̂

∣∣∣D̂(u ◦ π̂∞)
∣∣∣ dL2.

Let Ŝ be the union of the 1-skeleta of Yj for j ∈ Z; then Ŝ is L2-

null and π̂∞-saturated so that µ∞(π̂∞(Ŝ)) = 0. Now π̂∞ restricts to

a homeomorphism between R2 \ Ŝ and X∞ \ π̂∞(Ŝ); in particular, we
can define g ∈ L1(µ∞) as:

(8.17) g =

{
χπ̂∞(σ̂)

µ∞(π̂∞(σ̂))

(
sgn D̂(u ◦ π̂∞)

)
◦ (π̂∞)−1 on X∞ \ π̂∞(σ̂)

0 elsewhere;

then:

(8.18) g ◦ π̂∞ =
χσ̂
L2(σ̂)

sgn D̂(u ◦ π̂∞)

as an element of L1(L2); therefore, using the definition of pushfor-
ward (8.3), we get:

(8.19) −
∫
σ̂

∣∣∣D̂(u ◦ π̂∞)
∣∣∣ dL2 ≤ −

∫
π̂∞(σ̂)

|D∞u| dµ∞.
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Combining (8.19), (8.16), (8.13) we get:
(8.20)∣∣∣∣−∫
σi

(u ◦ π∞Mr
) dµMr −−

∫
σi+1

(u ◦ π∞Mr
) dµMr

∣∣∣∣ . m−Mr−
∫
π̂∞(σi∪σi+1)

|D∞u| dµ∞,

and using (8.7) we conclude that:

(8.21)

∣∣∣∣−∫
σi

(u ◦ π∞Mr
) dµMr −−

∫
σi+1

(u ◦ π∞Mr
) dµMr

∣∣∣∣ . m−Mrε.

Summing over i and using (8.11) we obtain:
(8.22)∣∣∣∣∣−
∫
π∞Mr (σ1)

u dµ∞ −−
∫
π∞Mr (σLr )

u dµ∞

∣∣∣∣∣ =

∣∣∣∣∣−
∫
σ1

u ◦ π∞Mr
dµMr −−

∫
σLr

u ◦ π∞Mr
dµMr

∣∣∣∣∣ ≤ Cεr;

using (8.10) and that u is Lipschitz, we obtain:

(8.23) |u(p)− u(q)| ≤ 2C LIP(u)rm−M + εCr,

which gives (8.9).

Finally, the horizontal derivative operator D∞ is associated with the
pushforward under π̂∞ of the family Γ̂ of horizontal lines of Rn equipped
with the obvious measure; now (8.16) can be interpreted as saying that
this family of lines gives a universal Alberti representation in the sense
of Bate. Note also that the horizontal geodesics are really gradient
curves for f , in the sense that f decreases/increases along them with
optimal speed in the sense of [Sch13], see also Remark 8.28. �

Remark 8.24. There is an alternative approach to the proof that the
analytic dimension is 1, which uses directly the measured families of
curves constructed in Theorem 7.17. This approach is based on Weaver
derivations. By [Sch14, Thm. 5.9] it suffices to show that for each
Lipschitz function f the inequality:

(8.25) Lip f . |D∞f |
holds µ∞-a.e. Let p be a Lebesgue point for |D∞f |. Given a point
q, we consider the measured family of curves Γ joining p to q which
was constructed in Theorem 7.17; by inspecting the construction of Γ
and using estimates like (8.16), (8.19) one concludes that there is a
universal constant C such that:

(8.26) |f(p)−f(q)| ≤ C

∫
B(p,Cd(p,q))∪B(q,Cd(p,q))

|D∞f | (dµ∞,p+dµ∞,q);

recall that µ∞,p(B(p, Cd(p, q))) ≈ µ∞,q(B(p, Cd(p, q))) ≈ d(p, q). As
p is a Lebesgue point for |D∞f |, the fact that µ∞ is doubling implies
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that:

(8.27)

lim
q→p
−
∫
B(p,Cd(p,q))

|D∞f | dµ∞,p = |D∞f |(p)

lim
q→p
−
∫
B(q,Cd(p,q))

|D∞f | dµ∞,q = |D∞f |(q).

Thus, dividing (8.26) by d(p, q) and taking the lim sup as q → p, (8.25)
follows.

Remark 8.28. Let f be Lipschitz and gf denote its generalized minimal
upper gradient. By [Che99, Secs. 5,6] (see [CKS] for a simplified proof)
we know that gf = Lip f µ∞-a.e. However, in these examples one
can obtain a direct argument under the following lines. As we are
dealing with a PI space we already know that Lip f ≤ Cgf ; moreover,
as the Sobolev space H1,p(µ∞) is reflexive for p > 1, one can always
assume that gf is the Lp-limit of a sequence gk where gk is an upper
gradient of a Lipschitz function fk, and where fk → f in H1,p(µ∞)
and Lip fk → Lip f µ-a.e. It thus suffices to show that whenever g
is an upper gradient for f , one has g ≥ Lip f µ-a.e. Without loss of
generality we can assume g ∈ L1

loc(µ∞). We secondly observe that,
as x∞ is a chart function, we have Lip f = |D∞f | µ-a.e. Now the
Fubini representation of the measure L2 on R2 descends to a similar
representation of the measure µ∞ in terms of the horizontal geodesics
of X∞. If p is a Lebesgue point for g and |D∞f |, for any ε > 0
we can find a horizontal line γ with γ(0) a Lebesgue point for g ◦ γ
and D∞f ◦ γ, d(γ(0), p) ≤ ε, and g(γ(0)) ∈ [g(p) − ε, g(p) + ε], and
|D∞f |(γ(0)) ∈ [|D∞f |(γ(0))− ε, |D∞f |(γ(0)) + ε]. Applying Lebesgue
differentation to g◦γ and D∞f ◦γ at 0 one gets g(γ(0)) ≥ |D∞f |(γ(0)).

