Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings

Bruce Kleiner! Bernhard Leeb*

April 1, 1996

1 Introduction

1.1 Background and statement of results

An (L, C) quasi-isometry is a map $\Phi: X \longrightarrow X^{\prime}$ between metric spaces such that for all $x_{1}, x_{2} \in X$ we have

$$
\begin{equation*}
L^{-1} d\left(x_{1}, x_{2}\right)-C \leq d\left(\Phi\left(x_{1}\right), \Phi\left(x_{2}\right)\right) \leq L d\left(x_{1}, x_{2}\right)+C \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
d\left(x^{\prime}, \operatorname{Im}(\Phi)\right)<C \tag{2}
\end{equation*}
$$

for all $x^{\prime} \in X^{\prime}$. Quasi-isometries occur naturally in the study of the geometry of discrete groups since the length spaces on which a given finitely generated group acts cocompactly and properly discontinuously by isometries are quasi-isometric to one another [Gro]. Quasi-isometries also play a crucial role in Mostow's proof of his rigidity theorem: the theorem is proved by showing that equivariant quasi-isometries are within bounded distance of isometries.

This paper is concerned with the structure of quasi-isometries between products of symmetric spaces and Euclidean buildings. We recall that Euclidean space, hyperbolic space, and complex hyperbolic space each admit an abundance of self-quasi-isometries [Pan]. For example we get quasiisometries $\mathbb{E}^{2} \longrightarrow \mathbb{E}^{2}$ by taking shears in rectangular $\left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, x_{2}+f\left(x_{1}\right)\right)$ or polar $(r, \theta) \mapsto$ $\left(r, \theta+\frac{f(r)}{r}\right)$ coordinates, where $f: \mathbb{R} \longrightarrow \mathbb{R}$ and $g:[0, \infty) \longrightarrow \mathbb{R}$ are Lipschitz. Any diffeomorphism ${ }^{1}$ $\Phi: \partial \mathbb{H}^{n} \longrightarrow \partial \mathbb{H}^{n}$ of the ideal boundary can be extended continuously to a quasi-isometry $\Phi: \mathbb{H}^{n} \longrightarrow$ \mathbb{H}^{n}. Likewise any contact diffeomorphism ${ }^{2} \partial \Phi: \partial \mathbb{C} \mathbb{H}^{n} \longrightarrow \partial \mathbb{C} \mathbb{H}^{n}$) can be extended continuously to a quasi-isometry $\left.\Phi: \mathbb{C} \mathbb{H}^{n} \longrightarrow \mathbb{C} \mathbb{H}^{n}\right)$ [Pan]. Quasi-isometries of the remaining rank 1 symmetric spaces of noncompact type, on the other hand, are very special. They are essentially isometries:

Theorem 1.1.1 ([Pan]) Let X be either a quaternionic hyperbolic space $\mathbb{H} \mathbb{H}^{n}$, $n>1$, or the Cayley hyperbolic plane $\mathbb{C} a \mathbb{H}^{2}$. Then any quasi-isometry of X lies within bounded distance of an isometry.

[^0]Note that Pansu's theorem is a strengthening of Mostow's rigidity theorem for these rank one symmetric spaces X, as it applies to all quasi-isometries of X, whereas Mostow's argument only treats those quasi-isometries which are equivariant with respect to lattice actions. The main results of this paper are the following higher rank analogs of Pansu's theorem.

Theorem 1.1.2 (Splitting) For $1 \leq i \leq k, 1 \leq j \leq k^{\prime}$ let each X_{i}, X_{j}^{\prime} be either a nonflat irreducible symmetric space of noncompact type or an irreducible thick Euclidean Tits building with cocompact affine Weyl group (see section 4.1 for the precise definition). Let $X=\mathbb{E}^{n} \times \prod_{i=1}^{k} X_{i}$, $X^{\prime}=\mathbb{E}^{n^{\prime}} \times \prod_{j=1}^{k^{\prime}} X_{j}^{\prime}$ be metric products. ${ }^{3}$ Then for every L, C there are constants \bar{L}, \bar{C} and \bar{D} such that the following holds. If $\Phi: X \longrightarrow X^{\prime}$ is an (L, C) quasi-isometry, then $n=n^{\prime}, k=k^{\prime}$, and after reindexing the factors of X^{\prime} there are (\bar{L}, \bar{C}) quasi-isometries $\Phi_{i}: X_{i} \longrightarrow X_{i}^{\prime}$ so that $d\left(p^{\prime} \circ \Phi, \Pi \Phi_{i} \circ p\right)<\bar{D}$, where $p: X \longrightarrow \prod_{i=1}^{k} X_{i}$ and $p^{\prime}: X^{\prime} \longrightarrow \prod_{i=1}^{k} X_{i}^{\prime}$ are the projections.

A more general theorem about quasi-isometries of products is proved in [KKL].
Theorem 1.1.3 (Rigidity) Let X and X^{\prime} be as in theorem 1.1.2, but assume in addition that X is either a nonflat irreducible symmetric space of noncompact type of rank at least 2 , or a thick irreducible Euclidean building of rank at least 2 with cocompact affine Weyl group and Moufang Tits boundary. Then any (L, C) quasi-isometry $\Phi: X \longrightarrow X^{\prime}$ lies at distance $<D$ from a homothety $\Phi_{0}: X \longrightarrow X^{\prime}$, where D depends only on (L, C).

Theorem 1.1.3 settles a conjecture made by Margulis in the late 1970's, see [Gro, p. 179] and [GrPa, p. 73]. We will show in [KlLe] that the Moufang condition on the Tits boundary of X can be dropped.

As an immediate consequence of theorems 1.1.2 1.1.3, and [Mos] we have:
Corollary 1.1.4 (Quasi-isometric classification of symmetric spaces) Let X, X^{\prime} be symmetric spaces of noncompact type. If X and X^{\prime} are quasi-isometric, then they become isometric after the metrics on their de Rham factors are suitably renormalized.

Mostow's work [Mos] implies that two quasi-isometric rank 1 symmetric spaces of noncompact type are actually isometric (up to a scale factor); and it was known by [AS] that two quasi-isometric symmetric spaces of noncompact type have the same rank.

We will discuss other applications of theorems 1.1.2 and 1.1.3 in a separate paper.

1.2 Commentary on the proof

Our approach to theorems 1.1.2 and 1.1.3 is based on the fact that if one scales the metrics on X and X^{\prime} by a factor λ, then (L, C) quasi-isometries become $(L, \lambda C)$ quasi-isometries. Starting with a sequence $\lambda_{i} \rightarrow 0$ we apply the ultralimit construction of [DW, Gro] to take a limit of the sequence $\Phi: \lambda_{i} X \longrightarrow \lambda_{i} X^{\prime}$, getting an $(L, 0)$ quasi-isometry (i.e. a biLipschitz homeomorphism) $\Phi_{\omega}: X_{\omega} \longrightarrow X_{\omega}^{\prime}$ between the limit spaces. The first step is to determine the geometric structure of these limit spaces:

Theorem 1.2.1 X_{ω} and X_{ω}^{\prime} are thick (generalized) Euclidean Tits buildings (cf. section 4.1).

[^1]The second step is to study the topology of the Euclidean buildings $X_{\omega}, X_{\omega}^{\prime}$. We establish rigidity results for homeomorphisms of Euclidean buildings which are topological analogs of theorems 1.1.2 and 1.1.3:

Theorem 1.2.2 Let Y_{i}, Y_{i}^{\prime} be thick irreducible Euclidean buildings with topologically transitive affine Weyl group (cf. section 4.1.1), and let $Y=\mathbb{E}^{n} \times \prod_{i=1}^{k} Y_{i}, Y^{\prime}=\mathbb{E}^{n^{\prime}} \times \prod_{j=1}^{k^{\prime}} Y_{j}^{\prime}$. If $\Psi: Y \rightarrow Y^{\prime}$ is a homeomorphism, then $n=n^{\prime}, k=k^{\prime}$, and after reindexing factors there are homeomorphisms $\Psi_{i}: Y_{i} \rightarrow Y_{i}^{\prime}$ so that $p^{\prime} \circ \Psi=\prod \Psi_{i} \circ p$ where $p: Y \rightarrow \prod_{i=1}^{k} Y_{i}$ and $p^{\prime}: Y^{\prime} \rightarrow \prod_{i=1}^{k} Y_{i}^{\prime}$ are the projections.

