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1 Introduction

1.1 Background and statement of results

An (L,C) quasi-isometry is a map Φ : X −→ X ′ between metric spaces such that for all x1, x2 ∈ X
we have

L−1d(x1, x2) − C ≤ d(Φ(x1),Φ(x2)) ≤ Ld(x1, x2) + C (1)

and
d(x′, Im(Φ)) < C (2)

for all x′ ∈ X ′. Quasi-isometries occur naturally in the study of the geometry of discrete groups
since the length spaces on which a given finitely generated group acts cocompactly and properly
discontinuously by isometries are quasi-isometric to one another [Gro]. Quasi-isometries also play
a crucial role in Mostow’s proof of his rigidity theorem: the theorem is proved by showing that
equivariant quasi-isometries are within bounded distance of isometries.

This paper is concerned with the structure of quasi-isometries between products of symmetric
spaces and Euclidean buildings. We recall that Euclidean space, hyperbolic space, and complex
hyperbolic space each admit an abundance of self-quasi-isometries [Pan]. For example we get quasi-
isometries E2 −→ E2 by taking shears in rectangular (x1, x2) 7→ (x1, x2 + f(x1)) or polar (r, θ) 7→

(r, θ+ f(r)
r

) coordinates, where f : R −→ R and g : [0,∞) −→ R are Lipschitz. Any diffeomorphism1

Φ : ∂Hn −→ ∂Hn of the ideal boundary can be extended continuously to a quasi-isometry Φ : Hn −→
H
n. Likewise any contact diffeomorphism2 ∂Φ : ∂CH

n −→ ∂CH
n) can be extended continuously

to a quasi-isometry Φ : CHn −→ CHn) [Pan]. Quasi-isometries of the remaining rank 1 symmetric
spaces of noncompact type, on the other hand, are very special. They are essentially isometries:

Theorem 1.1.1 ([Pan]) Let X be either a quaternionic hyperbolic space HHn, n > 1, or the Cayley
hyperbolic plane CaH2. Then any quasi-isometry of X lies within bounded distance of an isometry.

†The first author was supported by NSF and MSRI Postdoctoral Fellowships and the Sonderforschungsbereich
SFB 256 at Bonn.

∗The second author was supported by an MSRI Postdoctoral Fellowship, the SFB 256 and IHES.
1Any quasi-conformal homeomorphism arises as the boundary homeomorphism of a quasi-isometry by [Tuk].
2The boundary of CHn can be endowed with an Isom(CHn) invariant contact structure by projecting the contact

structure from a unit tangent sphere S2n−1
p CHn to ∂CHn using the exponential map.
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Note that Pansu’s theorem is a strengthening of Mostow’s rigidity theorem for these rank one
symmetric spaces X , as it applies to all quasi-isometries of X , whereas Mostow‘s argument only
treats those quasi-isometries which are equivariant with respect to lattice actions. The main results
of this paper are the following higher rank analogs of Pansu’s theorem.

Theorem 1.1.2 (Splitting) For 1 ≤ i ≤ k, 1 ≤ j ≤ k′ let each Xi, X
′
j be either a nonflat

irreducible symmetric space of noncompact type or an irreducible thick Euclidean Tits building with
cocompact affine Weyl group (see section 4.1 for the precise definition). Let X = En ×

∏k
i=1Xi,

X ′ = En
′

×
∏k′

j=1X
′
j be metric products.3 Then for every L,C there are constants L̄, C̄ and D̄

such that the following holds. If Φ : X −→ X ′ is an (L,C) quasi-isometry, then n = n′, k = k′,
and after reindexing the factors of X ′ there are (L̄, C̄) quasi-isometries Φi : Xi −→ X ′

i so that

d(p′ ◦ Φ,
∏

Φi ◦ p) < D̄, where p : X −→
∏k
i=1Xi and p′ : X ′ −→

∏k
i=1X

′
i are the projections.

A more general theorem about quasi-isometries of products is proved in [KKL].

Theorem 1.1.3 (Rigidity) Let X and X ′ be as in theorem 1.1.2, but assume in addition that X
is either a nonflat irreducible symmetric space of noncompact type of rank at least 2, or a thick
irreducible Euclidean building of rank at least 2 with cocompact affine Weyl group and Moufang Tits
boundary. Then any (L,C) quasi-isometry Φ : X −→ X ′ lies at distance < D from a homothety
Φ0 : X −→ X ′, where D depends only on (L,C).

Theorem 1.1.3 settles a conjecture made by Margulis in the late 1970’s, see [Gro, p. 179] and [GrPa,
p. 73]. We will show in [KlLe] that the Moufang condition on the Tits boundary of X can be
dropped.

As an immediate consequence of theorems 1.1.2 1.1.3, and [Mos] we have:

Corollary 1.1.4 (Quasi-isometric classification of symmetric spaces) Let X, X ′ be symmet-
ric spaces of noncompact type. If X and X ′ are quasi-isometric, then they become isometric after
the metrics on their de Rham factors are suitably renormalized.

Mostow’s work [Mos] implies that two quasi-isometric rank 1 symmetric spaces of noncompact type
are actually isometric (up to a scale factor); and it was known by [AS] that two quasi-isometric
symmetric spaces of noncompact type have the same rank.

We will discuss other applications of theorems 1.1.2 and 1.1.3 in a separate paper.

1.2 Commentary on the proof

Our approach to theorems 1.1.2 and 1.1.3 is based on the fact that if one scales the metrics on
X and X ′ by a factor λ, then (L,C) quasi-isometries become (L, λC) quasi-isometries. Starting
with a sequence λi → 0 we apply the ultralimit construction of [DW, Gro] to take a limit of the
sequence Φ : λiX −→ λiX

′, getting an (L, 0) quasi-isometry (i.e. a biLipschitz homeomorphism)
Φω : Xω −→ X ′

ω between the limit spaces. The first step is to determine the geometric structure of
these limit spaces:

Theorem 1.2.1 Xω and X ′
ω are thick (generalized) Euclidean Tits buildings (cf. section 4.1).

3The distance function on the product space is given by the Pythagorean formula.
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The second step is to study the topology of the Euclidean buildingsXω, X ′
ω. We establish rigidity

results for homeomorphisms of Euclidean buildings which are topological analogs of theorems 1.1.2
and 1.1.3:

Theorem 1.2.2 Let Yi, Y
′
i be thick irreducible Euclidean buildings with topologically transitive affine

Weyl group (cf. section 4.1.1), and let Y = En ×
∏k
i=1 Yi, Y

′ = En
′

×
∏k′

j=1 Y
′
j . If Ψ : Y → Y ′

is a homeomorphism, then n = n′, k = k′, and after reindexing factors there are homeomorphisms
Ψi : Yi → Y ′

i so that p′ ◦ Ψ =
∏

Ψi ◦ p where p : Y →
∏k
i=1 Yi and p′ : Y ′ →

∏k
i=1 Y

′
i are the

projections.

Theorem 1.2.3 Let Y be an irreducible thick Euclidean building with topologically transitive affine
Weyl group and rank ≥ 2. Then any homeomorphism from Y to a Euclidean building is a homothety.

For comparison we remark that if Y and Y ′ are thick irreducible Euclidean buildings with
crystallographic (i.e. discrete cocompact) affine Weyl group, then one can use local homology groups
to see that any homeomorphism carries simplices to simplices. In particular, the homeomorphism
induces an incidence preserving bijection of the simplices of Y with the simplices of Y ′, which easily
implies that the homeomorphism coincides with a homothety on the 0-skeleton. In contrast to this,
homeomorphisms of rank 1 Euclidean buildings with nondiscrete affine Weyl group (i.e. R-trees)
can be quite arbitrary: there are examples of R-trees T for which every homeomorphism A→ A of
an apartment A ⊂ T can be extended to a homemorphism of T . However, we have always:

Proposition 1.2.4 If X, X ′ are Euclidean buildings, then any homeomorphism Ψ : X → X ′ carries
apartments to apartments.

In the third step, we deduce theorems 1.1.2 and 1.1.3 from their topological analogs. By using
a scaling argument and proposition 1.2.4 we show that if X and X ′ are as in theorem 1.1.2, and
Φ : X → X ′ is an (L,C) quasi-isometry, then the image of a maximal flat in X under Φ lies
within uniform Hausdorff distance of a maximal flat in X ′; the Hausdorff distance can be bounded
uniformly by (L,C). In the case of theorem 1.1.2 we use this to deduce that the quasi-isometry
respects the product structure, and in the case of theorem 1.1.3 we use it to show that Φ induces
a well-defined homeomorphism ∂Φ : ∂X → ∂X ′ of the geometric boundaries which is an isometry
of Tits metrics. We conclude using Tits’ work [Ti1] (as in [Mos]) that ∂Φ is also induced by an
isometry Φ0 : X → X ′, and d(Φ,Φ0) is bounded uniformly by (L,C).

The reader may wonder about the relation between theorems 1.1.2 and 1.1.3 and Mostow’s
argument in the higher rank case. An important step in Mostow’s proof shows that if Γ acts
discretely and cocompactly on symmetric spaces X and X ′, then any Γ-equivariant quasi-isometry
Φ : X → X ′ carries maximal flats in X to within uniform distance of maximal flats in X ′. The proof
in [Mos] exploits the dense collection of maximal flats with cocompact Γ-stabilizer4. One can then
ask if there is a “direct” argument showing that maximal flats in X are carried to within uniform
distance of maximal flats in X ′ by any quasi-isometry5; for instance, by analogy with the rank 1
case one may ask whether any r-quasi-flat6 in a symmetric space of rank r must lie within bounded

4If Zr ⊂ Γ acts cocompactly on a maximal flat F ⊂ X, then Zr will stabilize Φ(F ) and a flat F ′ in X′. One can
then get a uniform estimate on the Hausdorff distance between Φ(F ) and F ′.

5Obviously this statement is true by theorems 1.1.2 and 1.1.3.
6An r-quasi-flat is a quasi-isometric embedding φ : Er → X; a quasi-isometric embedding is a map satisfying

condition (1), but not necessarily (2).

3



distance of a maximal flat. The answer is no. If X is a rank 2 symmetric space, then the geodesic
cone ∪s∈Sps over any embedded circle S in the Tits boundary ∂TitsX is a 2-quasi-flat. Similar
constructions produce nontrivial r-quasi-flats in symmetric spaces of rank ≥ 2. But in fact this is
the only way to produce quasiflats, by

Theorem 1.2.5 (Structure of quasi-flats) Let X be as in theorem 1.1.2, and let r = rank(X).
Given L,C there are D,D′ ∈ Z such that every (L,C) r-quasi-flat Q ⊂ X lies within the D-tubular
neighborhood ND (∪F∈FF ) of a union of at most D maximal flats. Moreover, the limit set of Q is
the union of at most D′ closed Weyl chambers in the Tits boundary ∂TitsX.

It follows easily that if L is sufficiently close to 1 (in terms of the geometry of the spherical
Coxeter complex (S,W ) associated to X) then any (L,C) r-quasi-flat in X is uniformly close to a
maximal flat. In the special case that X is a symmetric space, theorem 1.2.5 was proved indepen-
dently by Eskin and Farb, approximately one year after we had obtained the main results of this
paper for symmetric spaces.

We would like to mention that related rigidity results for quasi-isometries have been proved in
[Sch].

1.3 Organization of the paper

Section 2 contains background material which will be familiar to many readers; we recommend
starting with section 3, and using section 2 as a reference when needed. We provide the straight-
forward generalisation of some well-known facts about Hadamard spaces to the non-locally-compact
case. This is needed when we study the limit spaces Xω which are non-locally compact Hadamard
spaces.

Sections 3 and 4 give a self-contained exposition of the building theory used elsewhere in the
paper. This exposition has several aims. First, we hope that it will make building theory more
accessible to geometers since it is presented using the language of metric geometry, and we do not
require any knowledge of algebraic groups. Second, it introduces a new definition of buildings (sphe-
rical and Euclidean) which is based on metric geometry rather than a combinatorial structure such
as a polysimplicial complex. Tits’ original definition of a building was motivated by applications to
algebraic groups, whereas the objectives of this paper are primarily geometric. Here buildings (sphe-
rical and Euclidean) arise as geometric limits of symmetric spaces, and we found that the geometric
definition in sections 3 and 4 could be verified more directly than the standard one; moreover, the
Euclidean buildings that arise as limits are “nondiscrete”, and do not admit a natural polysimplicial
structure. Finally, sections 3 and 4 contain a number of new results, and reformulations of standard
results tailored to our needs.

Section 5 shows that the asymptotic cone of a symmetric space or Euclidean building is a
Euclidean building.

Section 6 discusses the topology of Euclidean buildings, proving theorems 1.2.2, 1.2.3, 1.2.4.
Section 7 proves that if X , X ′ and Φ are as in theorem 1.1.2, then the image of a maximal

flat under Φ is uniformly Hausdorff close to a flat (actually the hypotheses on X and X ′ can be
weakened somewhat, see corollary 7.1.5). General quasiflats are also studied in section 7; we prove
there theorem 1.2.5.

Section 8 contains the proofs of theorems 1.1.2 and 1.1.3, building on section 7. There is
considerable overlap in the final step of the argument with [Mos] in the symmetric space case.
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1.4 Suggestions to the reader

Readers who are already familiar with building theory will probably find it useful to read sections
3.1, 3.2 and 4.1, to normalize definitions and terminology.

The special case of theorem 1.1.2 when X = X ′ = H
2 × H

2 already contains most of the
conceptual difficulties of the general case, but one can understand the argument in this case with
a minimum of background. To readers who are unfamiliar with asymptotic cones, and readers who
would like to quickly understand the proof in a special case, we recommend an abbreviated itinerary,
see appendix 9. In general, when the burden of axioms and geometric minutae seems overwhelming,
the reader may read with the Rank 1× Rank 1 case in mind without losing much of the mathematical
content.
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2 Preliminaries

2.1 Spaces with curvature bounded above

General references for this section are [ABN, Ba, BGS].

2.1.1 Definition

If κ ∈ R, let M2
κ be the two dimensional model space with constant curvature κ; let D(κ) =

Diam(M2
κ). A complete metric space (X, | · |) is a CAT (κ) space if

1. Every pair x1, x2 ∈ X with |x1x2| < D(κ) is joined by a geodesic segment.

2. Triangle or Distance Comparison.

Every geodesic triangle in X with perimeter < 2D(κ) is at least as thin as the corresponding
triangle in M2

κ . More precisely: for each geodesic triangle ∆ in X with sides σ1, σ2, σ3 with
Perimeter(∆) = |σ1|+ |σ2|+ |σ3| < 2D(κ) we construct a comparison triangle ∆̃ in M2

κ with
sides σ̃i satisfying |σ̃i| = |σi|. Each point x on ∆ corresponds to a unique point x̃ on ∆̃ which
divides the corresponding side in the same ratio. We require that for all x1, x2 ∈ ∆ we have
|x1x2| ≤ |x̃1x̃2|.

Remark 2.1.1 Note that we do not require X to be locally compact. Also, X needn’t be path
connected when κ > 0. This is slightly more general than some other definitions in the literature.

Example 2.1.2 A complete 1-connected Riemannian manifold with sectional curvature ≤ κ ≤ 0
and all its closed convex subsets are is a CAT (κ) spaces.

In particular, Hadamard manifolds are CAT(0)-spaces. This is why we will also call CAT(0)-
spaces Hadamard spaces.

Example 2.1.3 (Berestovski) Any simplicial complex admits a piecewise spherical CAT (1) met-
ric.
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Condition 2 implies that any two points x1, x2 with |x1x2| < D(κ) are connected by precisely one
geodesic; hence we may speak unambiguously of x1x2 as the geodesic segment joining x1 to x2.
CAT (κ) spaces for κ ≤ 0 are contractible geodesic spaces.

To see that upper curvature bounds behave well under limiting operations, it is convenient to
use an equivalent definition of CAT (κ) spaces which only refers to finite configurations of points
rather than geodesic triangles. If v, x, y, p ∈ X , and ṽ, x̃, ỹ, p̃ ∈ M2

κ we say that ṽ, x̃, ỹ, p̃ form a
δ-comparison quadruple if

1. p̃ lies on x̃, ỹ.

2. ||vx| − |ṽx̃|| < δ, ||vy| − |ṽỹ|| < δ, ||xy| − |x̃ỹ|| < δ, ||xp| − |x̃p̃|| < δ, ||py| − |p̃ỹ|| < δ

By a compactness argument, we note that there exists a function δκ(P, ǫ) > 0 such that for every
ǫ > 0, and every quadruple of points v, x, y, p in a CAT (κ) space X satisfying |vx| + |xy| + |yv| <
P < 2D(κ), each δκ(P, ǫ)-comparison quadruple ṽ, x̃, ỹ, p̃ satisfies |vp| ≤ |ṽp̃| + ǫ. We will refer to
this condition as the δκ-four-point condition. It is a closed condition on four point metric spaces
with respect to the Hausdorff topology. A complete metric space X is a CAT (κ) space if and only
if it satisfies the δκ-four-point condition and every pair of points x, y ∈ X with |xy| < D(κ) has

approximate midpoints, i.e. for every ǫ′ > 0 there is a m ∈ X with |xm|, |my| < |xy|
2 + ǫ′. To see

this, note that in the presence of the δκ-four-point condition approximate midpoints are close to one
another, so one may produce a genuine midpoint by taking limits. By taking successive midpoints,
one can produce a geodesic segment.

2.1.2 Coning

Let Σ be a metric space with Diam(Σ) ≤ π. The metric cone C(Σ) over Σ is defined as follows.
The underlying set will be Σ× [0,∞)/ ∼ where ∼ collapses Σ×{0} to a point. Given v1, v2 ∈ Σ, we
consider embeddings ρ : {v1, v2} × [0,∞) → E2 such that |ρ(vi, t) = |t| and ∠0(ρ(v1, t1), ρ(v2, t2)) =
|v1v2|, and we equip C(Σ) with the unique metric for which these embeddings are isometric. C(Σ)
is CAT (0) iff Σ is CAT (1).

2.1.3 Angles and the space of directions of a CAT (κ) space

Henceforth we will say that a triple v, x, y defines a triangle ∆(v, x, y) provided |vx| + |xy| + |yv| <
2Diam(M2

κ). ∠̃v(x, y) will denote the angle of the comparison triangle at the vertex ṽ. If x′, y′ are
interior points on the segments vx, vy, then ∠̃v(x

′, y′) ≤ ∠̃v(x, y). From this monotonicity it follows
that limx′,y′→v ∠̃v(x

′, y′) exists, and we denote it by ∠v(x, y). This definition of angle coincides with
the notion of the angle between two segments in the Riemannian case. One checks that one obtains
the same limit if only one of the points x′, y′ approaches v:

∠v(x, y) = lim
x′→v

∠̃v(x
′, y) (3)

∠v satisfies the triangle inequality. Note that from the definition we have

∠v(x, y) ≤ ∠̃v(x, y). (4)

In the equality case a basic rigidity phenomenon occurs:
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Triangle Filling Lemma 2.1.4 Let x, y, v be as before. If ∠v(x, y) = ∠̃v(x, y), then also the other
angles of the triangle ∆(v, x, y) coincide with the corresponding comparison angles; moreover the
region in M2

κ bounded by the comparison triangle can be isometrically embedded into X so that
corresponding vertices are identified.

The angles of a triangle depend upper-semicontinuously on the vertices:

Lemma 2.1.5 Suppose v, x, y ∈ X define a triangle, v 6= x, y, and vk → v, xk → x, yk → y. Then
vk, xk, yk define a triangle for almost all k and

lim sup
k→∞

∠vk
(xk, yk) ≤ ∠v(x, y).

In the special case that vk ∈ vxk−{v} holds limk→∞ ∠vk
(xk, yk) = ∠v(x, y) and limk→∞ ∠vk

(v, yk) =
π − ∠v(x, y).

Proof. For x′ ∈ vx− {v} and y′ ∈ vy − {v} we can choose sequences of points x′k ∈ vkxk, y
′
k ∈ vkyk

with x′k → x′ and y′k → y′. Then ∠vk
(xk, yk) ≤ ∠̃vk

(x′k, y
′
k) → ∠̃v(x

′, y′) and the first assertion
follows by letting x′, y′ → v. If vk ∈ vxk − {v, xk} then ∠v(xk, yk) ≤ anglesum(∆(v, vk, yk)) −
∠vk

(v, yk) and π −∠vk
(v, yk) ≤ ∠̃vk

(xk, yk) while lim supanglesum(∆(v, vk, yk)) ≤ π. Sending k to
infinity, we get ∠v(x, y) ≤ π− lim inf ∠vk

(v, yk) ≤ lim inf ∠vk
(xk, yk) and hence the second assertion.

�

The condition that two geodesic segments with initial point v ∈ X have angle zero at v is an
equivalence relation; we denote the set of equivalence classes by Σ∗

vX . The angle defines a metric
on Σ∗

vX , and we let ΣvX be the completion of Σ∗
vX with respect to this metric. We call elements

of ΣvX directions at v (or simply directions), and
→
vx denotes the direction represented by vx. We

define the logarithm map as the map logv = logΣvX
: Bv(D(κ)) \ v → ΣvX which carries x to the

direction
→
vx. The tangent cone of X at v, denoted CvX , is the metric cone C(ΣvX); we have a

logarithm map logv = logCvX
: Bv(D(κ)) → CvX .

Given a basepoint v ∈ X , x ∈ X with d(v, x) < D(κ), and λ ∈ [0, 1], let λx ∈ X be the point on

vx satisfying |v(λx)|
|vx| = λ. We define a family of pseudo-metrics on Bv(D(κ)) by dǫ(x, y) = 1

ǫ
d(ǫx, ǫy).

They converge to a limit pseudo-metric d0. The pseudo-metric space (Bv(D(κ)), dǫ) satisfies the
δǫ2κ-four-point condition, so the limit pseudo-metric space (Bv(D(κ)), d0) satisfies the δ0-four-point
condition. But d0(x, y) = d(logv x, logv y) where logv : Bv(D(κ)) −→ CvX is the logarithm defined
above, so we see that the tangent cone CvX satisfies the δ0-four-point condition (C(Σ∗

vX) is dense
in CvX , and every four-tuple in C(Σ∗

vX) is homothetic to a four-tuple in logv(Bv(D(κ))). If zλ is
the midpoint of the segment (λx)(λy), then

d(logv x, logv y) = lim
ǫ→0

1

ǫ
d(ǫx, ǫy)

= lim
ǫ→0

2

ǫ
d(ǫx, zǫ) = lim

ǫ→0

2

ǫ
d(zǫ, ǫy)

≥ max(lim
ǫ→0

2d(logv x,
1

ǫ
logv zǫ), lim

ǫ→0
2d(logv x,

1

ǫ
logv zǫ)).

So CvX also has approximate midpoints. Since CvX is complete, it is a CAT (0) space; consequently
ΣvX is a CAT (1) space. This fact is due to Nikolaev [Nik].
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2.2 CAT(1)-spaces

CAT(1)-spaces are of special importance to us, because they will turn up as spaces of directions and
Tits boundaries of Hadamard spaces.

2.2.1 Spherical join

Let B1 and B2 be CAT(1)-spaces with diameter Diam(Bi) ≤ π. Their spherical join B1 ◦ B2 is
defined as follows. The underlying set will be B1 × [0, π2 ] ×B2/ ∼ where “∼” collapses the subsets
{b1}× {0}×B2 and B1 ×{π2 }× {b2} to points. Given bi, b

′
i ∈ Bi (i = 1, 2), we consider embeddings

ρ : {b1, b′1} × [0, π2 ] × {b2, b′2} → S3. We think of S3 as the unit sphere in C2 and require that
t 7→ ρ(b1, t, b2) and t′ 7→ ρ(b′1, t

′, b′2) are unit speed geodesic segments whose initial (resp. end) points
lie on the great circle S1 × {0} (resp. {0} × S1) and have distance dB1(b1, b

′
1) (resp. dB2(b2, b

′
2)).

The distance of the points in B1 ◦ B2 represented by (b1, t, b2) and (b′1, t
′, b′2) is then defined as the

(spherical) distance of their ρ-images in S3; it is independent of the choice of ρ. To see that B1 ◦B2

is again a CAT(1)-space and that the spherical join operation is associative, observe that the metric
cone C(B1 ◦B2) is canonically isometric to C(B1)×C(B2) and that the product of CAT(0)-spaces
is CAT(0).

The metric suspension of a CAT(1)-space with diameter ≤ π is defined as its spherical join with
the CAT(1)-space {south, north} consisting of two points with distance π.

Lemma 2.2.1 Let B1 and B2 be CAT(1)-spaces with diameter π and suppose s is an isometrically
embedded unit sphere in the spherical join B = B1 ◦B2. Then there are isometrically embedded unit
spheres si in Bi so that s1 ◦ s2 contains s.

Proof. We apply lemma 2.3.8 to the metric cone C(B) ∼= C(B1) × C(B2). C(s) is a flat in C(B)
and hence contained in the product of flats Fi ⊆ C(Bi). si := ∂TitsFi is a unit sphere in Bi and
s1 ◦ s2 = ∂Tits(F1 × F2) ⊇ ∂TitsC(s) = s. �

2.2.2 Convex subsets and their poles

We call a subset C of a CAT(1)-space B convex iff for any two points p, q ∈ C of distance d(p, q) < π
the unique geodesic segment pq is contained in C. Closed convex subsets of B are CAT(1)-spaces
with respect to the subspace metric inherited from B. Basic examples of convex subsets are tubular
neighborhoods with radius ≤ π

2 of convex subsets, e.g. balls of radius ≤ π
2 .

Suppose that C ⊂ B is a closed convex subset with radius Rad(C) ≥ π, i.e. for each p ∈ C exists
q ∈ C with d(p, q) ≥ π. We define the set of poles for C as

Poles(C) :=
{

η ∈ B : d(η, ·)|
C
≡
π

2

}

.

If Diam(C) > π then C has no pole. If Diam(C) = Rad(C) = π then Poles(C) is closed and convex,
because it can be written as an intersection Poles(C) =

⋂

ξ∈C Bπ
2
(ξ) of convex balls. The convex

hull of C and Poles(C) is the union of all segments joining points in C to points in Poles(C), and
is canonically isometric to C ◦Poles(C). This follows, for instance, when one applies the discussion
in section 2.3.3 to the parallel sets of C(C) in the metric cone C(B).

Consider the special case that C consists of two antipodes, i.e. points with distance π, ξ and
ξ̂. Then the convex hull of {ξ, ξ̂} and Poles({ξ, ξ̂}) is exactly the union of minimizing geodesic

segments connecting ξ, ξ̂ and it is canonically isometric to the metric suspension of Poles({ξ, ξ̂}).
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2.3 Hadamard spaces

We will call CAT(0)-spaces also Hadamard spaces, because they are the synthetic analog of (closed
convex subsets in) Hadamard manifolds, i.e. simply connected complete manifolds of nonpositive
curvature, cf. example 2.1.3.

2.3.1 The geometric boundary

Let X be a Hadamard space. Two geodesic rays are asymptotic if they remain at bounded distance
from one another, i.e. if their Hausdorff distance is finite. Asymptoticity is an equivalence relation,
and we let ∂∞X be the set of equivalence classes of asymptotic rays; we sometimes refer to elements
of ∂∞X as ideal points or ideal boundary points. For any point x ∈ X and any ideal boundary
point ξ ∈ ∂∞X there exists a unique ray xξ starting at x which represents ξ. The pointed Hausdorff
topology on rays emanating from x ∈ X induces a topology on ∂∞X . This topology does not depend
on the base point x and is called the cone topology on ∂∞X . ∂∞X with the cone topology is called
the geometric boundary. The cone topology naturally extends to X ∪∂∞X . If X is locally compact,
then ∂∞X and X̄ := X ∪ ∂∞X are compact and X̄ is called the geometric compactification of X .

2.3.2 The Tits metric

Earlier we defined the angle between two geodesics vx, vy at v ∈ X by using the monotonicity of
comparison angles ∠̃v(x

′, y′) as x′ → v, y′ → v. Now we consider a pair of rays vξ, vη, and define
their Tits angle (or angle at infinity) by

∠Tits(ξ, η) := lim
x′→ξ,y′→η

∠̃v(x
′, y′) (5)

where x′ ∈ vξ and y′ ∈ vη. ∠Tits defines a metric on ∂∞X which is independent of the basepoint
v chosen. We call the metric space ∂TitsX := (∂∞X,∠Tits) the Tits boundary of X and ∠Tits the
Tits (angle) metric. The estimate

∠̃v(x
′, y′) = π − ∠̃x′(v, y′)

︸ ︷︷ ︸

≤ ∠x′(ξ, y′)
︸ ︷︷ ︸

y′
→η

−→ ∠
x′ (ξ,η)

− ∠̃y′(v, x
′)

︸ ︷︷ ︸

y′
→η

−→ 0

implies, combined with (4):
∠v(ξ, η) ≤ ∠̃v(x

′, y′) ≤ ∠x′(ξ, η)

Consequently, the Tits angle can be expressed as

∠Tits(ξ, η) = lim
t→∞

∠r(t)(ξ, η) (6)

for any geodesic ray r : R+ → X asymptotic to ξ or η, and also as:

∠Tits(ξ, η) = sup
x∈X

∠x(ξ, η) (7)
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Still another possibility (the last one which we will state) to define the Tits angle is as follows: If
ri : R+ → X are geodesic rays asymptotic to ξi then

2 sin
∠Tits(ξ1, ξ2)

2
= lim

t→∞

d(r1(t), r2(t))

t
. (8)

The next lemma relates the cone topology on ∂∞X to the Tits topology. Fix v ∈ X and consider
the comparison angle

∠̃v : (X \ {v})× (X \ {v}) → [0, π].

By monotonicity, it can be extended to a function

∠̃v : (X̄ \ {v})× (X̄ \ {v}) → [0, π].

Note that for ξ, η ∈ ∂∞X , we have ∠̃v(ξ, η) = ∠Tits(ξ, η).

