
RIGIDITY FOR QUASI-M�OBIUS GROUP ACTIONSMARIO BONK AND BRUCE KLEINERAbstract. If a group acts by uniformly quasi-M�obius homeomor-phisms on a compact Ahlfors n-regular space of topological dimen-sion n such that the induced action on the space of distinct triplesis cocompact, then the action is quasi-symmetrically conjugate toan action on the standard n-sphere by M�obius transformations.1. IntroductionIt has been known since the time of Poincar�e that the limit set of asubgroup of PSL(2; C ) obtained by a small deformation of a discretecocompact subgroup of PSL(2;R) � PSL(2; C ) will be a nowhere dif-ferentiable curve unless it is round. Much later R. Bowen [3] madethis more precise by proving that such a limit curve is either a roundcircle or has Hausdor� dimension strictly greater than 1. The groupPSL(2; C ) is isomorphic to the group of orientation preserving isome-tries of hyperbolic 3-space. Therefore, it is a natural question whethersimilar results hold for subgroups of the isometry group Isom(H n+1) ofhyperbolic (n+1)-space when n � 2, or, what is the same, for groups ofM�obius transformations acting on the standard n-sphere Sn. Rigidityresults in this vein were obtained by Sullivan [11, p. 69] and Yue [14,Theorem 1.5].In the present paper we generalize these results further by consideringuniformly quasi-M�obius group actions on compact metric spaces Z thatinduce cocompact actions on the space Tri(Z) of distinct triples of Z.The following theorem is our main result.Theorem 1.1. Let n 2 N, and let Z be a compact, Ahlfors n-regularmetric space of topological dimension n. Suppose Gy Z is a uniformlyquasi-M�obius action of a group G on Z, where the induced action GyTri(Z) is cocompact. Then Gy Z is quasi-symmetrically conjugate toan action of G on the standard sphere Sn by M�obius transformations.Date: December 14, 2001.M.B. was supported by a Heisenberg fellowship of the Deutsche Forschungsge-meinschaft. B.K. was supported by NSF grant DMS-9972047.1



2 MARIO BONK AND BRUCE KLEINERThe terminology will be explained in the body of the paper. Notethat part of the conclusion is that Z is homeomorphic to Sn.When G is a hyperbolic group, the boundary @1G carries a metricd unique up to quasi-symmetry, with respect to which the canonicalaction G y @1G is uniformly quasi-M�obius. In this case the inducedaction on Tri(@1G) is discrete and cocompact, so Theorem 1.1 may beapplied if (@1G; d) is quasi-symmetric to an Ahlfors n-regular spacewhose topological dimension is equal to n. Note that (@1G; d) willalways be Ahlfors Q-regular for some Q > 0, but in general Q willexceed the topological dimension of @1G.In order to state our next result, we recall (see the discussion inSection 7) that if X is a CAT(�1)-space, then any point p 2 X de-termines a canonical metric on @1X, and any two such metrics arebi-Lipschitz equivalent by the identity map. In particular, we mayspeak of the Hausdor� dimension of any subset of @1X, since thisnumber is independent of the choice of the canonical metric. We thenhave the following corollary of Theorem 1.1 which generalizes a resultby Bourdon [2, 0.3 Th�eor�eme (H n case)].Theorem 1.2. Suppose n 2 N, n � 2. Let G y X be a prop-erly discontinuous, quasi-convex cocompact, and isometric action ona CAT(�1)-space X. If the Hausdor� dimension and topological di-mension of the limit set �(G) � @1X are both equal to n, then Xcontains a convex, G-invariant subset Y isometric to H n+1 on which Gacts cocompactly.The terminology and the notation will be explained in Section 7.Note that the ine�ective kernel N of the induced action G y Y is�nite, and G=N is isomorphic to a uniform lattice in Isom(H n+1).In contrast to Theorem 1.1 where the case n = 1 is allowed, weassume n > 1 in the previous theorem, in order to be able to applyBourdon's result. It is an interesting question whether the statementis also true for n = 1. See the discussion in Section 7.The proof of Theorem 1.1 can be outlined as follows. First, we usethe dimension assumption to get a Lipschitz map f : Z ! Sn suchthat the image of f has positive Lebesgue measure. According to aresult by David and Semmes one can rescale f and extract a limitmapping � : X ! Rn de�ned on a weak tangent space of Z which hasbounded multiplicity, i.e. point inverses ��1(y) have uniformly boundedcardinality. We then show that � is locally bi-Lipschitz somewhere, andas a consequence some weak tangent of Z is bi-Lipschitz to Rn . Theassumptions on the group action can then be used to prove that Z is



RIGIDITY FOR QUASI-M�OBIUS GROUP ACTIONS 3quasi-symmetric to Sn. Once this is established, the theorem followsfrom a result by Tukia.Our method of proving Theorem 1.1 can also be applied in othercontexts. In [8, Question 5] Heinonen and Semmes ask whether everylinearly locally contractible Ahlfors n-regular metric n-sphere Z thatis quasi-symmetrically three point homogeneous is quasi-symmetricallyequivalent to the standard n-sphere Sn. One can show that the answerto this question is positive, if we make the stronger assumption that Z isthree point homogeneous by uniform quasi-M�obius homeomorphisms.(see the discussion in Section 6).Acknowledgement. A previous version of this paper was based onsome rather deep results on the uniform recti�ability of metric spacessatisfying some topological nondegeneracy assumptions. The state-ments we needed are implicitly contained in the works of David andSemmes, but not stated explicitly. The approach taken in this versionuses a much more elementary result by David and Semmes. The au-thors are indebted to Stephen Semmes for conversations about theseissues and thank him especially for directing their attention to the re-sults in Chapter 12 of [6].Notation. The following notation will be used throughout the paper.Let Z be a metric space. The metric on Z will be denoted by dZ,and the open and the closed ball of radius r > 0 centered at a 2 Zby BZ(a; r) and �BZ(a; r), respectively. We will drop the subscript Zif the space Z is understood. If A � Z and d = dZ, then djA is therestriction of the metric d to A. We use diam(A) for the diameter, �Afor the closure, and #A for the cardinality of a set A � Z. If z 2 Zand A;B � Z, then dist(z; A) and dist(A;B) are the distances of zand A and of A and B, respectively. If A � Z and r > 0, then we letNr(A) := fz 2 Z : dist(z; A) < rg. The Hausdor� distance of two setsA;B � Z is de�ned bydistH(A;B) := max� supa2A dist(a; B); supb2A dist(b; A)	:Suppose X and Y are metric spaces. If f : X ! Y is a map, thenwe let Im(f) := ff(x) : x 2 Xg. If A � X, then f jA denotes therestriction of the map f to A. If g : X ! Y is another map, we letdist(f; g) := supx2X dist(f(x); g(x)):The identity map on a set X will be denoted by idX .



