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Abstract. We call a complement of a union of at least three
disjoint open balls in the unit sphere S

n a Schottky set. We prove
that every quasisymmetric homeomorphism of a Schottky set of
spherical measure zero to another Schottky set is the restriction
of a Möbius transformation on S

n. In the other direction we show
that every Schottky set in S

2 of positive measure admits non-trivial
quasisymmetric maps to other Schottky sets.

These results are applied to establish rigidity statements for con-
vex subsets of hyperbolic space that have totally geodesic bound-
aries.

1. Introduction

Let S
n denote the n-dimensional unit sphere in R

n+1 equipped with the
restriction of the Euclidean metric. A Schottky set is a subset of S

n

whose complement is a union of at least three disjoint open balls. We
impose the requirement that a Schottky set has at least three distinct
open balls as complementary components to rule out cases that are
easy to analyze for the type of problems we consider. Each Schottky
set is endowed with the induced metric from S

n.
Let f : X → Y be a homeomorphism between two metric spaces

(X, dX) and (Y, dY ). The map f is called η-quasisymmetric, where
η : [0,∞) → [0,∞) is a homeomorphism, if

dY (f(x), f(y))

dY (f(x), f(z))
≤ η

�
dX(x, y)

dX(x, z)

�

for every triple of distinct points x, y, z ∈ X. We say that f is qua-

sisymmetric if it is η-quasisymmetric for some η.
Every Möbius transformation on S

n is a quasisymmetric map and
sends Schottky sets to Schottky sets. We say that a Schottky set S ⊆ S

n

is rigid if this is the only way to obtain Schottky sets as quasisymmetric
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images of S, i.e., if every quasisymmetric map of S onto any other
Schottky set S

� ⊆ S
n is the restriction of a Möbius transformation.

In this paper we consider the problem of characterizing rigid Schot-
tky sets. This is motivated by some recent investigations on uniformiza-
tion results for Sierpiński carpets (see [Bo, Ch. 7 and 8] for a survey).

The case n = 1 is trivial. Indeed, according to our definition the
Schottky sets in S

1 are precisely the closed subsets S of S
1 with at

least three complementary components. If S contains at least four
points, then S is not rigid. To see this note that every smooth diffeo-
morphism on S

1 that changes the cross-ratio of four points in S is a
quasisymmetric map of S to another Schottky set that does not agree
with any Möbius transformation on S

1 restricted to S. Therefore, we
can assume n ≥ 2 in the following.

Our main result is the following sufficient condition for rigidity.

Theorem 1.1. Every Schottky set in S
n
, n ≥ 2, of spherical measure

zero is rigid.

The proof requires considerable preparation and will be completed
in Section 6.

It turns out that in dimenson 2 the condition of vanishing spherical
measure is also necessary for the rigidity of a Schottky set.

Theorem 1.2. A Schottky set in S
2

is rigid if and only if it has spher-

ical measure zero.

The proof of the necessity part of this statement uses a rather stan-
dard quasiconformal deformation argument (see Section 7). It is based
on the measurable Riemann mapping theorem which is only available
for n = 2.

It seems unlikely that a similar simple characterization for the rigid-
ity of a Schottky set can be given in dimensions n ≥ 3. Schottky
sets with non-empty interior are always non-rigid. It is not hard to
construct examples of non-rigid Schottky sets with empty interior in
all dimensions (see Example 7.4). By Theorem 1.1 they necessarily
have positive measure. On the other hand, for n ≥ 3 there exist rigid
Schottky sets S ⊆ S

n of positive measure.

Theorem 1.3. For each n ≥ 3 there exists a Schottky set in S
n

that

has positive measure and is rigid.

We will construct such sets in Section 8.
Theorem 1.1 can be applied to obtain rigidity statements for convex

subsets of hyperbolic n-space H
n that have totally geodesic boundary.
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Theorem 1.4. Let K and K
�
be closed convex sets in H

n
, n ≥ 3, with

non-empty interior. Suppose that each set has non-empty boundary

consisting of disjoint hyperplanes, and that ∂∞K ⊆ ∂∞H
n ∼= S

n−1
has

measure zero.

Then every quasi-isometry between K and K
�
has finite distance to

the restriction to K of an isometry of H
n

mapping K to K
�
.

In particular, K and K
� are isometric. The relation to Theorem 1.1

is given by the fact that the boundaries at infinity ∂∞K and ∂∞K
� are

Schottky sets and the given quasi-isometry between K and K
� induces

a quasisymmetric map between ∂∞K and ∂∞K
� (cf. Proposition 9.1).

The underlying rigidity questions for convex sets in hyperbolic space
will be studied in Section 9. We ruled out n = 2 in the previous
theorem, because the statement is not true in this case. For complete
results for the low-dimensional cases n = 2 and n = 3 see Theorems 9.2
and 9.4.

Let Γ and Γ� be the groups of hyperbolic isometries generated by the
reflections in the hyperplanes bounding the sets K and K

� as in The-
orem 1.4, respectively. If we make the additional assumption that the
quasi-isometry in the statement is defined on all of H

n and is equivari-
ant with respect to Γ and Γ� in a suitable sense, then Theorem 1.4 can
be deduced from results by Sullivan (see Theorem IV and Section VII
in [Su]). It is possible to promote every quasi-isometry on the convex
set K to a global equivariant map on H

n by successive reflections in an
obvious way. It can be shown that the new map is a quasi-isometry on
H

n, but there seems to be no simple proof for this fact.
The issue of equivariance turns out to be the main difficulty in the

proof of Theorem 1.1. In this case one wants to extend a given qua-
sisymmetric map f between two Schottky sets in S

n to a quasisym-
metric map on S

n that is equivariant with respect to the groups of
Möbius transformations generated by the reflections in the “periph-
eral spheres” of the Schottky sets (the boundaries of the balls forming
the complementary components). We study such “Schottky groups”
in Section 3. The desired equivariant extension of f is obtained in
Proposition 5.5. One of the main ingredients in the proof is the deep
extension theorem for quasiconformal maps due to Tukia and Väisälä
[TV] (cf. Theorem 4.1).

Theorem 1.4 was already known for hyperbolic convex sets K and
K
� with finite inradius, and a positive lower bound on the separation

between boundary components [KKLS]. This includes universal cov-
ers of compact hyperbolic 3-orbifolds with non-empty totally geodesic
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boundaries [KK]. In this case the Schottky sets ∂∞K arising as bound-
aries are homeomorphic to a Sierpiński carpet. The statement and
proof in [KKLS] were inspired by the work of R. Schwartz on nonuni-
form lattices in the isometry group of H

n [Sc]. Schwartz’ work leads
to analogous rigidity statements for subsets K, K

� ⊆ H
n which are ob-

tained from H
n by deleting certain disjoint collections of horoballs. His

proof involves several steps: showing that boundary components are
preserved by quasi-isometries, that quasi-isometries can be extended
to H

n, and finally, that the boundary homeomorphism of the extension
is conformal almost everywhere. The proof in [KKLS] follows the same
outline, only each of the steps is simpler than in the case of horoball
complements. The failure of Theorem 1.4 when one drops the inradius
condition (which permits the boundary to have positive measure) was
also known [KKLS]. Other results in this direction were obtained by
Frigerio [Fr1, Fr2] (we thank C. Leininger for bringing this work to our
attention). Also related to this is the rigidity problem for conformal
maps of circle domains (see [HS]).

The outline of the paper is as follows. In Section 2 we prove some
connectivity properties of Schottky sets, and give a topological char-
acterization of the peripheral spheres of a Schottky set. Section 3 dis-
cusses properties of the group obtained by successive reflections in the
peripheral spheres of a Schottky set. We also recall some facts about
Hausdorff convergence of sets. In Section 4 we review quasiconformal
and related maps. The material in Sections 2–4 is quite standard.

We then prove that a quasisymmetric map between Schottky sets
has an equivariant extension (cf. Proposition 5.5). Combined with a
differentiation lemma (cf. Lemma 6.1) this will give us a proof of Theo-
rem 1.1 in Section 6. After some discussion on Beltrami coefficients, we
give a proof of Theorem 1.2 in Section 7. We also discuss an example of
a Schottky set with empty interior that is not rigid (cf. Example 7.4).
A rigid Schottky set of positive measure in S

n, n ≥ 3, is constructed in
Section 8. The key is a rigidity statement for “relative” Schottky sets
that is of independent interest (Theorem 8.1). The topic of the final
Section 9 is rigidity statements for convex sets in hyperbolic space with
totally geodesic boundaries.

2. Schottky sets

We first collect some general facts about Schottky sets S ⊆ S
n. We

write such a set in the form

(1) S = S
n \

�

i∈I

Bi,
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where the sets Bi, i ∈ I, are pairwise disjoint open balls in S
n. Here

I = {1, . . . , l}, l ≥ 3, if I is finite, and I = N = {1, 2, 3, . . . } if I is
infinite. The collection of the balls Bi, i ∈ I, is uniquely determined
by S as it is the set of components of S

n \ S. We refer to the (n− 1)-
spheres ∂Bi as the peripheral spheres of S. These sets are topologically
distinguished as Proposition 2.3 will show. First we will discuss some
connectedness properties of Schottky sets.

Lemma 2.1. Let S ⊆ S
n
, n ≥ 2, be a Schottky set, and B an open or

(possibly degenerate) closed ball in S
n
. Then S ∩ B is path-connected.

In particular, S is path-connected.

Proof. We write S as in (1). If x, y ∈ S ∩ B, there exists an arc γ

of a circle in S
n that connects x and y and is contained in B. Let

J ⊆ I be the set of indices i ∈ I for with γ has non-empty intersection
with the ball Bi. For each i ∈ J there exists a maximal subarc γi of
γ with γi ⊆ B̄i. Since the balls Bi are disjoint, the arcs γi, i ∈ J , are
pairwise non-overlapping, i.e., no interior point of one arc belongs to
any other arc. Since the endpoints of γi, i ∈ J , are in ∂Bi, we can find
an arc γ̃i ⊆ ∂Bi ∩ B with the same endpoints as γi. We now replace
the subarcs γi, i ∈ J , of γ by the arcs γ̃i. If suitably parametrized,
this gives a path γ̃ connecting x and y in S ∩ B. This is clear if J is
finite. If J is infinite, this follows from the fact that diam(γ̃i) → 0 as
i ∈ J →∞. The path-connectedness of S ∩B follows. ✷

A metric space (Z, d) is called λ-linearly locally connected, λ ≥ 1, if
the following two conditions hold:

(λ-LLC1): If B(a, r) is a ball in Z and x, y ∈ B(a, r), then there
exists a continuum E ⊆ B(a, λr) containing x and y.

(λ-LLC2): If B(a, r) is a ball in Z and x, y ∈ Z \ B(a, r), then there
exists a continuum E ⊆ Z \ B(a, r/λ) containing x and y.

For future reference we record the following immediate consequence
of Lemma 2.1.

Proposition 2.2. Every Schottky set S ⊆ S
n
, n ≥ 2, is 1-linearly

locally connected.