Lemma 2.3.1 (Semicontinuity of comparison angle) ∠̃v is lower semicontinuous with respect
to the cone topology: If xk, yk, ξ, η ∈ X̄ − {v} such that ξ = limk→∞ xk and η = limk→∞ yk then
∠̃v(ξ, η) ≤ lim infk→∞ ∠̃v(xk, yk).

Proof. We treat the case ξ, η ∈ ∂∞X , the other cases are similar or easier. Since the segments (or
rays) vxk, vyk are converging to the rays vξ, vη respectively, we may choose x′k ∈ vxk and y′k ∈ vyk
such that |x′kv|, |y

′
kv| → ∞ and d(x′k, vξ) → 0, d(y′k, vη) → 0. Hence by triangle comparison we have

∠̃v(xk, yk) ≥ ∠̃v(x
′
k, y

′
k) → ∠Tits(ξ, η).

�

Lemma 2.3.2 Every pair ξ, η ∈ ∂∞X with ∠Tits(ξ, η) < π has a midpoint.

Proof. Pick v ∈ X . Take sequences xi ∈ vξ, yi ∈ vη with |xi| = |yi| → ∞. Let mi be the midpoint of
xiyi. Since ∆(v, xi, yi) is isosceles, ∠̃v(xi,mi) = ∠̃v(mi, yi) ≤

1
2 ∠̃v(xi, yi), by lemma 2.3.1 it suffices

to show that vmi converges to a ray vµ, for some µ ∈ ∂∞X .

For i < j, set λij := |vxi|
|vxj |

. By triangle comparison, we have the following inequalities:

|xi(λijmj)| ≤ λij |xjmj | =
λij
2

|xjyj |

|yi(λijmj)| ≤ λij |yjmj | =
λij
2

|xjyj|

|xi(λijmj)| + |yi(λijmj)| ≥ |xiyi|

Since λij
|xjyj |
|xiyi|

→ 1 as i, j → ∞, we have

|xi(λijmj)|

|ximi|
→ 1,

|yi(λijmj)|

|yimi|
→ 1 =⇒

|mi(λijmj)|

|ximi|
→ 0
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and, since ∠Tits(ξ, η) < π, this in turn implies:

|mi(λijmj)|

|vmi|
→ 0.

Fixing t > 0, if we set t
|vmi|

= ℵi, then |(ℵimi)(ℵiλijmj)| → 0 as i, j → ∞. Since |v(ℵimi)| = t, this

shows that the segments vmi converge in the pointed Hausdorff topology to a ray vµ as desired. �

The completeness of X implies that (∂∞X,∠Tits) is complete. The metric cone C(∂∞X,∠Tits)
(the Tits cone) is complete and has midpoints. Moreover, since every quadruple in C(∂∞X,∠Tits)
is approximated metrically (up to rescaling) by quadruples in X , C(∂∞X,∠Tits) satisfies the δ0-
four-point condition and is therefore a CAT (0) space. By section 2.1.1 we conclude:

Proposition 2.3.3 The Tits boundary of a Hadamard space is a CAT (1) space.

There is a natural 1-Lipschitz exponential map expp : C(∂TitsX) → X defined as follows: For

[(ξ, t)] ∈ C(∂TitsX) = ∂TitsX × [0,∞)/ ∼ let expp[(ξ, t)] be the point on pξ at distance t from p.
The logarithm map logp : X − {p} → ΣpX extends contiuously to the geometric boundary and
induces there a 1-Lipschitz map logp : ∂TitsX → ΣpX . The Triangle Filling Lemma 2.1.4 implies
the following rigidity statement:

Flat Sector Lemma 2.3.4 Suppose the restriction of logp : ∂TitsX → ΣpX to the subset A ⊆
∂TitsX is distance-preserving. Then the restriction of expp : C(∂TitsX) → X to C(A) ⊆ C(∂TitsX)
is an isometric embedding.

2.3.3 Convex subsets and parallel sets

A subset of a Hadamard space is convex if, with any two points, it contains the unique geodesic
segment connecting them. Closed convex subsets of Hadamard spaces are Hadamard themselves
with respect to the subspace metric. Important examples of convex sets are tubular neighborhoods
of convex sets and horoballs. We will denote by HBξ(x) the horoball centered at the point ξ ∈ ∂∞X
and containing x ∈ X in its boundary.

Let C1 and C2 be closed convex subsets of a Hadamard space X . Then by (4), the distance
function d(·, C2)|C1

= dC2 |C1
: C1 → R≥0 is convex and the nearest point projection πC2 |C1

:

C1 → C2 is distance-nonincreasing. dC2|C1
is constant iff πC2 |C1

is an isometric embedding. In this
situation, we have the following rigidity statement:

Flat Strip Lemma 2.3.5 Let C1 and C2 be closed convex subsets in the Hadamard space X. If
dC2|C1

≡ d then there exists an isometric embedding ψ : C1 × [0, d] → X such that ψ(·, o) = idC1

and ψ(·, d) = πC2|C1
.

This is easily derived from the Triangle Filling Lemma 2.1.4, respectively from the following
direct consequence of it:

Flat Rectangle Lemma 2.3.6 Let xi ∈ X, i ∈ Z/4Z, be points so that for all i holds ∠xi
(xi−1, xi+1) ≥

π
2 . Then there exists an embedding of the flat rectangular region [0, |x0x1|]× [0, |x1x2|] ⊂ E2 into X
carrying the vertices to the points xi.
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We call the closed convex sets C1, C2 ⊆ X parallel, C1‖C2, iff dC2 |C1
and dC1|C2

are constant, or

equivalently, πC2|C1
and πC1 |C2

are isometries inverse to each other. Being parallel is no equivalence
relation for arbitrary closed convex subsets. However, it is an equivalence relation for closed convex
sets with extendible geodesics, because two such subsets are parallel iff they have finite Hausdorff
distance. (A Hadamard space is said to have extendible geodesics if each geodesic segment is contained
in a complete geodesic.)

Let Y ⊆ X be a closed convex subset with extendible geodesics. Then Rad(∂TitsY ) = π. The
parallel set PY of Y is defined as the union of all convex subsets parallel to Y . PY is closed, convex
and splits canonically as a metric product

PY ∼= Y ×NY . (9)

Here NY is a Hadamard space (not necessarily with extendible geodesics) and the subsets Y × {pt}
are the convex subsets parallel to Y . The cross sections of PY orthogonal to these convex subsets
can be constructed as intersections of horoballs:

{y} ×NY = PY ∩
⋂

ξ∈∂T itsY

HBξ(y) ∀y ∈ Y. (10)

Applying the Flat Sector Lemma 2.3.4 one sees furthermore that ∂TitsNY is canonically identified
with Poles(∂TitsY ) ⊂ ∂TitsX ; ∂TitsPY is the convex hull in ∂TitsX of ∂TitsY and Poles(∂TitsY )
and we have the canonical decomposition:

∂TitsPY ∼= ∂TitsY ◦ Poles(∂TitsY ) (11)

2.3.4 Products

The metric product of Hadamard spaces Xi is defined as usual using the Pythagorean law. It is
again Hadamard and its Tits boundary and spaces of directions decompose canonically:

∂Tits(X1 × · · · ×Xn) = ∂TitsX1 ◦ · · · ◦ ∂TitsXn (12)

Σ(x1,...,xn)(X1 × · · · ×Xn) = Σx1X1 ◦ · · · ◦ Σxn
Xn (13)

Proposition 2.3.7 If X is a Hadamard space with extendible geodesics then all join decompositions
of ∂TitsX are induced by product decompositions of X.

Proof. Assume that the Tits boundary decomposes as a spherical join ∂TitsX = B1 ◦B−1 and con-
sider, for x ∈ X and i = ±1, the convex subsets Ci(x) :=

⋂

ξ∈B−i
HBξ(x) obtained from intersecting

horoballs. Using extendability of geodesics, i.e. RadΣxX = π, one verifies that ∂TitsCi = Bi, Ci
has extendible geodesics and C±1(x) are orthogonal in the sense that ΣxCi(x) = Poles(ΣxC−i(x)).
Furthermore any two sets C1(x) and C−1(x

′) intersect in the point πC1(x)(x
′) = πC−1(x). The as-

sertion follows by applying the Flat Rectangle Lemma 2.3.6. �

Lemma 2.3.8 Let X1 and X2 be Hadamard spaces and suppose that F is a flat in the product space
X = X1 ×X2. Then there are flats Fi ⊆ Xi so that F1 × F2 ⊇ F .

Proof. Consider unit speed parametrizations c, c′ : R → F for two parallel geodesics γ, γ′ in F . Then
ci := πXi

◦ c and c′i := πXi
◦ c′ are constant speed parametrizations for geodesics γi, γ

′
i in Xi. Since

the distance functions d := dX(c, c′) and di := dXi
(ci, c

′
i) are convex, satisfy d2 = d2

1 + d2
2 and d is

constant, it follows that the di are constant, i.e. γi and γ′i are parallel. Since this works for any pair
of parallel geodesics contained in F , it follows that πXi

F is a flat in Fi. �
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2.3.5 Induced isomorphisms of Tits boundaries

We now show that any (1, A)-quasi-isometric embedding of one Hadamard space into another induces
a well-defined topological embedding of geometric boundaries which preserves the Tits distance.

Proposition 2.3.9 Let X1 and X2 be Hadamard spaces and suppose that Φ : X1 → X2 is a (1, A)-
quasi-isometric embedding. Then there is a unique extension Φ̄ : X̄1 → X̄2 such that

1. Φ̄(∂∞X1) ⊆ ∂∞X2,

2. Φ̄ is continuous at boundary points.

3. Φ̄|
∂∞X1

is a topological embedding which preserves the Tits distance.

We let ∂∞Φ
def
= Φ̄|

∂∞X
.

Proof. We first observe that there is a function ǫ(R) (depending on A but not on the spaces X1 and
X2) with ǫ(R) → 0 as R → ∞ such that if p, x, y ∈ X1 and d(p, x), d(p, y) > R then

|∠̃p(x, y) − ∠̃Φ(p)(Φ(x),Φ(y)| < ǫ(R). (14)

Lemma 2.3.10 Suppose that xi is a sequence of points in X1 which converges to a boundary point
ξ1. Then Φ(xi) ∈ X2 converges to a boundary point ξ2.

Proof of lemma: Pick a base point p. There are points yi ∈ pxi such that d(p, yi) → ∞ and
limi,j→∞ ∠̃p(yi, yj) = 0. By (14), the points Φ(yi) converge to a boundary point ξ2. Applying (14)
again, we conclude that Φ(xi) converges to ξ2 as well. �

Proof of Proposition continued: From the previous lemma we see that if xi and x′i are sequences in
X1 converging to the same point in ∂∞X1 then the sequences Φ(xi) and Φ(x′i) converge to the same
point in ∂∞X2. This allows us to extend Φ to a well-defined map Φ̄ : X̄1 → X̄2.

We now prove that Φ̄ is continuous at every boundary point ξ. Let xi ∈ X̄1 be a sequence of
points converging to ξ ∈ ∂∞X1. By the lemma, we may choose yi ∈ X1 with yi ∈ pxi so that for

every R the Hausdorff distance between Φ(p)Φ(yi) ∩BR(Φ(p)) and Φ(p)Φ̄(xi) ∩BR(Φ(p)) tends to
zero as R → ∞. Hence limR→∞ Φ̄(xi) = limR→∞ Φ(yi) = Φ̄(ξ) by the lemma.

Another consequence of the lemma is that the image ray Φ(pξ) diverges sublinearily from the

ray Φ(p)Φ̄(ξ) in the sense that

lim
R→∞

1

R
· dH(Φ(pξ ∩BR(p)), φ(p)Φ̄(ξ) ∩BR(Φ(p))) = 0

where dH denotes the Hausdorff distance. This implies that ∂∞Φ
def
= Φ̄|

∂∞X1
preserves the Tits

distance and is a homeomorphism onto its image. �

2.4 Ultralimits and Asymptotic cones

The presentation here is a slight modification of [Gro], see also [KaLe].
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2.4.1 Ultrafilters and ultralimits

Definition 2.4.1 A nonprincipal ultrafilter is a finitely additive probability measure ω on the subsets
of the natural numbers N such that

1. ω(S) = 0 or 1 for every S ⊂ N.

2. ω(S) = 0 for every finite subset S ⊂ N.

Given a compact metric space X and a map a : N −→ X , there is a unique element ω-lima ∈ X
such that for every neighborhood U of ω-lim a, a−1(U) ⊂ N has full measure. In particular, given
any bounded sequence a : N −→ R, ω-lima (or aω) is a limit point selected by ω.

2.4.2 Ultralimits of sequences of pointed metric spaces

Let (Xi, di, ⋆i) be a sequence of metric spaces with basepoints ⋆i. ConsiderX∞ = {x ∈
∏

i∈N
Xi|di(xi, ⋆i)

is bounded }. Since di(xi, yi) is a bounded sequence we may define d̃ω : X∞ × X∞ −→ R by
d̃ω(x, y) = ω-limdi(xi, yi). d̃ω is a pseudo-distance. We define the ultralimit of the sequence
(Xi, di, ⋆i) to be the quotient metric space (Xω, dω). xω ∈ Xω denotes the element correspond-
ing to x = (xi) ∈ X∞. ⋆ω := (⋆i) is the basepoint of (Xω, dω).

Lemma 2.4.2 If (Xi, di, ⋆i) is a sequence of pointed metric spaces, then (Xω, dω, ⋆ω) is complete.

Proof. Let xjω be a Cauchy sequence in Xω, where xjω = ω-limxji . Let N1 = N. Inductively, there
is an ω-full measure subset Nj ⊆ Nj−1 such that i ∈ Nj implies |di(xki , x

l
i) − dω(xk, xl)| < 1

2j , for

1 ≤ k, l ≤ j. For i ∈ Nj −Nj−1, define yi = xji . Then xjω → yω. �

The concept of ultralimits is an extension of Hausdorff limits.

Lemma 2.4.3 If (Xi, di, ⋆i) form a Hausdorff precompact family of pointed metric spaces, then
(Xω, dω, ⋆ω) is a limit point of the sequence (Xi, di, ⋆i) with respect to the pointed Hausdorff topology.

Proof. To see this, pick ǫ, R, and note that there is an N such that we can find an N element
sequence {xji}

N
j=1 ⊂ Xi which is ǫ-dense in Xi. The N sequences xji for 1 ≤ j ≤ N give us N

elements in xjω ∈ Xω. If yω ∈ Xω, yω ∈ B⋆ω
(R), then for ω-a.e. i, di(yi, ⋆i) < R. Consider

dω(yω, x
j
ω). Given ǫ > 0, |dω(yω, x

j
ω) − di(yi, x

j
i )| < ǫ for ω-a.e. i, which implies that dω(yω, x

j
ω) < ǫ

for some 1 ≤ j ≤ N . Hence we’ve seen that B⋆ω
(R) is totally bounded, and for all ǫ > 0 there is

an ǫ-net in B⋆ω
(R) which is a Hausdorff limit point of ǫ-nets in the Xi’s. It follows that (Xi, di, ⋆i)

subconverges to (Xω, dω, ⋆ω) in the pointed Hausdorff topology. �

In general, the ultralimit Xω is not Hausdorff close to the spaces Xi in the “approximating” se-
quence. However, the Hausdorff limits of any precompact sequence of subspaces Yi ⊂ Xi canonically
embed into Xω.

The importance of ultralimits for the study of the large-scale geometry from the following fact:
If for each i, fi : Xi → Yi is a (L,C)-quasi-isometry with di(fi(⋆i), ⋆i) bounded then the fi induce
an (L,C)-quasi-isometry fω : Xω → Yω.

It follows that if for each i, and every pair of points ai, bi ∈ Xi the distance di(ai, bi) is the
infimum of lengths of paths joining ai to bi then every pair of points aω, bω ∈ Xω is joined by a
geodesic segment.
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Lemma 2.4.4 If (Xi, di, ⋆i) is a CAT (κ) space for each i, then so is (Xω, dω , ⋆ω). If dω(aω, bω) <
D(κ), then the geodesic segment aωbω is an ultralimit of geodesic segments. If κ ≤ 0 and each Xi

has extendible geodesics then each ray (respectively complete geodesic) in Xω is an ultralimit of rays
(respectively complete geodesics) in the Xi’s.

Proof. If each (Xi, di, ⋆i) is a CAT (κ) length space, then clearly (Xω , dω, ⋆ω) satisfies the δκ-four-
point condition since this is a closed condition. Hence (Xω, dω, ⋆ω) is a CAT (κ) length space since
it is a geodesic space satisfying the δκ-four-point condition.

If aω, bω ∈ Xω with |aωbω| < D(κ), then there is a unique geodesic segment joining aω to bω.
On the other hand, if aω = ω-limai, bω = ω-lim bi, then the ultralimit of the geodesic segments aibi
is a such a geodesic segment.

Now suppose a0
ω, a

1
ω, ... determine a ray, in the sense that dω(aiω, a

k
ω) = dω(aiω, a

j
ω) + dω(ajω, a

k
ω)

for i ≤ j ≤ k. Let N1 = N. Inductively, there is an ω-full measure Nj ⊆ Nj−1 such that a0
i a
l
i is

within a 1
2j neighborhood of the segment a0

i a
j
i for i ∈ Nj , 0 ≤ l ≤ j. For i ∈ Nj −Nj−1 extend the

segment a0
i a
j
i to a ray a0

i ξi with initial point a0
i . Then the ultralimit of the sequence a0

i ξi is the ray
we started with. The case of complete geodesics follows from similar reasoning. �

Lemma 2.4.5 Suppose that there is a D > 0 such that for each i, Isom(Xi) has an orbit which
is D-dense in Xi. If λi > 0 and λi → 0, then the ultralimit of (Xi, λidi, ⋆i) is independent of the
choice of basepoints ⋆i, and has a transitive isometry group.

2.4.3 Asymptotic cones

Let X be a metric space and let ⋆n ∈ X be a sequence of basepoints. We define the asymptotic
cone Cone(X) of X with respect to the non-principal ultrafilter ω, the sequence of scale factors
λn with ω-limλn = ∞ and basepoints ⋆n, as the ultralimit of the sequence of rescaled spaces
(Xn, dn, ⋆n) := (X, 1

λn
· d, ⋆n). When the sequence ⋆n ≡ ⋆ is constant , then Cone(X) does not

depend on the basepoint ⋆ and has a canonical basepoint ⋆ω which is represented by any sequence
(xn) ⊂ X satisfying ω-limn

1
λn

· d(xn, ⋆) = 0, for instance, by any constant sequence (x).

Proposition 2.4.6 • If X is a geodesic metric space, then Cone(X) is a geodesic metric space.

• If X is a Hadamard space, then Cone(X) is a Hadamard space.

• If X is a CAT (κ)-space for some κ < 0, then Cone(X) is a metric tree.

• If the orbits of Isom(X) are at bounded Hausdorff distance from X, then Cone(X) is a homo-
geneous metric space.

• A (L,C) quasi-isometry of metric spaces φ : X → Y induces a bilipschitz map Cone(φ) :
Cone(X) → Cone(Y ) of asymptotic cones.

If we’re given an (L,C) quasi-isometry Φ : X −→ Y , then
Assume now that X is a Hadamard space. Let (Fn)n∈N be a sequence of k-flats in X and suppose

that ω-limn
1
λn
d(Fn, ⋆) <∞. Then the ultralimit of the embeddings of pointed metric spaces

(
Fn,

1

λn
· dFn

, πFn
(⋆)

)

︸ ︷︷ ︸

∼=Rk

→֒
(
X,

1

λn
· dX , πFn

(⋆)
)
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is a k-flat
R
k →֒ Cone(X)

in the asymptotic cone. We denote the family of all k-flats in Cone(X) arising in this way by F(k).

3 Spherical buildings

Our viewpoint on spherical buildings is slightly different from the standard one: for us a spherical
building is a CAT (1) space equipped with extra structure. This viewpoint is well adapted to the
needs of this paper, because the spherical buildings which we consider arise as Tits boundaries and
spaces of directions of Hadamard spaces. Apart from the choice of definitions and the viewpoint,
this section does not contain anything new; the same results and many more can be found (often in
slightly different form) in [Ti1, Ron, Brbk, Brn1, Brn2].

3.1 Spherical Coxeter complexes

Let S be a Euclidean unit sphere. By a reflection on S we mean an involutive isometry whose fixed
point set, its wall, is a subsphere of codimension one. If W ⊂ Isom(S) is a finite subgroup generated
by reflections, we call the pair (S,W ) a spherical Coxeter complex and W its Weyl group.

The finite collection of walls belonging to reflections in W divide S into isometric open convex
sets. The closure of any of these sets is called a chamber, and is a fundamental domain for the action
of W . Chambers are convex spherical polyhedra, i.e. finite intersections of hemispheres. A face of
a chamber is an intersection of the chamber with some walls.

A face (resp. open face) of S is a face (resp. open face) of a chamber of S. Two faces of S are
opposite or antipodal if they are exchanged by the canonical involution of S; two faces are opposite iff
they contain a pair of antipodal points in their interiors. A panel is a codimension 1 face, a singular
sphere is an intersection of walls, a half-apartment or root is a hemisphere bounded by a wall and a
regular point in S is an interior point of a chamber. The regular points form a dense subset. The
orbit space

∆mod := S/W

with the orbital distance metric is a spherical polyhedron isometric to each chamber. The quotient
map

θ = θS : S −→ ∆mod (15)

is 1-Lipschitz and its restriction to each chamber is distance preserving. For δ, δ′ ∈ ∆mod, we set

D(δ, δ′) := {dS(x, x′)|x, x′ ∈ S, θx = δ, θx′ = δ′}

and
D+(δ) := D(δ, δ) \ {0}

Note that D+ is continuous on each open face of ∆mod.
An isomorphism of spherical Coxeter complexes (S,W ), (S′,W ′) is an isometry α : S → S′

carrying W to W ′. We have an exact sequence

1 →W → Aut(S,W ) → Isom(∆mod) → 1.
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Lemma 3.1.1 If g ∈ W , then Fix(g) ⊆ S is a singular sphere. If Z ⊂ S then the subgroup of W
fixing Z pointwise is generated by the reflections in W which fix Z pointwise.

Proof. Every W -orbit intersects each closed chamber precisely once. Therefore the stabiliser of a
face σ ⊂ S fixes σ pointwise. So for all g ∈ W , Fix(g) is a subsphere and a subcomplex, i.e. it is a
singular sphere.

By the above, without loss of generality we may assume that Z is a singular sphere. Let WZ be
the group generated by reflections fixing Z pointwise. If σ is a top-dimensional face of the singular
sphere Z then each W -chamber containing σ is contained in a unique WZ -chamber; therefore WZ

acts (simply) transitively on the W -chambers containing σ. Since W acts simply (transitively) on
W -chambers, it follows that Fixator(Z) = Fixator(σ) = WZ . �

3.2 Definition of spherical buildings

Let (S,W ) be a spherical Coxeter complex. A spherical building modelled on (S,W ) is a CAT (1)-
space B together with a collection A of isometric embeddings ι : S → B, called charts, which satisfies
properties SB1-2 described below and which is closed under precomposition with isometries in W .
An apartment in B is the image of a chart ι : S → B; ι is a chart of the apartment ι(S). A is called
the atlas of the spherical building.

SB1: Plenty of apartments. Any two points in B are contained in a common apartment.

Let ιA1 , ιA2 be charts for apartments A1, A2, and let C = A1 ∩ A2, C
′ = ι−1

A2
(C) ⊂ S. The charts

ιAi
are W -compatible if ι−1

A1
◦ ιA2 |C′

is the restriction of an isometry in W .

SB2: Compatible apartments. The charts are W -compatible.

It will be a consequence of corollary 3.9.2 below that the atlas A is maximal among collections of
charts satisfying axioms SB1 and SB2.

We define walls, singular spheres, half-apartments, chambers, faces, antipodal points, antipodal
faces, and regular points to be the images of corresponding objects in the spherical Coxeter complex.
The building is called thick if each wall belongs to at least 3 half-apartments. The axioms yield a
well-defined 1-Lipschitz anisotropy map 7

θB : B −→ S/W =: ∆mod (16)

satisfying the discreteness condition:

dB(x1, x2) ∈ D(θB(x1), θB(x2)) ∀x1, x2 ∈ B (17)

If α : S −→ S is an automorphism of the spherical Coxeter complex, then we modify the atlas
by precomposing with α; the atlases obtained this way correspond to symmetries of ∆mod.

If A′ is an atlas of charts ι : S′ −→ B giving a (S′,W ′) building structure on B, then this
spherical building is equivalent to (B,A) if there is an isomorphism of spherical Coxeter complexes
α : (S′,W ′) −→ (S,W ) so that A′ = {ι ◦ α|ι ∈ A}.

If B and B′ are spherical buildings modelled on a Coxeter complex (S,W ), with atlases A and
A′, an isomorphism is an isometry φ : B → B′ such that the correspondence ι 7→ φ ◦ ι defines a
bijection A → A′.

7The motivation for this terminology comes from the role θB plays in the structure of symmetric spaces and
Euclidean buildings.
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3.3 Join products and decompositions

Let Bi, i = 1, . . . , n, be spherical buildings modelled on spherical Coxeter complexes (Si,Wi) with
atlases Ai and spherical model polyhedra ∆i

mod. Then W := W1 × · · · ×Wn acts canonically as a
reflection group on the sphere S = S1 ◦ · · · ◦ Sn. We call the Coxeter complex (S,W ) the spherical
join of the Coxeter complexes (Si,Wi) and write

(S,W ) = (S1,W1) ◦ · · · ◦ (Sn,Wn) (18)

The model polyhedron ∆mod of (S,W ) decomposes canonically as

∆mod = ∆1
mod ◦ · · · ◦ ∆n

mod. (19)

The CAT(1)-space
B = B1 ◦ · · · ◦Bn (20)

carries a natural spherical building structure modelled on (S,W ). The charts ι for its atlas A are
the spherical joins ι = ι1 ◦ · · · ◦ ιn of charts ιi ∈ Ai. We call B equipped with this building structure
the spherical (building) join of the buildings Bi.

Proposition 3.3.1 Let B be a spherical building modelled on the Coxeter complex (S,W ) with atlas
A and assume that there is a decomposition (19) of its model polyhedron. Then:

1. There is a decomposition (18) of (S,W ) as a join of spherical Coxeter complexes so that
Si = θ−1

S (∆i
mod).

2. There is a decomposition (20) of B as a join of spherical buildings so that Bi = θ−1
B (∆i

mod).

Proof. 1. We identify ∆mod with a W -chamber in S and define Si to be the minimal geodesic
subsphere containing ∆i

mod. Then Si ⊆ Poles(Sj) for all i 6= j and hence S = S1 ◦ · · · ◦ Sn by
dimension reasons. Each wall containing a codimension-one face of ∆mod is orthogonal to one of
the spheres Si and contains the others. Hence W = W1 × · · · ×Wn where Wi is generated by the
reflections in W at walls orthogonal to Si. Wi acts as a reflection group on Si and the claim follows.

2. Since any two points in B are contained in an apartment, one sees by applying the first
assertion that the Bi are convex subsets and B is canonically isometric to the join of CAT(1)-spaces
B = B1 ◦ · · · ◦ Bn. The collection of charts ι|

Si
, ι ∈ A, forms an atlas for a spherical building

structure on Bi and B is canonically isomorphic to the spherical building join of the Bi. �

We call a spherical polyhedron irreducible if it is a spherical simplex with diameter < π/2 and
dihedral angles ≤ π/2 or if it is a sphere or a point. Accordingly, we call a spherical Coxeter
complex8 or a spherical building irreducible if its model polyhedron is irreducible. The spherical
model polyhedron ∆mod has dihedral angles ≤ π

2 . A polyhedron of this sort has a unique minimal
decomposition as the spherical join (19) of irreducible spherical simplices (which may be single
points) and, if non-empty, the unique maximal unit sphere contained in ∆mod. By Proposition
3.3.1, (19) corresponds to unique minimal decompositions (18) of the Coxeter complex (S,W ) as a
join of Coxeter complexes and (20) of B as a spherical building join. We call these decompositions
the de Rham decompositions of (S,W ) and B. The sphere factor in (19) occurs iff the fixed point

8This definition is slightly different form the usual one, which corresponds to irreducibility of linear representations.
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set of the Weyl group is non-empty. We call the corresponding factor in the de Rham decomposition
the spherical de Rham factor.

If W acts without fixed point, then ∆mod is a spherical simplex 9 and the collection of chambers
in S and B give rise to simplicial complexes.

Lemma 3.3.2 Let (S,W ) be an irreducible spherical Coxeter complex with non-trivial Weyl group
W . Then for each chamber σ there is a wall which is disjoint from the closure σ̄.

Proof. Let τ ′ be a wall and p ∈ S be a point at maximal distance π
2 from τ ′. Pick a chamber σ′

containing p in its closure. Then σ̄′ ∩ τ ′ = ∅, because Diam(σ′) < π
2 due to irreducibility. Since W

acts transitively on chambers, the claim follows. �

Proposition 3.3.3 Assume that B1 and B2 are CAT(1)-spaces and that their join B = B1 ◦ B2

admits a spherical building structure. Then the Bi inherit natural spherical building structures from
B. In particular, the spherical building B cannot be thick irreducible with non-trivial Weyl group.

Proof. Applying lemma 2.2.1 to apartments in B, we see that there exist d1, d2 ∈ N so that every
apartment A ⊆ B splits as A = A1 ◦A2 where Ai is a di-dimensional unit sphere in Bi. Fix a chart
ι0 in the atlas A for the given spherical building structure on B. Denote by S2 the d2-sphere ι−1

0 B2

in the model Coxeter complex (S,W ) and by S1 := Poles(S2) the complementary d1-sphere. The
subgroup W1 ⊆ W generated by reflections at walls containing S2 acts as a reflection group on S1.
Consider all charts ι ∈ A with ι|

S2
= ι0|S2

. The collection A1 of their restrictions ι|
S1

forms an
atlas for a spherical building structure on B1 with model Coxeter complex (S1,W1).