Theorem 1.2.3 Let Y be an irreducible thick Euclidean building with topologically transitive affine Weyl group and rank ≥ 2. Then any homeomorphism from Y to a Euclidean building is a homothety.

For comparison we remark that if Y and Y^{\prime} are thick irreducible Euclidean buildings with crystallographic (i.e. discrete cocompact) affine Weyl group, then one can use local homology groups to see that any homeomorphism carries simplices to simplices. In particular, the homeomorphism induces an incidence preserving bijection of the simplices of Y with the simplices of Y^{\prime}, which easily implies that the homeomorphism coincides with a homothety on the 0 -skeleton. In contrast to this, homeomorphisms of rank 1 Euclidean buildings with nondiscrete affine Weyl group (i.e. \mathbb{R}-trees) can be quite arbitrary: there are examples of \mathbb{R}-trees T for which every homeomorphism $A \rightarrow A$ of an apartment $A \subset T$ can be extended to a homemorphism of T. However, we have always:

Proposition 1.2.4 If X, X^{\prime} are Euclidean buildings, then any homeomorphism $\Psi: X \rightarrow X^{\prime}$ carries apartments to apartments.

In the third step, we deduce theorems 1.1.2 and 1.1.3 from their topological analogs. By using a scaling argument and proposition 1.2 .4 we show that if X and X^{\prime} are as in theorem 1.1.2, and $\Phi: X \rightarrow X^{\prime}$ is an (L, C) quasi-isometry, then the image of a maximal flat in X under Φ lies within uniform Hausdorff distance of a maximal flat in X^{\prime}; the Hausdorff distance can be bounded uniformly by (L, C). In the case of theorem 1.1 .2 we use this to deduce that the quasi-isometry respects the product structure, and in the case of theorem 1.1.3 we use it to show that Φ induces a well-defined homeomorphism $\partial \Phi: \partial X \rightarrow \partial X^{\prime}$ of the geometric boundaries which is an isometry of Tits metrics. We conclude using Tits' work [Ti1] (as in [Mos]) that $\partial \Phi$ is also induced by an isometry $\Phi_{0}: X \rightarrow X^{\prime}$, and $d\left(\Phi, \Phi_{0}\right)$ is bounded uniformly by (L, C).

The reader may wonder about the relation between theorems 1.1.2 and 1.1.3 and Mostow's argument in the higher rank case. An important step in Mostow's proof shows that if Γ acts discretely and cocompactly on symmetric spaces X and X^{\prime}, then any Γ-equivariant quasi-isometry $\Phi: X \rightarrow X^{\prime}$ carries maximal flats in X to within uniform distance of maximal flats in X^{\prime}. The proof in [Mos] exploits the dense collection of maximal flats with cocompact Γ-stabilizer ${ }^{4}$. One can then ask if there is a "direct" argument showing that maximal flats in X are carried to within uniform distance of maximal flats in X^{\prime} by any quasi-isometry ${ }^{5}$; for instance, by analogy with the rank 1 case one may ask whether any r-quasi-flat ${ }^{6}$ in a symmetric space of rank r must lie within bounded

[^2]distance of a maximal flat. The answer is no. If X is a rank 2 symmetric space, then the geodesic cone $\cup_{s \in S} \overline{p s}$ over any embedded circle S in the Tits boundary $\partial_{T i t s} X$ is a 2-quasi-flat. Similar constructions produce nontrivial r-quasi-flats in symmetric spaces of $\operatorname{rank} \geq 2$. But in fact this is the only way to produce quasiflats, by

Theorem 1.2.5 (Structure of quasi-flats) Let X be as in theorem 1.1.2, and let $r=\operatorname{rank}(X)$. Given L, C there are $D, D^{\prime} \in \mathbb{Z}$ such that every $(L, C) r$-quasi-flat $Q \subset X$ lies within the D-tubular neighborhood $N_{D}\left(\cup_{F \in \mathcal{F}} F\right)$ of a union of at most D maximal flats. Moreover, the limit set of Q is the union of at most D^{\prime} closed Weyl chambers in the Tits boundary $\partial_{\text {Tits }} X$.

It follows easily that if L is sufficiently close to 1 (in terms of the geometry of the spherical Coxeter complex (S, W) associated to X) then any $(L, C) r$-quasi-flat in X is uniformly close to a maximal flat. In the special case that X is a symmetric space, theorem 1.2 .5 was proved independently by Eskin and Farb, approximately one year after we had obtained the main results of this paper for symmetric spaces.

We would like to mention that related rigidity results for quasi-isometries have been proved in [Sch].

1.3 Organization of the paper

Section 2 contains background material which will be familiar to many readers; we recommend starting with section 3 , and using section 2 as a reference when needed. We provide the straightforward generalisation of some well-known facts about Hadamard spaces to the non-locally-compact case. This is needed when we study the limit spaces X_{ω} which are non-locally compact Hadamard spaces.

Sections 3 and 4 give a self-contained exposition of the building theory used elsewhere in the paper. This exposition has several aims. First, we hope that it will make building theory more accessible to geometers since it is presented using the language of metric geometry, and we do not require any knowledge of algebraic groups. Second, it introduces a new definition of buildings (spherical and Euclidean) which is based on metric geometry rather than a combinatorial structure such as a polysimplicial complex. Tits' original definition of a building was motivated by applications to algebraic groups, whereas the objectives of this paper are primarily geometric. Here buildings (spherical and Euclidean) arise as geometric limits of symmetric spaces, and we found that the geometric definition in sections 3 and 4 could be verified more directly than the standard one; moreover, the Euclidean buildings that arise as limits are "nondiscrete", and do not admit a natural polysimplicial structure. Finally, sections 3 and 4 contain a number of new results, and reformulations of standard results tailored to our needs.

Section 5 shows that the asymptotic cone of a symmetric space or Euclidean building is a Euclidean building.

Section 6 discusses the topology of Euclidean buildings, proving theorems 1.2.2, 1.2.3, 1.2.4.
Section 7 proves that if X, X^{\prime} and Φ are as in theorem 1.1.2, then the image of a maximal flat under Φ is uniformly Hausdorff close to a flat (actually the hypotheses on X and X^{\prime} can be weakened somewhat, see corollary 7.1.5). General quasiflats are also studied in section 7 ; we prove there theorem 1.2.5.

Section 8 contains the proofs of theorems 1.1.2 and 1.1.3, building on section 7 . There is considerable overlap in the final step of the argument with [Mos] in the symmetric space case.

1.4 Suggestions to the reader

Readers who are already familiar with building theory will probably find it useful to read sections 3.1, 3.2 and 4.1, to normalize definitions and terminology.

The special case of theorem 1.1 .2 when $X=X^{\prime}=\mathbb{H}^{2} \times \mathbb{H}^{2}$ already contains most of the conceptual difficulties of the general case, but one can understand the argument in this case with a minimum of background. To readers who are unfamiliar with asymptotic cones, and readers who would like to quickly understand the proof in a special case, we recommend an abbreviated itinerary, see appendix 9. In general, when the burden of axioms and geometric minutae seems overwhelming, the reader may read with the Rank $1 \times$ Rank 1 case in mind without losing much of the mathematical content.