Proof. The facts that S is 1-LLC1 and 1-LLC2 follow from Lemma 2.1
applied to the open ball B = B(a, r) and the closed ball B = S

n \
B(a, r), respectively, where B(a, r) is as in the LLC-conditions. ✷

Proposition 2.3. Let Σ be a topological (n− 1)-sphere contained in a

Schottky set S ⊆ S
n
, n ≥ 2. Then S \ Σ is connected if and only if Σ

is a peripheral sphere of S.
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For a very similar result see [Fr2, Lem. 2.1].

Proof. We write S as in (1).
If Σ = ∂Bi, i ∈ I, is a peripheral sphere of S, then S\Σ is connected.

Indeed, let B = S
n \ B̄i. Then B is an open ball in S

n, and Lemma 2.1
shows that S ∩B = S \ Σ is path-connected, and hence connected.

Conversely, suppose that Σ is an embedded (n− 1)-sphere in S and
S \ Σ is connected. By the Jordan-Brouwer Separation Theorem [Sp,
Thm. 15, p. 198], the set S

n \ Σ has two components. Since S \ Σ is
connected, it is contained in one of the components K of S

n\Σ. Let K
�

be the other non-empty component of S
n \Σ. Then K

�∩S = ∅, and so
K
� is covered by the balls Bi, i ∈ I. In particular, there exists one ball

B = Bj in this collection with K
� ∩B �= ∅. Since B ∩Σ = ∅, it follows

that B ⊆ K
�. Now K

� is connected and ∂B ∩K
� ⊆ S ∩K

� = ∅. Hence
B = K

�. This implies that ∂B = ∂K
� ⊆ Σ. Since ∂B is a topological

(n − 1)-sphere, this set cannot be a proper subset of the topological
(n− 1)-sphere Σ. Therefore, Σ = ∂B is a peripheral sphere of S. ✷

Corollary 2.4. Let f : S → S
�
be a homeomorphism between Schottky

sets S and S
�
in S

n
, n ≥ 2. Then f maps every peripheral sphere of S

onto a peripheral sphere of S
�
.

3. Schottky groups

Suppose S ⊆ S
n is a Schottky set in S

n, n ≥ 2, written as in (1).
For each i ∈ I let Ri : S

n → S
n be the reflection in the peripheral

sphere ∂Bi. The subgroup of the group of all Möbius transformations
on S

n generated by the reflections Ri, i ∈ I, is denoted by ΓS and
called the Schottky group associated with S. It consists of all Möbius
transformations U of the form U = Ri1 ◦ · · · ◦ Rik

, where k ∈ N and
i1, . . . , ik ∈ I. Since R

2
i

= idSn , where idSn is the identity map on S
n, we

can assume that in such a representation for U the sequence of indices
i1, . . . , ik is reduced, i.e., ir �= ir+1 for r = 1, . . . , k − 1.

We set

(2) S∞ =
�

U∈ΓS

U(S).

This set consists of all the copies of the original Schottky set under the
transformations in the group ΓS. We will later see (cf. remark after
Lemma 3.4) that this is a dense subset of S

n.
For k ∈ N and a reduced sequence i1, . . . , ik ∈ I we define open balls

Bi1...ik
:= (Ri1 ◦ · · · ◦Rik−1

)(Bik
).

Then the following facts are easy to check:
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(i) Bi1...ik−1i ∩Bi1...ik−1j = ∅, whenever i �= j,

(ii) Bi1...ik
⊆ Bi1...ik−1

for all reduced sequences, k > 1,

(iii) for fixed k ∈ N the balls Bi1...ik
, where i1, . . . , ik is a reduced

sequence in I, are pairwise disjoint,

(iv) (Ri1 ◦ · · · ◦ Rik
)(S) = B̄i1...ik

\
�

i∈I\{ik}

Bi1...iki for all reduced

sequences.

The last fact shows that (Ri1 ◦ · · · ◦Rik
)(S) is a Schottky set whose

peripheral spheres are ∂Bi1...ik
and ∂Bi1...iki, i ∈ I \ {ik}.

The reflection in ∂Bi1...ik
is given by

Ri1 ◦ · · · ◦Rik−1
◦Rik

◦Rik−1
◦ · · · ◦Ri1 ,

and hence belongs to ΓS.

Proposition 3.1. The group ΓS is a discrete group of Möbius trans-

formations with a presentation given by the generators Ri, i ∈ I, and

the relations R
2
i

= idSn, i ∈ I.

Proof. To show that ΓS is discrete (in the topology of uniform conver-
gence on S

n), it is enough to find δ > 0 such that

(3) inf
U∈ΓS\{idSn}

�
max
x∈Sn

|U(x)− x|
�
≥ δ,

i.e., every element in ΓS different from the identity element moves a
point in S

n by a definite amount.
To see this, consider the indices 1, 2, 3 ∈ I, and write the correspond-

ing complementary component of S as Bl = B(xl, rl), l = 1, 2, 3. Then
we can take δ = min{r1, r2, r3} in (3). Indeed, let U ∈ ΓS \ {idSn} be
arbitrary. Then there exist k ∈ N and a reduced sequence of indices
i1, . . . , ik ∈ I such that

U = Ri1 ◦ · · · ◦Rik
.

There is one index j ∈ {1, 2, 3}, such that j �= i1 and j �= ik. Then

U(Bj) = Bi1...ikj ⊆ Bi1 .

Since Bj ∩Bi1 = ∅, this implies that U(xj) �∈ Bj and so

|U(xj)− xj| ≥ rj ≥ δ

as desired. Hence ΓS is discrete.
The same argument also shows that Ri1 ◦ · · · ◦Rik

�= idSn , whenever
k ∈ N and i1, . . . , ik ∈ I is a reduced sequence. Hence ΓS has a
presentation as stated. ✷
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Before we prove the next proposition, we will first review some facts
about Hausdorff convergence of sets that will be useful throughout the
paper. Suppose X is a metric space, and A, B ⊆ X. Then their
Hausdorff distance distH(A, B) is defined as the infimum of all δ ∈
(0,∞] such that

A ⊆ Nδ(B) and B ⊆ Nδ(A).

Here
Nδ(M) = {x ∈ X : dist(x, M) < δ}

is the open δ-neigborhood of a set M ⊆ X.
A sequence (Ak) of sets in X is said to (Hausdorff) converge to a set

A ⊆ X, written Ak → A, if

distH(Ak, A) → 0 as k →∞.

If X is compact, then every sequence (Ak) of non-empty subsets of X

subconverges to a non-empty closed subset A of X (i.e., the sequence
has a convergent subsequence with limit A).

Suppose Ak → A. Then for each x ∈ A there exists a sequence (xk)
such that xk ∈ Ak and xk → x. Conversely, if for some x ∈ X there
exist a subsequence (Akl

) of (Ak) and corresponding points xkl
∈ Akl

with xkl
→ x as l → ∞, then x ∈ Ā. In particular, this implies that

if x ∈ X \ Ā, then x ∈ X \ Ak for large k. We will use these facts
repeatedly in the following.

The following lemma is straightforward to prove. We leave the details
to the reader.

Lemma 3.2. Suppose (Bk) is a sequence of closed balls in S
n

with

Bk → B ⊆ S
n
, where B ⊆ S

n
is closed. Then B is a (possibly degen-

erate) closed ball, and we have ∂Bk → ∂B. If x ∈ int(B), then there

exists δ > 0 such that B(x, δ) ⊆ int(Bk) for large k.

Here we denote by int(M) the interior of a set M .
The next lemma shows that the radii of the balls Bi1...ik

as defined
above tend to 0 uniformly as k →∞.

Lemma 3.3. For every δ > 0 only finitely many of the balls

(4) Bi1...ik
, k ∈ N and i1, . . . , ik a reduced sequence of indices in I,

have diameter ≥ δ.

Proof. If this is not the case, then there exist infinitely many of these
balls with diameter≥ δ. Then we can find a sequence (Dl)l∈N of distinct
balls from the collection in (4) such that D̄l Hausdorff converges to a
non-degenerate closed ball D∞ in S

n as l →∞. Since every ball in (4)
contains balls of fixed size in its complement (namely one of the balls
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B1 or B2), we have D∞ �= S
n. Since the boundaries ∂Bi1...ik

of the balls
in (4) are distinct sets, the (n−1)-spheres Σl = ∂Dl are all distinct. By
Lemma 3.2 they Hausdorff converge to the (n− 1)-sphere Σ∞ := ∂D∞
as l →∞. Denote by Tl for l ∈ N∪{∞} the reflection in the sphere Σl

on S
n. Then Tl converges to T∞ in the topology of uniform convergence

on S
n as l → ∞. Moreover, the reflections Tl, l ∈ N, are all distinct,

and they belong to ΓS, because they are reflections in spheres bounding
balls in (4). Hence Ul = Tl+1 ◦ T

−1
l
�= idSn belongs to ΓS for l ∈ N, and

Ul → T∞ ◦ T
−1
∞ = idSn as l → ∞. This contradicts the discreteness of

ΓS. ✷

Lemma 3.4. For each point x ∈ S
n\S∞ there exists a unique sequence

(ik) in I such that ik �= ik+1 and x ∈ Bi1...ik
for all k ∈ N.

Note that diam(Bi1...ik
) → 0 as k →∞ by the previous lemma. Since

∂Bi1...ik
⊆ S∞, it follows that S∞ is dense in S

n.

Proof. For existence note that if x ∈ S
n \S∞, then x �∈ S. Hence there

exists i1 ∈ I such that x ∈ Bi1 . Since

x �∈ Ri1(S) = B̄i1 \
�

i∈I\{i1}

Bi1i ⊆ S∞,

there exists i2 ∈ I, i2 �= i1, such that x ∈ Bi1i2 . Proceeding in this
way, we can inductively define the desired sequence (ik). Uniqueness is
clear since for fixed k ∈ N, the balls

Bi1...ik
, i1, . . . , ik is a reduced sequence in I,

are pairwise disjoint. ✷

4. Quasiconformal maps

We recall some basic facts about quasiconformal and related mappings
(see [Vä1] for general background). Let f : S

n → S
n be a homeomor-

phism, and for x ∈ S
n and small r > 0 define

(5) Lf (r, x) = sup{|f(y)− f(x)| : y ∈ S
n and |y − x| = r},

(6) lf (r, x) = inf{|f(y)− f(x)| : y ∈ S
n and |y − x| = r},

and the dilatation of f at x by

(7) Hf (x) = lim sup
r→0

Lf (x, r)

lf (x, r)
.

The map f is called quasiconformal if

sup
x∈Sn

Hf (x) < ∞.
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A quasiconformal map f is called H-quasiconformal, H ≥ 1, if

Hf (x) ≤ H for almost every x ∈ S
n
.

Quasiconformality can be defined similarly in other settings, for ex-
ample for homeomorphisms between regions in S

n or R
n or between

Riemannian manifolds.
The composition of an H-quasiconformal and an H

�-quasiconformal
map is an (HH

�)-quasiconformal map. If a homeomorphism f between
regions in S

n is 1-quasiconformal, then f is a conformal (possibly ori-
entation reversing) map. If n ≥ 3, then by Liouville’s Theorem f is
the restriction of a Möbius transformation (cf. [Vä1, p. 43]).