9. The n = 2 case of Theorem 1.1 concluded

We now verify (6) of Theorem 1.1 in the n = 2 case.

Let {(λkX∞, pk)} and (Z, z) be as in the statement of Theorem
1.1. For every k, the map π̂∞ : (Rn, λkdα) → X∞ is a rescaling of
a David-Semmes regular map, so it is a David-Semmes regular map
with uniform constants. Therefore there is an N such that for every k,
there exists points p̂k,1, . . . , p̂k,` (` ≤ N), such that (π̂∞)−1(B(pk, r)) ⊂
∪iB(pk,i, Cr) for all r ∈ (0,∞). After passing to a subsequence we may
assume that ` is constant, and that for each 1 ≤ i ≤ `, the pointed
maps π̂∞ : (Rn, λkd̂

Y
∞, p̂k,i) → (λkX∞, pk) Gromov-Hausdorff converge

as k →∞ to a Lipschitz map φi : (Wi, wi)→ (Z, z). Then the φi’s are
David-Semmes regular, and ∪i Im(φi) = Z.
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As φi is a light map, the topological dimension of (Z, z) is at least n.
Note that the properties of satisfying a (1, 1)-Poincaré inequality, being
Ahlfors Q-regular, and having Assouad-Nagata dimension ≤ n, with
uniform constants, all pass to Gromov-Hausdorff limits. Therefore (2)
and (3) hold.

Part (4) can be verified in several different ways.

One approach is to implement either of the arguments of Section 8 by
passing the ingredients — the horizontal galleries of Corollary 7.9, the
measured families of curves Γ of Theorem 7.17 and the derivation D∞
— to the limit space Z. More specifically, in adapting Remark 8.24,
one can associate to Γ and D∞ normal 1-currents in the sense of Lang
and use compactness of normal currents [Lan11, Thm. 5.4].

A second approach is to exploit the symmetry of X∞. Using the
self-similarity of X∞ induced by the affine transformation Φ : R2 → R2

we may assume, without loss of generality, that the scale factor λk is 1
for all k. Also, note that the action Z2 y R2 preserves the equivalence
relationR∞ on the open set {p ∈ R2 | x(p) 6∈ Z}, and induces an action
on {p ∈ X∞ | x∞(p) 6∈ Z} which is a local isometry. In particular, for
every point p ∈ X∞ with x∞(p) 6∈ Z, if r = dist(x∞(p),Z), then the ball
B(p, r) ⊂ X∞ is measure-preserving isometric to the ballB(π̂∞(q̂), r) ⊂
X∞ for some q̂ ∈ (0, 1)2. This property passes to the Gromov-Hausdorff
limit, allowing one to see that HQ-a.e. point of Z lies in a ball that is
isometric to a ball in X∞ itself, and in particular the analytic dimension
is 1.

A third approach involves rescaling the direct system of cell com-
plexes {Xj} and passing to a pointed limit, which is another pointed
direct system with similar properties. See Section 11 — especially Sub-
section 11.4 — for more details.

10. The n > 2 case of Theorem 1.1

In this section we will discuss the higher-dimensional version of the
examples treated in Sections 3-5.

Pick n > 2. We will imitate the n = 2 construction, but where the
last (n− 1) coordinates of Rn will play the rôle of the y-coordinate in
R2. Thus the notation (x, y) will henceforth mean that y ∈ Rn−1. The
words “horizontal” and “vertical” will have obvious interpretations in
this new setup.
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Let m = 1 + 3(n − 1), and pick mv � m. Let Φ : Rn → Rn be
the linear transformation Φ(x, y) = (m−1x,m−1

v y). Let Y0 be the cell
structure on Rn coming from the tiling by unit cubes, and for j ∈ Z
let Yj be the image of Y0 under Φj.

Following the n = 2 construction, we define an equivalence relationR
on Rn that is generated by the identifications of certain pairs of (n−1)-
cells of Y1 by vertical translation. For each k ∈ Z, d ∈ {2, . . . , n}, we
perform gluings within the three vertical hyperplanes

{(x1, . . . , xn) ∈ Rn | x1 = k +m−1(1 + 3(d− 2) + (i− 1))}i∈{1,2,3} ,
so as to enable horizontal galleries to “jump” in the xd-coordinate di-
rection. To define these gluings, for each k, ` ∈ Z, 2 ≤ d ≤ n, 1 ≤ i ≤ 3,
we let

(10.1)

ak,`,d,i =

{
(x1, . . . , xn)

∣∣∣∣∣ x1 = m−1(1 + 3(d− 2) + (i− 1)) ,

xd ∈ [(3`+ i− 1)m−1
v , (3`+ i)m−1

v ]

}
,

(10.2)

a′k,`,d,i =

{
(x1, . . . , xn)

∣∣∣∣∣ x1 = m−1(1 + 3(d− 2) + (i− 1)) ,

xd ∈ [(3`+ i)m−1
v , (3`+ i+ 1)m−1

v ]

}
,

and we identify ak,`,d,i with a′k,`,d,i by the vertical translation p 7→ p +

m−1
v ed.

The definition of R∞ and the pseododistance d̂∞ on the quotient
X∞ remain the same as before. Then (X∞, d̂∞) is the metric space of
Theorem 1.1 for general n.