If B is thick, then its chambers are precisely the (closures of the) connected components of the
subset of manifold points. Hence the joins σ1 ◦ σ2 of chambers σi ⊂ Bi are contained in chambers
of B. So the chambers of B have diameter ≥ π

2 and B cannot be irreducible with non-trivial Weyl
group. �

3.4 Polyhedral structure

Let ∆′ be a face of ∆mod and let σ : ∆′ → B be the chart for a face in B, i.e. an isometric embedding
so that θB ◦ σ = id|∆′ .

Sublemma 3.4.1 σ(Int∆′) is an open subset of θ−1
B (∆′).

Proof. Let x be a point in σ(Int∆′) and assume that there exists a sequence (xn) in θ−1
B (∆′ \

σ(Int(∆′)) which converges to x. There are points x′n ∈ Im(σ) with θB(x′n) = θB(xn) Since θB has
Lipschitz constant 1 and σ is distance-preserving, we have

dB(xn, x) ≥ d∆mod
(θB(xn), θB(x)) = dB(x′n, x)

and by the triangle inequality

2 · dB(xn, x)
︸ ︷︷ ︸

→0

≥ dB(x′n, xn) ≥ D+(θB(xn)).

9By [GrBe][theorem 4.2.4], ∆mod is a simplex if W acts fixed point freely. Observe that having distance less than
π/2 is an equivalence relation on the vertices. This implies the decomposition (19).
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Since D+ is continuous on Int∆′, the right-hand side has a positive limit:

lim
n→∞

D+(θB(xn)) = D+(θB(x)) > 0,

a contradiction. �

Lemma 3.4.2 Any two faces of with a common interior point coincide. Consequently, the inter-
section of faces in B is a face in B.

Proof. To verify the first assertion, consider two face charts σ1, σ2 : ∆′ → B of the same type. By
Sublemma 3.4.1, {δ ∈ ∆′|σ1(δ) = σ2(δ)} ∩ Int∆′ is an open subset of Int∆′. It is also closed, and
hence empty or all of Int∆′ if ∆′ is connected. If ∆′ is disconnected, it must be the maximal sphere
factor of ∆mod and all apartment charts agree on ∆′. Hence σ1|∆′ = σ2|∆′ also in this case.

The intersections of two faces is a union of faces by the above; since it is convex, it is a face. �

As a consequence, the collection of finite unions of faces of B is a lattice under the binary
operations of union and intersection; we will denote this lattice by KB. In the case that the Weyl
group acts without fixed point, the chambers of B are simplices, and KB is the lattice of finite
subcomplexes of a simplicial complex. In general the polyhedron of this simplicial complex is not
homeomorphic to B since it has the weak topology.

3.5 Recognizing spherical buildings

The following proposition gives an easily verified criterion for the existence of a spherical building
structure on a CAT(1)-space.

Proposition 3.5.1 Let (S,W ) be a spherical Coxeter complex, and let B be a CAT(1)-space of
diameter π equipped with a 1-Lipschitz anisotropy map θB as in (16) satisfying the discreteness con-
dition (17). Suppose moreover that each point and each pair of antipodal regular points is contained
in a subset isometric to S. Then there is a unique atlas A of charts ι : S −→ B forming a spherical
building structure on B modelled on (S,W ), with associated anisotropy map θB.

Proof. The discreteness condition (17) implies that, for any face ∆′ of ∆mod, the restriction of θB to
θ−1
B (Int∆′) is locally distance preserving and distance preserving on minimizing geodesic segments

contained in θ−1
B (Int∆′). Therefore, if A ⊂ B is a subset isometric to S, the restriction of θB to

Areg := A∩θ−1
B (Int∆mod) is locally isometric and the components of Areg are open convex polyhedra

which project via θB isometrically onto Int∆mod. (17) implies moreover that Areg is dense in A.
Hence A is tesselated by isometric copies of ∆mod and there is an isometry ιA with θB ◦ ιA = θS
which is unique up to precomposition with elements in W . If A1 and A2 are subsets isometric to S,
and ιA1 , ιA2 : S −→ B are isometries as above then A1 ∩A2 is convex, and we see that ιA1 and ιA2

are W -compatible. We now refer to the isometries ιA : S −→ B as charts and to their images as
apartments. The collection A of all charts will be the atlas for our spherical building structure.

Since any point lies in some apartment, it lies in particular in a face, i.e. in the image of an
isometric embedding σ : ∆′ → B of a face ∆′ ⊆ ∆mod satisfying θB ◦σ = id|∆′ . Lemma 3.4.2 applies
and the faces fit together to form a polyhedral structure on B. The apartments are subcomplexes.

It remains to verify that any two points with distance less than π lie in a common apartment. It
suffices to check this for any regular points x1, x2, since any point lies in a chamber and an apartment
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containing an interior point of a chamber contains the whole chamber (lemma 3.4.2). There is an
apartment A1 containing x1. Consider a minimizing geodesic c joining x1 and x2. By sublemma
3.4.1, A1 is a neighborhood of x1. Hence near its endpoint x1, c is a geodesic in the sphere A1. Since
B is a CAT(1)-space, we can extend c beyond x1 inside A1 to a minimizing geodesic c̄ of length π
joining x2 through x1 to a point x̂2 ∈ A1. By our assumption, the points x2, x̂2 are contained in an
apartment A2. A2 contains all minimizing geodesics connecting x2 and x̂2, because x2 is regular. In
particular c̄ and therefore both points x1, x2 lie in A2. �

From the proof of proposition 3.5.1 we have:

Corollary 3.5.2 Let B be a spherical building of dimension d, and let T ⊆ B be a subset isometric
to the Euclidean unit sphere of dimension d. Then T is an apartment in B.

3.6 Local conicality, projectivity classes and spherical building structure
on the spaces of directions

Suppose that the spherical building B has dimension at least 1.

Lemma 3.6.1 Let (B, θB) be a spherical building modelled on ∆mod, and let p, p̂ ∈ B be antipodal
points, i.e. d(p, p̂) = π. Then the union of the geodesic segments of length π from p to p̂ is a metric
suspension which contains a neighborhood of {p, p̂}.

Proof. By the discussion in section 2.2.1, the union of the geodesic segment of length π from p to p̂
is a metric suspension. By (17) we can choose ρ > 0 such that {q ∈ B2ρ(p)|θB(q) = θB(p)} = {p},
{q ∈ B2ρ(p̂)|θB(q) = θB(p̂)} = {p̂}. If q ∈ Bρ(p̂), then any extension of pq to a segment pqr of
length π will satisfy θ(r) = θ(p̂), forcing r = p̂ by the choice of ρ. Likewise, if we extend p̂q to a
segment of length π, where q ∈ Bρ(p), then it will terminate at p. Hence the lemma. �

As a consequence, for sufficiently small positive ǫ, the ball Bǫ(p) is canonically isometric to a
truncated spherical cone of height ǫ over ΣpB, the isometry given by the “logarithm map” at p. In
particular, Σ∗

pB = ΣpB. Any face intersecting Bǫ(p) contains p and the face σp spanned by p.
The lemma implies furthermore that for any pair of antipodes p, p̂ ∈ B there is a canonical

isometry
perspp,p̂ : ΣpB → Σp̂B (21)

determined by the property that all geodesics c of length π joining p and p̂ satisfy perspp,p̂(Σpc) =
Σp̂c.

Two points in B are antipodal iff they have distance π. Two faces σ1 and σ2 are antipodal or
opposite if there are antipodal points ξ1 and ξ2 so that ξi lies in the interior of σi; in this case each
point in σ1 has a unique antipode in σ2.

Definition 3.6.2 The relation of being antipodal generates an equivalence relation and we call the
equivalence classes projectivity classes.

Lemma 3.6.3 Suppose that the spherical building B is thick. Then every projectivity class intersects
every chamber.
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Proof. Let C1 and C2 be adjacent chambers, i.e. π = C1 ∩C2 is a panel. It suffices to show that for
each point in C1, C2 contains a point in the same projectivity class. To see this, pick an apartment
A ⊇ C1 ∪C2 and let π̂ be the panel in A opposite to π (π̂ = π is possible). Since B is thick there is
a chamber C with C ∩A = π̂. C is opposite to both C1 and C2 and our claim follows. �

Pick p0 ∈ S so that θS(p0) = θB(p). Now consider the collection of all apartment charts
ιA : S −→ B where ιA(p0) = p. These induce isometric embeddings Σp0ιA : Σp0S −→ ΣpB. Let
Wp0 ⊆ Isom(Σp0S) be the finite group generated by the reflections in walls passing through p0.

Proposition 3.6.4 ΣpB together with the collection of embeddings Σp0ιA : Σp0S −→ ΣpB as above
is a spherical building modelled on (Σp0S,Wp). If p̂ ∈ B is an antipode of B, then we have a
1-1 correspondence between apartments (respectively half-apartments) in B containing {p, p̂} and
apartments (respectively half-apartments) in ΣpB. ΣpB is thick provided B is thick.

Proof. Any two points
→
pq1,

→
pq2∈ ΣpB lie in an apartment; namely choose q1, q2 close to p, then any

apartment A containing q1, q2 will contain p and
→
pqi∈ ΣpA. So SB1 holds. ΣpB satisfies SB2 since

we are only using charts ιA : S −→ B with ιA(p0) = p and B itself satisfies SB2. The remaining
assertions follow immediately from the definition of the spherical building structure on ΣpB. �

3.7 Reducing to a thick building structure

A reduction of the spherical building structure on B consists of a reflection subgroup W ′ ⊂W and a
subset A′ ⊂ A which defines a spherical building structure modelled on (S,W ′). The ∆mod-direction
map θB can then be factored as π ◦ θ′B where

θ′B : B −→W ′\S =: ∆′
mod

is the ∆′
mod-direction map for the building modelled on (S,W ′), and π : W ′\S = ∆′

mod −→ ∆mod =
W\S is the canonical surjection.

Proposition 3.7.1 Let B be a spherical building modelled on the spherical Coxeter complex (S,W ),
with anisotropy polyhedron ∆mod = W\S. Then there exists a reduction (W,A′) which is a thick
building structure on B. W ′ is unique up to conjugacy in W ; A′ is determined by W ′. In particular,
the thick reduction is unique up to equivalence, so the polyhedral structure is defined by the CAT (1)
space itself.

The proof will occupy the remainder of this paper.
We set d = dim(B), RB = {p ∈ B|ΣpB is isometric to a standard Sd−1}, and SB = B \ RB.

If p ∈ B and ρ > 0 is small enough that Bρ(p) is a (spherical) conical neighborhood of p, then
SB ∩ Bρ(p) \ {p} corresponds to the cone over SΣpB. It then follows by induction on dim(B) that
SB ∩A is a union of ∆mod-walls for each apartment A ⊂ B.

Consider an apartment A ⊂ B, and a pair of walls H1, H2 ⊂ A contained in SB.

Lemma 3.7.2 If H ′
2 is the image of H2 under reflection in the wall H1 (inside the apartment A),

then H ′
2 is contained in SB.
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Proof. To see this, consider an interior point p of a codimension 2 face σ of H1∩H2. ΣpB decomposes
as a metric join Σpσ ◦Bp where Bp is a 1-dimensional spherical building, and the walls H1, H2, and
H ′

2 correspond to walls H̄1, H̄2, and H̄ ′
2 in Bp; A corresponds to an apartment Ā in Bp. The wall H̄1

is just a pair of points in Bp, and this pair of points is joined by at least three differents semi-circles
of length π. These three semi-circles can be glued in pairs to form three different apartments in
Bp. Using the fact that an antipode of a point in SBp

also lies in SBp
, it is clear that the image

of H̄2 under reflection in H̄1 is also in SBp
. Hence the wall ΣpH

′
2 ⊂ ΣpB is contained in three

half-apartments, and proposition 3.6.4 then implies that H ′
2 lies in three half-apartments. �

The reflections in the walls in A ∩ SB generate a group GA, and by [Hum, p. 24] the only
reflections in GA are reflections in walls in A ∩ SB ; also, the closures of connected components of
A \ SB are fundamental domains for the action of GA on A.

Sublemma 3.7.3 Let U ⊆ B be a connected component of B \SB, and suppose U ∩A 6= ∅ for some
apartment A. Then U ⊆ A.

Proof. U ∩A is an open and closed subset of U , so U ∩A = U . �

We claim that the isomorphism class of GA is independent of A. To show this, it suffices to
show that the isometry type of a chamber ∆A

mod is independent of A. For i = 1, 2 let Ai be an

apartment, and let ∆Ai

mod be a chamber for GAi
. If A3 ⊂ B is an apartment containing an interior

point from each ∆Ai

mod, then the sublemma gives ∆Ai

mod ⊂ A3. But then the ∆Ai

mod are both chambers
for GA3 , so they are isometric. Hence each pair (A,GA) is isomorphic to a fixed spherical Coxeter
complex (S,W th) for some reflection subgroup W th ⊆ W . We denote the quotient map and model
polyhedron by

θthS : S → S/W th =: ∆th
mod.

We call the closure of components of B \ SB, ∆th
mod-chambers. We can identify the ∆th

mod-chambers
with ∆th

mod in a consistent way by the following construction: Let A0 ⊆ B be an apartment and
p0 ∈ A0∩RB be a smooth point. We define the retraction ρ : B → A0 by assigning to each point p in
the open ball Bπ(p0) the unique point ρ(p) ∈ A0 so for which the segments p0p and p0ρ(p) have same

length and direction
→
p0p=

→

poρ(p) at p0. ρ extends continuously to the discrete set B \Bπ(p0) which
maps to the antipode of p0 in A0. If A is an apartment passing through p0 then A ∩ A0 contains
the ∆th

mod-chamber spanned by p0 and ρ|A : A→ A0 is an isometry which preserves the tesselations
by chambers. Composing ρ with the quotient map A0 → A0/GA0 we obtain a 1-Lipschitz map

θthB : B → ∆th
mod (22)

which restricts to an isometry on each chamber. Applying proposition 3.5.1 we see that B is a
spherical building modelled on (S,W th). B is a thick building since we already verified in lemma
3.7.2 above that if H ⊂ SB is a wall, then it lies in at least three half-apartments.

Corollary 3.7.4 For i = 1, 2 let Bi be a thick spherical building modelled on (Si,Wi) with atlas Ai.
If φ : B1 → B2 is an isometry then we may identify the spherical Coxeter complexes by an isometry
α : (S1,W1) → (S2,W2) so that φ becomes an isomorphism of spherical buildings.
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3.8 Combinatorial and geometric equivalences

We recall (section 3.4) that for any building B, KB is the lattice of finite unions of faces of B.

Proposition 3.8.1 Let B1, B2 be spherical buildings of equal dimension. Then any lattice isomor-
phism KB1 → KB2 is induced by an isometry B1 → B2 of CAT(1) spaces. This isometry is unique
if the buildings Bi do not have a spherical deRham factor.

Proof. First recall that lattice isomorphisms preserve the partial ordering by inclusion since C1 ⊂
C2 ⇐⇒ C1 ∪ C2 = C2.

We first assume that the buildings Bi have no deRham factor and hence the KBi come from
simplicial complexes. In this case the lattice isomorphism KB1 −→ KB2 carries k-dimensional faces
of B1 to k-dimensional faces of B2. To see this, note that vertices of Bi are the minimal elements
of the lattice KBi and k-simplices are characterized (inductively) as precisely those subcomplexes
which contain k + 1 vertices and are not contained in the union of lower dimensional simplices.

Consider a codimension-2 face σ of a chamber C in Bi. For an interior point s ∈ σ, ΣsBi is
isometric to the metric join Σsσ ◦Bσi where Bσi is a 1-dimensional spherical building. The dihedral
angle of C along σ equals the length of a chamber in the 1-dimensional building Bσi .

Sublemma 3.8.2 The chamber length of a 1-dimensional spherical building is determined combi-
natorially as 2π/l where l is the combinatorial length of a minimal circuit.

Proof. Combinatorial paths in a 1-dimensional spherical building determine geodesics. Closed
geodesics in a CAT(1) space have length at least 2π since points at distance < π are joined by a
unique geodesic segment. The closed paths of length 2π are the apartments. �

Proof of proposition 3.8.1 cont. As a consequence of the sublemma, the lattice isomorphism KB1 →
KB2 induces a correspondence between chambers which preserves dihedral angles. Since the dihedral
angles determine the isometry type of a spherical simplex [GrBe][theorem 5.1.2], there is a unique
map of CAT(1)-spaces B1 → B2 which is isometric on chambers and induces the given combinatorial
isomorphism. Since the metric on eachBi is characterized as the largest metric for which the chamber
inclusions are 1-Lipschitz maps, we conclude that our map B1 → B2 is an isometry. In the general
case, the buildings Bi may have a spherical deRham factor Si and split as Bi = Si ◦B′

i. The lattices
KBi and KB′

i are isomorphic: to a subcomplex C′
i of KB′

i corresponds the subcomplex Si◦C′
i of KBi.

The lattice isomorphism KB′
1
∼= KB1 → KB2

∼= KB′
2 is induced by a unique isometry B′

1 → B′
2

by the discussion above. It follows that DimB′
1 = DimB′

2 and DimS1 = DimS2. Any isometry
S1 → S2 gives rise to an isometry B1 → B2 which induces the isomorphism KB1 → KB2. �

3.9 Geodesics, spheres, convex spherical subsets

We call a subset of a CAT(1)-space convex if with every pair of points with distance less than π it
contains the minimal geodesic segment joining them. The following generalises corollary 3.5.2.

Proposition 3.9.1 Let C ⊂ B a convex subset which is isometric to a convex subset of a unit
sphere. Then C is contained in an apartment.
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Proof. We proceed by induction on the dimension of B. The claim is trivial if dim(B) = 0. We
assume therefore that dim(B) > 0 and that our claim holds for buildings of smaller dimension than
B.

Let A be an apartment so that the number of open faces in A which have non-empty intersection
with C is maximal. Suppose C 6⊆ A. Let p ∈ C∩A and q ∈ C\A be points with

→
pq 6∈ ΣpA. Denote by

V the union of all minimizing geodesics inA which connect p to its antipode p̂ and intersect C−{p, p̂}.
V is a convex subset of A and canonically isometric to the suspension of Σp(C ∩A) = ΣpC ∩ ΣpA.
By induction assumption, there is an apartment A′ through p such that ΣpC ⊆ ΣpA

′. A′ can be

chosen to contain p̂. Then C ∩ A ⊆ V ⊆ A′ and
→
pq∈ ΣpA

′. Hence the number of open sectors in
A′ intersecting C is strictly bigger than the number of such sectors in A, a contradiction. Therefore
C ⊆ A. �

Corollary 3.9.2 Any minimizing geodesic in a spherical building B is contained in an apart-
ment. Any isometrically embedded unit sphere K ⊆ B is contained in an apartment. In particular
dim(K) ≤ rank(B) − 1.

3.10 Convex sets and subbuildings

A subbuilding is a subset B′ ⊆ B so that {ι ∈ A|ι(S) ⊆ B′} forms an atlas for a spherical building
structure; in particular B′ is closed and convex.

Lemma 3.10.1 Let s ⊂ B be a subset isometric to a standard sphere. Then the union B(s) of the
apartments containing s is a subbuilding. There is a canonical reduction (W ′,A′) of the spherical
building structure on B(s); its walls are precisely the W -walls of B(s) which contain s. When
equipped with this building structure, B(s) decomposes as a join of s and another spherical building
which we call Link(s). If p ∈ s then logp maps Link(s) isometrically to the join complement of
Σps in ΣpB(s). Furthermore, if p ∈ s lies in a W -face σ of maximal possible dimension, then there
is a bijective correspondence between W -chambers containing σ, W ′-chambers of B(s), chambers of
Link(s), and Wp-chambers in ΣpB.

Proof. Let ξ and ξ̂ be interior points of faces in s with maximal dimension. Then B(s) is the union

of all geodesic segments of length π from ξ to ξ̂. Proposition 3.6.4 implies that every pair of points
in B(s) is containined in an apartment A ⊂ B(s).

Pick ι0 ∈ A with s ⊆ ι0(S), and set A′ = {ι ∈ A|ι|
s0

= ι0|s0}. Let W ′ ⊆ W be the subgroup
generated by reflections fixing s0 pointwise. According to lemma 3.1.1, the coordinate changes for
the charts in A′ are restrictions of elements of W ′. Therefore A′ is an atlas for a spherical building
structure on B(s) modelled on (S,W ′).

Since s0 ⊆ S is a join factor of the spherical Coxeter complex (S,W ′), B(s) decomposes as a
join of spherical buildings B(s) = s ◦ Link(s) by section 3.3. Any two points in Link(s) lie in an
apartment s ⊆ A ⊂ B(s), so logp maps Link(s) isometrically to the join complement of Σps in
ΣpB(s). The remaining statements follow. �

The building B(s) splits as a spherical join of the singular sphere s and a spherical building
which we denote by Link(s):

B(s) = s ◦ Link(s)
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Lemma 3.10.2 If ξ ∈ B and η lies in the apartment A ⊆ B, then there is a ξ̂ ∈ A with π =
d(ξ, ξ̂) = d(ξ, η)+d(η, ξ̂). If d(ξ, η) ≥ π

2 then ξ has an antipode in every top-dimensional hemisphere
H ⊂ A.

Proof. When DimB = 0 the lemma is immediate. If d(ξ, η) < π then by induction
→

ηξ∈ ΣηB has an

antipode in ΣηA. Therefore we may extend ξη to a geodesic segment ξηξ̂ with ηξ̂ ⊂ A of length π.
The second statement follows by letting η be the pole of the hemisphere. �

Proposition 3.10.3 Let C be a convex subset in the spherical building B. If C contains an apart-
ment then C is a subbuilding of full rank.

Proof. By the lemma, any point ξ ∈ C has an antipode ξ̂ in C. By lemma 3.6.1, the union C
ξ,ξ̂

of all minimizing geodesics from ξ to ξ̂ which intersect C − {ξ, ξ̂} is a neighborhood of ξ in C. In

particular, for sufficiently small ǫ > 0, C ∩Bǫ(ξ) is a cone over ΣξC. Since ξ̂ can be chosen to lie in
an apartment A0 ⊆ C by our assumption, and since the apartment Σ

ξ̂
A0 in Σ

ξ̂
C corresponds to an

apartment in C
ξ,ξ̂

, we see that C is a union of apartments. It remains to check that any two points

ξ, η ∈ C lie in an apartment contained in C. Choose an apartment A with η ∈ A ⊆ C. For
→

ηξ∈ ΣηC

there exists an antipodal direction in ΣηA and we can extend ξη into A to a geodesic ξηξ̂ of length

π. To the apartment Σ
ξ̂
A in Σ

ξ̂
C corresponds an apartment A′ ⊆ C

ξ,ξ̂
containing ξηξ̂. �

3.11 Building morphisms

We call a map φ : B → B′ between buildings of equal dimension a building morphism if it is isometric
on chambers. Later, when looking at Euclidean buildings, we will encounter natural examples of
building morphisms, namely the canonical maps from the Tits boundary to the spaces of directions.

A building morphism φ has Lipschitz constant 1. φ maps sufficiently short segments emanating
from a point p isometrically to geodesic segments. Therefore it induces well-defined maps

Σpφ : ΣpB → Σφ(p)B
′ (23)

Since the chambers in B containing p correspond to the chambers in ΣpB (with respect to its natural
induced building structure, cf. Proposition 3.6.4), and similarly for B′, the maps (23) are building
morphisms, as well. We call the morphism φ spreading if there is an apartment A0 ⊆ B so that φ|

A0

is an isometry.

Lemma 3.11.1 Let φ : B → B′ be a spreading building morphism. Then, if ξ1, ξ2 ∈ B are points
with φ(ξ1) = φ(ξ2) =: ξ′, the images of Σξ1φ and Σξ2φ in Σξ′B

′ coincide.

Proof. If φ is spreading then each point ξ′ ∈ φ(B) has an antipode ξ̂′ ∈ φ(B). Any points ξ ∈ φ−1(ξ′)

and ξ̂ ∈ φ−1(ξ̂′) are antipodes and minimizing geodesics connecting ξ and ξ̂ are mapped isometrically

to geodesics connecting ξ′ and ξ̂′, i.e. φ|
B(ξ,ξ̂) : B(ξ, ξ̂) → B′(ξ′, ξ̂′) is the spherical suspension of

the morphism Σξφ. There are canonical isometries persp
ξ,ξ̂

: ΣξB → Σ
ξ̂
B and persp

ξ′,ξ̂′
: Σξ′B

′ →

Σ
ξ̂′
B′, cf. 3.6.1, and we have:

Σ
ξ̂
φ ◦ persp

ξ,ξ̂
= persp

ξ′,ξ̂′
◦ Σξφ (24)

The assertion follows. �
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Lemma 3.11.2 Let φ : B → B′ be a spreading building morphism. Suppose ξ1 ∈ B, ξ′2 ∈ B′ and
set ξ′1 := φξ1.

Then there is an apartment A ⊆ B containing ξ1 such that φ|
A

is an isometry and the apartment
A′ := φA ⊆ B′ contains ξ′2.

Proof. Let us first assume that ξ′2 ∈ A′
2 = φA2 where A2 is an apartment in B such that φ|

A2
is an

isometry. Then there is a geodesic segment ξ′1ξ
′
2ξ̂

′
1 of length π such that ξ′2ξ̂

′
1 ⊂ A′

2 (lemma 3.10.2).

Let ξ̂1 ∈ A2 be the lift of ξ̂′1. By proposition 3.6.4, the subbuilding B(ξ1, ξ̂1) contains an apartment

A with Σ
ξ̂1
A = Σ

ξ̂1
A2. φ|

A
is an isometry, because it is an isometry near ξ̂1. By construction,

ξ′2 ∈ φA.
The above argument implies that, since φ is spreading by assumption, that each point ξ1 ∈ B

lies in an apartment A1 so that φ|
A1

is an isometry. Therefore the assumption in the beginning of
the proof is always satisfied and the proof is complete. �

Corollary 3.11.3 Let φ be as in lemma 3.11.2. Then:

1. φ(B) is a subbuilding in B′.

2. The induced morphisms Σξφ are spreading.

3. For all ξ1 ∈ B, ξ′2 ∈ φ(B) exists ξ2 ∈ φ−1ξ′2 such that

dB(ξ1, ξ2) = dB′(φξ1, ξ
′
2). (25)

4. If ξ2 satisfies (25) then there exists an apartment A ⊆ B containing ξ1, ξ2 such that φ|
A

is an
isometry.

Proof. The first three assertions follow immediately from the lemma. We prove the fourth assertion:

By 1. we find a geodesic segment ξ′1ξ
′
2ξ̂

′
1 of length π contained in φ(B). By 3. there exists a

lift ξ̂1 of ξ̂′1 such that dB(ξ2, ξ̂1) = dB′(ξ′2, ξ̂
′
1). Applying the previous lemma to the morphism Σξ1φ,

which is spreading by2., we find an apartment A ⊆ B(ξ1, ξ̂1) containing the geodesic segment ξ1ξ2ξ̂1
and so that Σξ1φ|Σξ1

A
, and therefore also φ|

A
, is an isometry. �

Proposition 3.11.4 Let B and B′ be spherical buildings modelled on ∆mod, and let φ : B −→ B′

be a surjective morphism of spherical buildings so that θB = θB′ ◦ φ. Suppose τ is a face of B and
σ′ is a face of B′ contained in φ(B) so that φτ ⊆ σ′. Then there exists a face σ of B with τ ⊆ σ
and φσ = σ′.

Proof. Let ξ be an interior point of τ and let σ1 be a face of B with φσ1 = σ′. σ1 contains (in its
boundary) a point ξ1 with φξ1 = φξ, and by lemma 3.11.1 there exists a face σ containing ξ (and
therefore τ) with φσ = φσ1 = σ′. �

Corollary 3.11.5 Let B, B′ and φ be as in proposition 3.11.4. If h′ ⊂ B′ is a half-apartment with
wall m′, and m ⊂ B lifts m′, then there is a half-apartment h ⊂ B containing m which lifts h′.

Proof. Let τ ′ ⊂ h′ be a chamber with a panel σ′ ⊂ m′, and let σ ⊂ m be the lift of σ′ in m. Applying
proposition 3.11.4 we get a chamber τ ⊂ B so that the half-apartment h spanned by τ ∪ m lifts
h′. �
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3.12 Root groups and Moufang spherical buildings

A good reference for the material in this section is [Ron]

Definition 3.12.1 ([Ron, p. 66]) Let (B,∆mod) be a spherical building, and let a ⊂ B be a root.
The root group Ua of a is defined as the subgroup of Aut(B,∆mod) consisting of all automorphisms
g which fix every chamber C ⊂ B with the property that C ∩ a contains a panel π 6⊂ ∂a.

We let GB ⊂ Aut(B,∆mod) be the subgroup generated by all the root groups of B.

Proposition 3.12.2 (Properties of root groups) Let B be a thick spherical building.

1. If Ua acts transitively on the apartments containing a for every root a contained in some
apartment A0, then the group generated by these root groups acts transitively on pairs (C,A)
where C is a chamber in an apartment A ⊆ B.

2. Suppose (B,∆mod) is irreducible and has dimension at least 1. Then the only root group
element g ∈ Ua which fixes an apartment containing a is the identity.

Lemma 3.12.3 Let A and A′ be apartments in the spherical building B. Then there exist apartments
A0 = A,A1, . . . , Ak = A′ so that Ai−1 ∩Ai is a half-apartment containing A ∩A′ for all i.

Proof. Suppose that A and A′ are apartments which do not satisfy the conclusion of the lemma and
so that the complex A∩A′ has the maximal possible number of faces. We derive a contradiction by
constructing an apartment A′′ whose intersection with A respectively A′ strictly contains A ∩A′.