4 MARIO BONK AND BRUCE KLEINER2. Quasi-M�obius maps and group actionsLet (Z; d) be a metric space. The cross-ratio of a four-tuple of dis-tinct points (z1; z2; z3; z4) in Z is the quantity[z1; z2; z3; z4] := d(z1; z3)d(z2; z4)d(z1; z4)d(z2; z3) :Suppose X and Y are metric spaces. Suppose � : [0;1) ! [0;1)is a homeomorphism, and let f : X ! Y be an injective map. Themap f is an �-quasi-M�obius map if for every four-tuple (x1; x2; x3; x4)of distinct points in X, we have[f(x1); f(x2); f(x3); f(x4)] � �([x1; x2; x3; x4]):Note that by exchanging the roles of x1 and x2, one gets the lowerbound �([x1; x2; x3; x4]�1)�1 � [f(x1); f(x2); f(x3); f(x4)]:Hence f is a homeomorphism onto its image f(X), and the inverse mapf�1 : f(X)! X is also quasi-M�obius.The map f is �-quasi-symmetric ifdY (f(x1); f(x2))dY (f(x1); f(x3)) � ��dX(x1; x2)dX(x1; x3)�for every triple (x1; x2; x3) of distinct points in X.Finally, f is called bi-Lipschitz if there exists a constant L � 1 (thebi-Lipschitz constant of f) such that(1=L)dX(x1; x2) � dY (f(x1); f(x2)) � LdX(x1; x2);whenever x1; x2 2 X.We mention some basic properties of these maps.(1) The post-composition of an �1-quasi-M�obius map by an �2-quasi-M�obius map is an �2 � �1-quasi-M�obius map. Similar statements aretrue for quasi-symmetric maps and bi-Lipschitz maps.(2) A bi-Lipschitz map is quasi-symmetric and quasi-M�obius. Aquasi-symmetric map is quasi-M�obius. A quasi-M�obius map de�nedon a bounded space is quasi-symmetric.(3) Let X and Y be compact metric spaces, and suppose fk : X ! Yis an �-quasi-M�obius map for k 2 N . Then we have that(a) the sequence (fk) subconverges uniformly to an �-quasi-M�obiusmap, or(b) there is a point x0 2 X so that the sequence (fkjXnfx0g) subcon-verges uniformly on compact subsets of X n fx0g to a constant map.



RIGIDITY FOR QUASI-M�OBIUS GROUP ACTIONS 5The alternative (b) can be excluded by a normalization condition;namely, that each map fk maps a uniformly separated triple of pointsin X to a uniformly separated triple in Y .We will need the following extension of property (3).Lemma 2.1. Suppose (X; dX) and (Y; dY ) are compact metric spaces,and let fk : Dk ! Y for k 2 N be an �-quasi-M�obius map de�ned on asubset Dk of X. Supposelimk!1 distH(Dk; X) = 0;and that for k 2 N there exist triples (x1k; x2k; x3k) and (y1k; y2k; y3k) ofpoints in Dk and Y , respectively, such thatfk(xik) = yik for k 2 N ; i 2 f1; 2; 3g;dX(xik; xjk) � � and dY (yik; yjk) � � for k 2 N ; i; j 2 f1; 2; 3g; i 6= j;where � > 0 is independent of k.Then the sequence (fk) subconverges uniformly to a quasi-M�obiusmap f : X ! Y , i.e. there exists a monotonic sequence (k�) in N suchthat lim�!1dist(fk� ; f jDk� ) = 0:Suppose in addition thatlimk!1 distH(fk(Dk); Y ) = 0:Then the sequence (fk) subconverges uniformly to quasi-M�obius home-omorphism f : X ! Y .The lemma says that a sequence (fk) of uniformly quasi-M�obius mapsde�ned on denser and denser subsets of a space X and mapping intothe same space Y subconverges to a quasi-M�obius map de�ned on thewhole space X, if each map fk maps a uniformly separated triple in Xto a uniformly separated triple in Y . Moreover, a surjective limitingmap can be obtained if the images of the maps fk Hausdor� convergeto the space Y .Proof. The assumptions imply that the functions fk are equicontinuous(cf. [13, Thm. 2.1]). The proof of the �rst part of the lemma then followsfrom standard arguments based on the Arzel�a-Ascoli theorem, and weleave the details to the reader.To prove the second part, note that according to the �rst part, bypassing to a subsequence if necessary, we may assume thatdist(fk; f jDk)! 0 for k !1:



6 MARIO BONK AND BRUCE KLEINERLet D0k := fk(Dk) and gk := f�1k : D0k ! X. The maps gk are uniformlyquasi-M�obius. Hence, by our additional assumption we can apply the�rst part of the lemma to the sequence (gk). Again by selecting asubsequence of (gk) if necessary, we may assume thatdist(gk; gjD0k)! 0 for k !1;where g : Y ! X is a quasi-M�obius map. Since gk � fk = idDk andfk�gk = idD0k , we obtain from the uniform convergence of the sequences(fk) and (gk) that g � f = idX and g � f = idY . Hence f is a bijectionand therefore a quasi-M�obius homeomorphism.Let Z be an unbounded locally compact metric space with metricd = dZ , let p 2 Z be a base point, and let Ẑ = Z [ f1g be the one-point compacti�cation of Z. In order to de�ne a metric on Ẑ associatedwith the pointed space (Z; p) let hp : Ẑ ! [0;1) be given byhp(z) := 8<: 11 + d(z; p) for z 2 Z;0 for z =1:Moreover, let�p(x; y) = hp(x)hp(y)d(x; y) for x; y 2 Z;�p(x;1) = �p(1; x) = hp(x) for x 2 Z, �p(1;1) = 0. Note thatif an argument of the functions hp and �p is the point at in�nity, thecorresponding value can be obtained as a limiting case of values atarguments in Z. Essentially, the function �p is the metric on Ẑ thatwe are looking for. This distance function is an analog of the chordalmetric on the Riemann sphere. Unfortunately, �p will not satisfy thetriangle inequality in general. We remedy this problem by a standardprocedure.If x; y 2 Ẑ we de�ned̂p(x; y) := inf k�1Xi=0 �p(xi; xi+1);where the in�mum is taken over all �nite sequence of points x0; : : : ; xk 2Ẑ with x0 = x and xk = y.Lemma 2.2. The function d̂p is a metric on Ẑ whose induced topologyagrees with the topology of Ẑ. The identity map idZ : (Z; d)! (Z; d̂pjZ)is an �-quasi-M�obius homeomorphism where �(t) = 16t.



