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1 Introduction

1.1 Background and statement of results

An (L, C) quasi-isometry is a map ® : X — X’ between metric spaces such that for all x;,x2 € X
we have

L7 Yd(x1,29) — C < d(®(21), ®(2)) < Ld(1,32) + C (1)

and
d(z', Im(®)) < C (2)

for all ' € X’. Quasi-isometries occur naturally in the study of the geometry of discrete groups
since the length spaces on which a given finitely generated group acts cocompactly and properly
discontinuously by isometries are quasi-isometric to one another [Gro]. Quasi-isometries also play
a crucial role in Mostow’s proof of his rigidity theorem: the theorem is proved by showing that
equivariant quasi-isometries are within bounded distance of isometries.

This paper is concerned with the structure of quasi-isometries between products of symmetric
spaces and Euclidean buildings. We recall that Euclidean space, hyperbolic space, and complex
hyperbolic space each admit an abundance of self-quasi-isometries [Pan]. For example we get quasi-
isometries E2 — E? by taking shears in rectangular (x1,x2) — (z1,22 + f(x1)) or polar (r,0)
(r,0+ @) coordinates, where f : R — R and g : [0, 00) — R are Lipschitz. Any diffeomorphism?
® : OH™ — OH" of the ideal boundary can be extended continuously to a quasi-isometry ® : H* —
H". Likewise any contact diffeomorphism? 9® : JCH" — GCH") can be extended continuously
to a quasi-isometry ® : CH" — CH") [Pan]. Quasi-isometries of the remaining rank 1 symmetric
spaces of noncompact type, on the other hand, are very special. They are essentially isometries:

Theorem 1.1.1 ([Pan]) Let X be either a quaternionic hyperbolic space HHH™, n > 1, or the Cayley
hyperbolic plane CaH?. Then any quasi-isometry of X lies within bounded distance of an isometry.
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L Any quasi-conformal homeomorphism arises as the boundary homeomorphism of a quasi-isometry by [Tuk].

2The boundary of CH™ can be endowed with an Isom(CH™) invariant contact structure by projecting the contact
structure from a unit tangent sphere 53"71CH" to OCH"™ using the exponential map.



Note that Pansu’s theorem is a strengthening of Mostow’s rigidity theorem for these rank one
symmetric spaces X, as it applies to all quasi-isometries of X, whereas Mostow‘s argument only
treats those quasi-isometries which are equivariant with respect to lattice actions. The main results
of this paper are the following higher rank analogs of Pansu’s theorem.

Theorem 1.1.2 (Splitting) For 1 < i < k, 1 < j < k' let each X;, X} be either a nonflat
irreducible symmetric space of noncompact type or an irreducible thick FEuclidean Tits building with
cocompact affine Weyl group (see section 4.1 for the precise definition). Let X = E™ x Hle X,
X' = E" x H?:1 XJ’» be metric products.®> Then for every L,C there are constants L, C and D
such that the following holds. If ® : X — X' is an (L,C) quasi-isometry, then n = n', k = k',

and after reindexing the factors of X' there are (L,C) quasi-isometries ®; : X; — X| so that
d(p' o ®,[[®;0p) < D, wherep: X — Hle X, andp : X' — Hle X/ are the projections.

A more general theorem about quasi-isometries of products is proved in [KKL].

Theorem 1.1.3 (Rigidity) Let X and X' be as in theorem 1.1.2, but assume in addition that X
is either a nonflat irreducible symmetric space of noncompact type of rank at least 2, or a thick
irreducible Euclidean building of rank at least 2 with cocompact affine Weyl group and Moufang Tits
boundary. Then any (L,C) quasi-isometry ® : X — X' lies at distance < D from a homothety
Dy : X — X', where D depends only on (L,C).

Theorem 1.1.3 settles a conjecture made by Margulis in the late 1970’s, see [Gro, p. 179] and [GrPa,
p. 73]. We will show in [KlLe] that the Moufang condition on the Tits boundary of X can be
dropped.

As an immediate consequence of theorems 1.1.2 1.1.3, and [Mos| we have:

Corollary 1.1.4 (Quasi-isometric classification of symmetric spaces) Let X, X’ be symmet-
ric spaces of noncompact type. If X and X' are quasi-isometric, then they become isometric after
the metrics on their de Rham factors are suitably renormalized.

Mostow’s work [Mos] implies that two quasi-isometric rank 1 symmetric spaces of noncompact type
are actually isometric (up to a scale factor); and it was known by [AS] that two quasi-isometric
symmetric spaces of noncompact type have the same rank.

We will discuss other applications of theorems 1.1.2 and 1.1.3 in a separate paper.

1.2 Commentary on the proof

Our approach to theorems 1.1.2 and 1.1.3 is based on the fact that if one scales the metrics on
X and X’ by a factor A, then (L,C) quasi-isometries become (L, A\C) quasi-isometries. Starting
with a sequence \; — 0 we apply the ultralimit construction of [DW, Gro] to take a limit of the
sequence P : ;X — \; X', getting an (L, 0) quasi-isometry (i.e. a biLipschitz homeomorphism)
D, : X, — X/ between the limit spaces. The first step is to determine the geometric structure of
these limit spaces:

Theorem 1.2.1 X, and X/, are thick (generalized) Euclidean Tits buildings (cf. section 4.1).

3The distance function on the product space is given by the Pythagorean formula.



The second step is to study the topology of the Euclidean buildings X,,, X/,. We establish rigidity
results for homeomorphisms of Euclidean buildings which are topological analogs of theorems 1.1.2
and 1.1.3:

Theorem 1.2.2 LetY;, Y/ be thick irreducible Euclidean buildings with topologically transitive affine
Weyl group (cf. section 4.1.1), and let Y = E"™ x Hle Y;, Y = E" x H?Zl Y/ If¥:Y =Y
18 a homeomorphism, then n = n', k = k', and after reindexing factors there are homeomorphisms
U, : Y, - Y/ sothat po¥ =[[V,0p wherep : Y — HleYi and p' 1Y — HleYi' are the
projections.

Theorem 1.2.3 Let Y be an irreducible thick Euclidean building with topologically transitive affine
Weyl group and rank > 2. Then any homeomorphism from 'Y to a Euclidean building is a homothety.

For comparison we remark that if Y and Y’ are thick irreducible Euclidean buildings with
crystallographic (i.e. discrete cocompact) affine Weyl group, then one can use local homology groups
to see that any homeomorphism carries simplices to simplices. In particular, the homeomorphism
induces an incidence preserving bijection of the simplices of Y with the simplices of Y’, which easily
implies that the homeomorphism coincides with a homothety on the 0-skeleton. In contrast to this,
homeomorphisms of rank 1 Euclidean buildings with nondiscrete affine Weyl group (i.e. R-trees)
can be quite arbitrary: there are examples of R-trees T' for which every homeomorphism A — A of
an apartment A C T can be extended to a homemorphism of 7. However, we have always:

Proposition 1.2.4 If X, X' are Euclidean buildings, then any homeomorphism ¥ : X — X' carries
apartments to apartments.

In the third step, we deduce theorems 1.1.2 and 1.1.3 from their topological analogs. By using
a scaling argument and proposition 1.2.4 we show that if X and X’ are as in theorem 1.1.2, and
®: X — X'is an (L,C) quasi-isometry, then the image of a maximal flat in X under ® lies
within uniform Hausdorff distance of a maximal flat in X’; the Hausdorff distance can be bounded
uniformly by (L,C). In the case of theorem 1.1.2 we use this to deduce that the quasi-isometry
respects the product structure, and in the case of theorem 1.1.3 we use it to show that ® induces
a well-defined homeomorphism 9® : X — 90X’ of the geometric boundaries which is an isometry
of Tits metrics. We conclude using Tits’ work [Til] (as in [Mos]) that 0% is also induced by an
isometry ®g : X — X', and d(®, ®p) is bounded uniformly by (L, C).

The reader may wonder about the relation between theorems 1.1.2 and 1.1.3 and Mostow’s
argument in the higher rank case. An important step in Mostow’s proof shows that if I' acts
discretely and cocompactly on symmetric spaces X and X', then any I'-equivariant quasi-isometry
® : X — X' carries maximal flats in X to within uniform distance of maximal flats in X’. The proof
in [Mos] exploits the dense collection of maximal flats with cocompact I'-stabilizer?. One can then
ask if there is a “direct” argument showing that maximal flats in X are carried to within uniform
distance of maximal flats in X’ by any quasi-isometry®; for instance, by analogy with the rank 1
case one may ask whether any r-quasi-flat® in a symmetric space of rank r must lie within bounded

4If Z" C T acts cocompactly on a maximal flat F C X, then Z" will stabilize ®(F) and a flat F’ in X’. One can
then get a uniform estimate on the Hausdorff distance between ®(F') and F”.

50bviously this statement is true by theorems 1.1.2 and 1.1.3.

6An r-quasi-flat is a quasi-isometric embedding ¢ : E” — X; a quasi-isometric embedding is a map satisfying
condition (1), but not necessarily (2).



distance of a maximal flat. The answer is no. If X is a rank 2 symmetric space, then the geodesic
cone Ugesps over any embedded circle S in the Tits boundary Oris X is a 2-quasi-flat. Similar
constructions produce nontrivial r-quasi-flats in symmetric spaces of rank > 2. But in fact this is
the only way to produce quasiflats, by

Theorem 1.2.5 (Structure of quasi-flats) Let X be as in theorem 1.1.2, and let r = rank(X).
Given L,C there are D, D’ € Z such that every (L,C) r-quasi-flat Q C X lies within the D-tubular
neighborhood Np (UperF) of a union of at most D mazimal flats. Moreover, the limit set of Q is
the union of at most D’ closed Weyl chambers in the Tits boundary Oris X .

It follows easily that if L is sufficiently close to 1 (in terms of the geometry of the spherical
Coxeter complex (S, W) associated to X) then any (L,C) r-quasi-flat in X is uniformly close to a
maximal flat. In the special case that X is a symmetric space, theorem 1.2.5 was proved indepen-
dently by Eskin and Farb, approximately one year after we had obtained the main results of this
paper for symmetric spaces.

We would like to mention that related rigidity results for quasi-isometries have been proved in

[Sch].

1.3 Organization of the paper

Section 2 contains background material which will be familiar to many readers; we recommend
starting with section 3, and using section 2 as a reference when needed. We provide the straight-
forward generalisation of some well-known facts about Hadamard spaces to the non-locally-compact
case. This is needed when we study the limit spaces X, which are non-locally compact Hadamard
spaces.

Sections 3 and 4 give a self-contained exposition of the building theory used elsewhere in the
paper. This exposition has several aims. First, we hope that it will make building theory more
accessible to geometers since it is presented using the language of metric geometry, and we do not
require any knowledge of algebraic groups. Second, it introduces a new definition of buildings (sphe-
rical and Euclidean) which is based on metric geometry rather than a combinatorial structure such
as a polysimplicial complex. Tits’ original definition of a building was motivated by applications to
algebraic groups, whereas the objectives of this paper are primarily geometric. Here buildings (sphe-
rical and Euclidean) arise as geometric limits of symmetric spaces, and we found that the geometric
definition in sections 3 and 4 could be verified more directly than the standard one; moreover, the
Euclidean buildings that arise as limits are “nondiscrete”, and do not admit a natural polysimplicial
structure. Finally, sections 3 and 4 contain a number of new results, and reformulations of standard
results tailored to our needs.

Section 5 shows that the asymptotic cone of a symmetric space or Euclidean building is a
Euclidean building.

Section 6 discusses the topology of Euclidean buildings, proving theorems 1.2.2, 1.2.3, 1.2.4.

Section 7 proves that if X, X’ and ® are as in theorem 1.1.2, then the image of a maximal
flat under ® is uniformly Hausdorff close to a flat (actually the hypotheses on X and X’ can be
weakened somewhat, see corollary 7.1.5). General quasiflats are also studied in section 7; we prove
there theorem 1.2.5.

Section 8 contains the proofs of theorems 1.1.2 and 1.1.3, building on section 7. There is
considerable overlap in the final step of the argument with [Mos] in the symmetric space case.



1.4 Suggestions to the reader

Readers who are already familiar with building theory will probably find it useful to read sections
3.1, 3.2 and 4.1, to normalize definitions and terminology.

The special case of theorem 1.1.2 when X = X’ = H? x H? already contains most of the
conceptual difficulties of the general case, but one can understand the argument in this case with
a minimum of background. To readers who are unfamiliar with asymptotic cones, and readers who
would like to quickly understand the proof in a special case, we recommend an abbreviated itinerary,
see appendix 9. In general, when the burden of axioms and geometric minutae seems overwhelming,
the reader may read with the Rank 1x Rank 1 case in mind without losing much of the mathematical
content.
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2 Preliminaries

2.1 Spaces with curvature bounded above

General references for this section are [ABN, Ba, BGS].

2.1.1 Definition

If Kk € R, let M? be the two dimensional model space with constant curvature r; let D(k) =
Diam(M?). A complete metric space (X, ]| |) is a CAT (k) space if

1. Every pair x1,z2 € X with |x125] < D(k) is joined by a geodesic segment.

2. Triangle or Distance Comparison.

Every geodesic triangle in X with perimeter < 2D(k) is at least as thin as the corresponding
triangle in M?2. More precisely: for each geodesic triangle A in X with sides o1, 02,03 with
Perimeter(A) = |o1| + |o2| + |o3] < 2D(k) we construct a comparison triangle A in M? with
sides &; satisfying |5;| = |o;|. Each point z on A corresponds to a unique point # on A which
divides the corresponding side in the same ratio. We require that for all z1,29 € A we have
|{E1{E2| S |{flifg|.

Remark 2.1.1 Note that we do not require X to be locally compact. Also, X needn’t be path
connected when k > 0. This is slightly more general than some other definitions in the literature.

Example 2.1.2 A complete 1-connected Riemannian manifold with sectional curvature < rk < 0
and all its closed convex subsets are is a CAT (k) spaces.

In particular, Hadamard manifolds are CAT(0)-spaces. This is why we will also call CAT(0)-
spaces Hadamard spaces.

Example 2.1.3 (Berestovski) Any simplicial complex admits a piecewise spherical CAT (1) met-
Tic.



Condition 2 implies that any two points x1,zs with |z122| < D(k) are connected by precisely one
geodesic; hence we may speak unambiguously of Tizz as the geodesic segment joining z; to xs.
CAT (k) spaces for k < 0 are contractible geodesic spaces.

To see that upper curvature bounds behave well under limiting operations, it is convenient to
use an equivalent definition of C AT (k) spaces which only refers to finite configurations of points
rather than geodesic triangles. If v,x,y,p € X, and 0,%,9,p € M? we say that 9,%,§,p form a
d-comparison quadruple if

1. p lies on 7, .
2. x| = [oF]| <0, |loy| — 09| <6, [lzy| — |2gl| <0, |lzp| — [Zpl| <0, |lpy| — |pyll <o

By a compactness argument, we note that there exists a function o, (P, €) > 0 such that for every
e > 0, and every quadruple of points v, z,y,p in a CAT (k) space X satisfying |vz| + |zy| + |yv| <
P < 2D(k), each 9, (P, €)-comparison quadruple o, Z, g, p satisfies |vp| < |0p| + €. We will refer to
this condition as the d,-four-point condition. It is a closed condition on four point metric spaces
with respect to the Hausdorff topology. A complete metric space X is a CAT (k) space if and only
if it satisfies the d,-four-point condition and every pair of points z,y € X with |zy| < D(x) has
approximate midpoints, i.e. for every ¢ > 0 there is a m € X with |zm|, |my| < lI—le +¢. To see
this, note that in the presence of the d,-four-point condition approximate midpoints are close to one
another, so one may produce a genuine midpoint by taking limits. By taking successive midpoints,
one can produce a geodesic segment.

2.1.2 Coning

Let 3 be a metric space with Diam(X) < w. The metric cone C(E) over X is defined as follows.
The underlying set will be X x [0,00)/ ~ where ~ collapses X x {0} to a point. Given vy,v2 € X, we
consider embeddings p : {v1,va} x [0,00) — E? such that |p(v;,t) = [t| and Zo(p(v1,t1), p(v2,t2)) =
|v1va|, and we equip C(X) with the unique metric for which these embeddings are isometric. C'(X)
is CAT(0) iff ¥ is CAT(1).

2.1.3 Angles and the space of directions of a CAT (k) space
Henceforth we will say that a triple v, x, y defines a triangle A(v,z,y) provided |vz| + |zy| + |yv| <

2Diam(M?). Z,(x,y) will denote the angle of the comparison triangle at the vertex o. If 2,y are
interior points on the segments vz, vy, then £, (2',y’) < Z,(x,y). From this monotonicity it follows
that limgs 4/, Ly (2',y') exists, and we denote it by Z,(x,y). This definition of angle coincides with
the notion of the angle between two segments in the Riemannian case. One checks that one obtains

the same limit if only one of the points z’, 3’ approaches v:
Ly(w,y) = lim Zy(a',y) (3)
/, satisfies the triangle inequality. Note that from the definition we have

Zy(x,y) < Zy(x,y). (4)

In the equality case a basic rigidity phenomenon occurs:



Triangle Filling Lemma 2.1.4 Let z,y,v be as before. If Zy(x,y) = Zy(x,y), then also the other
angles of the triangle A(v,x,y) coincide with the corresponding comparison angles; moreover the
region in M?2 bounded by the comparison triangle can be isometrically embedded into X so that
corresponding vertices are identified.

The angles of a triangle depend upper-semicontinuously on the vertices:

Lemma 2.1.5 Suppose v,xz,y € X define a triangle, v # x,y, and vy, — v, T, — T, Y — y. Then
Uk, Tk, Yr define a triangle for almost all k and

lim sup Zy, (2, yi) < ZLy(z,y).

k—oo

In the special case that vy, € VT —{v} holds limg_,o0 Lo, (Tk, yk) = Zo(x,y) and limy— oo Ly, (v, yx) =
T — Ly(z,y).

Proof. For 2’ € vT — {v} and y' € 7y — {v} we can choose sequences of points z}, € UxZx, ¥). € UkYk
with 2}, — 2’ and y}, — y'. Then Z,, (zx,yr) < Zo, (T}, Y}) — Zo(2',y') and the first assertion
follows by letting 2',y" — v. If vy € TT — {v, 21} then Z,(wx,yr) < anglesum(A(v, vy, yr)) —
Ly, (0, yx) and T — 2y, (v, yk) < Ly, (g, y) while lim sup anglesum(A(v, vg, yi)) < 7. Sending k to
infinity, we get Z,(z,y) < m—liminf Z,, (v,yx) < liminf Z,, (zx, yr) and hence the second assertion.
O

The condition that two geodesic segments with initial point v € X have angle zero at v is an
equivalence relation; we denote the set of equivalence classes by X5 X. The angle defines a metric
on ¥ X, and we let £,X be the completion of ¥} X with respect to this metric. We call elements
of ¥, X directions at v (or simply directions), and vz denotes the direction represented by vz. We
define the logarithm map as the map log, = logy, x : By(D(k)) \ v — ¥, X which carries x to the

direction vz. The tangent cone of X at v, denoted C,X, is the metric cone C(%,X); we have a
logarithm map log, =loge, x : By(D(k)) — CuX.

Given a basepoint v € X, x € X with d(v,z) < D(k), and X € [0,1], let Az € X be the point on
vT satisfying ‘vl(vi\:\)‘ = A\. We define a family of pseudo-metrics on B, (D(k)) by de(z,y) = 2d(ez, ey).
They converge to a limit pseudo-metric dy. The pseudo-metric space (B,(D(k)),d) satisfies the
dez,-four-point condition, so the limit pseudo-metric space (B, (D(k)), dp) satisfies the Jp-four-point
condition. But dy(z,y) = d(log, z,log, y) where log, : B,(D(x)) — C,X is the logarithm defined
above, so we see that the tangent cone C, X satisfies the dp-four-point condition (C'(X}X) is dense
in C, X, and every four-tuple in C'(X}X) is homothetic to a four-tuple in log, (B,(D(k))). If zy is
the midpoint of the segment (Az)(Ay), then

1
d(log, z,log, y) = lim ~d(ex, cy)
e—0 €

2 2
= lim —d(ex, z.) = lirr(l) —d(z¢, €y)
e—0 €

e—0 €
. 1 ) 1
> max(hn(l) 2d(log,, x, — log,, z¢), hH(l) 2d(log,, x, — log,, z¢))-
€—> € €—> €

So C, X also has approximate midpoints. Since C, X is complete, it is a C AT (0) space; consequently
¥,X is a CAT(1) space. This fact is due to Nikolaev [Nik].



2.2 CAT(1)-spaces

CAT(1)-spaces are of special importance to us, because they will turn up as spaces of directions and
Tits boundaries of Hadamard spaces.

2.2.1 Spherical join

Let By and Bz be CAT(1)-spaces with diameter Diam(B;) < w. Their spherical join By o Bs is
defined as follows. The underlying set will be By x [0, 5] x By/ ~ where “~” collapses the subsets
{b1} x {0} x By and By x {§} x {b2} to points. Given b;,b; € B; (i = 1,2), we consider embeddings
p o {b1, b} x [0,5] x {b,bh} — S3. We think of S* as the unit sphere in C* and require that
t— p(b1,t,b2) and ' — p(b),t’,by) are unit speed geodesic segments whose initial (resp. end) points
lie on the great circle ST x {0} (resp. {0} x S') and have distance dg, (b1,b}) (resp. dp, (b2, b5)).
The distance of the points in By o By represented by (b1,t,b2) and (b, ¢, %) is then defined as the
(spherical) distance of their p-images in S3; it is independent of the choice of p. To see that By o By
is again a CAT(1)-space and that the spherical join operation is associative, observe that the metric
cone C(Bj o By) is canonically isometric to C'(B;) x C(Bz) and that the product of CAT(0)-spaces
is CAT(0).

The metric suspension of a CAT(1)-space with diameter < 7 is defined as its spherical join with
the CAT(1)-space {south,north} consisting of two points with distance .

Lemma 2.2.1 Let By and By be CAT(1)-spaces with diameter © and suppose s is an isometrically
embedded unit sphere in the spherical join B = By o By. Then there are isometrically embedded unit
spheres s; in B; so that s1 o so contains s.

Proof. We apply lemma 2.3.8 to the metric cone C(B) = C(B;) x C(Bz). C(s) is a flat in C(B)
and hence contained in the product of flats F; C C(B;). s; := OritsF; is a unit sphere in B; and
51082 = Orits (F1 X Fy) D 0rirsC(s) = s. O

2.2.2 Convex subsets and their poles

We call a subset C' of a CAT(1)-space B convez iff for any two points p, ¢ € C of distance d(p,q) < 7
the unique geodesic segment pg is contained in C. Closed convex subsets of B are CAT(1)-spaces
with respect to the subspace metric inherited from B. Basic examples of convex subsets are tubular
neighborhoods with radius < 7 of convex subsets, e.g. balls of radius < 7.

Suppose that C' C B is a closed convex subset with radius Rad(C) > m, i.e. for each p € C' exists
q € C with d(p,q) > w. We define the set of poles for C as

Poles(C) := {77 €B:d(n,)|, = g}

If Diam(C) > m then C has no pole. If Diam(C) = Rad(C) = « then Poles(C') is closed and convex,
because it can be written as an intersection Poles(C) = ;e Bz (§) of convex balls. The convex
hull of C' and Poles(C) is the union of all segments joining points in C' to points in Poles(C'), and
is canonically isometric to C o Poles(C). This follows, for instance, when one applies the discussion
in section 2.3.3 to the parallel sets of C(C') in the metric cone C(B).

Consider the special case that C' consists of two antipodes, i.e. points with distance 7, £ and
€. Then the convex hull of {¢, 5} and Poles({¢, {}) is exactly the union of minimizing geodesm
segments connecting &, 5 and it is canonically isometric to the metric suspension of Poles({¢, 5 b.
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2.3 Hadamard spaces

We will call CAT(0)-spaces also Hadamard spaces, because they are the synthetic analog of (closed
convex subsets in) Hadamard manifolds, i.e. simply connected complete manifolds of nonpositive
curvature, cf. example 2.1.3.

2.3.1 The geometric boundary

Let X be a Hadamard space. Two geodesic rays are asymptotic if they remain at bounded distance
from one another, i.e. if their Hausdorff distance is finite. Asymptoticity is an equivalence relation,
and we let 0, X be the set of equivalence classes of asymptotic rays; we sometimes refer to elements
of 0o X as ideal points or ideal boundary points. For any point x € X and any ideal boundary
point & € 0, X there exists a unique ray x¢ starting at = which represents £&. The pointed Hausdorff
topology on rays emanating from x € X induces a topology on 0., X . This topology does not depend
on the base point = and is called the cone topology on JsoX. 05X with the cone topology is called
the geometric boundary. The cone topology naturally extends to X Ud.X. If X is locally compact,
then 0,0 X and X := X U0, X are compact and X is called the geometric compactification of X.

2.3.2 The Tits metric

Earlier we defined the angle between two geodesics vz, vy at v € X by using the monotonicity of
comparison angles Z,(2',y') as ' — v, ¥’ — v. Now we consider a pair of rays v¢, 77, and define
their Tits angle (or angle at infinity) by

Zris(E,m) = lim 2, (2,y) (5)

' =&y’ —n

where 2/ € v€ and 3y € T7. L7 defines a metric on 0, X which is independent of the basepoint
v chosen. We call the metric space Opits X 1= (000X, L1its) the Tits boundary of X and Zrp;s the
Tits (angle) metric. The estimate

Zv(x/7 yl) =T = Zm’(vv yl) - Zy’(vv :K/)
’
<la&y)
——

[
pE (X))

implies, combined with (4): y
év(fa 77) < év(xlv yl) < ZI’(fa 77)

Consequently, the Tits angle can be expressed as
ZTits (fa 77) = tllglo 47’(1‘,) (fa 77) (6)
for any geodesic ray r : RT™ — X asymptotic to £ or 7, and also as:

Lrits (fa 77) = sup Ly (fa 77) (7)
zeX
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Still another possibility (the last one which we will state) to define the Tits angle is as follows: If
r; : Rt — X are geodesic rays asymptotic to & then
4 its ) . d t 5 t
2 gin =551 52) (&1, &) = lim dr (1), r=(t)) )t ra( )) (8)

2 t—oo

The next lemma relates the cone topology on 0, X to the Tits topology. Fix v € X and consider

the comparison angle 3
Ly (X \A{v}) x (X \{v}) = [0,7].