If A ∩ A′ is empty, we choose A′′ to be any apartment which has non-empty intersection with
both A and A′. If A ∩ A′ is contained in a singular sphere s of dimension dim(A ∩ A′) < dim(B)
we pick a chambers σ ⊂ A and σ′ ⊂ A′ with dim(σ ∩ s) = dim(σ′ ∩ s) = dims. The subbuilding
B(s) contains an apartment A′′ with s∪σ∪σ′ ⊂ A′′ and A′′ has the desired property. It remains to
consider the case that A∩A′ contains chambers and is strictly contained in a half-apartment. Then
there is a half-apartment h ⊂ A containing A ∩A′ and so that ∂h ∩A ∩A′ contains a panel π. Let
σ′ ⊂ A′ be a chamber with σ′ ∩A ∩A′ = π. The convex hull A′′ of h ∪ σ′ is an apartment with the
desired property. �

Proof of proposition: 1. Let GA be the group generated by the root groups Ua where a runs through
all roots contained in an apartment A ⊂ B. If g ∈ Ua then GA = GgA because UgA = gUag

−1 for
all roots a ⊂ A. By lemma 3.12.3, given any apartment A′ there is a sequence A0, . . . , Ak = A′

such that Ai−1 ∩ Ai is a root. Hence GA0 = GA1 = . . . = GA′ and it follows that GB = GA′ for all
apartments A′.

Let σ1 and σ2 be chambers in B which share a panel π = σ1 ∩ σ2. Since B is thick, there is a
third chamber σ with σ ∩ σi = π. Pick apartments Ai containing σ ∪ σi. Applying lemma 3.12.3
again, we see that there is a g ∈ GB so that g(A1) = A2, and g fixes σ3. Hence gσ1 = σ2 and we
conclude by induction that GB acts transitively on chambers.

Let A1, A2 be apartments and σ1, σ2 be chambers such that σi ⊆ Ai. By the above argument,
there exists g ∈ GB with gσ1 = σ2. By lemma 3.12.3 there is a g′ ∈ GB with g′(gA1) = A2 and
g′σ2 = σ2. Hence GB acts transitively on pairs C ⊂ A as claimed.

2. Since B is irreducible, there is a chamber σ contained in the interior of a (see lemma 3.3.2).
Since the convex set B′ = Fix(g) contains the apartment A it is a subbuilding by proposition 3.10.3.
Moreover, B′ contains an open neighborhood of σ by the definition of Ua. Note that if π and π′ are
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opposite panels in B′, then B′ contains every chamber containing π iff it contains every chamber
containing π′ (lemma 3.6.1). Since for each panel π there is a panel π1 ⊂ ∂σ in the same projectivity
class (see definition 3.6.2 and lemma 3.6.3) we see that B′ contains every chamber in B with a panel
in B′. When Dim(B) = Dim(B′) = 1 this implies that B′ is open in B, forcing B′ = B; in general
we show by induction that ∀p ∈ B′ we have ΣpB

′ = ΣpB, which implies that B′ ⊂ B is open and
consequently B′ = B. �

Definition 3.12.4 A spherical building (B,∆mod) is Moufang if for each root a ⊂ B the root
group Ua acts transitively on the apartments containing the root a. When B is irreducible and has
rank at least 2, then by 2 above, Ua acts simply transitively on apartments containing a.

The spherical building associated with a reductive algebraic group ([Ti1, chapter 5] is Moufang.
In particular, irreducible spherical buildings of dimension at least 2 are Moufang.

4 Euclidean buildings

There are many different ways to axiomatize Euclidean buildings. For us, the key geometric in-
gredient is an assignment of ∆mod-directions to geodesics segments in a Hadamard space. Just as
with symmetric spaces, ∆mod-directions capture the anisotropy of the space, and they behave nicely
with respect to geometric limiting operations such as ultralimits, Tits boundaries, and spaces of
directions.

4.1 Definition of Euclidean buildings

4.1.1 Euclidean Coxeter complexes

Let E be a finite-dimensional Euclidean space. Its Tits boundary is a round sphere and there is a
canonical homomorphism

ρ : Isom(E) → Isom(∂TitsE) (26)

which assigns to each affine isometry its rotational part. We call a subgroup Waff ⊂ Isom(E)
an affine Weyl group if it is generated by reflections and if the reflection group W := ρ(Waff ) ⊂
Isom(∂TitsE) is finite. The pair (E,Waff ) is said to be a Euclidean Coxeter complex and

∂Tits(E,Waff ) := (∂TitsE,W ) (27)

is called its spherical Coxeter complex at infinity. Its anisotropy polyhedron is the spherical polyhe-
dron

∆mod := (∂TitsE)/W.

An oriented geodesic segment xy in a E determines a point in ∂TitsE and we call its projection
to ∆mod the ∆mod-direction of xy.

A wall is a hyperplane which occurs as the fixed point set of a reflection in Waff and singular
subspaces are defined as intersections of walls. A half-space bounded by a wall is called singular or
a half-apartment. An intersection of half-apartments is a Weyl-polyhedron. Weyl cones with tip at a
point p are complete cones with tip at p for which the boundary at infinity is a single face in ∂TitsE.

Fix a point p ∈ E. By W (p), we denote the subgroup of Waff which is generated by reflections
in the walls passing through p. W (p) embeds via ρ as a subgroup of W . A Weyl sector with tip at
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p is a Weyl polyhedron for the Euclidean Coxeter complex (E,W (p)); note that a Weyl sector need
not be a Weyl cone, and a Weyl cone need not be a Weyl sector. A subsector of a sector σ is a
sector σ′ ⊂ σ with ∂Titsσ

′ = ∂Titsσ; σ lies in a finite tubular neighborhood of σ′. A Weyl chamber
is a Weyl polyhedron for which the boundary at infinity is a ∆mod chamber; Weyl chambers are
necessarily Weyl cones. The Coxeter group W (p) acts on ΣpE, so we have a Coxeter complex

Σp(E,Waff ) := (ΣpE,W (p))

with anisotropy map by
θp : ΣpE −→ ΣpE/W (p) =: ∆mod(p).

The faces in (ΣpE,W (p)) correspond to the Weyl sectors of E with tip at p.
We call the Coxeter complex (E,Waff ) irreducible iff its anisotropy polyhedron, or equivalently,

its spherical Coxeter complex at infinity is irreducible. In this case, the action ofW on the translation
subgroup T ⊳ Waff forces T to be trivial, a lattice, or a dense subgroup. In the latter case we say
that Waff is topologically transitive.

4.1.2 The Euclidean building axioms

Let (E,Waff ) be a Euclidean Coxeter complex. A Euclidean building modelled on (E,Waff ) is a
Hadamard space X endowed with the structure described in the following axioms.

EB1: Directions. To each nontrivial oriented segment xy ⊂ X is assigned a ∆mod-direction
θ(xy) ∈ ∆mod. The difference in ∆mod-directions of two segments emanating from the same point
is less than their comparison angle, i.e.

d(θ(xy), θ(xz)) ≤ ∠̃x(y, z) (28)

Recall that given δ1, δ2 ∈ ∆mod, D(δ1, δ2) is the finite set of possible distances between points
in the Weyl group orbits θ−1

∂T itsE
(δ1) and θ−1

∂T itsE
(δ2).

EB2: Angle rigidity. The angle between two geodesic segments xy and xz lies in the finite set
D(θ(xy), θ(xz)).

We assume that there is given a collection A of isometric embeddings ι : E −→ X which preserve
∆mod-directions and which is closed under precomposition with isometries in Waff . These isometric
embeddings are called charts, their images apartments, and A is called the atlas of the Euclidean
building.

EB3: Plenty of apartments. Each segment, ray and geodesic is contained in an apartment.
The Euclidean coordinate chart ιA for an apartment A is well-defined up to precomposition with

an isometry α ∈ ρ−1(W ). Two charts ιA1 , ιA2 for apartments A1, A2 are said to be compatible if
ι−1
A1

◦ ιA2 is the restriction of an isometry in Waff . This holds automatically when Waff = ρ−1(W ).

EB4: Compatibility of apartments. The Euclidean coordinate charts for the apartments in X
are compatible.

It will be a consequence of Corollary 4.6.2 below that the atlas A is maximal among collections of
charts satisfying axioms EB3 and EB4.

We define walls, singular flats, half-apartments, Weyl cones, Weyl sectors, and Weyl polyhedra
in the Euclidean building to be the images of the corresponding objects in the Euclidean Coxeter
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complex under charts. The set of Weyl cones with tip at a point x will be denoted by Wx. The
rank of the Euclidean building X is defined to be the dimension of its apartments. X is thick if
each wall bounds at least 3 half-apartments with disjoint interiors. We call X a Euclidean ruin if
its underlying set or the atlas A is empty.

4.1.3 Some immediate consequences of the axioms

Axiom EB1 implies the following compatibility properties for the ∆mod-directions of geodesic seg-
ments.

Lemma 4.1.1 Let x, y, z be points in X.

1. If y lies on xz, then θ(xz) = θ(xy) = θ(yz).

2. If
→
xy,

→
xz∈ ΣxX coincide, then θ(xy) = θ(xz).

3. Asymptotic geodesic rays in X have the same ∆mod-direction.

We call a segment, ray or geodesic in X regular if its ∆mod-direction is an interior point of ∆mod.

Lemma 4.1.2 1. If p ∈ X and xi ∈ X − p, then the pxi initially span a flat triangle if
∠p(x1, x2) > 0, and they initially coincide if ∠p(x1, x2) = 0.

2. If pi ∈ X and ξi ∈ ∂TitsX, then the rays piξi are asymptotic to the edges of a flat sector

Proof. 1. After extending the segments pxi to rays if necessary, we may assume without loss of
generality that xi ∈ ∂TitsX . If z ∈ px1, then θ(zxi) = θ(xi) so ∠z(x1, x2) ∈ D(θ(x1), θ(x2))
which is a finite set. But ∠z(x1, x2) → ∠p(x1, x2) monotonically as z → p, which implies that
∠z(x1, x2) = ∠p(x1, x2), ∠z(p, x2) = π − ∠p(x1, x2) when z is sufficiently close to p. Therefore
∆(p, z, x2) is a flat triangle (with a vertex at ∞) when z is sufficiently close to p.

2. follows from similar reasoning and the property (6) of the Tits distance. �

4.2 Associated spherical building structures

4.2.1 The Tits boundary

The Tits boundary ∂TitsX is a CAT (1)-space, see 2.3.2. Lemma 4.1.1 implies that there is a well-
defined ∆mod-direction map

θ∂T itsX : ∂TitsX −→ ∆mod (29)

which is 1-Lipschitz by (28).

Proposition 4.2.1 ∂TitsX carries a spherical building structure modelled on the spherical Coxeter
complex (∂TitsE,W ) with ∆mod-direction map (29).

Proof. We verify that the assumptions of proposition 3.5.1 are satisfied. Axiom EB2 implies that
(29) satisfies the discreteness condition (17). If A is a Euclidean apartment in X then ∂TitsA is a
standard sphere in ∂TitsX . Clearly, any point ξ ∈ ∂TitsX lies in a standard sphere. It remains to
check that any two points ξ1 and ξ2 in ∂TitsX with Tits distance π are ideal endpoints of a geodesic
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in X . To see this, pick p ∈ X and note that the angle ∠z(ξ1, ξ2) increases monotonically as z moves
along the ray pξ1 towards ξ1. But by EB2 ∠z(ξ1, ξ2) assumes only finitely many values, so when z
is sufficiently far out we have ∠z(ξ1, ξ2) = ∠Tits(ξ1, ξ2) = π, and the rays zξi fit together to form a
geodesic with ideal endpoints ξ1 and ξ2. �

4.2.2 The space of directions

The space of directions ΣxX is a CAT (1)-space (see section 2.1.3). Lemma 4.1.1 implies that there
is a well-defined 1-Lipschitz map from the space of germs of segments in a point x ∈ X :

θΣxX : Σ∗
xX −→ ∆mod (30)

In this section we check that this map induces a spherical building structure on ΣxX . By axiom
EB2, θ = θΣxX satisfies the discreteness condition (17).

Lemma 4.2.2 Σ∗
xX is complete, so Σ∗

xX = ΣxX.

Proof. Let (xk) be a sequence in X−{x} such that (
→
xxk) is Cauchy in Σ∗

xX . Then θ(
→
xxk) is Cauchy

in ∆mod and we denote its limit by δ. If Ak ⊂ X is an apartment containing xxk then
→
xxk∈ ΣxAk ⊂

Σ∗
xX and ΣxAk contains a spherical polyhedron σk such that

→
xxk∈ σk and θ|σk

;σk → ∆mod is an

isometry. There is a unique ξk ∈ σk with θ(ξk) = δ and we have d(ξk,
→
xxk) = d∆mod

(δ, θ(
→
xxk)) → 0.

Hence (ξk) is Cauchy with θ(ξk) ≡ δ and lim
→
xxk= lim ξk in ΣxX . The discreteness condition (17)

implies that (ξk) is eventually constant and therefore (
→
xxk) has a limit in Σ∗

xX . �

We now apply proposition 3.5.1 to verify that ΣxX carries a natural structure as a spherical
building modelled on (∂TitsE,W ). The only condition which remains to be checked is that antipodal

points
→
xx1 and

→
xx2 in ΣxX lie in a subset isometric to S = ∂TitsE. But ∠x(x1, x2) = π implies that

x1x2 = xx1 ∪ xx2 and if A ⊂ X is an apartment containing x1x2 then ΣxA ⊂ ΣxX is a spherical
apartment containing

→
xx1 and

→
xx2.

Lemma 4.2.3 All standard spheres in ΣxX are of the form ΣxA where A is an apartment in X
passing through x.

Proof. By corollary 3.9.2, standard spheres are ∆mod-apartments, so we can find antipodal regular
points ξ1, ξ2 ∈ α. Then there is a segment x1x2 through x with

→
xxi= ξi. If A ⊆ X is an apartment

containing x1x2 then ΣxA∩α ⊇ {ξ1, ξ2} and the spherical apartments α and ΣxA coincide because
they share a pair of regular antipodes (lemma 3.6.1). �

There are two natural reductions of the Weyl group which we shall consider. First, according
to section 3.7 there is a thick spherical building structure with atlas Ath(x) and anisotropy map

θthx : ΣxX −→ ∆th
mod(x); (31)

This structure is unique up to equivalence. The second reduction is analogous to the structure
constructed in proposition 3.6.4. We postpone discussion of this structure until 4.4.1 because we
don’t have an analog of lemma 3.1.1 in the case of nondiscrete Euclidean Coxeter complexes.
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4.3 Product(-decomposition)s

Let Xi, i = 1, . . . , n, be Euclidean buildings modelled on Coxeter complexes (Ei,W
i
aff ) with atlases

Ai and anisotropy polyhedra ∆i
mod. Then Waff := W 1

aff×· · ·×Wn
aff acts canonically as a reflection

group on E := E1 × · · · × En. We call the Coxeter complex (E,Waff ) the product of the Coxeter
complexes (Ei,W

i
aff ) and write

(E,Waff ) = (E1,W
1
aff ) × · · · × (En,W

n
aff ). (32)

There are corresponding join decompositions

(∂TitsE,W ) = (∂TitsE1,W1) ◦ · · · ◦ (∂TitsEn,Wn) (33)

of the spherical Coxeter complex at infinity and

∆mod = ∆1
mod ◦ · · · ◦ ∆n

mod (34)

of the anisotropy polyhedron. The Hadamard space

X = X1 × · · · ×Xn (35)

carries a natural Euclidean building struture modelled on (E,Waff ). The charts for its atlas A are
the products ι = ι1 × · · ·× ιn of charts ιi ∈ Ai. We call X equipped with this building structure the
Euclidean building product of the buildings Xi.

Proposition 4.3.1 Let X be a Euclidean building modelled on the Coxeter complex (E,Waff ) with
atlas A and assume that there is a join decomposition (34) of its anisotropy polyhedron. Then

1. There is a decomposition (32) of (E,Waff ) as a product of Euclidean Coxeter complexes so
that a segment xy ⊂ E is parallel to the factor Ei iff its ∆mod-direction θ(xy) lies in ∆i

mod.

2. There is a decomposition (35) of X as a product of Euclidean buildings so that a segment
xy ⊂ E is parallel to the factor Ei iff its ∆mod-direction θ(xy) lies in ∆i

mod.

Proof. 1. Proposition 3.3.1 implies that the spherical Coxeter complex at infinity decomposes as a
join

(∂TitsE,W ) = (S1,W1) ◦ · · · ◦ (Sn,Wn) (36)

of spherical Coxeter complexes. By proposition 2.3.7, this decomposition is induced by a metric
product decomposition E = E1 × · · · × En so that ∂TitsEi is canonically identified with Si and,
hence, a segment xy ⊂ E is parallel to the factor Ei iff θ(xy) ∈ ∆i

mod. (36) implies that Waff

decomposes as the product Waff = W 1
aff × · · · ×Wn

aff of reflection groups W i
aff acting on Ei, thus

establishing the desired decomposition (32).
2. Arguing as in the proof of the first part, we obtain a metric decomposition (35) as a product

of Hadamard spaces so that xy ⊂ X is parallel to the factor Xi iff θ(xy) ∈ ∆i
mod. Furthermore, the

∂TitsXi carry spherical building structures modelled on (∂TitsEi,Wi) so that the spherical building
∂TitsX decomposes as the spherical building join of the ∂TitsXi. Each chart ι : E → X , ι ∈ A,
decomposes as a product of ∆i

mod-direction preserving isometric embeddings ιi : Ei → Xi. The

35



collection Ai of all ιi arising in this way forms an atlas for a Euclidean building structure on Xi and
(35) becomes a decomposition as a product of Euclidean buildings. �

We call a Euclidean building irreducible if its anisotropy polyhedron is irreducible, compare
section 3.3. According to the previous proposition, the unique minimal join decomposition of the
anisotropy polyhedron ∆mod into irreducible factors corresponds to unique minimal product decom-
positions of the Euclidean Coxeter complex (E,Waff ) and the Euclidean building X into irreducible
factors. We call these decompositions the de Rham decompositions and the maximal Euclidean fac-
tors with trivial affine Weyl group the Euclidean de Rham factors.

4.4 The local behavior of Weyl-cones

In this section we study the set Wp of Weyl cones with tip at p. The main result (corollary 4.4.3) is
that in a sufficiently small neighborhood of p, a finite union of these cones is isometric to the metric
cone over the corresponding finite union of ∆mod faces in ΣpX . This proposition plays an important
role in section 6.

Let W1 and W2 be Weyl cones in X with tip at p. The Weyl cone Wi determines a face ΣpWi

in the spherical building (ΣpX,∆mod).

Sublemma 4.4.1 Suppose that ΣpW1 = ΣpW2 in ΣpX. Then W1 ∩W2 is a neighborhood of p in
W1 and W2.

Proof. According to lemma 4.1.2 each point in the face ΣpW1 = ΣpW2 is the direction of a segment
in W1 ∩W2 which starts at p. We can pick finitely many points in ΣpW1 = ΣpW2 whose convex
hull is the whole face. The convex hull of the corresponding segments is contained in the convex set
W1 ∩W2 and is a neighborhood of p in W1 and W2. �

Locally the intersection of Weyl cones with tip at a point p is given by their infinitesimal
intersection in the space of directions ΣpX :

Lemma 4.4.2 If W1,W2 ∈ Wp, then there is a Weyl cone W ∈ Wp with ΣpW = ΣpW1 ∩ ΣpW2.
For every such W there is an ǫ > 0 so that:

W1 ∩W2 ∩Bǫ(p) = W ∩Bǫ(p)

Hence the intersection of Weyl cones with tip at the same point is locally a Weyl cone.

Proof. By lemma 3.4.2 the intersection ΣpW1 ∩ ΣpW2 is a ∆mod-face and hence there is a W ∈ Wp

such that ΣpW = ΣpW1 ∩ ΣpW2. By the previous sublemma, there are W ′
i ∈ Wp with W ′

i ⊆ Wi

and a positive ǫ so that
W ′

1 ∩Bǫ(p) = W ′
2 ∩Bǫ(p) = W ∩Bǫ(p)

for any such W . If x is a point in W1 ∩W2 different from p then
→
px∈ ΣpW , so px ⊂ W ′

1 ∩W ′
2.

Therefore
W1 ∩W2 ∩Bǫ(p) = W ′

1 ∩W
′
2 ∩Bǫ(p) = W ∩Bǫ(p).

�

Corollary 4.4.3 If W1, . . . ,Wk ∈ Wp, then there is an ǫ > 0 such that (∪iWi) ∩ Bp(ǫ) maps
isometrically to (∪iCpWi) ∩B(ǫ) ⊂ CpX via logp.
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Proof. Let C denote the finite subcomplex of ΣpX detemined by ∪iΣpWi. Pick σ1, σ2 ∈ C. By
lemma 4.2.3 these lie in an apartment ΣpAσ1σ2 ⊆ ΣpX for some apartment Aσ1σ2 ⊂ X passing
through p. If σ1 is a face of ΣpWi and σ2 is a face of ΣpWj , then by the sublemma above we may
assume without loss of generality that (W σ1

i ∪W σ2

j )∩Bp(ǫ) ⊆ Aσ1σ2 where W σ1

i (resp. W σ2

j ) is the
subcone of Wi (resp. Wj) with ΣpW

σ1

i = σ1 (resp. ΣpW
σ2

j = σ2). Since there are only finitely many
such pairs σ1, σ2 ∈ C, for sufficiently small ǫ > 0, every pair of segments px1, px2 ⊆ ∪iWi bounds a
flat triangle provided |pxi| < ǫ. �

4.4.1 Another building structure on ΣpX, and the local behavior of Weyl sectors.

Let α ⊂ ΣpX be a ∆mod-apartment. By lemma 4.2.3 there is an apartment A ⊂ X with ΣpX = α,
and by corollary 4.4.3 any two such apartments coincide near p. Hence the walls in A which pass
through p define a reflection group Wα ⊂ Isom(α).

Lemma 4.4.4 The reflection group Wα contains the reflection group W th
α coming from the thick

spherical building structure on ΣpX.

Proof. Let m ⊂ α be a wall for the ∆th
mod(p) structure. There are apartments Ai ⊂ X through

p, i = 1, 2, 3, so that ΣpA1 = α and the ΣpAi intersect in half-apartments with boundary wall
m. By corollary 4.4.3 the pairwise intersections of the Ai are half-spaces near p. Choose charts
ιA1 , ιA2 , ιA3 ∈ A and let φij ∈Waff be the unique isometry inducing ι−1

Ai
◦ ιAj

. Then φ12 ◦ φ23 ◦φ31

is a reflection at a wall w passing through x = ι−1
A1

(p) and satisfying ΣpιA1w = m. �

Fixing one apartment α ⊂ ΣpX , we take a chart ι : S −→ α from the atlas Ath(p), and enlarge
Ath(p) by precomposing each chart ι′ ∈ Ath(p) with elements of ι−1

∗ (Wα) ⊂ Isom(S). Clearly this

defines an atlas A(p) for a spherical building structure modelled on ∆mod(p)
def
= α/Wα.

Let A,A1 ⊂ X be apartments so that ΣpA = α, ΣpA1 = α1, and α ∩ α1 contains a chamber
C ⊂ α. If ιA, ιA1 : E −→ X are charts from the atlas A, then since A ∩ A1 is a cone near p by
lemma 4.4.3, it follows that Σp(ιA1 ◦ ι−1

A ) : ΣpA = α −→ α1 = ΣpA1 carries Wα faces in α to Wα1

faces in α1, while at the same time it carries ∆mod(p) faces of α to ∆mod(p) faces of α1. So every
∆mod(p) face σ ⊂ ΣpX is a Wα′ face for every apartment α′ containing σ. Since the Wα′ ’s are all
isomorphic, this clearly implies that ΣpW is a ∆mod(p) face for every Weyl sector with tip at p. So
we have shown:

Proposition 4.4.5 There is a spherical building structure (ΣpX,A(p)) modelled on (S,∆mod(p))
so that ∆mod(p)-faces in ΣpX correspond bijectively to the spaces of directions of Weyl sectors
with tip at p. In particular, if A ⊂ X is any apartment passing through p, then there is a 1-1
correspondence between walls m ⊂ A passing through p and ∆mod(p)-walls in the apartment ΣpA,
given by m 7→ Σpm. When X is a thick building, then A(p) coincides with Ath(p) for every p ∈ X.

Corollary 4.4.6 Corollary 4.4.3 holds when the Wi are Weyl sectors with tip at p. If A1 and A2

be apartments in X then A1 ∩ A2 is either empty or a Weyl polyhedron. In particular, if A1 ∩ A2

contains a complete regular geodesic then A1 = A2.

Proof. Each Weyl sector with tip at p is a finite union of Weyl cones with tip at p. Hence a finite
union of Weyl sectors with tip at p is a finite union of Weyl cones with tip at p, and the first
statement follows.
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If A1, A2 ⊂ X are apartments and p ∈ A1 ∩ A2, then ΣpQ1 ∩ ΣpA2 is a convex ∆mod(p)
subcomplex of ΣpAi. Hence there are ∆mod(p) half apartments h1, . . . , hk ⊂ ΣpA1 so that ∩ihi =
ΣpA1 ∩ ΣpA2. By proposition 4.4.5, for each i there is a half-apartment Hi ⊂ A with ΣpHi = hi.
Therefore A1∩A2∩Bp(ǫ) = (∩Hi)∩Bp(ǫ) and so A1∩A2 is a Weyl polyhedron near p. Consequently
A1 ∩A2 is a Weyl polyhedron. �

4.5 Discrete Euclidean buildings

We call the Euclidean building X discrete if the affine Weyl group Waff is discrete or, equivalently,
if the collection of walls in the Euclidean Coxeter complex E is locally finite.

If p is a point in E then σp denotes the intersection of all closed half-apartments containing
p, i.e. the smallest Weyl polyhedron containing p. By corollary 4.4.6, each affine coordinate chart
ιA : E → X maps σp to the minimal Weyl polyhedron in X which contains ιA(p). Hence for any
point x ∈ X there is a minimal Weyl polyhedron σx containing it. We say that x spans σx. σx is
the intersection of all half-apartments containing x and, if X is thick, the intersection of all such
apartments. The lattice of Weyl polyhedra σy with x ∈ σy is isomorphic to the polyhedral complex
KΣxX .

Proposition 4.5.1 In a discrete Euclidean building X each point x has a neighborhood Bǫ(x) which
is canonically isometric to the truncated Euclidean cone of height ǫ over ΣxX.

Proof. Let ιA : E → X be a chart with x = ιA(p) and choose ǫ > 0 so that any wall intersecting
Bǫ(p) contains p. Then for any point y ∈ Bǫ(p), the polyhedron σy contains x and any apartment
intersecting Bǫ(p) passes through x. Hence any two segments xy and xz of length < ǫ lie in a
common apartment and it follows that Bǫ(p) is isometric to a truncated cone. �

Assume now that Waff is discrete and cocompact. Then the walls partition E into polysim-
plices which are fundamental domains for the action of Waff . This induces on X a structure as a
polysimplicial complex. The polysimplices are spanned by their interior points. If X is moreover
irreducible, then this complex is a simplicial complex.

4.6 Flats and apartments

Proposition 4.6.1 Any flat F in X is contained in an apartment. In particular, the dimension of
a flat is less or equal to the rank of X.

Proof. Among the faces in ∂TitsX which intersect the sphere ∂TitsF we pick a face σ of maximal
dimension. Then σ ∩ ∂TitsF is open in ∂TitsF . Let c be a geodesic in F with c(∞) ∈ Int(σ) and
let A be an apartment containing c. Then ∂TitsA contains σ and c(−∞) and convexity implies
∂TitsF ⊆ ∂TitsA. Since F ∩A 6= ∅, it follows that F is contained in the apartment A. �

As a consequence, we obtain the following geometric characterization of apartments in Euclidean
buildings:

Corollary 4.6.2 The r-flats in X are precisely the apartments.

The next lemma says that a regular ray which stays at finite Hausdorff distance from an apart-
ment approaches this apartment at a certain minimal rate given by the extent of its regularity.
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Lemma 4.6.3 Suppose ξ ∈ ∂TitsX is regular and that the ray pξ remains at bounded distance from
an apartment F . Then every point x ∈ pξ with

d(x, p) ≥
d(p, F )

sin(d∆mod
(θξ, ∂∆mod))

lies in F .

Proof. Let y be a point on the ray πA(p)ξ, and let z ∈ py be the point where the segment py
enters A (we may have z = y). By lemma 4.1.2 ∠z(p,A) > 0, and by lemma 3.4.1 we have
∠z(p,A) ≥ d∆mod

(θ(pz), ∂∆mod). The comparison triangle ∆(a, b, c) in the Euclidean plane for the
triangle ∆(p, πA(p), z) satisfies ∠b(a, c) ≥ π

2 and ∠c(a, b) ≥ d∆mod
(θ(pz), ∂∆mod). Hence d(p,A) ≥

d(p, z) sin(d∆mod
(θ(pz), ∂∆mod)). Since θ(pz) = θ(py) → θ(pξ) as y ∈ pξ tends to ∞, the claim

follows. �

Corollary 4.6.4 Each complete regular geodesic which lies in a tubular neighborhood of an apart-
ment A must be contained in A. If A1 and A2 are apartments in X and A2 lies in a tubular
neighborhood of A1, then A1 = A2.

Another implication of the previous lemma is the following analogue of lemma 4.4.2 at infinity.

Lemma 4.6.5 If C1, C2 ⊂ X are Weyl chambers with ∂TitsC1 = ∂TitsC2, then there is a chamber
C ⊆ C1 ∩ C2.