If x1, x2, x3, x4 are four distinct points in a metric space (X, d), then
their cross-ratio is the quantity

[x1, x2, x3, x4] =
d(x1, x3)d(x2, x4)

d(x1, z4)d(x2, x3)
.

Let η : [0,∞) → [0,∞) be a homeomorphism, and f : X → Y a
homeomorphism between metric spaces (X, dX) and (Y, dY ). The map
f is an η-quasi-Möbius map if

[f(x1), f(x2), f(x3), f(x4)] ≤ η([x1, x2, x3, x4]).

for every 4-tuple (x1, x2, x3, x4) of distinct points in X.
Note that a Möbius transformation on S

n preserves cross-ratios of
points. As a consequence every pre- or post-composition of an η-
quasi-Möbius map f : S

n → S
n by a Möbius transformation is η-quasi-

Möbius.
We list some interrelations between the classes of maps we discussed

[Vä2]:

(i) Let n ≥ 2. Then every H-quasiconformal map f : S
n → S

n is η-
quasi-Möbius with η depending only on n and H. Conversely,
every η-quasi-Möbius map f : S

n → S
n is H-quasiconformal

with H depending only on η.
(ii) An η-quasisymmetric map between metric spaces is η̃-quasi-

Möbius with η̃ depending only on η.

Conversely, every quasi-Möbius map between bounded spaces is qua-
sisymmetric. This statement is not quantitative in general, but we
have:

(iii) Let (X, dX) and (Y, dY ) be bounded metric spaces, f : X → Y

an η-quasi-Möbius map, λ ≥ 1, x1, x2, x3 ∈ X. Set yi = f(xi),
and suppose that dX(xi, xj) ≥ diam(X)/λ and dY (yi, yj) ≥
diam(Y )/λ for i �= j. Then f is η̃-quasisymmetric with η̃ de-
pending only on η and λ.
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We consider R
n as a subspace of R

n+1 as usual by identifying a point
(x1, . . . , xn) ∈ R

n with (x1, . . . , xn, 0) ∈ R
n+1. In this way, we can also

consider S
n−1 = S

n ∩ R
n as a subspace of S

n.
We need the following deep result due to Tukia and Väisälä [TV].

Theorem 4.1. Let n ≥ 3. Every H-quasiconformal map f : R
n−1 →

R
n−1

has an H
�
-quasiconformal extension F : R

n → R
n
, where H

�
only

depends on n and H.

For n = 2 we have the classical Ahlfors-Beurling extension theorem
that can be formulated as follows.

Theorem 4.2. Every η-quasisymmetric map f : R → R has an H-

quasiconformal extension F : R
2 → R

2
, where H only depends on η.

We need the following consequence of these results.

Proposition 4.3. Let D �= S
n

and D
� �= S

n
be closed non-degenerate

balls in S
n
, n ≥ 2, and f : ∂D → ∂D

�
a homeomorphism.

(i) If f is η-quasi-Möbius, then it can be extended to an η
�
-quasi-

Möbius map F : D → D
�
, where η

�
only depends on n and η.

(ii) If each of the balls D and D
�

is contained in a hemisphere,

and f is η-quasisymmetric, then f can be extended to an η
�
-

quasisymmetric map F : D → D
�
, where η

�
only depends on n

and η.

Proof. To prove (i), we map D and D
� to closed hemispheres by auxil-

iary Möbius transformations. We may assume that these hemispheres
are bounded by S

n−1 = S
n ∩ R

n ⊆ S
n. So after suitable composition

of f by Möbius transformations, we obtain an η-quasi-Möbius map
f̃ : S

n−1 → S
n−1.

If we distinguish suitable points as points at infinity in the two
copies of S

n−1 and make the identification S
n−1 = R

n−1 ∪ {∞}, then
f̃(∞) = ∞, and f̃ restricts to an η-quasi-Möbius map f̃ : R

n−1 → R
n−1.

Here R
n−1 has to be considered as equipped with the chordal metric

coming from the identification of S
n−1 with R

n−1 ∪ {∞} by stereo-
graphic projection. Cross-ratios for points in R

n−1 are the same if
we take the chordal metric or the Euclidean metric. It follows that
f̃ : R

n−1 → R
n−1 is η-quasi-Möbius if R

n−1 is equipped with the Eu-
clidean metric. Since f̃(∞) = ∞, we conclude by a limiting argument
that f̃ : R

n−1 → R
n−1 is also η-quasisymmetric when R

n−1 carries this
metric.

If n ≥ 3, this implies that f̃ : R
n−1 → R

n−1 is H-quasiconformal
with H only depending on η. Hence by Theorem 4.1, f̃ has an H

�-
quasiconformal extension F̃ : R

n → R
n with H

� depending only on n
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and H, and hence only on n and η. If n = 2, then we get such an H
�-

quasiconformal extension F̃ from the Ahlfors-Beurling Theorem 4.2.
Letting F̃ (∞) = ∞ and making the identification S

n = R
n∪{∞}, we

get an H
�-quasiconformal mapping F̃ : S

n → S
n that extends f̃ : S

n−1 →
S

n−1. Note that points are “removable singularities” for quasiconformal
maps [Vä1, Thm. 17.3]. Moreover, the dilatation of F̃ does not change
by the passage from the Euclidean metric on R

n to the chordal metric
on R

n ⊆ S
n = R

n ∪ {∞}, because these metrics are “asymptotically”
conformal. Then F̃ will be η

�-quasi-Möbius with η
� only depending on

n and H
� and hence only on n and η. Conjugating this extension back

by the auxiliary Möbius transformations used above, and restricting to
a map on D, we get an extension of f with the desired properties.

To prove part (ii) suppose that f is η-quasisymmetric. Since qua-
sisymmetric maps are quasi-Möbius maps quantitatively, it follows from
the first part of the proof that there exists an η̃-quasi-Möbius exten-
sion F : D → D

�, where η̃ only depends on n and η. If D and D
�

are each contained in a hemisphere, then diam(D) = diam(∂D) and
diam(D�) = diam(∂D

�). Pick points x1, x2, x3 ∈ ∂D such that

|xi − xj| ≥ diam(∂D)/2 = diam(D)/2 for i �= j,

and define yi = F (xi) = f(xi) ∈ ∂D
�. Now by the quasisymmetry of f ,

|f(z)− f(xi)| ≤ η(2)|f(xj)− f(xi)|
for arbitrary i �= j and z ∈ ∂D. It follows that

diam(D�)/λ = diam(∂D
�)/λ ≤ |yi − yj| for i �= j,

where λ = 2η(2). Since λ only depends on η, it follows from fact (iii)
above that F is η

�-quasisymmetric with η
� only depending on n and η.

✷

5. Extension of quasisymmetric maps between Schottky
sets

Throughout this section S and S
� will be Schottky sets in S

n, n ≥ 2,
such that there exists a quasisymmetric map f : S → S

�. We can write

(8) S = S
n \

�

i∈I

Bi and S
� = S

n \
�

i∈I

B
�
i
,

where both collections {Bi : i ∈ I} and {B�
i
: i ∈ I} consist of pairwise

disjoint open balls in S
n, and f(∂Bi) = ∂B

�
i

for i ∈ I. For i ∈ I let
Ri be the reflection in ∂Bi, and R

�
i
be the reflection in ∂B

�
i
. If U is an

element in the Schottky group ΓS, then it can be uniquely written as

U = Ri1 ◦ · · · ◦Rik
,
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where k ∈ N and i1, . . . , ik is a reduced sequence in I.
By Proposition 3.1 the map Φ : ΓS → ΓS� given by

Φ(U) = U
� := R

�
i1
◦ · · · ◦R

�
ik

is well-defined and defines a group isomorphism between ΓS and ΓS� .
Let

S∞ =
�

U∈ΓS

U(S) and S
�
∞ =

�

V ∈ΓS�

V (S �).

Then S∞ and S
�
∞ are dense sets in S

n, the set S∞ is invariant under
the group ΓS, and S

�
∞ under ΓS� .

Lemma 5.1. There exists a unique bijection f∞ : S∞ → S
�
∞ that ex-

tends f equivariantly, that is, f∞|S = f and f∞ ◦ U = U
� ◦ f∞ for all

U ∈ ΓS.

Proof. Let z ∈ S∞ be arbitrary. Then there exist x ∈ S and U ∈ ΓS

such that z = U(x). We define f∞ : S∞ → S
�
∞ by setting f∞(z) =

U
�(f(x)).
To show that f∞ is well-defined assume that U(x) = V (y), where

x, y ∈ S and U, V ∈ ΓS, U �= V . Then U
−1 ◦ V = Ri1 ◦ · · · ◦ Rik

and
hence x = Ri1 ◦ · · · ◦ Rik

(y), where k ∈ N and i1, . . . , ik is a reduced
sequence in I. It follows that x ∈ B̄i1∩S = ∂Bi1 . Thus x = Ri1(x), and
so x = Ri2 ◦· · ·◦Rik

(y). Repeating this argument, we deduce that x lies
on all the spheres ∂Bi1 , . . . , ∂Bik

, and is fixed by each of the reflections
Ri1 , . . . , Rik

. This shows that x = y. Therefore, f(x) = f(y) is fixed by
each of the reflections R

�
i1
, . . . , R

�
ik

, and so f(x) = R
�
i1
◦ · · · ◦R

�
ik

(f(y)).
Since R

�
i1
◦ · · ·◦R

�
ik

= U
� ◦V

�−1, we conclude U
�(f(x)) = V

�(f(y)). This
implies that f∞ is well-defined.

It is clear that f∞ is the unique equivariant extension of f to S∞.
An inverse map for f∞ can be defined similarly. So f∞ is indeed a
bijection. ✷

The argument in the previous proof also shows that if two copies
U(S) and V (S), U, V ∈ ΓS, U �= V , of the Schottky set S have a
common point z, then z lies on peripheral spheres of U(S) and V (S).
Note that in general these peripheral spheres need not be identical, but
they can be distinct spheres that touch at z. In any case, U(S) and
V (S) intersect in a set of measure zero. Therefore, the representation
of S∞ as in (2) gives a measurable partition of this set. This will be
important in the proof of Theorem 1.2.

We would like to prove that f actually has an equivariant quasi-
conformal extension to S

n. This would easily follow from the previous
lemma if we could show that f∞ is a quasi-Möbius map. Though this
is true, there seems to be no straightforward proof of this fact.
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We will address this issue by first extending f in a non-equivariant
way to a quasiconformal map on S

n, and then correcting this map suc-
cessively to make it equivariant while keeping a uniform bound on the
dilatation of the intermediate quasiconformal maps. The equivariant
extension is then obtained as a sublimit of these maps.

The first step is provided by the following extension result.

Proposition 5.2. Every quasisymmetric map between Schottky sets in

S
n
, n ≥ 2, extends to a quasiconformal homeomorphism of S

n
.

Proof. Suppose f : S → S
� is an η-quasisymmetric map between two

Schottky sets S and S
� in S

n, n ≥ 2. We can write S and S
� as in (8).

