
QUASI-HYPERBOLIC PLANES IN HYPERBOLIC GROUPSMARIO BONK AND BRUCE KLEINERAbstract. The hyperbolic plane H 2 admits a quasi-isometric embedding intoevery hyperbolic group which is not virtually free.The purpose of this note is to prove the following theorem which answers a questionposed by P. Papasoglu:Theorem 1. The hyperbolic plane H 2 admits a quasi-isometric embedding into ahyperbolic group if and only if the group is not virtually free.A map f : X ! Y between two metric spaces (X; dX) and (Y; dY ) is called a quasi-isometric embedding if there exist constants � � 1 and K � 0 such that1�dX(x; y)�K � dY (f(x); f(y)) � �dX(x; y) +Kfor all x; y 2 X. A group is virtually free if it contains a free subgroup of �niteindex. We refer to [9] for the de�nition of hyperbolic groups and related conceptsfrom the theory of Gromov hyperbolic spaces. Every Gromov hyperbolic space X hasa boundary @1X which carries a class of canonical visual metrics. These metrics arebi-Lipschitz equivalent to distance functions of the formdw;�(a; b) = exp(��(a; b)w); a; b 2 @1X;where w 2 X is a base point, � > 0 is su�ciently small, and (a; b)w denotes theGromov product of the points a and b with respect to w (cf. [9, Ch. 7]).Corollary 2. The boundary of a hyperbolic group (equipped with any visual metric)contains a quasi-circle if and only if the group is not virtually free.By de�nition a quasi-circle is a metric circle which admits a quasisymmetric para-metrization by the unit circle S1 � R2 (see [10] for the de�nition and basic factsabout quasisymmetric maps). Since the boundary of a virtually free group is totallydisconnected, the \only if" part of the corollary is obvious.One of the main ingredients in the proof of the theorem is a result by Tukia [14]which insures the existence of quasi-arcs with given end-points inside certain subsetsof Rn (a quasi-arc is a quasisymmetric image of the interval [0; 1]). The authorsDate: January 19, 2003.M.B. was supported by NSF grant DMS-0200566. B.K. was supported by NSF grants DMS-9972047 and DMS-0204506. 1



would like to thank Juha Heinonen for drawing their attention to Tukia's paper,which allowed them to substantially shorten the proof of the next proposition.To state the proposition, we need one more de�nition. A metric space Z is linearlyconnected if there exists a constant L such that for all x; y 2 Z there is a connectedsubset S � Z of diameter at most Ld(x; y) containing fx; yg.Proposition 3. If X is a complete, doubling, and linearly connected metric space,then any two distinct points in X are the endpoints of a quasi-arc.Proof. Let d denote metric on X, and pick � 2 (0; 1). Since X is doubling, thereexists n 2 N such that the \�-snow
aked" metric space (X; d�) can be embeddedinto Rn (equipped with the usual metric) by a bi-Lipschitz mapping (this follows fromAssouad's Embedding Theorem [1, 2.6. Prop.]; see [10, Thm. 12.2] for the version ofthis theorem used here). Let Z denote the image of such an embedding. Then Zis complete and linearly connected, since X has these properties. Hence any twodistinct points in Z are the endpoints of a quasi-arc in Z (up to terminology this is[14, Thm 1A]; see the introduction of [14] for a discussion). Since quasi-arcs in Z pullback to quasi-arcs in X, the result follows.Proposition 4. If G is 1-ended hyperbolic group, then @1G equipped with any visualmetric d is compact, doubling, connected, and linearly connected.Proof. It is easy to show that @1G is compact [9, p. 123, 9. Prop.] and doubling [4,Sect. 9]. Since the group G is 1-ended, its boundary @1G is connected.It remains to prove linear connectedness (note that this a stronger quantitativeversion of local connectedness which was established in this context in [2, Prop. 3.3]).Given two points x and y in a metric space (Z; d), and � > 0, a �-chain from x to yis a sequence of points x = z1; : : : ; zk = y such that d(zi; zi+1) � � for all 1 � i < k.The length of a �-chain is the number of points in the chain.Lemma 5. There is a number N 2 N such that for all x; y 2 @1G there is a 12d(x; y)-chain of length at most N from x to y.Proof. If not, there are sequences fxkg; fykg � @1G such that the shortest 12d(xj; yj)-chain from xj to yj has length j. The boundary @1G is compact and connected, soclearly rj := d(xj; yj)! 