By monotonicity, it can be extended to a function
Zy (X {o}) x (X \ {v}) = [0,7].
Note that for £, € 0, X, we have Zv(f, n) = Lris(&,1).

Lemma 2.3.1 (Semicontinuity of comparison angle) Zy is lower semicontinuous with respect
to the cone topology: If wk,yr,&,n € X — {v} such that & = limg_,oo  and n = limg_,o yx then
Zy(&,n) <liminfy_ o0 Zo(Tk, Yk)-

Proof. We treat the case £, € 0 X, the other cases are similar or easier. Since the segments (or
rays) Uy, Uyy are converging to the rays v, 7] respectively, we may choose x), € T, and y, € TYg
such that |z} v|, |y,v] — oo and d(x},vE) — 0,d(y;,777) — 0. Hence by triangle comparison we have

Zo(Tr, k) > Zv(x;c)y;c) — Lris(§,m).

Lemma 2.3.2 Fvery pair £,m € 0o X with Zrus(€,n) < 7 has a midpoint.

Proof. Pick v € X. Take sequences z; € v€,y; € on with |z;| = |y;| — oo. Let m; be the midpoint of
T;y;- Since A(v,x;,y;) is isosceles, Z, (i, m;) = Ly(mi, yi) < %Zv(xi,yi), by lemma 2.3.1 it suffices
to show that 7mm; converges to a ray v, for some p € 00 X.

For i < j, set Ay := [vz| By triangle comparison, we have the following inequalities:

= Joay|

|zi(Nigmy)| < Aijloym;| = #Wﬂlﬂ

)\,,
lyi(Aijmy)| < Nijlyymg| = 7”|33jyj|

lzi(Nijmg)| + lyi(Nijmy)| > |2yl

Since \;; |‘zi5f|‘ — 1 asi,j — 0o, we have
s Qigma)l o yiagma)l L ImaQagmg)l
|5 Tyl |zim;|
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and, since Zris(€,1) < m, this in turn implies:

[mi(Aigm;)|
[um|

Fixing t > 0, if we set Ivthl =Ny, then |(N;m;)(R;\i;m;)| — 0 as i, j — oo. Since |v(R;m;)| = ¢, this
shows that the segments Tm; converge in the pointed Hausdorff topology to a ray v as desired. [

The completeness of X implies that (0o X, Z7its) is complete. The metric cone C(9oo X, L7its)
(the Tits cone) is complete and has midpoints. Moreover, since every quadruple in C(9oo X, Z1its)
is approximated metrically (up to rescaling) by quadruples in X, C(9X, Z7its) satisfies the do-
four-point condition and is therefore a C' AT (0) space. By section 2.1.1 we conclude:

Proposition 2.3.3 The Tits boundary of a Hadamard space is a CAT (1) space.

There is a natural 1-Lipschitz exponential map exp, : C(O7isX) — X defined as follows: For
[(&,1)] € C(OritsX) = Orits X x [0,00)/ ~ let exp,[(£, )] be the point on p at distance ¢ from p.
The logarithm map log, : X — {p} — X, X extends contiuously to the geometric boundary and
induces there a 1-Lipschitz map log, : Orits X — YpX. The Triangle Filling Lemma 2.1.4 implies
the following rigidity statement:

Flat Sector Lemma 2.3.4 Suppose the restriction of logp D Oris X — 3pX to the subset A C
Orits X is distance-preserving. Then the restriction of exp,, : C(0ritsX) — X to C(A) C C(OrisX)
is an isometric embedding.

2.3.3 Convex subsets and parallel sets

A subset of a Hadamard space is conver if, with any two points, it contains the unique geodesic
segment connecting them. Closed convex subsets of Hadamard spaces are Hadamard themselves
with respect to the subspace metric. Important examples of convex sets are tubular neighborhoods
of convex sets and horoballs. We will denote by H B¢ (x) the horoball centered at the point { € 0, X
and containing x € X in its boundary.

Let C; and Cs be closed convex subsets of a Hadamard space X. Then by (4), the distance
function d(',CQ)’CI = dC2’01 : €1 — Ry is convex and the nearest point projection 7TC2’01 :
C1 — (s is distance-nonincreasing. dc, ’ o is constant iff m¢,
situation, we have the following rigidity statement:

| ¢, 18 an isometric embedding. In this

Flat Strip Lemma 2.3.5 Let C; and Cs be closed convex subsets in the Hadamard space X. If
dC2|01 = d then there exists an isometric embedding v : C1 x [0,d] — X such that ¢¥(-,0) = idc,

and P(-,d) = ¢, |Cl'

This is easily derived from the Triangle Filling Lemma 2.1.4, respectively from the following
direct consequence of it:

Flat Rectangle Lemma 2.3.6 Letx; € X, i € Z/4Z, be points so that for all i holds £, (xi—1,xiy1) >
Z. Then there exists an embedding of the flat rectangular region [0, |zoz1]] x [0, |z122]] C E? into X
carrying the vertices to the points x;.
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We call the closed convex sets C,Cy C X parallel, C1]|Cy, iff de, ’ o and d¢, ’ o, are constant, or

equivalently, 7¢, ‘Cl and ¢, ‘ o, are isometries inverse to each other. Being parallel is no equivalence
relation for arbitrary closed convex subsets. However, it is an equivalence relation for closed convex
sets with extendible geodesics, because two such subsets are parallel iff they have finite Hausdorff
distance. (A Hadamard space is said to have extendible geodesics if each geodesic segment is contained
in a complete geodesic.)

Let Y C X be a closed convex subset with extendible geodesics. Then Rad(OritsY) = m. The
parallel set Py of Y is defined as the union of all convex subsets parallel to Y. Py is closed, convex
and splits canonically as a metric product

Py =Y x Ny. 9)

Here Ny is a Hadamard space (not necessarily with extendible geodesics) and the subsets Y x {pt}
are the convex subsets parallel to Y. The cross sections of Py orthogonal to these convex subsets
can be constructed as intersections of horoballs:

{yyp x Ny =Py (| HBely) Vyey. (10)
£€TitsY
Applying the Flat Sector Lemma 2.3.4 one sees furthermore that Op;:s Ny is canonically identified

with Poles(OrisY) C OritsX; Orits Py is the convex hull in OrusX of OrisY and Poles(OrusY)
and we have the canonical decomposition:

Orits Py = OritsY o Poles(OrisY') (11)

2.3.4 Products

The metric product of Hadamard spaces X; is defined as usual using the Pythagorean law. It is
again Hadamard and its Tits boundary and spaces of directions decompose canonically:

Orits (X1 X -+ x Xp) = Orits X1 0+ 0 Oprirs X, (12)
2(1'1,...,3671)()(1 X oo X Xn) = Ea:le O0--+0 Ea:an (13)

Proposition 2.3.7 If X is a Hadamard space with extendible geodesics then all join decompositions
of Orits X are induced by product decompositions of X .

Proof. Assume that the Tits boundary decomposes as a spherical join d7;:s X = By o B_; and con-
sider, for x € X and i = £1, the convex subsets C;j(z) := [\ p_, H Be¢(x) obtained from intersecting
horoballs. Using extendability of geodesics, i.e. Rad¥,;X = 7, one verifies that 0p;sC; = B;, C;
has extendible geodesics and C'y1(z) are orthogonal in the sense that ¥,C;(x) = Poles(X,C_;(x)).
Furthermore any two sets C(z) and C_;(z') intersect in the point 7¢, (z)(2") = mo_, (). The as-
sertion follows by applying the Flat Rectangle Lemma 2.3.6. g

Lemma 2.3.8 Let X, and X5 be Hadamard spaces and suppose that F is a flat in the product space
X = X1 x Xo. Then there are flats F; C X; so that Fy X F» D F.

Proof. Consider unit speed parametrizations ¢, ¢’ : R — F for two parallel geodesics v, in F'. Then
¢ :=mx, ocand ¢, :=mwx, o are constant speed parametrizations for geodesics 7;, v, in X;. Since
the distance functions d := dx(c,¢') and d; := dx, (c;,c;) are convex, satisfy d? = d3 + d3 and d is
constant, it follows that the d; are constant, i.e. 7; and ~} are parallel. Since this works for any pair
of parallel geodesics contained in F, it follows that mx, F' is a flat in F;. O
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2.3.5 Induced isomorphisms of Tits boundaries

We now show that any (1, A)-quasi-isometric embedding of one Hadamard space into another induces
a well-defined topological embedding of geometric boundaries which preserves the Tits distance.

Proposition 2.3.9 Let X; and X3 be Hadamard spaces and suppose that ® : X1 — X5 15 a (1, A)-
quasi-isometric embedding. Then there is a unique extension ® : X1 — Xs such that

1. ®(050X1) C 0o Xo,

2. ® s continuous at boundary points.
3. CT)| o.x, s a topological embedding which preserves the Tits distance.

We let 0.0 < 8|, .

Proof. We first observe that there is a function €(R) (depending on A but not on the spaces X; and
Xo) with ¢(R) — 0 as R — oo such that if p,z,y € X; and d(p,z),d(p,y) > R then

|Zp(2,y) = Lo (®(x), B(y)| < (R). (14)

Lemma 2.3.10 Suppose that x; is a sequence of points in X1 which converges to a boundary point
&1. Then ®(x;) € X5 converges to a boundary point &.

Proof of lemma: Pick a base point p. There are points y; € px; such that d(p,y;) — oo and
lim; oo Zp(yi,yj) = 0. By (14), the points ®(y;) converge to a boundary point . Applying (14)
again, we conclude that ®(x;) converges to & as well. O
Proof of Proposition continued: From the previous lemma we see that if z; and x} are sequences in
X1 converging to the same point in 0, X7 then the sequences ®(x;) and ®(x}) converge to the same
point in 0., Xs. This allows us to extend ® to a well-defined map ® : X; — Xo.

We now prove that ® is continuous at every boundary point &. Let z; € X; be a sequence of
points converging to ¢ € J-.X1. By the lemma, we may choose y; € X; with y; € pz; so that for
every R the Hausdorff distance between ®(p)®(y;) N Br(®(p)) and ®(p)®(x;) N Br(®(p)) tends to
zero as R — o0o. Hence img_o ®(7;) = limp_, o ®(y;) = ®(&) by the lemma.

Another consequence of the lemma is that the image ray ®(p€) diverges sublinearily from the

ray ®(p)®(€) in the sense that

Jim % - di (D (pE N Br(p)), 6(p)B(€) N Br(®(p))) = 0

R—o0

. .. . d = .
where dy denotes the Hausdorff distance. This implies that . ® lef <I>‘ 0. x, breserves the Tits
distance and is a homeomorphism onto its image. O

2.4 Ultralimits and Asymptotic cones

The presentation here is a slight modification of [Gro], see also [KaLe].
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2.4.1 Ultrafilters and ultralimits

Definition 2.4.1 A nonprincipal ultrafilter is a finitely additive probability measure w on the subsets
of the natural numbers N such that

1. w(S)=0 or1l for every S C N.
2. w(S) =0 for every finite subset S C N.

Given a compact metric space X and a map a : N — X, there is a unique element w-lima € X
such that for every neighborhood U of w-lima, a=!(U) C N has full measure. In particular, given
any bounded sequence a : N — R, w-lima (or a,,) is a limit point selected by w.

2.4.2 Ultralimits of sequences of pointed metric spaces

Let (X, di, ;) be a sequence of metric spaces with basepoints x;. Consider Xoo = {z € [],cy Xi|di (24, %)
is bounded }. Since d;(x;,y;) is a bounded sequence we may define dy @ Xoo X Xoo — R by
czw(x,y) = w-limd;(z;, ;). d, is a pseudo-distance. We define the ultralimit of the sequence
(Xi,d;,x;) to be the quotient metric space (X,,d,). z, € X. denotes the element correspond-
ing to z = (z;) € Xoo. *u, := (%) is the basepoint of (X, d.).

Lemma 2.4.2 If (X;,d;,*;) is a sequence of pointed metric spaces, then (X, dy,*,) is complete.

Proof. Let z7, be a Cauchy sequence in X,,, where 2/, = w- hmx Let N; =N. Inductively, there

is an w-full measure subset N; € Nj_1 such that i € N; 1mpheb |di(xF, 2l) — do (2%, 2")] < &, for

1<k, 1<j Forie Nj —N;_ 1,deﬁneyl—x Then 2/, — y,,. O
The concept of ultralimits is an extension of Hausdorff limits.

Lemma 2.4.3 If (X;,d;,*;) form a Hausdorff precompact family of pointed metric spaces, then
(X, dw,*w) is a limit point of the sequence (X;, d;, *;) with respect to the pointed Hausdorff topology.

Proof. To see this, pick €, R, and note that there is an N such that we can find an NV element
sequence {arj N | C X, which is e-dense in X;. The N sequences xj for 1 < j < N give us N
elements in xj e X, Ify, € Xw, Yo € B*w (R), then for w-a.e. i, d;(y;,*;) < R. Conblder
di (Yw, 2,). Given € > 0, |dy (Yw, 2,) — di(ys,27)| < € for w-a.e. i, which implies that dy,(y,, ) < €
for some 1 < j < N. Hence we've seen that B*w (R) is totally bounded, and for all € > 0 there is
an e-net in B, (R) which is a Hausdorff limit point of e-nets in the X;’s. It follows that (X, d;, *;)
subconverges to (X, d,,*,) in the pointed Hausdorff topology. g

In general, the ultralimit X, is not Hausdorff close to the spaces X; in the “approximating” se-
quence. However, the Hausdorff limits of any precompact sequence of subspaces Y; C X; canonically
embed into X,,.

The importance of ultralimits for the study of the large-scale geometry from the following fact:
If for each i, f; : X; — Y; is a (L, C)-quasi-isometry with d;(f;(*;),*;) bounded then the f; induce
an (L, C)-quasi-isometry f, : X, — Y.

It follows that if for each 4, and every pair of points a;,b; € X; the distance d;(a;,b;) is the
infimum of lengths of paths joining a; to b; then every pair of points a,b, € X, is joined by a
geodesic segment.
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Lemma 2.4.4 If (X;,d;, *;) is a CAT (k) space for each i, then so is (Xu,dw, *y). If dw(ay,by) <
D(k), then the geodesic segment ayb,, is an ultralimit of geodesic segments. If k < 0 and each X;
has extendible geodesics then each ray (respectively complete geodesic) in X, is an ultralimit of rays
(respectively complete geodesics) in the X;’s.

Proof. 1f each (X;,d;,*;) is a CAT (k) length space, then clearly (X, d,,*,) satisfies the J,-four-
point condition since this is a closed condition. Hence (X, d,,*,) is a CAT (k) length space since
it is a geodesic space satisfying the §,-four-point condition.

If a,, b, € X, with |a,by| < D(k), then there is a unique geodesic segment joining a,, to b,.
On the other hand, if a,, = w-lima;, b,, = w-lim b;, then the ultralimit of the geodesic segments a;b;
is a such a geodesic segment.

Now suppose a’,al, ... determine a ray, in the sense that d,(a’,,af) = d, (a’,,al) + d,(al,, a")

wr Yws wr Pw wr Pw w? Pw

for i < j < k. Let Ny = N. Inductively, there is an w-full measure N; C N;_; such that a{al is

within a 2% neighborhood of the segment a?a{ forie N;j, 0 <1< j. Forie Nj — N;j_1 extend the

segment a?a{ to a ray a?¢; with initial point a?. Then the ultralimit of the sequence a?¢; is the ray
we started with. The case of complete geodesics follows from similar reasoning. O

Lemma 2.4.5 Suppose that there is a D > 0 such that for each i, Isom(X;) has an orbit which
is D-dense in X;. If \; > 0 and \; — 0, then the ultralimit of (X;, \id;,*;) is independent of the
choice of basepoints x;, and has a transitive isometry group.

2.4.3 Asymptotic cones

Let X be a metric space and let x, € X be a sequence of basepoints. We define the asymptotic
cone Cone(X) of X with respect to the non-principal ultrafilter w, the sequence of scale factors
Ap with w-lim A, = oo and basepoints x,, as the ultralimit of the sequence of rescaled spaces
(X, dn,*n) = (X, ﬁ - d,*p). When the sequence %, = * is constant , then Cone(X) does not
depend on the basepoint * and has a canonical basepoint %, which is represented by any sequence
(zn,) C X satisfying w-lim,, ﬁ - d(xy,*) = 0, for instance, by any constant sequence ().

Proposition 2.4.6 o If X is a geodesic metric space, then Cone(X) is a geodesic metric space.
e If X is a Hadamard space, then Cone(X) is a Hadamard space.
o If X is a CAT(k)-space for some k < 0, then Cone(X) is a metric tree.

o If the orbits of Isom(X) are at bounded Hausdorff distance from X, then Cone(X) is a homo-
geneous metric space.

o A (L,C) quasi-isometry of metric spaces ¢ : X — Y induces a bilipschitz map Cone(¢) :
Cone(X) — Cone(Y) of asymptotic cones.

If we're given an (L, C) quasi-isometry ® : X — Y, then
Assume now that X is a Hadamard space. Let (F},)nen be a sequence of k-flats in X and suppose
that w-lim,, %d(Fn, x) < co. Then the ultralimit of the embeddings of pointed metric spaces

1
(Fn7 )\_ : anvTan (*)) g (X) )\_ : dXvTan (*))

>Rk
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is a k-flat
R* < Cone(X)

in the asymptotic cone. We denote the family of all k-flats in Cone(X) arising in this way by F (k).

3 Spherical buildings

Our viewpoint on spherical buildings is slightly different from the standard one: for us a spherical
building is a CAT (1) space equipped with extra structure. This viewpoint is well adapted to the
needs of this paper, because the spherical buildings which we consider arise as Tits boundaries and
spaces of directions of Hadamard spaces. Apart from the choice of definitions and the viewpoint,
this section does not contain anything new; the same results and many more can be found (often in
slightly different form) in [Til, Ron, Brbk, Brnl, Brn2].

3.1 Spherical Coxeter complexes

Let S be a Euclidean unit sphere. By a reflection on S we mean an involutive isometry whose fixed
point set, its wall, is a subsphere of codimension one. If W C Isom(S) is a finite subgroup generated
by reflections, we call the pair (S, W) a spherical Cozeter complex and W its Weyl group.

The finite collection of walls belonging to reflections in W divide S into isometric open convex
sets. The closure of any of these sets is called a chamber, and is a fundamental domain for the action
of W. Chambers are convex spherical polyhedra, i.e. finite intersections of hemispheres. A face of
a chamber is an intersection of the chamber with some walls.

A face (resp. open face) of S is a face (resp. open face) of a chamber of S. Two faces of S are
opposite or antipodal if they are exchanged by the canonical involution of S; two faces are opposite iff
they contain a pair of antipodal points in their interiors. A panel is a codimension 1 face, a singular
sphere is an intersection of walls, a half-apartment or root is a hemisphere bounded by a wall and a
regular point in S is an interior point of a chamber. The regular points form a dense subset. The
orbit space

Amod = S/W

with the orbital distance metric is a spherical polyhedron isometric to each chamber. The quotient
map
0=05:5 — Ao (15)

is 1-Lipschitz and its restriction to each chamber is distance preserving. For 6,6" € Ayuoq, We set
D(6,8") :=={ds(z,2")|x,2" € S,0x =§,02" = 5"}

and
D*(8) := D(8,9) \ {0}

Note that DT is continuous on each open face of A,,0q.
An isomorphism of spherical Coxeter complexes (S, W), (S’,W’) is an isometry o : S — 5’
carrying W to W’. We have an exact sequence

1 =W — Aut(S, W) — Isom(Apmeq) — 1.
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Lemma 3.1.1 If g € W, then Fixz(g) C S is a singular sphere. If Z C S then the subgroup of W
fixing Z pointwise is generated by the reflections in W which fix Z pointwise.

Proof. Every W-orbit intersects each closed chamber precisely once. Therefore the stabiliser of a
face o C S fixes o pointwise. So for all g € W, Fiz(g) is a subsphere and a subcomplex, i.e. it is a
singular sphere.

By the above, without loss of generality we may assume that Z is a singular sphere. Let Wz be
the group generated by reflections fixing Z pointwise. If ¢ is a top-dimensional face of the singular
sphere Z then each W-chamber containing o is contained in a unique Wyz-chamber; therefore Wy
acts (simply) transitively on the W-chambers containing o. Since W acts simply (transitively) on
W-chambers, it follows that Fizator(Z) = Fizator(c) = Wy. O

3.2 Definition of spherical buildings

Let (S, W) be a spherical Coxeter complex. A spherical building modelled on (S,W) is a CAT(1)-
space B together with a collection A of isometric embeddings ¢ : S — B, called charts, which satisfies
properties SB1-2 described below and which is closed under precomposition with isometries in W.
An apartment in B is the image of a chart ¢ : S — Bj; ¢ is a chart of the apartment ¢(S). A is called
the atlas of the spherical building.

SB1: Plenty of apartments. Any two points in B are contained in a common apartment.

Let t4,, ta, be charts for apartments Ay, Ay, and let C = A; N Ay, C' = L;‘; (C) € S. The charts
o is the restriction of an isometry in W.

L4, are W-compatible if L;hl oLA,
SB2: Compatible apartments. The charts are W-compatible.

It will be a consequence of corollary 3.9.2 below that the atlas A is maximal among collections of
charts satisfying axioms SB1 and SB2.

We define walls, singular spheres, half-apartments, chambers, faces, antipodal points, antipodal
faces, and regular points to be the images of corresponding objects in the spherical Coxeter complex.
The building is called thick if each wall belongs to at least 3 half-apartments. The axioms yield a
well-defined 1-Lipschitz anisotropy map *

Op: B — S/W =: Aniod (16)
satisfying the discreteness condition:
dB(xl, 332) S D(GB(xl), 93(%2)) Vxl,xg cB (17)

If «: § — S is an automorphism of the spherical Coxeter complex, then we modify the atlas
by precomposing with «; the atlases obtained this way correspond to symmetries of A, qq.

If A" is an atlas of charts ¢ : S’ — B giving a (S’, W’) building structure on B, then this
spherical building is equivalent to (B, .A) if there is an isomorphism of spherical Coxeter complexes
a: (S, W) — (S,W) so that A’ = {toa € A}.

If B and B’ are spherical buildings modelled on a Coxeter complex (S, W), with atlases A and
A’, an isomorphism is an isometry ¢ : B — B’ such that the correspondence ¢ — ¢ o ¢ defines a
bijection A — A’.

"The motivation for this terminology comes from the role g plays in the structure of symmetric spaces and
Euclidean buildings.
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3.3 Join products and decompositions

Let B;, i = 1,...,n, be spherical buildings modelled on spherical Coxeter complexes (S;, W;) with
atlases A; and spherical model polyhedra A?! .. Then W := W; x --- x W, acts canonically as a
reflection group on the sphere S =57 0---0.5,. We call the Coxeter complex (S, W) the spherical
join of the Coxeter complexes (S;, W;) and write

(S’W): (Sth)oo(SnaWn) (18)
The model polyhedron A,,q of (S, W) decomposes canonically as

Amod - Arlnod ©---0 Azllod' (19)
The CAT(1)-space
B=Bjo---0B, (20)

carries a natural spherical building structure modelled on (S, W). The charts ¢ for its atlas A are
the spherical joins ¢t =ty 0+ -- 04, of charts ¢; € A;. We call B equipped with this building structure
the spherical (building) join of the buildings B;.

Proposition 3.3.1 Let B be a spherical building modelled on the Cozeter complex (S, W) with atlas
A and assume that there is a decomposition (19) of its model polyhedron. Then:

1. There is a decomposition (18) of (S,W) as a join of spherical Cozeter complexes so that
Si = 05" (Al0q)-

2. There is a decomposition (20) of B as a join of spherical buildings so that B; = 05" (A ).

Proof. 1. We identify A,,,q with a W-chamber in S and define S; to be the minimal geodesic
subsphere containing Ainod. Then S; C Poles(S;) for all i # j and hence S = S10---085, by
dimension reasons. Each wall containing a codimension-one face of A,,,q is orthogonal to one of
the spheres S; and contains the others. Hence W = W7 x --- x W,, where W, is generated by the
reflections in W at walls orthogonal to S;. W, acts as a reflection group on S; and the claim follows.

2. Since any two points in B are contained in an apartment, one sees by applying the first
assertion that the B; are convex subsets and B is canonically isometric to the join of CAT(1)-spaces
B = Byo---0B,. The collection of charts L‘Si, Lt € A, forms an atlas for a spherical building
structure on B; and B is canonically isomorphic to the spherical building join of the B;. O

We call a spherical polyhedron irreducible if it is a spherical simplex with diameter < 7/2 and
dihedral angles < 7/2 or if it is a sphere or a point. Accordingly, we call a spherical Coxeter
complex® or a spherical building irreducible if its model polyhedron is irreducible. The spherical
model polyhedron A,,,q has dihedral angles < 5 A polyhedron of this sort has a unique minimal
decomposition as the spherical join (19) of irreducible spherical simplices (which may be single
points) and, if non-empty, the unique maximal unit sphere contained in A,,,q. By Proposition
3.3.1, (19) corresponds to unique minimal decompositions (18) of the Coxeter complex (S, W) as a
join of Coxeter complexes and (20) of B as a spherical building join. We call these decompositions
the de Rham decompositions of (S,W) and B. The sphere factor in (19) occurs iff the fixed point

8This definition is slightly different form the usual one, which corresponds to irreducibility of linear representations.
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set of the Weyl group is non-empty. We call the corresponding factor in the de Rham decomposition
the spherical de Rham factor.

If W acts without fixed point, then A,,.q is a spherical simplex  and the collection of chambers
in S and B give rise to simplicial complexes.

Lemma 3.3.2 Let (S, W) be an irreducible spherical Cozeter complex with non-trivial Weyl group
W. Then for each chamber o there is a wall which is disjoint from the closure &.

Proof. Let 7/ be a wall and p € S be a point at maximal distance § from 7'. Pick a chamber o’
containing p in its closure. Then o’ N7’ = (), because Diam(c’) < § due to irreducibility. Since W

acts transitively on chambers, the claim follows. O

Proposition 3.3.3 Assume that By and By are CAT(1)-spaces and that their join B = By o By
admits a spherical building structure. Then the B; inherit natural spherical building structures from
B. In particular, the spherical building B cannot be thick irreducible with non-trivial Weyl group.