RIGIDITY FOR QUASI-M�OBIUS GROUP ACTIONS 7Proof. The �rst part of the lemma immediately follows if we can showthat 14�p(x; y) � d̂p(x; y) � �p(x; y) for x; y 2 Ẑ:(2.3)The second part also follows from this inequality by observing that if(z1; z2; z3; z4) is a four-tuple of distinct points in Z, thend̂p(z1; z3)d̂p(z2; z4)d̂p(z1; z4)d̂p(z2; z3) � 16�p(z1; z3)�p(z2; z4)�p(z1; z4)�p(z2; z3) = 16d(z1; z3)d(z2; z4)d(z1; z4)d(z2; z3) :The right hand inequality in (2.3) follows from the de�nition of d̂p. Inorder to prove the left hand inequality, we may assume hp(x) � hp(y)without loss of generality. Moreover, we may assume x 2 Z and sohp(x) > 0, because otherwise x = y =1 and the inequality is true.If x0; : : : ; xk is an arbitrary sequence with x0 = x and xk = y, weconsider two cases:If hp(xi) � 12hp(x) > 0 for all i 2 f0; : : : ; kg, then xi 2 Z, and thetriangle inequality applied to d givesk�1Xi=0 �p(xi; xi+1) � 14hp(x)2 k�1Xi=0 d(xi; xi+1)(2.4) � 14d(x; y)hp(x)hp(y) = 14�p(x; y):Suppose there exists j 2 f0; : : : ; kg such that hp(xj) < 12hp(x). Notethat that it follows from the de�nitions that jhp(u)� hp(v)j � �p(u; v)for u; v 2 Ẑ. Moreover, since hp(y) � hp(x) we have d(x; p) � d(y; p)in case y 2 Z. This impliesd(x; y)1 + d(y; p) � 2 d(y; p)1 + d(y; p) � 2;which leads to �p(x; y) � 2hp(x). This is also true if y =1. We arriveat k�1Xi=0 �p(xi; xi+1) � k�1Xi=0 jhp(xi)� hp(xi+1)j � 12hp(x) � 14�p(x; y):(2.5)The desired inequality follows from (2.4) and (2.5).Let (Z; d) be a metric space. We write Gy Z, if G is a group thatacts on Z by homeomorphisms. The image of a point z 2 Z underthe group element g is denoted by g(z). The action G y Z is calledfaithful if the only element in G that acts as the identity on Z is theunit element.



8 MARIO BONK AND BRUCE KLEINERIf � : [0;1) ! [0;1) is a homeomorphism, then an action G y Zis an �-quasi-M�obius action if each g 2 G induces an �-quasi-M�obiushomeomorphism of Z. An action G y Z is uniformly quasi-M�obiusif it is �-quasi-M�obius for some homeomorphism � : [0;1) ! [0;1).If Z is locally compact, then the action G y Z is called cocompact ifthere exists a compact set K � Z such thatZ = [g2G g(K):We denote byTri(Z) := f(z1; z2; z3) 2 Z3 : z1 6= z2 6= z3 6= z1gthe space of distinct triples in Z. If G y Z is a group action, thenthere is a natural induced action Gy Tri(Z) de�ned byg(z1; z2; z3) := (g(z1); g(z2); g(z3))for g 2 G and (z1; z2; z3) 2 Tri(Z).Suppose G y Z is an action on a compact space Z. Then theinduced action G y Tri(Z) is cocompact if and only if there exists� > 0 such that for every triple (z1; z2; z3) 2 Tri(Z) there exists agroup element g 2 G such thatd(g(zi); g(zj)) � � for i; j 2 f1; 2; 3g; i 6= j:This condition means that every triple in Tri(Z) can be mapped to auniformly separated triple by some map g 2 G.3. Maps of bounded multiplicityThe goal of this section is to study continuous maps of boundedmultiplicity between a space of topological dimension n and Rn . Themain result is Theorem 3.4 which may be of independent interest.De�nition 3.1. If f : X ! Y is a continuous map between metricspaces X and Y , then y 2 Y is a stable value of f if there is � > 0 suchthat y 2 Im(g) for every continuous map g : X ! Y with dist(f; g) < �.Note that the set of stable values of a map f : X ! Rn is an opensubset of Rn .Recall that a map is light if all point inverses are totally disconnected.We will prove the following proposition.Proposition 3.2. Let X be a compact metric space of topological di-mension at least n, and let f : X ! Rn be a light continuous map.Then f has stable values.



RIGIDITY FOR QUASI-M�OBIUS GROUP ACTIONS 9As we will see, the proof is a slight ampli�cation of the well-knownargument that such a map f cannot decrease topological dimension.De�nition 3.3. A map f : X ! Y between two spaces has boundedmultiplicity if there is a constant N 2 N such that #f�1(y) � N forall y 2 Y .Using Proposition 3.2 we will prove:Theorem 3.4. Suppose X is a compact metric space, every nonemptyopen subset of X has topological dimension at least n, and f : X ! Rnis a continuous map of bounded multiplicity. Then there is an opensubset V � Im(f) with �V = Im(f), such that U := f�1(V ) is dense inX and f jU : U ! V is a covering map.In particular, there exist nonempty open sets U1 � X and V1 � Rnsuch that f jU1 is a homeomorphism of U1 onto V1. It is in this formthat we will use Theorem 3.4 in the proof of Theorem 1.1.Let X be a topological space, and let U = fUi : i 2 Ig be a cover ofX by open subsets Ui indexed by some set I. The nerve of U , denotedby Ner(U), is a simplicial complex whose simplices corresponds to thesubsets I 0 � I for which UI0 := \i2I0 Ui 6= ;:The order of U is the supremum of all numbers #I 0 such that UI0 6=;. We denote the topological dimension of X by dimtop(X) (cf. [9,Def. I.4]). A compact metric space X has topological dimension atmost n, if and only if open covers of order at most n+ 1 are co�nal inthe family of all open covers of X, i.e., every open cover has an openre�nement which has order at most n+ 1. The order of an open coverU is equal to dimtop(Ner(U)) + 1.In order to prove Proposition 3.2 we discuss a general constructionthat associates a �ne cover with a light continuous map f : X ! Yfrom a compact metric space X to a separable metric space Y . Pick� > 0.If y 2 Y , then f�1(y) is compact and totally disconnected, so thediameter of connected components of N�(f�1(y)) tends to zero as � !0. Hence there is a number ry > 0 such that Nry(f�1(y)) can bedecomposed as a �nite disjoint union of open sets with diameter lessthan �; moreover, there is a number sy > 0 such that f�1(B(y; sy)) �Nry(f�1(y)). Let B be a �nite cover of Im(f) by balls of the formB(y; sy).