0 as j !1. In view of the doubling property, the sequence(@1G; 1rj d; xj) of pointed metric spaces subconverges to a limit (W; dW ; x1) withrespect to pointed Gromov-Hausdor� convergence [7, Thm. 8.1.10]. We can then �nda point y1 2 W such that dW (x1; y1) = 1 and there is no �-chain from x1 to y1for any � < 12 . This implies that W is not connected. By [3, Lemma 5.2], the limitspace W is homeomorphic to @1G n fzg for some z 2 @1G, and so z is a \global cutpoint" of @1G. 2



On the other hand, it is a well-known (and deep) fact if @1G is connected, then@1G has no global cut points (see [13], [5, Thm. 9.3], [6, Cor. 0.3]). This is acontradiction.Now suppose x and y are arbitrary points in @1G. By the lemma we can �nd a12d(x; y)-chain S1 = fz1; : : : ; zkg which joins x to y and has length k � N . Nowde�ne S2 by adding, for each 1 � i < k, the points in a 12d(zi; zi+1)-chain joiningzi to zi+1. Repeating this process inductively, we obtain a nested sequence of setsS1 � : : : � Sj � : : : . The closure S of the union Sj Sj will be a connected setcontaining x and y whose diameter does not exceed Ld(x; y), where L is a constantindependent of x and y. This shows that @1G is linearly connected.The proofs of Theorem 1 and Corollary 2. We �rst assume that G a hyperbolic groupwhich is not virtually free, and prove that there is a quasi-isometric embedddingH 2 ! G and a quasi-circle in @1G. Every hyperbolic group is �nitely presentable [9,p. 76, 17. Prop.]. Hence there is a �nite graph of groups decomposition of G whereall edge groups are �nite, and all vertex groups have at most one end [8, Theorem6.2.14]. Since G is not virtually free, one of the vertex groups G0 is 1-ended [8,Theorem 6.2.12]. The group G0 is quasi-isometrically embedded in G, since this istrue for every vertex group in a graph of groups decomposition with �nite edge groups[11, Rem. 3.6]. This implies that G0 is also a hyperbolic group. So without loss ofgenerality we may assume that G itself is 1-ended.Let @1G denote the boundary of G equipped with a visual metric. By Propo-sition 4, the hypotheses of Proposition 3 are satis�ed for @1G. Hence there is aquasisymmetric map [0; 1]! @1G. Since [0; 1] is quasisymmetrically homeomorphicto the boundary of a hyperbolic half-plane H 2+ � H 2 , we conclude that there is aquasi-isometric embedding H 2+ ! G (see the proof of Prop. 4.2 in [12], for example).In particular, one can quasi-isometrically embed arbitrarily large balls B � H 2 into Gwith uniform constants for the quasi-isometric embeddings. By pre-composing withisometries in H 2 , post-composing with left translations in the group G, and applyinga compactness argument based on the Arzel�a-Ascoli Theorem, we can obtain a quasi-isometric embedding H 2 ! G as a limit. A quasi-isometric embedding of a Gromovhyperbolic space X into a Gromov hyperbolic space Y induces a quasisymmetric em-bedding of @1X into @1Y (see [4, Thm. 6.5], where this is essentially proved); since@1H 2 is quasisymmetrically equivalent to S1, we deduce that the boundary @1Gcontains a quasi-circle.Now suppose G is virtually free. It follows that @1G is totally disconnected, andtherefore cannot contain a quasi-circle. This then implies that there is no quasi-isometric embedding H 2 ! G.This completes the proofs of the theorem and corollary.3
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