Proof. Applying lemma 2.2.1 to apartments in B, we see that there exist di,ds € N so that every
apartment A C B splits as A = A o Ay where A; is a d;-dimensional unit sphere in B;. Fix a chart
to in the atlas A for the given spherical building structure on B. Denote by S> the ds-sphere ¢g 1By
in the model Coxeter complex (S, W) and by S; := Poles(S2) the complementary d;-sphere. The
subgroup Wy C W generated by reflections at walls containing Sy acts as a reflection group on Sj.
Consider all charts ¢ € A with L‘ 5y = Lo’ Sy The collection A; of their restrictions L‘ s, forms an
atlas for a spherical building structure on B; with model Coxeter complex (S7, W7).

If B is thick, then its chambers are precisely the (closures of the) connected components of the
subset of manifold points. Hence the joins o1 o o of chambers o; C B; are contained in chambers
of B. So the chambers of B have diameter > 5 and B cannot be irreducible with non-trivial Weyl
group. ]

3.4 Polyhedral structure

Let A’ be a face of Ay,0q and let o : A’ — B be the chart for a face in B, i.e. an isometric embedding
so that 6 o 0 = id|a.

Sublemma 3.4.1 o(IntA’) is an open subset of 05" (A’).
Proof. Let x be a point in o(IntA’) and assume that there exists a sequence (z,) in 05" (A’ \

o(Int(A’)) which converges to x. There are points z/, € I'm(o) with 0g(z),) = 05(x,) Since 65 has
Lipschitz constant 1 and o is distance-preserving, we have

dp(on, ) 2 da,,,q.(05(20), 05(2)) = dp(2,, )
and by the triangle inequality

2-dp(xn,r) > dp(z),2,) > DT (0p(z,)).
——

—0

9By [GrBe][theorem 4.2.4], A,,,q is a simplex if W acts fixed point freely. Observe that having distance less than
/2 is an equivalence relation on the vertices. This implies the decomposition (19).
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Since D is continuous on IntA’, the right-hand side has a positive limit:

lim D*(0p(z,)) = D+ (05(z)) > 0,

n—oo

a contradiction. O

Lemma 3.4.2 Any two faces of with a common interior point coincide. Consequently, the inter-
section of faces in B is a face in B.

Proof. To verify the first assertion, consider two face charts oq,09 : A’ — B of the same type. By
Sublemma 3.4.1, {§ € A’|01(6) = 02(8)} N IntA’ is an open subset of IntA’. Tt is also closed, and
hence empty or all of IntA’ if A’ is connected. If A’ is disconnected, it must be the maximal sphere
factor of A,,,q and all apartment charts agree on A’. Hence o1|ar = o2|as also in this case.

The intersections of two faces is a union of faces by the above; since it is convex, it is a face. [

As a consequence, the collection of finite unions of faces of B is a lattice under the binary
operations of union and intersection; we will denote this lattice by KB. In the case that the Weyl
group acts without fixed point, the chambers of B are simplices, and KB is the lattice of finite
subcomplexes of a simplicial complex. In general the polyhedron of this simplicial complex is not
homeomorphic to B since it has the weak topology.

3.5 Recognizing spherical buildings

The following proposition gives an easily verified criterion for the existence of a spherical building
structure on a CAT(1)-space.

Proposition 3.5.1 Let (S, W) be a spherical Cozeter complex, and let B be a CAT(1)-space of
diameter T equipped with a 1-Lipschitz anisotropy map 0p as in (16) satisfying the discreteness con-
dition (17). Suppose moreover that each point and each pair of antipodal reqular points is contained
in a subset isometric to S. Then there is a unique atlas A of charts 1 : S — B forming a spherical
building structure on B modelled on (S, W), with associated anisotropy map 0p.

Proof. The discreteness condition (17) implies that, for any face A’ of A4, the restriction of 65 to
Ggl(I ntA’) is locally distance preserving and distance preserving on minimizing geodesic segments
contained in 05" (IntA’). Therefore, if A C B is a subset isometric to S, the restriction of 05 to
AT = Aﬁ@gl (IntAmoq) is locally isometric and the components of A" are open convex polyhedra
which project via fp isometrically onto IntA,,.q. (17) implies moreover that A™9 is dense in A.
Hence A is tesselated by isometric copies of A,,oq and there is an isometry t4 with 0 o 1q4 = g
which is unique up to precomposition with elements in W. If A; and As are subsets isometric to .S,
and t4,,t4, : S — B are isometries as above then A; N A is convex, and we see that ¢4, and ¢4,
are W-compatible. We now refer to the isometries 14 : S — B as charts and to their images as
apartments. The collection A of all charts will be the atlas for our spherical building structure.
Since any point lies in some apartment, it lies in particular in a face, i.e. in the image of an
isometric embedding o : A" — B of a face A’ C A,,,,q satisfying 0p oo = id|a,. Lemma 3.4.2 applies
and the faces fit together to form a polyhedral structure on B. The apartments are subcomplexes.
It remains to verify that any two points with distance less than 7 lie in a common apartment. It
suffices to check this for any regular points x1, x2, since any point lies in a chamber and an apartment
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containing an interior point of a chamber contains the whole chamber (lemma 3.4.2). There is an
apartment A; containing x;. Consider a minimizing geodesic ¢ joining x; and z3. By sublemma
3.4.1, A; is a neighborhood of z1. Hence near its endpoint 1, ¢ is a geodesic in the sphere A;. Since
B is a CAT(1)-space, we can extend ¢ beyond z; inside A; to a minimizing geodesic ¢ of length 7
joining x5 through x; to a point &9 € A;. By our assumption, the points x3, 2 are contained in an
apartment A,. Ao contains all minimizing geodesics connecting zo and s, because o is regular. In
particular ¢ and therefore both points z, s lie in As. O
From the proof of proposition 3.5.1 we have:

Corollary 3.5.2 Let B be a spherical building of dimension d, and let T C B be a subset isometric
to the Fuclidean unit sphere of dimension d. Then T is an apartment in B.

3.6 Local conicality, projectivity classes and spherical building structure
on the spaces of directions

Suppose that the spherical building B has dimension at least 1.

Lemma 3.6.1 Let (B,0p) be a spherical building modelled on Ayoq, and let p,p € B be antipodal
points, i.e. d(p,p) = m. Then the union of the geodesic segments of length w from p to p is a metric
suspension which contains a neighborhood of {p,p}.

Proof. By the discussion in section 2.2.1, the union of the geodesic segment of length 7 from p to p
is a metric suspension. By (17) we can choose p > 0 such that {g € Ba2,(p)|05(q) = 05(p)} = {p},
{q € B2,(p)|0s(q) = 0p(p)} = {p}. If ¢ € B,(p), then any extension of pg to a segment pgr of
length 7 will satisfy 6(r) = 6(p), forcing » = p by the choice of p. Likewise, if we extend pq to a
segment of length 7, where g € B,(p), then it will terminate at p. Hence the lemma. O

As a consequence, for sufficiently small positive €, the ball B(p) is canonically isometric to a
truncated spherical cone of height € over ¥, B, the isometry given by the “logarithm map” at p. In
particular, X7 B = ¥, B. Any face intersecting Be(p) contains p and the face o, spanned by p.

The lemma implies furthermore that for any pair of antipodes p,p € B there is a canonical
isometry

persppp : pB — Yy B (21)

determined by the property that all geodesics ¢ of length 7 joining p and p satisfy persp, 5(2pc) =
Eﬁc.

Two points in B are antipodal iff they have distance m. Two faces o1 and oy are antipodal or
opposite if there are antipodal points £; and & so that &; lies in the interior of o;; in this case each
point in o7 has a unique antipode in os.

Definition 3.6.2 The relation of being antipodal generates an equivalence relation and we call the
equivalence classes projectivity classes.

Lemma 3.6.3 Suppose that the spherical building B is thick. Then every projectivity class intersects
every chamber.
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Proof. Let Cq and Cy be adjacent chambers, i.e. m = C; N Cy is a panel. It suffices to show that for
each point in C, C contains a point in the same projectivity class. To see this, pick an apartment
A D C1UC; and let 7 be the panel in A opposite to 7 (7 = 7 is possible). Since B is thick there is
a chamber C' with C' N A = 7. C is opposite to both C; and Cs and our claim follows. g
Pick po € S so that 0s(pg) = 0p(p). Now consider the collection of all apartment charts
ta: S — B where t4(pg) = p. These induce isometric embeddings X,,ta : £, — X,B. Let
W € Isom(X,,S) be the finite group generated by the reflections in walls passing through py.

Proposition 3.6.4 X,B together with the collection of embeddings Yy, t4 : Xp, S — X, B as above
is a spherical building modelled on (X,,S,W,). If p € B is an antipode of B, then we have a
1-1 correspondence between apartments (respectively half-apartments) in B containing {p,p} and
apartments (respectively half-apartments) in X, B. ¥,B is thick provided B is thick.

Proof. Any two points pal, pEgE Y, B lie in an apartment; namely choose g1, g2 close to p, then any
apartment A containing qi, g2 will contain p and pgiE ¥pA. So SB1 holds. ¥, B satisfies SB2 since
we are only using charts t4 : S — B with t4(pp) = p and B itself satisfies SB2. The remaining
assertions follow immediately from the definition of the spherical building structure on ¥,B. O

3.7 Reducing to a thick building structure

A reduction of the spherical building structure on B consists of a reflection subgroup W/ € W and a
subset A" C A which defines a spherical building structure modelled on (S, W’). The A,,q-direction
map 6 can then be factored as 7 o 6% where

0 : B— W\S=:A!

mod

is the A/ -direction map for the building modelled on (S, W’), and 7 : W\S = A! = — Apoq =
WS is the canonical surjection.

Proposition 3.7.1 Let B be a spherical building modelled on the spherical Coxeter complex (S, W),
with anisotropy polyhedron Apoq = W\S. Then there exists a reduction (W, A") which is a thick
building structure on B. W' is unique up to conjugacy in W; A’ is determined by W'. In particular,
the thick reduction is unique up to equivalence, so the polyhedral structure is defined by the C AT (1)
space itself.

The proof will occupy the remainder of this paper.

We set d = dim(B), Rp = {p € B|Z,B is isometric to a standard S?~'}, and Sp = B\ Rp.
If p € B and p > 0 is small enough that B,(p) is a (spherical) conical neighborhood of p, then
Sp N By(p) \ {p} corresponds to the cone over Sy, p. It then follows by induction on dim(B) that
Sp N Ais aunion of A,,,q-walls for each apartment A C B.

Consider an apartment A C B, and a pair of walls Hy, Ho C A contained in Sp.

Lemma 3.7.2 If H} is the image of Hy under reflection in the wall Hy (inside the apartment A),
then HY is contained in Sp.
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Proof. 'To see this, consider an interior point p of a codimension 2 face o of HiNH,. X, B decomposes
as a metric join X,0 o B, where B, is a 1-dimensional spherical building, and the walls H;, Hs, and
H) correspond to walls Hy, Ha, and H} in B,; A corresponds to an apartment A in B,. The wall H;
is just a pair of points in B,,, and this pair of points is joined by at least three differents semi-circles
of length m. These three semi-circles can be glued in pairs to form three different apartments in
By. Using the fact that an antipode of a point in Sp, also lies in Sp,, it is clear that the image
of Hy under reflection in H; is also in Sp,. Hence the wall ¥,H; C X,B is contained in three
half-apartments, and proposition 3.6.4 then implies that H lies in three half-apartments. g

The reflections in the walls in A N Sp generate a group G4, and by [Hum, p. 24] the only
reflections in G 4 are reflections in walls in A N Sp; also, the closures of connected components of
A\ Sp are fundamental domains for the action of G4 on A.

Sublemma 3.7.3 Let U C B be a connected component of B\ Sp, and suppose UNA # 0 for some
apartment A. Then U C A.

Proof. U N A is an open and closed subset of U, so UNA=U. g
We claim that the isomorphism class of G4 is independent of A. To show this, it suffices to
show that the isometry type of a chamber Af}wd is independent of A. For i = 1,2 let A; be an
apartment, and let Ai"’od be a chamber for G4,. If A3 C B is an apartment containing an interior
point from each A:""O 4» then the sublemma gives Aﬁjo 4 C As. But then the A:""O 4 are both chambers
for G a,, so they are isometric. Hence each pair (4, G4) is isomorphic to a fixed spherical Coxeter
complex (S, W*") for some reflection subgroup W** C W. We denote the quotient map and model

polyhedron by
0 . S — S/Wih = Alh

mod*

We call the closure of components of B\ Sg, A" _chambers. We can identify the A" _chambers
with A" in a consistent way by the following construction: Let Ay C B be an apartment and
po € AoNRp be a smooth point. We define the retraction p : B — Ap by assigning to each point p in
the open ball B, (pp) the unique point p(p) € Ag so for which the segments pop and pop(p) have same

length and direction pop=pop(p) at po. p extends continuously to the discrete set B\ By (po) which
maps to the antipode of pg in Ag. If A is an apartment passing through py then A N Ag contains
the A‘;’;Q 4-chamber spanned by py and p|a : A — Ap is an isometry which preserves the tesselations
by chambers. Composing p with the quotient map Ay — Ay/G4, we obtain a 1-Lipschitz map

0t . B — At (22)
which restricts to an isometry on each chamber. Applying proposition 3.5.1 we see that B is a
spherical building modelled on (S, W'"). B is a thick building since we already verified in lemma
3.7.2 above that if H C Sp is a wall, then it lies in at least three half-apartments.

Corollary 3.7.4 Fori=1,2 let B; be a thick spherical building modelled on (S;, W;) with atlas A;.
If ¢ : By — By is an isometry then we may identify the spherical Coxeter complexes by an isometry
a: (51, W1) — (S2,Wa) so that ¢ becomes an isomorphism of spherical buildings.
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3.8 Combinatorial and geometric equivalences

We recall (section 3.4) that for any building B, KB is the lattice of finite unions of faces of B.

Proposition 3.8.1 Let By, By be spherical buildings of equal dimension. Then any lattice isomor-
phism KBy — KBy is induced by an isometry By — Bo of CAT(1) spaces. This isometry is unique
if the buildings B; do not have a spherical deRham factor.

Proof. First recall that lattice isomorphisms preserve the partial ordering by inclusion since Cy C
Cy <— C1UCy = (.

We first assume that the buildings B; have no deRham factor and hence the KB; come from
simplicial complexes. In this case the lattice isomorphism B; — KBy carries k-dimensional faces
of B to k-dimensional faces of By. To see this, note that vertices of B; are the minimal elements
of the lattice B; and k-simplices are characterized (inductively) as precisely those subcomplexes
which contain k£ + 1 vertices and are not contained in the union of lower dimensional simplices.

Consider a codimension-2 face o of a chamber C' in B;. For an interior point s € o, ¥:B; is
isometric to the metric join ¥50 o BY where BY is a 1-dimensional spherical building. The dihedral
angle of C' along o equals the length of a chamber in the 1-dimensional building BY .

Sublemma 3.8.2 The chamber length of a 1-dimensional spherical building is determined combi-
natorially as 2w/l where | is the combinatorial length of a minimal circuit.

Proof. Combinatorial paths in a 1-dimensional spherical building determine geodesics. Closed
geodesics in a CAT(1) space have length at least 27 since points at distance < 7 are joined by a
unique geodesic segment. The closed paths of length 27 are the apartments. O
Proof of proposition 3.8.1 cont. As a consequence of the sublemma, the lattice isomorphism XB; —
K Bs induces a correspondence between chambers which preserves dihedral angles. Since the dihedral
angles determine the isometry type of a spherical simplex [GrBe][theorem 5.1.2], there is a unique
map of CAT(1)-spaces By — By which is isometric on chambers and induces the given combinatorial
isomorphism. Since the metric on each B; is characterized as the largest metric for which the chamber
inclusions are 1-Lipschitz maps, we conclude that our map B; — Bs is an isometry. In the general
case, the buildings B; may have a spherical deRham factor S; and split as B; = S; o B. The lattices
KB; and KB; are isomorphic: to a subcomplex C} of KB] corresponds the subcomplex S;0C? of KB;.
The lattice isomorphism KB] = KB; — KBy = KB} is induced by a unique isometry B} — B}
by the discussion above. It follows that DimB{ = DimB} and DimS; = DimS,. Any isometry
S1 — S5 gives rise to an isometry B; — Bs which induces the isomorphism KBy — KBs. O

3.9 Geodesics, spheres, convex spherical subsets

We call a subset of a CAT(1)-space conver if with every pair of points with distance less than 7 it
contains the minimal geodesic segment joining them. The following generalises corollary 3.5.2.

Proposition 3.9.1 Let C C B a convex subset which is isometric to a convex subset of a unit
sphere. Then C' is contained in an apartment.
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Proof. We proceed by induction on the dimension of B. The claim is trivial if dim(B) = 0. We
assume therefore that dim(B) > 0 and that our claim holds for buildings of smaller dimension than
B.

Let A be an apartment so that the number of open faces in A which have non-empty intersection
with C' is maximal. Suppose C' Z A. Let p € CNA and g € C\ A be points with ]7q€ ¥,A. Denote by
V the union of all minimizing geodesics in A which connect p to its antipode p and intersect C'—{p, p}.
V is a convex subset of A and canonically isometric to the suspension of ¥,(CNA) =X,CNE,A.
By induction assumption, there is an apartment A’ through p such that ¥,C C ¥,A4’. A’ can be
chosen to contain p. Then CNA CV C A’ and p_(}E Y,A’. Hence the number of open sectors in
A’ intersecting C is strictly bigger than the number of such sectors in A, a contradiction. Therefore
C C A O

Corollary 3.9.2 Any minimizing geodesic in a spherical building B is contained in an apart-
ment. Any isometrically embedded unit sphere K C B is contained in an apartment. In particular
dim(K) < rank(B) — 1.

3.10 Convex sets and subbuildings

A subbuilding is a subset B’ C B so that {¢ € A|¢(S) C B’} forms an atlas for a spherical building
structure; in particular B’ is closed and convex.

Lemma 3.10.1 Let s C B be a subset isometric to a standard sphere. Then the union B(s) of the
apartments containing s is a subbuilding. There is a canonical reduction (W', A"} of the spherical
building structure on B(s); its walls are precisely the W-walls of B(s) which contain s. When
equipped with this building structure, B(s) decomposes as a join of s and another spherical building
which we call Link(s). If p € s then log, maps Link(s) isometrically to the join complement of
Y,s in XpB(s). Furthermore, if p € s lies in a W-face o of mazimal possible dimension, then there
is a bijective correspondence between W -chambers containing o, W'-chambers of B(s), chambers of
Link(s), and Wy-chambers in £,B.

Proof. Let £ and f be interior points of faces in s with maximal dimension. Then B(s) is the union
of all geodesic segments of length 7 from ¢ to £. Proposition 3.6.4 implies that every pair of points
in B(s) is containined in an apartment A C B(s).

Pick 1o € A with s C 1(S), and set A’ = {v € AMSO = LQ‘SO}. Let W C W be the subgroup
generated by reflections fixing sg pointwise. According to lemma 3.1.1, the coordinate changes for
the charts in A’ are restrictions of elements of W’. Therefore A’ is an atlas for a spherical building
structure on B(s) modelled on (S, W’).

Since sg C S is a join factor of the spherical Coxeter complex (S, W'), B(s) decomposes as a
join of spherical buildings B(s) = s o Link(s) by section 3.3. Any two points in Link(s) lie in an
apartment s C A C B(s), so log, maps Link(s) isometrically to the join complement of ¥,s in
¥,B(s). The remaining statements follow. O

The building B(s) splits as a spherical join of the singular sphere s and a spherical building
which we denote by Link(s):

B(s) = so Link(s)
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Lemma 3.10.2 If § € B and n lies in the apartment A C B, then there is a £ e A withn =
d(&,€) =d(&n)+d(n,&). Ifd(&,n) > § then & has an antipode in every top-dimensional hemisphere
HCA.

Proof. When DimB = 0 the lemma is immediate. If d(§,n) < 7 then by induction n{€ X, B has an
antipode in %, A. Therefore we may extend &7 to a geodesic segment &né with né C A of length .
The second statement follows by letting 1 be the pole of the hemisphere. O

Proposition 3.10.3 Let C' be a convex subset in the spherical building B. If C' contains an apart-
ment then C is a subbuilding of full rank.

Proof. By the lemma, any point ¢ € C has an antipode £ in C. By lemma 3.6.1, the union CEE

of all minimizing geodesics from & to é which intersect C' — {g,é} is a neighborhood of £ in C. In
particular, for sufficiently small € > 0, C' N B(§) is a cone over £¢C. Since é can be chosen to lie in
an apartment Ag C C' by our assumption, and since the apartment 3:Aq in X:C corresponds to an
apartment in C& ¢ we see that C is a union of apartments. It remains to check that any two points

&, n € C lie in an apartment contained in C. Choose an apartment A withn € A C C. For née ¥,C
there exists an antipodal direction in ¥, A and we can extend &7 into A to a geodesic né of length

m. To the apartment ZEA in ZEC corresponds an apartment A’ C C’5 ¢ containing &né. O

3.11 Building morphisms

We call a map ¢ : B — B’ between buildings of equal dimension a building morphism if it is isometric
on chambers. Later, when looking at Euclidean buildings, we will encounter natural examples of
building morphisms, namely the canonical maps from the Tits boundary to the spaces of directions.

A building morphism ¢ has Lipschitz constant 1. ¢ maps sufficiently short segments emanating
from a point p isometrically to geodesic segments. Therefore it induces well-defined maps

$pd : SpB — Ty B’ (23)

Since the chambers in B containing p correspond to the chambers in ¥, B (with respect to its natural
induced building structure, cf. Proposition 3.6.4), and similarly for B’, the maps (23) are building
morphisms, as well. We call the morphism ¢ spreading if there is an apartment Ay C B so that (b‘ Ao
is an isometry.

Lemma 3.11.1 Let ¢ : B — B’ be a spreading building morphism. Then, if £&1,& € B are points
with ¢(&§1) = ¢(&2) =: &, the images of X¢, ¢ and X¢, ¢ in Xe B’ coincide.

Proof. If ¢ is spreading then each point & € ¢(B) has an antipode & € ¢(B). Any points & € ¢~ (&)
and £ € ¢~ 1(€') are antipodes and minimizing geodesics connecting € and € are mapped isometrically
to geodesics connecting ¢ and &, i.e. ¢‘B(£,é) . B(&,€) — B/(€,€) is the spherical suspension of
the morphism Y¢¢. There are canonical isometries perspe ¢ YeB — EéB and perspe ¢ YeB' —
EE’B/’ cf. 3.6.1, and we have:

Yep opersp, ¢ = perspg g 0 Led (24)

The assertion follows. O
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Lemma 3.11.2 Let ¢ : B — B’ be a spreading building morphism. Suppose & € B, & € B’ and
set & = @&y.

Then there is an apartment A C B containing & such that ¢| 4 18 an isomelry and the apartment
"= @A C B’ contains &.

Proof. Let us first assume that & € A} = ¢pAy where Ay is an apartment in B such that (b‘ A, 1s an

1sometry Then there is a geodesm segment 515251 of length 7 such that 5251 C AL (lemma 3.10.2).
Let 51 € As be the lift of fl By proposition 3.6.4, the subbuilding B(&1, 51) contains an apartment
A with Z&A = ZglAg. ¢’A is an isometry, because it is an isometry near 51. By construction,

& € 9A.

The above argument implies that, since ¢ is spreading by assumption, that each point & € B
lies in an apartment A; so that (b‘ 4, Is an isometry. Therefore the assumption in the beginning of
the proof is always satisfied and the proof is complete. O

Corollary 3.11.3 Let ¢ be as in lemma 3.11.2. Then:
1. ¢(B) is a subbuilding in B'.
2. The induced morphisms X¢¢ are spreading.
3. For all & € B, & € ¢(B) exists & € ¢~ such that
dp(&1,&2) = dpr (61, &) (25)

4. If & satisfies (25) then there exists an apartment A C B containing &1,& such that (b‘A s an
isometry.

Proof. The first three assertions follow immediately from the lemma. We prove the fourth assertion:

By 1. we find a geodesic segment f{fgéi of length 7 contained in ¢(B). By 3. there exists a
lift &1 of &1 such that dp(&2,&1) = dp/(£5,£]). Applying the previous lemma to the morphism 3¢, ¢,
which is spreading by2., we find an apartment A C B(;, él) containing the geodesic segment 515251
and so that Zﬁl(b‘zg 4> and therefore also (b‘A, is an isometry. O

1

Proposition 3.11.4 Let B and B’ be spherical buildings modelled on A,,.q, and let ¢ : B — B’
be a surjective morphism of spherical buildings so that 0p = 0p: o ¢. Suppose T is a face of B and
o' is a face of B’ contained in ¢(B) so that ¢7 C o’. Then there exists a face o of B with 7 C o
and ¢po = o’.

Proof. Let £ be an interior point of 7 and let o1 be a face of B with ¢o; = ¢’. o1 contains (in its
boundary) a point & with ¢&; = ¢¢, and by lemma 3.11.1 there exists a face o containing £ (and
therefore 7) with ¢po = o1 = o’. O

Corollary 3.11.5 Let B, B’ and ¢ be as in proposition 3.11.4. If k' C B’ is a half-apartment with
wall m’, and m C B lifts m’, then there is a half-apartment h C B containing m which lifts h'.

Proof. Let 7" C b/ be a chamber with a panel ¢’ C m/, and let ¢ C m be the lift of ¢’ in m. Applying

proposition 3.11.4 we get a chamber 7 C B so that the half-apartment h spanned by 7 U m lifts
n. O
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3.12 Root groups and Moufang spherical buildings

A good reference for the material in this section is [Ron]

Definition 3.12.1 ([Ron, p. 66]) Let (B, Anod) be a spherical building, and let a C B be a root.
The root group U, of a is defined as the subgroup of Aut(B, Amod) consisting of all automorphisms
g which fix every chamber C C B with the property that C' N a contains a panel T ¢ Oa.

We let Gp C Aut(B, Apoq) be the subgroup generated by all the root groups of B.
Proposition 3.12.2 (Properties of root groups) Let B be a thick spherical building.

1. If U, acts transitively on the apartments containing a for every root a contained in some
apartment Ao, then the group generated by these root groups acts transitively on pairs (C, A)
where C' is a chamber in an apartment A C B.

2. Suppose (B, Apod) is irreducible and has dimension at least 1. Then the only root group
element g € U, which fizes an apartment containing a is the identity.

Lemma 3.12.3 Let A and A’ be apartments in the spherical building B. Then there exist apartments
Ag=A,A1,..., A = A so that A;_1 N A; is a half-apartment containing AN A’ for all 1.