Contents

1 Introduction 1
1.1 Background and statement of results 1
1.2 Commentary on the proof 2
1.3 Organization of the paper 4
1.4 Suggestions to the reader 5
2 Preliminaries 7
2.1 Spaces with curvature bounded above 7
2.1.1 Definition 7
2.1.2 Coning 8
2.1.3 Angles and the space of directions of a $C A T(\kappa)$ space 8
2.2 CAT(1)-spaces 10
2.2.1 Spherical join 10
2.2.2 Convex subsets and their poles 10
2.3 Hadamard spaces 11
2.3.1 The geometric boundary 11
2.3.2 The Tits metric 11
2.3.3 Convex subsets and parallel sets 13
2.3.4 Products 14
2.3.5 Induced isomorphisms of Tits boundaries 15
2.4 Ultralimits and Asymptotic cones 15
2.4.1 Ultrafilters and ultralimits 16
2.4.2 Ultralimits of sequences of pointed metric spaces 16
2.4.3 Asymptotic cones 17
3 Spherical buildings 18
3.1 Spherical Coxeter complexes 18
3.2 Definition of spherical buildings 19
3.3 Join products and decompositions 20
3.4 Polyhedral structure 21
3.5 Recognizing spherical buildings 22
3.6 Local conicality, projectivity classes and spherical building structure on the spaces of directions 23
3.7 Reducing to a thick building structure 24
3.8 Combinatorial and geometric equivalences 26
3.9 Geodesics, spheres, convex spherical subsets 26
3.10 Convex sets and subbuildings 27
3.11 Building morphisms 28
3.12 Root groups and Moufang spherical buildings 30
4 Euclidean buildings 31
4.1 Definition of Euclidean buildings 31
4.1.1 Euclidean Coxeter complexes 31
4.1.2 The Euclidean building axioms 32
4.1.3 Some immediate consequences of the axioms 33
4.2 Associated spherical building structures 33
4.2.1 The Tits boundary 33
4.2.2 The space of directions 34
4.3 Product(-decomposition)s 35
4.4 The local behavior of Weyl-cones 36
4.4.1 Another building structure on $\Sigma_{p} X$, and the local behavior of Weyl sectors. 37
4.5 Discrete Euclidean buildings 38
4.6 Flats and apartments 38
4.7 Subbuildings 40
4.8 Families of parallel flats 41
4.9 Reducing to a thick Euclidean building structure 42
4.10 Euclidean buildings with Moufang boundary 44
5 Asymptotic cones of symmetric spaces and Euclidean buildings 47
5.1 Ultralimits of Euclidean buildings are Euclidean buildings 47
5.2 Asymptotic cones of symmetric spaces are Euclidean buildings 49
6 The topology of Euclidean buildings 50
6.1 Straightening simplices 51
6.2 The Local structure of support sets 51
6.3 The topological characterization of the link 52
6.4 Rigidity of homeomorphisms 53
6.4.1 The induced action on links 53
6.4.2 Preservation of flats 53
6.4.3 Homeomorphisms preserve the product structure 54
6.4.4 Homeomorphisms are homotheties in the irreducible higher rank case 54
6.4.5 The case of Euclidean deRham factors 55
7 Quasiflats in symmetric spaces and Euclidean buildings 55
7.1 Asymptotic apartments are close to apartments 55
7.2 The structure of quasi-flats 57
8 Quasi-isometries of symmetric spaces and Euclidean buildings 62
8.1 Singular flats go close to singular flats 62
8.2 Rigidity of product decomposition and Euclidean deRham factors 63
8.3 The irreducible case 64
8.3.1 Quasi-isometries are approximate homotheties 64
8.3.2 Inducing isometries of ideal boundaries of symmetric spaces 66
8.3.3 (1, A)-quasi-isometries between Euclidean buildings 67
9 A abridged version of the argument 69
Bibliography 71

2 Preliminaries

2.1 Spaces with curvature bounded above

General references for this section are [ABN, Ba, BGS].

2.1.1 Definition

If $\kappa \in \mathbb{R}$, let M_{κ}^{2} be the two dimensional model space with constant curvature κ; let $D(\kappa)=$ $\operatorname{Diam}\left(M_{\kappa}^{2}\right)$. A complete metric space $(X,|\cdot|)$ is a $C A T(\kappa)$ space if

1. Every pair $x_{1}, x_{2} \in X$ with $\left|x_{1} x_{2}\right|<D(\kappa)$ is joined by a geodesic segment.
2. Triangle or Distance Comparison.

Every geodesic triangle in X with perimeter $<2 D(\kappa)$ is at least as thin as the corresponding triangle in M_{κ}^{2}. More precisely: for each geodesic triangle Δ in X with sides $\sigma_{1}, \sigma_{2}, \sigma_{3}$ with $\operatorname{Perimeter}(\Delta)=\left|\sigma_{1}\right|+\left|\sigma_{2}\right|+\left|\sigma_{3}\right|<2 D(\kappa)$ we construct a comparison triangle $\tilde{\Delta}$ in M_{κ}^{2} with sides $\tilde{\sigma}_{i}$ satisfying $\left|\tilde{\sigma}_{i}\right|=\left|\sigma_{i}\right|$. Each point x on Δ corresponds to a unique point \tilde{x} on $\tilde{\Delta}$ which divides the corresponding side in the same ratio. We require that for all $x_{1}, x_{2} \in \Delta$ we have $\left|x_{1} x_{2}\right| \leq\left|\tilde{x}_{1} \tilde{x}_{2}\right|$.

Remark 2.1.1 Note that we do not require X to be locally compact. Also, X needn't be path connected when $\kappa>0$. This is slightly more general than some other definitions in the literature.

Example 2.1.2 A complete 1-connected Riemannian manifold with sectional curvature $\leq \kappa \leq 0$ and all its closed convex subsets are is a $C A T(\kappa)$ spaces.

In particular, Hadamard manifolds are CAT(0)-spaces. This is why we will also call CAT(0)spaces Hadamard spaces.

Example 2.1.3 (Berestovski) Any simplicial complex admits a piecewise spherical CAT(1) metric.

Condition 2 implies that any two points x_{1}, x_{2} with $\left|x_{1} x_{2}\right|<D(\kappa)$ are connected by precisely one geodesic; hence we may speak unambiguously of $\overline{x_{1} x_{2}}$ as the geodesic segment joining x_{1} to x_{2}. $C A T(\kappa)$ spaces for $\kappa \leq 0$ are contractible geodesic spaces.

To see that upper curvature bounds behave well under limiting operations, it is convenient to use an equivalent definition of $C A T(\kappa)$ spaces which only refers to finite configurations of points rather than geodesic triangles. If $v, x, y, p \in X$, and $\tilde{v}, \tilde{x}, \tilde{y}, \tilde{p} \in M_{\kappa}^{2}$ we say that $\tilde{v}, \tilde{x}, \tilde{y}, \tilde{p}$ form a δ-comparison quadruple if

1. \tilde{p} lies on $\overline{\tilde{x}}, \tilde{y}$.
2. $||v x|-|\tilde{v} \tilde{x}||<\delta,\|v y|-|\tilde{v} \tilde{y}||<\delta,||x y|-|\tilde{x} \tilde{y}||<\delta\| x p,|-|\tilde{x} \tilde{p}\|<\delta\| p y|-,|\tilde{p} \tilde{y}||<\delta$

By a compactness argument, we note that there exists a function $\delta_{\kappa}(P, \epsilon)>0$ such that for every $\epsilon>0$, and every quadruple of points v, x, y, p in a $C A T(\kappa)$ space X satisfying $|v x|+|x y|+|y v|<$ $P<2 D(\kappa)$, each $\delta_{\kappa}(P, \epsilon)$-comparison quadruple $\tilde{v}, \tilde{x}, \tilde{y}, \tilde{p}$ satisfies $|v p| \leq|\tilde{v} \tilde{p}|+\epsilon$. We will refer to this condition as the δ_{κ}-four-point condition. It is a closed condition on four point metric spaces with respect to the Hausdorff topology. A complete metric space X is a $C A T(\kappa)$ space if and only if it satisfies the δ_{κ}-four-point condition and every pair of points $x, y \in X$ with $|x y|<D(\kappa)$ has approximate midpoints, i.e. for every $\epsilon^{\prime}>0$ there is a $m \in X$ with $|x m|,|m y|<\frac{|x y|}{2}+\epsilon^{\prime}$. To see this, note that in the presence of the δ_{κ}-four-point condition approximate midpoints are close to one another, so one may produce a genuine midpoint by taking limits. By taking successive midpoints, one can produce a geodesic segment.

2.1.2 Coning

Let Σ be a metric space with $\operatorname{Diam}(\Sigma) \leq \pi$. The metric cone $C(\Sigma)$ over Σ is defined as follows. The underlying set will be $\Sigma \times[0, \infty) / \sim$ where \sim collapses $\Sigma \times\{0\}$ to a point. Given $v_{1}, v_{2} \in \Sigma$, we consider embeddings $\rho:\left\{v_{1}, v_{2}\right\} \times[0, \infty) \rightarrow \mathbb{E}^{2}$ such that $\left|\rho\left(v_{i}, t\right)=|t|\right.$ and $\angle_{0}\left(\rho\left(v_{1}, t_{1}\right), \rho\left(v_{2}, t_{2}\right)\right)=$ $\left|v_{1} v_{2}\right|$, and we equip $C(\Sigma)$ with the unique metric for which these embeddings are isometric. $C(\Sigma)$ is $C A T(0)$ iff Σ is $C A T(1)$.