10 MARIO BONK AND BRUCE KLEINERSuppose U = fUi : i 2 Ig is a cover of Im(f) by open subsets of Y .Let I 0 := fi 2 I : Ui \ Im(f) 6= ;g, and assume that U 0 := fUi : i 2 I 0gre�nes B. Then f�1(U 0) := ff�1(Ui) : i 2 I 0g is an open cover ofX such that for all i 2 I 0, we have f�1(Ui) � Nry(f�1(y)) for somey 2 Y , which implies that f�1(Ui) may be written as a �nite disjointunion of open subsets with diameter less than �. Choosing such adecomposition of f�1(Ui) for each i 2 I 0 yields a collection of open setsV = fVj : j 2 Jg which covers X, and a map � : J ! I 0 � I such thatVj is an open set appearing in the decomposition of f�1(U�(j)). Notethat � induces a simplicial map � : Ner(V)! Ner(U) sinceVj1 \ : : : \ Vjk 6= ; ) f�1(U�(j1)) \ : : : \ f�1(U�(jk)) 6= ;) U�(j1) \ : : : \ U�(jk) 6= ;:In fact, � is injective on simplices, since if j; j 0 2 J are distinct and�(j) = �(j 0), then Vj and Vj0 are disjoint fragments of the same openset f�1(U�(j)) = f�1(U�(j0)), and so Vj\Vj0 = ;. In particular, we havedimtop(Ner(V)) � dimtop(Ner(U)).Suppose f�i : i 2 Ig is a partition of unity in Y subordinate to U .Here and in the following we interpret subordination in the sense thatf�i 6= 0g � Ui for all i 2 I. We can produce a partition of unity f�j :j 2 Jg inX subordinate to V as follows: let �j := �Vj ����(j) � f�, where�Vj is the characteristic function of Vj. Using the functions f�i : i 2 Igas barycentric coordinates in Ner(U), and the functions f�j : j 2 Jg asbarycentric coordinates in Ner(V), we obtain induced continuous maps� : Y ! Ner(U) and � : X ! Ner(V) such that � � � = � � f .We note that since � > 0 was chosen arbitrarily, if we have a co�nalfamily of covers U 0 of Im(f) of order at most N , then the correspondingfamily of covers V of X will be co�nal and its members will have orderat most N ; this implies that dimtop(Y ) � dimtop(Im(f)) � dimtop(X).Proof of Proposition 3.2. For � > 0 we now apply the constructionabove in the special case that Y = Rn , dimtop(X) � n, and the opencover U = fUi : i 2 Ig of Rn is the open star cover associated witha triangulation of Rn . Since f(X) is compact, the associated cover U 0will re�ne a given cover of f(X) if the triangulation of Rn is chosen�ne enough. We have a homeomorphism � : Rn ! Ner(U) (we con
atesimplicial complexes with their geometric realizations), and an inducedpartition of unity f�i : i 2 Ig coming from the barycentric coordinatefunctions of the map �.Since the family of open covers of X induced by our constructionis co�nal in the family of all open covers of X, we can choose � > 0



RIGIDITY FOR QUASI-M�OBIUS GROUP ACTIONS 11small enough so that the induced cover V of X does not admit an openre�nement W of order at most n.Lemma 3.5. Some n-simplex � of Ner(V) has an interior point �which is a stable value of � : X ! Ner(V).Proof. Suppose not. Then we may form a set S by choosing one interiorpoint from each n-simplex of Ner(V), and perturb � slightly on a smallneighborhood of ��1(S) to get a map � 0 : X ! Ner(V) such that itsbarycentric coordinate functions are subordinate to V, and Im(� 0)\S =;. (See the �rst part of the proof of Lemma 3.7 for the idea of how toconstruct this perturbation.) Then we may compose � 0 with the \radialprojection" in each n-simplex to get a map � 00 that maps Ner(V) n Sto the (n � 1)-skeleton [Ner(V)]n�1 of Ner(V) and whose barycentriccoordinates are subordinate to V; pulling back the open star cover ofNer(V) by � 00, we get a re�nement of V of order at most n, which is acontradiction.If � is as in the lemma, then �(�) 2 Ner(U) is clearly a stable valueof � � � : X ! Ner(U); but f = ��1 � � � � where ��1 is a homeomor-phism, so ��1(�(�)) is a stable value of f . This completes the proof ofProposition 3.2.De�nition 3.6. Let X be a topological space, and f : X ! Rn be amap. Then x 2 X is a stable point of f if f(x) is a stable value of f jUfor every neighborhood U of x.Lemma 3.7. Suppose X is metric space, and f : X ! Rn is a con-tinuous map. Then y 2 Rn is a stable value of f if and only if y isa stable value of f jf�1(W ) for every neighborhood W of y. When X isa compact metric space and f�1(y) is totally disconnected, then y is astable value of f if and only if the �ber f�1(y) contains a stable point.Proof. We will only prove the \only if" implications; the other impli-cations are immediate.Suppose W � Rn is an open neighborhood of y, and y is an unstablevalue of f jU , where U := f�1(W ). Choose � > 0 such that �B(y; �) �W , and let V := f�1(Rn n �B(y; �)). Pick � > 0. As y is an unstablevalue of f jU , we can �nd a map gU : U ! Rn such that dist(gU ; f jU) <min(�; �) and y 62 Im(gU). De�ne gV : V ! Rn to be the restriction off to V . Combining gU and gV using a partition of unity subordinateto the cover fU; V g, we get a continuous map g : X ! Rn such thatdist(g; f) < � and g�1(y) = ;. Since � > 0 was arbitrary, we haveshown that y is not a stable value of f .Now suppose X is compact, f�1(y) is totally disconnected, and everypoint x 2 f�1(y) is unstable. By the compactness of f�1(y) we can �nd



12 MARIO BONK AND BRUCE KLEINERa �nite cover B = fB(x1; r1); : : : ; B(xk; rk)g of f�1(y) by balls wherexi 2 f�1(y) and y is an unstable value of f jB(xi;ri) for each 1 � i � k.When � > 0 is su�ciently small, then f�1(B(y; �)) can be decomposedinto a disjoint union of open sets U1; : : : ; Uj so that the cover fUig off�1(y) re�nes B. This means that y is an unstable value of f jUi foreach i, which implies that y is an unstable value of f jf�1(B(y;�)). Thisis a contradiction to what we proved in the �rst part of the proof.Now let X be a compact metric space such that dimtop(U) � n forall nonempty open subsets U � X, and f : X ! Rn be a continuousmap of bounded multiplicity.Lemma 3.8. For all y 2 Rn and all � > 0, there is � > 0 such that forall y0 2 B(y; �) and all stable points x 2 f�1(y), there is a stable pointin f�1(y0) \B(x; �).Proof. Let fx1; : : : ; xkg be the stable points in f�1(y) and pick i 2f1; : : : ; kg. Since xi is stable point, y is a stable value of f jB(xi;�). Soany y0 su�ciently close to y is also a stable value of f jB(xi;�) and byLemma 3.7 for such y0 we will have a stable point in f�1(y0)\B(xi; �).This holds for all i, so the lemma follows.We de�ne the stable multiplicity function � : Rn ! N by letting �(y)be the number of stable points in f�1(y).Lemma 3.9. If � is locally maximal at y 2 Rn , then every x 2 f�1(y)is stable.Proof. Let U � Rn be a neighborhood of y such that �(y0) � �(y)for all y0 2 U . Let x1; : : : ; xk be the stable points in f�1(y), andsuppose x 2 f�1(y) n fx1; : : : ; xkg. Pick � > 0 such that the ballsB(x; �); B(x1; �); : : : ; B(xk; �) are disjoint.Choose � > 0 as in the previous lemma. Let y0 be a stable valueof f jB(x;�) lying in U \ B(y; �); such a y0 exists since by Proposition3.2 stable values of f jB(x;�) are dense in Im(f jB(x;�)). Then f�1(y0) hasa stable point in each of the balls B(x; �); B(x1; �); : : : ; B(xk; �), so�(y0) � k + 1; this is a contradiction.Proof of Theorem 3.4. Let V � Im(f) � Rn be the set where the stablemultiplicity function � is locally maximal; clearly V is dense in Im(f).By Lemma 3.8, V is an open subset of Rn , and � is locally constanton V . By Lemma 3.9, the map y 7! #f�1(y) is a locally constantfunction on V . It is therefore clear by Lemma 3.8 that f is locallyinjective near any x 2 U := f�1(V ), and hence f jU is a covering map.If W is a nonempty open set in X, then f(W ) has nonempty interiorby Proposition 3.2. Hence f(W ) meets V , since V is dense in Im(f).