Proof. Suppose that A and A’ are apartments which do not satisfy the conclusion of the lemma and
so that the complex AN A’ has the maximal possible number of faces. We derive a contradiction by
constructing an apartment A” whose intersection with A respectively A’ strictly contains AN A’.

If AN A’ is empty, we choose A” to be any apartment which has non-empty intersection with
both A and A’. If AN A’ is contained in a singular sphere s of dimension dim(A N A’) < dim(B)
we pick a chambers 0 C A and ¢/ C A’ with dim(o Ns) = dim(c’ Ns) = dims. The subbuilding
B(s) contains an apartment A” with sUcUo’ C A” and A” has the desired property. It remains to
consider the case that AN A’ contains chambers and is strictly contained in a half-apartment. Then
there is a half-apartment h C A containing AN A’ and so that 9h N AN A’ contains a panel 7. Let
o’ C A’ be a chamber with 6’ N AN A’ = w. The convex hull A” of h U¢’ is an apartment with the
desired property. O
Proof of proposition: 1. Let G 4 be the group generated by the root groups U, where a runs through
all roots contained in an apartment A C B. If g € U, then G4 = Gg4a because Ugs = gUqg ™1 for
all roots a C A. By lemma 3.12.3, given any apartment A’ there is a sequence Ag,..., A, = A’
such that A,_1 N A; is a root. Hence G4, = G4, = ... = G4/ and it follows that Gp = G4/ for all
apartments A’.

Let 01 and o2 be chambers in B which share a panel # = o1 N o3. Since B is thick, there is a
third chamber o with ¢ No; = w. Pick apartments A; containing o U 0;. Applying lemma 3.12.3
again, we see that there is a ¢ € G so that g(A1) = As, and g fixes 03. Hence go; = o2 and we
conclude by induction that Gp acts transitively on chambers.

Let Ay, As be apartments and o1, o2 be chambers such that o; C A;. By the above argument,
there exists g € Gp with go; = 03. By lemma 3.12.3 there is a ¢’ € Gp with ¢'(gA;) = Az and
g'oo = 09. Hence G g acts transitively on pairs C' C A as claimed.

2. Since B is irreducible, there is a chamber o contained in the interior of a (see lemma 3.3.2).
Since the convex set B’ = Fiz(g) contains the apartment A it is a subbuilding by proposition 3.10.3.
Moreover, B’ contains an open neighborhood of ¢ by the definition of U,. Note that if 7 and 7’ are
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opposite panels in B’, then B’ contains every chamber containing m iff it contains every chamber
containing 7’ (lemma 3.6.1). Since for each panel 7 there is a panel m; C do in the same projectivity
class (see definition 3.6.2 and lemma 3.6.3) we see that B’ contains every chamber in B with a panel
in B’. When Dim(B) = Dim(B’) = 1 this implies that B’ is open in B, forcing B’ = B; in general
we show by induction that Vp € B’ we have ¥,B’ = %, B, which implies that B’ C B is open and
consequently B’ = B. O

Definition 3.12.4 A spherical building (B, Apmod) is Moufang if for each root a C B the root
group U, acts transitively on the apartments containing the root a. When B is irreducible and has
rank at least 2, then by 2 above, U, acts simply transitively on apartments containing a.

The spherical building associated with a reductive algebraic group ([Til, chapter 5] is Moufang.
In particular, irreducible spherical buildings of dimension at least 2 are Moufang.

4 Euclidean buildings

There are many different ways to axiomatize Euclidean buildings. For us, the key geometric in-
gredient is an assignment of A,,q-directions to geodesics segments in a Hadamard space. Just as
with symmetric spaces, A,,oq-directions capture the anisotropy of the space, and they behave nicely
with respect to geometric limiting operations such as ultralimits, Tits boundaries, and spaces of
directions.

4.1 Definition of Euclidean buildings
4.1.1 Euclidean Coxeter complexes

Let E be a finite-dimensional Euclidean space. Its Tits boundary is a round sphere and there is a
canonical homomorphism
p: Isom(E) — Isom(OrusE) (26)

which assigns to cach affine isometry its rotational part. We call a subgroup Wy C Isom(E)
an affine Weyl group if it is generated by reflections and if the reflection group W := p(W,s¢) C
Isom(Orits ) is finite. The pair (E, Wyy¢) is said to be a Euclidean Coxeter complex and

Orits (B, Wass) == (Oris E, W) (27)

is called its spherical Coxeter complex at infinity. Its anisotropy polyhedron is the spherical polyhe-
dron
Amod = (8T1t9E)/W

An oriented geodesic segment Ty in a F determines a point in dr;s E and we call its projection
to Apoa the A, oq-direction of Ty.

A wall is a hyperplane which occurs as the fixed point set of a reflection in We sy and singular
subspaces are defined as intersections of walls. A half-space bounded by a wall is called singular or
a half-apartment. An intersection of half-apartments is a Weyl-polyhedron. Weyl cones with tip at a
point p are complete cones with tip at p for which the boundary at infinity is a single face in Orys E.

Fix a point p € E. By W(p), we denote the subgroup of W, ¢ which is generated by reflections
in the walls passing through p. W (p) embeds via p as a subgroup of W. A Weyl sector with tip at
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p is a Weyl polyhedron for the Euclidean Coxeter complex (E, W (p)); note that a Weyl sector need
not be a Weyl cone, and a Weyl cone need not be a Weyl sector. A subsector of a sector o is a
sector ¢/ C o with Or;1s0' = Orits0; o lies in a finite tubular neighborhood of o/. A Weyl chamber
is a Weyl polyhedron for which the boundary at infinity is a A,,,q chamber; Weyl chambers are
necessarily Weyl cones. The Coxeter group W (p) acts on ¥, E, so we have a Coxeter complex

Ep(B,Waps) = (3B, W(p))

with anisotropy map by
Op : 2pE — L,E/W(p) =t Apoa(p).

The faces in (X,F, W(p)) correspond to the Weyl sectors of E with tip at p.

We call the Coxeter complex (E, W) irreducible iff its anisotropy polyhedron, or equivalently,
its spherical Coxeter complex at infinity is irreducible. In this case, the action of W on the translation
subgroup T' < Wy s forces T' to be trivial, a lattice, or a dense subgroup. In the latter case we say
that Weyy is topologically transitive.

4.1.2 The Euclidean building axioms

Let (E, Wars) be a Euclidean Coxeter complex. A Euclidean building modelled on (E,Weyys) is a
Hadamard space X endowed with the structure described in the following axioms.

EB1: Directions. To each nontrivial oriented segment Ty C X is assigned a A,oq-direction
0(Ty) € Apmod- The difference in Anoq-directions of two segments emanating from the same point
is less than their comparison angle, i.e.

d(0(7y),0(T2)) < Zu(y, z) (28)

Recall that given 61,02 € Ayod, D(01,02) is the finite set of possible distances between points
in the Weyl group orbits Oa_TlmE(dl) and ea_j}itsE((S?)'

EB2: Angle rigidity. The angle between two geodesic segments Ty and Tz lies in the finite set
D(0(z7), 0(77)).

We assume that there is given a collection A of isometric embeddings ¢ : E — X which preserve
Apmog-directions and which is closed under precomposition with isometries in Wy ss. These isometric
embeddings are called charts, their images apartments, and A is called the atlas of the Euclidean
building.

EB3: Plenty of apartments. Fach segment, ray and geodesic is contained in an apartment.

The Euclidean coordinate chart ¢4 for an apartment A is well-defined up to precomposition with
an isometry a € p_l(W). Two charts t4,,t4, for apartments Ay, Ay are said to be compatible if
L;hl o4, is the restriction of an isometry in Wy ss. This holds automatically when W rr = p=1(W).
EB4: Compatibility of apartments. The Fuclidean coordinate charts for the apartments in X
are compatible.

It will be a consequence of Corollary 4.6.2 below that the atlas A is maximal among collections of
charts satisfying axioms EB3 and EBA4.

We define walls, singular flats, half-apartments, Weyl cones, Weyl sectors, and Weyl polyhedra
in the Euclidean building to be the images of the corresponding objects in the Euclidean Coxeter
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complex under charts. The set of Weyl cones with tip at a point z will be denoted by W,. The
rank of the Fuclidean building X is defined to be the dimension of its apartments. X is thick if
each wall bounds at least 3 half-apartments with disjoint interiors. We call X a Fuclidean ruin if
its underlying set or the atlas A is empty.

4.1.3 Some immediate consequences of the axioms

Axiom EB1 implies the following compatibility properties for the A,,,4-directions of geodesic seg-
ments.

Lemma 4.1.1 Let x,y, z be points in X.
1. If y lies on Tz, then 0(Tz) = 0(Ty) = 6(yz).
2. If vy, x2€ 3, X coincide, then 0(Ty) = 0(TZ).
3. Asymptotic geodesic rays in X have the same Ay, oq-direction.
We call a segment, ray or geodesic in X regular if its A,,,4-direction is an interior point of A,y .q.

Lemma 4.1.2 1. If p € X and x; € X — p, then the px; initially span a flat triangle if
Zy(x1,22) >0, and they initially coincide if Zy(z1,x2) = 0.

2. If p; € X and & € Oris X, then the rays p;&; are asymptotic to the edges of a flat sector

Proof. 1. After extending the segments pz; to rays if necessary, we may assume without loss of
generality that z; € OrusX. If z € pzy, then 0(Zx;) = 0(x;) so L, (z1,22) € D(0(x1),0(x2))
which is a finite set. But Z,(z1,x2) — Zp(x1,22) monotonically as z — p, which implies that
Ly(x1,22) = Lp(x1,22), Ly(p,x2) = m — ZLp(x1,22) when z is sufficiently close to p. Therefore
A(p, z,x2) is a flat triangle (with a vertex at co) when z is sufficiently close to p.

2. follows from similar reasoning and the property (6) of the Tits distance. g

4.2 Associated spherical building structures
4.2.1 The Tits boundary

The Tits boundary Jp;s X is a C AT (1)-space, see 2.3.2. Lemma 4.1.1 implies that there is a well-
defined A,,,q-direction map
96T“SX : aTitsX I AWwd (29)

which is 1-Lipschitz by (28).

Proposition 4.2.1 Orys X carries a spherical building structure modelled on the spherical Coxeter
complex (OriusE, W) with Aoq-direction map (29).

Proof. We verify that the assumptions of proposition 3.5.1 are satisfied. Axiom EB2 implies that
(29) satisfies the discreteness condition (17). If A is a Euclidean apartment in X then drisA is a
standard sphere in Or;sX. Clearly, any point £ € Orus X lies in a standard sphere. It remains to
check that any two points £; and & in Op;s X with Tits distance 7 are ideal endpoints of a geodesic
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in X. To see this, pick p € X and note that the angle Z, (&1, &) increases monotonically as z moves
along the ray p&; towards &. But by EB2 £, (&1, &) assumes only finitely many values, so when z
is sufficiently far out we have £, (&1, &) = Zrits(£1,&2) = 7, and the rays 2§; fit together to form a
geodesic with ideal endpoints & and &s. O

4.2.2 The space of directions

The space of directions X, X is a CAT(1)-space (see section 2.1.3). Lemma 4.1.1 implies that there
is a well-defined 1-Lipschitz map from the space of germs of segments in a point x € X:

Os,x : L3 X — Ayod (30)

In this section we check that this map induces a spherical building structure on ¥, X. By axiom
EB2, 6 = 0x_ x satisfies the discreteness condition (17).

Lemma 4.2.2 ¥* X is complete, so X3 X =3, X.

Proof. Let () be a sequence in X — {z} such that (zzy) is Cauchy in ©* X. Then 6(zx})) is Cauchy
in A,,0q and we denote its limit by §. If Ay C X is an apartmentjontaining 7T then aﬁke Y AL C
¥*X and ¥, Ay contains a spherical polyhedron oy such that zzi€ o and 0|5, ;06 — Anod is an
isometry. There is a unique &, € oy, with 8(&;) = & and we have d(&, zz1) = da,,., (0, 0(zz1)) — 0.
Hence (&) is Cauchy with 6(¢) = 6 and lim zz,= lim &, in X, X. The discreteness condition (17)
implies that (£) is eventually constant and therefore (zz;) has a limit in $* X O

We now apply proposition 3.5.1 to verify that 3, X carries a natural structure as a spherical
building modelled on (975 F, W). The only condition which remains to be checked is that antipodal
points x71 and 79 in X, X lie in a subset isometric to S = Orits E. But £, (x1,x2) = 7 implies that
T1ZT9 = Txy UTT and ﬁ AC Xﬂis an apartment containing T1zs then ¥, A C X, X is a spherical
apartment containing xx; and zxs.

Lemma 4.2.3 All standard spheres in X, X are of the form Y, A where A is an apartment in X
passing through x.

Proof. By corollary 3.9.2, standard spheres are A,,,4-apartments, so we can find antipodal regular
points &1,& € a. Then there is a segment T7x5 through z with TT;= &. If A C X is an apartment
containing Z173 then X, ANa D {&1, &} and the spherical apartments o and ¥, A coincide because
they share a pair of regular antipodes (lemma 3.6.1). g

There are two natural reductions of the Weyl group which we shall consider. First, according
to section 3.7 there is a thick spherical building structure with atlas .A**(x) and anisotropy map

oth v, X — A (2): (31)

mod

This structure is unique up to equivalence. The second reduction is analogous to the structure
constructed in proposition 3.6.4. We postpone discussion of this structure until 4.4.1 because we
don’t have an analog of lemma 3.1.1 in the case of nondiscrete Euclidean Coxeter complexes.
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4.3 Product(-decomposition)s
Let X;,i=1,...,n, be Euclidean buildings modelled on Coxeter complexes (E;, Wg f f) with atlases

a

group on E := Ey x --- x E,,. We call the Coxeter complex (E, W,¢s) the product of the Coxeter
complexes (E;, Wi f f) and write

a

A; and anisotropy polyhedra Aim)d. Then Wyyy == Wlf g XX Wik e acts canonically as a reflection

(B, Wayr) = (El,Wlff) X e (B, Wolpp)- (32)

a

There are corresponding join decompositions
(Orits E, W) = (Orits E1,W1) 0 - - - 0 (Orits En, W) (33)
of the spherical Coxeter complex at infinity and
Armod = Binog © -0 AT o (34)
of the anisotropy polyhedron. The Hadamard space
X=X x--xX, (35)

carries a natural Euclidean building struture modelled on (E, Wer¢). The charts for its atlas A are
the products ¢ = t1 X - -+ X 1, of charts ¢; € A;. We call X equipped with this building structure the
Euclidean building product of the buildings Xj.

Proposition 4.3.1 Let X be a Euclidean building modelled on the Coxeter complex (E, Wqry) with
atlas A and assume that there is a join decomposition (34) of its anisotropy polyhedron. Then

1. There is a decomposition (32) of (E,Wayrf) as a product of Euclidean Cozeter complexes so
that a segment Ty C E is parallel to the factor E; iff its Apoq-direction 0(Ty) lies in AL, ;.

2. There is a decomposition (35) of X as a product of Fuclidean buildings so that a segment
Ty C E is parallel to the factor E; iff its Apoq-direction 0(Ty) lies in AL, .

Proof. 1. Proposition 3.3.1 implies that the spherical Coxeter complex at infinity decomposes as a
join

(8TitsE; W) = (Sl,Wl)O ©t 0 (SnaWn) (36)
of spherical Coxeter complexes. By proposition 2.3.7, this decomposition is induced by a metric
product decomposition £ = F; X --- x E, so that OrysFE; is canonically identified with S; and,
hence, a segment 7y C F is parallel to the factor E; iff 0(zy) € Al ;. (36) implies that Wosy
decomposes as the product W,y = Walff X o x Wl of reflection groups ngf acting on Ej, thus
establishing the desired decomposition (32).

2. Arguing as in the proof of the first part, we obtain a metric decomposition (35) as a product
of Hadamard spaces so that 7y C X is parallel to the factor X; iff 0(zy) € A .. Furthermore, the
Orits X; carry spherical building structures modelled on (97 E;, W;) so that the spherical building
Orits X decomposes as the spherical building join of the Oy X;. Each chart ¢ : B — X, 1 € A,

decomposes as a product of Afnod—direction preserving isometric embeddings ¢; : F; — X;. The
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collection A; of all ¢; arising in this way forms an atlas for a Euclidean building structure on X; and
(35) becomes a decomposition as a product of Euclidean buildings. O

We call a Euclidean building irreducible if its anisotropy polyhedron is irreducible, compare
section 3.3. According to the previous proposition, the unique minimal join decomposition of the
anisotropy polyhedron A,,.q into irreducible factors corresponds to unique minimal product decom-
positions of the Euclidean Coxeter complex (E, W,ys) and the Euclidean building X into irreducible
factors. We call these decompositions the de Rham decompositions and the maximal Euclidean fac-
tors with trivial affine Weyl group the Euclidean de Rham factors.

4.4 The local behavior of Weyl-cones

In this section we study the set W, of Weyl cones with tip at p. The main result (corollary 4.4.3) is
that in a sufficiently small neighborhood of p, a finite union of these cones is isometric to the metric
cone over the corresponding finite union of A,.q faces in ¥,X. This proposition plays an important
role in section 6.

Let Wy and W3 be Weyl cones in X with tip at p. The Weyl cone W; determines a face ¥, W;
in the spherical building (£,X, Ay04).

Sublemma 4.4.1 Suppose that X,W; = X£,Ws in ¥,X. Then W1 N Wy is a neighborhood of p in
W1 and Ws.

Proof. According to lemma 4.1.2 each point in the face X,W; = 3,W5 is the direction of a segment
in Wy N W> which starts at p. We can pick finitely many points in ¥,W; = ¥,W, whose convex
hull is the whole face. The convex hull of the corresponding segments is contained in the convex set
W1 N Ws and is a neighborhood of p in Wy and Whs. O

Locally the intersection of Weyl cones with tip at a point p is given by their infinitesimal
intersection in the space of directions ¥,X:

Lemma 4.4.2 If W1, Wy € W,, then there is a Weyl cone W € W, with L,W = ¥, W; N X, Ws.
For every such W there is an € > 0 so that:

W1 N W2 N Be(p) =Wn Be(p)

Hence the intersection of Weyl cones with tip at the same point is locally a Weyl cone.

Proof. By lemma 3.4.2 the intersection X,W; N X, W5 is a A,,oq-face and hence there isa W e W,
such that X,W = 3X,W; N X,W,. By the previous sublemma, there are W/ € W, with W/ C W;
and a positive € so that

Wi N Be(p) = Wy N Be(p) = W N Be(p)

for any such W. If & is a point in Wy N Wy different from p then pze X,W, so px C Wi N Wj.
Therefore
Wi NWsnN B(p) = Wi N W4 N Be(p) =W N Be(p).

O

Corollary 4.4.3 If Wh,...,W, € W,, then there is an ¢ > 0 such that (U;W;) N By(e) maps
isometrically to (U;C,W;) N B(e) C Cp X via log,.
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Proof. Let C denote the finite subcomplex of ¥, X detemined by U;¥,W;. Pick 01,02 € C. By
lemma 4.2.3 these lie in an apartment ¥,A4,,,, € X,X for some apartment A,,,, C X passing
through p. If o1 is a face of X,W; and o3 is a face of 3X,W}, then by the sublemma above we may
assume without loss of generality that (W' UW7?) N By(e) C Ao, o, where W' (resp. W/?) is the
subcone of W; (resp. W;) with X, W' = o1 (resp. ¥,W? = 02). Since there are only finitely many
such pairs 01,09 € C, for sufficiently small € > 0, every pair of segments pxy,pr2 C U;W; bounds a
flat triangle provided |pz;| < e. O

4.4.1 Another building structure on ¥,X, and the local behavior of Weyl sectors.

Let o C ¥, X be a Ay oq-apartment. By lemma 4.2.3 there is an apartment A C X with £,X = «,
and by corollary 4.4.3 any two such apartments coincide near p. Hence the walls in A which pass
through p define a reflection group W, C I'som(«).

Lemma 4.4.4 The reflection group W, contains the reflection group Wi coming from the thick
spherical building structure on ¥,X.

Proof. Let m C « be a wall for the Afﬁod(p) structure. There are apartments A; C X through
p, 1 = 1,2,3, so that ¥,4; = «a and the ¥, A; intersect in half-apartments with boundary wall
m. By corollary 4.4.3 the pairwise intersections of the A; are half-spaces near p. Choose charts
LAy, LAy, LA, € Aand let ¢;; € Wyyrs be the unique isometry inducing LZ} ov4,. Then ¢12 0 ¢a3 0 ¢p31

is a reflection at a wall w passing through = = L;hl(p) and satisfying Ypo4, w = m. O

Fixing one apartment oo C ¥, X, we take a chart ¢ : S — a from the atlas At (p), and enlarge

A" (p) by precomposing each chart /' € A (p) with elements of 171 (W,) C Isom(S). Clearly this

defines an atlas A(p) for a spherical building structure modelled on A,04(p) &f a/W,.

Let A, Ay C X be apartments so that ¥,4 = «, ¥,A4; = a1, and a N @; contains a chamber
C Ca Ifia,ta, : E — X are charts from the atlas A, then since AN A; is a cone near p by
lemma 4.4.3, it follows that (¢4, o Lzl) $XpA =a — a1 = XpA; carries W, faces in o to Wy,
faces in «y, while at the same time it carries Ay,,q4(p) faces of a to Apea(p) faces of ag. So every
Apoa(p) face o C ¥, X is a W, face for every apartment o/ containing o. Since the W,’s are all
isomorphic, this clearly implies that ¥, is a Apeq(p) face for every Weyl sector with tip at p. So
we have shown:

Proposition 4.4.5 There is a spherical building structure (£,X, A(p)) modelled on (S, Amod(p))
s0 that Apoa(p)-faces in XX correspond bijectively to the spaces of directions of Weyl sectors
with tip at p. In particular, if A C X is any apartment passing through p, then there is a 1-1
correspondence between walls m C A passing through p and Apeq(p)-walls in the apartment £,A,
given by m +— Y,m. When X is a thick building, then A(p) coincides with A*"(p) for every p € X.

Corollary 4.4.6 Corollary 4.4.8 holds when the W; are Weyl sectors with tip at p. If A1 and Ao
be apartments in X then A1 N Ag is either empty or a Weyl polyhedron. In particular, if A1 N Ag
contains a complete reqular geodesic then A; = As.

Proof. Each Weyl sector with tip at p is a finite union of Weyl cones with tip at p. Hence a finite
union of Weyl sectors with tip at p is a finite union of Weyl cones with tip at p, and the first
statement follows.
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If A1, As C X are apartments and p € A; N Ay, then ¥,Q1 N X,A42 is a convex Ap,oq(p)
subcomplex of ¥,4;. Hence there are A,oq(p) half apartments hi,...,h; C XA, so that N;h; =
¥pA1 N X,As. By proposition 4.4.5, for each i there is a half-apartment H; C A with ¥,H; = h;.
Therefore A;NA2NB,(e) = (NH;)NBp(€) and so A1 NAs is a Weyl polyhedron near p. Consequently
Aj N As is a Weyl polyhedron. O

4.5 Discrete Euclidean buildings

We call the Euclidean building X discrete if the affine Weyl group Wy is discrete or, equivalently,
if the collection of walls in the Euclidean Coxeter complex E is locally finite.

If p is a point in E then o, denotes the intersection of all closed half-apartments containing
p, i.e. the smallest Weyl polyhedron containing p. By corollary 4.4.6, each affine coordinate chart
ta : E — X maps o, to the minimal Weyl polyhedron in X which contains ¢4(p). Hence for any
point x € X there is a minimal Weyl polyhedron ¢, containing it. We say that x spans o,. 0, is
the intersection of all half-apartments containing = and, if X is thick, the intersection of all such
apartments. The lattice of Weyl polyhedra o, with = € o, is isomorphic to the polyhedral complex
KX, X.

Proposition 4.5.1 In a discrete Euclidean building X each point x has a neighborhood Be(x) which
is canonically isometric to the truncated Fuclidean cone of height € over ¥, X.

Proof. Let 1y : E — X be a chart with 2 = ¢4(p) and choose € > 0 so that any wall intersecting
Be(p) contains p. Then for any point y € B.(p), the polyhedron o, contains x and any apartment
intersecting B.(p) passes through z. Hence any two segments Ty and Tz of length < € lie in a
common apartment and it follows that Be(p) is isometric to a truncated cone. O

Assume now that Wey¢ is discrete and cocompact. Then the walls partition £ into polysim-
plices which are fundamental domains for the action of W,¢s. This induces on X a structure as a
polysimplicial complex. The polysimplices are spanned by their interior points. If X is moreover
irreducible, then this complex is a simplicial complex.

4.6 Flats and apartments

Proposition 4.6.1 Any flat F' in X is contained in an apartment. In particular, the dimension of
a flat is less or equal to the rank of X.

Proof. Among the faces in d7;+sX which intersect the sphere Or;sF' we pick a face o of maximal
dimension. Then o N 9risF' is open in OrysF'. Let ¢ be a geodesic in F' with ¢(co) € Int(o) and
let A be an apartment containing ¢. Then Odp;sA contains o and ¢(—o0) and convexity implies
Orits ' C Oriss A. Since F'N A # (), it follows that F is contained in the apartment A. O

As a consequence, we obtain the following geometric characterization of apartments in Euclidean
buildings:

Corollary 4.6.2 The r-flats in X are precisely the apartments.

The next lemma says that a regular ray which stays at finite Hausdorff distance from an apart-
ment approaches this apartment at a certain minimal rate given by the extent of its regularity.
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Lemma 4.6.3 Suppose & € Opjs X is T@ular and that the ray p_f remains at bounded distance from
an apartment F. Then every point x € p§ with

d(p, F)
Sin(dAmod (957 8Amod))

d(z,p) >

lies in F.

Proof. Let y be a point on the ray m4(p)§, and let z € py be the point where the segment py
enters A (we may have z = y). By lemma 4.1.2 Z,(p,A) > 0, and by lemma 3.4.1 we have
Z.(p,A) > dna,,,,(0(DZ),0Amod). The comparison triangle A(a,b,c) in the Euclidean plane for the
triangle A(p,ma(p), z) satisfies Zy(a,c) > § and Z.(a,b) > da,,,,(0(PZ), 0A0a). Hence d(p, A) >
d(p, z)sin(da,,,,(0(PZ), 0Amod)). Since 0(pz) = 0(py) — O(p€) as y € p€ tends to oo, the claim
follows. O

Corollary 4.6.4 Fach complete reqular geodesic which lies in a tubular neighborhood of an apart-
ment A must be contained in A. If Ay and As are apartments in X and As lies in a tubular
neighborhood of Ay, then Ay = As.

