
A NEW PROOF OF GROMOV’S THEOREM ON
GROUPS OF POLYNOMIAL GROWTH

BRUCE KLEINER

Abstract. We give a new proof of Gromov’s theorem that any
finitely generated group of polynomial growth has a finite index
nilpotent subgroup. The proof does not rely on the Montgomery-
Zippin-Yamabe structure theory of locally compact groups.

1. Introduction

1.1. Statement of results.

Definition 1.1. Let G be a finitely generated group, and let BG(r) ⊂
G denote the ball centered at e ∈ G with respect to some fixed word
norm on G. The group G has polynomial growth if for some d ∈
(0,∞)

(1.2) lim sup
r→∞

|BG(r)|
rd

<∞,

and has weakly polynomial growth if for some d ∈ (0,∞)

(1.3) lim inf
r→∞

|BG(r)|
rd

<∞,

Our main result is a new proof of the following theorem of Gromov
and Wilkie-Van den Dries [Gro81, vdDW84]:

Theorem 1.4. If a group has weakly polynomial growth, it is virtually
nilpotent.

The original proofs in [Gro81, vdDW84] are based on the Montgomery-
Zippin-Yamabe structure theory of locally compact groups [MZ74]. We
avoid this by following a completely different approach involving har-
monic maps. The core of the argument is a new proof of (a slight
generalization of) a theorem of Colding-Minicozzi:
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Theorem 1.5 ([CM97]). Suppose X is either a bounded geometry Rie-
mannian manifold, or a bounded degree graph, and that X is quasi-
isometric to a group of weakly polynomial growth. Then for all d ∈
[0,∞) the space of harmonic functions on X with polynomial growth
at most d is finite dimensional.

We recall that a Riemannian manifold has bounded geometry if its
sectional curvature is bounded above and below, and its injectivity ra-
dius is bounded away from zero. Two metric spaces are quasi-isometric
if they contain biLipschitz homeomorphic nets. A function u : X → R
on a metric space X has polynomial growth at most d if

sup
x∈X

|u(x)|
(1 + dX(p, x))d

< ∞

for p ∈ X.

Note that although the main result of [CM97] is stated for groups of
polynomial growth, their proof also works for groups of weakly polyno-
mial growth, in view of [vdDW84]. The proof of Theorem 1.5 given here
is independent of Gromov’s theorem on groups of polynomial growth,
unlike the proof in [CM97].

Remark 1.6. There are several important applications of the Wilkie-
Van Den Dries refinement [vdDW84] of Gromov’s theorem [Gro81] that
do not follow from the original statement; for instance [Pap05], or the
theorem of Varopoulos that a group satisfies a d-dimensional Euclidean
isoperimetric inequality unless it is virtually nilpotent of growth expo-
nent < d.

1.2. Sketch of the proofs. By a short induction argument from [Gro81,
vdDW84], to prove Theorem 1.4 it suffices to show that if G is an infi-
nite group with weakly polynomial growth, then there is a finite dimen-
sional representation G → GL(n,R) with infinite image. To achieve
this we first invoke a Theorem of Mok/Korevaar-Schoen1, [Mok95,
KS97] to produce a fixed point free isometric G-action G y H, where
H is a Hilbert space, and a G-equivariant harmonic map f : Γ → H,
where Γ is a Cayley graph of G. Theorem 1.5 then implies that f takes
values in a finite dimensional subspace of H, and this yields the desired
finite dimensional representation of G. See Section 4 for details.

1Although the publication date of [KS97] was significantly later, the result was
announced in public lectures by both Mok and Korevaar/Schoen in Spring 1994.
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The proof of Theorem 1.5 is based on a new Poincare inequality
which holds for any Cayley graph Γ of any finitely generated group G:

(1.7)

∫
B(R)

|f − fR|2 ≤ 8 |S|2R2 |B(2R)|
|B(R)|

∫
B(3R)

|∇f |2,

Here f is a piecewise smooth function on B(3R), fR is the average of
u over the ball B(R), and S is the generating set for G.

The remainder of the proof has the same rough outline as [CM97],
though the details are different. Note that [CM97] assumes a uniform
doubling condition as well as a uniform Poincare inequality. In our
context, we may not appeal to such uniform bounds as their proof
depends on Gromov’s theorem. Instead, the idea is to use (1.7) to
show that one has uniform bounds at certain scales, and that this is
sufficient to deduce that the space of harmonic functions in question is
finite dimensional.