Moreover, by applying suitable Möbius transformations to S and S
� if

necessary, we may assume that each of the balls Bi and B
�
i
, i ∈ I, is

contained in a hemisphere.
By Proposition 4.3 we can extend each map f |∂Bi : ∂Bi → ∂B

�
i
, i ∈

I, to an η
�-quasisymmetric map of B̄i onto B̄

�
i
, where η

� is independent
of i. These maps paste together to a homeomorphism F : S

n → S
n

whose restriction to S agrees with f and whose restriction to each ball
B̄i is an η

�-quasisymmetric map onto B̄
�
i
.

We claim that this global map F is quasiconformal. We need to show
that there exists a constant H ≥ 1 such that for every x ∈ S

n,

(9) lim sup
r→0

LF (x, r)

lF (x, r)
≤ H,

where LF and lF are defined as in (5) and (6). Below we will write a � b

for two quantities a and b if there exists a constant C that depends only
on the functions η and η

�, such that a ≤ Cb. We will write a � b if
both a � b and b � a hold.

If x is in a complementary component of S, then (9) follows from
the definition of F with H = η

�(1). Thus it is enough to consider only
the case x ∈ S.

Since S is connected, there exists small r0 > 0 such that the spheres

Σ(x, r) := {y ∈ S
n : |y − x| = r}

intersect S for 0 < r ≤ r0. Suppose that r is in this range and y ∈
Σ(x, r) is arbitrary. Since F |S = f is η-quasisymmetric, it suffices to
show that there exist points v

�
, v
�� ∈ S ∩ Σ(x, r) such that

(10) |F (v��)− F (x)| � |F (y)− F (x)| � |F (v�)− F (x)|.
For then LF (x, r)/lF (x, r) will be bounded by a quantity comparable
to η(1).

This is trivial if y itself is in S. Thus we assume that y is not in
S, i.e., it lies in one of the complementary components of S, which
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we denote by B. Let v
� denotes an arbitrary point which is in the

intersection of the sphere Σ(x, r) and ∂B, and let u
� be the point in

the intersection of ∂B and the geodesic segment [x, y] (with respect to
the spherical metric). Since |y − u

�| ≤ |v� − u
�|, |u� − x| ≤ |v� − x| and

|v�− u
�| � |v�− x|, the triple {x, v

�
, u

�} is in S, and the triple {y, v
�
, u

�}
is in B̄, we have

|F (y)− F (x)| ≤ |F (y)− F (u�)| + |F (u�)− F (x)|
� |F (v�)− F (u�)| + |F (v�)− F (x)| � |F (v�)− F (x)|.

This shows the right-hand side of (10). To prove the left-hand side
inequality, we choose v

�� in the same way as v
�, namely to be an arbitrary

point in the intersection of the sphere Σ(x, r) and ∂B. As for u
��, we

choose it to be a preimage under F of a point in the intersection of the
geodesic segment [F (x), F (y)] and F (∂B). Again, the triple {x, v

��
, u

��}
is in S, and the triple {y, v

��
, u

��} is in B̄. We need to consider two
cases:
Case 1. |u�� − x| ≥ 1

2r. In this case we have |v�� − x| � |u�� − x|, and
therefore

|F (v��)− F (x)| � |F (u��)− F (x)| ≤ |F (y)− F (x)|.

Case 2. |u�� − x| ≤ 1
2r. Then we have |v�� − u

��| � |y − u
��|, and thus

|F (v��)− F (x)| ≤ |F (v��)− F (u��)| + |F (u��)− F (x)|
� |F (y)− F (u��)| + |F (u��)− F (x)| � |F (y)− F (x)|.

This completes the proof of (10), and thus of (9) and the proposition.
✷

Suppose T ⊆ S
n, n ≥ 2, is a Schottky set, Σ one of the peripheral

spheres of T , and R the reflection in Σ. Then T̃ = T ∪ R(T ) is also
a Schottky set, called the double of T along Σ. Let T

� be another
Schottky set in S

n, and F : S
n → S

n be an H-quasiconformal map with
F (T ) = T

�. Then Σ� = F (Σ) is a peripheral sphere of T
�. Let R

� be the
reflection in Σ�, and T̃

� be the double of T
� along Σ�. Denote by B the

open ball with Σ = ∂B and B ∩ T = ∅. We define a map F̃ : S
n → S

n

by

F̃ (x) =

�
F (x), x ∈ S

n \ B,

R
� ◦ F ◦R(x), x ∈ B̄.

Note that this definition is consistent on ∂B = Σ and hence defines a
homeomorphism from S

n onto itself.

Lemma 5.3. The map F̃ is an H-quasiconformal map with F̃ |T = F ,

F̃ (T̃ ) = T̃
�
, and F̃ ◦R = R

� ◦ F̃ .
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The main point here is that we get the same dilatation bound for F̃ as
for F . In other words, if there exists an H-quasiconformal homeomor-
phism of S

n mapping a Schottky set T to a Schottky set T
�, then there

also exists a natural H-quasiconformal homeomorphism that takes a
double of T to the corresponding double of T

� and agrees with the
original map on T .

Proof. Since Möbius transformations are 1-quasiconformal, the map
R
� ◦ F ◦ R is H-quasiconformal. Hence F̃ |B and F̃ |(Sn \ B̄) are H-

quasiconformal. This implies that F̃ is H-quasiconformal, because sets
of σ-finite Hausdorff (n−1)-measure (such as Σ = ∂B) form “removable
singularities” for quasiconformal maps on S

n (see [Vä1, Sect. 35]). The
other statements are obvious. ✷

With the setup as in the beginning of the section we can now prove
the following lemma.

Lemma 5.4. There exist H ≥ 1, Schottky sets Sk and S
�
k

in S
n
, and

H-quasiconformal maps Fk : S
n → S

n
for k ∈ N0 with the following

properties:

(i) F0 = F , S0 = S, S
�
0 = S

�
,

(ii) Fk(Sk) = S
�
k

for k ∈ N0,

(iii) Sk+1 ⊇ Sk is a double of Sk, and S
�
k+1 ⊇ S

�
k

is the corresponding

double of S
�
k

for k ∈ N0,

(iv) Fk|Sk = f∞|Sk for k ∈ N0,

(v)
�

k∈N0

Sk = S∞.

Proof. Define S0 := S, S
�
0 := S

�, and let F0 : S
n → S

n be a quasicon-
formal extension of f as provided by Proposition 5.2. The map F0 will
be H-quasiconformal for some H ≥ 1.

Now if Schottky sets Sk and S
�
k

and an H-quasiconformal map Fk on
S

n with Fk(Sk) = S
�
k

have been defined for some k ∈ N0, we let Sk+1

be the double of Sk along a peripheral sphere Σ of Sk with the largest
radius (which exists, because there are only finitely many peripheral
spheres whose radii exceed a given positive number). Then S

�
k+1 is

defined as the double of S
�
k

along the peripheral sphere that corresponds
to Σ under Fk, and Fk+1 is the H-quasiconformal map obtained from
Fk and these doubles as in Lemma 5.3.

With these definitions the asserted properties (i)–(iii) are clear. Since
Sk is obtained by successive doubles of S, every peripheral sphere of Sk

is an image of a peripheral sphere of S under a Möbius transformation
in ΓS. In particular, any reflection in a peripheral sphere of Sk belongs
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to ΓS. Using this, property (iv) follows from the definition of Fk and
the equivariance of f∞ (cf. Lemma 5.1) by induction on k.

Note that if rk is the maximal radius of a peripheral sphere of Sk,
then

(11) rk → 0 as k →∞.

Indeed, the peripheral spheres of Sk are among the spheres

(12) ∂Bi1...il
= Ri1 ◦ · · · ◦Ril−1

(∂Bil
),

where l ∈ N and i1, . . . , il is a reduced sequence in I. By Lemma 3.3
there are only finitely many among the spheres in (12) whose radii
exceed any given positive constant � > 0. Since in the construction of
Sk+1 from Sk we double Sk along a peripheral sphere of maximal radius
and this sphere will not be a peripheral sphere of any of the Schottky
sets Sk+1, Sk+2, . . . , all spheres of radius ≥ � in (12) are eventually
eliminated as possible peripheral spheres of the sets Sk in the doubling
process. Therefore, (11) follows.

Now we can show that (v) holds. It is clear that S∞ contains each
Sk. Suppose S̃ :=

�
k∈N0

Sk is a proper subset of S∞. Then S̃ does
not contain all the copies of S under the transformations in ΓS, and so
there exist U ∈ ΓS such that U(S) is not contained in S̃. Each such
map U has a unique representation in the form U = Ri1 ◦ · · · ◦ Ril

,
where l ∈ N, and i1, . . . , il is a reduced finite sequence in I. We fix U

so that it has a representation of this form with minimal l among all
such group elements. Then T = Ri1 ◦ · · ·◦Ril−1

(S) is a subset of Sk for
sufficiently large k, but T

� = U(S) is not. Since the Schottky sets T

and T
� have the common peripheral sphere Σ = Ri1 ◦ · · · ◦Ril−1

(∂Bil
),

this is a peripheral sphere of Sk for all sufficiently large k. This is
impossible, because the radius of the largest peripheral sphere of Sk

tends to 0 as k →∞. ✷

Proposition 5.5. The quasisymmetric map f : S → S
�
has an equi-

variant quasiconformal extension F : S
n → S

n
, that is, F |S = f and

F ◦ U = U
� ◦ F for all U ∈ ΓS.

Proof. Consider the Schottky sets Sk and S
�
k

and the H-quasiconformal
maps Fk obtained in Lemma 5.4. Since these maps are uniformly qua-
siconformal, there exists a distortion function η such that Fk is an
η-quasi-Möbius map for all k ∈ N0. Any four points in S∞ are con-
tained in one of the Schottky sets Sk, k ∈ N0. Since Fk|Sk = f∞|Sk,
it follows that f∞ is an η-quasi-Möbius map from S∞ to S

�
∞. Since

S∞ and S
�
∞ are dense in S

n, the map f∞ has a unique quasi-Möbius
extension F : S

n → S
n. Then F is a quasiconformal extension of f .
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The map F has the desired equivariance property as follows from the
corresponding property of f∞. ✷

6. Schottky sets of measure zero

Now we are almost ready to prove Theorem 1.1. We need one final
ingedient.

Lemma 6.1. Let g : R
n → R

n
, n ∈ N, be a map that is differentiable

at 0. Suppose there exists a sequence (Dk) of non-degenerate closed

balls in R
n

with diam(Dk) → 0 such that 0 ∈ Dk and D
�
k

= g(Dk) is a

ball for all k ∈ N.

Then the derivative Dg(0) of g at 0 is a (possibly degenerate or

orientation reversing) conformal linear map, i.e., Dg(0) = λT , where

λ ≥ 0 and T : R
n → R

n
is a linear isometry.

Proof. We may assume that g(0) = 0. Let rk > 0 be the radius of Dk,
and define D̃k = 1

rk
Dk for k ∈ N. Then D̃k is a closed ball of radius 1

containing 0. By passing to a subsequence if necessary, we may assume
that the balls D̃k Hausdorff converge to a closed ball D ⊆ R

n of radius
1.