Another implication of the previous lemma is the following analogue of lemma 4.4.2 at infinity.

Lemma 4.6.5 If C1,Co C X are Weyl chambers with OriysC1 = OriusCa, then there is a chamber
CCCinC(Cs.

Proof. 1t is enough to consider the case that the building X is irreducible. The claim is trivial if
the affine Weyl group is finite and we can hence assume that W,y is cocompact. If p is a regular
geodesic ray in Cy then, by the previous lemma, it enters C in some point p and C; N Cs contains
the metric cone K centered at p with ideal boundary Oriis K = OrisCs. Since Wy is cocompact,
K clearly contains a Weyl chamber. g

Proposition 4.6.6 There is a bijective correspondence between apartments in X and Opyus X given

by:
A C X < OpitsA C Oris X

Proof. We have to show that every apartment K in Op;;s X is the boundary of a unique apartment
in X. Since K contains a pair of regular antipodal points, there is a regular geodesic ¢ whose ideal
endpoints lie in K. c is contained in an apartment A. Since the apartments dr;sA and K have
antipodal regular points in common, they coincide as a consequence of lemma 3.6.1. A is unique by
corollary 4.6.4. O

Lemma 4.6.7 Let A be an apartment in X . If ¢ is a geodesic arriving at p € A, it can be ertended
into A.

Proof. 1If n is the direction of ¢ at p then, by lemma 3.10.2, n has an antipode in the spherical
apartment ¥, A. Hence c has an extension into A. O
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Corollary 4.6.8 For any point x and any apartment A in X the geodesic cone over A at x lies in
the cone over OryusA. In particular, it is contained in a finite union of apartments passing through
T.

Sublemma 4.6.9 Let Ybe a FEuclidean building with associated admissible spherical polyhedron
Anod. Then for each direction & € int(Apmoq) the subset 071(8) in the geometric boundary OsY is
totally disconnected with respect to the cone topology.

Proof. Suppose that y,y’,y"” € Y so that 0(yy’) = 0(yy”) = 6. Define the point z by vy’ Nyy” = yz.
If 2 # ¢/, y" then the angle rigidity axiom EB2 implies that £, (v, ") > ag := 2cdotda,, (8, 0Amod)
and by triangle comparison we obtain:

mod

' d(y/a W)

ly'z| < =
sin ay

As a consequence, for each z € Y the closed subset {£ € 9,,Y|0(¢) = & and z € y€} of 671(6) is also

open and we see that each point in #71(§) has a neighborhood basis consisting of open and closed
sets. U

4.7 Subbuildings

A subbuilding X' C X is by definition a metric subspace which admits a Euclidean building structure.
This implies that X’ is closed and convex and that Or;;s X' is a spherical subbuilding of Oz X which
is closed with respect to the cone topology. We consider a partial converse:

Proposition 4.7.1 Let X be a Fuclidean building and B C Orj1s X a subbuilding of full rank. Then
the union X' of all apartments A with OrysA C B has the following properties:

o If X' is closed then it is a subbuilding of full rank and the subbuilding Or;;s X' C Oris X is the
closure B of B with respect to the cone topology. Furthermore, X' is the unique subbuilding
with 8Tit5Xl = B.

e If X is discrete or locally compact then X' is closed.

Proof. Observe that
X' U {A apartment|Oris A C B} = U{A apartment|Or;;s A C B}.

We first show that X' is a convex subset. Consider points 1,22 € X’. There are apartments A;
with z; € A; C X’. By lemma 3.10.2, there exist & € OrusA; with £, (v5-4,&;) = w. The canonical
map ¥ : Opits X — L., X is a building morphism and satisfies the assumption of proposition 3.11.2.
Thus, since Z;, (£1,&2) = m, there is an apartment O7;:sA C X’ which contains &1, & and projects
isometrically to X,, X via ¢. This means that ;1 € A. Consequently T173 C A and X' is convex.
Similarly, one shows that any ray and geodesic in X’ lies in an apartment A which is limit of
apartments A, with Orjs A, C B, i.e. OrissA C B and A C X’. The building axioms are inherited
from X and if X’ is a closed subset then it is complete and a Hadamard space. This proves assertion

(i).
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(ii) Assume that X is discrete and # € X’. Any point 2’ € X’ lies in an apartment A C X', and
if 2/ is sufficiently close to = then A contains x. Hence X' is close in this case.

Assume now that X is locally compact and that (z,,) C X’ is Cauchy with limit € X. Let
p € X’ be some base point. Any segment PT,, lies in some apartment A, C X’ and we can pick
rays pz/ &, in A, so that limz/, = z and 0¢, = 0pz. After passing to a subsequence, we may
assume that (&,) converges to a point £ € B. Since 0¢,, = 0¢, lemma 4.1.2 implies that the segments
p&n NPE C X' N p€ converge to pé. Hence pé contains z lies in X', O

4.8 Families of parallel flats

Let X be a Euclidean building and F' C X a flat. If another flat F” has finite Hausdorff distance
from I then F and F’ bound a flat strip, i.e. an isometrically embedded subset of the form F' x I
with a compact interval I C R. In this case, the flats F and F’ are called parallel. Consider the
union Pp of all flats parallel to F'. Pg is a closed convex subset of X and splits isometrically as

Pr=FXxY.

Proposition 4.8.1 Pr is a subbuilding of X and Y admits a Euclidean building structure.

Proof. By proposition 4.6.1, P is the union of all apartments which contain F' in a tubular neigh-
borhood, and Orts Pr is the union of all apartments in Or;;sX which contain the sphere Op;sF.
The subset Orits Pr C Orits X is convex by lemma 4.1.2 and a subbuilding by proposition 3.10.3.
Proposition 4.7.1 implies that Pp is a subbuilding of X. As a consequence, the Hadamard space Y
inherits a Euclidean building structure. O

If &im(F) = rank(X) — 1, then Y is a building of rank one, i.e. a metric tree. Since X,Y is
in this case a zero-dimensional spherical building, any two rays ym and ynz in Y either initially
coincide or their union is a geodesic. This implies:

Lemma 4.8.2 (i) Let Hy and Hy be two flat half-spaces of dimension rank(X) whose intersection
H, N Hy coincides with their boundary flats. Then Hy U Hs is an apartment.

(i1) If A1, Az, A3 C X are apartments, and for each i # j the intersection A; N Aj is a half-
apartment, then A1 N As N Ag is a wall in X .

Lemma 4.8.3 Let C1,C5,C3 C 014X be distinct adjacent chambers, with m = C1 N Ce N C3 their
common panel. Then there is a p € X so that if Cone(p, ) = U{p_£|£ €}, then logy (C;) C ¥y X
are distinct chambers for every p’ € Cone(p, ) and any apartment A C X such that OrisA contains
two of the C; must intersect Cone(p, ).

Proof. Let m C OriytsX be a wall containing the panel . Then each chamber C; lies in a unique
half-apartment h; bounded by m, and pairs of these half-apartments form apartments. Let A;; be
the apartment in X with OrysAi; = hi U h;. By lemma 4.8.2, NA;; is a wall M C X, and we
clearly have OrysM = m. If p € M, then the half-apartments log, h; C ¥, X are bounded by
log,, m = ¥, M, so they are distinct; otherwise NA;; # M. Hence the chambers log, C; C log, h; are
distinct chambers.

If A C X is an apartment with C;UC; C OrisA, i # j, then there are chambers é'i, é'j C ANAy;
with 974C; = Ci, 8T7;tSCA’j = (. The Tits boundary of the Weyl polyhedron P = A;; N A contains
C; U0y, so it intersects Cone(p, 7). O
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4.9 Reducing to a thick Euclidean building structure

This subsection is the Euclidean analog of section 3.7.

Definition 4.9.1 Let X be a Euclidean building modelled on the Euclidean Cozeter complex (E, Wayy),
with atlas A'. The affine Weyl group may be reduced to a reflection subgroup Wéff C Wayy if there
is a Wéff compatible subset A’ C A forming an atlas for a Euclidean building modelled on (E, W;ff).

In constrast to the spherical building case, the affine Weyl group of a Euclidean building does
not necessarily have a canonical reduction with respect to which it becomes thick. For example, a
metric tree with variable edge lengths does not admit a thick Euclidean building structure. However,
there is always a canonical minimal reduction, and this is thick when it has no tree factors.

Proposition 4.9.2 Let X be a Euclidean building modelled on (E,W,s¢). Then there is a unique
minimal reduction W, C Ways so that (X, E, W, ,) splits as a product [] X; where each X;
is either a thick irreducible Euclidean building or a I1-dimensional FEuclidean building. The thick
irreducible factors are either metric cones over their Tits boundary (when the affine Weyl group has
a fixed point) or their affine Weyl group is cocompact.

Proof. We first treat the case when (Orits X, Amod) is a thick irreducible spherical building of
dimension at least 1.

Step 1: Fach apartment A C X has a canonical affine Weyl group G 4. If A C X is an apartment, a
wall M C A is strongly singular if there is an apartment A’ C X so that AN A’ is a half apartment
bounded by M. Since Or;+sX is thick and irreducible, for every wall m C J7;:5A there is a strongly
singular wall M C A with dp; s M = m.

Sublemma 4.9.3 The collection M 4 of strongly singular walls in A is invariant under reflection
in any strongly singular wall in A.

Proof. Note that a wall M C A is strongly singular iff ¥,M C ¥,X is a wall with respect to
the thick building structure (X,X, A" (p)); this is because any half-apartment h C ¥,X with
boundary ¥,M can be lifted to a half-apartment H C X with boundary M, ¥,H = h by applying
proposition 3.11.4 to the surjective spherical building morphism log,, : Orits X — %, X.

If My, My C A are strongly singular walls intersecting at p € A, then $,M; is a A" (p) wall
in ¥,A C ¥,X, and so if we reflect ¥£,My in ¥, M (inside the apartment ¥,A), we get another
Al (p) wall which is then the space of directions of the desired strongly singular wall Ms.

Now suppose that M7, Ms € M 4 are parallel. A,,,4 is irreducible so there is a strongly singular
wall M3 intersecting both M; at an acute angle. Reflect Ms in M3 to get My, reflect M3 in My to
get M5, and My in My to get Mg, and finally reflect Mg in M5 to get a wall which is the image of

My under reflection in M7. The walls M; are all in M 4, so we’re done. O
Proof of proposition 4.9.2 continued. Hence for every apartment A C X the collection of strongly
singular walls in A gives us a group G4 C Isom(A) which is generated by reflections.

Step 2: The group G 4 is independent of A. Since OritsGa C Isom(OrisA) is an irreducible Coxeter
group, it follows that G 4 is either a discrete group of isometries or it has a dense orbit. When G 4
is discrete, it is generated by the reflections in the strongly singular walls which intersect a given
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G 4-chamber in codimension 1 faces. When G 4 has a dense orbit, it is generated by all the reflections
in strongly singular walls passing through any open set. If two apartments A; and Ay intersect in
an open set, it follows that G 4, is isomorphic to G 4,; therefore G 4 is independent of A. So there
is a well-defined Coxeter complex (E, W) attached to X.

Step 3: Finding (E, W{;ff) apartment charts. If Z is a convex domain in an apartment A C X and
t: U — Z is an isometry of an open set U C E onto an open set in Z, then there is a unique
extension of ¢ to an isometry of a convex set Z C E onto Z.

Pick an apartment Ag C X and an isometry ¢ : £ — Ay which carries W(if 5 C Isom(E)

to Ga,. Then restrict to a W;ff chamber Cy C E and its image Cj def LO(C’O) C Ap. Given

any chamber C' C X, there is an apartment A; containing subchambers of C' and Cy. There is a
unique isometry ¢ : E — A; so that Lfl and Lal agree on the subchambers Cy N Ag C Aj, and a
unique isometry ¢ : £ D C — C so that Lal and 17! agree on the subchamber C' N Ay. If Ay is
another apartment with d7;;5Cy, OritsC C Orirs A2, we get another isometry to : E — Ag; but the
convex set Ay N As contains subchambers of Cy and C, so Ll_l and ¢ L agree on a subchamber of C.
Therefore ¢ is independent of the choice of apartment asymptotic to Co U C.

Sublemma 4.9.4 Let A C X be an apartment, and let Cy,Co C Orits A be adjacent Ay, oq-chambers
(C1 N Cy is a panel). Fori= 1,2 we let 1c,(A) : E — A be the unique isometric extension of ia,
where C; C Ais a Wéff—chamber with OrisC; = C;. Then LE;(A) oo, (A) € W;ff.

Proof. For ¢ =1,2 let A;; C X be an apartment with Cy U C; C OrisA;. If Cy is contained in the
convex hull of CoUC, (or Cy C Convex Hull(CoUCH)) then C1UCy C Opirs (ANA3), so the sublemma
follows from the fact that Lal (A) restricted to AN Ay coincides with ¢ L ’ ANy So we may assume
that there is a chamber C3 C 015 A1 NOrits A2 which meets C7 and Cs in the panel 7 = C1NCs. By
lemma 4.8.3 (applied to the original Euclidean building (X, E, Wes¢)), there is a point p € A1 NAj so
that Cone(p, ) C A1 N Az and log,(C;) C X, X are distinct chambers for i = 1,2, 3. Therefore ot
and ;' agree on Cone(p, 7). Hence the isometries Lall (4), La: agree on Cone(p, w), which means that
L&zl (A)oic,(A) : E — Eis areflection. But since ¥, (Cone(p, 7)) = log,(C1)Nlog, (C2) Nlog,(C3),
Cone(p, ) spans a strongly singular wall in A and so the reflection LE; (A)otc,(A) € Wig. O

Proof of proposition 4.9.2 continued. By sublemma 4.9.4, we see that for each apartment A C X,
there is a canonical collection of isometries ¢ : E — A which are mutally W/ ¢ compatible, and

which are compatible with the vc : ¢ — C for every chamber C' C A. We refer to such isometries
as W, ; ;-charts, and to the collection of W ; ;-charts (for all apartments) as the (£, W, ;) atlas A".

a

Sublemma 4.9.5 Let Ay, Ay C X be apartments with d-dimensional intersection P = Ay N As. If
p € P is an interior point of the Weyl polyhedron P, then there is an apartment As C X so that As
contains a neighborhood of p € P, and A3 N A; contains a Weyl chamber.

Proof. We have ¥,A; N¥X,A, = X, P by lemma 4.4.3. Let 01 C £, P be a d — 1-dimensional face
of ¥,P, and let o, be the opposite face in ¥,P. If 1 C ¥,4; is a chamber containing o;, then
we may find an opposite chamber 7 C ¥,A45. But then 7 contains a face opposite o1, and this
must be o9 since each face in an apartment has a unique opposite face in that apartment. Let
Ci C OritsA; be the chamber such that log, C; = 7;. Then there is a unique apartment Az C X
with C1 U Cy C OritsAs. ¥, P C X,A3, so Az has the properties claimed. O
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Proof of proposition 4.9.2 continued. If A1, Ay C X are apartments with A;NAs # ), then any W(;ff
charts¢; : E — A; are W ¢ compatible since by sublemma 4.9.5 we have a third apartment Az C X
so that ¢1 and ¢ are both Wéff compatible with ¢t3 : E — A3 on an open set U C A; N As. Hence
A’ gives X the structure of a Euclidean building modelled on (E, W/ ¥ f). From the construction of
W, it is clear that (X, .A) is thick.

a

Step 4: The case when X is a 1-dimensional Fuclidean building, i.e. a metric tree. Let Ag C X
be an apartment, Oris Ao = {m,n2}. For each p € X let ma,(p) € Ao be the nearest point in Ag,
and pa, € Ao be a point (there are at most two) with d(pa,,7a,(p)) = d(p, Ao). Let M C Ay be
the set of points p4, where p € X is a branch point: |X,X| > 3; let G C Isom(Ag) be the group
generated by reflections at points in M. For each § € Orus X \ 71 there is a unique isometry ¢
from the apartment Ag = 7172 to the apartment 7;€ which is the identity on the half-apartment
iz Nmé. If & # &, then we have two isometries ¢1, 10 : Ag — & & where Li_l agrees with ¢, on
mé& N &&. By inspection ¢y Yo 11 € G. Hence for each apartment A C X we have a well-defined
set of isometries A9 — A. As in step 3 it follows that these isometries are G-compatible, so they
define an atlas A’ for a Euclidean building structure on X.

Step 5: X is an arbitrary Euclidean building modelled on (E,Weayrs). Let W def OritsWayys, and
let W’ C W C Isom(OdrisF) be the canonical reduced Weyl group of 975X given by section 3.7.
Let Woys C Isom(E) be the inverse image of W’ under the canonical homomorphism Isom(E) —

Isom(OrisE). Let 0 : Orits X — AL def S/wW’ be the Al -anisotropy map. We may define
Al ~directions for rays £ C X by the formula ¢'(z€) = 0'(§) € Al ;. We define the A/ -

direction of a geodesic segment Zf C X by setting 0/ (7y) = ' (z&;) for any ray x&; extending T7; if
@ is another ray extending Zy then &; € Oryus X and & € Orus X are both antipodes of n € Ors X
where 77 is a ray extending YT, so ¢’ (Ty) is well-defined. The remaining Euclidean building axioms
follow easily from the fact that any two segments pz, py initially lie in an apartment A C X (corollary
4.4.3) and for our compatible (E, W, ¢f) apartment charts we may take all isometric embeddings
i: E — X for which Orisi : Orits E — Orits X is an apartment chart for (9pus X, AL ).

We may now apply proposition 4.3.1 to see that (X, E, W,s¢) splits as a product of Euclidean
buﬂdings (X,E,Waff) =(I1 Xi,HEi,HW;ff) so that each 075 X; is irreducible. Let (W;ff)’ C
W+ Ai be the canonical subgroup and atlas constructed in steps 1-4, and set éff = H(W;ff)' C
Isom(E), A" =[] Ai. Then (X, E;, ( ;ff)’, A;) has the properties claimed in the proposition. Fix
an apartment Ay C X and a chart 14, € A. If Ag,..., Ar = Ao is a sequence of apartments so that
A;_1 N A; is a half-apartment for each 4, then there is a unique isometry g; : A;_1 — A; so that g;
is the identity on A;_1 N A;. Axiom EB4 implies that g;o...0g1 04, € A for each 4, so in particular
g =Gro...001 € tayx(Wysy). From the construction of (W(fff)’ it is clear that the group of all
sucb i§ometries 9: Ao — A contains iy (W, ;) C Isom(Ag) where iy € A'. So Wi, C Wopy is
a minimal reduction of Weyy. O

4.10 Euclidean buildings with Moufang boundary

This is a continuation of section 3.12.

Proposition 4.10.1 (More properties of root groups) Let B be a thick irreducible spherical
building of dimension at least 1, and let X be a Fuclidean building with Tits boundary B.
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1. For every root group U, C Aut(B,Aped) and every g € U, there is a unique automorphism
gx : X — X so that Orusgx = g. In other words, if G is the group generated by the root
groups, then the action of G on Op;ts X “extends” to an action on X by building automorphisms.
Henceforth we will use the same notation to denote this extended action.

2. Suppose g € U, is nontrivial. If A C X is an apartment such that OrysA D a, then g(A)N A
is a half-apartment; moreover Fixz(g) N A= g(A)N A.

Proof. See [Ron, Affine buildings II, esp. prop. 10.8], or [Ti2, p. 168].

For the remainder of this section X will be a thick, nonflat irreducible Euclidean building of
rank > 2. Therefore A4 is a spherical simplex with diameter < 7 and the faces of 075 X define
a simplicial complex.

Lemma 4.10.2 Let A C X be an apartment, pg € X, p € A the nearest point in A, and a C 0A a
root. Then the stabilizer of po in the root group U, fizes p.

Proof. Using lemma 3.10.2 extend the geodesic segment pop to a geodesic ray po€ = popUpé so that
the ray p lies in the half apartment Cone(p,a) C A. If g € U, fixes po, then it fixes the ray poé,
and hence the half-apartment Cone(p, a). O

We now assume that the spherical building (9rits X, Amod) is Moufang. Pick p € X, and let
(3,X, A" (p)) denote the thick spherical building defined by the space of directions ¥, X with its
reduced Weyl group (see section 3.7). Suppose H; C X is a half-apartment whose boundary wall
passes through p, hy def YpHy C X is a Afﬁod(p) root, and let ay = OpysHy C OppsX. If
U,, is the root group associated to ay, and V,, C U,, is the subgroup fixing p, then we have a

homomorphism X, : V,, — Aut(X,X, AR (D).

mod

Lemma 4.10.3 The image of V, is the root group Uy, associated with h,, and this acts transitively
on apartments in $,X containing hy. In particular, ($,X, A" .(p)) is a thick Moufang spherical
building.

Proof. By corollary 3.11.5, if h- C X,X is a A" (p) root with Oh_ = Ohy = %,(0H,), then
there is a half-apartment H_ C X so that H_ and H; have the same boundary and ¥, H_ = h_.
Given two such A,,,q(p) roots hl h? C ¥,X so that h® U h, forms an apartment in ¥,X, we
get two half apartments H® so that H® U H, forms an apartment in X. Since (Orits X, Amod) is
Moufang, the root group U,, C Aut(Orits X, Amoq) contains an element which carries H! to HZ.
By 3.12.2, g “extends” uniquely to an isometry g : X — X which carries the apartment H* U H
to the apartment H? U H,, fixing H, (see 4.10.1). It remains only to show that the isometry
Ypg : ¥pX — ¥, X is contained in the root group Uy, C Aut(3,X, Ath (p)). Clearly ¥,g fixes
hy. Let C C ¥,X be a Ath  (p) chamber such that C N Ay contains a panel 7 with 7 ¢ Oh.. Using
proposition 3.11.4 we may lift C' to a (subcomplex) C C drits X so that C'N OJa4 maps isometrically
to C' N Ohy under log, : Orits X — XpX. g fixes an interior point of C, so Ypg fixes an interior

point of C, which implies that ¥,g fixes C as desired. g

Definition 4.10.4 A point s € X is a spot if either
1. The affine Weyl group Weors has a dense orbit or
2. Wayy is discrete and s corresponds to a 0-simplex in the complex associated with X .
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If AC X, then Spot(A) is the set of spots in A.

Lemma 4.10.5 If A C X is an apartment, pg € A is a spot, then for every p # po there is a root
a C OrysA and a g € U, so that g fizes pg but not p.

Proof. For each A .(pg) root hy C ¥,,X we have a singular half-apartment Hy C A with
YpoH+ = hy, and this gives us a root ay = OrisHi C OrssX, the root group U,y4, and the
subgroup V,4 C U, fixing po. By lemma 4.10.3, the image of V, in Aut(¥,,X, Ath (po)) is the

root group Uy, . Since (£,,X, Ath (pg)) is Moufang, the group G, generated by the Vi,'s as hy

runs over all A" (pg) roots in ¥, A acts transitively on A" (po) chambers in ,, X (see 3.12.2).

If p € X —pog is fixed by every V,_, then p?pé YpoX is fixed by Gp,, which means that it lies in

o a(po) chamber of 3, X, forcing PopE Y, A. Hence the point ¢ € A nearest p is different
from pg, so we may find a singular half-apartment Hy C A containing py but not ¢ (because py is a
spot), and use the root group Up,,,, n, to move ¢ while fixing H. This contradicts the assumption
that p is fixed by every Vg, . O

every A

Proposition 4.10.6 Let X be a thick, nonflat Fuclidean building of rank at least two, and suppose
Orits X 1s an irreducible Moufang spherical building. Let G C Aut(OrisX, Amod) be the subgroup
generated by the root groups of OrisX, and consider the isometric action of G on X.

1. The fized point set of a mazimal bounded subgroup M C G is a spot, and the stabilizer of a
spot is a maximal bounded subgroup.

2. A spot p € X lies in the apartment A C X iff p is the unique spot in X which is fized by the
stabilizer of p in U, for every root a C OpysA.

3. If A C X is an apartment, and a C OpusA is a root, then as g runs through all non-trivial
elements of U,, we obtain all singular half-apartments H C A with OpryusH = a as subsets

AN Fix(g).

Proof. Let M C G be a maximal bounded subgroup. By the Bruhat-Tits fixed point theorem [BT],
M has a nonempty fixed-point set Fix(M). Fix(M) contains a spot since when Wo s is discrete
the fixed point set of a group of building automorphisms is a subcomplex. By lemma 4.10.5, we
see that if pg € Fixz(M), then maximality of M forces Fiz(M) = {po}. Conversely, if pg € X is
a spot, then the stabilizer of pg has fixed point set {pg} by lemma 4.10.5, and by the Bruhat-Tits
fixed point theorem, the stabilizer is a maximal bounded subgroup.

For every p € X and every apartment A C X, let G(p, A) be the group generated by the
stabilizers of p in the root groups U,, where a C OrysA is a root. If p € A C X is a spot, then by
lemma 4.10.5 we have Fiz(G(p,A)) = {p}. i p ¢ A C X, then the nearest point pg € A to p is
contained in Fiz(G(p, A)) by lemma 4.10.2; hence Fiz(G(p, A)) contains a spot other than py.

Claim 3 follows from property 2 of proposition 4.10.1, the fact that Op;;s X is Moufang, and the
fact that every singular half-apartment is the intersection of two apartments.

O

Definition 4.10.7 If A C X is an apartment, then the half-apartment topology on Spot(A) is
the topology generated by open singular half-apartments contained in A.

With the half-apartment topology, Spot(A) is discrete when W, sy is discrete and coincides with
the metric topology when W, s has dense orbit.
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5 Asymptotic cones of symmetric spaces and Euclidean build-
ings

In this section we arrive at the heart of the geometric part in the proof of our main results. We
show that asymptotic cones of symmetric spaces and ultralimits of sequences of Euclidean buildings
(of bounded rank) are Euclidean buildings.

Our main motivation for choosing the Euclidean building axiomatisation EB1-4 is that these
axioms behave well with respect to ultralimits. Indeed, the Euclidean building axioms EB1, EB3
and EB4 which are also satisfied by symmetric spaces, i.e. the existence of A,,.q-directions and an
apartment atlas, pass directly to ultralimits. However, unlike Euclidean buildings, symmetric spaces
do not satisfy the angle rigidity axiom EB2. The verification of EB2 for ultralimits of symmetric
spaces (lemma 5.2.2) is the only technical point and, as opposed to the building case (lemma 5.1.2),
non-trivial. Symmetric spaces satisfy angle rigidity merely at infinity; their Tits boundaries are
spherical buildings. Intuitively speaking, the rescaling process involved in forming ultralimits pulls
the spherical building structure (the missing angle rigidity property) from infinity to the spaces of
directions.