Proof. It is enough to consider the case that the building X is irreducible. The claim is trivial if
the affine Weyl group is finite and we can hence assume that Waff is cocompact. If ρ is a regular
geodesic ray in C1 then, by the previous lemma, it enters C2 in some point p and C1 ∩ C2 contains
the metric cone K centered at p with ideal boundary ∂TitsK = ∂TitsCi. Since Waff is cocompact,
K clearly contains a Weyl chamber. �

Proposition 4.6.6 There is a bijective correspondence between apartments in X and ∂TitsX given
by:

A ⊆ X ↔ ∂TitsA ⊆ ∂TitsX

Proof. We have to show that every apartment K in ∂TitsX is the boundary of a unique apartment
in X . Since K contains a pair of regular antipodal points, there is a regular geodesic c whose ideal
endpoints lie in K. c is contained in an apartment A. Since the apartments ∂TitsA and K have
antipodal regular points in common, they coincide as a consequence of lemma 3.6.1. A is unique by
corollary 4.6.4. �

Lemma 4.6.7 Let A be an apartment in X. If c is a geodesic arriving at p ∈ A, it can be extended
into A.

Proof. If η is the direction of c at p then, by lemma 3.10.2, η has an antipode in the spherical
apartment ΣpA. Hence c has an extension into A. �
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Corollary 4.6.8 For any point x and any apartment A in X the geodesic cone over A at x lies in
the cone over ∂TitsA. In particular, it is contained in a finite union of apartments passing through
x.

Sublemma 4.6.9 Let Y be a Euclidean building with associated admissible spherical polyhedron
∆mod. Then for each direction δ ∈ int(∆mod) the subset θ−1(δ) in the geometric boundary ∂∞Y is
totally disconnected with respect to the cone topology.

Proof. Suppose that y, y′, y′′ ∈ Y so that θ(yy′) = θ(yy′′) = δ. Define the point z by yy′ ∩ yy′′ = yz.
If z 6= y′, y′′ then the angle rigidity axiom EB2 implies that ∠z(y

′, y′′) ≥ α0 := 2cdotd∆mod
(δ, ∂∆mod)

and by triangle comparison we obtain:

|y′z| ≤
1

sinα0
· d(y′, yy′′)

As a consequence, for each z ∈ Y the closed subset {ξ ∈ ∂∞Y |θ(ξ) = δ and z ∈ yξ} of θ−1(δ) is also
open and we see that each point in θ−1(δ) has a neighborhood basis consisting of open and closed
sets. �

4.7 Subbuildings

A subbuilding X ′ ⊆ X is by definition a metric subspace which admits a Euclidean building structure.
This implies that X ′ is closed and convex and that ∂TitsX

′ is a spherical subbuilding of ∂TitsX which
is closed with respect to the cone topology. We consider a partial converse:

Proposition 4.7.1 Let X be a Euclidean building and B ⊆ ∂TitsX a subbuilding of full rank. Then
the union X ′ of all apartments A with ∂TitsA ⊆ B has the following properties:

• If X ′ is closed then it is a subbuilding of full rank and the subbuilding ∂TitsX
′ ⊆ ∂TitsX is the

closure B̄ of B with respect to the cone topology. Furthermore, X ′ is the unique subbuilding
with ∂TitsX

′ = B̄.

• If X is discrete or locally compact then X ′ is closed.

Proof. Observe that

X ′ ∪ {A apartment|∂TitsA ⊆ B} = ∪{A apartment|∂TitsA ⊆ B̄}.

We first show that X ′ is a convex subset. Consider points x1, x2 ∈ X ′. There are apartments Ai
with x1 ∈ Ai ⊆ X ′. By lemma 3.10.2, there exist ξi ∈ ∂TitsAi with ∠xi

(x3−i, ξi) = π. The canonical
map ψ : ∂TitsX → Σx1X is a building morphism and satisfies the assumption of proposition 3.11.2.
Thus, since ∠x1(ξ1, ξ2) = π, there is an apartment ∂TitsA ⊆ X ′ which contains ξ1, ξ2 and projects
isometrically to Σx1X via ψ. This means that x1 ∈ A. Consequently x1x2 ⊂ A and X ′ is convex.
Similarly, one shows that any ray and geodesic in X ′ lies in an apartment A which is limit of
apartments An with ∂TitsAn ⊆ B, i.e. ∂TitsA ⊆ B̄ and A ⊆ X ′. The building axioms are inherited
from X and if X ′ is a closed subset then it is complete and a Hadamard space. This proves assertion
(i).
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(ii) Assume that X is discrete and x ∈ X̄ ′. Any point x′ ∈ X ′ lies in an apartment A ⊆ X ′, and
if x′ is sufficiently close to x then A contains x. Hence X ′ is close in this case.

Assume now that X is locally compact and that (xn) ⊂ X ′ is Cauchy with limit x ∈ X . Let
p ∈ X ′ be some base point. Any segment pxn lies in some apartment An ⊆ X ′ and we can pick
rays px′nξn in An so that limx′n = x and θξn = θpx. After passing to a subsequence, we may
assume that (ξn) converges to a point ξ ∈ B̄. Since θξn = θξ, lemma 4.1.2 implies that the segments
pξn ∩ pξ ⊂ X ′ ∩ pξ converge to pξ. Hence pξ contains x lies in X ′. �

4.8 Families of parallel flats

Let X be a Euclidean building and F ⊆ X a flat. If another flat F ′ has finite Hausdorff distance
from F then F and F ′ bound a flat strip, i.e. an isometrically embedded subset of the form F × I
with a compact interval I ⊂ R. In this case, the flats F and F ′ are called parallel. Consider the
union PF of all flats parallel to F . PF is a closed convex subset of X and splits isometrically as

PF ∼= F × Y.

Proposition 4.8.1 PF is a subbuilding of X and Y admits a Euclidean building structure.

Proof. By proposition 4.6.1, PF is the union of all apartments which contain F in a tubular neigh-
borhood, and ∂TitsPF is the union of all apartments in ∂TitsX which contain the sphere ∂TitsF .
The subset ∂TitsPF ⊆ ∂TitsX is convex by lemma 4.1.2 and a subbuilding by proposition 3.10.3.
Proposition 4.7.1 implies that PF is a subbuilding of X . As a consequence, the Hadamard space Y
inherits a Euclidean building structure. �

If dim(F ) = rank(X) − 1, then Y is a building of rank one, i.e. a metric tree. Since ΣyY is
in this case a zero-dimensional spherical building, any two rays yη1 and yη2 in Y either initially
coincide or their union is a geodesic. This implies:

Lemma 4.8.2 (i) Let H1 and H2 be two flat half-spaces of dimension rank(X) whose intersection
H1 ∩H2 coincides with their boundary flats. Then H1 ∪H2 is an apartment.

(ii) If A1, A2, A3 ⊆ X are apartments, and for each i 6= j the intersection Ai ∩ Aj is a half-
apartment, then A1 ∩A2 ∩A3 is a wall in X.

Lemma 4.8.3 Let C1, C2, C3 ⊂ ∂TitsX be distinct adjacent chambers, with π = C1 ∩ C2 ∩C3 their
common panel. Then there is a p ∈ X so that if Cone(p, π) = ∪{pξ|ξ ∈ π}, then logp′(Ci) ⊂ Σp′X
are distinct chambers for every p′ ∈ Cone(p, π) and any apartment A ⊂ X such that ∂TitsA contains
two of the Ci must intersect Cone(p, π).

Proof. Let m ⊂ ∂TitsX be a wall containing the panel π. Then each chamber Ci lies in a unique
half-apartment hi bounded by m, and pairs of these half-apartments form apartments. Let Aij be
the apartment in X with ∂TitsAij = hi ∪ hj . By lemma 4.8.2, ∩Aij is a wall M ⊂ X , and we
clearly have ∂TitsM = m. If p ∈ M , then the half-apartments logp hi ⊂ ΣpX are bounded by
logpm = ΣpM , so they are distinct; otherwise ∩Aij 6= M . Hence the chambers logpCi ⊂ logp hi are
distinct chambers.

If A ⊂ X is an apartment with Ci∪Cj ⊂ ∂TitsA, i 6= j, then there are chambers Ĉi, Ĉj ⊂ A∩Aij
with ∂TitsĈi = Ci, ∂TitsĈj = Cj . The Tits boundary of the Weyl polyhedron P = Aij ∩A contains
Ci ∪ Cj , so it intersects Cone(p, π). �
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4.9 Reducing to a thick Euclidean building structure

This subsection is the Euclidean analog of section 3.7.

Definition 4.9.1 LetX be a Euclidean building modelled on the Euclidean Coxeter complex (E,Waff ),
with atlas A′. The affine Weyl group may be reduced to a reflection subgroup W ′

aff ⊂Waff if there
is a W ′

aff compatible subset A′ ⊂ A forming an atlas for a Euclidean building modelled on (E,W ′
aff ).

In constrast to the spherical building case, the affine Weyl group of a Euclidean building does
not necessarily have a canonical reduction with respect to which it becomes thick. For example, a
metric tree with variable edge lengths does not admit a thick Euclidean building structure. However,
there is always a canonical minimal reduction, and this is thick when it has no tree factors.

Proposition 4.9.2 Let X be a Euclidean building modelled on (E,Waff ). Then there is a unique
minimal reduction W ′

aff ⊂ Waff so that (X,E,W ′
aff ) splits as a product

∏
Xi where each Xi

is either a thick irreducible Euclidean building or a 1-dimensional Euclidean building. The thick
irreducible factors are either metric cones over their Tits boundary (when the affine Weyl group has
a fixed point) or their affine Weyl group is cocompact.

Proof. We first treat the case when (∂TitsX,∆mod) is a thick irreducible spherical building of
dimension at least 1.

Step 1: Each apartment A ⊂ X has a canonical affine Weyl group GA. If A ⊂ X is an apartment, a
wall M ⊂ A is strongly singular if there is an apartment A′ ⊂ X so that A ∩A′ is a half apartment
bounded by M . Since ∂TitsX is thick and irreducible, for every wall m ⊂ ∂TitsA there is a strongly
singular wall M ⊂ A with ∂TitsM = m.

Sublemma 4.9.3 The collection MA of strongly singular walls in A is invariant under reflection
in any strongly singular wall in A.

Proof. Note that a wall M ⊂ A is strongly singular iff ΣpM ⊂ ΣpX is a wall with respect to
the thick building structure (ΣpX,∆

th
mod(p)); this is because any half-apartment h ⊂ ΣpX with

boundary ΣpM can be lifted to a half-apartment H ⊂ X with boundary M , ΣpH = h by applying
proposition 3.11.4 to the surjective spherical building morphism logp : ∂TitsX −→ ΣpX .

If M1,M2 ⊂ A are strongly singular walls intersecting at p ∈ A, then ΣpMi is a ∆th
mod(p) wall

in ΣpA ⊂ ΣpX , and so if we reflect ΣpM2 in ΣpM1 (inside the apartment ΣpA), we get another
∆th
mod(p) wall which is then the space of directions of the desired strongly singular wall M3.

Now suppose that M1,M2 ∈ MA are parallel. ∆mod is irreducible so there is a strongly singular
wall M3 intersecting both Mi at an acute angle. Reflect M2 in M3 to get M4, reflect M3 in M1 to
get M5, and M4 in M1 to get M6, and finally reflect M6 in M5 to get a wall which is the image of
M2 under reflection in M1. The walls Mi are all in MA, so we’re done. �

Proof of proposition 4.9.2 continued. Hence for every apartment A ⊂ X the collection of strongly
singular walls in A gives us a group GA ⊂ Isom(A) which is generated by reflections.

Step 2: The group GA is independent of A. Since ∂TitsGA ⊂ Isom(∂TitsA) is an irreducible Coxeter
group, it follows that GA is either a discrete group of isometries or it has a dense orbit. When GA
is discrete, it is generated by the reflections in the strongly singular walls which intersect a given
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GA-chamber in codimension 1 faces. When GA has a dense orbit, it is generated by all the reflections
in strongly singular walls passing through any open set. If two apartments A1 and A2 intersect in
an open set, it follows that GA1 is isomorphic to GA2 ; therefore GA is independent of A. So there
is a well-defined Coxeter complex (E,W ′

aff ) attached to X .

Step 3: Finding (E,W ′
aff ) apartment charts. If Z is a convex domain in an apartment A ⊂ X and

ι : U −→ Z is an isometry of an open set U ⊂ E onto an open set in Z, then there is a unique
extension of ι to an isometry of a convex set Ẑ ⊂ E onto Z.

Pick an apartment A0 ⊂ X and an isometry ι0 : E −→ A0 which carries W ′
aff ⊂ Isom(E)

to GA0 . Then restrict to a W ′
aff chamber Ĉ0 ⊂ E and its image C0

def
= ι0(Ĉ0) ⊂ A0. Given

any chamber C ⊂ X , there is an apartment A1 containing subchambers of C and C0. There is a
unique isometry ι1 : E −→ A1 so that ι−1

1 and ι−1
0 agree on the subchambers C0 ∩A0 ⊂ A1, and a

unique isometry ιC : E ⊃ Ĉ −→ C so that ι−1
C and ι−1

1 agree on the subchamber C ∩ A1. If A2 is
another apartment with ∂TitsC0, ∂TitsC ⊂ ∂TitsA2, we get another isometry ι2 : E −→ A2; but the
convex set A1 ∩A2 contains subchambers of C0 and C, so ι−1

1 and ι−1
2 agree on a subchamber of C.

Therefore ιC is independent of the choice of apartment asymptotic to C0 ∪ C.

Sublemma 4.9.4 Let A ⊂ X be an apartment, and let C1, C2 ⊂ ∂TitsA be adjacent ∆mod-chambers
(C1 ∩ C2 is a panel). For i = 1, 2 we let ιC1(A) : E −→ A be the unique isometric extension of ιC̄i

where C̄i ⊂ A is a W ′
aff -chamber with ∂TitsC̄i = Ci. Then ι−1

C2
(A) ◦ ιC1(A) ∈W ′

aff .

Proof. For i = 1, 2 let Aij ⊂ X be an apartment with C0 ∪ Ci ⊂ ∂TitsAi. If C1 is contained in the
convex hull of C0∪C2 (or C2 ⊂ ConvexHull(C0∪C1)) then C1∪C2 ⊂ ∂Tits(A∩A2), so the sublemma
follows from the fact that ι−1

Ci
(A) restricted to A ∩ A2 coincides with ι−1

2 |
A∩A2

. So we may assume
that there is a chamber C3 ⊂ ∂TitsA1∩∂TitsA2 which meets C1 and C2 in the panel π = C1∩C2. By
lemma 4.8.3 (applied to the original Euclidean building (X,E,Waff )), there is a point p ∈ A1∩A2 so
that Cone(p, π) ⊂ A1 ∩A2 and logp(Ci) ⊂ ΣpX are distinct chambers for i = 1, 2, 3. Therefore ι−1

1

and ι−1
2 agree on Cone(p, π). Hence the isometries ι−1

C1
(A), ι−1

C2
agree on Cone(p, π), which means that

ι−1
C2

(A)◦ ιC1(A) : E −→ E is a reflection. But since Σp(Cone(p, π)) = logp(C1)∩ logp(C2)∩ logp(C3),

Cone(p, π) spans a strongly singular wall in A and so the reflection ι−1
C2

(A) ◦ ιC1(A) ∈ W ′
aff . �

Proof of proposition 4.9.2 continued. By sublemma 4.9.4, we see that for each apartment A ⊂ X ,
there is a canonical collection of isometries ι : E −→ A which are mutally W ′

aff compatible, and

which are compatible with the ιC : Ĉ −→ C for every chamber C ⊂ A. We refer to such isometries
as W ′

aff -charts, and to the collection of W ′
aff -charts (for all apartments) as the (E,W ′

aff ) atlas A′.

Sublemma 4.9.5 Let A1, A2 ⊂ X be apartments with d-dimensional intersection P = A1 ∩A2. If
p ∈ P is an interior point of the Weyl polyhedron P , then there is an apartment A3 ⊂ X so that A3

contains a neighborhood of p ∈ P , and A3 ∩Ai contains a Weyl chamber.

Proof. We have ΣpA1 ∩ ΣpA2 = ΣpP by lemma 4.4.3. Let σ1 ⊂ ΣpP be a d − 1-dimensional face
of ΣpP , and let σ2 be the opposite face in ΣpP . If τ1 ⊂ ΣpA1 is a chamber containing σ1, then
we may find an opposite chamber τ2 ⊂ ΣpA2. But then τ2 contains a face opposite σ1, and this
must be σ2 since each face in an apartment has a unique opposite face in that apartment. Let
Ci ⊂ ∂TitsAi be the chamber such that logpCi = τi. Then there is a unique apartment A3 ⊂ X
with C1 ∪ C2 ⊂ ∂TitsA3. ΣpP ⊂ ΣpA3, so A3 has the properties claimed. �
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Proof of proposition 4.9.2 continued. If A1, A2 ⊂ X are apartments with A1∩A2 6= ∅, then any W ′
aff

charts ιi : E −→ Ai areW ′
aff compatible since by sublemma 4.9.5 we have a third apartmentA3 ⊂ X

so that ι1 and ι2 are both W ′
aff compatible with ι3 : E −→ A3 on an open set U ⊂ A1 ∩A2. Hence

A′ gives X the structure of a Euclidean building modelled on (E,W ′
aff ). From the construction of

W ′
aff it is clear that (X,A′) is thick.

Step 4: The case when X is a 1-dimensional Euclidean building, i.e. a metric tree. Let A0 ⊂ X
be an apartment, ∂TitsA0 = {η1, η2}. For each p ∈ X let πA0(p) ∈ A0 be the nearest point in A0,
and pA0 ∈ A0 be a point (there are at most two) with d(pA0 , πA0(p)) = d(p,A0). Let M ⊂ A0 be
the set of points pA0 where p ∈ X is a branch point: |ΣpX | ≥ 3; let G ⊂ Isom(A0) be the group
generated by reflections at points in M. For each ξ ∈ ∂TitsX \ η1 there is a unique isometry ιξ
from the apartment A0 = η1η2 to the apartment η1ξ which is the identity on the half-apartment
η1η2 ∩ η1ξ. If ξ1 6= ξ2, then we have two isometries ι1, ι2 : A0 −→ ξ1ξ2 where ι−1

i agrees with ιξi
on

η1ξi ∩ ξ1ξ2. By inspection ι−1
2 ◦ ι1 ∈ G. Hence for each apartment A ⊂ X we have a well-defined

set of isometries A0 −→ A. As in step 3 it follows that these isometries are G-compatible, so they
define an atlas A′ for a Euclidean building structure on X .

Step 5: X is an arbitrary Euclidean building modelled on (E,Waff ). Let W
def
= ∂TitsWaff , and

let W ′ ⊂ W ⊂ Isom(∂TitsE) be the canonical reduced Weyl group of ∂TitsX given by section 3.7.
Let W̄aff ⊂ Isom(E) be the inverse image of W ′ under the canonical homomorphism Isom(E) −→

Isom(∂TitsE). Let θ′ : ∂TitsX −→ ∆′
mod

def
= S/W ′ be the ∆′

mod-anisotropy map. We may define
∆′
mod-directions for rays xξ ⊂ X by the formula θ′(xξ) = θ′(ξ) ∈ ∆′

mod. We define the ∆′
mod-

direction of a geodesic segment xy ⊂ X by setting θ′(xy) = θ′(xξ1) for any ray xξ1 extending xy; if
xξ2 is another ray extending xy then ξ1 ∈ ∂TitsX and ξ2 ∈ ∂TitsX are both antipodes of η ∈ ∂TitsX
where yη is a ray extending yx, so θ′(xy) is well-defined. The remaining Euclidean building axioms
follow easily from the fact that any two segments px, py initially lie in an apartmentA ⊂ X (corollary
4.4.3) and for our compatible (E, W̄aff ) apartment charts we may take all isometric embeddings
i : E −→ X for which ∂Titsi : ∂TitsE −→ ∂TitsX is an apartment chart for (∂TitsX,∆

′
mod).

We may now apply proposition 4.3.1 to see that (X,E, W̄aff ) splits as a product of Euclidean
buildings (X,E, W̄aff ) = (

∏
Xi,

∏
Ei,

∏
W i
aff ) so that each ∂TitsXi is irreducible. Let (W i

aff )
′ ⊂

W i
aff , Ai be the canonical subgroup and atlas constructed in steps 1-4, and set W ′

aff =
∏

(W i
aff )

′ ⊂

Isom(E), A′ =
∏

Ai. Then (Xi, Ei, (W
i
aff )

′,Ai) has the properties claimed in the proposition. Fix
an apartment A0 ⊂ X and a chart ιA0 ∈ A. If A0, . . . , Ak = A0 is a sequence of apartments so that
Ai−1 ∩Ai is a half-apartment for each i, then there is a unique isometry gi : Ai−1 −→ Ai so that gi
is the identity on Ai−1∩Ai. Axiom EB4 implies that gi ◦ . . .◦g1 ◦ ιA0 ∈ A for each i, so in particular
g = gk ◦ . . . ◦ g1 ∈ ιA0∗(Waff ). From the construction of (W i

aff )
′ it is clear that the group of all

such isometries g : A0 −→ A0 contains ι′A0
(W ′

aff ) ⊂ Isom(A0) where ι′A0
∈ A′. So W ′

aff ⊂Waff is
a minimal reduction of Waff . �

4.10 Euclidean buildings with Moufang boundary

This is a continuation of section 3.12.

Proposition 4.10.1 (More properties of root groups) Let B be a thick irreducible spherical
building of dimension at least 1, and let X be a Euclidean building with Tits boundary B.
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1. For every root group Ua ⊂ Aut(B,∆mod) and every g ∈ Ua there is a unique automorphism
gX : X −→ X so that ∂TitsgX = g. In other words, if G is the group generated by the root
groups, then the action of G on ∂TitsX “extends” to an action on X by building automorphisms.
Henceforth we will use the same notation to denote this extended action.

2. Suppose g ∈ Ua is nontrivial. If A ⊆ X is an apartment such that ∂TitsA ⊃ a, then g(A) ∩ A
is a half-apartment; moreover Fix(g) ∩A = g(A) ∩A.

Proof. See [Ron, Affine buildings II, esp. prop. 10.8], or [Ti2, p. 168].
For the remainder of this section X will be a thick, nonflat irreducible Euclidean building of

rank ≥ 2. Therefore ∆mod is a spherical simplex with diameter < π
2 and the faces of ∂TitsX define

a simplicial complex.

Lemma 4.10.2 Let A ⊂ X be an apartment, p0 ∈ X, p ∈ A the nearest point in A, and a ⊂ ∂A a
root. Then the stabilizer of p0 in the root group Ua fixes p.

Proof. Using lemma 3.10.2 extend the geodesic segment p0p to a geodesic ray p0ξ = p0p∪ pξ so that
the ray pξ lies in the half apartment Cone(p, a) ⊂ A. If g ∈ Ua fixes p0, then it fixes the ray p0ξ,
and hence the half-apartment Cone(p, a). �

We now assume that the spherical building (∂TitsX,∆mod) is Moufang. Pick p ∈ X , and let
(ΣpX,∆

th
mod(p)) denote the thick spherical building defined by the space of directions ΣpX with its

reduced Weyl group (see section 3.7). Suppose H+ ⊂ X is a half-apartment whose boundary wall

passes through p, h+
def
= ΣpH+ ⊂ ΣpX is a ∆th

mod(p) root, and let a+ = ∂TitsH+ ⊂ ∂TitsX . If
Ua+ is the root group associated to a+, and Va+ ⊂ Ua+ is the subgroup fixing p, then we have a
homomorphism Σp : Va+ −→ Aut(ΣpX,∆

th
mod(p)).

Lemma 4.10.3 The image of Va+ is the root group Uh+ associated with h+, and this acts transitively
on apartments in ΣpX containing h+. In particular, (ΣpX,∆

th
mod(p)) is a thick Moufang spherical

building.

Proof. By corollary 3.11.5, if h− ⊂ ΣpX is a ∆th
mod(p) root with ∂h− = ∂h+ = Σp(∂H+), then

there is a half-apartment H− ⊂ X so that H− and H+ have the same boundary and ΣpH− = h−.
Given two such ∆mod(p) roots h1

−, h
2
− ⊂ ΣpX so that hi− ∪ h+ forms an apartment in ΣpX , we

get two half apartments Hi
− so that Hi

− ∪H+ forms an apartment in X . Since (∂TitsX,∆mod) is
Moufang, the root group Ua+ ⊂ Aut(∂TitsX,∆mod) contains an element which carries H1

− to H2
−.

By 3.12.2, g “extends” uniquely to an isometry g : X −→ X which carries the apartment H1
− ∪H+

to the apartment H2
− ∪ H+, fixing H+ (see 4.10.1). It remains only to show that the isometry

Σpg : ΣpX −→ ΣpX is contained in the root group Uh+ ⊂ Aut(ΣpX,∆
th
mod(p)). Clearly Σpg fixes

h+. Let C ⊂ ΣpX be a ∆th
mod(p) chamber such that C ∩h+ contains a panel π with π 6⊂ ∂h+. Using

proposition 3.11.4 we may lift C to a (subcomplex) C̃ ⊂ ∂TitsX so that C̃ ∩ ∂a+ maps isometrically
to C ∩ ∂h+ under logp : ∂TitsX −→ ΣpX . g fixes an interior point of C̃, so Σpg fixes an interior
point of C, which implies that Σpg fixes C as desired. �

Definition 4.10.4 A point s ∈ X is a spot if either
1. The affine Weyl group Waff has a dense orbit or
2. Waff is discrete and s corresponds to a 0-simplex in the complex associated with X.
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If A ⊆ X , then Spot(A) is the set of spots in A.

Lemma 4.10.5 If A ⊂ X is an apartment, p0 ∈ A is a spot, then for every p 6= p0 there is a root
a ⊂ ∂TitsA and a g ∈ Ua so that g fixes p0 but not p.

Proof. For each ∆th
mod(p0) root h+ ⊂ Σp0X we have a singular half-apartment H+ ⊂ A with

Σp0H+ = h+, and this gives us a root a+ = ∂TitsH+ ⊂ ∂TitsX , the root group Ua+, and the
subgroup Va+ ⊂ Ua+ fixing p0. By lemma 4.10.3, the image of Va+ in Aut(Σp0X,∆

th
mod(p0)) is the

root group Uh+ . Since (Σp0X,∆
th
mod(p0)) is Moufang, the group Gp0 generated by the Vh+ ’s as h+

runs over all ∆th
mod(p0) roots in ΣpA acts transitively on ∆th

mod(p0) chambers in Σp0X (see 3.12.2).

If p ∈ X − p0 is fixed by every Va+ , then
→
p0p∈ Σp0X is fixed by Gp0 , which means that it lies in

every ∆th
mod(p0) chamber of Σp0X , forcing

→
p0p∈ Σp0A. Hence the point q ∈ A nearest p is different

from p0, so we may find a singular half-apartment H+ ⊂ A containing p0 but not q (because p0 is a
spot), and use the root group U∂TitsH+ to move q while fixing H+. This contradicts the assumption
that p is fixed by every Va+ . �

Proposition 4.10.6 Let X be a thick, nonflat Euclidean building of rank at least two, and suppose
∂TitsX is an irreducible Moufang spherical building. Let G ⊂ Aut(∂TitsX,∆mod) be the subgroup
generated by the root groups of ∂TitsX, and consider the isometric action of G on X.

1. The fixed point set of a maximal bounded subgroup M ⊂ G is a spot, and the stabilizer of a
spot is a maximal bounded subgroup.

2. A spot p ∈ X lies in the apartment A ⊂ X iff p is the unique spot in X which is fixed by the
stabilizer of p in Ua for every root a ⊂ ∂TitsA.

3. If A ⊂ X is an apartment, and a ⊂ ∂TitsA is a root, then as g runs through all non-trivial
elements of Ua, we obtain all singular half-apartments H ⊂ A with ∂TitsH = a as subsets
A ∩ Fix(g).

Proof. Let M ⊆ G be a maximal bounded subgroup. By the Bruhat-Tits fixed point theorem [BT],
M has a nonempty fixed-point set Fix(M). Fix(M) contains a spot since when Waff is discrete
the fixed point set of a group of building automorphisms is a subcomplex. By lemma 4.10.5, we
see that if p0 ∈ Fix(M), then maximality of M forces Fix(M) = {p0}. Conversely, if p0 ∈ X is
a spot, then the stabilizer of p0 has fixed point set {p0} by lemma 4.10.5, and by the Bruhat-Tits
fixed point theorem, the stabilizer is a maximal bounded subgroup.

For every p ∈ X and every apartment A ⊂ X , let G(p,A) be the group generated by the
stabilizers of p in the root groups Ua, where a ⊂ ∂TitsA is a root. If p ∈ A ⊂ X is a spot, then by
lemma 4.10.5 we have Fix(G(p,A)) = {p}. If p 6∈ A ⊂ X , then the nearest point p0 ∈ A to p is
contained in Fix(G(p,A)) by lemma 4.10.2; hence Fix(G(p,A)) contains a spot other than p0.

Claim 3 follows from property 2 of proposition 4.10.1, the fact that ∂TitsX is Moufang, and the
fact that every singular half-apartment is the intersection of two apartments.

�

Definition 4.10.7 If A ⊂ X is an apartment, then the half-apartment topology on Spot(A) is
the topology generated by open singular half-apartments contained in A.

With the half-apartment topology, Spot(A) is discrete when Waff is discrete and coincides with
the metric topology when Waff has dense orbit.
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5 Asymptotic cones of symmetric spaces and Euclidean build-
ings

In this section we arrive at the heart of the geometric part in the proof of our main results. We
show that asymptotic cones of symmetric spaces and ultralimits of sequences of Euclidean buildings
(of bounded rank) are Euclidean buildings.