Since rk → 0, the maps gk : R
n → R

n defined by

gk(x) = 1
rk

g(rkx) for x ∈ R
n

converge to the linear map L = Dg(0) locally uniformly on R
n. Hence

the balls
1
rk

D
�
k

= 1
rk

g(Dk) = gk(D̃k)

Hausdorff converge to the closed set D
� := L(D) as k →∞. It follows

that D
� is also a closed ball, posssibly degenerate. Since every linear

transformation on R
n that maps a non-degenerate ball to a ball is

conformal, the result follows. ✷

Proof of Theorem 1.1. Let S and S
� be Schottky sets in S

n, n ≥ 2, and
f : S → S

� a quasisymmetric map. Assume that S has measure zero.
We have to show that f is the restriction of a Möbius transformation.

We use the notation of Section 5, and let F : S
n → S

n be the equi-
variant quasiconformal extension of f obtained in Proposition 5.5. We
will show that F is a Möbius transformation.

The set S∞ is a union of a countable number of copies of S under
Möbius transformations. Since S has measure zero, the same is true
for S∞, and so the set S

n \ S∞ has full measure. By Lemma 3.4 each
point in the set S

n \ S∞ is contained in a sequence of closed balls
Dk with diam(Dk) → 0 such that each ball Dk is an image of a ball
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in the collection {B̄i : i ∈ I} under a Möbius transformation in ΓS.
Since F maps peripheral spheres of S to peripheral spheres of S

� and
is equivariant, it follows that D

�
k

:= F (Dk) is a ball for each k ∈ N.
Since F is quasiconformal, there exits a set N ⊆ S

n of measure zero
such that F is differentiable with invertible derivative at each point
in S

n \ N [Vä1, Ch. 4]. Lemma 6.1 implies that for each point in
S

n \ (S∞ ∪N) the map F is differentiable with a derivative that is an
invertible conformal linear map. Since S

n \ (S∞ ∪N) has full measure,
the map F is 1-quasiconformal, and hence a Möbius transformation. ✷

Very similar arguments can be found in the proofs of Lemmas 3.14
and 3.15 in [Fr1].

7. Schottky sets of positive measure

We identify S
2 with the extended complex plane C = C ∪ {∞}, and

denote by z a variable point in C. By definition a Beltrami coefficient

is an essentially bounded complex measurable function µ on C with
�µ�∞ < 1. Each Beltrami coefficient µ defines a conformal class of
measurable Riemannian metrics ds

2 on C (and hence a unique confor-
mal structure) by setting

ds
2 = λ(z)|dz + µ(z)dz̄|2,

where λ is an arbitrary measurable function on C that is positive al-
most everywhere. To an arbitrary orientation preserving quasiconfor-
mal map F : C → C one can associate a Beltrami coefficient µF defined
as

µF = Fz̄/Fz

for almost every z ∈ C, where Fz̄ = ∂F

∂z̄
and Fz = ∂F

∂z
. If F is orientation

reversing, then we define µF = µF̄ , where F̄ (z) = F (z). If ds
2 is a

measurable Riemannian metric associated with a Beltrami coefficient
µ and F is a quasiconformal map on C, then the pull-back F

∗(ds
2)

of ds
2 by F is well-defined and lies in the conformal class determined

by a Beltrami coefficient ν, called the pull-back of µ by F , written
ν = F

∗(µ). We have

F
∗(µ) =

µF + (µ ◦ F )Fz/Fz

1 + µF (µ ◦ F )Fz/Fz

or F
∗(µ) =

µF + (µ ◦ F )Fz̄/Fz̄

1 + µF (µ ◦ F )Fz̄/Fz̄

depending on whether F is orientation preserving or reversing. In
particular, if F is orientation reversing, then F

∗(µ) = F̄
∗(µ̃), where

µ̃(z) = µ(z̄). Note that µF is the pull-back by F of the Beltrami co-
efficient µ0 ≡ 0 that defines the standard conformal structure on C.



20 MARIO BONK, BRUCE KLEINER, AND SERGEI MERENKOV

The pull-back operation on Beltrami coefficients has the usual functo-
rial properties: If F and G are quasiconformal maps on C and µ is a
Beltrami coefficient, then (F ◦G)∗(µ) = G

∗(F ∗(µ)).
The Measurable Riemann Mapping Theorem says that for a given

Beltrami coefficient µ, there exists a quasiconformal mapping F on
C with µF = µ. The map F is uniquely determined up to post-
composition by a Möbius transformation.

Let Γ be a group of Möbius transformations. We say that a Beltrami
coefficient µ is invariant under Γ if γ

∗(µ) = µ for every γ ∈ Γ. This is
equivalent to

(13) µ = (µ ◦ γ) · γz

γz

or µ = (µ ◦ γ) · γz̄

γz̄

almost everywhere on C depending on whether γ is orientation pre-
serving or orientation reversing.

Lemma 7.1. Let Γ be a group of Möbius transformations on C, and

F : C → C a quasiconformal map with a Beltrami coefficient µF in-

variant under Γ. Then F conjugates Γ to a group of Möbius transfor-

mations, i.e., F ◦ γ ◦ F
−1

is a Möbius transformation for every γ ∈ Γ.

Proof. For every γ ∈ Γ the map F ◦ γ ◦F
−1 is quasiconformal. It pulls

back the Beltrami coefficient µ0 ≡ 0 defining the standard conformal
structure to itself. This follows from a straightforward computation
using the functorial properties of the pull-back operation and the in-
variance of µF under Γ. This implies that F ◦ γ ◦ F

−1 is conformal
or anti-conformal depending on whether γ is orientation preserving or
not. Hence F ◦ γ ◦F

−1 is a Möbius transformation for every γ ∈ Γ. ✷

Lemma 7.2. Let S be a Schottky set in C, and F : C → C a quasicon-

formal map with a Beltrami coefficient µF invariant under the Schottky

group ΓS associated with S. Then S
� = F (S) is a Schottky set.

Proof. Let R be a reflection in one of the peripheral circles Σ of S.
Then R

� = F ◦ R ◦ F
−1 is a Möbius transformation by the previous

lemma. Since R
� is orientation reversing, it has to be a reflection in a

circle Σ� ⊆ C. Under the map F the fixed point set Σ of R corresponds
to the fixed point set Σ� of R

�. Hence F maps each peripheral circle of
S to a circle. It follows that S

� = F (S) is a Schottky set. ✷

Lemma 7.3. Suppose U is an open subset in R
n

with 0 ∈ U , and

f : U → R
n

is a mapping that is differentiable at 0. If there exists a

set S ⊆ U that has a Lebesgue density point at 0 such that f |S = idS,

then Df(0) = idRn.
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Proof. For each � > 0 the set

M� = {s/|s| : s ∈ S and 0 < |s| < �} ⊆ S
n−1

is dense in S
n−1; for otherwise, a truncated cone with vertex at 0 would

be contained in S, and so 0 would not be a Lebesgue density point of
S. Hence if ζ ∈ S

n−1 is arbitrary, there exists a sequence (sk) in S \{0}
such that |sk|→ 0 and sk/|sk|→ ζ as k →∞. Setting L = Df(0) and
using our assumptions we obtain

L(ζ) = lim
k→∞

L(sk/|sk|) = lim
k→∞

1

|sk|
�
f(sk) + o(|sk|)) = ζ.

It follows that L = idRn as desired. ✷

Proof of Theorem 1.2. Let S be a Schottky set in S
2 which we identify

with C. If S ⊆ S
2 has measure zero, then S is rigid by Theorem 1.1.

Conversely, suppose that S has positive measure. Let ν be a non-
trivial Beltrami coefficient supported on S, say ν ≡ 1/2 on S and ν ≡ 0
elsewhere. Let ΓS be the Schottky group associated with S. As was
pointed out after the proof of Lemma 5.1, the sets U(S), U ∈ Γ, form
a measurable partition of

S∞ =
�

U∈ΓS

U(S).

This implies that if we put

µ(z) =

�
U
∗(ν)(z) if z ∈ U(S) for some U ∈ Γ,

0 otherwise,

then µ is an almost everywhere well-defined Beltrami coefficient invari-
ant under ΓS. Let F : C → C be a quasiconformal map with Beltrami
coefficient µF = µ almost everywhere. Then F is quasisymmetric, and
F (S) is a Schottky set by Lemma 7.2. Moreover, F does not agree
with any Möbius transformation on S. For suppose it did. Then post-
composing F by a Möbius transformation if necessary, we may assume
that F |S = idS. Then by Lemma 7.3, the map DF (z) is the identity
for almost every z ∈ S. This implies that µF (z) = 0 for almost every
z ∈ S. This contradicts the fact that µF (z) = ν(z) = 1/2 for almost
every z ∈ S, because S has positive measure.

This shows that S is not rigid. ✷

We now give an example of a Schottky set in S
n, n ≥ 2, that has

empty interior and is not rigid. For simplicity we work with Schottky
sets in R

n (defined in the obvious way). A Schottky set in S
n can be

obtained by adding the point at infinity. A similar example is contained
in [KA] and is originally due to Apanasov [Ap].
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Example 7.4. Let K be a compact set in R of positive measure, but
with no interior points. For example, a “thick” Cantor set will have
this property. We may assume that 0 ∈ K. The complement of K can
be written as R \ K =

�
k∈N Ik, where the sets Ik are pairwise disjoint

open intervals. There exists a unique absolutely continuous function
h : R → R with h(0) = 0 such that h

�(x) = 2 for almost every x ∈ K

and h
�(x) = 1 for every x ∈

�
k∈N Ik. Obviously, h is a bi-Lipschitz

homeomorphism of R onto itself which is different from the identity
map on K and is a translation if restricted to any of the intervals Ik.
Define a homeomorphism F : R

n → R
n, n ≥ 2, by

F (x1, . . . , xn) := (h(x1), x2, . . . , xn)

for (x1, . . . , xn) ∈ R
n. Then F is a bi-Lipschitz homeomorphism of

R
n onto itself, and is a translation if restricted to any of the slabs

Mk = Ik × R
n−1. Each slab Mk can be filled out with open balls such

that no interior remains; more precisely, for each k ∈ N there exist
pairwise disjoint open balls Bkl ⊆ Mk, l ∈ N, such that Mk \

�
l∈N Bkl

has empty interior. Then S = R
n \

�
k,l∈N Bkl is a Schottky set in R

n

without interior points. Moreover, since F restricted to the slab Mk is
a translation and each ball Bkl lies in Mk, it follows that B

�
kl

:= F (Bkl)
is a ball for all k, l ∈ N. Hence

S
� = F (S) = R

n \
�

k,l∈N
B
�
kl

is a Schottky set. As the restriction of a bi-Lipschitz homeomorphism
the map f = F |S is a quasisymmetry and maps the Schottky set S

to the Schottky set S
�. Moreover, f is not the restriction of a Möbius

transformation. Indeed, suppose that f = U |S for some Möbius trans-
formation U . By construction of S we have

{0}× R
n−1 ⊆ K × R

n−1 ⊆ S.

Since h(0) = 0, this implies that U is the identity on {0}× R
n−1; but

U has to preserve orientation and so U is the identity map. Hence f is
the identity map on S which implies that h is the identity map on K.
Since this is not the case, we get a contradiction showing that S is not
rigid.