RIGIDITY FOR QUASI-M�OBIUS GROUP ACTIONS 13It follows that W meets U = f�1(V ). This implies that U is dense inX. 4. Weak TangentsIn this section we brie
y review some results on weak tangents. Formore details see [6] and [4].A pointed metric space is a pair (Z; p), where Z is a metric space(with metric dZ) and p 2 Z. A sequence (Zk; pk) of pointed metricspaces is said to converge to a pointed metric space (Z; p), if for everyR > 0 and for every � > 0 there exist N 2 N , a subset M � BZ(p; R),subsets Mk � BZk(R) and bijections fk : Mk !M such that for k � N(i) p 2M , pk 2Mk, and fk(pk) = p,(ii) the set M is �-dense in BZ(p; R), and the sets Mk are �-dense inBZk(pk; R),(iii) jdZk(x; y)� dZ(fk(x); fk(y))j < � whenever x; y 2Mk.The de�nitions for pointed space convergence given in [6] and [4] aredi�erent, but equivalent.A complete metric space S is called a weak tangent of the metricspace Z, if there exist a sequence of numbers �k > 0 with �k !1 fork ! 1 and points q 2 S, pk 2 Z such that the sequence of pointedspaces (�kZ; pk) converges to the pointed space (S; q). Here we denoteby �Z for � > 0 the metric space (Z; �dZ). In other words, �Z agreeswith Z as a set, but is equipped with the metric obtained by rescalingthe original metric by the factor � > 0. The set of all weak tangents ofa metric space Z is denoted by WT(Z). If X, Y , Z are metric spaces,and X is a weak tangent of Y and Y is a weak tangent of Z, thenX is a weak tangent of Z, i.e., X 2 WT(Y ) and Y 2 WT(Z) implyX 2WT(Z).A metric space Z is called uniformly perfect if there exists a constant� � 1 such that for every z 2 Z and 0 < R � diam(Z) we have�B(z; R) nB(z; R=�) 6= ;.For Q > 0 we denote by HQ the Q-dimensional Hausdor� measureon a metric space Z. A complete metric space Z of positive diameter iscalled Ahlfors Q-regular, where Q > 0, if there exists a constant C � 1such that 1CRQ � HQ(B(z; R)) � CRQ;whenever z 2 Z and 0 < R � diam(Z).A metric space Z is called doubling, if there exists a number N 2 Nsuch that every open ball of radius R in Z can be covered by at most N



14 MARIO BONK AND BRUCE KLEINERopen balls of radius R=2. The space Z is called proper, if closed ballsin Z are compact.Every Ahlfors regular space is uniformly perfect and doubling. Acomplete doubling space is proper. If Z is a compact metric spacethat is uniformly perfect and doubling, and X 2 WT(Z), then X isan unbounded doubling metric space. Since X is also complete byde�nition, this space will be proper.Suppose f : X ! Y is a map between a metric space X and a dou-bling metric space Y . The map is called regular if it is Lipschitz andthere exists a constant N 2 N such that the inverse image of everyopen ball B in Y can be covered by at most N open balls in X withthe same radius as B.Note that this last condition implies that f is of bounded multiplicity.Indeed, we have #f�1(y) � N for y 2 Y . For suppose that there areN+1 distinct points x1; : : : ; xN+1 2 f�1(y). Let � > 0 be the minimumof the distances dX(xi; xj) for i 6= j. Consider the ball B = B(y; �=2).By our assumption on f the preimage f�1(B) � f�1(y) can be coveredby N open balls B1; : : : ; BN � X of radius �=2. But this is impossible,because each ballBi can contain at most one of the points x1; : : : ; xN+1.The proof of the following proposition can be found in [6, Prop. 12.8].Proposition 4.1. Let X and Y be metric spaces, and f : X ! Y bea Lipschitz map. Suppose that X is compact and Ahlfors Q-regular,where Q > 0, Y is complete and doubling, and HQ(f(X)) > 0.Then there exist weak tangents S 2 WT(X), T 2 WT(Y ), and aregular map g : S ! T .We will need the following lemmas.Lemma 4.2. Suppose X is a metric space, and f : X ! Rn is regular.Assume that there is an open ball B � Rn and a set U � f�1(B) suchthat the map g := f jU : U ! B is a homeomorphism. Then g is abi-Lipschitz map.It is understood that U is equipped with the restriction of the metricdX to U , and B with the Euclidean metric.Proof. Since f is Lipschitz, the map g is also Lipschitz. It remains toobtain an upper bound for dX(x; y) in terms of jf(x)�f(y)j, wheneverx; y 2 U , x 6= y. Let R := 2jf(x) � f(y)j > 0, B0 := B(x;R) andS � B0 \ B be the Euclidean line segment connecting f(x) and f(y).Then E := g�1(S) is a compact connected set in U containing x and y.On the other hand, E � f�1(B0). If N 2 N is associated with f as inthe de�nition of a regular map, then it follows that E can be coveredby N open balls of radius R. Now we invoke the following elementary



RIGIDITY FOR QUASI-M�OBIUS GROUP ACTIONS 15fact whose proof is left to the reader: If E is a compact connected setin a metric space covered by open balls, then the diameter of E is atmost twice the sum of the radii of the balls.In our situation we get the estimatedX(x; y) � diam(E) � 2NR = 4N jf(x)� f(y)j;which proves that g is a bi-Lipschitz homeomorphism.Lemma 4.3. Suppose X and Y are complete doubling metric spaces.Suppose there exists a point x 2 X, a neighborhood U of x and a bi-Lipschitz map f : U ! V := f(U) such that V is a neighborhood ofy := f(x).Then there exist S 2WT(X), T 2WT(Y ), and a bi-Lipschitz home-omorphism g : S ! T .The lemma says that under the given hypotheses the spaces X andY have bi-Lipschitz equivalent weak tangents.Proof. For � > 0 consider the pointed metric spaces (�U; x) and (�V; y),where �U and �V denote the metric spaces whose underlying sets areU and V equipped with the restrictions of the metric dX and dY , re-spectively, rescaled by the factor � > 0. The map f considered asa map between (�U; x) and (�V; y) preserves base points and is bi-Lipschitz with a constant independent of �. Since X and Y are com-plete and doubling, it follows that in the terminology of David andSemmes [6, Sect. 8.5] the mapping packages f : (�U; x)! (�V; y) sub-converge for � ! 1 to a mapping g : S ! T . Here S and T arelimits of the pointed spaces (�kU; x) and (�kV; y), respectively, where�k is a sequence of positive numbers with �k ! 1 as k ! 1. SinceU and V are neighborhoods of x and y, respectively, it follows thatS 2WT(X) and Y 2WT(Y ) (cf. [6, Lem. 9.12]). Moreover, since thebi-Lipschitz constant of f : (�U; x) ! (�V; y) is independent of �, themap g will be bi-Lipschitz. There is a slight problem here, because it isnot clear whether g will be surjective. This problem can be addressedsimilarly as in the second part of the proof of Theorem 2.1. We mayassume that the sequence �k is such that not only the mapping pack-ages f : (�kU; x) ! (�kV; y) converge, but also the mapping packagesf�1 : (�kV; y) ! (�kU; x), to h : T ! S, say. Then g � h = idT whichimplies that g is onto, and hence a bi-Lipschitz homeomorphism.5. Weak tangents and quasi-M�obius actionsIn this section we study weak tangents of compact metric spaceswhich admit a uniformly quasi-M�obius action for which the inducedaction G y Tri(Z) is cocompact. As the reader will notice, all the