The verification of the assertions in Theorem 1.1 for (X∞, d̂∞) pro-
ceeds along the same steps, with appropriate modifications, a few of
which we indicate here:

• A gallery is a chain of cells where two consecutive cells share
an (n− 1)-face.
• (cf. Lemma 3.3(1)) If p0, p1 ∈ Xj are distinct points with
πj(p0) = πj(p1), then pi = π̂j(p̂i) for a unique point p̂i ∈ Rn,
and the pair p̂0, p̂1 is contained in `∩ (σ̂0 ∪ σ̂1), where ` ⊂ Rn is
vertical line ` ⊂ Rn parallel to one the dth-coordinate axis for
some 2 ≤ d ≤ n, and σ̂0, σ̂1 is a vertical gallery the (n − 1)-
skeleton of Yj+1 (i.e. a pair of vertical (n − 1)-cells that share
an (n− 2)-cell).
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• If σ is an n-cell ofXj (or Yj), then it has two vertical (n−1)-faces
τ0, τ1, where xj(τ1) = xj(τ0) + m−j; these replace the vertical
1-cells in the n = 2 case.
• The cosets of Rj lie in orbits of m−jZ×m−jv Zn−1, so the maps
ŷj and yj take values in Rn−1/m−jv Zn−1 instead of R/m−jv Z.

• For the proof that (X∞, d̂∞) has Assouad-Nagata dimension
≤ n, one builds (n + 1) “good families” of subsets by working
with cells of dimension 0 through n.

In addition to the minor points above, there are changes to the proof of
Proposition 4.12 that require more care. In Steps 1 and 2 of the proof,
rather than using the distance to 0 ∈ S1(m−jv ), one uses the distance to
the (n − 2)-skeleton in the torus T n−1(m−jv ) = Rn−1/m−jv Zn−1. How-
ever, the conclusion of Step 2 only says that π−1

i (σ̄i3) lies at controlled
distance from the (n− 2)-skeleton of T n−1(m−jv ). To proceed, one has
to inductively exclude the possibility that π−1

i (σ̄i3) lies far from the
(n − 3)-skeleton of T n−1(m−jv ), etc. This is done using a variation on
Steps 1 and 2, where one uses the distance from the (n − k)-skeleton
of T n−1(m−jv ), for k ≥ 3, and a variation of Lemma 4.9.

11. Generalizations

In this section we consider generalizations of the examples given in
previous sections. It is not our intention to be exhaustive — it is clear
that one can further generalize the contruction in different ways. Our
main purpose is to illustrate that the same overall scheme of proof
applies to a much broader class of examples, and to clarify the logical
structure of the proofs by identifying the essential properties needed.

11.1. Admissible systems. Before giving the precise definition, we
begin with some observations about the examples discussed in earlier
sections. These are direct limits of direct systems

. . .
π−1−→ X0

π0−→ X1
π1−→ . . .

πj−1−→ Xj
πj−→ . . .

where the Xj’s are cell complexes. Crucial to the analysis is the distinc-
tion between horizontal and vertical directions, and the fact that the
first coordinate function on Rn descends to a compatible family of func-
tions. We will axiomatize this by requiring cells to have distinguished
characteristic maps that induce the horizontal/vertical structure.

Fix integers n ≥ 2 and 2 ≤ m ≤ mv. Let {Yj}j∈Z be a family of
tilings of Rn, where Yj is a tiling by translates of the parallelopiped
[0,m−j] × [0,m−jv ]n−1, and for all j ∈ Z, the tiling Yj+1 is subdivision



44 BRUCE KLEINER AND ANDREA SCHIOPPA

of Yj. Let G be the group of isometries g : Rn → Rn of the form
g = idR×h for some isometry h : Rn−1 → Rn−1. Let Gj ⊂ G be the
subgroup that preserves the cell structure of Yj; hence for all g ∈ Gj,
the linear part L(g) preserves the set of coordinate vectors {±ei}2≤i≤n.

Definition 11.1. An admissible direct system is a tuple consisting
of:

• A direct system of cell complexes indexed by the integers

. . .
π−1−→ X0

π0−→ . . . . . .
πj−1−→ Xj

πj−→ . . .

• A collection {xj : Xj → R} of continuous maps.
• For each cell σ of Xj, a collection Φσ of distinguished charac-

teristic maps φ : σ̂ → σ, where σ̂ is a cell of Yj.
• A Radon measure µj on Xj for all j ∈ Z.

The tuple is required to satisfy the following conditions for some con-
stants ∆, H:

(Ax1): Xj is connected, is a union of its closed n-cells, and all
links have cardinality at most ∆.

(Ax2): Compatibility of distinguished characteristic maps:
(Ax2a): (Compatibility with G) For any cell σ of Xj, any

two elements φ0 : σ̂0 → σ, φ1 : σ̂1 → σ of Φσ agree up to
precomposition with some g ∈ Gj such that g(σ̂0) = σ̂1. In
particular, the notions of vertical and horizontal cells in Yj
descend to well-defined notions for cells in Xj.

(Ax2b): (Compatibility with face restrictions) The restric-
tion of any distinguished characteristic map φ : σ̂ → σ to
a face of σ̂ is a distinguished characteristic map.

(Ax2c): (Compatibility with subdivision) If σ is a cell of Xj

and φ : σ̂ → σ belongs to Φσ, then for any cell σ̂′ of Yj+1

contained in σ̂, the composition πj ◦ φ|σ̂′ : σ̂′ → σ′ ⊂ Xj+1

is a distinguished characteristic map of some cell σ′ ofXj+1.
Moreover all distinguished characteristic maps of Xj+1 may
be obtained in this way.