8. Rigid Schottky sets of positive measure

In this section we give an example of a Schottky set in S
n, n ≥ 3, that

has positive measure and is rigid. We first discuss some terminology.
In this section it is convenient to identify S

n with R
n ∪ {∞} (equipped

with the chordal metric) via stereographic projection.
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Let A be a subset of S
n = R

n ∪ {∞} with 0 ∈ A. We say that a set
A∞ ⊆ S

n is a weak tangent of A (at 0), if it is closed and if there exists
a sequence (rk) of positive numbers tending to 0 such that Ak → A∞,
where

Ak = 1
rk

A = { 1
rk

x : x ∈ A}.

Here we use the convention that λ ·∞ = ∞ for all λ > 0. So a weak
tangent of A is a closed set that we obtain by “blowing up” A at the
origin in a suitable sense. Every set A with 0 ∈ A has a weak tangent,
because for every sequence (rk) of positive numbers with rk → 0, the
sequence of sets Ak = 1

rk
A subconverges. Every weak tangent of A

contains the point ∞ unless A = {0}.
Our notion of a weak tangent is suitable for our purposes and is a

variant of similar concepts in the literature.
Let D be a region in S

n (i.e., an open and connected subset of S
n),

and let T be a subset of D whose complement in D is a union of at
least three disjoint open balls. Such a set T will be called a relative

Schottky set in D. The boundaries of the balls in the complement of
T in D are referred to as peripheral spheres.

If Σ is a peripheral sphere of T , then T \Σ is path-connected. Indeed,
to connect two points x, y ∈ T \Σ, one first takes an arc in D \Σ that
consists of finitely many spherical geodesic segments and joins x and y.
Then one proceeds similarly as in the proof of Lemma 2.1 to “correct”
γ on suitable subarcs to create a path γ̃ in T \ Σ joining x and y.

Moreover, if Σ is any topological (n− 1)-sphere in T such that T \Σ
is connected, then Σ is a peripheral sphere of T . This follows from the
second part of the proof of Proposition 2.3 applied to S = T . (Note
that K

� has to meet one of the complementary components B in T , for
otherwise the non-empty set ∂K

� would be contained in (Sn \D)∩Σ =
∅.)

This shows that if Σ is any topological (n − 1)-sphere in T , then
T \ Σ is connected if and only if Σ is a peripheral sphere of T . In
particular, every homeomorphism between relative Schottky sets has
to take peripheral spheres to peripheral spheres.

A relative Schottky set T in D is called locally porous at x ∈ T if
there exist an open neighborhood U of x and constants C ≥ 1 and
ρ0 > 0 with the property that for each y ∈ T ∩ U and each r with
0 < r < ρ0 there exists a complementary component B of T in D with
B(y, r) ∩ B �= ∅ and r/C ≤ diam(B) ≤ Cr. If this is true for each
point x ∈ T , then we call T locally porous. A locally porous relative
Schottky set cannot have Lebesgue density points, and hence is a set
of measure naught.
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Our first goal is the proof of the following theorem.

Theorem 8.1. Let n ∈ N, n ≥ 3, T and T
�
be relative Schottky sets

in regions D, D
� ⊆ S

n
, respectively, and ψ : T → T

�
a quasisymmet-

ric map. If T is locally porous, then ψ is the restriction of a Möbius

transformation to T .

We need the following lemmas.

Lemma 8.2. Let T be a relative Schottky set in a region D ⊆ S
n
,

n ∈ N, and F : S
n → S

n
a Möbius transformation. Then T

� = F (T ) is

a relative Schottky set in D
� = F (D). If in addition T is locally porous

at x ∈ T , then T
�
is locally porous at x

� = T (x).

Proof. It is clear that T
� is a relative Schottky set in D

�. Assume T is
locally porous at x ∈ T . We have to show that T

� is locally porous at
x
� = T (x). To see this we use the following general fact whose proof is

left to the reader: Suppose G : S
n → S

n is an η-quasisymmetric map,
and M, N ⊆ S

n are two sets with M ∩N �= ∅ and

(1/C) diam(M) ≤ diam(N) ≤ C diam(M),

where C ≥ 1. Then for M
� = G(M) and N

� = G(N), we have

(1/C �) diam(M �) ≤ diam(N �) ≤ C
� diam(M �),

where C
� ≥ 1 only depends on C and η. In other words, if G is a qua-

sisymmetric map, then the images under G of two intersecting sets that
have comparable size will also have comparable size, quantitatively.

The claim now follows if we apply this statement to G = F and to
the sets M = B(y, r) and N = B appearing in the definition of local
porosity. We leave the details to the reader. ✷

Lemma 8.3. Suppose T∞ is a weak tangent of a relative Schottky set

T in a region Ω ⊆ S
n

with 0 ∈ T . Then the complementary components

of T∞ in S
n

are open balls.

In particular, T∞ is a Schottky set if it has at least three such com-
ponents.

Proof. We can write T = Ω \
�

i∈I
Di, where the sets Di, i ∈ I, form

a family of disjoint open balls in Ω. There exists a sequence (rk) of
positive numbers tending to 0 such that Tk → T∞, where Tk = 1

rk
T .

Now let x ∈ S
n \ T∞ be arbitrary. Then x ∈ S

n \ Tk for large k.
(Note that here we use that T∞ is a closed set). Since ∞ ∈ T∞, we
have x �= ∞. Moreover, since 0 ∈ Ω, and so x ∈ 1

rk
Ω if k is large, we

can find k0 ∈ N and ik ∈ I for k ≥ k0 such that x ∈ Bk := 1
rk

Dik
. The
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sequence of balls (Bk) subconverges to a closed ball B; keeping the same
notation for this subsequence for convenience, we may assume Bk → B.
Then x ∈ B. Suppose y ∈ int(B). By the last part of Lemma 3.2, there
exists δ > 0 such that B(y, δ) ⊆ Bk and so dist(y, Tk) ≥ δ for large k.
Hence y ∈ S

n \ T∞. This shows that int(B) ⊆ S
n \ T∞. By Lemma 3.2

we also have ∂Bk → ∂B. Since ∂Bk ⊆ Tk, it follows that ∂B ⊆ T∞.
We conclude that the open ball int(B) is the connected component of
the complement of T∞ containing x. Since x ∈ S

n \ T∞ was arbitrary,
the claim follows. ✷

Lemma 8.4. Suppose T is a relative Schottky set that is locally porous

at 0 ∈ T , and T∞ is a weak tangent of T . Then T∞ is a Schottky set

that is locally porous at every point x ∈ T∞ \ {∞}.
In particular, T∞ has measure zero.

Actually, one can show that T∞ is also locally porous at ∞, but we
do not need this fact for the desired conclusion that T∞ has measure
zero.

Proof. We use notation as in Lemma 8.3 and its proof. Near each
point in S

n \ {∞} = R
n the Euclidean metric and the chordal metric

are bi-Lipschitz equivalent. Therefore, we can use our assumption that
T is locally porous at 0 and derive the desired conclusion that T∞
is locally porous at every point x ∈ T∞ \ {∞} by using the Euclidean
metric instead of the chordal metric. For the rest of the proof all metric
notions refer to the Euclidean metric on R

n.
The neighborhood and the constants in the definition of local poros-

ity of T at 0 will be denoted by U , C and ρ0, respectively. Let x be
an arbitrary point in T∞ \ {∞} and R > 0. The point x is the limit
of a sequence (xk) such that xk ∈ Tk. For sufficiently large k we have
rkR < ρ0 , and rkxk ∈ T ∩ U . Using the local porosity of T it follows
that then there exists ik ∈ I such that

B(rkxk, rkR/2) ∩Dik
�= ∅ and Rrk/C

� ≤ diam(Dik
) ≤ C

�
Rrk,

where C
� = 2C. If we define Bk := 1

rk
Dik

, then Bk is a complementary
component of Tk, and the previous statements translate to

(14) B(xk, R/2) ∩Bk �= ∅ and R/C
� ≤ diam(Bk) ≤ C

�
R.

Passing to an appropriate subsequence if necessary, we may assume
that Bk → B

�, where B
� is a closed ball. Let B = int(B�). Then by

(14) we have

(15) B(x, R) ∩B �= ∅ and R/C
� ≤ diam(B) ≤ C

�
R.
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Moreover, the argument in the proof of Lemma 8.3 shows that B is
a complementary component of T∞ in S

n. Since x ∈ T∞ \ {∞} and
R > 0 in (15) are arbitrary, the local porosity of T∞ at each point
different from ∞ now follows. Moreover, (15) also shows that T∞ has
infinitely many complementary components and is hence a Schottky
set by Lemma 8.3.

Finally, T∞ is a set of measure zero, because T∞ cannot have any
Lebesgue density points except possibly the point ∞. ✷

Proof of Theorem 8.1. Let Σ be any peripheral sphere of T and Σ� =
ψ(Σ) be the corresponding peripheral sphere of T

�. The restriction
φ = ψ|Σ of ψ to Σ is a quasiconformal map between (n−1)-dimensional
spheres. Therefore, at almost every point of Σ (with respect to spherical
(n−1)-dimensional measure) the map φ is differentiable with invertible
derivative.

We want to show that at every such point x0 ∈ Σ the derivative is a
conformal map (i.e., a scalar multiple of an isometry). By composing
with Möbius transformations we can assume that Σ = Σ� = R

n−1 ∪
{∞}, ψ(x0) = φ(x0) = x0 = 0 and ψ(∞) = φ(∞) = ∞. Here we make
the identification S

n = R
n ∪ {∞}, and consider R

n−1 as a subset of R
n

in the usual way. Note that by Lemma 8.2 our assumptions on T are
not affected by such auxiliary Möbius transformations.

We extend the quasisymmetric map ψ : T → T
� to a quasiconformal

map F : D → D
�. The existence of such an extension follows from the

same method as in the proof of Proposition 5.2.
There exists a sequence (rk) of positive numbers tending to 0 such

that
Tk = 1

rk
T → T∞ and T

�
k

:= 1
rk

T
� → T

�
∞,

where T∞ and T
�
∞ are weak tangents of T and T

� (at 0), respectively.
Consider the maps Fk defined by Fk(x) = F (rkx)/rk for k ∈ N. Since

0 ∈ D (after applying the auxiliary Möbius transformation discussed
above), the maps Fk are eventually defined on every ball B(0, R), R >

0, (with respect to the Euclidean metric on R
n) and map B(0, R) into

R
n . Moreover, the sequence of maps (Fk) is uniformly quasiconformal,

i.e., there exists H ≥ 1 such that each map Fk is H-quasiconformal.
Also, Fk(0) = 0, and if e1 = (1, 0 . . . , 0) ∈ R

n,

lim
k→∞

Fk(e1) = lim
k→∞

φ(rke1)/rk = Dφ(0)(e1) �= 0.