1.3. Acknowledgements. I would like to thank Alain Valette for an
inspiring lecture at MSRI in August 2007, and the discussion afterward.
This gave me the initial impetus to find a new proof of Gromov’s the-
orem. I would especially like to thank Laurent Saloff-Coste for telling
me about the Poincare inequality in Theorem 2.2, which has replaced
a more complicated one used in an earlier draft of this paper, and Bill
Minicozzi for simplifying Section 3. Finally I want to thank Toby Cold-
ing for several conversations regarding [CM97], and Mladen Bestvina,
Emmaneul Breuillard, David Fisher, Misha Kapovich, Bill Minicozzi,
Lior Silberman and Alain Valette for comments and corrections.
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2. A Poincare inequality for finitely generated groups

Let G be a group, with a finite generating set S ⊂ G. We denote the
associated word norm of g ∈ G by |g|. For R ∈ [0,∞)∩Z, let V (R) =
|BG(R)| = |BG(e, R)|. We will denote the R-ball in the associated
Cayley graph by B(R) = B(e, R).

Remark 2.1. We are viewing the Cayley graph as (the geometric real-
ization of a) 1-dimensional simplicial complex, not as a discrete space.
Thus BG(R) is a finite set, whereas B(R) is typically 1-dimensional.

Theorem 2.2. For every R ∈ [0,∞) ∩ Z and every smooth function
f : B(3R)→ R,

(2.3)

∫
B(R)

|f − fR|2 ≤ 8 |S|2R2 V (2R)

V (R)

∫
B(3R)

|∇f |2,

where fR is the average of f over B(R).

Proof. Fix R ∈ [0,∞) ∩ Z.

Let δf : BG(3R− 1)→ R be given by

δf(x) =

∫
B(x,1)

|∇f |2.

For every y ∈ G, we choose a shortest vertex path γy : {0, . . . , |y|} →
G from e ∈ G to y. If y ∈ BG(2R− 2), then

(2.4)
∑

x∈B(R−1)

|y|∑
i=0

(δf)(x γy(i)) ≤ 2R
∑

z∈B(3R−1)

(δf)(z),

since the map B(R − 1)× {0, . . . , |y|} → B(3R − 1) given by (x, i) 7→
x γy(i) is at most 2R-to-1.

For every ordered pair (e1, e2) of edges contained in B(R), let xi ∈
ei ∩ G be elements such that d(x1, x2) ≤ 2R − 2, and let y = x−1

1 x2.
By the Cauchy-Schwarz inequality,

(2.5)

∫
(p1,p2)∈e1×e2

|f(p1)− f(p2)|2 dp1dp2 ≤ 2R

|y|∑
i=0

(δf)(x1 γy(i)).

Now∫
B(R)

|f − fR|2 ≤
1

V (R)

∫
B(R)×B(R)

|f(p1)− f(p2)|2 dp1dp2
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=
1

V (R)

∑
(e1,e2)⊂B(R)×B(R)

∫
(p1,p2)∈e1×e2

|f(p1)− f(p2)|2 dp1dp2

≤ 1

V (R)

∑
(e1,e2)⊂B(R)×B(R)

2R

|y|∑
i=0

(δf)(x1 γy(i)),

where x1 and y are as defined above. The map (e1, e2) 7→ (x1, y) is at
most |S|2-to-one, so∫
B(R)

|f−fR|2 ≤ 2R |S|2 1

V (R)

∑
x1∈B(R−1)

∑
y∈B(2R−2)

|y|∑
i=0

(δf)(x1 γy(i))

≤ 4R2 |S|2 1

V (R)

∑
y∈B(2R−2)

∑
z∈B(3R−1)

(δf)(z) by (2.4)

= 4R2 |S|2 V (2R)

V (R)

∑
z∈B(3R−1)

(δf)(z) ≤ 8R2 |S|2 V (2R)

V (R)

∫
B(3R)

|∇f |2.

�

Remark 2.6. Although the theorem above is not in the literature, the
proof is virtually contained in [CSC93, pp.308-310]. When hearing
of my more complicated Poincare inequality, Laurent Saloff-Coste’s
immediate response was to state and prove Theorem 2.2.