(Ax2d): (Compatibility with xj) For every cell σ of Xj and
every φ : σ̂ → σ in Φσ, xj ◦φ = x, where x : Rn → R is the
first coordinate function.

(Ax3): πj : X
(1)
j → Xj+1 is a surjective cellular map, where

X
(1)
j denotes the subdivision of Xj defined by restricting distin-

guished characteristic maps φ : σ̂ → σ to cells σ̂′ ∈ Yj+1.
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(Ax4): (Fibers have controlled vertical diameter) For every j,
and every 0-cell v̄ of Xj+1, any two elements v0, v1 of the inverse

image π−1
j (v̄) are contained in a vertical edge path of X

(1)
j of

combinatorial length at most H.
(Ax5): (Gallery accessibility) For every j, and any two adjacent
n-cells σ0, σ1 of Xj, there is a horizontal gallery from σ0 to σ1

of combinatorial length at most ∆.
(Ax6): Compatibility of measures:

(Ax6a): (πj)#µj = µj+1 for all j ∈ Z.
(Ax6b): (Lebesgue measure on cells) For every j, every n-

cell σ of Xj, and every φσ ∈ Φσ, the restriction µj σ agrees
with the pushforward of the Lebesgue measure, (φσ)#Ln,
up to a constant wσ.

(Ax6c): (Doubling) For any two adjacent n-cells σ, σ of Xj,
the weights wσ, wσ′ agree to within a factor of at most ∆.

Remark 11.2. As with the examples from Sections 2 and 10, one way
of constructing an admissible direct system is by defining an increasing
sequence . . . ⊂ Rj−1 ⊂ Rj ⊂ Rj+1 ⊂ . . . of equivalence relations on
Rn, such that Rj respects the cell structure on Yj and the quotients
Xj = Rn/Rj satisfy Definition 11.1.

For any admissible system we define a pseododistance d̂∞ on the
direct limit X∞ as follows. We let d̂∞ be the largest pseudodistance on
X∞ such that, for every j ∈ Z and every cell σ̂ of Xj, the projection

to X∞ has d̂∞-diameter at most m−j. In general this need not define
a metric (see the next example), so we form a metric space (X̄∞, d̄∞),
the limit space of the admissible system, by collapsing subsets of
X∞ of zero d̂∞-diameter to points. We denote by π̄∞j the composition

Xj

π∞j→ X∞ → X̄∞. The pushforward of µj under π̄∞j is independent
of j by Axiom (Ax6), and it thus defines the natural measure µ∞ on
X̄∞.

Example 11.3. To illustrate how the pseudodistance d̂∞ can fail to
be a distance, we construct a direct system {Xj} that satisfies all the
conditions of Definition 11.1 except (Ax5), such that the psuedodis-

tance d̂∞ is not a distance. It is not hard to modify this example to
obtain an admissible system with the same property.

Let n = 2, m = 3, mv = 6. For every k, ` ∈ Z2, we define a pair of
2-cells

ak,` =

[
1

3
+ k,

2

3
+ k

]
×
[

1

6
+ `,

2

6
+ `

]
,
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a′k,` =

[
1

3
+ k,

2

3
+ k

]
×
[

4

6
+ `,

5

6
+ `

]
.

Now let R be the equivalence relation on R2 obtained by identifying
ak,` with a′k,` by the vertical translation p 7→ p+ 1

2
e2, for every k, `. We

now define Rj, Xj, π̂
j, etc. as in Section 3. Then {Xj = R2/Rj} is the

desired direct system. Note that there is a Cantor set in the vertical
line {x = 1

2
} that maps to a subset of X∞ with zero d̂∞-diameter.

On the other hand if p̂ ∈ R2, p = π̂∞(p), then the set (π̂∞)−1(p) is
countable, being a countable union of the sets (π̂j)−1(π̂j(p̂)), each of
which is finite.

Most of Theorem 1.1 generalizes verbatim to admissible systems:

Theorem 11.4. For every n,m,H, there is an mv = mv(n,m,H) such
that if mv ≥ mv, then:

(1) (X̄∞, d̄∞, µ∞) is a complete doubling metric measure space sat-
isfying a (1, 1)-Poincaré inequality.

(2) X̄∞ has topological and Assouad-Nagata dimension n.
(3) (X̄∞, d̄∞, µ∞) has analytic dimension 1.
(4) (1)-(3) also hold for any pointed measured Gromov-Hausdorff

limit of any sequence of rescalings of (X̄∞, d̄∞, µ∞).

Part (1) of Theorem 1.1 does not generalize directly to admissible
systems, because, in particular, (X̄∞, d̄∞) is not Ahlfors-regular in gen-
eral. To formulate a modified statement, we introduce another metric
on the Xj’s, which plays the role of the metric dα on Rn.

Definition 11.5. For all j ∈ Z, let dj be the largest pseudodistance

on Xj such that dj ≤ d̂j, and every cell of X
(k)
j has dj-diameter at most

m−(j+k).

Theorem 11.6. For every j ∈ Z:

(1) (Xj, dj, µj) is a doubling metric measure space.
(2) π̄∞j : (Xj, dj) → (X̄∞, d̄∞) is a Lipschitz light map (see Defini-

tion 11.7); in particular, the point inverses of π̄∞j are uniformly
totally disconnected (i.e. have Assouad-Nagata dimension 0).

(3) Let Q = 1 + (n−1) logmv
logm

. If for every j, the inverse image un-

der πj : Xj → Xj+1 of every open n-cell of Xj+1 is a sin-

gle open n-cell of X
(1)
j , then (Xj, dj) is Ahlfors Q-regular, and

π̄∞j : (Xj, dj)→ (X̄∞, d̄∞) is a David-Semmes regular map.
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We recall here the notion of Lipschitz light map [CK13, Def. 1.14].