5.1 Ultralimits of Euclidean buildings are Euclidean buildings

Theorem 5.1.1 Let X,,, n € N, be Euclidean buildings with the same anisotropy polyhedron A,,04-
Then, for any sequence of basepoints *x, € X,, the ultralimit (X, *,) = w-lim(X,,*,) admits a
Euclidean building structure with anisotropy polyhedron Aqoq-

Proof. X, is a Hadamard space (lemma 2.4.4). A Euclidean building structure on X, consists of
an assignment of A,,,4-directions for segments (axioms EB1+EB2) and of an atlas of compatible
charts for apartments (axioms EB3+EB4), cf. section 4.1.2. We assume that X has no Euclidean
deRham factor. The general case allowing a Euclidean deRham factor is a trivial consequence.
EB1: We can assign a A,,,q-direction to an oriented geodesic segment in X, as follows. A
segment T,7, arises as ultralimit of a sequence of segments T, 7, in X, and we define the direction
as:
0(Toys) == w—}lim 0(TnTn) € Amod (37)

The ultralimit (37) exists because A,,0q is compact. Inequality (28) in EB1 passes to the ultralimit:
A o0 (WM (T 7)), w-lim 0(Fnzn)) < Za, (Yoo, 20)-
This implies that the left-hand side of (37) is well-defined and
A2 o OTT), 0(T070)) < Lo, (Yoos 20)-

Thus axiom EB1 holds. EBI1 implies lemma 4.1.1. Therefore, segments which contain a given
segment have the same A,,,q-direction and we can assign A,,,4-directions to geodesic rays.
EB2: Since geodesics are extendible in X, it suffices to show:

Lemma 5.1.2 Ifz, € X, and&,,n, € Orits Xw then Ly (£w,nw) 18 contained in D := D(0(xw&,), 0(ToTs))-
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Proof. The rays z,,£, and Ty, are ultralimits of sequences of rays z,&, and Z,7, in X, and we can
choose &,,Mn € Orits Xn so that 0(&,) = 0(z,€,) and 0(n,) = 0(Tom). Let pp 2 [0,00) — X, be a
unit speed parametrisation for the geodesic ray ,,£,. The angle Z,, (;)(n,7,) is non-decreasing and
continuous from the right in ¢ (lemma 2.1.5) and, since X,, satisfies EB2, takes values in the finite
set D. For d € D set t,(d) := min{t > 0: £, )({n,nm) > d} € [0,00] and t,(d) := w-limt,(d).
Then there exist dg € D and T > 0 with ¢,(dp) = 0 and 2T < t,(d) for all d > dy. The points
) = pu(tn(do)) and 2 := p,(T) satisfy for w-all n: z/, := w-limz) = z,, 2/ := w-limz! # z,
and the ideal triangle A(z!,, 2!, n,) has angle sum 7. By a version of the Triangle Filling Lemma
2.1.4 for ideal triangles in Hadamard spaces, A(z!,,z! n,) can be filled in by a semi-infinite flat
strip Sp,. The ultralimit w-lim S,, is a semi-infinite flat strip filling in the ideal triangle A(z,,, 2", n.,)
and therefore /., (§u,1,) = w-lim 241 (&n, 1) = do € D, as desired.

EB3 and EB/: After enlarging the affine Weyl groups of the model Coxeter complexes of the
buildings X,,, we may assume that the X,, are modelled on the same Euclidean Coxeter complex
(E,W,zs) whose affine Weyl group W,s; contains the full translation subgroup of I'som(E), i.e.
p Y (W) = W,y where p : Isom(E) — Isom(drisE) is the canonical homomorphism (26) asso-
ciating to an affine isometry its rotational part. (Here we use that the X, don’t have Euclidean
factors.)

The atlases A,, for the building structures on X,, give rise to an atlas for a building structure on
X, as follows: If ¢, € A,, are charts for apartments in X,, so that w-lim d(¢,,(e), *,) < oo for (one
and hence) each point e € F, then the ultralimit ¢, := w-lim¢, : E — X, is an isometric embedding
which parametrises a flat in X,,. The collection A, of all such embeddings ¢,, satisfies axiom EB3
in view of lemma 2.4.4. Axiom EB4 holds trivially, because coordinate changes ¢ o ¢/, between
charts 1y, t, € A, are A,,.q-direction preserving isometries between convex subsets of E and such
isometries are induced by isometries in p~'(W) = W,ss. Hence A, is an atlas for a Euclidean
building struture on X,, with model Coxeter complex (E, Wey¢), and the proof of the theorem is
complete. O

Corollary 5.1.3 Let X be a FEuclidean building modelled on the Cozeter complex (E,Weayrs) and
denote by Waff the subgroup of Isom(E) generated by We s and all translations which preserve the
de Rham decomposition of (E,Wyysy) and act trivially on the Euclidean de Rham factor. Then any
asymptotic cone X, inherits a Euclidean building structure modelled on (E, Waff). The building
X, 1s thick if X is thick and the affine Weyl group Wygs is cocompact.

Proof. X, = w-lim(X,,, x,,) where the )\, are scale factors with w-lim \,, = 0, X,, is the rescaled
building A\, X,, and *,, € X,, are base points. X, inherits the Euclidean building structure modelled
on (B, W, 7f) which was constructed in the proof of the previous theorem.

Suppose now in addition that X is thick and Wy is cocompact. Then any wall w, C X,
branches, i.e. there are half-apartments H,; C X,, i = 1,2, 3, so that the intersection of any two
of them equals w,, and the union of any two of them is an apartment (lemma 4.8.2). If a sequence
of walls w,, satisfies w-lim d(wy,,*,) < oo, it follows that the ultralimit of the sequence (w,,) is a
branching wall in X,,. Since W,y is cocompact by assumption, there is a positive number d so
that any flat in X, whose ideal boundary is a wall in Or;;s X, lies within distance at most d from a
branching wall in X. In view of w-lim A, = 0, this implies that any flat in X, whose ideal boundary
is a wall in Orts X, is a branching wall. Thus, the Euclidean building structure on X, is thick. [
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5.2 Asymptotic cones of symmetric spaces are Euclidean buildings

We start by recalling some well-known facts from the geometry of symmetric spaces which will be
needed later; as references for this material may serve [BGS, Eb].

Let X be a symmetric space of noncompact type. In particular, X is a Hadamard manifold, i.e.
a complete simply-connected Riemannian manifold of nonpositive sectional curvature. To simplify
language, we assume that X has no FEuclidean factor. The identity component G of the isometry
group of X is a semisimple Lie group and acts transitively on X. A k-flat in X is a totally geodesic
submanifold isometric to Euclidean k-space. We recall that G acts transitively on the family of
maximal flats. In particular, any two maximal flats in X have the same dimension r; it is called the
rank of X. We will call the maximal flats also apartments. Pick an apartment £ in X and let W be
the quotient of the set-wise stabiliser Stabg(E) by the point-wise stabiliser Fizg(E). Then We s can
be identified with a subgroup of Isom(E). This subgroup is generated by reflections at hyperplanes
and contains the full translation group. We call (E, W) the Euclidean Coxeter complex associated
to X. Its isomorphism type does not depend on the choice of F, because G acts transitively on
apartments. Consider the collection of all isometric embeddings ¢ : 2 — X so that Wy is identified
with Stabg(¢(E))/Norme(t(E)). Walls, singular flats, Weyl chambers et cetera are defined as
images of corresponding objects in E via the maps ¢. Note that the singular flats are precisely the
intersections of apartments. The induced isometric embeddings Orst : Orits E — Orits X form an
atlas for a thick spherical building structure on 0r;;s X modelled on the spherical Coxeter complex
(Orits E,W) = Orits(E,Wazf). W is isomorphic to the Weyl group of the symmetric space X.
Composing the anisotropy map 0a,.,,. x : Orits X — Apmoq With the map SX — Or;s X which assigns
to every unit vector v the ideal endpoint of the geodesic ray ¢ — exp(tv) one obtains a natural map

0:5X — Avod (38)

from the unit sphere bundle of X to the anisotropy polyhedron A,,,q. We will call (v) the A, o4~
direction of v € SX; A, eq-directions of oriented segments, rays and geodesics are defined as the
Aoq-direction of the velocity vectors for a unit speed parametrisation. The orbits for the natural
G-action on SX are precisely the inverse images under 6 of points. Let S, X be the unit sphere at
p € X, equipped with the angular metric, and let G, be the isotropy group of p. Then 6 induces a
canonical isometry S,/Gp =~ Ay,oq where S, /G, is equipped with the orbital distance metric. The
quotient map S, X — Ay,0q is 1-Lipschitz and, for any x,y € X we have the following counterpart
to inequality (28):

A7 oa (O(0),0(pY)) < Zp(@,y) < Zy(a,y) (39)

The goal of this section is to prove the following theorem.

Theorem 5.2.1 Let X be a non-empty symmetric space with associated Fuclidean Cozeter complex
(E,Wasf). Then, for any sequence of base points x, € X and scale factors A\, with w-lim X, = 0,
the asymptotic cone X, = w-lim(A, X, *y,) is a thick Euclidean building modelled on (E,Wgjsy).
Moreover, X,, is homogeneous, i.e. has transitive isometry group.

Proof. EBI: Let Apoq be the anisotropy polyhedron for (E, W,s¢). The construction of As,oq4-
directions for segments in X, is the same as in the building case. We define directions by (37) and
(39) implies that the definition is good and that EB1 holds.

EBS8 and EB4: The Euclidean Coxeter complex (E, W,ys) is invariant under rescaling, because
Wars C Isom(E) contains all translations. Apartments in X, and their charts arise as ultralimits
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of sequences of apartments and charts in X, and axioms EB3 and EB4 follow as in the building case,
cf. section 5.1.

EB2: The only nontrivial task is to verify the angle rigidity axiom EB2. This will be done in
the following lemma.

Lemma 5.2.2 Ifp € X, and 1,22 € X, — {p}, then Z,(x1,22) € D(0(pT1),0(pT2)).

Proof. 1f zj, € px1 — p and z;, — p, then 2./ (z1,22) — Zp(71,72) and 2L (p,x2) — m — Lp(21,72)

by lemma 2.1.5. Since 6(z,x2) — 0(pTz) we can find 2}, € zj21, ), € zja2, and pj € 2,p such
that 42; (@ 2ox) — Lp(T1,22), Zz; (P> 51,) — ™ — Zp(1,22), and 0(z1,25;) = 0(z,22) — 0(pT32).
Since geodesic segments in X, are ultralimits of geodesic segments in A\, X, we can find sequences
Dk L1k, Tok, 2k € X such that zp € Praig, Loy (T1k, Tak) — Lp(T1,T2), Lay (Pr, Tok) — T—Lp(T1, T2),
0(Zxzar) — 0(pT2), 0(Prz1k) — 0(PpT1), and finally |zxz1k|, |26xk|, |2kPK| — 0. Applying a sequence
of elements g, € G'= (Isom(X))° we may assume in addition that zj is a constant sequence, 2j, = o.
Hence the sequences of segments 01y, 0Tak, 0pr subconverge to rays o€y, 0z, and o7 respectively,

which satisfy the following properties:
L. gaT'itsX(fi) = 9(0_&) = 9(@)
2. Lris(§1,82) < ZLp(x1,22), Lries(n, &) < m — Ly(x1, x2) by lemma 2.3.1.

3. 0& Uor is a geodesic, s0 Lris(€1,1m) = 7.
We conclude that

Zp(w1,w9) = L1its(§1,82) € D(0(&1),0(82)) = D(0(pz7), 0(pT2))

as desired. g

Hence we have constructed a Euclidean building struture on X,,. Since G acts transitively on
Weyl chambers in X, it follows that the isometry group of X, acts transitively on Weyl chambers
in X,; in particular, X, is homogeneous. To see that the building structure on X, is thick it
is therefore enough to check that the induced spherical building structure of ¥, X, modelled on
(Orits E, W) is thick. One way to see this is to construct a canonical isometric embedding « of the
thick spherical building 97;:s X modelled on (Or;ts E, W) into ¥, X,, by assigning to £ € Oris X the
initial direction in #,, of the geodesic ray w-lim*,£ in X,. That « is isometric follows, for instance,
from the definition (8) of the Tits distance. This finishes the proof of the theorem. O

6 The topology of Euclidean buildings

In this section, X will denote a rank r Euclidean building. The main goal in this section is to
understand homeomorphisms of X. As motivation for the approach taken here, consider a closed
interval I topologically embedded in an R-tree T'. Because every interior point p € I — 91 of the
interval disconnects T, every path ¢ : [0,1] — T joining the endpoints of I must pass through
p, i.e. ¢([0,1]) D I. A similar phenomenon occurs in X if we consider topological embeddings of
closed balls B C X of dimension equal to rank(X): if [c] € H,(X,0B) and [0c| € H,_1(9B) is the
fundamental class of OB, then the image of the chain ¢ contains B. By using 4.6.8, we can construct
such ¢ so that Image(c) — U is contained in finitely many flats, where U is any given neighborhood
of OB. Tt follows that any b € B — 9B has a neighborhood Vj, in X such that BNV} is contained in
finitely many flats.
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6.1 Straightening simplices

If Z is a Hadamard space, there is a natural way to “straighten” singular simplices o : Ay, — Z (cf.
[Thu]). Using the usual ordering on the vertices of the standard simplex, we define the straightened
simplex Str(o) by “coning”: if Str(a‘Akil) has been defined, then Str(o) is fixed by the requirement
that on each segment joining p € Ap_; with the vertex opposite Ax_1 in Ay, Str(o) restricts to
a constant speed geodesic. Str(o) lies in the convex hull of the vertices of o. This straightening
operation induces a chain equivalence on C,(Z). By using the geodesic homotopy between Str(o)
and o, one constructs a chain homotopy H from the chain map Str to the identity with the property
that I'mage(H (o)) C ConvexHull(Image(o)) for any singular simplex o.

When Z is the Euclidean building X, then it follows from lemma 4.6.8 that for every singular
chain ¢ € Cx(Cone(X)), Image(Str(c)) is contained in finitely many apartments.

Corollary 6.1.1 If V C U C X are open sets, then H,(U,V) =0 for every k > r = rank(X).

Proof. 1f [c] € Hi(U, V), then after barycentrically subdividing if necessary, we may assume that the
convex hull of every singular simplex in ¢ (respectively Oc) lies in U (respectively V). The straightened
chain Str(c) determines the same relative class as ¢ since I'mage(H(c)) C U, Image(H(9c)) C V
and

Str(c) —c=0H(c) + H(0c).

But the straightened chain is carried by a finite union of apartments (corollary 4.6.8), which is a
polyhedron of dimension rank(X), so [Str(c)] = [¢] = 0. O

Lemma 6.1.2 Let Z be a regular topological space, and assume that Hy(U1,Usz) = 0 for every pair
of open subsets Us C UL C Z, k>r. If Y C Z is a closed neighborhood retract and U C Z is open,
then the homomorphism H.(Y,Y NU) — H,.(Z,U) induced by the inclusion is a monomorphism.
In particular, the inclusion Y — Z induces a monomorphism H,. (Y)Y —y) — H.(Z,Z —y) of local
homology groups for every y € Y.

Proof. If [¢1] € H,(Y,Y NU), then there is a compact pair (K1,K2) C (Y, Y NU) and [c2] €
H,(Ky, Ks3) so that i,([ce]) = [c1] where i : (K1, K2) — (Y, Y NU) is the inclusion. If [¢1] is in the
kernel of H.(Y,Y NU) — H,(Z,U) then there is a compact pair (K1, K3) C (K3,K4) C (Z,U)
such that j.([cz]) = 0, where j : (K1, K2) — (K3, K4) is the inclusion.

Let r : V — Y be a retraction, where V' is an open neighborhood of Y in Z. Choose disjoint
open sets W1, Wy C Z such that Y — U C Wy, K4 C Ws; this is possible since Y — U is closed,
K, is compact, and Z is regular. Shrink V if necessary so that r=*(Y — U) C W;. We now have:
H.(Y,YNU) — H,.(V,r~1(YNU)) is amonomorphism since r is a retraction; H,.(V,r~1(YNU)) —
H,.(VUWs, =YY NU)UWs,) is an isomorphism by excision; H,.(V U Wa,r~3 (Y NU) U W) —
H.(Z,r~Y(Y NU)UWs>) is a monomorphism by the exact sequence of the triple (Z,VUW,,r~1(Y N
U)UWs) and H,11(Z,V UW2) = 0. It follows that [¢1] = 0. O

6.2 The Local structure of support sets

Recall that X denotes a rank r Euclidean building. Let Y be a subset of a topological space Z. If
[c] € Hi(Z,Y), then we define Support(Z,Y,[c]) C Z —Y to be the set of points z € Z — Y such
that the image of [¢] in the local homology group Hy(Z, Z — {z}) is nonzero. Support(Z,Y,[c]) is a
closed subset in Z — Y, and contained in the image of the chain c.
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Lemma 6.2.1 Let B be a topologically embedded closed r-ball in X, Y a subset containing 0B, and
denote by u the image of a generator of H.(B,0B) induced by the inclusion (B,0B) — (X,Y).
Then Support(X,Y,u) =B -Y.

Proof. We may apply lemma 6.1.2 since B is a closed (absolute) neighborhood retract. Therefore
Support(X,Y, u) coincides with Support(B, BNY,[B]) = B —Y where [B] denotes the generator of
H,.(B,0B) which is mapped to p. O

Now let U be an open subset of X and consider [¢] € H,(X,U). After subdividing the chain ¢
if necessary, we may assume that the convex hull of each simplex of dc is contained in U, so that
[Str(c)] = [¢]. By 6.1, ¢; = Str(c) is carried by a finite union of apartments P, so [c] is the image
of [e1] € H.(P,PNU) under the inclusion H.(P,PNU) — H,(X,U). Applying lemma 6.1.2 to
the neighborhood retract P, we find that the inclusion Support(P, P NU,[c1]) in X coincides with
Support(X,U, [c]). Hence we have reduced the problem of understanding Support(X,U,[c]) to a
problem about supports in the finite polyhedron P.

Recall that ¥,X has a thick spherical building structure with anisotropy polyhedron A" . (p)
(see section 4.2.2).

Lemma 6.2.2 Pick p € P\ U. When ¢ > 0 is sufficiently small, log,, maps Support(P, P N
U, [c1]) N Bp(e) isometrically to (U;C(C;)) N Be) C C(X,X) = CpX, where the C; C £,X are
Ath (p) chambers and C(C;) C CpX is the cone over C;.

mod

Proof. P is a finite union of apartments, so by corollary 4.4.3 when € > 0 is sufficiently small log,
maps P N By(e) isometrically to (U;CpA;) N B(e) C Cp X, where the A; C P are the apartments
passing through p. We may assume that U C X \ B,(e). Then [c;] determines a class [co] €
H,.(PNBy(e), PNIBp(€)). U;XpA; C X, X has a polyhedral structure induced by the thick building
atlas A" (p), and this induces a polyhedral structure on the pair (P N B,(€), P N dB,(e)). The
r-dimensional faces of this polyhedron are (truncated) cones over A" (p) chambers in the A (p)
subcomplex U;X,A; C ¥, X. Hence the lemma follows from elementary homology theory. O

Corollary 6.2.3 If B is a topologically embedded r-ball in X, then for every p € X \ OB there are
finitely many A" (p) chambers C; C £,X so that log, maps BN By(e) isometrically to (U;C(Ci))N

B(e) C CpX for sufficiently small € > 0.

Proof. Let € H-(B,0B) be the relative fundamental class. Then Support(X,0B,[u]) = B\ 0B
by lemma 6.2.1, and the corollary follows from lemma 6.2.2. O

6.3 The topological characterization of the link

If Z is a topological space and z € Z, then we say that two subsets S1, 52 C Z have the same germ
at z if Sy NN = So N N for some neighborhood N of z. The equivalence classes of subsets with the
same germ at z will be denoted Germ,(Z).

Pick a point z in the rank r Euclidean building X. Consider the collection S;(z) of germs of
topological embeddings of R" passing through x € X. Let Sy(z) be the lattice of germs generated
by Si(x) under finite intersection and union.
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Lemma 6.3.1 The lattice Sy(x) is naturally isomorphic to the lattice KX, X generated by the
Ath (x) faces of £, X under finite intersection and union.

Proof. By lemma 6.2.2 we know that elements of S;(x) correspond to finite unions of A (z)
chambers in ¥, X. Intersections of A" (x) chambers yield A" (z) faces of ¥,X, so we have a
well defined map of lattices = : So(x) — K3, X by taking each element of Sa(x) to its space of
directions at z (which is a finite union of A" (x) faces). Z is injective by Corollary 4.4.3. The
image of = contains the apartments in KX, X, and since (3,X,A") is a thick spherical building
every Af,’}od(x) face of ¥; X is an intersection of apartments, and hence Z is onto. O

6.4 Rigidity of homeomorphisms

In this section we prove the following results about homeomorphisms of Euclidean buildings:
Proposition 6.4.1 A homeomorphism of Euclidean buildings carries apartments to apartments.

Note that homeomorphic Euclidean buildings must have the same rank since the rank is the
highest dimension where local homology groups don’t vanish.

Theorem 6.4.2 Let X, X' be thick Fuclidean buildings with topologically transitive affine Weyl
group and ¢ : Y = X xE" — Y’ = X' xE" a homeomorphism. Thenn =n', and ¢ carries fibers of
the projection Y — X to fibers of the projection Y' — X' inducing a homeomorphism ¢ : X — X'.

Theorem 6.4.3 Let X = Hle X;, X' = Hfi:l X/ be thick Euclidean buildings with topologically
transitive affine Weyl groups, and irreducible factors X;, Xj‘. Then a homeomorphism ¢ : X — X'
preserves the product structure.

Theorem 6.4.4 Let X, X' be irreducible thick Euclidean buildings with topologically transitive
affine Weyl group, and suppose rank(X) > 2. Then any homeomorphism X — X' is a homo-
thety.

6.4.1 The induced action on links

Let X, X’ be Euclidean buildings, and let ¢ : X — X’ be a homeomorphism. Pick a point x in X,
and set 2’ = ¢(x) € X’. The homeomorphism ¢ induces an isomorphism of lattices Sa(z) — Sa(z’)
(see section 6.3) and therefore a dimension preserving isomorphism K¢, : KX X — KX, X' of
lattices. By proposition 3.8.1 the lattice isomorphism K¢, is induced by an isometry ¥,¢ : ¥, X —
Y X

6.4.2 Preservation of flats

Consider a singular k-flat F'. Its germ at a point € F' is a subcomplex of KX, X. The image of
this subcomplex L under K¢, is the subcomplex L’ associated to the germ of ¢(F) in KXy X. L
determines a standard (k — 1)-sphere in ¥, X. Since K¢, is induced by an isometry X,¢ : ¥, X —
Y4(z)X, L' determines a standard (k — 1)-sphere in ¥4, X. This sphere is the space of directions
of a singular k-flat F’. ¢(F) and F’ coincide locally, because their germs coincide. Hence ¢(F)
is a complete simply-connected metric space which is locally isometric to Euclidean k-space EF.
Therefore, ¢(F) is isometric to EF.
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6.4.3 Homeomorphisms preserve the product structure

Let X, X’ be Euclidean buildings which decompose as products

l
x=[[x. x=]]x|
] i=1

of thick irreducible Euclidean buildings X;, X J’ with almost transitive affine Weyl group. We have
a corresponding decomposition of the spherical buildings ¥, X and X, X’ into joins of irreducible
spherical buildings:

Y. X = o3, X, Yo X = OE.@;X{

We recall that this metric join decomposition is unique, cfproposition 3.3.3, and therefore for each
r € X the isometry ¥,¢ : ¥, X — Y4 X’ decomposes as a join ¥,;¢ = oX,¢; of isometries
Yot X, Xi — E(¢(l'))iX;(i) where o is a permutation of {1,...,k}. In particular, X and X’ have
the same number of irreducible factors. We claim that the permutation ¢ is independent of the
point z. To see this, note that any two points y, z € X lie in an apartment A and consider the map
between apartments ¢|4 : A — ¢(A) (compare section 6.4.2). A parallel family of singular flats in A
is carried by ¢|4 to a continuous family of singular flats in ¢(A); since there are only finitely many
parallel families of singular subspaces, we conclude by continuity that ¢| 4 carries parallel singular
flats to parallel singular flats. Consequently the permutation o is independent of x as claimed. We
assume without loss of generality that o is the identity. Our discussion implies that a singular flat
contained in a fiber of the projection p; : X — X is carried by ¢ to a flat in a fiber of the projection
p, :+ X' — X/. Therefore each fiber of the projection p; : X — X, is carried by ¢ to a fiber of
the projection p; : X’ — X!. Hence for each 4 there is a homeomorphism ¢; : X; — X/ such that
¢; o p; = p o ¢, and it follows that ¢ =[], ¢;.

6.4.4 Homeomorphisms are homotheties in the irreducible higher rank case

Let X, X’ be as in theorem 6.4.4. Let A be an apartment in X and consider the foliations of A
by parallel singular hyperplanes. Since X is irreducible of rank r, we can pick out r + 1 of these
foliations Hy, ..., H, such that the corresponding collection of roots is r-independent (i.e. every
subset of r elements is linearly independent) (compare section 3.1). In fact, this property of the root
system is equivalent to irreducibility.

The image of A under ¢ is an apartment A’ and the foliations H; are carried to foliations H;
of A’ by parallel singular hyperplanes. Note that these are also r-independent, since any r-fold
intersection of mutually non-parallel hyperplanes belonging to these foliations is a point. Choose
affine coordinates x1,...,z, for A such that the leaves of Hg are level sets of z1 + - - - + x,- and the
leaves of the foliation H,; for ¢ > 1 are level sets of z;. Choose similar coordinates 7, ...,z on
the target A’ so that ¢({z; = 0}) = {2} = 0} and ¢({dD_x; = 1}) = {d_«, = 1}. Consider those
leaves in A which contain lattice points. Since ¢ maps leaves to leaves one sees by taking successive
intersections of these leaves that ¢ carries lattice points to lattice points by a homomorphism. By
the same reason ¢ induces a homomorphism on rational points and hence, by continuity, an R-linear
isomorphism.