3. The proof of Theorem 1.5

In this section G will be a finitely generated group with a fixed
finite generating set S, and the associated Cayley graph and word
norm will be denoted Γ and ‖ · ‖, respectively. For R ∈ Z+ we let
B(R) := B(e, R) ⊂ Γ and V (R) := |BG(R)| = |B(R) ∩G|.

We will first give the proof in the case that X = Γ, which is the one
needed for Theorem 1.4. At the end of this section we will return to
the general case, see Section 3.6.

Let V be a 2k-dimensional vector space of harmonic functions on Γ.
We equip V with the family of quadratic forms {QR}R∈[0,∞), where

QR(u, u) :=

∫
B(R)

u2.

The remainder of this section is devoted to proving the following
finite dimensionality result:
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Theorem 3.1. For every d ∈ (0,∞) there is a C = C(d) ∈ (0,∞)
such that if

(3.2) lim inf
R→∞

V (R) (detQR)
1

dimV

Rd
< ∞,

then dimV < C.

Proof of Theorem 1.5 using Theorem 3.1. If V is a finite dimensional
space of harmonic functions on Γ with polynomial growth d′, then

lim sup
R

(detQR)
1

dimV

Rd′
<∞ .

This implies that (3.2) holds provided

lim inf
R→∞

V (R)

Rd−d′ <∞ .

Hence by Theorem 3.1, we obtain a uniform bound on the dimension
on any space of harmonic functions with growth at most d′. �

The overall structure of the proof of Theorem 3.1 is similar to that
of Colding-Minicozzi [CM97].

3.1. Finding good scales. We begin by using the polynomial growth
assumption to select a pair of comparable scales R1 < R2 at which both

the growth function V and the determinant (detQR)
1

dimV have doubling
behavior. Later we will use this to find many functions in V which have
doubling behavior at scale R2. Similar scale selection arguments appear
in both [Gro81] and [CM97]; the one here is a hybrid of the two.

Observe that the family of quadratic forms {QR}R∈[0,∞) is nonde-
creasing in R, in the sense that QR′−QR is positive semi-definite when
R′ ≥ R. Also, note that QR is positive definite for sufficiently large R,
since QR(u, u) = 0 for all R only if u ≡ 0. Choose i0 ∈ N such that
QR > 0 whenever R ≥ 16i0 .

We define f : Z+ → R and h : Z ∩ [i0,∞)→ R by

f(R) = V (R) (detQR)
1

dimV , and h(i) = log f(16i).

Note that since QR is a nondecreasing function of R, both f and h are
nondecreasing functions, and (3.2) translates to:

(3.3) lim inf
i→∞

(h(i)− di log 16) <∞.
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Put a = 4d log 16, and pick w ∈ N.

Lemma 3.4. There are integers i1, i2 ∈ [i0,∞) such that

(3.5) i2 − i1 ∈ (w, 3w),

(3.6) h(i2 + 1)− h(i1) < wa,

and

(3.7) h(i1 + 1)− h(i1) < a, h(i2 + 1)− h(i2) < a.

Proof. There is a nonnegative integer j0 such that

(3.8) h(i0 + 3w(j0 + 1))− h(i0 + 3wj0) < wa.

Otherwise, for all l ∈ N we would get

h(i0 + 3wl) = h(i0) +
l−1∑
j=0

(h(i0 + 3w(j + 1))− h(i0 + 3wj))

≥ h(i0) + wal = h(i0) +

(
4

3
d log 16

)
(3wl) ,

which contradicts (3.3) for large l.

Let m := i0 + 3wj0.

Then there are integers i1 ∈ [m,m+w) and i2 ∈ [m+2w,m+3w) such
that (3.7) holds, for otherwise we would have either h(m+w)−h(m) ≥
wa or h(m+ 3w)− h(m+ 2w) ≥ wa, contradicting (3.8).

These i1 and i2 satisfy the conditions of the lemma, because

h(i2 + 1)− h(i1) ≤ h(m+ 3w)− h(m) < wa.

�

3.2. A controlled cover. Let R1 = 2 · 16i1 and R2 = 16i2 . Choose
a maximal R1-separated subset {xj}j∈J of B(R2) ∩ G, and let Bj :=
B(xj, R1). Then the collection B := {Bj}j∈J covers B(R2), and 1

2
B :=

{1
2
Bj}j∈J is a disjoint collection.

Lemma 3.9.

(1) The covers B and 3B := {3Bj}j∈J have intersection multiplicity
< ea.