Definition 11.7. A Lipschitz map f : X → Y is Lipschitz light if
there is some C > 0 such that for every bounded subset W ⊂ Y the
diam(W )-components of f−1(W ) have diameter at most C diam(W ).
Note that a Lipschitz light map is also a continuous light map.

11.2. The proof of Theorem 11.4. Overall, the proof of parts (1)-
(3) of Theorem 11.4 follows closely that of Theorem 1.1. However,
some modifications are needed and these are explained in this Subsec-
tion. In Subsection 11.4 we give the proof of item (4), i.e. the stability
under taking weak tangents. Note that even for the specific examples
considered in the previous sections a cleaner treatment is obtained in
the more general context of admissible systems.

The proof of Proposition 4.12 remains valid using a map yj which

takes values in the quotient T̃j of Rn−1 ' {0} × Rn−1 ⊂ Rn by the
action of Gj, which is a quotient of the torus T n−1 = Rn−1/m−jv Zn−1 by
the finite group of orthogonal transformations of Rn−1 that preserves
the subset {±ed}2≤d≤n. Note that in the case n ≥ 3 one must also
modify Steps 1 and 2 of that argument by using the distances from the
{0, 1, · · · , n− 2}-skeleta of T̃j (compare Section 10).

The proof that the Assouad-Nagata dimension of X̄∞ is at most n
can be carried out as in Theorem 6.2 by working with the cells of Xj

of dimensions 1, · · · , n. The fact that the topological dimension (and
hence the Assouad-Nagata dimension) is at least n can be deduced by
adapting either of the arguments in Lemma 5.2.

To prove the Poincaré inequality, one can essentially follow the ar-
gument of Theorem 7.35.

We now turn to the proof of assertion (3) in Theorem 11.4, i.e. that
(X̄∞, d̄∞, µ∞) has analytic dimension 1. We first define a direct system
of derivations {Dj : Lipb(Xj, dj) → L∞(Xj, µj)} as follows. For every
bounded dj-Lipschitz function uj : Xj → R we let Djuj be the function
in L∞(µj) such that, for every n-cell σ of Xj, we have

Dj(uj ◦ φσ) =
∂(uj ◦ φσ)

∂x

for every distinguished characteristic map φσ ∈ Φσ; this is well-defined
because of (Ax2a). Note that the family {Dj} is compatible with the
projections {πkj }, and by pushforward we get a well-defined derivation

D∞ : Lipb(X̄∞) → L∞(X̄∞, µ∞). With this setup, the first part of
the proof of Theorem 8.5 (or using Weaver derivations as sketched
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in Remark 8.24) carries over. The justification after (8.13) requires
modifications for general admissible systems, however, as it is based on
the fact that for µ∞-a.e. point, the point inverse (π∞j )−1(p) contains
only one point. Instead, one may use the fact that for a Lipschitz
function f : X̄∞ → R, the function Dj(f ◦ π̄∞j ) is a.e. constant on the
fibers of π̄∞j , which is established in Lemmas 11.8, 11.13, and 11.19.

Lemma 11.8. Fix p∞ ∈ X̄∞ and k ≥ j; let S = {σ0, · · · , σL} be a

chain of n-cells of X
(k−j)
j such that each cell of S intersects (π̄∞j )−1(p∞).

Assume that:

(11.9) pj ∈ σ0 ∩ (π̄∞j )−1(p∞);

if mv is sufficiently large there is a universal constant C0 such that:

(11.10) dj(pj, σL) ≤ 3C0m
−k.

Moreover, let k ≥ j and denote by σk the n-cell of X
(1)
k containing

πkj (pj). Assume that any vertical gallery in X
(1)
k from σk to the hori-

zontal (n−1)-skeleton of Xk has length at least 10H. Then (π̄∞k )−1(p∞)
is entirely contained in the open n-cell of Xk that contains πkj (pj).

Proof. Let S = {σ0, · · · , σL} be a chain of n-cells of X
(k−j)
j such that

each cell of S intersects (π̄∞j )−1(p∞). Fix pj ∈ σ0 ∩ (π̄∞j )−1(p∞). By

Corollary 4.19, πkj (S) lies in the star of a cell of Xk; by Axiom (Ax4)

we conclude that πk−1
j (S) lies in a combinatorial ball of radius C0 in

X
(1)
k−1 which is centered on an n-cell of X

(1)
k−1. Consider now an n-cell

σ of X
(k−1−j)
j ; by Axiom (Ax2c) the map πk−1

j : X
(k−j)
j → X

(1)
k−1 is a

combinatorial isomorphism when restricted to σ. Thus, for 0 ≤ i ≤ L
we have:

(11.11)
dR(xj(σ0), xj(σi)) ≤ 2m−k

dT̃j(yj(σ0), yj(σi)) ≤ 2C0m
−k
v ;

therefore, if mv is sufficiently large compared to C0 and m we must
have:

(11.12) dj(σ0, σi) ≤ 3C0m
−k.