2.1.3 Angles and the space of directions of a $C A T(\kappa)$ space

Henceforth we will say that a triple v, x, y defines a triangle $\Delta(v, x, y)$ provided $|v x|+|x y|+|y v|<$ $2 \operatorname{Diam}\left(M_{\kappa}^{2}\right) . \tilde{L}_{v}(x, y)$ will denote the angle of the comparison triangle at the vertex \tilde{v}. If x^{\prime}, y^{\prime} are interior points on the segments $\overline{v x}, \overline{v y}$, then $\tilde{L}_{v}\left(x^{\prime}, y^{\prime}\right) \leq \tilde{L}_{v}(x, y)$. From this monotonicity it follows that $\lim _{x^{\prime}, y^{\prime} \rightarrow v} \tilde{Z}_{v}\left(x^{\prime}, y^{\prime}\right)$ exists, and we denote it by $\angle_{v}(x, y)$. This definition of angle coincides with the notion of the angle between two segments in the Riemannian case. One checks that one obtains the same limit if only one of the points x^{\prime}, y^{\prime} approaches v :

$$
\begin{equation*}
\angle_{v}(x, y)=\lim _{x^{\prime} \rightarrow v} \tilde{\angle}_{v}\left(x^{\prime}, y\right) \tag{3}
\end{equation*}
$$

\angle_{v} satisfies the triangle inequality. Note that from the definition we have

$$
\begin{equation*}
\angle_{v}(x, y) \leq \tilde{\angle}_{v}(x, y) \tag{4}
\end{equation*}
$$

In the equality case a basic rigidity phenomenon occurs:

Triangle Filling Lemma 2.1.4 Let x, y, v be as before. If $\angle_{v}(x, y)=\tilde{L}_{v}(x, y)$, then also the other angles of the triangle $\Delta(v, x, y)$ coincide with the corresponding comparison angles; moreover the region in M_{κ}^{2} bounded by the comparison triangle can be isometrically embedded into X so that corresponding vertices are identified.

The angles of a triangle depend upper-semicontinuously on the vertices:
Lemma 2.1.5 Suppose $v, x, y \in X$ define a triangle, $v \neq x, y$, and $v_{k} \rightarrow v, x_{k} \rightarrow x, y_{k} \rightarrow y$. Then v_{k}, x_{k}, y_{k} define a triangle for almost all k and

$$
\limsup _{k \rightarrow \infty} \angle_{v_{k}}\left(x_{k}, y_{k}\right) \leq \angle_{v}(x, y)
$$

In the special case that $v_{k} \in \overline{v x_{k}}-\{v\}$ holds $\lim _{k \rightarrow \infty} \angle_{v_{k}}\left(x_{k}, y_{k}\right)=\angle_{v}(x, y)$ and $\lim _{k \rightarrow \infty} \angle_{v_{k}}\left(v, y_{k}\right)=$ $\pi-\angle_{v}(x, y)$.

Proof. For $x^{\prime} \in \overline{v x}-\{v\}$ and $y^{\prime} \in \overline{v y}-\{v\}$ we can choose sequences of points $x_{k}^{\prime} \in \overline{v_{k} x_{k}}, y_{k}^{\prime} \in \overline{v_{k} y_{k}}$ with $x_{k}^{\prime} \rightarrow x^{\prime}$ and $y_{k}^{\prime} \rightarrow y^{\prime}$. Then $\angle_{v_{k}}\left(x_{k}, y_{k}\right) \leq \tilde{L}_{v_{k}}\left(x_{k}^{\prime}, y_{k}^{\prime}\right) \rightarrow \tilde{L}_{v}\left(x^{\prime}, y^{\prime}\right)$ and the first assertion follows by letting $x^{\prime}, y^{\prime} \rightarrow v$. If $v_{k} \in \overline{v x_{k}}-\left\{v, x_{k}\right\}$ then $L_{v}\left(x_{k}, y_{k}\right) \leq \operatorname{anglesum}\left(\Delta\left(v, v_{k}, y_{k}\right)\right)-$ $\angle_{v_{k}}\left(v, y_{k}\right)$ and $\pi-\angle_{v_{k}}\left(v, y_{k}\right) \leq \tilde{Z}_{v_{k}}\left(x_{k}, y_{k}\right)$ while limsup $\operatorname{anglesum}\left(\Delta\left(v, v_{k}, y_{k}\right)\right) \leq \pi$. Sending k to infinity, we get $\angle_{v}(x, y) \leq \pi-\liminf \angle_{v_{k}}\left(v, y_{k}\right) \leq \liminf \angle_{v_{k}}\left(x_{k}, y_{k}\right)$ and hence the second assertion.

The condition that two geodesic segments with initial point $v \in X$ have angle zero at v is an equivalence relation; we denote the set of equivalence classes by $\Sigma_{v}^{*} X$. The angle defines a metric on $\Sigma_{v}^{*} X$, and we let $\Sigma_{v} X$ be the completion of $\Sigma_{v}^{*} X$ with respect to this metric. We call elements of $\Sigma_{v} X$ directions at v (or simply directions), and $\overrightarrow{v x}$ denotes the direction represented by $\overline{v x}$. We define the logarithm map as the map $\log _{v}=\log _{\Sigma_{v} X}: B_{v}(D(\kappa)) \backslash v \rightarrow \Sigma_{v} X$ which carries x to the direction $\overrightarrow{v x}$. The tangent cone of X at v, denoted $C_{v} X$, is the metric cone $C\left(\Sigma_{v} X\right)$; we have a logarithm map $\log _{v}=\log _{C_{v} X}: B_{v}(D(\kappa)) \rightarrow C_{v} X$.

Given a basepoint $v \in X, x \in X$ with $d(v, x)<D(\kappa)$, and $\lambda \in[0,1]$, let $\lambda x \in X$ be the point on $\overline{v x}$ satisfying $\frac{|v(\lambda x)|}{|v x|}=\lambda$. We define a family of pseudo-metrics on $B_{v}(D(\kappa))$ by $d_{\epsilon}(x, y)=\frac{1}{\epsilon} d(\epsilon x, \epsilon y)$. They converge to a limit pseudo-metric d_{0}. The pseudo-metric space $\left(B_{v}(D(\kappa)), d_{\epsilon}\right)$ satisfies the $\delta_{\epsilon^{2}} \kappa$-four-point condition, so the limit pseudo-metric space $\left(B_{v}(D(\kappa)), d_{0}\right)$ satisfies the δ_{0}-four-point condition. But $d_{0}(x, y)=d\left(\log _{v} x, \log _{v} y\right)$ where $\log _{v}: B_{v}(D(\kappa)) \longrightarrow C_{v} X$ is the logarithm defined above, so we see that the tangent cone $C_{v} X$ satisfies the δ_{0}-four-point condition $\left(C\left(\Sigma_{v}^{*} X\right)\right.$ is dense in $C_{v} X$, and every four-tuple in $C\left(\Sigma_{v}^{*} X\right)$ is homothetic to a four-tuple in $\log _{v}\left(B_{v}(D(\kappa))\right)$. If z_{λ} is the midpoint of the segment $\overline{(\lambda x)(\lambda y)}$, then

$$
\begin{gathered}
d\left(\log _{v} x, \log _{v} y\right)=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} d(\epsilon x, \epsilon y) \\
=\lim _{\epsilon \rightarrow 0} \frac{2}{\epsilon} d\left(\epsilon x, z_{\epsilon}\right)=\lim _{\epsilon \rightarrow 0} \frac{2}{\epsilon} d\left(z_{\epsilon}, \epsilon y\right) \\
\geq \max \left(\lim _{\epsilon \rightarrow 0} 2 d\left(\log _{v} x, \frac{1}{\epsilon} \log _{v} z_{\epsilon}\right), \lim _{\epsilon \rightarrow 0} 2 d\left(\log _{v} x, \frac{1}{\epsilon} \log _{v} z_{\epsilon}\right)\right) .
\end{gathered}
$$

So $C_{v} X$ also has approximate midpoints. Since $C_{v} X$ is complete, it is a $C A T(0)$ space; consequently $\Sigma_{v} X$ is a $C A T(1)$ space. This fact is due to Nikolaev [Nik].

2.2 CAT(1)-spaces

CAT(1)-spaces are of special importance to us, because they will turn up as spaces of directions and Tits boundaries of Hadamard spaces.