Our main motivation for choosing the Euclidean building axiomatisation EB1-4 is that these
axioms behave well with respect to ultralimits. Indeed, the Euclidean building axioms EB1, EB3
and EB4 which are also satisfied by symmetric spaces, i.e. the existence of ∆mod-directions and an
apartment atlas, pass directly to ultralimits. However, unlike Euclidean buildings, symmetric spaces
do not satisfy the angle rigidity axiom EB2. The verification of EB2 for ultralimits of symmetric
spaces (lemma 5.2.2) is the only technical point and, as opposed to the building case (lemma 5.1.2),
non-trivial. Symmetric spaces satisfy angle rigidity merely at infinity; their Tits boundaries are
spherical buildings. Intuitively speaking, the rescaling process involved in forming ultralimits pulls
the spherical building structure (the missing angle rigidity property) from infinity to the spaces of
directions.

5.1 Ultralimits of Euclidean buildings are Euclidean buildings

Theorem 5.1.1 Let Xn, n ∈ N, be Euclidean buildings with the same anisotropy polyhedron ∆mod.
Then, for any sequence of basepoints ⋆n ∈ Xn, the ultralimit (Xω, ⋆ω) = ω-lim(Xn, ⋆n) admits a
Euclidean building structure with anisotropy polyhedron ∆mod.

Proof. Xω is a Hadamard space (lemma 2.4.4). A Euclidean building structure on Xω consists of
an assignment of ∆mod-directions for segments (axioms EB1+EB2) and of an atlas of compatible
charts for apartments (axioms EB3+EB4), cf. section 4.1.2. We assume that X has no Euclidean
deRham factor. The general case allowing a Euclidean deRham factor is a trivial consequence.

EB1: We can assign a ∆mod-direction to an oriented geodesic segment in Xω as follows. A
segment xωyω arises as ultralimit of a sequence of segments xnyn in X , and we define the direction
as:

θ(xωyω) := ω-lim
n

θ(xnyn) ∈ ∆mod (37)

The ultralimit (37) exists because ∆mod is compact. Inequality (28) in EB1 passes to the ultralimit:

d∆mod
(ω-lim θ(xnyn), ω-lim θ(xnzn)) ≤ ∠̃xω

(yω , zω).

This implies that the left-hand side of (37) is well-defined and

d∆mod
(θ(xωyω), θ(xωzω)) ≤ ∠̃xω

(yω, zω).

Thus axiom EB1 holds. EB1 implies lemma 4.1.1. Therefore, segments which contain a given
segment have the same ∆mod-direction and we can assign ∆mod-directions to geodesic rays.

EB2: Since geodesics are extendible in Xω, it suffices to show:

Lemma 5.1.2 If xω ∈ Xω and ξω, ηω ∈ ∂TitsXω then ∠xω
(ξω , ηω) is contained in D := D(θ(xωξω), θ(xωηω)).
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Proof. The rays xωξω and xωηω are ultralimits of sequences of rays xnξn and xnηn in Xn and we can
choose ξn, ηn ∈ ∂TitsXn so that θ(ξn) = θ(xωξω) and θ(ηn) = θ(xωηω). Let ρn : [0,∞) → Xn be a
unit speed parametrisation for the geodesic ray xnξn. The angle ∠ρn(t)(ξn, ηn) is non-decreasing and
continuous from the right in t (lemma 2.1.5) and, since Xn satisfies EB2, takes values in the finite
set D. For d ∈ D set tn(d) := min{t ≥ 0 : ∠ρn(t)(ξn, ηn) ≥ d} ∈ [0,∞] and tω(d) := ω-lim tn(d).
Then there exist d0 ∈ D and T > 0 with tω(d0) = 0 and 2T ≤ tω(d) for all d > d0. The points
x′n := ρn(tn(d0)) and x′′n := ρn(T ) satisfy for ω-all n: x′ω := ω-limx′n = xω , x′′ω := ω-limx′′n 6= xω
and the ideal triangle ∆(x′n, x

′′
n, ηn) has angle sum π. By a version of the Triangle Filling Lemma

2.1.4 for ideal triangles in Hadamard spaces, ∆(x′n, x
′′
n, ηn) can be filled in by a semi-infinite flat

strip Sn. The ultralimit ω-limSn is a semi-infinite flat strip filling in the ideal triangle ∆(xω , x
′′
ω , ηω)

and therefore ∠xω
(ξω , ηω) = ω-lim ∠x′

n
(ξn, ηn) = d0 ∈ D, as desired.

EB3 and EB4: After enlarging the affine Weyl groups of the model Coxeter complexes of the
buildings Xn, we may assume that the Xn are modelled on the same Euclidean Coxeter complex
(E,Waff ) whose affine Weyl group Waff contains the full translation subgroup of Isom(E), i.e.
ρ−1(W ) = Waff where ρ : Isom(E) → Isom(∂TitsE) is the canonical homomorphism (26) asso-
ciating to an affine isometry its rotational part. (Here we use that the Xn don’t have Euclidean
factors.)

The atlases An for the building structures on Xn give rise to an atlas for a building structure on
Xω as follows: If ιn ∈ An are charts for apartments in Xn so that ω-lim d(ιn(e), ⋆n) < ∞ for (one
and hence) each point e ∈ E, then the ultralimit ιω := ω-lim ιn : E → Xω is an isometric embedding
which parametrises a flat in Xω. The collection Aω of all such embeddings ιω satisfies axiom EB3
in view of lemma 2.4.4. Axiom EB4 holds trivially, because coordinate changes ι−1

ω ◦ ι′ω between
charts ιω , ι

′
ω ∈ Aω are ∆mod-direction preserving isometries between convex subsets of E and such

isometries are induced by isometries in ρ−1(W ) = Waff . Hence Aω is an atlas for a Euclidean
building struture on Xω with model Coxeter complex (E,Waff ), and the proof of the theorem is
complete. �

Corollary 5.1.3 Let X be a Euclidean building modelled on the Coxeter complex (E,Waff ) and

denote by Ŵaff the subgroup of Isom(E) generated by Waff and all translations which preserve the
de Rham decomposition of (E,Waff ) and act trivially on the Euclidean de Rham factor. Then any

asymptotic cone Xω inherits a Euclidean building structure modelled on (E, Ŵaff ). The building
Xω is thick if X is thick and the affine Weyl group Waff is cocompact.

Proof. Xω = ω-lim(Xn, ∗n) where the λn are scale factors with ω-limλn = 0, Xn is the rescaled
building λnXn and ∗n ∈ Xn are base points. Xω inherits the Euclidean building structure modelled
on (E, Ŵaff ) which was constructed in the proof of the previous theorem.

Suppose now in addition that X is thick and Waff is cocompact. Then any wall wn ⊂ Xn

branches, i.e. there are half-apartments Hni ⊂ Xn, i = 1, 2, 3, so that the intersection of any two
of them equals wn and the union of any two of them is an apartment (lemma 4.8.2). If a sequence
of walls wn satisfies ω-limd(wn, ⋆n) < ∞, it follows that the ultralimit of the sequence (wn) is a
branching wall in Xω. Since Waff is cocompact by assumption, there is a positive number d so
that any flat in X , whose ideal boundary is a wall in ∂TitsX , lies within distance at most d from a
branching wall in X . In view of ω-limλn = 0, this implies that any flat in Xω, whose ideal boundary
is a wall in ∂TitsXω, is a branching wall. Thus, the Euclidean building structure on Xω is thick. �
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5.2 Asymptotic cones of symmetric spaces are Euclidean buildings

We start by recalling some well-known facts from the geometry of symmetric spaces which will be
needed later; as references for this material may serve [BGS, Eb].

Let X be a symmetric space of noncompact type. In particular, X is a Hadamard manifold, i.e.
a complete simply-connected Riemannian manifold of nonpositive sectional curvature. To simplify
language, we assume that X has no Euclidean factor. The identity component G of the isometry
group of X is a semisimple Lie group and acts transitively on X . A k-flat in X is a totally geodesic
submanifold isometric to Euclidean k-space. We recall that G acts transitively on the family of
maximal flats. In particular, any two maximal flats in X have the same dimension r; it is called the
rank ofX . We will call the maximal flats also apartments. Pick an apartment E inX and letWaff be
the quotient of the set-wise stabiliser StabG(E) by the point-wise stabiliser FixG(E). ThenWaff can
be identified with a subgroup of Isom(E). This subgroup is generated by reflections at hyperplanes
and contains the full translation group. We call (E,Waff ) the Euclidean Coxeter complex associated
to X . Its isomorphism type does not depend on the choice of E, because G acts transitively on
apartments. Consider the collection of all isometric embeddings ι : E → X so that Waff is identified
with StabG(ι(E))/NormG(ι(E)). Walls, singular flats, Weyl chambers et cetera are defined as
images of corresponding objects in E via the maps ι. Note that the singular flats are precisely the
intersections of apartments. The induced isometric embeddings ∂Titsι : ∂TitsE → ∂TitsX form an
atlas for a thick spherical building structure on ∂TitsX modelled on the spherical Coxeter complex
(∂TitsE,W ) = ∂Tits(E,Waff ). W is isomorphic to the Weyl group of the symmetric space X .
Composing the anisotropy map θ∂T itsX : ∂TitsX → ∆mod with the map SX → ∂TitsX which assigns
to every unit vector v the ideal endpoint of the geodesic ray t 7→ exp(tv) one obtains a natural map

θ : SX → ∆mod (38)

from the unit sphere bundle of X to the anisotropy polyhedron ∆mod. We will call θ(v) the ∆mod-
direction of v ∈ SX ; ∆mod-directions of oriented segments, rays and geodesics are defined as the
∆mod-direction of the velocity vectors for a unit speed parametrisation. The orbits for the natural
G-action on SX are precisely the inverse images under θ of points. Let SpX be the unit sphere at
p ∈ X , equipped with the angular metric, and let Gp be the isotropy group of p. Then θ induces a
canonical isometry Sp/Gp ≃ ∆mod where Sp/Gp is equipped with the orbital distance metric. The
quotient map SpX → ∆mod is 1-Lipschitz and, for any x, y ∈ X we have the following counterpart
to inequality (28):

d∆mod
(θ(

→
px), θ(

→
py)) ≤ ∠p(x, y) ≤ ∠̃p(x, y) (39)

The goal of this section is to prove the following theorem.

Theorem 5.2.1 Let X be a non-empty symmetric space with associated Euclidean Coxeter complex
(E,Waff ). Then, for any sequence of base points ∗n ∈ X and scale factors λn with ω-limλn = 0,
the asymptotic cone Xω = ω-lim(λnX, ∗n) is a thick Euclidean building modelled on (E,Waff ).
Moreover, Xω is homogeneous, i.e. has transitive isometry group.

Proof. EB1: Let ∆mod be the anisotropy polyhedron for (E,Waff ). The construction of ∆mod-
directions for segments in Xω is the same as in the building case. We define directions by (37) and
(39) implies that the definition is good and that EB1 holds.

EB3 and EB4: The Euclidean Coxeter complex (E,Waff ) is invariant under rescaling, because
Waff ⊂ Isom(E) contains all translations. Apartments in Xω and their charts arise as ultralimits
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of sequences of apartments and charts in X , and axioms EB3 and EB4 follow as in the building case,
cf. section 5.1.

EB2: The only nontrivial task is to verify the angle rigidity axiom EB2. This will be done in
the following lemma.

Lemma 5.2.2 If p ∈ Xω and x1, x2 ∈ Xω − {p}, then ∠p(x1, x2) ∈ D(θ(px1), θ(px2)).

Proof. If z′k ∈ px1 − p and z′k → p, then ∠z′
k
(x1, x2) → ∠p(x1, x2) and ∠z′

k
(p, x2) → π − ∠p(x1, x2)

by lemma 2.1.5. Since θ(z′kx2) → θ(px2) we can find x′1k ∈ z′kx1, x
′
2k ∈ z′kx2, and p′k ∈ z′kp such

that ∠̃z′
k
(x′1k, x

′
2k) → ∠p(x1, x2), ∠̃z′

k
(p′k, x

′
2k) → π − ∠p(x1, x2), and θ(z′kx

′
2k) = θ(z′kx2) → θ(px2).

Since geodesic segments in Xω are ultralimits of geodesic segments in λnX , we can find sequences
pk, x1k, x2k, zk ∈ X such that zk ∈ pkx1k, ∠̃zk

(x1k, x2k) → ∠p(x1, x2), ∠̃zk
(pk, x2k) → π−∠p(x1, x2),

θ(zkx2k) → θ(px2), θ(pkx1k) → θ(px1), and finally |zkx1k|, |zkx2k|, |zkpk| → ∞. Applying a sequence
of elements gk ∈ G = (Isom(X))o we may assume in addition that zk is a constant sequence, zk ≡ o.
Hence the sequences of segments ox1k, ox2k, opk subconverge to rays oξ1, oξ2, and oη respectively,
which satisfy the following properties:

1. θ∂T itsX(ξi) = θ(oξi) = θ(pxi)

2. ∠Tits(ξ1, ξ2) ≤ ∠p(x1, x2), ∠Tits(η, ξ2) ≤ π − ∠p(x1, x2) by lemma 2.3.1.

3. oξ1 ∪ oη is a geodesic, so ∠Tits(ξ1, η) = π.

We conclude that

∠p(x1, x2) = ∠Tits(ξ1, ξ2) ∈ D(θ(ξ1), θ(ξ2)) = D(θ(px1), θ(px2))

as desired. �

Hence we have constructed a Euclidean building struture on Xω. Since G acts transitively on
Weyl chambers in X , it follows that the isometry group of Xω acts transitively on Weyl chambers
in Xω; in particular, Xω is homogeneous. To see that the building structure on Xω is thick it
is therefore enough to check that the induced spherical building structure of Σ∗ω

Xω modelled on
(∂TitsE,W ) is thick. One way to see this is to construct a canonical isometric embedding α of the
thick spherical building ∂TitsX modelled on (∂TitsE,W ) into Σ∗ω

Xω by assigning to ξ ∈ ∂TitsX the
initial direction in ∗ω of the geodesic ray ω-lim ∗nξ in Xω. That α is isometric follows, for instance,
from the definition (8) of the Tits distance. This finishes the proof of the theorem. �

6 The topology of Euclidean buildings

In this section, X will denote a rank r Euclidean building. The main goal in this section is to
understand homeomorphisms of X . As motivation for the approach taken here, consider a closed
interval I topologically embedded in an R-tree T . Because every interior point p ∈ I − ∂I of the
interval disconnects T , every path c : [0, 1] −→ T joining the endpoints of I must pass through
p, i.e. c([0, 1]) ⊇ I. A similar phenomenon occurs in X if we consider topological embeddings of
closed balls B ⊂ X of dimension equal to rank(X): if [c] ∈ Hr(X, ∂B) and [∂c] ∈ Hr−1(∂B) is the
fundamental class of ∂B, then the image of the chain c contains B. By using 4.6.8, we can construct
such c so that Image(c)−U is contained in finitely many flats, where U is any given neighborhood
of ∂B. It follows that any b ∈ B − ∂B has a neighborhood Vb in X such that B ∩ Vb is contained in
finitely many flats.
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6.1 Straightening simplices

If Z is a Hadamard space, there is a natural way to “straighten” singular simplices σ : ∆k −→ Z (cf.
[Thu]). Using the usual ordering on the vertices of the standard simplex, we define the straightened
simplex Str(σ) by “coning”: if Str(σ|∆k−1

) has been defined, then Str(σ) is fixed by the requirement

that on each segment joining p ∈ ∆k−1 with the vertex opposite ∆k−1 in ∆k, Str(σ) restricts to
a constant speed geodesic. Str(σ) lies in the convex hull of the vertices of σ. This straightening
operation induces a chain equivalence on C∗(Z). By using the geodesic homotopy between Str(σ)
and σ, one constructs a chain homotopy H from the chain map Str to the identity with the property
that Image(H(σ)) ⊆ ConvexHull(Image(σ)) for any singular simplex σ.

When Z is the Euclidean building X , then it follows from lemma 4.6.8 that for every singular
chain c ∈ Ck(Cone(X)), Image(Str(c)) is contained in finitely many apartments.

Corollary 6.1.1 If V ⊆ U ⊆ X are open sets, then Hk(U, V ) = 0 for every k > r = rank(X).

Proof. If [c] ∈ Hk(U, V ), then after barycentrically subdividing if necessary, we may assume that the
convex hull of every singular simplex in c (respectively ∂c) lies in U (respectively V). The straightened
chain Str(c) determines the same relative class as c since Image(H(c)) ⊂ U , Image(H(∂c)) ⊂ V
and

Str(c) − c = ∂H(c) +H(∂c).

But the straightened chain is carried by a finite union of apartments (corollary 4.6.8), which is a
polyhedron of dimension rank(X), so [Str(c)] = [c] = 0. �

Lemma 6.1.2 Let Z be a regular topological space, and assume that Hk(U1, U2) = 0 for every pair
of open subsets U2 ⊆ U1 ⊆ Z, k > r. If Y ⊆ Z is a closed neighborhood retract and U ⊂ Z is open,
then the homomorphism Hr(Y, Y ∩ U) −→ Hr(Z,U) induced by the inclusion is a monomorphism.
In particular, the inclusion Y −→ Z induces a monomorphism Hr(Y, Y − y) → Hr(Z,Z− y) of local
homology groups for every y ∈ Y .

Proof. If [c1] ∈ Hr(Y, Y ∩ U), then there is a compact pair (K1,K2) ⊆ (Y, Y ∩ U) and [c2] ∈
Hr(K1,K2) so that i∗([c2]) = [c1] where i : (K1,K2) −→ (Y, Y ∩U) is the inclusion. If [c1] is in the
kernel of Hr(Y, Y ∩ U) −→ Hr(Z,U) then there is a compact pair (K1,K2) ⊆ (K3,K4) ⊆ (Z,U)
such that j∗([c2]) = 0, where j : (K1,K2) −→ (K3,K4) is the inclusion.

Let r : V −→ Y be a retraction, where V is an open neighborhood of Y in Z. Choose disjoint
open sets W1,W2 ⊂ Z such that Y − U ⊆ W1, K4 ⊆ W2; this is possible since Y − U is closed,
K4 is compact, and Z is regular. Shrink V if necessary so that r−1(Y − U) ⊂ W1. We now have:
Hr(Y, Y ∩U) −→ Hr(V, r

−1(Y ∩U)) is a monomorphism since r is a retraction; Hr(V, r
−1(Y ∩U)) −→

Hr(V ∪W2, r
−1(Y ∩ U) ∪W2) is an isomorphism by excision; Hr(V ∪W2, r

−1(Y ∩ U) ∪W2) −→
Hr(Z, r

−1(Y ∩U)∪W2) is a monomorphism by the exact sequence of the triple (Z, V ∪W2, r
−1(Y ∩

U) ∪W2) and Hr+1(Z, V ∪W2) = 0. It follows that [c1] = 0. �

6.2 The Local structure of support sets

Recall that X denotes a rank r Euclidean building. Let Y be a subset of a topological space Z. If
[c] ∈ Hk(Z, Y ), then we define Support(Z, Y, [c]) ⊂ Z − Y to be the set of points z ∈ Z − Y such
that the image of [c] in the local homology group Hk(Z,Z − {z}) is nonzero. Support(Z, Y, [c]) is a
closed subset in Z − Y , and contained in the image of the chain c.
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Lemma 6.2.1 Let B be a topologically embedded closed r-ball in X, Y a subset containing ∂B, and
denote by µ the image of a generator of Hr(B, ∂B) induced by the inclusion (B, ∂B) → (X,Y ).
Then Support(X,Y, µ) = B − Y .

Proof. We may apply lemma 6.1.2 since B is a closed (absolute) neighborhood retract. Therefore
Support(X,Y, µ) coincides with Support(B,B ∩Y, [B]) = B−Y where [B] denotes the generator of
Hr(B, ∂B) which is mapped to µ. �

Now let U be an open subset of X and consider [c] ∈ Hr(X,U). After subdividing the chain c
if necessary, we may assume that the convex hull of each simplex of ∂c is contained in U , so that
[Str(c)] = [c]. By 6.1, c1 = Str(c) is carried by a finite union of apartments P , so [c] is the image
of [c1] ∈ Hr(P ,P ∩ U) under the inclusion Hr(P ,P ∩ U) −→ Hr(X,U). Applying lemma 6.1.2 to
the neighborhood retract P , we find that the inclusion Support(P ,P ∩ U, [c1]) in X coincides with
Support(X,U, [c]). Hence we have reduced the problem of understanding Support(X,U, [c]) to a
problem about supports in the finite polyhedron P .

Recall that ΣpX has a thick spherical building structure with anisotropy polyhedron ∆th
mod(p)

(see section 4.2.2).

Lemma 6.2.2 Pick p ∈ P \ Ū . When ǫ > 0 is sufficiently small, logp maps Support(P , P ∩
U, [c1]) ∩ Bp(ǫ) isometrically to (∪iC(Ci)) ∩ B(ǫ) ⊂ C(ΣpX) = CpX, where the Ci ⊂ ΣpX are
∆th
mod(p) chambers and C(Ci) ⊂ CpX is the cone over Ci.

Proof. P is a finite union of apartments, so by corollary 4.4.3 when ǫ > 0 is sufficiently small logp
maps P ∩ Bp(ǫ) isometrically to (∪iCpAi) ∩ B(ǫ) ⊂ CpX , where the Ai ⊂ P are the apartments

passing through p. We may assume that U ⊂ X \ Bp(ǫ). Then [c1] determines a class [c2] ∈

Hr(P ∩Bp(ǫ),P ∩∂Bp(ǫ)). ∪iΣpAi ⊂ ΣpX has a polyhedral structure induced by the thick building

atlas Ath(p), and this induces a polyhedral structure on the pair (P ∩ Bp(ǫ),P ∩ ∂Bp(ǫ)). The
r-dimensional faces of this polyhedron are (truncated) cones over ∆th

mod(p) chambers in the ∆th
mod(p)

subcomplex ∪iΣpAi ⊂ ΣpX . Hence the lemma follows from elementary homology theory. �

Corollary 6.2.3 If B is a topologically embedded r-ball in X, then for every p ∈ X \ ∂B there are
finitely many ∆th

mod(p) chambers Ci ⊂ ΣpX so that logp maps B∩Bp(ǫ) isometrically to (∪iC(Ci))∩
B(ǫ) ⊂ CpX for sufficiently small ǫ > 0.

Proof. Let µ ∈ Hr(B, ∂B) be the relative fundamental class. Then Support(X, ∂B, [µ]) = B \ ∂B
by lemma 6.2.1, and the corollary follows from lemma 6.2.2. �

6.3 The topological characterization of the link

If Z is a topological space and z ∈ Z, then we say that two subsets S1, S2 ⊂ Z have the same germ
at z if S1 ∩N = S2 ∩N for some neighborhood N of z. The equivalence classes of subsets with the
same germ at z will be denoted Germz(Z).

Pick a point x in the rank r Euclidean building X . Consider the collection S1(x) of germs of
topological embeddings of Rr passing through x ∈ X . Let S2(x) be the lattice of germs generated
by S1(x) under finite intersection and union.
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Lemma 6.3.1 The lattice S2(x) is naturally isomorphic to the lattice KΣxX generated by the
∆th
mod(x) faces of ΣxX under finite intersection and union.

Proof. By lemma 6.2.2 we know that elements of S1(x) correspond to finite unions of ∆th
mod(x)

chambers in ΣxX . Intersections of ∆th
mod(x) chambers yield ∆th

mod(x) faces of ΣxX , so we have a
well defined map of lattices Ξ : S2(x) −→ KΣxX by taking each element of S2(x) to its space of
directions at x (which is a finite union of ∆th

mod(x) faces). Ξ is injective by Corollary 4.4.3. The
image of Ξ contains the apartments in KΣxX , and since (ΣxX,Ath) is a thick spherical building
every ∆th

mod(x) face of ΣxX is an intersection of apartments, and hence Ξ is onto. �

6.4 Rigidity of homeomorphisms

In this section we prove the following results about homeomorphisms of Euclidean buildings:

Proposition 6.4.1 A homeomorphism of Euclidean buildings carries apartments to apartments.

Note that homeomorphic Euclidean buildings must have the same rank since the rank is the
highest dimension where local homology groups don’t vanish.

Theorem 6.4.2 Let X, X ′ be thick Euclidean buildings with topologically transitive affine Weyl
group and φ : Y = X×En → Y ′ = X ′×En

′

a homeomorphism. Then n = n′, and φ carries fibers of
the projection Y → X to fibers of the projection Y ′ → X ′ inducing a homeomorphism φ̄ : X → X ′.

Theorem 6.4.3 Let X =
∏k
i=1Xi, X

′ =
∏l
i=1X

′
i be thick Euclidean buildings with topologically

transitive affine Weyl groups, and irreducible factors Xi, X
′
j. Then a homeomorphism φ : X → X ′

preserves the product structure.

Theorem 6.4.4 Let X, X ′ be irreducible thick Euclidean buildings with topologically transitive
affine Weyl group, and suppose rank(X) ≥ 2. Then any homeomorphism X −→ X ′ is a homo-
thety.

6.4.1 The induced action on links

Let X , X ′ be Euclidean buildings, and let φ : X −→ X ′ be a homeomorphism. Pick a point x in X ,
and set x′ = φ(x) ∈ X ′. The homeomorphism φ induces an isomorphism of lattices S2(x) → S2(x

′)
(see section 6.3) and therefore a dimension preserving isomorphism Kφx : KΣxX −→ KΣx′X ′ of
lattices. By proposition 3.8.1 the lattice isomorphism Kφx is induced by an isometry Σxφ : ΣxX →
Σx′X ′.

6.4.2 Preservation of flats

Consider a singular k-flat F . Its germ at a point x ∈ F is a subcomplex of KΣxX . The image of
this subcomplex L under Kφx is the subcomplex L′ associated to the germ of φ(F ) in KΣφ(x)X . L
determines a standard (k − 1)-sphere in ΣxX . Since Kφx is induced by an isometry Σxφ : ΣxX →
Σφ(x)X , L′ determines a standard (k − 1)-sphere in Σφ(x)X . This sphere is the space of directions
of a singular k-flat F ′. φ(F ) and F ′ coincide locally, because their germs coincide. Hence φ(F )
is a complete simply-connected metric space which is locally isometric to Euclidean k-space E

k.
Therefore, φ(F ) is isometric to Ek.
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6.4.3 Homeomorphisms preserve the product structure

Let X,X ′ be Euclidean buildings which decompose as products

X =

k∏

i=1

Xi, X ′ =

l∏

i=1

X ′
i

of thick irreducible Euclidean buildings Xi, X
′
j with almost transitive affine Weyl group. We have

a corresponding decomposition of the spherical buildings ΣxX and Σx′X ′ into joins of irreducible
spherical buildings:

ΣxX = ◦Σxi
Xi, Σx′X ′ = ◦Σx′

i
X ′
i

We recall that this metric join decomposition is unique, cfṗroposition 3.3.3, and therefore for each
x ∈ X the isometry Σxφ : ΣxX → Σφ(x)X

′ decomposes as a join Σxφ = ◦Σxφi of isometries
Σxφi : Σxi

Xi → Σ(φ(x))i
X ′
σ(i) where σ is a permutation of {1, . . . , k}. In particular, X and X ′ have

the same number of irreducible factors. We claim that the permutation σ is independent of the
point x. To see this, note that any two points y, z ∈ X lie in an apartment A and consider the map
between apartments φ|A : A→ φ(A) (compare section 6.4.2). A parallel family of singular flats in A
is carried by φ|A to a continuous family of singular flats in φ(A); since there are only finitely many
parallel families of singular subspaces, we conclude by continuity that φ|

A
carries parallel singular

flats to parallel singular flats. Consequently the permutation σ is independent of x as claimed. We
assume without loss of generality that σ is the identity. Our discussion implies that a singular flat
contained in a fiber of the projection pi : X → Xi is carried by φ to a flat in a fiber of the projection
p′i : X ′ → X ′

i. Therefore each fiber of the projection pi : X → Xi is carried by φ to a fiber of
the projection p′i : X ′ → X ′

i. Hence for each i there is a homeomorphism φi : Xi → X ′
i such that

φi ◦ pi = p′i ◦ φ, and it follows that φ =
∏

i φi.

6.4.4 Homeomorphisms are homotheties in the irreducible higher rank case

Let X , X ′ be as in theorem 6.4.4. Let A be an apartment in X and consider the foliations of A
by parallel singular hyperplanes. Since X is irreducible of rank r, we can pick out r + 1 of these
foliations H0, . . . ,Hr such that the corresponding collection of roots is r-independent (i.e. every
subset of r elements is linearly independent) (compare section 3.1). In fact, this property of the root
system is equivalent to irreducibility.

The image of A under φ is an apartment A′ and the foliations Hi are carried to foliations H′
i

of A′ by parallel singular hyperplanes. Note that these are also r-independent, since any r-fold
intersection of mutually non-parallel hyperplanes belonging to these foliations is a point. Choose
affine coordinates x1, . . . , xr for A such that the leaves of H0 are level sets of x1 + · · · + xr and the
leaves of the foliation Hi for i ≥ 1 are level sets of xi. Choose similar coordinates x′1, . . . , x

′
r on

the target A′ so that φ({xi = 0}) = {x′i = 0} and φ({
∑
xi = 1}) = {

∑
x′i = 1}. Consider those

leaves in A which contain lattice points. Since φ maps leaves to leaves one sees by taking successive
intersections of these leaves that φ carries lattice points to lattice points by a homomorphism. By
the same reason φ induces a homomorphism on rational points and hence, by continuity, an R-linear
isomorphism.

We now know that φ |A: A→ A′ is an affine map preserving singular subspaces. Angles between
singular subspaces are preserved, because the isomorphisms of simplicial complexes Kφx are induced
by isometries. Hence the simplices {xi ≥ 0,

∑
xi ≤ 1} and {x′i ≥ 0,

∑
x′i ≤ 1} are homothetic and
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φ is a homothety on A. By considering intersections of apartments one sees that the homothety
factors are the same for all apartments. We conclude that φ is a homothety.