Let now σk denote the n-cell of X
(1)
k containing πkj (pj) and assume

that any vertical gallery in X
(1)
k from σk to the horizontal (n − 1)-

skeleton of X
(1)
k has length at least 10H. Let q ∈ (π̄∞k )−1(p∞) and

choose a cell σ′k of X
(1)
k which contains q and intersects (π∞k )−1(p∞). As

both cells πk(σk) and πk(σ
′
k) meet (π̄∞k+1)−1(p∞), by Corollary 4.19 they
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must be adjacent. However, as σ′k intersects (π∞k )−1(p∞), by Axiom

(Ax4) there is a vertical gallery in X
(1)
k of length at most H from σk

to a cell τ adjacent to σ′k. Thus q lies in the open cell of Xk containing
πkj (pj). �

Lemma 11.13. Let {gj : Xj → R}j∈Z be a family of bounded measur-
able functions, and suppose that {gj} is compatible with projection in
the sense that, for all j ≤ k, one has gk ◦πkj = gj µj-a.e. Moreover, let

g∞ ∈ L∞(X̄∞, µ∞) be the function satisfying:

(11.14) π̄∞j#(gjµj) = g∞µ∞.

Then for every j ∈ Z, and µ∞-a.e. p ∈ X̄∞, if µ̃j(p) is the disintegra-
tion of µj with respect to π̄∞j , then gj is µ̃j(p)-a.e. equal to g∞(p) on

(π̄∞j )−1(p).

Proof. For η ∈ [1, bmv
3H
c] and k ≥ j let Sη,k be the set of points q ∈ Xj

such that:

(a) q does not belong to the (n−1)-skeleton of X
(k−j)
j for any k ≥ j.

(b) If σ is the n-cell of X
(1)
k containing πkj (q), then any vertical

gallery in X
(1)
k from σ to the horizontal (n− 1)-skeleton of Xk

has length at least ηH.

If q ∈ Sη,k and η ≥ 10, by Lemma 11.8 the fibre (π̄∞k )−1(π̄∞j (q)) is

entirely contained in the open n-cell of Xk which contains πkj (q).

We now look at the set of points S in Xj such that (b) occurs infin-
itely often:

(11.15) Sη =
⋂
k≥1

⋃
k′≥k

Sη,k′ ;

then µj(S
c
η) = 0. Consider now the subset Ω ⊂ X̄∞:

(11.16) Ω =
{
p ∈ X̄∞ : (π̄∞j )−1(p) ∩ Sc10 6= ∅

}
;

then by Lemma 11.8 (π̄∞j )−1(Ω) ⊂ Sc9 and so µ∞(Ω) = 0. Thus for

µ∞-a.e. p ∈ X̄∞ we can assume that (π̄∞j )−1(p) ⊂ S10.

As the Lebesgue Differentiation Theorem holds in Xj, for µ∞-a.e. p ∈
X̄∞ there is a subset Tp ⊂ (π̄∞j )−1(p) of full µ̃j(p) measure such that
Tp ⊂ S10 and every q ∈ Tp is an approximate continuity point of gj.
Let q, q′ ∈ Tp, and ε > 0. For any k0 ≥ j we can find k ≥ k0 such

that q ∈ S10,k; let σ̂, σ̂′ be the n-cells of X
(k−j)
j which contain q, q′
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respectively. Provided k0 is sufficiently large, we will have

(11.17) max

(∣∣∣∣−∫
σ̂

gj dµj − gj(q)
∣∣∣∣ , ∣∣∣∣−∫

σ̂′
gj dµj − gj(q)

∣∣∣∣) < ε .

As q ∈ S10,k, we have πkj (σ̂) = πkj (σ̂′), and then

(11.18) −
∫
σ̂

gj dµj = −
∫
πkj (σ̂)

gk dµk = −
∫
πkj (σ̂′)

gk dµk = −
∫
σ̂′
gj dµj .

Therefore |gj(q)− gj(q′)| < 2ε, and as ε was arbitrary, we have gj(q) =
gj(q

′). Now the lemma follows because (11.14) and the Disintegration
Theorem imply that for µ∞-a.e. p ∈ X̄∞ g∞(p) is the µ̃j(p) average of
gj. �

Lemma 11.19. For j ∈ Z and p ∈ X̄∞, we let µ̃j(p) denote the
disintegration of µj with respect to π̄∞j . Let u : X̄∞ → R be Lipschitz,

and uj = u ◦ π̄∞j . Let D∞u ∈ L∞(X̄∞, µ∞) be the function satisfying:

(11.20) π̄∞j#(Djuj · µj) = D∞u · µ∞.

Then for µ∞-a.e. p ∈ X∞, one has:

(11.21) Djuj = D∞u(p) (µ̃j(p)-a.e.)

Proof. We apply Lemma 11.13; thus it suffices to show that for k ≥ j
one has:

(11.22) Dkuk ◦ πkj = Djuj (µj-a.e.)

Let S be the set of points q ∈ Xj which do not belong to the (n− 1)-

skeleton of X
(m−j)
j for any m ≥ j. Note that

(11.23) µj(S) = µk(π
k
j (S)) = 0.

Now, for µj-a.e. q, Djuj(q) equals (uj ◦ γq)′(0) where γq is a unit-
speed horizontal segment with γq(0) = q and along which xj ◦ γq is
non-decreasing. As the fibres of πkj are finite, we also have that for µj-

a.e. q, Dkuk(π
k
j (q)) equals (uk ◦ γπkj (q))

′(0) where γπkj (q) is a unit-speed

horizontal segment with γπkj (q)(0) = πkj (q), and along which xk ◦ γπkj (q)

is non-decreasing. If q ∈ S for some δ > 0 one has:

(11.24) πkj (γq(t)) = γπkj (q)(t) (|t| ≤ δ);

as uj = uk ◦ πkj we conclude that (11.22) holds. �
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11.3. Proof of Theorem 11.6.

Proof of Theorem 11.6. We first prove (1). Note that Axioms (Ax6),
(Ax1) imply the existence of a C = C(∆, n) (independent of j) such
that:
(11.25)
µj
(
BXj(pj, r)

)
≥ C−1µj

(
BXj(pj, 2r)

)
(∀r ≤ 4m−j+1, pj ∈ Xj).