(2) B has cardinality |J | < ewa.
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(3) There is a C ∈ (0,∞) depending only on |S| such that for every
j ∈ J and every smooth function v : 3Bj → R,

(3.10)

∫
Bj

|v − vBj
|2 ≤ C eaR2

1

∫
3Bj

|∇v|2.

Proof. (1) If z ∈ 3Bj1∩ . . .∩3Bjl , then xjm ∈ B(xj1 , 6R1) for every m ∈
{1, . . . , l}, so {B(xjm ,

R1

2
)}lm=1 are disjoint balls lying in B(xj1 , 8R1),

and hence

log l ≤ log
V (3R1)

V (R1

2
)

= log V (3R1)− log V

(
R1

2

)
≤ h(i1 +1)−h(i1) < a.

This shows that the multiplicity of 3B is at most ea. This implies (1),
since the multiplicity of B is not greater than that of 3B.

(2) The balls {B(xj,
R1

2
)}j∈J are disjoint, and are contained inB(R2+

R1

2
) ⊂ B(2R2), so

|J | ≤ V (2R2)

V (R1

2
)
≤ V (16i2+1)

V (16i1)
< ewa,

by (3.6).

(3) By Theorem 2.2 and the translation invariance of the inequality,∫
Bi

|v − vBi
|2 ≤ 8 |S|2R2

1

V (2R1)

V (R1)

∫
3Bi

|∇v|2

≤ 8 |S|2R2
1 e

a

∫
3Bi

|∇v|2.

�

3.3. Estimating functions relative to the cover B. We now esti-
mate the size of a harmonic function in terms of its averages over the
Bj’s, and its size on a larger ball.

We define a linear map Φ : V → RJ by

Φj(v) :=
1

|Bj|

∫
Bj

v.

Lemma 3.11 (cf. [CM97, Prop. 2.5]). There is a constant C ∈ (0,∞)
depending only on the size of the generating set S, with the following
property.
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(1) If u is a smooth function on B(16R2), then

(3.12) QR2(u, u) ≤ C V (R1) |Φ(u)|2 + C e2aR2
1

∫
B(2R2)

|∇u|2.

(2) If u is harmonic on B(16R2), then

(3.13) QR2(u, u) ≤ C V (R1)|Φ(u)|2 + C e2a

(
R1

R2

)2

Q16R2(u, u).

Proof. We will use C to denote a constant which depends only on |S|;
however, its value may vary from equation to equation.

We have

QR2(u, u) =

∫
B(R2)

u2 ≤
∑
j∈J

∫
Bj

u2

(3.14) ≤ 2
∑
j∈J

∫
Bj

(
|Φj(u)|2 + |u− Φj(u)|2

)
.

We estimate each of the terms in (3.14) in turn.

For the first term we get:

(3.15)
∑
j∈J

∫
Bj

|Φj(u)|2 =
∑
j∈J

|Bj| |Φj(u)|2 ≤ C V (R1) |Φ(u)|2.

For the second term we have:∑
j∈J

∫
Bj

|u− Φj(u)|2

≤ C eaR2
1

∑
j∈J

∫
3Bj

|∇u|2 by Lemma 3.9(3)

≤ CeaR2
1

(
ea
∫
B(2R2)

|∇u|2
)

by Lemma 3.9(1)

= Ce2aR2
1

∫
B(2R2)

|∇u|2.

Combining this with (3.15) yields (1).

Inequality (3.13) follows from (3.12) by applying the reverse Poincare
inequality, which holds for any harmonic function v defined onB(16R2):

R2
2

∫
B(2R2)

|∇v|2 ≤ C Q16R2(v, v).
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(For the proof, see [SY95, Lemma 6.3], and note that for harmonic
functions their condition u ≥ 0 may be dropped.) �

3.4. Selecting functions from V with controlled growth. Our
next step is to select functions in V which have doubling behavior at
scale R2.

Lemma 3.16 (cf. [CM97, Prop. 4.16]). There is a subspace U ⊂ V of
dimension at least k = dimV

2
such that for every u ∈ U

(3.17) Q16R2(u, u) ≤ e2a QR2(u, u).

Proof. Since R2 = 16i2 > 16i0 , the quadratic form QR2 is positive
definite. Therefore there is a QR2-orthonormal basis β = {v1, . . . , v2k}
for V which is orthogonal with respect to Q16R2 .