We now know that ¢ |4: A — A’ is an affine map preserving singular subspaces. Angles between
singular subspaces are preserved, because the isomorphisms of simplicial complexes K¢, are induced
by isometries. Hence the simplices {z; > 0,> 2z; < 1} and {2} > 0, 2} < 1} are homothetic and
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¢ is a homothety on A. By considering intersections of apartments one sees that the homothety
factors are the same for all apartments. We conclude that ¢ is a homothety.

6.4.5 The case of Euclidean deRham factors

We now consider Hadamard spaces X =Y x E™ where Y is a thick Euclidean building of rank » — n
with almost transitive affine Weyl group. Clearly lemma 4.6.7 continues to hold for X, and so do
lemma 4.6.8 and the homological statements in section 6.1. Applying the reasoning from section 6.2
we conclude:

Lemma 6.4.5 FEvery topologically embedded r-ball in X is locally a finite union U;C; x E™ where
the C; CY are Weyl chambers.

It follows that every closed subset of X which is homeomorphic to E™ is a union of deRham
fibers, since its intersection with each fiber of p : X — Y is open and closed in this fiber. If z € X,
we may characterize the fiber of p : X — Y passing through = as the intersection of all closed subsets
homeomorphic to E™ which contain x.

Now let X' = Y’ x E", where Y’ is a thick building of rank ' —n/. If ¢ : X — X' is a
homeomorphism, then we have r = r’ by comparing local homology groups. Since the fibers of the
projection maps p : X — Y, p’ : X’ — Y'are characterized topologically as above, we conclude
that ¢ maps fibers of p homeomorphically onto fibers of p’; therefore n = n’ and ¢ induces a
homeomorphism ¢ : Y — Y’ of quotient spaces.

7 Quasiflats in symmetric spaces and Euclidean buildings

In this section, X will be a Hadamard space which is a finite product of symmetric spaces and
Fuclidean buildings. We have a unique decomposition

X=E"x[]x (40)

where n € Ny and the X; are non-flat irreducible symmetric spaces or Euclidean buildings. The
maximal Euclidean factor E™ is called the Euclidean deRham factor. An apartment is by definition
a maximal flat and splits as a product of apartments in the factors. All apartments in X have equal
dimension and it is called the rank of X. Singular flats are defined as products of singular flats
in the factors. If the building factors are thick, then singular flats can be characterized as finite
intersections of apartments. Note that the only singular flat in E™ is E™ itself and hence every
singular flat in X is a union of deRham fibers

7.1 Asymptotic apartments are close to apartments

Proposition 7.1.1 Let Q be a family of subsets in X with the property that for any sequence
of sets Q, € Q, base points q, € Qn, and scale factors d, with w-limd, = oo, the ultralimit
w—limn(dinQn, Gn) is an apartment in the asymptotic cone w—limn(dinX, qn). Then there is a positive
constant D so that any set Q € Q is a D Hausdorff approximation of a mazimal flat F(Q) in X.
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Proof. Let us consider a single set  in Q and choose a base point ¢ € Q). The ultralimit w—lim(%Q, q)
is an apartment in the asymptotic cone w-lim( %X ,q) which contains the base point x := (q).

Step 1. We first show that @ is, in a sense to be made precise, quasi-convex in regular directions.
Let ZToy, be a regular segment in w—lim(%Q,q) which contains * as interior point. Z,y, is the
ultralimit of a sequence of segments 7,7, in X with endpoints x,,y, € Q. There is a compact set
A C Int(Aneq) which contains the directions of w-all segments T, 7,. Let F, be a maximal flat
containing the segment T, y,. (F, is unique for w-all n.) Pick ¢ > 0 so that d(A, 0A,04) > €. Denote
by D,, the diamond-shaped subset of all points p € F,, so that Z,, (p,yn) < € and Zy, (p,z,) < €.

Sublemma 7.1.2 There exists r > 0 so that for w-all n the sets D,, are contained in the tubular
r-neighborhood of Q.

Proof. We prove this by contradiction: Choose a point z, € D, at maximal distance d,, from @
and assume that w-limd,, = co. Then the asymptotic cone w—lim(dLnX , 2n) = Cone(X) contains the
apartments F/ := w-lim,, iF" and F" := w-lim,, %Q. The point 2, = (2,) is contained in F’ but
not in F”" and therefore F’ and F” are distinct apartments in Cone(X). Let z,2/, (respectively
2.yl,) be the ultralimits of the sequences of segments z,%, (respectively Z,7,). By the choice of
the points z,, the points z/, and y/, are contained in F” U oo F". Since we can extend incoming
geodesic segments in apartments according to 4.6.7, we may assume without loss of generality that
xl,y, € O F"'. Let Wy and W3 be the Weyl chambers in Cone(X) centered at z,, which are spanned
by the rays ry := m and r9 1= m By the choice of € and the definition of D,,, the rays r; and
r9 yield in the space of directions 3, Cone(X) interior points of antipodal chambers. Consequently,
the union W7 U W5 contains a regular geodesic ¢ passing through z,. Since O W; N Oso F”' contains
the regular point r;(c0), the chamber d W; is entirely contained in 0o, F”. Thus the ideal endpoints
¢(£00) of ¢ are contained in O, F” and we conclude by 4.6.4 that ¢ C F” and hence z, € F”, a
contradiction. O
Step 2. Suppose g, € @ and w-lim %d(q7 qn) = 0.

Sublemma 7.1.3 w-limd(qg,, D) < co.

Proof. The constant sequence q and the sequence g,, yield the same point in the ultralimit w-lim (%X , q),
which is an interior point of w-lim (%Dn, q). Therefore
d(gn, Dn)

w-lim ———~2— = (. 41
Wans Fn\ D) (41)

If w-limd(gy,D,) = oo, then F = w-lim (mDan) C w-lim (an,qn) is a com-

plete apartment in w-lim (mX , qn) (by (41)) which lies at unit distance from w-limg, €

(MQ, qn), which is also an apartment in w-lim (m)( , qn). This contradicts corollary

4.6.4. O
We now know that there is a r; > 0 such that for every R > 0, Q N By(R) C N,v(D,,) for w-all
n, for otherwise we could produce a sequence contradicting sublemma 7.1.3'°.
Step 3. By steps 1 and 2, we know that there is an 79 such that for every R, Q N B,(R) and
D,, N By(R) are ra-Hausdorff close to one another for w-all n.

EXPLANATION OF THIS STATEMENT
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Sublemma 7.1.4 For every R > 0, D,, N By(R) form an w-Cauchy sequence'' with respect to the
Hausdorff metric.

Proof. Suppose X is a symmetric space. Since for w-all n the sets D,, N By (R) have mutual Hausdorff
distance < 27y, if the sublemma were false we could find Hausdorff convergent subsequences of {D,, }
with distinct limits. The limits would be distinct maximal flats lying at finite Hausdorff distance
from one another, which is a contradiction.

If X is a Euclidean building, then failure of the sublemma would give sequences ky,[l, — oo
and a radius R so that the Hausdorff distance between Dy, N By(R) and D, N By(R) remains
bounded away from zero. Then the w-lim(Dy, ,q) and w-lim(D;,,¢) are distinct apartments in the
Euclidean building w-lim(X, ¢) lying at finite Hausdorff distance from one another, contradicting
corollary 4.6.4. g

By the sublemma, w-lim D,, N By(R) exists for all R (as an w-limit of a sequence in the metric
space of subsets of B,(R) endowed with the Hausdorff metric) and so we obtain a maximal flat
F C X with Hausdorff distance < ro from Q.

Step 4. We saw that each set @ in Q is the Hausdorff approximation of a maximal flat F(Q).
Denote by d(Q) the Hausdorff distance of @ and F(Q). Assume that there is a sequence of sets
Qn € Q with limd(Q@,) = co. Choose base points u,, € X so that u, is contained in one of the
sets Qn or F(Qy) but not in the tubular d(@,,)/2-neighborhood of the other. Then the apartments
w-lim @Qn and w-lim @F (Qn) have finite non-zero Hausdorff distance in the asymptotic cone

w-lim( mX ,Uy). This contradicts 4.6.4. The proof of the proposition is now complete. O

Corollary 7.1.5 There is a positive constant Dy = Do(L,C, X, X") such that for any (L, C)-quasi-
isometry ¢ : X — X' and any apartment A in X, the image ¢(A) is a Do-Hausdorff approzimation
of an apartment A’ in X'.

Proof. According to proposition 6.4.1, for any sequence of basepoints and any sequence of scale
factors Ag, the asymptotic cone ®,, of ® carries apartments to apartments. We can apply proposition
7.1.1 to the collection Q of all images ¢(A) C X’ of apartments A in X. O

7.2 The structure of quasi-flats

In this section X will be a symmetric space or a locally compact Euclidean building of rank r, with
model polyhedron A,,,q. Y will be an arbitrary Euclidean building with model polyhedron A, 4.
The goals of this section are:

Theorem 7.2.1 For each (L,C) there is a p such that every (L,C) r-quasiflat Q C X is contained
in a p-tubular neighborhood of a finite union of mazimal flats, @ C N,(UpecxF) where card(F) < p.

and

Corollary 7.2.2 The limit set of an (L,C) r-quasiflat Q C X consists of finitely many Weyl
chambers in Opis X ; the number of chambers can be bounded by L and C.

1A sequence z,, in a metric space X is w-Cauchy if a subsequence with full w-measure is Cauchy. If X is complete,
then we define w-limz,, to be the limit of this subsequence.
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Lemma 7.2.3 Let P CY be a closed subset homeomorphic to R". P is locally conical (by corollary
6.2.8), so it has a well-defined space of directions £, P for every p € P. We have:

1. If p € P then every v € £,Y has an antipode in X, P.

2. If w € ¥, P, then there is a ray p§ C P, £ € OrisY such that pz: w.

Proof. Since P is locally a cone over a ¥, P, we have H,_1(X,P) ~ Z, and the inclusion ¥,P — £,V
induces a monomorphism H,_1(X,P) — H,_1(X,Y) since ¥,Y is an r — 1-dimensional spherical
building. Now if the first claim weren’t true, then ¥, P C ¥,Y would lie inside the contractible open
ball B,(7) C £,Y, making H,_1(Z,P) — H,_1(2,Y) trivial.

The second claim now follows from the first by a continuity argument: w is the direction of a
geodesic segment contained in P since P is locally conical, and a maximal extension of this segment
must be a ray. O

Although we won’t need the following corollary, we include it because its proof is similar in spirit
to — but more transparent than — the proof of theorem 7.2.1.

Corollary 7.2.4 If P C Y is is bilipschitz to E" then P is contained in a finite number of apart-
ments. The number of apartments is bounded by the biLipschitz constant of P.

Proof. Let a € Ay,0q be the barycenter of A,,,q, and consider the collection of rays with A, qq-
direction « contained in P. Since P is biLipschitz to E", a packing argument bounds the number of
equivalence classes of such rays (we know that the Tits distance between distinct classes of rays is
bounded away from zero (cf. 4.1.2)). Let S C OritsY be the (finite) set of Weyl chambers determined
by this set of rays, and let 7 be the finite collection of flats in Y which are determined by pairs of
antipodal Weyl chambers in §. We claim that P is contained in Upc7 F'. To see this, note that if
p € P then by lemma 7.2.3 we can find a geodesic contained in P with A,,,4-direction o which starts
at p. This geodesic has ideal boundary points in S, so by 4.6.3 the geodesic lies in Uper F. g
Another consequence of lemma 7.2.3 is

Corollary 7.2.5 Pick a € Apoq and L,C.e > 0. Then there is a D such that if Q C X is an
(L, C) r-quasiflat, y € Q, and R > D, then there is a z € Q with Z(0(yz), a) < e, |d(y,z) — R| < €R.

Proof. If not, then there is a sequence Qi of quasiflats, yr € @k, and R — oo such that for
every zr € Qr with |d(yk, zx) — Ri| < eRy we have Z(6(Yrzx), ) > €. Taking the ultralimit of
R%CQ’C - R%,X we get y, € Q. C X, and for every z, € Q, with |d(y.,2,) — 1] < € we have
Z(0(Ywzw), ) > €. But this contradicts lemma 7.2.3 since @, is biLipschitz to E": we can pick
v € 3y, Q. with §(v) = o and find a geodesic segment Tz, C Q. with Yorzw= v, and for w — all k
zi, satisfies the conditions of the lemma. O

Lemma 7.2.3 implies that quasi-flats “spread out”: a pair of points yg, 20 lying in a quasi-
flat @ C X can be extended to an almost collinear quadruple yi, Yo, 20, 21 While maintaining the
regularity of A,,.q-directions. To deduce this we first prove a precise statement for Euclidean
buildings.

Lemma 7.2.6 Let a1 € Apyoq be a regular point, and let €1 > 0. Then there is a 61 € (0,€1) with
the following property. If P C Y is a closed subset homeomorphic to R" and yg,zo € P satisfy
Z(0(gozo), 1) < 01, then there are points y1,z1 € P so that
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d(z0,z1) = d(yo,y1) = d(yo, z0) (42)

Ly (Y1, 20), £z (Y0, 21) > 7 — €1 (43)

L(G(ylzl),al) <& (44)
The proof requires:

Sublemma 7.2.7 Suppose x,y,z € Y and Z,(y,z) = max(D(0(zy),0(zz)) (c¢f. 3.1). Then x,y, z
are the vertices of a flat (convex) triangle and yzve X,Y lies on the segment joining y} to a point
v € X,Y, where (v) = 0(TZ) and v and yz lie in a single chamber.

Proof of sublemma 7.2.7: Extend the geodesic segments T, TZ to geodesic rays z&; and x&s, & €
Orits X . By hypothesis

Za(y, z) = max(D(0(zy), 0(7z))) = max(D(0(£1), 0(82))) = Lris (€1, €2)-

So 2€1& determine a flat convex sector S. Note that yz and ygg lie in a single chamber of ¥, X
since 2y (z,&2) = m— £, (€1,&) = 7 —max D(0(&1),0(&2)) = min D(Ant(0(¢1)), 0(62)) = min D(0(y
),0(&2)). Hence Azyz bounds a flat convex triangle T' C S, and so y= lies on the geodesic segment

which has endpoints y?c and y&o. O

Proof of lemma 7.2.6: Pick z; € P so that zZgz1 C P, d(z0,21) = d(¥0,20), 0(z0z1) = «, and
2071 € 3,,Y lies in a chamber antipodal to z@o; similarly choose y1 € P so that goy1 C P, d(yo,y1) =
d(yo, z0), 0(Hoy1) = Ant(a), and Yoy1E ¥y, Y lies in a chamber antipodal to Yoz0. Applying sub-
lemma 7.2.7 we conclude that zg, yo, 21, are the vertices of a flat convex triangle, and y(TfﬁE XY
lies on the segment joining yozo to v € ¥,,Y where 6(v) = 0(Z077) = a and v and oz lie in the
same chamber. In particular y(?zl and y(ﬁ/l lie in antipodal chambers of ¥, Y, so applying lemma
7.2.7 again, we find that G(y:zl) lies on the segment joining 6(%oz1) to 0(y1%o) = . y1 and 27 clearly
satisfy the stated conditions since Zy,(y1, 20) > Zyo(y1,20) = — Z(0(Tozo, ) > 7 — 61 > 7T — €1
and 2., (Yo, 21) > L2y (Yo, 21) = 7 — Z(0(FoZg, @) > 7 — 81 > 7 — €. O
Corollary 7.2.8 Let ag € Apoq be a regular point, and let L,C,ea > 0 be given. Then there are
Dy > 0, 62 € (0, €e2) with the following property. If Q@ C X is an (L, C) r-quasiflat, and yo,z0 € Q@

satisfy
d(yo,20) > D2, Z(0(Fo%0), a2) < 2 (45)

then there are points y1,2z1 € Q so that

|d(20, 21) — d(y0, 20)| ; [d(yo, y1) — d(¥o, 20)| < €2d(yo, 20) (46)
Zyo (41, 20), 2 (40, 21) > 7 — €2 (47)
Z(0(yiz1), a2) < b2 (48)
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Proof. Let 02, A2 be the constants produced by the previous lemma with o = g, € = €2. We claim

that when g, 20 € @ and Z(0(yoz0), a2) < d2 and d(yo, 20) is sufficiently large, then there will exist

points y1, z1 satisfying (46), (47), (48). But this follows immediately from the previous lemma by

taking ultralimits. O
By applying corollary 7.2.8 inductively we get

Corollary 7.2.9 With notation as in corollary 7.2.8, there are sequences y;,z; € Q, 1 > 1 such that
the inequalities (45), (46), (47), (48) hold when we increment all the indices on the y’s and z’s by
i.

Lemma 7.2.10 Fiz p > 0, and consider all configurations (y, z, F') where y, z € X, Z(0(yz), 0Amod)
u, and F' C X is a maximal flat. Then there is a D3 such that the fraction of the segment Yz lying

outside the tubular neighborhood Np,(F) tends to zero with v(y, z, F) I max (C;((Zlf)), ‘fi((zylz)))

Proof. Recall that the distance function d(F,-) is convex, so if the lemma were false there would
be sequences yi, 2k, wp € X, F C X, with Z(0(Wrzk), 0Amod) > 1, d(y,z) — 00, wy € Yrzr with
d(wk, yr), d(wk, zx) > €d(yr, 2x), Vk(Yk, 2k, Fr) — 0 but d(wy, F,) — oo. Let py, qi, . € Fj be
the points nearest yx, ws, 2x respectively. By various triangle inequalities and property (39) from
section 5.2 we have Zg, Pk, Yk), Zqg. (T, 2) — 0 and Z(0(Prqr), 0 (Wrzs), £(0(TTx), 0(Ukzr)) — O.
Therefore if we set Rx = d(qx, wr) and take the ultralimit of (R%CX ,qr) we will get a configuration
(uw, Wy € X, an apartment F,, C X, and &1,& € Opris X so that q, is the point in F,, nearest
to Wy, (qul,Qw) = w‘hm(Qkpk,Qk), (Qw§2;Qw) = W—hm(rik,Qk), (wwflvqw) = w_hm(wkykaqk)v
(W&, qu) = w-lim(Wgzk, g ). In particular, the rays wi&; and wi&s fit together to form the geodesic
w-lim Yz and Z(0(&), 0Amod) > p. But this contradicts corollary 4.6.4. O

Corollary 7.2.11 Fiz ag € Amoq. Then there are constants €4,v4, Dy such that if

1. yi,zi € X, i > 0 are sequences which satisfy (45), (46), (47), (48) (when subscripts are
incremented by i) with €2 < €4, d(yo, z0) > Dy.

2. A mazimal flat F C X satisfies d(yx, F'), d(zx, F) < vad(yx, zx) for some k.
Then d(yi, F),d(z, F) < vad(y;, z;) for all 0 <1 < k.

Proof. If vy is sufficiently small, then the trisection points ¢,z of any sufficiently long segment
yz C X with Z(0(yZ), 0Amod) > 1, max (Z((Z’E)) , C{li((z’f)) ) < vy will satisfy max (Cfi((%g)) , Cfi(é’g)) ) <L vy
by lemma 7.2.10. If we take ¢4 < vy then Z(0(%:z;), 0Amoq) Will be bounded away from zero and
Yi—1,zi—1 will lie close to the trisection points of 7;z; so corollary 7.2.11 follows by induction on
k—1i. O

Proof of theorem 7.2.1:

Step 1: Fix ay € Anod, and let €5, vs, D5 be the constants produced by corollary 7.2.11 with ag = ay.
Let Dg, ds be the constants given by corollary 7.2.8 with as = ay, €2 = €5. Finally, let D7 be the
constant produced by corollary 7.2.5 with o = a4, € = min(Jg, %) Setting Dg = max(Dj5, Dg, D7),
for each yo € @ we may find a zp € Q with Dg < d(yo, 20) < 2Ds so that Z(6(yo, 20), 2s) < g (by
corollary 7.2.5). By corollary 7.2.9 we may extend the pair yo,20 € @ to a pair of sequences y;, z;
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satisfying (45)-(48) with aa = a4, €2 = €5. Then any maximal flat F' C X with d(yx, F),d(zx, F) <
vsd(yg, zx) for some 0 < k < oo satisfies d(y;, F),d(z;, F) < vsd(y;, z;) for all 0 < i < k by corollary
7.2.11; in particular

d(yo, F) < V5d(y(), Zo) < 2v5Dg (49)

We may assume in addition that €5 is small enough that

2d(yi—1,zi—1) < d(yi, zi) < 4d(yi—1, zi-1) (50)
and d(y;, yi-1), d(zi, zi-1) < 2d(yi-1, 2i-1)- (51)

It follows that
max(d(yi, o), d(zi,yo)) < 2d(yi, 2i) (52)

for all 1.

Step 2: Fix ¢ € Q and set vg = 7§. For each R pick a covering of B,(R) N Q by vgR-balls
{By,(vsR)} with minimal cardinality; the cardinality of this covering can be bounded by r and the
quasiflat constants (L, C'). For each pair p;, p; of centers pick a maximal flat containing them, and
denote the resulting collection of maximal flats by Fg.

Claim: If yo € @, then d(yo,Urer, F) < 2v5Dsg for sufficiently large R.
Proof of claim: We will use the sequences y;, z; constructed in step 1 and estimate (49). Take the
maximal ¢ such that y;, z; € By(R). Then

max(d(yit1,q),d(zi41,q) > R
= max(d(¥i+1,¥Y0), d(zi+1,%0)) > R —d(q,yo)

= d(Yit1, 2zi+1) > = (R —d(q,%0)) by (52)

1
2

= d(yi,2z) > 5(R —d(q,0)) by (50).

co|—

Since Fr contains a maximal flat F' with

(R - d(Q7 yO))

1
d(yi,F),d(zi,F)<z/6R:< Bue >-—

R— d(QayO) 8

< 8ug <ﬁ;q,yo)> d(yi, zi)

<5 (7=t 102

Therefore for sufficiently large R there is an F' € Fg and k such that d(yx, F), d(zx, F) < vsd(yk, 2k),
so d(yo, F') < 2u5Dg as claimed. O
Proof of theorem 7.2.1 concluded: We may now take a convergent subsequence of the Fgr’s, and the
limit collection F satisfies Q C Naop, (UperF') and card(F) < limsup card(Fr) which is bounded
by r and (L, C). O

Proof of corollary 7.2.2: By theorem 7.2.1 there is a finite collection F of maximal flats so that @
lies in a finite tubular neighborhood of Upc#F. The limit set of each F' € F is its Tits boundary
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Orits F', which is an apartment of O X. The union of these apartments gives us a finite subcomplex
G C OrisX which is a union of closed Weyl chambers.

Clearly LimSet(Q) C G; we will show that if £ € LimSet(Q) then £ lies in a closed Weyl
chamber C' C LimSet(Q). We have g, € Q such that g, — =€ in the pointed Hausdorff topology.

Consider UperF. Any ultralimit w-lim (RL]C(UFG]:F),*) is canonically isometric to the Eu-

clidean cone over G. w—lim(P%kQ, %) embeds in w-lim (Rik(UFG}-F), *) as a biLipschitz copy of E";
by the discussion in section 6.2 w—lim(P%kQ, %)) is the cone over a collection of closed Weyl chambers

in G. In particular w-lim*q; = *,q, lies in a closed Weyl chamber contained in w—lim(RikQ, %)), so
the corresponding Weyl chamber of G is contained in LimSet(Q), and it contains . g

8 Quasi-isometries of symmetric spaces and Euclidean build-
ings

In this section our goal is to prove theorems 1.1.2 and 1.1.3 stated in the introduction.
Let X, X', and ® be as in theorem 1.1.2. By corollary 7.1.5, ® carries apartments close to
apartments; in particular, X and X’ have the same rank r.

8.1 Singular flats go close to singular flats

Lemma 8.1.1 For any R > 0 there is an D(R) > 0 such that if F is a singular flat in X and A(F)
is the collection of apartments containing F, then Naca(ryNr(A) C Npr)(F).

Proof. Tt suffices to verify the assertion for irreducible non-flat spaces X.

Consider first the case that X is a symmetric space. The transvections along geodesics in F
preserve all the flats containing F'. Hence, if there is a sequence x, € Nae4(r)yNr(A) with d(z,,, F)
tending to infinity, then we may assume without loss of generality that the nearest point to x, on
F is a given point p. The segments Pz, subconverge to a ray p¢ which lies in Nacar)yNr(A) and
is orthogonal to F'. Since for each apartment A € A(F), we have p € A and the ray p remains in a
bounded neighborhood of A, it follows that p C Nacar)F. Hence Nyc o) F contains a (k+1)-flat,
which is a contradiction.

Assume now that X is an irreducible thick FEuclidean building with cocompact affine Weyl
group. Consider a point € X \ F' and let p € F' be the nearest point in F'. Then u ::]?ace ¥pX
satisfies Z,(u, X, F) > 5. We pick a chamber C' in ¥, X containing u and choose a face o of C'
at maximum distance from u. Denote by v the vertex of C opposite to 0. By our assumption,
diam(Amoq) < § and therefore v ¢ ¥, F. Since I is a finite intersection of apartments, lemma 4.1.2
implies X, F' = Naca(r)XpA and there is an apartment A with ¥ C A C X and v ¢ ¥,A. ¥ A is
then disjoint from the open star of v, and so d(u,X,A4) > d(u,0) > ap > 0 where o depends only
on the geometry of A,oq. If © € Nr(A) then angle comparison implies that d(z, F) < =£— and

sin ag

our claim holds with D(R) = =£—. This completes the proof of the lemma. O

sin aq *

Proposition 8.1.2 For every apartment A C X, let A C X' denote the unique apartment at finite
Hausdorff distance from ®(A). There are constants Do(L,C, X, X") and D(L,C, X, X") so that if
F=Na>rA C X is a singular flat, then
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1. (I)(F) C ﬂADFNDO(A/),
2. The Hausdorff distance dg(®(F),Nas5rNp,(A’)) < D,
3. There is a singular flat F' C Na5pNp,(A") with dg(®(F), F') < D.

In particular, two quasi-isometries ®, Py : X — X' inducing the same bijection on apartments
induce the same map of singular flats up to 2D-Hausdorff approximation.

Proof. Let F and A(F) be as in the previous lemma. By corollary 7.1.5, for every apartment
A C X, ¢(A) is Dy-Hausdorff close to an apartment in X’ which we denote by A’. Thus ¢(F) C

Nacar) Np, (A').