6.4.5 The case of Euclidean deRham factors

We now consider Hadamard spaces X = Y ×En where Y is a thick Euclidean building of rank r−n
with almost transitive affine Weyl group. Clearly lemma 4.6.7 continues to hold for X , and so do
lemma 4.6.8 and the homological statements in section 6.1. Applying the reasoning from section 6.2
we conclude:

Lemma 6.4.5 Every topologically embedded r-ball in X is locally a finite union ∪iCi × En where
the Ci ⊂ Y are Weyl chambers.

It follows that every closed subset of X which is homeomorphic to E
n is a union of deRham

fibers, since its intersection with each fiber of p : X → Y is open and closed in this fiber. If x ∈ X ,
we may characterize the fiber of p : X → Y passing through x as the intersection of all closed subsets
homeomorphic to En which contain x.

Now let X ′ = Y ′ × En
′

, where Y ′ is a thick building of rank r′ − n′. If φ : X → X ′ is a
homeomorphism, then we have r = r′ by comparing local homology groups. Since the fibers of the
projection maps p : X → Y , p′ : X ′ → Y ′are characterized topologically as above, we conclude
that φ maps fibers of p homeomorphically onto fibers of p′; therefore n = n′ and φ induces a
homeomorphism φ̄ : Y → Y ′ of quotient spaces.

7 Quasiflats in symmetric spaces and Euclidean buildings

In this section, X will be a Hadamard space which is a finite product of symmetric spaces and
Euclidean buildings. We have a unique decomposition

X = E
n ×

∏

i

Xi (40)

where n ∈ N0 and the Xi are non-flat irreducible symmetric spaces or Euclidean buildings. The
maximal Euclidean factor En is called the Euclidean deRham factor. An apartment is by definition
a maximal flat and splits as a product of apartments in the factors. All apartments in X have equal
dimension and it is called the rank of X . Singular flats are defined as products of singular flats
in the factors. If the building factors are thick, then singular flats can be characterized as finite
intersections of apartments. Note that the only singular flat in E

n is E
n itself and hence every

singular flat in X is a union of deRham fibers

7.1 Asymptotic apartments are close to apartments

Proposition 7.1.1 Let Q be a family of subsets in X with the property that for any sequence
of sets Qn ∈ Q, base points qn ∈ Qn, and scale factors dn with ω-lim dn = ∞, the ultralimit
ω-limn(

1
dn
Qn, qn) is an apartment in the asymptotic cone ω-limn(

1
dn
X, qn). Then there is a positive

constant D so that any set Q ∈ Q is a D Hausdorff approximation of a maximal flat F (Q) in X.
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Proof. Let us consider a single set Q in Q and choose a base point q ∈ Q. The ultralimit ω-lim( 1
n
Q, q)

is an apartment in the asymptotic cone ω-lim( 1
n
X, q) which contains the base point ∗ := (q).

Step 1. We first show that Q is, in a sense to be made precise, quasi-convex in regular directions.
Let xωyω be a regular segment in ω-lim( 1

n
Q, q) which contains ∗ as interior point. xωyω is the

ultralimit of a sequence of segments xnyn in X with endpoints xn, yn ∈ Q. There is a compact set
A ⊂ Int(∆mod) which contains the directions of ω-all segments xnyn. Let Fn be a maximal flat
containing the segment xnyn. (Fn is unique for ω-all n.) Pick ǫ > 0 so that d(A, ∂∆mod) > ǫ. Denote
by Dn the diamond-shaped subset of all points p ∈ Fn so that ∠xn

(p, yn) ≤ ǫ and ∠yn
(p, xn) ≤ ǫ.

Sublemma 7.1.2 There exists r > 0 so that for ω-all n the sets Dn are contained in the tubular
r-neighborhood of Q.

Proof. We prove this by contradiction: Choose a point zn ∈ Dn at maximal distance dn from Q
and assume that ω-limdn = ∞. Then the asymptotic cone ω-lim( 1

dn
X, zn) = Cone(X) contains the

apartments F ′ := ω-limn
1
dn
Fn and F ′′ := ω-limn

1
dn
Q. The point zω = (zn) is contained in F ′ but

not in F ′′ and therefore F ′ and F ′′ are distinct apartments in Cone(X). Let zωx′ω (respectively
zωy′ω) be the ultralimits of the sequences of segments znxn (respectively znyn). By the choice of
the points zn, the points x′ω and y′ω are contained in F ′′ ∪ ∂∞F ′′. Since we can extend incoming
geodesic segments in apartments according to 4.6.7, we may assume without loss of generality that
x′ω , y

′
ω ∈ ∂∞F

′′. Let W1 and W2 be the Weyl chambers in Cone(X) centered at zω which are spanned
by the rays r1 := zωx′ω and r2 := zωy′ω. By the choice of ǫ and the definition of Dn, the rays r1 and
r2 yield in the space of directions Σzω

Cone(X) interior points of antipodal chambers. Consequently,
the union W1 ∪W2 contains a regular geodesic c passing through zω. Since ∂∞Wi ∩ ∂∞F ′′ contains
the regular point ri(∞), the chamber ∂∞Wi is entirely contained in ∂∞F

′′. Thus the ideal endpoints
c(±∞) of c are contained in ∂∞F

′′ and we conclude by 4.6.4 that c ⊂ F ′′ and hence zω ∈ F ′′, a
contradiction. �

Step 2. Suppose qn ∈ Q and ω-lim 1
n
d(q, qn) = 0.

Sublemma 7.1.3 ω-lim d(qn, Dn) <∞.

Proof. The constant sequence q and the sequence qn yield the same point in the ultralimit ω-lim
(

1
n
X, q

)
,

which is an interior point of ω-lim
(

1
n
Dn, q

)
. Therefore

ω-lim
d(qn, Dn)

d(qn, Fn \Dn)
= 0. (41)

If ω-limd(qn, Dn) = ∞, then Ḟ := ω-lim
(

1
d(qn,Dn)Dn, qn

)

⊆ ω-lim
(

1
d(qn,Dn)Fn, qn

)

is a com-

plete apartment in ω-lim
(

1
d(qn,Dn)X, qn

)

(by (41)) which lies at unit distance from ω-lim qn ∈
(

1
d(qn,Dn)Q, qn

)

, which is also an apartment in ω-lim
(

1
d(qn,Dn)X, qn

)

. This contradicts corollary

4.6.4. �

We now know that there is a r1 > 0 such that for every R > 0, Q ∩Bq(R) ⊂ Nr′(Dn) for ω-all
n, for otherwise we could produce a sequence contradicting sublemma 7.1.310.

Step 3. By steps 1 and 2, we know that there is an r2 such that for every R, Q ∩ Bq(R) and
Dn ∩Bq(R) are r2-Hausdorff close to one another for ω-all n.

10EXPLANATION OF THIS STATEMENT
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Sublemma 7.1.4 For every R > 0, Dn ∩ Bq(R) form an ω-Cauchy sequence11 with respect to the
Hausdorff metric.

Proof. Suppose X is a symmetric space. Since for ω-all n the sets Dn∩Bq(R) have mutual Hausdorff
distance ≤ 2r2, if the sublemma were false we could find Hausdorff convergent subsequences of {Dn}
with distinct limits. The limits would be distinct maximal flats lying at finite Hausdorff distance
from one another, which is a contradiction.

If X is a Euclidean building, then failure of the sublemma would give sequences kn, ln → ∞
and a radius R so that the Hausdorff distance between Dkn

∩ Bq(R) and Dln ∩ Bq(R) remains
bounded away from zero. Then the ω-lim(Dkn

, q) and ω-lim(Dln , q) are distinct apartments in the
Euclidean building ω-lim(X, q) lying at finite Hausdorff distance from one another, contradicting
corollary 4.6.4. �

By the sublemma, ω-limDn ∩ Bq(R) exists for all R (as an ω-limit of a sequence in the metric
space of subsets of Bq(R) endowed with the Hausdorff metric) and so we obtain a maximal flat
F ⊂ X with Hausdorff distance ≤ r2 from Q.

Step 4. We saw that each set Q in Q is the Hausdorff approximation of a maximal flat F (Q).
Denote by d(Q) the Hausdorff distance of Q and F (Q). Assume that there is a sequence of sets
Qn ∈ Q with lim d(Qn) = ∞. Choose base points un ∈ X so that un is contained in one of the
sets Qn or F (Qn) but not in the tubular d(Qn)/2-neighborhood of the other. Then the apartments
ω-lim 1

d(Qn)Qn and ω-lim 1
d(Qn)F (Qn) have finite non-zero Hausdorff distance in the asymptotic cone

ω-lim( 1
d(Qn)X,un). This contradicts 4.6.4. The proof of the proposition is now complete. �

Corollary 7.1.5 There is a positive constant D0 = D0(L,C,X,X
′) such that for any (L,C)-quasi-

isometry φ : X → X ′ and any apartment A in X, the image φ(A) is a D0-Hausdorff approximation
of an apartment A′ in X ′.

Proof. According to proposition 6.4.1, for any sequence of basepoints and any sequence of scale
factors λk, the asymptotic cone Φω of Φ carries apartments to apartments. We can apply proposition
7.1.1 to the collection Q of all images φ(A) ⊆ X ′ of apartments A in X . �

7.2 The structure of quasi-flats

In this section X will be a symmetric space or a locally compact Euclidean building of rank r, with
model polyhedron ∆mod. Y will be an arbitrary Euclidean building with model polyhedron ∆mod.

The goals of this section are:

Theorem 7.2.1 For each (L,C) there is a ρ such that every (L,C) r-quasiflat Q ⊂ X is contained
in a ρ-tubular neighborhood of a finite union of maximal flats, Q ⊂ Nρ(∪F∈FF ) where card(F) < ρ.

and

Corollary 7.2.2 The limit set of an (L,C) r-quasiflat Q ⊂ X consists of finitely many Weyl
chambers in ∂TitsX; the number of chambers can be bounded by L and C.

11A sequence xn in a metric space X is ω-Cauchy if a subsequence with full ω-measure is Cauchy. If X is complete,
then we define ω-limxn to be the limit of this subsequence.
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Lemma 7.2.3 Let P ⊂ Y be a closed subset homeomorphic to Rr. P is locally conical (by corollary
6.2.3), so it has a well-defined space of directions ΣpP for every p ∈ P . We have:

1. If p ∈ P then every v ∈ ΣpY has an antipode in ΣpP .

2. If w ∈ ΣpP , then there is a ray pξ ⊂ P , ξ ∈ ∂TitsY such that
→

pξ= w.

Proof. Since P is locally a cone over a ΣpP , we haveHr−1(ΣpP ) ≃ Z, and the inclusion ΣpP → ΣpY
induces a monomorphism Hr−1(ΣpP ) → Hr−1(ΣpY ) since ΣpY is an r − 1-dimensional spherical
building. Now if the first claim weren’t true, then ΣpP ⊂ ΣpY would lie inside the contractible open
ball Bv(π) ⊂ ΣpY , making Hr−1(ΣpP ) → Hr−1(ΣpY ) trivial.

The second claim now follows from the first by a continuity argument: w is the direction of a
geodesic segment contained in P since P is locally conical, and a maximal extension of this segment
must be a ray. �

Although we won’t need the following corollary, we include it because its proof is similar in spirit
to – but more transparent than – the proof of theorem 7.2.1.

Corollary 7.2.4 If P ⊂ Y is is bilipschitz to E
r then P is contained in a finite number of apart-

ments. The number of apartments is bounded by the biLipschitz constant of P .

Proof. Let α ∈ ∆mod be the barycenter of ∆mod, and consider the collection of rays with ∆mod-
direction α contained in P . Since P is biLipschitz to Er , a packing argument bounds the number of
equivalence classes of such rays (we know that the Tits distance between distinct classes of rays is
bounded away from zero (cf. 4.1.2)). Let S ⊂ ∂TitsY be the (finite) set of Weyl chambers determined
by this set of rays, and let T be the finite collection of flats in Y which are determined by pairs of
antipodal Weyl chambers in S. We claim that P is contained in ∪F∈T F . To see this, note that if
p ∈ P then by lemma 7.2.3 we can find a geodesic contained in P with ∆mod-direction α which starts
at p. This geodesic has ideal boundary points in S, so by 4.6.3 the geodesic lies in ∪F∈T F . �

Another consequence of lemma 7.2.3 is

Corollary 7.2.5 Pick α ∈ ∆mod and L,C, ǫ > 0. Then there is a D such that if Q ⊂ X is an
(L,C) r-quasiflat, y ∈ Q, and R > D, then there is a z ∈ Q with ∠(θ(yz), α) < ǫ, |d(y, z)−R| < ǫR.

Proof. If not, then there is a sequence Qk of quasiflats, yk ∈ Qk, and Rk → ∞ such that for
every zk ∈ Qk with |d(yk, zk) − Rk| < ǫRk we have ∠(θ(ykzk), α) ≥ ǫ. Taking the ultralimit of
1
Rk
Qk ⊂ 1

Rk
X we get yω ∈ Qω ⊂ Xω and for every zω ∈ Qω with |d(yω , zω) − 1| < ǫ we have

∠(θ(yωzω), α) ≥ ǫ. But this contradicts lemma 7.2.3 since Qω is biLipschitz to Er: we can pick

v ∈ Σyω
Qω with θ(v) = α and find a geodesic segment yωzω ⊂ Qω with

→
yωzω= v, and for ω − all k

zk satisfies the conditions of the lemma. �

Lemma 7.2.3 implies that quasi-flats “spread out”: a pair of points y0, z0 lying in a quasi-
flat Q ⊂ X can be extended to an almost collinear quadruple y1, y0, z0, z1 while maintaining the
regularity of ∆mod-directions. To deduce this we first prove a precise statement for Euclidean
buildings.

Lemma 7.2.6 Let α1 ∈ ∆mod be a regular point, and let ǫ1 > 0. Then there is a δ1 ∈ (0, ǫ1) with
the following property. If P ⊂ Y is a closed subset homeomorphic to R

r and y0, z0 ∈ P satisfy
∠(θ(y0z0), α1) ≤ δ1, then there are points y1, z1 ∈ P so that
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d(z0, z1) = d(y0, y1) = d(y0, z0) (42)

∠̃y0(y1, z0), ∠̃z0(y0, z1) > π − ǫ1 (43)

∠(θ(y1z1), α1) < δ1 (44)

The proof requires:

Sublemma 7.2.7 Suppose x, y, z ∈ Y and ∠x(y, z) = max(D(θ(xy), θ(xz)) (cf. 3.1). Then x, y, z

are the vertices of a flat (convex) triangle and
→
yz∈ ΣyY lies on the segment joining

→
yx to a point

v ∈ ΣyY , where θ(v) = θ(xz) and v and
→
yx lie in a single chamber.

Proof of sublemma 7.2.7: Extend the geodesic segments xy, xz to geodesic rays xξ1 and xξ2, ξi ∈
∂TitsX . By hypothesis

∠x(y, z) = max(D(θ(xy), θ(xz))) = max(D(θ(ξ1), θ(ξ2))) = ∠Tits(ξ1, ξ2).

So xξ1ξ2 determine a flat convex sector S. Note that
→
yx and

→

yξ2 lie in a single chamber of ΣyX

since ∠y(x, ξ2) = π−∠y(ξ1, ξ2) = π−maxD(θ(ξ1), θ(ξ2)) = minD(Ant(θ(ξ1)), θ(ξ2)) = minD(θ(
→
yx

), θ(ξ2)). Hence ∆xyz bounds a flat convex triangle T ⊂ S, and so
→
yz lies on the geodesic segment

which has endpoints
→
yx and

→

yξ2. �

Proof of lemma 7.2.6: Pick z1 ∈ P so that z0z1 ⊂ P , d(z0, z1) = d(y0, z0), θ(z0z1) = α, and
→
z0z1∈ Σz0Y lies in a chamber antipodal to

→
z0y0; similarly choose y1 ∈ P so that y0y1 ⊂ P , d(y0, y1) =

d(y0, z0), θ(y0y1) = Ant(α), and
→
y0y1∈ Σy0Y lies in a chamber antipodal to

→
y0z0. Applying sub-

lemma 7.2.7 we conclude that z0, y0, z1, are the vertices of a flat convex triangle, and
→
y0z1∈ Σy0Y

lies on the segment joining
→
y0z0 to v ∈ Σy0Y where θ(v) = θ(z0z1) = α and v and

→
y0z0 lie in the

same chamber. In particular
→
y0z1 and

→
y0y1 lie in antipodal chambers of Σy0Y , so applying lemma

7.2.7 again, we find that θ(
→
y1z1) lies on the segment joining θ(y0z1) to θ(y1y0) = α. y1 and z1 clearly

satisfy the stated conditions since ∠̃y0(y1, z0) ≥ ∠y0(y1, z0) = π − ∠(θ(y0z0, α) ≥ π − δ1 > π − ǫ1
and ∠̃z0(y0, z1) ≥ ∠z0(y0, z1) = π − ∠(θ(y0z0, α) ≥ π − δ1 > π − ǫ1. �

Corollary 7.2.8 Let α2 ∈ ∆mod be a regular point, and let L,C, ǫ2 > 0 be given. Then there are
D2 > 0, δ2 ∈ (0, ǫ2) with the following property. If Q ⊆ X is an (L,C) r-quasiflat, and y0, z0 ∈ Q
satisfy

d(y0, z0) > D2,∠(θ(y0z0), α2) ≤ δ2 (45)

then there are points y1, z1 ∈ Q so that

|d(z0, z1) − d(y0, z0)| , |d(y0, y1) − d(y0, z0)| < ǫ2d(y0, z0) (46)

∠̃y0(y1, z0), ∠̃z0(y0, z1) > π − ǫ2 (47)

∠(θ(y1z1), α2) < δ2 (48)
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Proof. Let δ2, λ2 be the constants produced by the previous lemma with α1 = α2, ǫ1 = ǫ2. We claim
that when y0, z0 ∈ Q and ∠(θ(y0z0), α2) < δ2 and d(y0, z0) is sufficiently large, then there will exist
points y1, z1 satisfying (46), (47), (48). But this follows immediately from the previous lemma by
taking ultralimits. �

By applying corollary 7.2.8 inductively we get

Corollary 7.2.9 With notation as in corollary 7.2.8, there are sequences yi, zi ∈ Q, i ≥ 1 such that
the inequalities (45), (46), (47), (48) hold when we increment all the indices on the y’s and z’s by
i.

Lemma 7.2.10 Fix µ > 0, and consider all configurations (y, z, F ) where y, z ∈ X, ∠(θ(yz), ∂∆mod) ≥
µ, and F ⊂ X is a maximal flat. Then there is a D3 such that the fraction of the segment yz lying

outside the tubular neighborhood ND3(F ) tends to zero with ν(y, z, F )
def
= max

(
d(y,F )
d(y,z) ,

d(z,F )
d(y,z)

)

.

Proof. Recall that the distance function d(F, ·) is convex, so if the lemma were false there would
be sequences yk, zk, wk ∈ X , Fk ⊂ X , with ∠(θ(ykzk), ∂∆mod) ≥ µ, d(y, z) → ∞, wk ∈ ykzk with
d(wk, yk), d(wk, zk) > ǫd(yk, zk), νk(yk, zk, Fk) → 0 but d(wk, Fk) → ∞. Let pk, qk, rk ∈ Fk be
the points nearest yk, wk, zk respectively. By various triangle inequalities and property (39) from
section 5.2 we have ∠̃qk

(pk, yk), ∠̃qk
(rk, zk) → 0 and ∠(θ(pkqk), θ(ykzk),∠(θ(qkrk), θ(ykzk)) → 0.

Therefore if we set Rk = d(qk, wk) and take the ultralimit of ( 1
Rk
X, qk) we will get a configuration

qω, wω ∈ Xω, an apartment Fω ⊂ Xω, and ξ1, ξ2 ∈ ∂TitsXω so that qω is the point in Fω nearest
to wω, (qωξ1, qω) = ω-lim(qkpk, qk), (qωξ2, qω) = ω-lim(qkrk, qk), (wωξ1, qω) = ω-lim(wkyk, qk),
(wωξ2, qω) = ω-lim(wkzk, qk). In particular, the rays wkξ1 and wkξ2 fit together to form the geodesic
ω-lim ykzk and ∠(θ(ξi), ∂∆mod) ≥ µ. But this contradicts corollary 4.6.4. �

Corollary 7.2.11 Fix α3 ∈ ∆mod. Then there are constants ǫ4, ν4, D4 such that if

1. yi, zi ∈ X, i ≥ 0 are sequences which satisfy (45), (46), (47), (48) (when subscripts are
incremented by i) with ǫ2 < ǫ4, d(y0, z0) > D4.

2. A maximal flat F ⊂ X satisfies d(yk, F ), d(zk, F ) < ν4d(yk, zk) for some k.

Then d(yi, F ), d(zi, F ) < ν4d(yi, zi) for all 0 ≤ i ≤ k.

Proof. If ν4 is sufficiently small, then the trisection points ỹ, z̃ of any sufficiently long segment

yz ⊂ X with ∠(θ(yz), ∂∆mod) ≥ µ, max
(
d(y,F )
d(y,z) ,

d(z,F )
d(y,z)

)

< ν4 will satisfy max
(
d(ỹ,F )
d(ỹ,z̃) ,

d(z̃,F )
d(ỹ,z̃)

)

≪ ν4

by lemma 7.2.10. If we take ǫ4 ≪ ν4 then ∠(θ(yizi), ∂∆mod) will be bounded away from zero and
yi−1, zi−1 will lie close to the trisection points of yizi so corollary 7.2.11 follows by induction on
k − i. �

Proof of theorem 7.2.1:
Step 1: Fix α4 ∈ ∆mod, and let ǫ5, ν5, D5 be the constants produced by corollary 7.2.11 with α3 = α4.
Let D6, δ6 be the constants given by corollary 7.2.8 with α2 = α4, ǫ2 = ǫ5. Finally, let D7 be the
constant produced by corollary 7.2.5 with α = α4, ǫ = min(δ6,

1
2 ). Setting D8 = max(D5, D6, D7),

for each y0 ∈ Q we may find a z0 ∈ Q with D8 < d(y0, z0) < 2D8 so that ∠(θ(y0, z0), α4) < δ6 (by
corollary 7.2.5). By corollary 7.2.9 we may extend the pair y0, z0 ∈ Q to a pair of sequences yi, zi
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satisfying (45)-(48) with α2 = α4, ǫ2 = ǫ5. Then any maximal flat F ⊂ X with d(yk, F ), d(zk, F ) <
ν5d(yk, zk) for some 0 ≤ k <∞ satisfies d(yi, F ), d(zi, F ) < ν5d(yi, zi) for all 0 ≤ i ≤ k by corollary
7.2.11; in particular

d(y0, F ) < ν5d(y0, z0) < 2ν5D8 (49)

We may assume in addition that ǫ5 is small enough that

2d(yi−1, zi−1) < d(yi, zi) < 4d(yi−1, zi−1) (50)

and d(yi, yi−1), d(zi, zi−1) < 2d(yi−1, zi−1). (51)

It follows that
max(d(yi, y0), d(zi, y0)) < 2d(yi, zi) (52)

for all i.

Step 2: Fix q ∈ Q and set ν6 = ν5
16 . For each R pick a covering of Bq(R) ∩ Q by ν6R-balls

{Bpi
(ν6R)} with minimal cardinality; the cardinality of this covering can be bounded by r and the

quasiflat constants (L,C). For each pair pi, pj of centers pick a maximal flat containing them, and
denote the resulting collection of maximal flats by FR.

Claim: If y0 ∈ Q, then d(y0,∪F∈FR
F ) < 2ν5D8 for sufficiently large R.

Proof of claim: We will use the sequences yi, zi constructed in step 1 and estimate (49). Take the
maximal i such that yi, zi ∈ Bq(R). Then

max(d(yi+1, q), d(zi+1, q)) > R

=⇒ max(d(yi+1, y0), d(zi+1, y0)) > R− d(q, y0)

=⇒ d(yi+1, zi+1) ≥
1

2
(R− d(q, y0)) by (52)

=⇒ d(yi, zi) ≥
1

8
(R − d(q, y0)) by (50).

Since FR contains a maximal flat F with

d(yi, F ), d(zi, F ) < ν6R =

(
8ν6R

R− d(q, y0)

)

·
1

8
(R − d(q, y0))

≤ 8ν6

(
R

R− d(q, y0)

)

d(yi, zi)

≤
ν5
2

(
R

R− d(q, y0)

)

d(yi, zi).

Therefore for sufficiently large R there is an F ∈ FR and k such that d(yk, F ), d(zk, F ) < ν5d(yk, zk),
so d(y0, F ) < 2ν5D8 as claimed. �

Proof of theorem 7.2.1 concluded: We may now take a convergent subsequence of the FR’s, and the
limit collection F satisfies Q ⊂ N2D8(∪F∈FF ) and card(F) ≤ lim sup card(FR) which is bounded
by r and (L,C). �

Proof of corollary 7.2.2: By theorem 7.2.1 there is a finite collection F of maximal flats so that Q
lies in a finite tubular neighborhood of ∪F∈FF . The limit set of each F ∈ F is its Tits boundary
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∂TitsF , which is an apartment of ∂TitsX . The union of these apartments gives us a finite subcomplex
G ⊂ ∂TitsX which is a union of closed Weyl chambers.

Clearly LimSet(Q) ⊆ G; we will show that if ξ ∈ LimSet(Q) then ξ lies in a closed Weyl
chamber C ⊂ LimSet(Q). We have qk ∈ Q such that ⋆qk → ⋆ξ in the pointed Hausdorff topology.

Consider ∪F∈FF . Any ultralimit ω-lim
(

1
Rk

(∪F∈FF ), ⋆
)

is canonically isometric to the Eu-

clidean cone over G. ω-lim( 1
Rk
Q, ⋆) embeds in ω-lim

(
1
Rk

(∪F∈FF ), ⋆
)

as a biLipschitz copy of Er;

by the discussion in section 6.2 ω-lim( 1
Rk
Q, ⋆)) is the cone over a collection of closed Weyl chambers

in G. In particular ω-lim ⋆qk = ⋆ωqω lies in a closed Weyl chamber contained in ω-lim( 1
Rk
Q, ⋆)), so

the corresponding Weyl chamber of G is contained in LimSet(Q), and it contains ξ. �

8 Quasi-isometries of symmetric spaces and Euclidean build-
ings

In this section our goal is to prove theorems 1.1.2 and 1.1.3 stated in the introduction.
Let X , X ′, and Φ be as in theorem 1.1.2. By corollary 7.1.5, Φ carries apartments close to

apartments; in particular, X and X ′ have the same rank r.

8.1 Singular flats go close to singular flats

Lemma 8.1.1 For any R > 0 there is an D(R) > 0 such that if F is a singular flat in X and A(F )
is the collection of apartments containing F , then ∩A∈A(F )NR(A) ⊂ ND(R)(F ).

Proof. It suffices to verify the assertion for irreducible non-flat spaces X .
Consider first the case that X is a symmetric space. The transvections along geodesics in F

preserve all the flats containing F . Hence, if there is a sequence xn ∈ ∩A∈A(F )NR(A) with d(xn, F )
tending to infinity, then we may assume without loss of generality that the nearest point to xn on
F is a given point p. The segments pxn subconverge to a ray pξ which lies in ∩A∈A(F )NR(A) and

is orthogonal to F . Since for each apartment A ∈ A(F ), we have p ∈ A and the ray pξ remains in a
bounded neighborhood of A, it follows that pξ ⊂ ∩A∈A(F )F . Hence ∩A∈A(F )F contains a (k+1)-flat,
which is a contradiction.

Assume now that X is an irreducible thick Euclidean building with cocompact affine Weyl
group. Consider a point x ∈ X \ F and let p ∈ F be the nearest point in F . Then u :=

→
px∈ ΣpX

satisfies ∠p(u,ΣpF ) ≥ π
2 . We pick a chamber C in ΣpX containing u and choose a face σ of C

at maximum distance from u. Denote by v the vertex of C opposite to σ. By our assumption,
diam(∆mod) <

π
2 and therefore v 6∈ ΣpF . Since F is a finite intersection of apartments, lemma 4.1.2

implies ΣpF = ∩A∈A(F )ΣpA and there is an apartment A with F ⊂ A ⊂ X and v 6∈ ΣpA. ΣpA is
then disjoint from the open star of v, and so d(u,ΣpA) ≥ d(u, σ) ≥ α0 > 0 where α0 depends only
on the geometry of ∆mod. If x ∈ NR(A) then angle comparison implies that d(x, F ) ≤ R

sinα0
and

our claim holds with D(R) = R
sinα0

. This completes the proof of the lemma. �

Proposition 8.1.2 For every apartment A ⊂ X, let A′ ⊂ X ′ denote the unique apartment at finite
Hausdorff distance from Φ(A). There are constants D0(L,C,X,X

′) and D(L,C,X,X ′) so that if
F = ∩A⊇FA ⊂ X is a singular flat, then
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1. Φ(F ) ⊂ ∩A⊃FND0(A
′),

2. The Hausdorff distance dH(Φ(F ),∩A⊃FND0(A
′)) < D,

3. There is a singular flat F ′ ⊂ ∩A⊃FND0(A
′) with dH(Φ(F ), F ′) < D.

In particular, two quasi-isometries Φ1,Φ2 : X −→ X ′ inducing the same bijection on apartments
induce the same map of singular flats up to 2D-Hausdorff approximation.

Proof. Let F and A(F ) be as in the previous lemma. By corollary 7.1.5, for every apartment
A ⊆ X , φ(A) is D0-Hausdorff close to an apartment in X ′ which we denote by A′. Thus φ(F ) ⊂
∩A∈A(F )ND0(A

′).

Sublemma 8.1.3 For each d ≥ D0 there exists a constant D1 = D1(L,C, d) > 0 with the property
that ∩A∈A(F )Nd(A

′) lies within Hausdorff distance D1 from φ(F ).