2.2.1 Spherical join

Let B_{1} and B_{2} be $\operatorname{CAT}(1)$-spaces with diameter $\operatorname{Diam}\left(B_{i}\right) \leq \pi$. Their spherical join $B_{1} \circ B_{2}$ is defined as follows. The underlying set will be $B_{1} \times\left[0, \frac{\pi}{2}\right] \times B_{2} / \sim$ where " \sim " collapses the subsets $\left\{b_{1}\right\} \times\{0\} \times B_{2}$ and $B_{1} \times\left\{\frac{\pi}{2}\right\} \times\left\{b_{2}\right\}$ to points. Given $b_{i}, b_{i}^{\prime} \in B_{i}(i=1,2)$, we consider embeddings $\rho:\left\{b_{1}, b_{1}^{\prime}\right\} \times\left[0, \frac{\pi}{2}\right] \times\left\{b_{2}, b_{2}^{\prime}\right\} \rightarrow S^{3}$. We think of S^{3} as the unit sphere in \mathbb{C}^{2} and require that $t \mapsto \rho\left(b_{1}, t, b_{2}\right)$ and $t^{\prime} \mapsto \rho\left(b_{1}^{\prime}, t^{\prime}, b_{2}^{\prime}\right)$ are unit speed geodesic segments whose initial (resp. end) points lie on the great circle $S^{1} \times\{0\}$ (resp. $\{0\} \times S^{1}$) and have distance $d_{B_{1}}\left(b_{1}, b_{1}^{\prime}\right)$ (resp. $d_{B_{2}}\left(b_{2}, b_{2}^{\prime}\right)$). The distance of the points in $B_{1} \circ B_{2}$ represented by $\left(b_{1}, t, b_{2}\right)$ and $\left(b_{1}^{\prime}, t^{\prime}, b_{2}^{\prime}\right)$ is then defined as the (spherical) distance of their ρ-images in S^{3}; it is independent of the choice of ρ. To see that $B_{1} \circ B_{2}$ is again a CAT(1)-space and that the spherical join operation is associative, observe that the metric cone $C\left(B_{1} \circ B_{2}\right)$ is canonically isometric to $C\left(B_{1}\right) \times C\left(B_{2}\right)$ and that the product of CAT(0)-spaces is $\operatorname{CAT}(0)$.

The metric suspension of a CAT(1)-space with diameter $\leq \pi$ is defined as its spherical join with the CAT(1)-space $\{$ south, north $\}$ consisting of two points with distance π.

Lemma 2.2.1 Let B_{1} and B_{2} be CAT(1)-spaces with diameter π and suppose s is an isometrically embedded unit sphere in the spherical join $B=B_{1} \circ B_{2}$. Then there are isometrically embedded unit spheres s_{i} in B_{i} so that $s_{1} \circ s_{2}$ contains s.

Proof. We apply lemma 2.3 .8 to the metric cone $C(B) \cong C\left(B_{1}\right) \times C\left(B_{2}\right) . C(s)$ is a flat in $C(B)$ and hence contained in the product of flats $F_{i} \subseteq C\left(B_{i}\right) . s_{i}:=\partial_{T i t s} F_{i}$ is a unit sphere in B_{i} and $s_{1} \circ s_{2}=\partial_{\text {Tits }}\left(F_{1} \times F_{2}\right) \supseteq \partial_{\text {Tits }} C(s)=s$.

2.2.2 Convex subsets and their poles

We call a subset C of a CAT(1)-space B convex iff for any two points $p, q \in C$ of distance $d(p, q)<\pi$ the unique geodesic segment $\overline{p q}$ is contained in C. Closed convex subsets of B are CAT(1)-spaces with respect to the subspace metric inherited from B. Basic examples of convex subsets are tubular neighborhoods with radius $\leq \frac{\pi}{2}$ of convex subsets, e.g. balls of radius $\leq \frac{\pi}{2}$.

Suppose that $C \subset B$ is a closed convex subset with radius $\operatorname{Rad}(C) \geq \pi$, i.e. for each $p \in C$ exists $q \in C$ with $d(p, q) \geq \pi$. We define the set of poles for C as

$$
\operatorname{Poles}(C):=\left\{\eta \in B:\left.d(\eta, \cdot)\right|_{C} \equiv \frac{\pi}{2}\right\} .
$$

If $\operatorname{Diam}(C)>\pi$ then C has no pole. If $\operatorname{Diam}(C)=\operatorname{Rad}(C)=\pi$ then $\operatorname{Poles}(C)$ is closed and convex, because it can be written as an intersection $\operatorname{Poles}(C)=\bigcap_{\xi \in C} B_{\frac{\pi}{2}}(\xi)$ of convex balls. The convex hull of C and $\operatorname{Poles}(C)$ is the union of all segments joining points in C to points in $\operatorname{Poles}(C)$, and is canonically isometric to $C \circ \operatorname{Poles}(C)$. This follows, for instance, when one applies the discussion in section 2.3.3 to the parallel sets of $C(C)$ in the metric cone $C(B)$.

Consider the special case that C consists of two antipodes, i.e. points with distance π, ξ and $\hat{\xi}$. Then the convex hull of $\{\xi, \hat{\xi}\}$ and $\operatorname{Poles}(\{\xi, \hat{\xi}\})$ is exactly the union of minimizing geodesic segments connecting $\xi, \hat{\xi}$ and it is canonically isometric to the metric suspension of $\operatorname{Poles}(\{\xi, \hat{\xi}\})$.

2.3 Hadamard spaces

We will call CAT(0)-spaces also Hadamard spaces, because they are the synthetic analog of (closed convex subsets in) Hadamard manifolds, i.e. simply connected complete manifolds of nonpositive curvature, cf. example 2.1.3.

2.3.1 The geometric boundary

Let X be a Hadamard space. Two geodesic rays are asymptotic if they remain at bounded distance from one another, i.e. if their Hausdorff distance is finite. Asymptoticity is an equivalence relation, and we let $\partial_{\infty} X$ be the set of equivalence classes of asymptotic rays; we sometimes refer to elements of $\partial_{\infty} X$ as ideal points or ideal boundary points. For any point $x \in X$ and any ideal boundary point $\xi \in \partial_{\infty} X$ there exists a unique ray $\overline{x \xi}$ starting at x which represents ξ. The pointed Hausdorff topology on rays emanating from $x \in X$ induces a topology on $\partial_{\infty} X$. This topology does not depend on the base point x and is called the cone topology on $\partial_{\infty} X . \partial_{\infty} X$ with the cone topology is called the geometric boundary. The cone topology naturally extends to $X \cup \partial_{\infty} X$. If X is locally compact, then $\partial_{\infty} X$ and $\bar{X}:=X \cup \partial_{\infty} X$ are compact and \bar{X} is called the geometric compactification of X.

2.3.2 The Tits metric

Earlier we defined the angle between two geodesics $\overline{v x}, \overline{v y}$ at $v \in X$ by using the monotonicity of comparison angles $\tilde{L}_{v}\left(x^{\prime}, y^{\prime}\right)$ as $x^{\prime} \rightarrow v, y^{\prime} \rightarrow v$. Now we consider a pair of rays $\overline{v \xi}, \overline{v \eta}$, and define their Tits angle (or angle at infinity) by

$$
\begin{equation*}
\angle_{\text {Tits }}(\xi, \eta):=\lim _{x^{\prime} \rightarrow \xi, y^{\prime} \rightarrow \eta} \tilde{\angle}_{v}\left(x^{\prime}, y^{\prime}\right) \tag{5}
\end{equation*}
$$

where $x^{\prime} \in \overline{v \xi}$ and $y^{\prime} \in \overline{v \eta} . \angle_{\text {Tits }}$ defines a metric on $\partial_{\infty} X$ which is independent of the basepoint v chosen. We call the metric space $\partial_{\text {Tits }} X:=\left(\partial_{\infty} X, \angle_{\text {Tits }}\right)$ the Tits boundary of X and $\angle_{\text {Tits }}$ the Tits (angle) metric. The estimate

$$
\tilde{L}_{v}\left(x^{\prime}, y^{\prime}\right)=\underbrace{\operatorname{Lx}_{x^{\prime}}\left(\xi, y^{\prime}\right)}_{\leq \underbrace{\pi-\tilde{L}_{x^{\prime}}\left(v, y^{\prime}\right)}_{y^{\prime} \rightarrow \eta^{\prime}{ }_{x^{\prime}}(\xi, \eta)}}-\underbrace{\tilde{L}_{y^{\prime}}\left(v, x^{\prime}\right)}_{y^{\prime} \rightarrow \eta}
$$

implies, combined with (4):

$$
\angle_{v}(\xi, \eta) \leq \tilde{\angle}_{v}\left(x^{\prime}, y^{\prime}\right) \leq \angle_{x^{\prime}}(\xi, \eta)
$$