Assume that r > m−j, and let k be such that m−k < r ≤ m−k+1; and
choose a point pk−1 ∈ (πjk−1)−1(pj). As πjk−1 is 1-Lipschitz:

(11.26) BXk−1
(pk−1, r) ⊂ (πjk−1)−1

(
BXj(pj, r)

)
;

on the other hand, Proposition 4.12 implies that:

(11.27) (πjk−1)−1
(
BXj(pj, 2r)

)
⊂ (π̄∞k−1)−1

(
BX̄∞(π̄∞j (pj), 2r)

)
⊂ BXk−1

(pk−1, 4m
−k+1);

thus, combining (11.26), (11.27) one gets:

µj (Bj(pj, r)) ≥ µk−1

(
BXk−1

(pk−1, r)
)

≥ C−2−log2mµk−1

(
BXk−1

(pk−1, 4m
−k+1)

)
≥ C−2−log2mµj (Bj(pj, 2r)) .

(11.28)

We now prove (2), i.e. that π̄∞j is a Lipschitz-light map. We will show
that there is a universal constant C such that for each (k, j, p∞) ∈
Z2 × X̄∞, (π̄∞j )−1(p∞) can be covered by a family of sets {Ωα}α such
that:

(11.29) diam Ωα ≤ Cm−k,

and

(11.30) d(Ωα,Ωβ) ≥ m−k (α 6= β).

Note that by Corollary 4.19 any two points of (π̄∞j )−1(p∞) must belong
to adjacent cells of Xj, so the case of interest is k > j.

For each n-cell σ of X
(k−j)
j intersecting (π̄∞j )−1(p∞) let Ωσ denote

the set of points of (π̄∞j )−1(p∞) that can be connected to σ using a

chain S = {σ0, · · · , σL} of cells of X
(k−j)
j , such that each σi intersects

(π̄∞j )−1(p∞). From (11.10) in Lemma 11.8 we conclude that:

(11.31) diam Ωσ ≤ 6C0m
−k.

On the other hand, if Ωσ 6= Ωσ′ , then Ωσ and Ωσ′ do not intersect

adjacent cells of X
(k−j)
j and hence:

(11.32) dj(Ωσ,Ωσ′) ≥ m−k.



52 BRUCE KLEINER AND ANDREA SCHIOPPA

We now turn to the proof of (3). We first observe that if σ is an
n-cell of Xj, one has:

(11.33) µj(σ) = wσm
−jQ,

where wσ is the weight in Axiom (Ax6b). Let σ0, σ1 be n-cells of Xj.
If

(11.34) dj(σ0, σ1) ≤ m−j,

the cells σ0, σ1 are adjacent and hence

(11.35)
wσ0

wσ1

≤ ∆

by Axiom (Ax6c). Assume now that dj(σ0, σ1) > m−j. As Xj is
connected ((Ax1)) there is an N ≥ 2 such that:

(11.36) (N − 1)m−j < dj(σ0, σ1) ≤ Nm−j;

let k < 0 be such that m−k−1 < N ≤ m−k. Using Proposition 4.12 we
see that:

(11.37) dk
(
(πjj+k)

−1(σ0), (πjj+k)
−1(σ1)

)
≤ 3m−j−k.

Now by Axiom (Ax3)

(11.38) πjj+k : X
(−k)
j+k → Xj

is a surjective cellular map; moreover, we are assuming that πjj+k is

injective on the complement of the (n− 1)-skeleton of X
(−k)
j+k . Thus, if

σ̊i denotes the interior of σi, there is a unique n-cell σ̃i of Xj+k such
that:

(11.39) (πjj+k)
−1(σ̊i) ∩ σ̃i 6= ∅.

By (11.37) σ̃0, σ̃1 are at combinatorial distance at most 3 and hence:

(11.40)
wσ̃0

wσ̃1

≤ ∆3;

but wσi = wσ̃i and so the weights wσ0 and wσ1 are comparable up to a
uniformly bounded multiplicative factor. We therefore find a universal
constant C such that, for each j ∈ Z, each pj ∈ Xj and each r ≤
3m−j+1 one has:

(11.41) µj
(
BXj(pj, r)

)
≈C r−jQ.

Suppose now that m−k < r ≤ m−k+1 and let pk ∈ (πjk)
−1(pj); then,

arguing as in the proof of (1), we obtain:
(11.42)
BXk−1

(pk−1,m
−k) ⊂ (πjk−1)−1

(
BXj(pj, r)

)
⊂ BXk−1

(pk−1, 3m
−k+1);
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therefore, by enlarging C, we have that (11.41) holds also for r >
3m−j+1. This proves that each (Xj, dj, µj) is Ahlfors-regular, where
the constant in the Ahlfors-regularity condition is independent of j.

We now show that π̄∞j is David-Semmes regular (where the constants
again do not depend on j). Let k < 0; as the map in (11.38) is injective

on the complement of the (n− 1)-skeleton of X
(−k)
j+k , and as by (Ax1)

there is a uniform bound ∆ on the cardinality of each link of Xj, we
conclude that there is a universal constant C = C(∆) such that for
each pj ∈ Xj one has that (πjj+k)

−1(pj) has cardinality at most C. As

k and j are arbitary, we conclude that for p∞ ∈ X∞ also (π∞j )−1(p∞)

has cardinality at most C. Fix now p̄∞ ∈ X̄∞ and let {Ωα} be a family
of subsets of Xj which cover (π̄∞j )−1(p̄∞), and which were obtained
in the proof of (2). In constructing the {Ωα}α there was the freedom
to choose a scale m−k, which in this case we take to be m−j, so that
(11.29), (11.30) hold with k = j. For each Ωα there is a p∞,σ ∈ [p̄∞]
such that:

(11.43) (π∞j )−1(p∞,σ) ∩ Ωα 6= ∅.