Proof. Pick a quasi-inverse φ−1 of φ. For each point y ∈ ∩A∈A(F )Nd(A
′) and each A ∈ A(F ), φ−1y

is uniformly close to φ−1A′. But φ−1A′ is uniformly Hausdorff close to φ−1φA and therefore to A.
Lemma 8.1.1 implies that Y has uniformly bounded distance from F . �

Proof of proposition 8.1.2 continued. FixingA0 ∈ A(F ), we conclude that C := (∩A∈A(F )N2D0(A
′))∩

A′
0 is a convex Hausdorff approximation of φ(F ).

Sublemma 8.1.4 Let C ⊂ E
l be a convex subset which is quasi-isometric to E

k. Then C contains
a k-dimensional affine subspace.

Proof. Fix q ∈ C and let Ĉ ⊆ C be the convex cone consisting of all complete rays starting in q and
contained in C. For any sequence λn → 0 of scale factors, the ultralimit ω-lim(λn ·C, q) is isometric
to Ĉ. Therefore Ĉ is homeomorphic to Ek and hence isometric to Ek. �

Proof of proposition 8.1.2 continued. It follows that φ(F ) is uniformly close to a flat F̄ in X ′. Since
φω carries singular flats to singular flats, ∂TitsF̄ is a singular sphere in ∂TitsX

′. X ′ has cocompact
affine Weyl group, so F̄ lies within uniform Hausdorff distance from a singular flat F ′. �

8.2 Rigidity of product decomposition and Euclidean deRham factors

We now prove theorem 1.1.2. The product decompositions of X and X ′ correspond to a decompo-
sitions of asymptotic cones

Xω = E
n ×

∏

i

Xiω , X ′
ω = E

n′

×
∏

j

X ′
jω (53)

where the Xiω, X
′
jω are irreducible thick Euclidean buildings. They have the property that every

point is a vertex and their affine Weyl group contains the full translation subgroup, in particular
the translation subgroup is transitive. We are in a position to apply theorems 6.4.2 and 6.4.3: The
Euclidean deRham factors of X and X ′ have equal dimension, n = n′, and X,X ′ have the same
number of irreducible factors. After renumbering the factors if necessary, there are homeomorphisms
(φω)i : Xiω → X ′

iω such that
(φω)i ◦ piω = p′iω ◦ φω
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where pi : X → Xi and p′i : X ′ → X ′
i are the projections onto factors. Now let F be a singular

flat which is contained in a fiber of pi. By proposition 8.1.2, φ(F ) is uniformly Hausdorff close to
a flat F ′ ⊂ X ′. Since F ′

ω ⊂ X ′
ω is contained in a fiber of p′iω, F ′ must be contained in a fiber of

p′i. Any two points in a fiber p−1
i (xi), xi ∈ Xi, are contained in some singular flat F ⊂ p−1

i (xi) and
consequently φ carries fibers of pi into uniform neighborhoods of fibers of p′i. Since an analoguous
statement holds for a quasi-inverse of φ, we conclude that φ carries pi-fibers uniformly Hausdorff
close to p′i-fibers and so there are quasi-isometries φi : Xi → X ′

i so that

φ ◦ pi = p′i ◦ φ

holds up to bounded error. This concludes the proof of Theorem 1.1.2.

8.3 The irreducible case

In this section we prove theorem 1.1.3. Note that theorem 1.1.2 implies that X ′ is also ireducible,
with rank(X) = rank(X ′).

8.3.1 Quasi-isometries are approximate homotheties

We recall from proposition 7.1.5 that Φ carries each apartment A in X uniformly close to a unique
apartment in X ′ which we denote by A′. We prove next that in our irreducible higher-rank situation
the restriction of Φ to A can be approximated by a homothety. As a consequence, the quasi-isometry
Φ is an almost homothety. This parallels the topological result in section 6.4.4.

Proposition 8.3.1 There are positive constants a = a(Φ) and b = b(L,C,X,X ′) such that for
every apartment A ⊂ X exists a homothety ΨA : A → A′ with scale factor a which approximates
Φ|A up to pointwise error b.

Proof. If we compose Φ|
A

with the projection X ′ → A′, we get a map Ψ′
A : A→ A′ which, according

to proposition 8.1.2, carries walls to within bounded distance of walls. Parallel walls in A are carried
to Hausdorff approximations of parallel walls in A′. Moreover, due to our assumption of cocompact
affine Weyl group, each hyperplane parallel to a wall is carried to within bounded distance of a wall.
By lemma 3.3.2 exist r + 1 singular half-spaces in A which intersect in a bounded affine r-simplex
with non-empty interior. Consider the collection C of hyperplanes in A which are parallel to the
boundary wall of one of these half-spaces. Any r pairwise non-parallel hyperplanes in C lie in general
position, i.e. intersect in one point. Hence we may apply lemma 8.3.3 below to the collection C and
conclude that Ψ′

A is within uniform finite distance of an affine transformation ΨA : A → A′. Since
Φω is a homothety on asymptotic cones by the discussion in section 6.4.4, it follows that ΨA is a
homothety: For suitable positive constants aA and b we therefore have

|d(ΨA(x1),ΨA(x2)) − aAd(x1, x2)| ≤ b ∀ x1, x2 ∈ A

and b depends on L,C,X,X ′ but not on the apartmentA. To see that the constant aA is independent
of the apartment A note that for any other apartment A1 ⊂ X there is a geodesic asymptotic to
both A and A1. It follows that aA1 = aA. �
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Corollary 8.3.2 There are positive constants a = a(Φ) and b = b(L,C,X,X ′) such that the quasi-
isometry Φ : X −→ X ′ satisfies

|d(Φ(x1),Φ(x2)) − a · d(x1, x2)| ≤ b ∀ x1, x2 ∈ X.

Here L−1 ≤ a ≤ L.

Proof. This follows from the previous proposition, because any two points in X lie in a common
apartment. �

Lemma 8.3.3 For n ≥ 2, let α0, . . . , αn ∈ (Rn)∗ be a collection of linear functionals any n of which
are linearly independent, and let Hi be the collection of affine hyperplanes {α−1

i (c)}c∈R. There is
a function D(C) with limC→0D(C) = 0 satisfying the following: If φ : Rn −→ Rn is a locally
bounded map such that for all H ∈ Hj, φ(H) ⊂ NC(H ′) for some H ′ ∈ Hj, then there is a an
affine transformation φ0 with scalar linear part which preserves the hyperplane families Hj such that
d(φ, φ0) < D(C).

Proof. After applying an affine transformation if necessary we may assume that α0 =
∑n
i=1 xi,

αj = xj for 1 ≤ j ≤ n, and φ(0) = 0. There is a C2 ∈ R such that the image of each k-fold
intersection of hyperplanes from ∪iHi lies within the C2 neighborhood an intersection of the same
type. In particular, for each 1 ≤ j ≤ n, φ induces a (C3, ǫ3) quasi-isometry φj of the jth coordinate
axis, with φj(0) = 0. It suffices to verify that each φj lies at uniform distance from a linear map
since φ lies at uniform distance from

∏n
j=1 φj . Also, it suffices to treat the case n = 2 since for each

1 ≤ j ≤ n we may consider the (C4, ǫ4)-quasi-isometry that φ induces on the xixj coordinate plane,
and this satisfies the hypotheses of the lemma (with somewhat different constants).

We claim there is a C5 such that for y, z in the first coordinate axis, we have |φ1(y+z)−(φ1(y)+
φ1(z))| < C5. To see this first note that when C equals zero the additivity can be deduced from a
geometric construction involving 6 lines and 6 of their intersection points. When C > 0, the same
construction can be performed with uniformly bounded error at each step.

By lemma 8.3.4 below, φ1 and analgously φj lies at uniform distance from a linear map. �

Lemma 8.3.4 Suppose ψ : R → R is a locally bounded function satisfying |ψ(y+z)−ψ(y)−ψ(z)| ≤
D for all y, z ∈ R. Then |ψ(x) − ax| ≤ D for some a ∈ R.

Proof. Since |ψ(2n)−2ψ(2n−1)| ≤ D, the sequence (ψ(2n)
2n ) is Cauchy and converges to a real number

a. Let x > 0 and choose numbers qn ∈ N and rn ∈ R with |rn| ≤ x such that 2n = qnx+ rn. Then

|ψ(2n) − qnψ(x) − ψ(rn)| ≤ (qn + 1)D

and hence, using that ψ is locally bounded,

|
ψ(2n)

2n
︸ ︷︷ ︸

→a

x−
qnx

2n
︸︷︷︸

→1

ψ(x) −
ψ(rn)x

2n
︸ ︷︷ ︸

→0

| ≤
(qn + 1)x

2n
︸ ︷︷ ︸

→1

D.

When n tends to infinity, we obtain in the limit

|ax− ψ(x)| ≤ D.

65



Similarly, there is a real number a− such that for all x < 0 we have |a−x − ψ(x)| ≤ D. Since
|ψ(x) + ψ(−x)| ≤ D + |ψ(0)|, it follows that a = a−. �

Proof of theorem 1.1.3 concluded. By corollary 8.3.2 we may scale the metric on X ′ by the factor 1
a

so that Φ becomes a (1, A
a
) quasi-isometry. Applying proposition 2.3.9 we conclude that Φ induces

a map ∂∞Φ : ∂∞X −→ ∂∞X
′ which is a homeomorphism of geometric boundaries preserving the

Tits metric. By the main result of 3.7, ∂∞Φ gives an isomorphism of spherical buildings ∂∞Φ :
(∂TitsX,∆mod) −→ (∂TitsX

′,∆′
mod), after possibly changing to an equivalent spherical building

structure on ∂TitsX
′. Consequently, for every δ ∈ ∆mod, ∂∞Φ maps the set θ−1(δ) ⊂ ∂TitsX to the

corresponding set θ′−1(δ) ⊂ ∂TitsX
′, and Φ|

θ−1(δ) is a cone topology homeomorphism. When δ is a

regular point, the subsets θ−1(δ) ⊂ ∂TitsX and θ′−1(δ) ⊂ ∂TitsX
′ are either manifolds of dimension

at least 1 or totally disconnected spaces by sublemma 4.6.9, depending on whether X and X ′ are
symmetric spaces or Euclidean buildings. Therefore either X and X ′ are both symmetric spaces
of noncompact type, or they are both irreducible Euclidean buildings with Moufang boundary. In
the latter case we are done by theorem 8.3.9; when X and X ′ are both symmetric spaces we apply
proposition 8.3.8 to get a homothety Φ0 : X −→ X ′ with ∂∞Φ0 = ∂∞Φ. By proposition 8.1.2,
d(Φ(v),Φ0(v)) < D for every vertex v ∈ X , and since the affine Weyl group of X is cocompact the
vertices are uniform in X , and so we have d(Φ,Φ0) < D′. Hence Φ0 is an isometry. �

8.3.2 Inducing isometries of ideal boundaries of symmetric spaces

We consider a symmetric space X of non-compact type and denote by G the identity component of
its isometry group.

Sublemma 8.3.5 Let F ⊂ X be a maximal flat and let πF : X → F be the nearest point retraction.
Given a compact set K ⊂ Int(∆mod) and ǫ > 0, there is a δ > 0 such that if p ∈ X, x ∈ F ,
θ(px) ∈ K, and ∠p(x, πF (p)) > π

2 − δ, then d(p, F ) < ǫ.

Proof. Note that as q moves from p to πF (p) along the segment πF (p)p, ∠q(x, πF (p)) increases
monotonically. If the sublemma were false, we could find a sequence pk ∈ X , xk ∈ F so that
∠pk

(xk, πF (pk)) → π
2 and d(pk, F ) ≥ ǫ. Since ∠πF (pk)(xk, pk) = π

2 , triangle comparison implies

that |pkπF (pk)|
|pkxk|

→ 0. Hence by taking qk ∈ pkπF (pk) with d(qk, F ) = ǫ we have ∠xk
(pk, qk) → 0,

so d∆mod
(θ(qkxk),K) → 0. Modulo the group G, we may extract a convergent subsequence of the

configurations (F, qkxk) getting a maximal flat F , a point q∞ with d(q∞, F ) = ǫ, and x∞ ∈ ∂∞F
such that ∠q∞(x∞, πF (q∞)) = π

2 , and θ(x∞) ∈ K. This is absurd. �

Sublemma 8.3.6 Let Fi be a sequence of maximal flats in X so that ∂∞Fi → ∂∞F where F is a
maximal flat, i.e. for each open neighborhood U of ∂∞F in ∂∞X with respect to the cone topology,
∂∞Fi is contained in U for sufficiently large i. Then Fi → F in the pointed Hausdorff topology.

Proof. Let ξ, η ∈ ∂∞F be antipodal regular points and choose points ξi, ηi ∈ ∂∞Fi so that ξi → ξ and
ηi → η. Then for x ∈ F we have ∠x(ξi, ηi) → π and consequently ∠x(πFi

x, ξi) →
π
2 , ∠x(πFi

x, ηi) →
π
2 . Applying sublemma 8.3.5, we conclude that d(x, Fi) → 0. The claim follows since this holds for
all x ∈ F . �
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Lemma 8.3.7 Let ∂∞ : G → Homeo(∂∞X) be the homomorphism which takes each isometry to
its induced boundary homeomorphism. Then ∂∞ is a topological embedding when Homeo(∂∞X) is
given the compact-open topology.

Proof. ∂∞ is continuous, because the natural action of G on ∂∞X is continuous. To see that ∂∞
is a topological embedding, it suffices to show that if gi ∈ G is a sequence with ∂∞(gi) → e ∈
Homeo(∂∞X), then gi → e ∈ G. Let x be a point in X and choose finitely many (e.g. two) maximal
flats F1, . . . , Fk with F1 ∩ · · · ∩ Fk = {x}. Since ∂∞(gi) → e ∈ Homeo(∂∞X), ∂∞giFj converges to
∂∞Fj in the sense that for each open neighborhood Uj of ∂∞Fj in ∂∞X with respect to the cone
topology, ∂∞giFj is contained in Uj for sufficiently large i. By the previous sublemma we know that
giFj → Fj in the pointed Hausdorff topology. �

Proposition 8.3.8 Let X and X ′ be irreducible symmetric spaces of rank at least 2. Then any cone
topology continuous Tits isometry

ψ : ∂TitsX → ∂TitsX
′

is induced by a unique homothety Ψ : X → X ′.

Proof. We denote by G (resp. G′) the identity component of the isometry group of X (resp. X ′).
By lemma 8.3.7 the homomorphisms ∂∞ : G → Homeo(∂∞X) and ∂′∞ : G′ → Homeo(∂∞X

′)
are topological embeddings, where Homeo(∂∞X) and Homeo(∂∞X

′) are given the compact-open
topology. According to [Mos, p.123, cor. 16.2], conjugation by ψ carries ∂∞G to ∂′∞G

′. Hence
ψ induces a continuous isomorphism G → G′. Such an isomorphism carries (maximal) compact
subgroups to (maximal) compact subgroups and it is a classical fact that the induced map Ψ̂ :
X → X ′ of the symmetric spaces is a homothety. ψ and the induced isometry ∂TitsΨ̂ at infinity
are G-equivariant with respect to the actions of G on ∂TitsX and ∂TitsX

′ and we conclude that
∂TitsΨ̂ = ψ. �

8.3.3 (1, A)-quasi-isometries between Euclidean buildings

Here we prove

Theorem 8.3.9 Let X, X ′ be thick Euclidean buildings with Moufang Tits boundary, and assume
that the canonical product decomposition of X has no 1-dimensional factors12. Then for every A
there is a C so that for every (1, A) quasi-isometry Φ : X −→ X ′ there is an isometry Φ0 : X −→ X ′

with d(Φ,Φ0) < C.

The proof of theorem 8.3.9 combines corollary 7.1.5 and material from sections 3.12 and 4.10.
We first sketch the argument in the case that X and X ′ are irreducible, of rank at least 2, and have
cocompact affine Weyl groups.

Let (B,∆mod) be a spherical building. Attached to each root (i.e. half-apartment) in B is
a root group Ua ⊆ Aut(B,∆mod) (see 3.12). Remarkably, when B is irreducible and has rank
at least 2, the Ua’s – and consequently the group G ⊆ Aut(B,∆mod) generated by them – act
canonically and isometrically on any Euclidean building with Tits boundary B (see 4.10). Now
let (B,∆mod) = (∂TitsX,∆mod). If Φ : X −→ X ′ is an (L,A) quasi-isometry, then by 2.3.9 we

12The statement is false for (1, A) quasi-isometries between trees.
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get an induced isometry ∂TitsΦ : ∂TitsX −→ ∂TitsX
′, so the group G ⊆ Aut(B,∆mod) acts on

∂TitsX , ∂TitsX
′, and hence on X and X ′. By comparing images of apartments (and using the

quasi-isometry Φ), ones sees that a subgroup K ⊆ G has bounded orbits in X iff it has bounded
orbits in X ′. Because B is Moufang (3.12) the maximal bounded subgroups M ⊂ G pick out “spots”
vM ∈ X and v̄M ∈ X ′ (proposition 4.10.6), and the resulting 1-1 correspondence between the spots
of X and the spots of X ′ determines a homothety Φ0 : X −→ X ′ with ∂TitsΦ0 = ∂TitsΦ.

Proof of theorem 8.3.9. Step 1: Reduction to the irreducible case.

Lemma 8.3.10 Every (1, A) quasi-isometry φ : Er −→ Er lies within uniform distance of a homo-
thety.

For every distance function d : Er −→ Er the function d◦φ lies within uniform distance of a distance
function. By taking limits we see that for every Busemann function b : Er −→ Er, b ◦φ is uniformly
close to a Busemann function. But the Busemann functions are affine functions, so φ is uniformly
close to an affine map φ0. Obviously φ0 is an isometry. �

By corollary 7.1.5 , there is a constant D(A,X,X ′) so that the image of every apartment A ⊂ X
is D Hausdorff close to an apartment A′ ⊂ X ′. Composing Φ|

A
with the projection onto A′ we

get a map which is uniformly close to an isometry ΨA : A −→ A′. Hence if F ⊂ A is a flat,
then Φ(F ) ⊂ X ′ is uniformly Hausdorff close to the flat ΨA(F ) ⊂ A′. Therefore we may repeat
the reasoning of 8.2 to see that if X =

∏
Xi, X

′ =
∏
X ′
j are the decompositions of X and X ′

into thick irreducible factors, then after reindexing the factors X ′
j there are (1, Ā) quasi-isometries

Φi : Xi −→ X ′
i so that Φ is uniformly close to

∏
Φi (Ā depends only on the quasi-isometry constant

of Φ and X , X ′). Hence we are reduced to the irreducible case.

Step 2: X and X ′ are irreducible. The affine Weyl groups Waff , W
′
aff of X , X ′ are either finite or

cocompact, since their Tits boundaries are irreducible. If Waff is finite then it has a fixed point,
so all apartments intersect in a point p ∈ X and X is a metric cone over ∂TitsX . If α ∈ ∆mod

is a regular point, then θ−1(α) ⊂ ∂TitsX is clearly discrete in the cone topology. On the other
hand, if Waff is cocompact then θ−1(α) ⊂ ∂TitsX is nondiscrete since any regular geodesic ray
pξ ⊂ A can branch off at many singular walls. Since Φ induces a homeomorphism of geometric
boundaries ∂∞Φ : ∂∞X −→ ∂∞X

′ by 2.3.9, and this induces an isomorphism of spherical buildings
∂TitsΦ : ∂TitsX −→ ∂TitsX

′, either X and X ′ are both metric cones, or they both have cocompact
affine Weyl groups. If they are both cones, we may produce an isometry Φ0 : X −→ X ′ by taking
the cone over ∂TitsΦ : ∂TitsX −→ ∂TitsX

′. This induces the same bijection of apartments as Φ, and
lies at uniform distance from Φ by lemma 8.3.10.

Step 3: X and X ′ are thick, irreducible, and have cocompact affine Weyl group. Letting G ⊂

Aut(∂TitsX)
∂T itsΦ∗

≃ Aut(∂TitsX
′) be the group generated by the root groups of ∂TitsX , we get

actions of G on ∂TitsX , ∂TitsX
′, and by 3.12.2 actions on X and X ′ by automorphisms as well.

Lemma 8.3.11 A subgroup B ⊂ G has bounded orbits in X iff it has bounded orbits in X ′.

Proof. We show that if K has a bounded orbit K(p) = {gp|g ∈ K} ⊂ X then K has a bounded
orbit in X ′.

Let p ∈ X be a vertex, let Fp be the collection of apartments passing through p, and let
FK(p) = ∪g∈KFgp. FK(p) is aK-invariant collection of apartments inX , and when R > Diam(K(p))
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we have p ∈ ∩A∈FK(p)
NR(A). Let Φ(Fp) and Φ(FK(p)) denote the corresponding collections of

apartments in X ′. Then Φ(FK(p)) is K-invariant, and Φ(p) ∈ ∩A′∈Φ(FK(p))
NR+C1(A

′), where C1 is

a constant such that for every apartment A ⊂ X , the Hausdorff distance dH(Φ(A), A′) < C1. By
proposition 8.1.2, ∩A′∈Φ(Fp)NR+C1(A

′) is bounded. Thus ∩A′∈Φ(FK(p))NR+C1(A
′) is a nonempty

K-invariant bounded set. �

Proof of theorem 8.3.9 continued. By proposition 4.10.6 we now have a bijection

Spot(Φ) : Spot(X) → Spot(X ′)

between spots inX andX ′ via their correpondence with maximal bounded subgroups inG. Moreover
by item 2 of proposition 4.10.6 for every apartment A ⊂ X , we have Spot(Φ)(Spot(A)) = Spot(A′)
where A′ ⊂ X ′ is the unique apartment with ∂TitsA

′ = ∂TitsΦ(∂TitsA). Since by item 3 of
proposition 4.10.6 Spot(Φ)|

Spot(A) : Spot(A) → Spot(A′) is a homeomorphism with respect to

half-apartment topologies we see that X is discrete iff X ′ is discrete.
Case 1: Both X and X ′ are non-discrete, i.e. their affine Weyl groups have a dense orbit. In
this case Spot(A) = A, Spot(A′) = A′, and Spot(Φ)|

A
: A → A′ is a homeomorphism since the

half-apartment topology is the metric topology. By item 3 of proposition 4.10.6 Spot(Φ)|
A

maps
singular half-apartments H ⊂ A with ∂TitsH = a to singular half-apartments Spot(Φ)(H) ⊂ A′ with
∂Tits(Spot(Φ)(H)) = ∂TitsΦ(a). By considering infinite intersections of singular half-apartments
with Tits boundary a ⊂ ∂TitsA, it follows that Spot(Φ) carries all half-spacesH ⊂ A with ∂TitsH = a
to half-spaces Spot(Φ)(H) with ∂Tits(Spot(Φ)(H)) = ∂TitsΦ(a). By considering intersections of half-
spaces H± with opposite Tits boundaries, we see that Spot(Φ) carries hyperplanes whose boundary
is a wall m ⊂ ∂TitsA to hyperplanes in A′ with boundary ∂TitsΦ(m) ⊂ ∂TitsA

′. By section 6.4.4 it

follows that Φ0
def
= Spot(Φ) : X → X ′ is a homothety and ∂TitsΦ0 = ∂TitsΦ.

Case 2: X and X ′ are both discrete. In this case A and A′ are crystallographic Euclidean Coxeter
complexes; Spot(A) and Spot(A′) coincide with the 0-skeleta of A and A′. Again by item 3 of
proposition 4.10.6, if S ⊂ A is either a singular subspace or singular half-apartment, then there
is a unique singular subspace or singular half-apartment S′ ⊂ A′ so that Spot(Φ)(S ∩ Spot(A)) =
S′∩Spot(A′). k+1 spots s0, . . . , sk ∈ Spot(A) are the vertices of a k-simplex in the simplicial complex
iff they don’t lie in a singular subspace of dimension < k and the intersection of all singular half-
apartments containing {s0, . . . , sk} contains the k + 1 spots si. Hence Spot(Φ)|

Spot(A) : Spot(A) →

Spot(A′) is a simplicial isomorphism and hence is induced by a unique homothety A→ A′. It follows
that Spot(Φ) : Spot(X) → Spot(X ′) is the restriction of a unique homothety Φ0 : X → X ′ with
∂TitsΦ0 = ∂TitsΦ.

Since vertices are uniform in X , we may apply proposition 8.1.2 to conclude that in both cases
d(Φ0,Φ) < D′(L,C,X,X ′), forcing Φ0 to be an isometry.

�

9 A abridged version of the argument

In this appendix we offer an introduction to the proof of theorem 1.1.2 via the special case when
X = X ′ = H2 × H2.
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Step 1: The structure of asymptotic cones ω-lim(λi(H
2 × H2), zi). Readers unfamiliar with asymp-

totic cones should read section 2.4. By 2.4.4, any asymptotic cone ω-lim(λiH
2, xi) is a CAT (κ) space

for every κ, so it is a metric tree; since there are large equilateral triangles centered at any point in
H2, the metric tree branches everywhere. The ultralimit operation commutes with taking products,
so one concludes that ω-lim(λi(H

2 ×H
2), zi) ≃ ω-lim(λiH

2, xi)× ω-lim(λiH
2, yi) where zi = xi × yi

and × denotes the Euclidean product of metric spaces. So any asymptotic cone of H2 × H2 is a
product of metric trees which branch everywhere.

Step 2: Planes in a product of metric trees are “locally finite”. For i = 1, 2 let Ti be a metric tree. For
simplicity we assume that geodesic segments and rays are extendible to complete geodesics. Since
the convex hull of two geodesics in a metric tree is contained in the union of at most 3 geodesics, the
convex hull of two 2-flats γi × δi ⊂ T1 × T2 is contained in at most nine 2-flats. Section 6 may now
be read up to the paragraph after lemma 6.2.1, replacing the word “apartment” with “2-flat”, and
corollary 4.6.8 with the observation above. Hence every topologically embedded plane in T1 × T2 is
locally contained in a finite number of 2-flats.

Step 3: Homeomorphisms of products of nondegenerate trees preserve the product structure. We
now make the additional assumption that our metric trees Ti branch everywhere: for every x ∈ Ti,
Ti \ x has at least 3 components. Let P ⊂ T1 × T2 be a topologically embedded plane, and let
z = x × y ∈ P . We know that there are finite trees T̄i ⊂ Ti with z ∈ T̄1 × T̄2 ⊂ T1 × T2 so that
Bz(r) ∩ P ⊂ Bz(r) ∩ (T̄1 × T̄2). Shrinking r if necessary, we may assume that T̄1 and T̄2 are cones
(x ∈ T̄1 and y ∈ T̄2 are the only vertices). Elementary topological arguments using local homology
groups show that Bz(r) ∩ P coincides with Bz(r) ∩ (∪Qi), where each Qi ⊂ T̄1 × T̄2 is a quarter
plane with vertex at z, i.e. a set of the form γ × δ ⊂ T̄1 × T̄2 where γ ⊂ T1 (resp. δ ⊂ T2) is a
geodesic leaving x (resp. y).

Say that two sets S1, S2 ⊂ T1 × T2 have the same germ at z if S1 ∩ U = S2 ∩ U for some
neighborhood U of z. We see from the above that for every z ∈ P , P has the same germ at z as a
finite union of quarter planes. Moreover, since the intersection of two quarter planes Q1, Q2 with
vertex at z either has the same germ as Qi, the same germ as a horizontal or vertical segment,
or the same germ as {z}, it follows that a set S ⊂ T1 × T2 has the germ of a quarter plane with
vertex at z iff it has the same germ as a two-dimensional intersection of topologically embedded
planes, and is minimal among such. Hence we have a topological characterization of 2-flats and
vertical/horizontal geodesics: a closed, topologically embedded plane P ⊂ T1 × T2 is a 2-flat if for
every z ∈ P , P has the same germ at z a the union of four quarter planes with vertex at z; a
closed connected subset S ⊂ T1 × T2 is a vertical or horizontal geodesic if for every z ∈ S, S has
the same germ at z as the boundary of two adjacent quarter planes with vertex at z. From this one
may easily recover the product structure on T1 × T2 using only the topology of T1 × T2. Hence a
homeomorphism φ : T1 × T2 −→ T1 × T2 preserves the product structure (although it may swap the
factors, of course).

Step 4: Quasi-isometries of H2 × H2 preserve the product structure. Let Φ : H2 × H2 −→ H2 × H2

be a quasi-isometry. If z, z′ ∈ H2 × H2, let θ(z, z′) be the angle between the segment zz′ and the
horizontal direction.

Sublemma 9.0.12 There is a function f : [0,∞) −→ R with limr→∞ f(r) = 0 so that if z, z′ are
horizontal, then |θ(Φ(z),Φ(z′)) − π

4 | >
π
4 − f(r).

Proof. If not, we could find a sequence zi, z
′
i ∈ H2×H2 of horizontal pairs so that 1

λi
= d(zi, z

′
i) = ∞
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and lim supi→∞ |θ(Φ(zi),Φ(z′i))−
π
4 | <

π
4 . Then zω, z

′
ω ∈ ω-lim(λi(H

2 ×H2), zω) is a horizontal pair
with θ(Φω(zω),Φω(z′ω)) 6= 0, π2 . This contradicts step 3. �

Since any two horizontal pairs z1, z
′
1 and z2, z

′
2 may be joined with a continuous family zt, z

′
t of

horizontal pairs with min d(zt, z
′
t) ≥ min(d(z1, z

′
1), d(z2, z

′
2)), we see that for horizontal pairs z, z′,

the limit limd(z,z′)→∞ θ(Φ(z),Φ(z′)) exists and is either 0 or π
2 . We assume without losing generality

that the former holds.
Hence as y ∈ H2 varies, the compositions H2 −→ H2 × {y}

Φ
−→ H2 × H2 p1

−→ H2 are quasi-
isometries with quasi-isometry constant independent of y, and they lie at finite distance from one
another. It follows that they lie at uniform distance from one another, and so Φ preserves the fibers
of p1 up to bounded Hausdorff error. Repeating this argument for p2 we see that Φ is within uniform
distance of a product Φ1 × Φ2 of quasi-isometries.
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