Using standard compactness arguments for quasiconformal maps (see
[Vä1, Sect. 21]), we conclude that there exists a subsequence of (Fk)
that converges locally uniformly to a quasiconformal map F∞ on R

n.
For convenience of notation we continue indexing this subsequence by
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k. By applying a similar argument to the inverse maps Gk := F
−1
k

, we
may in addition assume that Gk → G∞ locally uniformly on R

n, where
G∞ is a quasiconformal map on R

n. By putting F∞(∞) = G∞(∞) =
∞ we can extend these maps to quasiconformal maps on S

n. Then
F∞ ◦ G∞ = G∞ ◦ F∞ = idSn , and so F∞ and G∞ are inverse maps of
each other.

We claim that F∞(T∞) = T
�
∞. Since G∞ = F

−1
∞ , this is equivalent

to the inclusions F∞(T∞) ⊆ T
�
∞ and G∞(T �

∞) ⊆ T∞. By symmetry it
is enough to show the first inclusion. So let x ∈ T∞ be arbitrary. If
x = ∞, then F∞(x) = ∞ ∈ T

�
∞. If x ∈ T∞ \ {∞}, then there exists

a sequence (xk) with xk ∈ Tk for k ∈ N and xk → x ∈ R
n. Since

Fk → F∞ locally uniformly on R
n, it follows that Fk(xk) → F∞(x). On

the other hand, Fk(xk) ∈ 1
rk

F (T ) = T
�
k
. Hence F∞(x) ∈ T

�
∞.

According to Lemma 8.4, the set T∞ is a Schottky set of measure
zero. Using Lemma 8.3, and the fact that T

�
∞ = F∞(T∞), we see that

T
�
∞ is also a Schottky set. The map F∞ is quasiconformal, and hence

quasisymmetric, since n ≥ 2. It follows that we can apply Theorem 1.1
to conclude that F∞ agrees with a Möbius transformation on R

n−1 ⊆
T∞. Since F∞(∞) = ∞, F∞(0) = 0, and F∞(Rn−1) ⊆ R

n−1, the map
F∞|Rn−1 has to be a conformal linear map.

On the other hand, it follows from the definitions of F and F∞ that
F∞|Rn−1 = Dφ(0) which proves the desired statement that Dφ(x0) =
Dφ(0) is conformal.

Since this is true for almost every point x0 ∈ Σ, the map φ is a 1-
quasiconformal map between the peripheral spheres Σ and Σ�. Hence
it is the restriction of a Möbius transformation on S

n to Σ.
If B is a complementary component of T in D, then Σ = ∂B is a

peripheral sphere of T . Since Σ� = ψ(Σ) is a peripheral sphere of T
�,

there exists a corresponding complementary component B
� of T

� such
that ∂B

� = Σ�. By what we have seen in the first part of the proof
there exists a Möbius transformation that agrees with ψ on Σ and
maps B̄ to B̄

�. Using such Möbius transformations we can extend the
original map ψ to each complementary component of T in D, to obtain
a homeomorphism Ψ : D → D

�. As in the proof of Proposition 5.2
one can show that this extension is quasiconformal. On each of the
complementary components of T in D the map Ψ agrees with a Möbius
transformation. Moreover, since T is locally porous, it has measure
zero, and so the complentary components of T in D form a set of full
measure in D. It follows that Ψ is 1-quasiconformal. Since n ≥ 3, we
can apply Liouville’s Theorem, and so the map Ψ and hence also ψ is
the restriction of a Möbius transformation. ✷
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After these preparations we are ready to construct rigid Schottky
sets with positive measure in dimension n ≥ 3.

Proof of Theorem 1.3. Let D be a region in S
n that is dense and

whose boundary has positive measure. For example, one can take the
complement of a “thick” Cantor set for D. We want to show that D

contains a locally porous relative Schottky set T . The existence of such
a set implies the statement by Theorem 8.1. Indeed, the set S = T∪∂D

is a Schottky set of positive measure. Every quasisymmetric map f of
S onto any other Schottky set restricts to T as a quasisymmetric map
onto another relative Schottky set, and is therefore the restriction of a
Möbius transformation to D. Since D is dense in S

n, we conclude that
f is the restriction of a Möbius transformation to S.

In order to construct a locally porous relative Schottky set in D, we
proceed as follows. Consider the subset N1 of D defined by

N1 = {x ∈ D : dist(x, ∂D) ≥ 1}.
Let A1 denote a maximal 1-separated subset of N1, and let D1 be the
set obtained from D by removing the union of all disjoint open balls
with radii 1/4 centered at elements of A1 . Inductively, if k ∈ N, k ≥ 1,
let

Nk+1 = {x ∈ Dk : dist(x, ∂Dk) ≥ 1/2k},
let Ak+1 be a maximal 1/2k-separated subset of Dk, and let Dk+1 be
the set obtained from Dk by removing the union of all disjoint open
balls with radii 1/2k+2 centered at elements of Ak+1 . The sets Dk

form a monotonically decreasing sequence of subsets of D, and their
intersection is by construction a relative Schottky set T in D.

To show that T is locally porous, let x ∈ T be arbitrary. Define
d = dist(x, ∂D), U = B(x, d/2), and ρ0 = d/4, and suppose y ∈ T ∩ U

and r with 0 < r < ρ0 are arbitrary.
By construction of T there exist infinitely many complementary com-

ponents of T in D intersecting B(y, r). Among all such components,
we can choose one, say B0, with largest diameter. Since

dist(B(y, r), ∂D) ≥ d/4 ≥ r,

the construction of T shows that diam(B0) ≥ c1r, where c1 > 0 is an
absolut constant. In general an inequality of this type will not be true
in the other direction, because diam(B0) can be much larger than r.
To obtain a complementary component that intersects B(y, r) and has
diameter comparable to r, we take the second largest complementary
component that meets B(y, r).

More precisely, let B be a complementary component of T in D

different from B0 with B(y, r)∩B �= 0 that has largest diameter among
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all such components. Since dist(B, B0) ≤ 2r, by construction of T we
have diam(B) ≤ c2r where c2 > 0 is an absolute constant. On the
other hand, it is clear that diam(B) ≥ c3r for some absolute constant
c3 > 0. This implies that the complemetary component B is the desired
one in the condition for the local porosity where C can be taken as an
absolute constant. So T is locally porous. The proof is complete. ✷

9. Rigidity for convex subsets of hyperbolic space

Fix n ∈ N, n ≥ 2. We denote by Cn the class of all closed convex
subsets K of hyperbolic n-space H

n with non-empty interior and non-
empty totally geodesic boundary. So ∂K ⊆ H

n consists of a union of
pairwise disjoint hyperplanes. To rule out some trivial cases, we make
the additional assumption that there are at least three such hyperplanes
in ∂K.

Usually, we think of H
n in the conformal unit ball model. Then the

boundary at infinity ∂∞H
n can be identified with the unit sphere S

n−1.
If K ∈ Cn, then the boundary at infinity ∂∞K ⊆ S

n−1 is a Schottky set.
Conversely, if S ⊆ S

n−1 is a Schottky set, then its hyperbolic convex
hull K ⊆ H

n belongs to the class Cn.
Suppose (X, dX) and (Y, dY ) are metric spaces. A map f : X → Y is

called a quasi-isometry of X into Y if there exist constants λ ≥ 1 and
k ≥ 0 such that

1

λ
dX(x, x

�)− k ≤ dY (f(x), f(x�)) ≤ λdX(x, x
�) + k

for all x, x
� ∈ X, and if for each y ∈ Y there exists x ∈ X such that

dY (f(x), y) ≤ k.

Two maps f, g : X → Y are said to have finite distance if

dist(f, g) := sup
x∈X

dY (f(x), g(x)) < ∞.

We call a set K ∈ Cn rigid if for every quasi-isometry f : K → K
� to

another set K
� ∈ Cn there exists an isometry g of H

n such that f and
g|K have finite distance.

The following proposition records some basic properties of quasi-
isometries between Gromov hyperbolic spaces and their induced maps
on the boundary. For the definition of a Gromov hyperbolic space and
its boundary see [GH], and [BS] for related considerations. We will use
mostly notation and terminology as in [BS].

A proper geodesic Gromov hyperbolic space is called visual if there
exists a basepoint p ∈ X and a constant k ≥ 0 such that for every point
x ∈ X there exists a geodesic ray γ in X with initial point p such that
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dist(x, γ) ≤ k (note that the definition in [BS, p. 279] is equivalent in
this context).

Proposition 9.1. Let X and Y be proper geodesic metric spaces that

are Gromov hyperbolic. Then every quasi-isometry f : X → Y induces

a quasisymmetric map f̃ : ∂∞X → ∂∞Y .

Suppose in addition that X is visual and ∂∞X is connected. Then

two quasi-isometries f, g : X → Y have finite distance if and only if

the induced maps f̃ , g̃ : ∂∞X → ∂∞Y are identical.

Proof. These statements are essentially well-known. For the first part
see [BS], Section 6, in particular Theorem 6.5. Note that the terminol-
ogy in [BS] is slightly different from the one employed here. It follows
from the definitions (see [BS, Prop. 6.3]) that two quasi-isometries in-
duce the same boundary maps if they have finite distance.

Now assume in addition that X is visual and ∂∞X is connected.
Suppose f : X → Y is a quasi-isometry. Fix basepoints p ∈ X and
q ∈ Y , and use the notation z

� = f(z) for z ∈ X and w
� = f̃(w) for

w ∈ ∂∞X. We will show that for every x ∈ X the location of f(x)
is uniquely determined up to uniformly bounded distance by the data
x and f̃ . This will show that if g : X → Y is a quasi-isometry with
g̃ = f̃ , then f and g have finite distance.

Now let x ∈ X be arbitrary. In the following, C1, C2, . . . are con-
stants independent of x. Since X is visual, there exists a geodesic ray
in X, denoted [p, u], that starts at p and “ends in” (i.e., is asymptotic
to) a point u ∈ ∂∞X such that

dist(x, [p, u]) ≤ C1.

Since ∂∞X is connected, there exists a point v ∈ ∂∞X such that
��(u · v)p − dist(p, x)

�� ≤ C2,

where (u · v)p is the “Gromov product” of the points u and v with
respect to p. This inequality essentially says that the rays [p, u] and
[p, v] start to diverge near x, and so x is a “rough center” of the geodesic
triangle ∆ = [p, u] ∪ [p, v] ∪ [u, v]. More precisely,

max{dist(x, [p, u]), dist(x, [p, v]), dist(x, [u, v])} ≤ C3,

where [u, v] is the geodesic line in X whose ends are asymptotic to u

and v, respectively.
Let ∆� = [p�, u�] ∪ [p�, v�] ∪ [u�, v�]. By geodesic stability of Gromov

hyperbolic spaces (see [BS, p. 273]), the image f(∆) is within bounded
Hausdorff distance of the geodesic triangle ∆�. More precisely, for the
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Hausdorff distance distH of these sets we have

distH(f(∆), ∆�) ≤ C4.

Note that

distH([p�, w], [q, w]) ≤ C5

for all w ∈ ∂∞Y , where C5 is independent of w. Hence for ∆̄ =
[q, u�] ∪ [q, v�] ∪ [u�, v�] we have

distH(∆�
, ∆̄) ≤ C6,

and so

distH(f(∆), ∆̄) ≤ C7.