16 MARIO BONK AND BRUCE KLEINERresults in this section remain true under the weaker assumption thatevery triple of distinct points in Z can be blown up to a uniformlyseparated triple by a uniform quasi-M�obius homeomorphism of Z, i.e.,an �-quasi-M�obius homeomorphism with � independent of the triple.Lemma 5.1. Suppose Z is a uniformly perfect compact metric space,and Gy Z is an �-quasi-M�obius action.(i) Suppose that for each k 2 N we are given a set Dk in a ballBk = B(pk; Rk) � Z that is (�kRk)-dense in Bk, where �k > 0,distinct points x1k; x2k; xk3 2 B(pk; �kRk), where �k > 0, withdZ(xik; xjk) > �kRk for i; j 2 f1; 2; 3g; i 6= j;where �k > 0, and group elements gk 2 G such that for yik :=gk(xik) we havedZ(yik; yjk) > �0 for i; j 2 f1; 2; 3g; i 6= j;where �0 > 0 is independent of k.Let D0k := gk(Dk), and suppose �k ! 0 for k!1 and that thesequence (�k=�2k) is bounded. ThendistH(D0k; Z)! 0 for k !1:(ii) Suppose in addition that G y Tri(Z) is cocompact. If U � Z isa nonempty open set, then there exists a sequence (gk) in G suchthat diam(Z n gk(U))! 0 for k!1:In plain words (i) essentially says that if we blow up a triple (x1; x2; x3)that lies in a ball B to a uniformly separated triple, then a set D in Bwill be blown up to a rather dense set in Z, if the triple (x1; x2; x3) liesdeep inside B and its separation is much larger than distH(D;B).Proof of (i). Let d = dZ. Consider �xed k 2 N and drop the subscriptk for simplicity. The image of a point z 2 Z under g = gk will bedenoted by z0 := g(z). Pick an arbitrary point in Z, and write it in theform x0 = g(x) where x 2 Z. We have to �nd a point in D0 close to x0.Case 1: x 2 B(p; R). There is a point y 2 D \ B with d(x; y) � �R.Since the minimal distance between the points x1; x2; x3 is at least �R,we can �nd two of them, call them a and b, so that d(y; a) � �R=2 andd(x; b) � �R=2. Henced(x0; y0)d(a0; b0)d(x0; b0)d(a0; y0) � ��d(x; y)d(a; b)d(x; b)d(a; y)� � �(8��=�2):Rearranging factors, this implies thatd(x0; y0) � diam(Z)2�(8��=�2)=�0 � C1�(C2�):



RIGIDITY FOR QUASI-M�OBIUS GROUP ACTIONS 17The last expression becomes uniformly small as �! 0.Case 2: x 62 B(p; R). Since � . �2 . �2, we may assume that � > 0 issmall. Then by the uniform perfectness of Z and the (�R)-density ofD in B, we can �nd a point y 2 D \ B so that d(y; p)=R is uniformlybounded away from zero, d(y; p)=R � c0 > 0 say. Note that c0 doesnot depend on k. We may assume that � < c0=2 � 1=2. Then settinga = x1 and b = x2 we getd(x0; y0)d(a0; b0)d(x0; b0)d(a0; y0) � ��d(x; y)d(a; b)d(x; b)d(a; y)�� �� 4�d(x; p)(d(x; p)� �R)(c0 � �)�� �(16�=c0):Rearranging factors, this implies thatd(x0; y0) � diam(Z)2�(16�=c0)=�0 � C3�(C4�):Again the last expression becomes uniformly small as �! 0.Since y0 2 D0, the �rst part of the lemma follows.Proof of (ii). Let B = B(p; R) be a ball in U with small radius R 2(0; 1=2]. By the uniform perfectness of Z we can �nd a triple (x1; x2; x3)of distinct points in B(p; R2) whose separation is comparable to R2.Now use the cocompactness of G y Tri(Z) to �nd g 2 G mapping(x1; x2; x3) to a uniformly separated triple.Arguing as in Case 2 above, we �nd that whenever x0 and y0 are pointsin Z n g(B(p; R)), then dZ(x0; y0) . �(CR): Hence diam(Z n g(U)) .�(CR), and the claim follows by making R arbitrarily small.Before we state the next lemma we recall that in Section 2 we havede�ned a metric d̂p on the one-point compacti�cation X̂ of an un-bounded locally compact pointed metric space (X; p) associated withthe metric d = dX and the base point p.Lemma 5.2. Suppose Z is a compact metric space that is uniformlyperfect and doubling, and G y Z is a uniformly quasi-M�obius actionfor which the induced action Gy Tri(Z) is cocompact.If (S; p) 2WT(Z), then there exist a quasi-M�obius homeomorphismh : (Ŝ; d̂p)! Z. Moreover, hjS : S ! Znfh(1)g is also a quasi-M�obiushomeomorphism.In other words, up to quasi-M�obius homeomorphism the space Z isequivalent to the one-point compacti�cation Ŝ of a weak tangent (S; p)of Z if we equip Ŝ with the canonical metric d̂p. Conversely, up to