Consequently, the Tits angle can be expressed as

$$
\begin{equation*}
\angle_{T i t s}(\xi, \eta)=\lim _{t \rightarrow \infty} \angle_{r(t)}(\xi, \eta) \tag{6}
\end{equation*}
$$

for any geodesic ray $r: \mathbb{R}^{+} \rightarrow X$ asymptotic to ξ or η, and also as:

$$
\begin{equation*}
\angle_{T i t s}(\xi, \eta)=\sup _{x \in X} \angle_{x}(\xi, \eta) \tag{7}
\end{equation*}
$$

Still another possibility (the last one which we will state) to define the Tits angle is as follows: If $r_{i}: \mathbb{R}^{+} \rightarrow X$ are geodesic rays asymptotic to ξ_{i} then

$$
\begin{equation*}
2 \sin \frac{\angle_{\text {Tits }}\left(\xi_{1}, \xi_{2}\right)}{2}=\lim _{t \rightarrow \infty} \frac{d\left(r_{1}(t), r_{2}(t)\right)}{t} . \tag{8}
\end{equation*}
$$

The next lemma relates the cone topology on $\partial_{\infty} X$ to the Tits topology. Fix $v \in X$ and consider the comparison angle

$$
\tilde{乙}_{v}:(X \backslash\{v\}) \times(X \backslash\{v\}) \rightarrow[0, \pi] .
$$

By monotonicity, it can be extended to a function

$$
\tilde{乙}_{v}:(\bar{X} \backslash\{v\}) \times(\bar{X} \backslash\{v\}) \rightarrow[0, \pi] .
$$

Note that for $\xi, \eta \in \partial_{\infty} X$, we have $\tilde{L}_{v}(\xi, \eta)=\angle_{\text {Tits }}(\xi, \eta)$.
Lemma 2.3.1 (Semicontinuity of comparison angle) \tilde{L}_{v} is lower semicontinuous with respect $\stackrel{\text { to }}{ }$ the cone topology: If $x_{k}, y_{k}, \xi, \eta \in \bar{X}-\{v\}$ such that $\xi=\lim _{k \rightarrow \infty} x_{k}$ and $\eta=\lim _{k \rightarrow \infty} y_{k}$ then $\tilde{Z}_{v}(\xi, \eta) \leq \liminf _{k \rightarrow \infty} \tilde{\angle}_{v}\left(x_{k}, y_{k}\right)$.

Proof. We treat the case $\xi, \eta \in \partial_{\infty} X$, the other cases are similar or easier. Since the segments (or rays) $\overline{v x_{k}}, \overline{v y_{k}}$ are converging to the rays $\overline{v \xi}, \overline{v \eta}$ respectively, we may choose $x_{k}^{\prime} \in \overline{v x_{k}}$ and $y_{k}^{\prime} \in \overline{v y_{k}}$ such that $\left|x_{k}^{\prime} v\right|,\left|y_{k}^{\prime} v\right| \rightarrow \infty$ and $d\left(x_{k}^{\prime}, \overline{v \xi}\right) \rightarrow 0, d\left(y_{k}^{\prime}, \overline{v \eta}\right) \rightarrow 0$. Hence by triangle comparison we have

$$
\tilde{\angle}_{v}\left(x_{k}, y_{k}\right) \geq \tilde{\angle}_{v}\left(x_{k}^{\prime}, y_{k}^{\prime}\right) \rightarrow \angle_{T i t s}(\xi, \eta)
$$

Lemma 2.3.2 Every pair $\xi, \eta \in \partial_{\infty} X$ with $\angle_{\text {Tits }}(\xi, \eta)<\pi$ has a midpoint.

Proof. Pick $v \in X$. Take sequences $x_{i} \in \overline{v \xi}, y_{i} \in \overline{v \eta}$ with $\left|x_{i}\right|=\left|y_{i}\right| \rightarrow \infty$. Let m_{i} be the midpoint of $\overline{x_{i} y_{i}}$. Since $\Delta\left(v, x_{i}, y_{i}\right)$ is isosceles, $\tilde{L}_{v}\left(x_{i}, m_{i}\right)=\tilde{Z}_{v}\left(m_{i}, y_{i}\right) \leq \frac{1}{2} \tilde{L}_{v}\left(x_{i}, y_{i}\right)$, by lemma 2.3.1 it suffices to show that $\overline{v m_{i}}$ converges to a ray $\overline{v \mu}$, for some $\mu \in \partial_{\infty} X$.

For $i<j$, set $\lambda_{i j}:=\frac{\left|v x_{i}\right|}{\left|v x_{j}\right|}$. By triangle comparison, we have the following inequalities:

$$
\begin{gathered}
\left|x_{i}\left(\lambda_{i j} m_{j}\right)\right| \leq \lambda_{i j}\left|x_{j} m_{j}\right|=\frac{\lambda_{i j}}{2}\left|x_{j} y_{j}\right| \\
\left|y_{i}\left(\lambda_{i j} m_{j}\right)\right| \leq \lambda_{i j}\left|y_{j} m_{j}\right|=\frac{\lambda_{i j}}{2}\left|x_{j} y_{j}\right| \\
\left|x_{i}\left(\lambda_{i j} m_{j}\right)\right|+\left|y_{i}\left(\lambda_{i j} m_{j}\right)\right| \geq\left|x_{i} y_{i}\right|
\end{gathered}
$$

Since $\lambda_{i j} \frac{\left|x_{j} y_{j}\right|}{x_{i} y_{i} \mid} \rightarrow 1$ as $i, j \rightarrow \infty$, we have

$$
\frac{\left|x_{i}\left(\lambda_{i j} m_{j}\right)\right|}{\left|x_{i} m_{i}\right|} \rightarrow 1, \frac{\left|y_{i}\left(\lambda_{i j} m_{j}\right)\right|}{\left|y_{i} m_{i}\right|} \rightarrow 1 \Longrightarrow \frac{\left|m_{i}\left(\lambda_{i j} m_{j}\right)\right|}{\left|x_{i} m_{i}\right|} \rightarrow 0
$$

and, since $\angle_{\text {Tits }}(\xi, \eta)<\pi$, this in turn implies:

$$
\frac{\left|m_{i}\left(\lambda_{i j} m_{j}\right)\right|}{\left|v m_{i}\right|} \rightarrow 0
$$

Fixing $t>0$, if we set $\frac{t}{\left|v m_{i}\right|}=\aleph_{i}$, then $\left|\left(\aleph_{i} m_{i}\right)\left(\aleph_{i} \lambda_{i j} m_{j}\right)\right| \rightarrow 0$ as $i, j \rightarrow \infty$. Since $\left|v\left(\aleph_{i} m_{i}\right)\right|=t$, this shows that the segments $\overline{v m_{i}}$ converge in the pointed Hausdorff topology to a ray $\overline{v \mu}$ as desired.

The completeness of X implies that $\left(\partial_{\infty} X, \angle_{\text {Tits }}\right)$ is complete. The metric cone $C\left(\partial_{\infty} X, \angle_{\text {Tits }}\right)$ (the Tits cone) is complete and has midpoints. Moreover, since every quadruple in $C\left(\partial_{\infty} X, \angle_{\text {Tits }}\right)$ is approximated metrically (up to rescaling) by quadruples in $X, C\left(\partial_{\infty} X, \angle_{\text {Tits }}\right.$) satisfies the δ_{0} -four-point condition and is therefore a $C A T(0)$ space. By section 2.1 .1 we conclude:

Proposition 2.3.3 The Tits boundary of a Hadamard space is a $C A T(1)$ space.
There is a natural 1-Lipschitz exponential map $\exp _{p}: C\left(\partial_{\text {Tits }} X\right) \rightarrow X$ defined as follows: For $[(\xi, t)] \in C\left(\partial_{\text {Tits }} X\right)=\partial_{\text {Tits }} X \times[0, \infty) / \sim$ let $\exp _{p}[(\xi, t)]$ be the point on $\overline{p \xi}$ at distance t from p. The logarithm map $\log _{p}: X-\{p\} \rightarrow \Sigma_{p} X$ extends contiuously to the geometric boundary and induces there a 1-Lipschitz map $\log _{p}: \partial_{\text {Tits }} X \rightarrow \Sigma_{p} X$. The Triangle Filling Lemma 2.1.4 implies the following rigidity statement:

Flat Sector Lemma 2.3.4 Suppose the restriction of $\log _{p}: \partial_{\text {Tits }} X \rightarrow \Sigma_{p} X$ to the subset $A \subseteq$ $\partial_{\text {Tits }} X$ is distance-preserving. Then the restriction of $\exp _{p}: C\left(\partial_{\text {Tits }} X\right) \rightarrow X$ to $C(A) \subseteq C\left(\partial_{\text {Tits }} X\right)$ is an isometric embedding.