Suppose there are at least l distinct elements v ∈ β such that
Q16R2(v, v) ≥ e2a. Then since β isQR2-orthonormal andQ16R2-orthogonal,

log

(
detQ16R2

detQR2

) 1
2k

= log

(
2k∏
j=1

Q16R2(vj, vj)

QR2(vj, vj)

) 1
2k

= log

(
2k∏
j=1

Q16R2(vj, vj)

) 1
2k

≥ log
(
e2al
) 1

2k =
l

k
a.

On the other hand,

a > h(i2 + 1)− h(i2) ≥ log (detQ16R2)
1
2k − log (detQR2)

1
2k .

So we have a contradiction if l ≥ k.

Therefore we may choose a k element subset {u1, . . . , uk} ⊂ {v1, . . . , v2k}
such that Q16R2(uj, uj) < e2a for every j ∈ {1, . . . , k}. Then every ele-
ment of U := span{u1, . . . , uk} satisfies (3.17). �

3.5. Bounding the dimension of V. We now assume that w is the
smallest integer such that

(3.18)

(
R1

R2

)2

= 2 · 16i1−i2 < 2 · 16−w <
1

2Ce4a
,

where C is the constant in (3.13). Therefore 2 · 16−(w−1) ≥ 1
2Ce4a , and

this implies

(3.19) ewa ≤ 64C e64d2 log 16.
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If u ∈ U lies in the kernel of Φ, then

QR2(u, u) ≤ Ce2a

(
R1

R2

)2

Q16R2(u, u) by (3.13 )

≤ Ce2a

(
R1

R2

)2 (
e2a QR2(u, u)

)
by Lemma 3.16

≤ 1

2
QR2(u, u) by (3.18) .

Therefore u = 0, and we conclude that Φ|U is injective. Hence by
Lemma 3.9 and (3.19),

dimV = 2 dimU ≤ 2|J | ≤ 2ewa ≤ 128C e64d2 log 16.

�

3.6. The proof in the bounded geometry case. We now return
to the general case of Theorem 1.5, where X is a bounded geometry
Riemannian manifold or a bounded degree graph quasi-isometric to Γ.
The main difference with the case when X = Γ is the following:

Lemma 3.20. There are constants 1 ≤ A1 ≤ A2 ≤ A3 < ∞, C ∈
(0,∞) such that for every x ∈ X, R ∈ (0,∞), and every smooth
function f : B(x,A3R)→ R,

(3.21)

∫
B(x,R)

|f − fR|2 ≤ C R2 V (A2R)

V (A1R)

∫
B(x,A3R)

|∇f |2,

where fR denotes the average of f over B(x,R).

Sketch. The proof is a standard argument in which one relates the oscil-
lation and energy of f with that of a comparison function constructed
on the graph Γ. The sketch goes as follows.

We will use the fact that X satisfies a Poincare inequality for balls
of unit size, because of the bounded geometry assumption.

Let Φ : G → X be a quasi-isometry. Choose r ∈ (0,∞) such that
Φ(G) ⊂ X is an r

2
-net in X. Given a measurable function u : X → R,

we obtain a function û : Γ→ R by letting û(g) be the average of u on
the ball B(Φ(g), r), for g ∈ G, and extending linearly on edges of Γ.

We let 1 ≤ A1 ≤ A2 ≤ A3 <∞ be constants to be determined later,
and let C denote a constant that depends only on the geometry of X,
G, and Φ.
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It suffices to prove the lemma for x ∈ Φ(G). Pick g0 ∈ g, and let
x = Φ(g0) ∈ X, R ∈ [1,∞), and put B1 := B(x,R). Given a smooth
function f on A3B1, we extend it by 0 to obtain a measurable function
u on X. If A3 is sufficiently large, then using the Poincare inequality
on balls of roughly unit radius in X, one gets

(3.22)

∫
B1

|u− uB1|2 ≤ C

∑
B̂1

|û− ûB̂1
|2 +

∫
B(x,R+C)

|∇u|2
 ,

where B̂1 := Φ−1(B(x,R + C)). Then by Lemma 2.2

∑
B̂1

|û− ûB̂1
|2 ≤

∑
B̂2

|û− ûB̂2
|2

≤ C
VG(2CR)

VG(CR)
(CR)2

∫
3B̂2

|∇û|2 ≤ C
VX(A2R)