18 MARIO BONK AND BRUCE KLEINERquasi-M�obius homeomorphism any weak tangent of Z is equivalent toZ with one point removed.Proof. Note that as a weak tangent of a uniformly perfect doublingmetric space, S is unbounded and proper.From the de�nition of pointed space convergence it follows that fork 2 N there exist subsets ~Dk � BS(p; k) � S that are (1=k)-dense inBS(p; k), numbers �k > 0 with �k ! 1, points pk 2 Z, sets Dk �B�kZ(pk; k) � �kZ that are (1=k)-dense in B�kZ(pk; k) with respect tothe metric d�kZ = �kdZ and bijections fk : ~Dk ! Dk such that12dS(x; y) � �kdZ(fk(x); fk(y)) � 2dS(x; y) for x; y 2 ~Dk:(5.3)Moreover, it can be arranged that each set ~Dk contains the points of a�xed triple (q1; q2; q3) 2 Tri(S).Let xik := fk(qi) for i 2 f1; 2; 3g and k 2 N . Since the actionGy Tri(Z) is cocompact, for k 2 N we can �nd gk 2 G such that thetriples (y1k; y2k; y3k) := gk(x1k; x2k; x3k) 2 Tri(Z)are uniformly separated.The density condition for the sets Dk rephrased in terms of the met-ric dZ says that Dk is (�k=k)-dense in BZ(pk; �kk) with respect to dZ.Moreover, in terms of the metric dZ, the triple (x1k; x2k; x3k) has separa-tion comparable to �k and is contained in a ball centered at pk whoseradius is also comparable to �k. It follows from Lemma 5.1 that forD0k := gk(Dk) we have limk!1distH(D0k; Z) = 0;(5.4)where distH refers to the Hausdor� distance in Z.The density condition for the sets ~Dk � S � Ŝ and the inequality(2.3) for the metric d̂p imply thatlimk!1distH( ~Dk; Ŝ) = 0;(5.5)where distH refers to the Hausdor� distance in (Ŝ; d̂p).Consider the maps hk : ( ~Dk; d̂pj ~Dk)! Z de�ned by hk(x) = gk(fk(x))for x 2 ~Dk. Note that it follows from Lemma 2.2, inequality (5.3) andthe fact that the action G y Z is uniformly quasi-M�obius that themaps hk are �-quasi-M�obius with � independent of k. Moreover, eachmap hk maps the triple (q1; q2; q3) to the uniformly separated triple(y1k; y2k; y3k). Finally, D0k = hk( ~Dk) and so by (5.4) and (5.5) we canapply Lemma 2.1. It follows that the sequence (hk) subconverges to aquasi-M�obius homeomorphism h : (Ŝ; d̂p)! Z.



RIGIDITY FOR QUASI-M�OBIUS GROUP ACTIONS 19The second part of the lemma follows by observing hjS : S ! Z nff(1)g is quasi-M�obius, since this map the composition of the mapsidS : S ! (S; d̂pjS) which is quasi-M�obius by Lemma 2.2 and the maphjS : (S; d̂pjS)! Z n fh(1)g which is quasi-M�obius by the �rst part ofthe proof.Lemma 5.6. Suppose Z is a compact metric space that is uniformlyperfect and doubling, and G y Z is a uniformly quasi-M�obius actionfor which the induced action Gy Tri(Z) is cocompact.If dimtop(Z) = n 2 N, then dimtop(U) = n whenever U is a non-empty open subset of Z or of any weak tangent of Z.Proof. If U � Z is a nonempty open set, we can �nd a nonempty openset V with �V � U . By Lemma 5.1 there is a sequence (gk) in G suchthat diam(Z n gk( �V )) ! 0 for k ! 1. Hence the complement ofSk2N gk( �V ) in Z can contain at most one point. Topological dimen-sion is invariant under homeomorphisms, and and does not increaseunder a countable union of closed sets (cf. [9, Thm. II. 1]). So we getdimtop(Z) � dimtop( �V ) � dimtop(U) � dimtop(Z).If U is a nonempty open subset of any weak tangent S of Z, then Uis also an open subset of the one-point compacti�cation of S. Hence byLemma 5.2, the set U is homeomorphic to a nonempty open subset ofZ. Therefore dimtop(U) = dimtop(Z) by the �rst part of the proof.Lemma 5.7. Suppose X and Y are compact metric spaces that areuniformly perfect and doubling, and suppose G y Z and H y X areuniformly quasi-M�obius actions for which the induced actions G yTri(X), H y Tri(Y ) are cocompact.If there exist S 2 WT(X) and T 2 WT(Y ) and a quasi-symmetrichomeomorphism f : S ! T , then there exists a quasi-M�obius homeo-morphism g : X ! Y .So if X and Y have weak tangents that are quasi-symmetricallyequivalent, then X and Y are equivalent up to a quasi-M�obius homeo-morphism.Proof. Let p and q be the base points in S and T , respectively, andconsider the one-point compacti�cations (Ŝ; d̂p) and (T̂ ; d̂q). If we de-�ne f̂(x) = f(x) for x 2 X, and f̂(1) = 1, then (2.3) implies thatf̂ : (Ŝ; d̂p) ! (T̂ ; d̂q) is a quasi-M�obius homeomorphism. Since (Ŝ; d̂p)is equivalent to X and (T̂ ; d̂q) is equivalent to Y up to quasi-M�obiushomeomorphisms by Lemma 5.2, the claim follows.



20 MARIO BONK AND BRUCE KLEINER6. Proof of Theorem 1.1Let Z and Gy Z be as in the statement of Theorem 1.1.We are given that dimtop(Z) = n. This implies [9, Thm. III. 1] thatthere is a continuous map f0 : Z ! Sn with a stable value y 2 Sn; infact any continuous map f1 : Z ! Sn for which dist(f0; f1) is su�cientlysmall will also have y as a stable value.Every continuous function g0 : Z ! R can be approximated by aLipschitz function g1 : Z ! R such that dist(g0; g1) is arbitrarily small.This standard fact can be established by using Lipschitz partitions ofunity in Z subordinate to a cover of Z by small balls with controlledoverlap. We apply this to the n + 1 coordinate functions of the mapf0 : Z ! Sn � Rn+1 to obtain Lipschitz maps on Z which are arbi-trarily close to f0 and map Z into small neighborhoods of Sn in Rn+1 .Composing these maps with the radial projection from the origin inRn+1 to Sn, we can �nd Lipschitz maps from Z into Sn arbitrarily closeto f0. In particular, there exists a Lipschitz map f : Z ! Sn such thaty is a stable value of f . Then Im(f) is a neighborhood of y, and soHn(Im(f)) > 0.We now apply Proposition 4.1 to obtain a weak tangent S of Z, aweak tangent T of Sn and a regular map � : S ! T . Note that everyweak tangent of Sn is isometric to Rn , and so T = Rn .As we have seen, the fact that � is regular implies that � has boundedmultiplicity. By Lemma 5.6, every nonempty open subset of S hastopological dimension n. Therefore, by Theorem 3.4 (applied to theclosure of the some bounded nonempty open set in S as the space X)there is a nonempty open subset U � S such that  := �jU is a home-omorphism onto an open subset of Rn . Shrinking the open set U ifnecessary, we may assume that  is a homeomorphism onto an openball B in Rn . Now Lemma 4.2 shows that  is bi-Lipschitz. Choosingx 2 U and setting y :=  (x) we are in the situation of Lemma 4.3. Weconclude that S has a weak tangent bi-Lipschitz equivalent to a weaktangent of Rn . Since the weak tangents of S are also weak tangentsof Z, and all weak tangents of Rn are isometric to Rn , we see that Zand Sn have bi-Lipschitz equivalent weak tangents. Since the groupof M�obius transformations induces a uniformly quasi-M�obius action onSn and a cocompact action on Tri(Sn), Lemma 5.7 implies that thereexists a quasi-M�obius homeomorphism h : Z ! Sn. As a quasi-M�obiushomeomorphism between bounded spaces, the map h will also be quasi-symmetric. Conjugating the uniformly quasi-M�obius action Gy Z byh, we get a uniformly quasi-M�obius action G y Sn such that the in-duced action G y Tri(Sn) is cocompact. By a result of Tukia [12,