2.3.3 Convex subsets and parallel sets

A subset of a Hadamard space is convex if, with any two points, it contains the unique geodesic segment connecting them. Closed convex subsets of Hadamard spaces are Hadamard themselves with respect to the subspace metric. Important examples of convex sets are tubular neighborhoods of convex sets and horoballs. We will denote by $H B_{\xi}(x)$ the horoball centered at the point $\xi \in \partial_{\infty} X$ and containing $x \in X$ in its boundary.

Let C_{1} and C_{2} be closed convex subsets of a Hadamard space X. Then by (4), the distance function $\left.d\left(\cdot, C_{2}\right)\right|_{C_{1}}=\left.d_{C_{2}}\right|_{C_{1}}: C_{1} \rightarrow \mathbb{R}_{\geq 0}$ is convex and the nearest point projection $\left.\pi_{C_{2}}\right|_{C_{1}}$: $C_{1} \rightarrow C_{2}$ is distance-nonincreasing. $\left.d_{C_{2}}\right|_{C_{1}}$ is constant iff $\left.\pi_{C_{2}}\right|_{C_{1}}$ is an isometric embedding. In this situation, we have the following rigidity statement:

Flat Strip Lemma 2.3.5 Let C_{1} and C_{2} be closed convex subsets in the Hadamard space X. If $\left.d_{C_{2}}\right|_{C_{1}} \equiv d$ then there exists an isometric embedding $\psi: C_{1} \times[0, d] \rightarrow X$ such that $\psi(\cdot, o)=i d_{C_{1}}$ and $\psi(\cdot, d)=\left.\pi_{C_{2}}\right|_{C_{1}}$.

This is easily derived from the Triangle Filling Lemma 2.1.4, respectively from the following direct consequence of it:

Flat Rectangle Lemma 2.3.6 Let $x_{i} \in X, i \in \mathbb{Z} / 4 \mathbb{Z}$, be points so that for all i holds $\angle_{x_{i}}\left(x_{i-1}, x_{i+1}\right) \geq$ $\frac{\pi}{2}$. Then there exists an embedding of the flat rectangular region $\left[0,\left|x_{0} x_{1}\right|\right] \times\left[0,\left|x_{1} x_{2}\right|\right] \subset \mathbb{E}^{2}$ into X carrying the vertices to the points x_{i}.

We call the closed convex sets $C_{1}, C_{2} \subseteq X$ parallel, $C_{1} \| C_{2}$, iff $\left.d_{C_{2}}\right|_{C_{1}}$ and $\left.d_{C_{1}}\right|_{C_{2}}$ are constant, or equivalently, $\left.\pi_{C_{2}}\right|_{C_{1}}$ and $\left.\pi_{C_{1}}\right|_{C_{2}}$ are isometries inverse to each other. Being parallel is no equivalence relation for arbitrary closed convex subsets. However, it is an equivalence relation for closed convex sets with extendible geodesics, because two such subsets are parallel iff they have finite Hausdorff distance. (A Hadamard space is said to have extendible geodesics if each geodesic segment is contained in a complete geodesic.)

Let $Y \subseteq X$ be a closed convex subset with extendible geodesics. Then $\operatorname{Rad}\left(\partial_{\text {Tits }} Y\right)=\pi$. The parallel set P_{Y} of Y is defined as the union of all convex subsets parallel to $Y . P_{Y}$ is closed, convex and splits canonically as a metric product

$$
\begin{equation*}
P_{Y} \cong Y \times N_{Y} \tag{9}
\end{equation*}
$$

Here N_{Y} is a Hadamard space (not necessarily with extendible geodesics) and the subsets $Y \times\{p t\}$ are the convex subsets parallel to Y. The cross sections of P_{Y} orthogonal to these convex subsets can be constructed as intersections of horoballs:

$$
\begin{equation*}
\{y\} \times N_{Y}=P_{Y} \cap \bigcap_{\xi \in \partial_{T i t s} Y} H B_{\xi}(y) \quad \forall y \in Y \tag{10}
\end{equation*}
$$

Applying the Flat Sector Lemma 2.3.4 one sees furthermore that $\partial_{\text {Tits }} N_{Y}$ is canonically identified with Poles $\left(\partial_{\text {Tits }} Y\right) \subset \partial_{\text {Tits }} X ; \partial_{\text {Tits }} P_{Y}$ is the convex hull in $\partial_{\text {Tits }} X$ of $\partial_{\text {Tits }} Y$ and Poles $\left(\partial_{\text {Tits }} Y\right)$ and we have the canonical decomposition:

$$
\begin{equation*}
\partial_{T i t s} P_{Y} \cong \partial_{\text {Tits }} Y \circ \operatorname{Poles}\left(\partial_{\text {Tits }} Y\right) \tag{11}
\end{equation*}
$$

2.3.4 Products

The metric product of Hadamard spaces X_{i} is defined as usual using the Pythagorean law. It is again Hadamard and its Tits boundary and spaces of directions decompose canonically:

$$
\begin{gather*}
\partial_{\text {Tits }}\left(X_{1} \times \cdots \times X_{n}\right)=\partial_{\text {Tits }} X_{1} \circ \cdots \circ \partial_{\text {Tits }} X_{n} \tag{12}\\
\Sigma_{\left(x_{1}, \ldots, x_{n}\right)}\left(X_{1} \times \cdots \times X_{n}\right)=\Sigma_{x_{1}} X_{1} \circ \cdots \circ \Sigma_{x_{n}} X_{n} \tag{13}
\end{gather*}
$$

Proposition 2.3.7 If X is a Hadamard space with extendible geodesics then all join decompositions of $\partial_{\text {Tits }} X$ are induced by product decompositions of X.

Proof. Assume that the Tits boundary decomposes as a spherical join $\partial_{T i t s} X=B_{1} \circ B_{-1}$ and consider, for $x \in X$ and $i= \pm 1$, the convex subsets $C_{i}(x):=\bigcap_{\xi \in B_{-i}} H B_{\xi}(x)$ obtained from intersecting horoballs. Using extendability of geodesics, i.e. $\operatorname{Rad} \Sigma_{x} X=\pi$, one verifies that $\partial_{T i t s} C_{i}=B_{i}, C_{i}$ has extendible geodesics and $C_{ \pm 1}(x)$ are orthogonal in the sense that $\Sigma_{x} C_{i}(x)=\operatorname{Poles}\left(\Sigma_{x} C_{-i}(x)\right)$. Furthermore any two sets $C_{1}(x)$ and $C_{-1}\left(x^{\prime}\right)$ intersect in the point $\pi_{C_{1}(x)}\left(x^{\prime}\right)=\pi_{C_{-1}}(x)$. The assertion follows by applying the Flat Rectangle Lemma 2.3.6.
Lemma 2.3.8 Let X_{1} and X_{2} be Hadamard spaces and suppose that F is a flat in the product space $X=X_{1} \times X_{2}$. Then there are flats $F_{i} \subseteq X_{i}$ so that $F_{1} \times F_{2} \supseteq F$.

Proof. Consider unit speed parametrizations $c, c^{\prime}: \mathbb{R} \rightarrow F$ for two parallel geodesics γ, γ^{\prime} in F. Then $c_{i}:=\pi_{X_{i}} \circ c$ and $c_{i}^{\prime}:=\pi_{X_{i}} \circ c^{\prime}$ are constant speed parametrizations for geodesics $\gamma_{i}, \gamma_{i}^{\prime}$ in X_{i}. Since the distance functions $d:=d_{X}\left(c, c^{\prime}\right)$ and $d_{i}:=d_{X_{i}}\left(c_{i}, c_{i}^{\prime}\right)$ are convex, satisfy $d^{2}=d_{1}^{2}+d_{2}^{2}$ and d is constant, it follows that the d_{i} are constant, i.e. γ_{i} and γ_{i}^{\prime} are parallel. Since this works for any pair of parallel geodesics contained in F, it follows that $\pi_{X_{i}} F$ is a flat in F_{i}.

2.3.5 Induced isomorphisms of Tits boundaries

We now show that any ($1, A$-quasi-isometric embedding of one Hadamard space into another induces a well-defined topological embedding of geometric boundaries which preserves the Tits distance.