VX(A1R)
R2

∫
B(x,A3R)

|∇u|2 ,

where B̂2 = BΓ(g0, CR), and A1, A2, and A3 are chosen appropriately.
Combining this with (3.22), the lemma follows when R ∈ [1,∞). The
case when R ∈ (0, 1) follows from the Poincare inequality for small
balls in X. �

To prove Theorem 1.5, one modifies the argument given in the X = Γ
case by using Lemma 3.20 instead of Lemma 2.2, as well as the fact
that the volume functions in G and X are asymptotically equivalent,
i.e. for some A,C ∈ [1,∞),

C−1 VG(A−1 r) ≤ VX(r) ≤ C VG(Ar)

for all sufficiently large r [Šva55, Mil68].

�

Remark 3.23. Similar reasoning would apply if X were a metric mea-
sure space which is doubling and satisfies a Poincare inequality at some
scale R0.

4. Obtaining an infinite representation using Theorem 1.5

Let G be an infinite group with weakly polynomial growth, and let
Γ denote some Cayley graph of G with respect to a symmetric finite
generating set S. In this section we will show that G has a finite
dimensional representation with infinite image.
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Note that G is amenable, since nonamenable groups have exponential
growth; as it is also infinite it does not have Property (T) (see [dlHV89,
p.6] or the appendix where these implications are explained for the non-
expert). Therefore by a result of Mok [Mok95] and Korevaar-Schoen
[KS97, Theorem 4.1.2], there is an isometric action G y H of G on
a Hilbert space H which has no fixed points, and a nonconstant G-
equivariant harmonic map f : Γ → H. In the case of Cayley graphs,
the Mok/Korevaar-Schoen result is quite elementary, so we give a short
proof in Appendix A.

Since f is G-equivariant, it is Lipschitz.

Each bounded linear functional φ ∈ H∗ gives rise to a Lipschitz
harmonic function φ ◦ f , and hence we have a linear map Φ : H∗ → V ,
where V is the space of Lipschitz harmonic functions on Γ. Since the
target is finite dimensional by Theorem 1.5, the kernel of Φ has finite
codimension, and its annihilator ker(Φ)⊥ ⊂ H is a finite dimensional
subspace containing the image of f . It follows that the affine hull
A of the image of f is finite dimensional and G-invariant. Therefore
we have an induced isometric G-action G y A. This action cannot
factor through a finite group, because it would then have fixed points,
contradicting the fact that the original representation is fixed point
free. The associated homomorphism G → Isom(A) yields the desired
finite dimensional representation of G.

�

5. Proof of Theorem 1.4

We now complete the proof of Gromov’s theorem; this is a recapitu-
lation of Gromov’s argument, which we reproduce here for the conve-
nience of the reader.

The proof is by induction on the degree of growth.

Definition 5.1. Let G be a finitely generated group. The degree (of
growth) of G is the minimum deg(G) of the nonnegative integers d
such that

lim inf
r→∞

V (r)

rd
<∞.

A group whose degree of growth is 0 is finite, and hence Theorem
1.4 holds for such a group.

Assume inductively that for some d ∈ N that every group of degree
at most d − 1 is virtually nilpotent, and suppose deg(G) = d. Then
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G is infinite, so by Section 4 there is a finite dimensional linear rep-
resentation G → GL(n) with infinite image H ⊂ GL(n). Since H
has polynomial growth, by [Tit72] (see [Sha98] for an easier proof) it is
virtually solvable, and by [Wol68, Mil68] it must be virtually nilpotent.

After passing to finite index subgroups, we may assume H is nilpo-
tent, and that its abelianization is torsion-free. It follows that there is
a short exact sequence

1 −→ K → G
α→ Z −→ 1.

By [vdDW84, Lemma 2.1], the normal subgroupK is finitely generated,
and deg(K) ≤ deg(G)− 1.

By the induction hypothesis, K is virtually nilpotent. Let K ′ be
a finite index nilpotent subgroup of K which is normal in G, and let
L ⊂ G be an infinite cyclic subgroup which is mapped isomorphically
by α onto Z. Then K ′L ⊂ G is a finite index solvable subgroup of G.
As it has polynomial growth, by [Wol68, Mil68] it is virtually nilpotent.