RIGIDITY FOR QUASI-M�OBIUS GROUP ACTIONS 21Cor. G(a)], this action is conjugate by a quasiconformal homeomor-phism to an action by M�obius transformations. Since quasiconformalhomeomorphisms of Sn onto itself are quasi-symmetric, Theorem 1.1follows.The method of proving Theorem 1.1 also leads to the following result.Theorem 6.1. Let n 2 N, and let Z be a compact, Ahlfors n-regularmetric space of topological dimension n. Suppose every triple of distinctpoints in Z can be mapped to a uniformly separated triple by a uniformquasi-M�obius homeomorphism of Z. Then Z is quasi-symmetricallyequivalent to the standard sphere Sn.Proof. In the same way as in the proof of Theorem 1.1, we see thatZ has a weak tangent bi-Lipschitz equivalent to Rn . As we remarkedin the beginning of Section 5, the results in this section remain trueif the assumption on the group action is replaced by the assumptionthat every triple of distinct points in the space under considerationcan be mapped to a uniformly separated triple by a uniform quasi-M�obius homeomorphism. So by the analog of Lemma 5.7, we againobtain a quasi-M�obius, and hence quasi-symmetric, homeomorphismh : Z ! Sn.This theorem justi�es the remark in the introduction about the ques-tion of Heinonen and Semmes|recall that quasi-M�obius homeomor-phisms of compact metric spaces are quasi-symmetric. We see that thethree point homogeneity condition can be relaxed to a \cocompact ontriples" condition, at the cost of requiring the homeomorphisms to beuniformly quasi-M�obius.7. CAT(�1)-spaces and isometric group actionsWe refer the reader to [7] for general background on Gromov hyper-bolic spaces.A metric space X is called geodesic, if any two points x; y 2 X can bejoined by a geodesic segment in X, i.e., a curve whose length is equalto the distance of x and y. In the following we will always assume thatX is proper and geodesic.Let X be a Gromov hyperbolic space, and @1X be its boundary atin�nity. There is a natural topology on X [ @1X making this unioncompact. If p 2 X, a; b 2 @1X, we let [a; b]p denote the Gromovproduct of a; b 2 @1X with respect to the base point p. When c > 0is su�ciently small, the functiond(a; b) := exp(�c[a; b]p)(7.1)



22 MARIO BONK AND BRUCE KLEINERis equivalent up to a multiplicative factor to a metric on @1X; any twometrics of this type are quasi-symmetrically equivalent by the identitymap. Fix one such metric on @1X. If we denote the group of isometriesof X by Isom(X), then we get an induced action Isom(X) y @1Xwhich is a uniformly quasi-M�obius action, [10, Prop. 4.5]. In fact,every quasi-isometry f : X ! X induces an �-quasi-M�obius homeo-morphism @1X ! @1X where � depends only the parameters of thequasi-isometry and the hyperbolicity constant of X.Now suppose that X is a CAT(�1)-space (see [1] for more detailson the topics discussed in the following). Then for every p 2 X weget a canonical metric on @1X as follows. For every point a 2 @1X,there is a unique geodesic ray pa starting at p whose asymptotic classrepresents a. Let a; b 2 @1X, and consider points x 2 pa, y 2 pb.Let �~p~x~y be a comparison triangle (in the hyperbolic plane) for thetriangle �pxy, and let ~\p(x; y) denote the angle at ~p. When x and ytend to in�nity along the rays pa and pb, respectively, the comparisonangle ~\p(x; y) has a limit, which we de�ne to be the distance betweena and b. This metric agrees up to a bounded factor with the expressionin (7.1) when c = 1.Suppose G y X is an isometric action of a group on a CAT(�1)-space X. If x 2 X, then we denote its orbit under G byGx := fg(x) : g 2 Gg:The limit set �(G) � @1X of G is by de�nition the set of all accu-mulation points of an orbit Gx on @1X. This set is independent ofx 2 X. The group action Gy X is called properly discontinuous iffg 2 G : g(K) \K 6= ;gis �nite for every compact subset K of X.A subset Y � X is quasi-convex if there is a constant C such thatany geodesic segment with endpoints in Y lies in the C-neighborhoodof Y . The action G y X is quasi-convex cocompact if there is a G-invariant quasi-convex subset Y � X on which G acts with compactquotient Y=G. The group G is quasi-convex cocompact if and only ifall orbits Gx are quasi-convex.We will need the following result due to Bourdon [2, 0.3 Th�eor�eme(H n case)].Theorem 7.2. Let n � 2, G be a group, and X a CAT(�1)-space.Suppose we have isometric group actions G y X and G y H n+1which are properly discontinuous. Suppose that Gy X is quasi-convexcocompact and Gy H n+1 is cocompact. If the Hausdor� dimension of



RIGIDITY FOR QUASI-M�OBIUS GROUP ACTIONS 23�(G) � @1X is equal to n, then there exists a G-equivariant isometryof H n+1 onto a convex, G-invariant set Y � X.Actually, Bourdon proved this under the additional assumption thatthe group action Gy H n+1 is faithful. In this case G is isomorphic toa uniform lattice in Isom(H n+1). The proof of the above more generalversion is the same as the proof of his original result.Proof of Theorem 1.2. Consider the induced actions G y �(G) andG y Tri(�(G)). Since G y X is isometric, G y �(G) is uniformlyquasi-M�obius. Since the action Gy X is properly discontinuous, thesame is true for G y Tri(�(G)). Moreover, since G y X is quasi-convex cocompact, Gy Tri(�(G)) is cocompact.Since the Hausdor� dimension of �(G) is n, this space will actuallybe Ahlfors n-regular (cf. [5, Section 7]). Now n is also the topologicaldimension of �(G) by assumption. By Theorem 1.1, the action G y�(G) is quasi-symmetrically conjugate to an action Gy Sn by M�obiustransformations. The action G y Tri(Sn) is properly discontinuousand cocompact. This implies that there is a properly discontinuous,cocompact, and isometric action G y H n+1 which induces the actionGy Sn = @1H n+1 . Since n � 2 we can apply Bourdon's theorem, andconclude that there exists aG-equivariant isometric embedding of H n+1onto a convex, G-invariant set Y � X on which G acts cocompactly.The result follows.As the proof shows, n � 2 is only used in the last step. In partic-ular, even in the case n = 1 we can still conclude that �(G) is quasi-symmetrically equivalent to S1, and that there is an action G y H 2which isometric, properly discontinuous and cocompact.References[1] M. Bourdon, Structure conforme au bord et 
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