Sublemma 8.1.3 For each d > Dy there exists a constant D1 = D1(L,C,d) > 0 with the property
that Naca(ryNa(A') lies within Hausdorff distance Dy from ¢(F).

Proof. Pick a quasi-inverse ¢~ of ¢. For each point y € NacaryNa(A4’) and each A € A(F), oy
is uniformly close to ¢~ 'A’. But ¢'A’ is uniformly Hausdorff close to ¢~ '¢A and therefore to A.
Lemma 8.1.1 implies that Y has uniformly bounded distance from F. U

Proof of proposition 8.1.2 continued. Fixing Ay € A(F), we conclude that C := (Naca(r)Nap, (A’))N
A} is a convex Hausdorfl approximation of ¢(F).

Sublemma 8.1.4 Let C C E! be a convex subset which is quasi-isometric to EF. Then C contains
a k-dimensional affine subspace.

Proof. Fix ¢ € C and let C' C C be the convex cone consisting of all complete rays starting in ¢ and
contained in C. For any sequence A,, — 0 of scale factors, the ultralimit w-lim(\,, - C, q) is isometric
to C. Therefore C' is homeomorphic to EF and hence isometric to E*. O
Proof of proposition 8.1.2 continued. It follows that ¢(F) is uniformly close to a flat F' in X’. Since
¢, carries singular flats to singular flats, Orys F is a singular sphere in Oy, X’. X’ has cocompact
affine Weyl group, so I lies within uniform Hausdorff distance from a singular flat F’. O

8.2 Rigidity of product decomposition and Euclidean deRham factors

We now prove theorem 1.1.2. The product decompositions of X and X’ correspond to a decompo-
sitions of asymptotic cones

Xo=E"x[[ X, X,=E" x][X], (53)
i J

where the X;,, X ;w are irreducible thick Euclidean buildings. They have the property that every
point is a vertex and their affine Weyl group contains the full translation subgroup, in particular
the translation subgroup is transitive. We are in a position to apply theorems 6.4.2 and 6.4.3: The
Euclidean deRham factors of X and X’ have equal dimension, n = n/, and X, X’ have the same
number of irreducible factors. After renumbering the factors if necessary, there are homeomorphisms
(do)i : Xiw — X, such that

(¢w)l O Piw = P;;w o ¢w
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where p; : X — X; and p; : X’ — X! are the projections onto factors. Now let F' be a singular
flat which is contained in a fiber of p;. By proposition 8.1.2, ¢(F) is uniformly Hausdorff close to
a flat F/ C X’'. Since F/ C X/ is contained in a fiber of p/,, F’ must be contained in a fiber of
p;. Any two points in a fiber p{l(xi), x; € X;, are contained in some singular flat F' C p; ! (z;) and
consequently ¢ carries fibers of p; into uniform neighborhoods of fibers of p;. Since an analoguous
statement holds for a quasi-inverse of ¢, we conclude that ¢ carries p;-fibers uniformly Hausdorff
close to pi-fibers and so there are quasi-isometries ¢; : X; — X! so that

popi=piod

holds up to bounded error. This concludes the proof of Theorem 1.1.2.

8.3 The irreducible case

In this section we prove theorem 1.1.3. Note that theorem 1.1.2 implies that X’ is also ireducible,
with rank(X) = rank(X").

8.3.1 Quasi-isometries are approximate homotheties

We recall from proposition 7.1.5 that ® carries each apartment A in X uniformly close to a unique
apartment in X’ which we denote by A’. We prove next that in our irreducible higher-rank situation
the restriction of ® to A can be approximated by a homothety. As a consequence, the quasi-isometry
® is an almost homothety. This parallels the topological result in section 6.4.4.

Proposition 8.3.1 There are positive constants a = a(®) and b = b(L,C, X, X’) such that for
every apartment A C X exists a homothety W4 : A — A’ with scale factor a which approzimates
®D| 4 up to pointwise error b.

Proof. If we compose <I>|A with the projection X’ — A’ we get a map ¥/, : A — A’ which, according
to proposition 8.1.2, carries walls to within bounded distance of walls. Parallel walls in A are carried
to Hausdorff approximations of parallel walls in A’. Moreover, due to our assumption of cocompact
affine Weyl group, each hyperplane parallel to a wall is carried to within bounded distance of a wall.
By lemma 3.3.2 exist r + 1 singular half-spaces in A which intersect in a bounded affine r-simplex
with non-empty interior. Consider the collection C of hyperplanes in A which are parallel to the
boundary wall of one of these half-spaces. Any r pairwise non-parallel hyperplanes in C lie in general
position, i.e. intersect in one point. Hence we may apply lemma 8.3.3 below to the collection C and
conclude that ¥’ is within uniform finite distance of an affine transformation ¥4 : A — A’. Since
®,, is a homothety on asymptotic cones by the discussion in section 6.4.4, it follows that W 4 is a
homothety: For suitable positive constants a4 and b we therefore have

|d(V a(z1),Ua(x2)) —aad(x1,x2)| <b Vai,20€ A

and b depends on L, C, X, X' but not on the apartment A. To see that the constant a 4 is independent
of the apartment A note that for any other apartment A; C X there is a geodesic asymptotic to
both A and A;. It follows that a4, = aa. O
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Corollary 8.3.2 There are positive constants a = a(®) and b =b(L,C, X, X") such that the quasi-
isometry ® : X — X' satisfies

|[d(®(x1), P(z2)) —a-d(x1,22)| < b Vi, ze € X.

Here L™' < a < L.

Proof. This follows from the previous proposition, because any two points in X lie in a common
apartment. O

Lemma 8.3.3 Forn > 2, let ap, ..., a, € (R™)* be a collection of linear functionals any n of which
are linearly independent, and let H; be the collection of affine hyperplanes {ozi_l(c)}ce]g. There s
a function D(C) with limg_o D(C) = 0 satisfying the following: If ¢ : R® — R"™ is a locally
bounded map such that for all H € H;, ¢(H) C Nc(H') for some H' € H;, then there is a an
affine transformation ¢g with scalar linear part which preserves the hyperplane families H; such that

(¢, o) < D(C).

Proof. After applying an affine transformation if necessary we may assume that ag = > . 25,
a; = x; for 1 < j < mn, and ¢(0) = 0. There is a C € R such that the image of each k-fold
intersection of hyperplanes from U;H; lies within the Cy neighborhood an intersection of the same
type. In particular, for each 1 < j < n, ¢ induces a (Cs, €3) quasi-isometry ¢; of the 4t coordinate
axis, with ¢;(0) = 0. It suffices to verify that each ¢; lies at uniform distance from a linear map
since ¢ lies at uniform distance from H?:l ¢;. Also, it suffices to treat the case n = 2 since for each
1 <j < n we may consider the (C4, €4)-quasi-isometry that ¢ induces on the z;z; coordinate plane,
and this satisfies the hypotheses of the lemma (with somewhat different constants).

We claim there is a Cs such that for y, z in the first coordinate axis, we have |¢1 (y+2) — (¢1(y)+
¢1(2))| < Cs. To see this first note that when C equals zero the additivity can be deduced from a
geometric construction involving 6 lines and 6 of their intersection points. When C' > 0, the same
construction can be performed with uniformly bounded error at each step.

By lemma 8.3.4 below, ¢; and analgously ¢; lies at uniform distance from a linear map. O

Lemma 8.3.4 Suppose 1) : R — R is a locally bounded function satisfying |¢(y+z)—(y) —¢(z)] <
D for all y,z € R. Then |¢(x) —ax| < D for some a € R.

Proof. Since [1(2™)—2¢(2"~1)| < D, the sequence (w(;nn)) is Cauchy and converges to a real number

a. Let > 0 and choose numbers ¢,, € N and r,, € R with |r,| < z such that 2" = g,z + r,,. Then

and hence, using that ¢ is locally bounded,

V(" qn Y(rn)z gn + 1)z
| én)$—2—n¢($)— (2n) |S( 2n) D.
N—— ~~ N—— ———
—a —1 —0 —1
When n tends to infinity, we obtain in the limit
laz — ()| < D.
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Similarly, there is a real number a_ such that for all x < 0 we have |a_z — ¢(z)| < D. Since
[(x) + ¥ (—x)| < D+ |¥(0)], it follows that a = a_. O

Proof of theorem 1.1.3 concluded. By corollary 8.3.2 we may scale the metric on X’ by the factor %
so that ® becomes a (1, %) quasi-isometry. Applying proposition 2.3.9 we conclude that ® induces
a map 0o ® : 0o X — 0o X’ which is a homeomorphism of geometric boundaries preserving the
Tits metric. By the main result of 3.7, 0. ® gives an isomorphism of spherical buildings 0 ® :
(Orits X, Amod) — (Orits X', Al ), after possibly changing to an equivalent spherical building
structure on Or;s X'. Consequently, for every & € Ayod, Ooo® maps the set 071(5) C 745X to the
corresponding set 6'~1(8) C Oy X', and @’0,1(5) is a cone topology homeomorphism. When § is a
regular point, the subsets 071(§) C Orits X and 0'~1(8) C Oris X' are either manifolds of dimension
at least 1 or totally disconnected spaces by sublemma 4.6.9, depending on whether X and X’ are
symmetric spaces or Euclidean buildings. Therefore either X and X’ are both symmetric spaces
of noncompact type, or they are both irreducible Euclidean buildings with Moufang boundary. In
the latter case we are done by theorem 8.3.9; when X and X'’ are both symmetric spaces we apply
proposition 8.3.8 to get a homothety ®q : X — X’ with 0,®9 = 9,.P. By proposition 8.1.2,
d(®(v), Po(v)) < D for every vertex v € X, and since the affine Weyl group of X is cocompact the
vertices are uniform in X, and so we have d(®, &) < D’. Hence @ is an isometry. g

8.3.2 Inducing isometries of ideal boundaries of symmetric spaces

We consider a symmetric space X of non-compact type and denote by G the identity component of
its isometry group.

Sublemma 8.3.5 Let F C X be a mazimal flat and let mp : X — F be the nearest point retraction.
Given a compact set K C Int(Apmoeq) and € > 0, there is a 6 > 0 such that if p € X, x € F,
0(p7) € K, and Ly(x,7p(p)) > 5 — 0, then d(p, F) <.

Proof. Note that as ¢ moves from p to mp(p) along the segment 7r(p)p, Z4(z, 7r(p)) increases
monotonically. If the sublemma were false, we could find a sequence py € X, xp € F so that
s

Lo (@, mr(pr)) — 5 and d(pg, F') > €. Since Zr.(p)(Tk,pr) = 3, triangle comparison implies

that % — 0. Hence by taking qr € prmr(px) with d(qk, F') = € we have Z,, (pk,qr) — 0,
so da,, ., ,(0(@sTr), K) — 0. Modulo the group G, we may extract a convergent subsequence of the
configurations (F,qrx) getting a maximal flat F; a point g with d(¢eo, F') = €, and zoo € O F
such that Z_(Teo, TF(¢eo)) = 5, and 0(z) € K. This is absurd. O

Sublemma 8.3.6 Let F; be a sequence of maximal flats in X so that Osx F; — OsoF' where F is a
maximal flat, i.e. for each open neighborhood U of OxoF in 0sxX with respect to the cone topology,
O F; is contained in U for sufficiently large i. Then F; — F' in the pointed Hausdorff topology.

Proof. Let £,m € O F be antipodal regular points and choose points &;, 1; € 0o F; so that £ — £ and
n; — 1. Then for x € F we have Z,(&;,n;) — 7 and consequently Z,(7r,x,&) — 5, Zo(TF,2,1i) —
5. Applying sublemma 8.3.5, we conclude that d(x, F;) — 0. The claim follows since this holds for
all z € F. O
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Lemma 8.3.7 Let On, : G — Homeo(0ooX) be the homomorphism which takes each isometry to
its induced boundary homeomorphism. Then O is a topological embedding when Homeo(0xoX) is
given the compact-open topology.

Proof. 0s is continuous, because the natural action of G on 0, X is continuous. To see that J
is a topological embedding, it suffices to show that if g; € G is a sequence with 0-(g;) — e €
Homeo(0xxX), then g; — e € G. Let  be a point in X and choose finitely many (e.g. two) maximal
flats Fi,..., F with F1 N --- N F, = {z}. Since 0x(g:) — e € Homeo(0s X ), 0x9: F;j converges to
O F; in the sense that for each open neighborhood U; of 05 F} in 05X with respect to the cone
topology, 0x¢i F; is contained in Uj for sufficiently large i. By the previous sublemma we know that
9:F; — Fj in the pointed Hausdorff topology. O

Proposition 8.3.8 Let X and X' be irreducible symmetric spaces of rank at least 2. Then any cone
topology continuous Tits isometry
Y1 Oris X — Orius X'

1s induced by a unique homothety ¥ : X — X',

Proof. We denote by G (resp. G') the identity component of the isometry group of X (resp. X').
By lemma 8.3.7 the homomorphisms do : G — Homeo(0xX) and 9., : G' — Homeo(DooX")
are topological embeddings, where Homeo(0xX) and Homeo(OxX') are given the compact-open
topology. According to [Mos, p.123, cor. 16.2], conjugation by 1 carries 0G to 9. G’. Hence
v induces a continuous isomorphism G — G’. Such an isomorphism carries (maximal) compact
subgroups to (maximal) compact subgroups and it is a classical fact that the induced map ¥ -
X — X' of the symmetric spaces is a homothety. ¢ and the induced isometry Oriu, ¥ at infinity
are G:equivariant with respect to the actions of G on Or;sX and Or;:s X’ and we conclude that
8Tits\I/ = w U

8.3.3 (1, A)-quasi-isometries between Euclidean buildings

Here we prove

Theorem 8.3.9 Let X, X' be thick Euclidean buildings with Moufang Tits boundary, and assume
that the canonical product decomposition of X has no 1-dimensional factors'?. Then for every A
there is a C' so that for every (1, A) quasi-isometry ® : X — X' there is an isometry &p: X — X’
with d(®,®y) < C.

The proof of theorem 8.3.9 combines corollary 7.1.5 and material from sections 3.12 and 4.10.
We first sketch the argument in the case that X and X’ are irreducible, of rank at least 2, and have
cocompact affine Weyl groups.

Let (B, A04) be a spherical building. Attached to each root (i.e. half-apartment) in B is
a root group U, C Aut(B,Amed) (see 3.12). Remarkably, when B is irreducible and has rank
at least 2, the U,’s — and consequently the group G C Aut(B, Anoq) generated by them — act
canonically and isometrically on any FEuclidean building with Tits boundary B (see 4.10). Now
let (B, Amod) = (Orits X, Amod). If @ : X — X' is an (L, A) quasi-isometry, then by 2.3.9 we

12The statement is false for (1, A) quasi-isometries between trees.
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get an induced isometry Opits® : Orits X — Oris X', so the group G C Aut(B, Anod) acts on
Orits X, OrisX', and hence on X and X’. By comparing images of apartments (and using the
quasi-isometry ®), ones sees that a subgroup K C G has bounded orbits in X iff it has bounded
orbits in X’. Because B is Moufang (3.12) the maximal bounded subgroups M C G pick out “spots”
vy € X and Uy € X' (proposition 4.10.6), and the resulting 1-1 correspondence between the spots
of X and the spots of X' determines a homothety ®g : X — X’ with O7;;sPg = O P.

Proof of theorem 8.3.9. Step 1: Reduction to the irreducible case.

Lemma 8.3.10 FEvery (1, A) quasi-isometry ¢ : E* — E" lies within uniform distance of a homo-
thety.

For every distance function d : E" — E” the function do ¢ lies within uniform distance of a distance
function. By taking limits we see that for every Busemann function b : E" — E”, bo ¢ is uniformly
close to a Busemann function. But the Busemann functions are affine functions, so ¢ is uniformly
close to an affine map ¢g. Obviously ¢q is an isometry. O

By corollary 7.1.5 | there is a constant D(A, X, X’) so that the image of every apartment A C X
is D Hausdorff close to an apartment A’ C X’. Composing <I>‘ 4 with the projection onto A" we
get a map which is uniformly close to an isometry ¥4 : A — A’. Hence if ' C A is a flat,
then ®(F) C X' is uniformly Hausdorff close to the flat W4(F) C A’. Therefore we may repeat
the reasoning of 8.2 to see that if X = [[X;, X' = [[ X} are the decompositions of X and X'
into thick irreducible factors, then after reindexing the factors X J’ there are (1, A) quasi-isometries
®; : X; — X/ so that ® is uniformly close to [] ®; (A depends only on the quasi-isometry constant
of ® and X, X’). Hence we are reduced to the irreducible case.

Step 2: X and X' are irreducible. The affine Weyl groups Wyyrs, W, of X, X' are either finite or
cocompact, since their Tits boundaries are irreducible. If Wy is finite then it has a fixed point,
so all apartments intersect in a point p € X and X is a metric cone over Orys X. If a € Anod
is a regular point, then 67!(a) C OrisX is clearly discrete in the cone topology. On the other
hand, if Wy ¢ is cocompact then 0‘1(04) C Orits X is nondiscrete since any regular geodesic ray
pé C A can branch off at many singular walls. Since ® induces a homeomorphism of geometric
boundaries O, ® : 050X — 05X’ by 2.3.9, and this induces an isomorphism of spherical buildings
Orits® : Orits X — Oris X', either X and X’ are both metric cones, or they both have cocompact
affine Weyl groups. If they are both cones, we may produce an isometry ®y : X — X’ by taking
the cone over AP : Orips X — Orits X'. This induces the same bijection of apartments as ®, and
lies at uniform distance from ® by lemma 8.3.10.

Step 3: X and X' are thick, irreducible, and have cocompact affine Weyl group. Letting G C

Orits
LS

D,
Aut(Orits X) = = Aut(OrisX') be the group generated by the root groups of OrsX, we get
actions of G on 915X, O1its X', and by 3.12.2 actions on X and X’ by automorphisms as well.

Lemma 8.3.11 A subgroup B C G has bounded orbits in X iff it has bounded orbits in X'.

Proof. We show that if K has a bounded orbit K (p) = {gp|g € K} C X then K has a bounded
orbit in X".

Let p € X be a vertex, let F, be the collection of apartments passing through p, and let
Fr(p) = Uger Fgp- FK(p) is a K-invariant collection of apartments in X, and when R > Diam(K (p))
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we have p € Naery,, Nr(A). Let ®(F,) and ®(Fk () denote the corresponding collections of
apartments in X’. Then ®(Fg(y)) is K-invariant, and ®(p) € Narea(Frgpy) VRAC (A”), where C} is
a constant such that for every apartment A C X, the Hausdorff distance di(®(A),A’) < C;. By
proposition 8.1.2, Narea(r,) Vr+c, (4') is bounded. Thus Narca(ry () Nr+c, (4') is a nonempty
K-invariant bounded set. 0

Proof of theorem 8.3.9 continued. By proposition 4.10.6 we now have a bijection
Spot(®) : Spot(X) — Spot(X')

between spots in X and X’ via their correpondence with maximal bounded subgroups in G. Moreover
by item 2 of proposition 4.10.6 for every apartment A C X, we have Spot(®)(Spot(A)) = Spot(A")
where A’ C X' is the unique apartment with Op;s A" = Oris®(OritsA). Since by item 3 of
proposition 4.10.6 Spot(¢)|sp0t(A) : Spot(A) — Spot(A’) is a homeomorphism with respect to
half-apartment topologies we see that X is discrete iff X’ is discrete.

Case 1: Both X and X' are non-discrete, i.e. their affine Weyl groups have a dense orbit. In
this case Spot(4) = A, Spot(A’) = A’, and Spot(®)|, : A — A’ is a homeomorphism since the
half-apartment topology is the metric topology. By item 3 of proposition 4.10.6 Spot(q))‘A maps
singular half-apartments H C A with O H = a to singular half-apartments Spot(®)(H) C A" with
Orits(Spot(P)(H)) = Orus®(a). By considering infinite intersections of singular half-apartments
with Tits boundary a C OrisA, it follows that Spot(®) carries all half-spaces H C A with Ory.s H = a
to half-spaces Spot(®)(H) with Opits(Spot(®)(H)) = OritsP(a). By considering intersections of half-
spaces Hy with opposite Tits boundaries, we see that Spot(®) carries hyperplanes whose boundary
is a wall m C 975 A to hyperplanes in A’ with boundary O7+s®(m) C drits A’. By section 6.4.4 it

follows that &g def Spot(®) : X — X’ is a homothety and Or;s®o = Orits .

Case 2: X and X' are both discrete. In this case A and A’ are crystallographic Euclidean Coxeter
complexes; Spot(A) and Spot(A’) coincide with the O-skeleta of A and A’. Again by item 3 of
proposition 4.10.6, if S C A is either a singular subspace or singular half-apartment, then there
is a unique singular subspace or singular half-apartment S’ C A’ so that Spot(®)(S N Spot(A)) =
S'NSpot(A’). k+1 spots sg, . .., sk € Spot(A) are the vertices of a k-simplex in the simplicial complex
iff they don’t lie in a singular subspace of dimension < k and the intersection of all singular half-
apartments containing {so, ..., si} contains the k + 1 spots s;. Hence Spot(@)|spot(A) : Spot(A) —
Spot(A’) is a simplicial isomorphism and hence is induced by a unique homothety A — A’. Tt follows
that Spot(®) : Spot(X) — Spot(X') is the restriction of a unique homothety ®g : X — X’ with
OritsPo = Orits ®.

Since vertices are uniform in X, we may apply proposition 8.1.2 to conclude that in both cases
d(®g,®) < D'(L,C, X, X"), forcing @ to be an isometry.
O
9 A abridged version of the argument

In this appendix we offer an introduction to the proof of theorem 1.1.2 via the special case when
X=X =H?xH
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Step 1: The structure of asymptotic cones w-lim(X\;(H? x H?), ;). Readers unfamiliar with asymp-
totic cones should read section 2.4. By 2.4.4, any asymptotic cone w-lim(\;H?2, z;) is a CAT (k) space
for every k, so it is a metric tree; since there are large equilateral triangles centered at any point in
H?2, the metric tree branches everywhere. The ultralimit operation commutes with taking products,
so one concludes that w-Hm(\; (H? x H?), 2;) ~ w-lIm(\H?, 2;) x w-lim(\;H?, y;) where z; = x; x y;
and x denotes the Euclidean product of metric spaces. So any asymptotic cone of H? x H?2 is a
product of metric trees which branch everywhere.

Step 2: Planes in a product of metric trees are “locally finite”. For i = 1,2 let T; be a metric tree. For
simplicity we assume that geodesic segments and rays are extendible to complete geodesics. Since
the convex hull of two geodesics in a metric tree is contained in the union of at most 3 geodesics, the
convex hull of two 2-flats v; x §; C T1 x T3 is contained in at most nine 2-flats. Section 6 may now
be read up to the paragraph after lemma 6.2.1, replacing the word “apartment” with “2-flat”, and
corollary 4.6.8 with the observation above. Hence every topologically embedded plane in T} x T3 is
locally contained in a finite number of 2-flats.

Step 8: Homeomorphisms of products of nondegenerate trees preserve the product structure. We
now make the additional assumption that our metric trees T; branch everywhere: for every x € Tj,
T; \ = has at least 3 components. Let P C T; x T» be a topologically embedded plane, and let
z = xy € P. We know that there are finite trees T; C T with z € T} x To C Ti x Ty so that
B.(r)N P C B,(r) N (T1 x Ty). Shrinking r if necessary, we may assume that 7; and T are cones
(r € Ty and y € Ty are the only vertices). Elementary topological arguments using local homology
groups show that B.(r) N P coincides with B, (r) N (UQ;), where each Q; C T} x T5 is a quarter
plane with vertex at z, i.e. a set of the form v x § C Ty x Ty where v C Ty (resp. 6 C Ty)is a
geodesic leaving x (resp. y).

Say that two sets Sp,S5 C T X To have the same germ at z if S NU = Sy N U for some
neighborhood U of z. We see from the above that for every z € P, P has the same germ at z as a
finite union of quarter planes. Moreover, since the intersection of two quarter planes 1, Q2 with
vertex at z either has the same germ as @);, the same germ as a horizontal or vertical segment,
or the same germ as {z}, it follows that a set S C 77 X T has the germ of a quarter plane with
vertex at z iff it has the same germ as a two-dimensional intersection of topologically embedded
planes, and is minimal among such. Hence we have a topological characterization of 2-flats and
vertical /horizontal geodesics: a closed, topologically embedded plane P C Ty x Ty is a 2-flat if for
every z € P, P has the same germ at z a the union of four quarter planes with vertex at z; a
closed connected subset S C 17 x T is a vertical or horizontal geodesic if for every z € S, S has
the same germ at z as the boundary of two adjacent quarter planes with vertex at z. From this one
may easily recover the product structure on 77 x T using only the topology of T7 x T5. Hence a
homeomorphism ¢ : Ty x T, — T x Ty preserves the product structure (although it may swap the
factors, of course).

Step 4: Quasi-isometries of H? x H? preserve the product structure. Let ® : H? x H? — H? x H?
be a quasi-isometry. If z, 2’ € H? x H?, let 6(z, 2’) be the angle between the segment 22’ and the
horizontal direction.

Sublemma 9.0.12 There is a function f :[0,00) — R with lim, . f(r) = 0 so that if z,2" are
horizontal, then |0(®(z), ®(2")) — F| > 5 — f(r).

Proof. If not, we could find a sequence z;, 2/ € H? x H? of horizontal pairs so that Ai =d(z;,2}) = 00
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and limsup;_, ., [0(®(z), ®(2])) — 5| < &. Then z,, 2/, € w-lim(X\;(H* x H?), z,,) is a horizontal pair
with 0(®y,(2,), Pu(2),)) # 0, 5. This contradicts step 3. O

Since any two horizontal pairs 21, 2} and 22, 25 may be joined with a continuous family 2, 2] of
horizontal pairs with mind(z¢, z;) > min(d(z1, 21), d(22, 25)), we see that for horizontal pairs z, 2/,
the limit limg(. ./)—oo 0(P(2), ®(2’)) exists and is either 0 or 5. We assume without losing generality
that the former holds.

Hence as y € H? varies, the compositions H? — H? x {y} PH? x B2 PN H2 are quasi-
isometries with quasi-isometry constant independent of y, and they lie at finite distance from one
another. It follows that they lie at uniform distance from one another, and so ® preserves the fibers
of p1 up to bounded Hausdorff error. Repeating this argument for ps we see that @ is within uniform
distance of a product ®; x ®5 of quasi-isometries.
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