�

Appendix: Property (T) and equivariant harmonic maps

In this expository section, we will give a simple proof of the special
case of the Korevaar-Schoen/Mok existence result needed in the proof
of Theorem 1.4. For the nonexpert, we also explain why an infinite
group of subexponential growth cannot have Property (T). The ma-
terial has been optimized for the specific applications needed in the
paper.

In this appendix G will be a finitely generated group, S = S−1 ⊂ G
a symmetric finite generating set, and Γ the associated Cayley graph.

A.1. Energy functions and Property (T). Given an action G y X
on a metric space X, we define the energy function E : X → R by

E(x) =
∑
s∈S

d2(sx, x).

We recall that G has Property (T) iff every isometric action of G on
a Hilbert space has a fixed point [dlHV89, p.47].

The following theorem is a weak version of some results in [FM05],
see also [Gro03, pp.115-116]:

Theorem A.2. The following are equivalent:
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(1) G has Property (T).
(2) There is a constant D ∈ (0,∞) such that if G y H is an

isometric action on a Hilbert space and x ∈ H, then G fixes a
point in B(x,D

√
E(x)).

(3) There are constants D ∈ (0,∞), λ ∈ (0, 1) such that if G y H
is an isometric action on a Hilbert space and x ∈ H, then there
is a point x′ ∈ B(x,D

√
E(x)) such that E(x′) ≤ λE(x).

(4) There is no isometric action G y H on a Hilbert space such
that the energy function E : H → R attains a positive mini-
mum.

Proof. Clearly (2) =⇒ (1). Also, (1) =⇒ (4) since the energy function
E is zero at a fixed point.

(3) =⇒ (2). Suppose (3) holds. Let G y H be an isometric action,
and pick x0 ∈ H. Define a sequence {xk} ⊂ H inductively, by choosing

xk+1 ∈ B(xk, D
√
E(xk)) such that E(xk+1) ≤ λE(xk). Then E(xk) ≤

λk E(x0) and d(xk+1, xk) ≤ D
√
E(xk) ≤ Dλ

k
2

√
E(x0). Therefore {xk}

is Cauchy, with limit x∞ satisfying

d(x∞, x0) ≤
D
√
E(x0)

1− λ 1
2

.

Then E(x∞) = limk→∞ E(xk) = 0, and x∞ is fixed by G. Therefore
(2) holds.

(4) =⇒ (3). We prove the contrapositive. Assume that (3) fails.
Then for every k ∈ N, we can find an isometric action G y Hk on a
Hilbert space, and a point xk ∈ Hk such that

(A.3) E(y) >

(
1− 1

k

)
E(xk)

for every y ∈ B(xk, k
√
E(xk)). Note that in particular, E(xk) >(

1− 1
k

)
E(xk), forcing E(xk) > 0.

Let H′k be the result of rescaling the metric on Hk by 1√
E(xk)

. Then

(A.3) implies that the induced isometric action G y H′k satisfies
E(xk) = 1 and

(A.4) E(y) ≥ 1− 1

k

for all y ∈ B(xk, k). Then any ultralimit (see [Gro93, KL97]) of the
sequence (Hk, xk) of pointed Hilbert spaces is a pointed Hilbert space
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(Hω, xω) with an isometric action G y Hω such that

E(xω) = 1 = inf
y∈Hω

E(y).

Therefore (4) fails.

�

A.2. Harmonic maps and Property (T). Before proceeding we re-
call some facts about harmonic maps on graphs. Suppose G is a locally
finite metric graph, where all edges have length 1. If f : G → H
is a piecewise smooth map to a Hilbert space, then the following are
equivalent:

• f is harmonic.
• The Dirichlet energy of f (on any finite subgraph) is stationary

with respect to compactly supported variations of f .
• The restriction of f to each edge of G has constant derivative,

and for every vertex v ∈ G,∑
d(w,v)=1

(f(w)− f(v)) = 0.

Note that if G y H is an isometric action on a Hilbert space, then
the energy function E is a smooth convex function, and its derivative
is

DE(x)(v) = 2

(∑
s∈S

〈sx− x, (Ds)(v)〉 −
∑
s∈S

〈sx− x, v〉

)

= 2

(∑
s∈S

〈x− s−1x, v〉+
∑
s∈S

〈x− sx, v〉

)
= 4

∑
s∈S

〈x− sx, v〉.

Therefore
x ∈ H is a critical point of E

⇐⇒ x is a minimum of E

(A.5) ⇐⇒
∑
s∈S

(x− sx) = 0.