It follows that x
� = f(x) is a “rough center” of ∆̄, that is,

max{dist(x�, [q, u�]), dist(x�, [q, v�]), dist(x�, [u�, v�])} ≤ C8.

Since rough centers of geodesic triangles in Gromov hyperbolic spaces
are essentially unique, this implies that up to contolled bounded dis-
tance, the location of x

� is determined by u
� and v

�, i.e., by the data x

and f̃ as claimed. ✷

If K ∈ Cn, n ≥ 3, then K satisfies the assumptions on X as in
Proposition 9.1. First, K is proper and geodesic. Moreover, K is
Gromov hyperbolic as a subset of the space H

n that has this property.
The Gromov boundary of K can be identified with the boundary at
infinity ∂∞K ⊆ ∂∞H

n ⊆ S
n−1 of K in the unit ball model of H

n. Since
∂∞K is a Schottky set, this set is connected by Lemma 2.1 if n ≥ 3.
Finally, a set K ∈ Cn, n ≥ 2, is visual. To see this fix a basepoint
p ∈ K. First assume that n = 2. Then every point x ∈ K lies in
the interior of a geodesic triangle with sides [p, u], [p, v], [u, v], where
u, v ∈ ∂∞K. By thinness of geodesic triangles in H

2, this means that x

has uniformly bounded distance to one of the geodesic rays [p, u] and
[p, v]. By considering slices of H

n through p isometric to H
2, one sees

that a similar statement is true in case n ≥ 3. So K is indeed visual.

Proof of Theorem 1.4. Let n ≥ 3, and K ∈ Cn such that ∂∞K is a set
of measure zero.

Suppose f : K → K
� is a quasi-isometry to a set K

� ∈ Cn. By the
discussion preceeding the proof, we can apply Proposition 9.1, and so
f induces a quasisymmetric boundary map f̃ : ∂∞K → ∂∞K

�. Since
∂∞K

� and ∂∞K are Schottky sets, Theorem 1.1 implies that there exists
a Möbius transformation g̃ such that g̃|∂∞K = f̃ . The map g̃ is the
boundary map of an isometry g : H

n → H
n. Hence by Proposition 9.1,

the maps f and g|K have finite distance.
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We have g(K) = K
�. Indeed, both sets g(K) and K

� are in Cn; so
each set is equal to the convex hull of its boundary at infinity; but
these boundaries are equal, since

∂∞(g(K)) = g̃(∂∞K) = f̃(∂∞K) = ∂∞K
�
. ✷

In dimension n = 2 and n = 3, the rigidity of sets in Cn can be
completely characterized.

Theorem 9.2. No set K ∈ C2 is rigid.

As a preparation for the proof, we first discuss some standard facts
about quadrilaterals. A quadrilateral Q = Q(z1, z2, z3, z4) is a closed
Jordan region in C with four distinguished points z1, . . . , z4 on its
boundary. It is assumed that the order of the points zk on the Jor-
dan curve ∂Q corresponds to positive orientation. A (quasi-)conformal

map f : Q(z1, z2, z3, z4) → Q
�(z�1, z

�
2, z

�
3, z

�
4) between two quadrilaterals

is a homeomorphism between the closed Jordan regions Q and Q
� that

is (quasi-)conformal on the interior of Q and has the property that
f(zk) = z

�
k

for k = 1, . . . , 4. Every quadrilateral is conformally equiv-
alent to a unique rectangle R = [0, M ] × [0, 1] ⊆ R

2 ∼= C, where 0,
M , M + i, i are the distinguished points of R. The number M > 0
is called the modulus of Q, denoted by mod(Q). Two quadrilaterals Q

and Q
� are conformally equivalent if and only if mod(Q) = mod(Q�). In

general a quasiconformal map will distort the modulus of a quadrilat-
eral Q. This distortion only depends on the Beltrami coefficient of the
quasiconformal map (considered as a measurable function on int(Q)).
Indeed, we have the following lemma.

Lemma 9.3. Suppose Q is a quadrilateral, and f and g are quasi-

conformal maps on Q such that µf = µg almost everywhere on int(Q).
Then mod(f(Q)) = mod(g(Q)).

Proof: Note that g ◦f
−1 is a quasiconformal map with a Beltrami coef-

ficient that vanishes almost everywhere. Hence this map is a conformal
map between the quadrilaterals f(Q) and g(Q). ✷

For every quadrilateral Q one can find quasiconformal maps that
distort its modulus in a non-trivial way. Indeed, let f be a conformal
map of Q to a rectangle R = [0, M ]× [0, 1], and let R

� = [0, M �]× [0, 1]
be any other rectangle with M

�
> 0. There is a unique affine map A

that takes the quadrilateral R to R
�. Then g = A◦f is a quasiconformal

map between the quadrilaterals Q and R
�. In particular, if M �= M

�,
then mod(Q) �= mod(g(Q)).
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Proof of Theorem 9.2: If ∂∞K does not contain at least four distinct
points, then ∂∞K consists of three distinct points and K is an ideal ge-
odesic triangle. Then K has bounded Hausdorff distance to a “tripod”
T ⊆ K, i.e., T is a union of three distinct geodesic rays emanating from
the same point in K. In particular there is a map g : K → T that is
the identity on T and moves every point by only a bounded amount.

Obviously, there are quasi-isometries f : T → T that do not have
finite distance to any isometry of H

2 restricted to T ; for example, such
maps can be obtained by stretching the legs of the tripod by a factor
λ �= 1. Then f ◦ g is a quasi-isometry from K to K that does not have
finite distance to any isometry on H

2 restricted to K. Hence K is not
rigid.

For the remaining case we can assume that ∂∞K ⊆ ∂D contains
four distinct points, say z1, z2, z3, z4, where the numbering is such that
the points follow each other in positive orientation on ∂D. Here we
identify H

2 with the open unit disc D in C equipped with the hyper-
bolic metric. Then Q = K ∪ ∂∞K ⊆ D̄ with the distinguished points
z1, z2, z3, z4 is a quadrilateral. Fix a Beltrami coefficient ν on int(Q)
so that every quasiconformal map h on Q with µh = ν almost every-
where on int(Q) distorts the modulus of Q in a non-trivial way, i.e.,
mod(Q) �= mod(h(Q)). This is possible by Lemma 9.3 and the dis-
cussion following this lemma. We will use ν to obtain a non-trivial
deformation of K that shows that this set is not rigid.

The boundary of K in D consists of open arcs of circles Ci ⊆ C,
i ∈ I, that are orthogonal to ∂D and bound pairwise disjoint open disks
Di ⊆ C in the complement of K. Here I is some non-empty index set.
Then S = C\

�
i∈I

Di is a Schottky set in C containing K. If we denote
the reflection in the unit circle ∂D by R, then S = K ∪ ∂∞K ∪ R(K).
For i ∈ I denote by Ri the reflection in Ci. Since Ci is orthogonal to
the unit circle, we have R ◦Ri = Ri ◦R. Let Γ be the group generated
by R and Ri, i ∈ I. Then Γ contains the Schottky group ΓS associated
with S as a subgroup of index 2. Moreover, it follows that

S∞ =
�

U∈Γ

U(Q)

is a measurable partition of S∞. Therefore, one can find a Beltrami
coefficient µ on C that is supported on S∞, that is invariant under Γ,
and such that µ = ν almost everywhere on int(Q) (cf. the proof of
Theorem 1.2). Let F : C → C be an orientation-preserving quasicon-
formal map with µF = µ almost everywhere . By Lemma 7.1 the map
F conjugates Γ to another group of Möbius transformations. As in
the proof of Lemma 7.2 one sees that R

� = F ◦ R ◦ F
−1 is a reflection
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in a circle. In particular, F maps D to a disk. By post-composing
the map F by a Möbius transformation if necessary (which does not
change its Beltrami coefficient), we may assume that this disk is the
unit disk. Then F (D) = D and F ◦ R = R ◦ F . By Lemma 7.2 the
set S

� = F (S) is a Schottky set. Since S is bounded by circles or-
thogonal to ∂D and F commutes with R, the Schottky set S

� is also
bounded by circles orthogonal to ∂D. This implies that we can write
S
� = K

� ∪ ∂∞K
� ∪R(K �), where K

� = F (K) ∈ C2.
As a quasiconformal map of D onto itself, the map F is a quasi-

isometry in the hyperbolic metric (this follows from standard distor-
tion estimates for quasiconformal maps; see [BHK, Ch. 9] for more
background). Since it maps K to another set in C2, it will follow that
K is not rigid, if we can show that there is no hyperbolic isometry
on D that has finite distance to F on K. To see this we argue by
contradiction, and suppose that there exists such an isometry. Then
by Proposition 9.1 there exists a Möbius transformation φ that leaves
D invariant such that F |∂∞K = φ|∂∞K. Replacing F by φ

−1 ◦ F

if necessary, we may assume that F is the identity on ∂∞K. Then
∂∞K

� = F (∂∞K) = ∂∞K. Since K and K
� are the hyperbolic con-

vex hulls of their boundaries at infinity, it follows that K
� = K. So

F maps K onto itself, and is the identity on ∂∞K. But then F is
also a quasiconformal map of the quadrilateral Q onto itself. Hence
mod(F (Q)) = mod(Q). On the other hand, µF = ν almost everywhere
on int(Q), and so mod(F (Q)) �= mod(Q) according to the choice of ν.
This contradiction shows that K is not rigid. ✷

Theorem 9.4. A set K ∈ C3 is rigid if and only if ∂∞K has measure

zero.

This statement corresponds to Theorem 1.2.

Proof: Let K ∈ C3, and S = ∂∞K. If S has measure zero, Theorem 1.4
implies that K is rigid.

Suppose S has positive measure. In the proof of Theorem 1.2 it was
shown that there exists a quasiconformal map f : S

2 → S
2 such that

S
� = f(S) is a Schottky set and such that f |S �= γ|S for all Möbius

transformations γ on S
2.

By the version of the Tukia-Väisälä theorem given in Proposition 4.3,
there exists a quasisymmetric map F on the closed unit ball extending
f . The map F is a quasi-isometry on the open unit ball equipped
with the hyperbolic metric. In this way, we obtain a quasi-isometry
F : H

3 → H
3 with boundary map F̃ = f .

Let K
� ∈ C3 be the hyperbolic convex hull of the Schottky set S

�. We
claim that F (K) and K

� have finite Hausdorff distance. To see this,
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let C and C
� be the union of all geodesics with endpoints in S and S

�,
respectively. Then distH(K, C) < ∞ and distH(K �

, C
�) < ∞ (cf. [BS,

Proposition 10.1]). By geodesic stability of Gromov hyperbolic spaces,
we also have distH(F (C), C �) < ∞, and so distH(F (K), K �) < ∞. This
implies that we can move each point in F (K) by a bounded amount
to a point in K

�. In this way, we obtain a quasi-isometry G : K → K
�

with finite distance to F . In particular, for the induced boundary
map G̃ : ∂∞K = S → ∂∞K

� = S
� we have G̃ = f |S. So G does

not have finite distance to the restriction of any isometry of H
3 to

K, because otherwise G̃ = f |S would agree with the restriction of a
Möbius transformation to S. It follows that K is not rigid. ✷
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