Fix now one p∞ ∈ [p̄∞]. Then by Corollary 4.19 the sets (π∞j )−1(p∞)

and (π∞j )−1(p∞,σ) must intersect adjacent cells ofXj and so (π∞j )−1(p∞)∩
Ωα 6= ∅. As distinct Ωα’s are disjoint, we conclude that the cardinal-
ity of the set {Ωα} is at most C. Let now q̄∞ ∈ BX̄∞(p̄∞,m

−j); then
(π̄∞j )−1(q̄∞) is contained in a 3m−j-neighbourhood of

⋃
α Ωα; as each

set Ωα intersects (π∞j )−1(p∞) we conclude that:

(11.44) (π̄∞j )−1(q̄∞) ⊂
⋃

p∈(π∞j )−1(p∞)

B(p, 6(C0 + 1)m−j);

thus the David-Semmes regularity condition holds with constants 3(C0+
1) and C. �

11.4. Preservation of admissibility under limits.

We now turn to the proof of (4) in Theorem 11.4, i.e. the stability of
assertions (1)–(3) under the operation of taking weak tangents. This
is an immediate consequence of the following lemma and (1)-(3) of
Theorem 11.4.

Lemma 11.45. Any weak tangent of an admissible system is, mod-
ulo rescaling, measure-preserving isometric to the limit space of some
admissible system.
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Proof. Let (Y, ν, p) be a weak tangent of (X̄∞, µ∞). Thus there exists
a sequence of basepoints {pα} in X̄∞, as well as sequences {λα}, {λ′α}
of scale factors, such that the sequence {(λαX̄∞, λ′αµ∞, pα)} converges
in the pointed measured Gromov-Hausdorff topology to the pointed
(doubling) metric measure space (Y, ν, p).

For each α, we have λα = aαm
jα for unique elements jα ∈ Z and

aα ∈ [1,m). After passing to a subsequence, we may assume that aα
converges to some a∞ ∈ [1,m]. Without loss of generality, we may
replace λα with mjα , since the resulting sequence will converge to the
same limit, modulo rescaling by a−1

∞ .

Now observe that for every α, the rescaled metric measure space
(λαX̄∞, λ

′
αµ∞) is measure-preserving isometric to the limit space of an

admissible system obtained from {(Xj, µj)} by shifting the indices by
jα, and rescaling the measures; moreover this new admissible system
satisfies Definition 11.1 where the constants m,mv, H,∆ are indepen-
dent of α. Thus Lemma 11.45 is reduced to the following lemma. �

Lemma 11.46. Suppose {(Xj,α, µj,α)}α∈N is a sequence of admissible
systems with uniform constants, and qj,α ∈ Xj,α are projection compat-
ible basepoints chosen such that

(11.47) 0 < lim inf
α

µ0,α(B(q0,α, 1)) ≤ lim sup
α

µ0,α(B(q0,α, 1)) <∞ .

Then after passing to a subsequence, the sequences of pointed admissi-
ble systems converge in a natural sense to a pointed admissible system
(Xj,∞, µj,∞, qj,∞) whose limit space (X̄∞,∞, µ∞,∞, q∞,∞) is measure-
preserving isometric to the pointed measured Gromov-Hausdorff limit
of the sequence of pointed limit spaces {(X̄∞,α, µ∞,α, q∞,α)}.

Proof. This is a consequence of standard finiteness/compactness argu-
ments applied to the controlled-geometry complexes of the admissible
systems, so we will be brief.

Pick j ∈ Z. Since the parameter ∆ is independent of α, for any N ,
there are only finitely many possibilities for the combinatorial N -ball
centered at qj,α, up to a homeomorphism preserving the collection of
distinguished characteristic maps. Therefore, after passing to a subse-
quence, there is a pointed cell-complex (Xj,∞, qj,∞) with a collection
of distinguished characteristic maps, such that for all N and large
α, there is a homeomorphism Ψj,α,N from the combinatorial N -ball
in Xj,α centered at qj,α to the combinatorial N -ball in Xj,∞ centered
at qj,∞, such that Ψj,α,N respects distinguished characteristic maps,
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Ψj,α,N(qj,α) → qj,∞ as α → ∞, and for all N ′ ≥ N the maps Ψj,α,N ,
Ψj,α,N ′ are compatible on the N -balls for large α.

Using (11.47), we get that the µj,α-measure of any n-cell of Xj,α con-
taining qj,α is controlled. Therefore, passing to a subsequence again,
there is a family of measures {µj,∞} and a compatible system of pro-
jection maps {πkj,∞ : Xj,∞ → Xk,∞} which define an admissible system,
such that the maps {Ψj,α,N} are asymptotically measure-preserving and
compatible with projection.

It follows from Proposition 4.12 that for allR, the d̂j,α-ballB(qj,α, R) ⊂
Xj,α is a Gromov-Hausdorff approximation to within error. m−j of the
d̄∞,α-ball B(q∞,α, R) ⊂ X̄∞,α, so the maps {Ψj,α,N} induce the pointed
measured Gromov-Hausdorff convergence

(X̄∞,α, d̄∞,α, µ∞,α, q∞,α) −→ (X̄∞,∞, d̄∞,∞, µ∞,∞, q∞,∞) .

�
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