It follows that the G-equivariant map f0 : G→ H given by f0(g) := gx
extends to a G-equivariant harmonic map f : Γ→ H if and only if∑

s∈S

(f0(se))− f0(e)) =
∑
s∈S

(sx− x) = 0

⇐⇒ x is a minimum of E.



GROUPS OF POLYNOMIAL GROWTH 17

The next result is a special case of a theorem from [Mok95, KS97].

Lemma A.6. The following are equivalent:

(1) G does not have Property (T).
(2) There is an isometric action G y H on a Hilbert space H and

a nonconstant G-equivariant harmonic map f : Γ→ H.

Proof. (1) =⇒ (2). If G does not have Property (T), then by Theorem
A.2 there is an isometric action G y H on a Hilbert space, and a
point x ∈ H with E(x) = infy∈H E(y) > 0. Let f : Γ → H be
the G-equivariant map with f(g) = gx for every g ∈ G ⊂ Γ, and
whose restriction to each edge e of Γ has constant derivative. Then f
is harmonic, and obviously nonconstant.

(2) =⇒ (1). Suppose (2) holds, and f : Γ→ H is the G-equivariant
harmonic map. Then f(e) is a positive minimum of E : H → R; in
particular the action G y H has no fixed points. Therefore G does
not have Property (T).

�

A.3. Amenability and Property (T). We now recall, using the def-
initions most closely tied to the situation of this paper, why an infinite
amenable group – for instance a group of weakly polynomial growth –
does not satisfy Property (T).

Definition A.7. If F ⊂ G, then the boundary of F is the set ∂F of
elements g ∈ F at distance 1 from the complement G \ F .

We may define a map ∂F → N1(F ) \ F by sending g ∈ ∂F to some
adjacent element of G \ F ; since every element of G is adjacent to |S|
elements, it follows that this map is at most |S|-to-1, and so

(A.8) |N1(F ) \ F | ≥ 1

|S|
|∂F | .

Definition A.9. The group G is amenable if it contains a Folner se-
quence, i.e. there is a sequence {Fk} of finite subsets of G, such that
|∂Fk|
|Fk|
→ 0 as k → ∞, and nonamenable otherwise. Thus G is nona-

menable iff there is a constant C ∈ (0,∞) such that

(A.10) |∂F | ≥ C |F |
for all finite subsets F ⊂ G.
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Lemma A.11. Nonamenable groups have exponential growth. In par-
ticular, a group of weakly polynomial growth is amenable.

Proof. Pick C ∈ (0,∞) so that (A.10) holds. Let B(r) denote the
r-ball centered at e ∈ G, for r a nonnegative integer. Then

|B(r + 1)| = |B(r)|+ |B(r + 1) \B(r)| ≥ |B(r)|+ 1

|S|
|∂B(r)|

≥ |B(r)|+ C

|S|
|B(r)| .

Thus |B(r)| ≥ (1 + C
|S|)

r. �

Lemma A.12. Consider the left regular representation G y `2(G) of
G, where (g · u)(h) = u(g−1h) for all g, h ∈ G, and u ∈ `2(G).

(1) If G is amenable, there is a sequence {uk} of unit vectors in
`2(G) such that

lim sup
k→∞

max
s∈S
‖s · uk − uk‖ = 0 .

(2) If G is amenable and has Property (T), it is finite.

Proof. (1). Let {Fk} be a Folner sequence in G. Define vk ∈ `2(G)
by vk(g) = χFk

(g−1), where χF is the characteristic function of F ; put
uk = 1

|Fk|
1
2
vk. Then for all g ∈ G, s ∈ S,

((s · vk)− vk)(g) = χFk
(g−1s)− χFk

(g−1)

which is nonzero only if either g−1 or g−1s is in ∂Fk; therefore

‖s · vk − vk‖2 ≤ 2|∂Fk| ,

and

‖s · uk − uk‖ =
1

|Fk|
1
2

‖s · vk − vk‖ ≤
√

2|∂Fk|
1
2

|Fk|
1
2

,

which tends to zero as k →∞.

(2). Let {uk} be as in (1). For the isometric action given by the
left regular representation, the energy satisfies E(uk) → 0 as k → ∞.
By Theorem A.2, it follows that the action G y `2(G) has a fixed
point v ∈ `2(G) which is nonzero. Then v is a nonzero G-invariant `2

function, which forces G to be finite. �
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