Proposition 2.3.9 Let X_{1} and X_{2} be Hadamard spaces and suppose that $\Phi: X_{1} \rightarrow X_{2}$ is a $(1, A)$ -quasi-isometric embedding. Then there is a unique extension $\bar{\Phi}: \bar{X}_{1} \rightarrow \bar{X}_{2}$ such that

1. $\bar{\Phi}\left(\partial_{\infty} X_{1}\right) \subseteq \partial_{\infty} X_{2}$,
2. $\bar{\Phi}$ is continuous at boundary points.
3. $\left.\bar{\Phi}\right|_{\partial_{\infty} X_{1}}$ is a topological embedding which preserves the Tits distance.

We let $\left.\partial_{\infty} \Phi \stackrel{\text { def }}{=} \bar{\Phi}\right|_{\partial_{\infty} X}$.
Proof. We first observe that there is a function $\epsilon(R)$ (depending on A but not on the spaces X_{1} and X_{2}) with $\epsilon(R) \rightarrow 0$ as $R \rightarrow \infty$ such that if $p, x, y \in X_{1}$ and $d(p, x), d(p, y)>R$ then

$$
\begin{equation*}
\mid \tilde{乙}_{p}(x, y)-\tilde{乙}_{\Phi(p)}(\Phi(x), \Phi(y) \mid<\epsilon(R) \tag{14}
\end{equation*}
$$

Lemma 2.3.10 Suppose that x_{i} is a sequence of points in X_{1} which converges to a boundary point ξ_{1}. Then $\Phi\left(x_{i}\right) \in X_{2}$ converges to a boundary point ξ_{2}.

Proof of lemma: Pick a base point p. There are points $y_{i} \in \overline{p x_{i}}$ such that $d\left(p, y_{i}\right) \rightarrow \infty$ and $\lim _{i, j \rightarrow \infty} \tilde{L}_{p}\left(y_{i}, y_{j}\right)=0$. By (14), the points $\Phi\left(y_{i}\right)$ converge to a boundary point ξ_{2}. Applying (14) again, we conclude that $\Phi\left(x_{i}\right)$ converges to ξ_{2} as well.
Proof of Proposition continued: From the previous lemma we see that if x_{i} and x_{i}^{\prime} are sequences in X_{1} converging to the same point in $\partial_{\infty} X_{1}$ then the sequences $\Phi\left(x_{i}\right)$ and $\Phi\left(x_{i}^{\prime}\right)$ converge to the same point in $\partial_{\infty} X_{2}$. This allows us to extend Φ to a well-defined map $\bar{\Phi}: \bar{X}_{1} \rightarrow \bar{X}_{2}$.

We now prove that $\bar{\Phi}$ is continuous at every boundary point ξ. Let $x_{i} \in \bar{X}_{1}$ be a sequence of points converging to $\xi \in \partial_{\infty} X_{1}$. By the lemma, we may choose $y_{i} \in X_{1}$ with $y_{i} \in \overline{p x_{i}}$ so that for
 zero as $R \rightarrow \infty$. Hence $\lim _{R \rightarrow \infty} \bar{\Phi}\left(x_{i}\right)=\lim _{R \rightarrow \infty} \Phi\left(y_{i}\right)=\bar{\Phi}(\xi)$ by the lemma.

Another consequence of the lemma is that the image ray $\Phi(\overline{p \xi})$ diverges sublinearily from the ray $\overline{\Phi(p) \bar{\Phi}(\xi)}$ in the sense that

$$
\lim _{R \rightarrow \infty} \frac{1}{R} \cdot d_{H}\left(\Phi\left(\overline{p \xi} \cap B_{R}(p)\right), \overline{\phi(p) \bar{\Phi}(\xi)} \cap B_{R}(\Phi(p))\right)=0
$$

where d_{H} denotes the Hausdorff distance. This implies that $\left.\partial_{\infty} \Phi \stackrel{\text { def }}{=} \bar{\Phi}\right|_{\partial_{\infty} X_{1}}$ preserves the Tits distance and is a homeomorphism onto its image.

2.4 Ultralimits and Asymptotic cones

The presentation here is a slight modification of [Gro], see also [KaLe].

2.4.1 Ultrafilters and ultralimits

Definition 2.4.1 A nonprincipal ultrafilter is a finitely additive probability measure ω on the subsets of the natural numbers \mathbb{N} such that

1. $\omega(S)=0$ or 1 for every $S \subset \mathbb{N}$.
2. $\omega(S)=0$ for every finite subset $S \subset \mathbb{N}$.

Given a compact metric space X and a map $a: \mathbb{N} \longrightarrow X$, there is a unique element ω - $\lim a \in X$ such that for every neighborhood U of $\omega-\lim a, a^{-1}(U) \subset \mathbb{N}$ has full measure. In particular, given any bounded sequence $a: \mathbb{N} \longrightarrow \mathbb{R}, \omega$-lim a (or a_{ω}) is a limit point selected by ω.

2.4.2 Ultralimits of sequences of pointed metric spaces

Let $\left(X_{i}, d_{i}, \star_{i}\right)$ be a sequence of metric spaces with basepoints \star_{i}. Consider $X_{\infty}=\left\{x \in \prod_{i \in \mathbb{N}} X_{i} \mid d_{i}\left(x_{i}, \star_{i}\right)\right.$ is bounded $\}$. Since $d_{i}\left(x_{i}, y_{i}\right)$ is a bounded sequence we may define $\tilde{d}_{\omega}: X_{\infty} \times X_{\infty} \longrightarrow \mathbb{R}$ by $\tilde{d}_{\omega}(x, y)=\omega-\lim d_{i}\left(x_{i}, y_{i}\right) . \quad \tilde{d}_{\omega}$ is a pseudo-distance. We define the ultralimit of the sequence $\left(X_{i}, d_{i}, \star_{i}\right)$ to be the quotient metric space $\left(X_{\omega}, d_{\omega}\right) . x_{\omega} \in X_{\omega}$ denotes the element corresponding to $x=\left(x_{i}\right) \in X_{\infty} . \star_{\omega}:=\left(\star_{i}\right)$ is the basepoint of $\left(X_{\omega}, d_{\omega}\right)$.

Lemma 2.4.2 If $\left(X_{i}, d_{i}, \star_{i}\right)$ is a sequence of pointed metric spaces, then $\left(X_{\omega}, d_{\omega}, \star_{\omega}\right)$ is complete.

Proof. Let x_{ω}^{j} be a Cauchy sequence in X_{ω}, where $x_{\omega}^{j}=\omega-\lim x_{i}^{j}$. Let $N_{1}=\mathbb{N}$. Inductively, there is an ω-full measure subset $N_{j} \subseteq N_{j-1}$ such that $i \in N_{j}$ implies $\left|d_{i}\left(x_{i}^{k}, x_{i}^{l}\right)-d_{\omega}\left(x^{k}, x^{l}\right)\right|<\frac{1}{2^{j}}$, for $1 \leq k, l \leq j$. For $i \in N_{j}-N_{j-1}$, define $y_{i}=x_{i}^{j}$. Then $x_{\omega}^{j} \rightarrow y_{\omega}$.

The concept of ultralimits is an extension of Hausdorff limits.
Lemma 2.4.3 If $\left(X_{i}, d_{i}, \star_{i}\right)$ form a Hausdorff precompact family of pointed metric spaces, then $\left(X_{\omega}, d_{\omega}, \star_{\omega}\right)$ is a limit point of the sequence $\left(X_{i}, d_{i}, \star_{i}\right)$ with respect to the pointed Hausdorff topology.

Proof. To see this, pick ϵ, R, and note that there is an N such that we can find an N element sequence $\left\{x_{i}^{j}\right\}_{j=1}^{N} \subset X_{i}$ which is ϵ-dense in X_{i}. The N sequences x_{i}^{j} for $1 \leq j \leq N$ give us N elements in $x_{\omega}^{j} \in X_{\omega}$. If $y_{\omega} \in X_{\omega}, y_{\omega} \in B_{\star_{\omega}}(R)$, then for ω-a.e. $i, d_{i}\left(y_{i}, \star_{i}\right)<R$. Consider $d_{\omega}\left(y_{\omega}, x_{\omega}^{j}\right)$. Given $\epsilon>0,\left|d_{\omega}\left(y_{\omega}, x_{\omega}^{j}\right)-d_{i}\left(y_{i}, x_{i}^{j}\right)\right|<\epsilon$ for ω-a.e. i, which implies that $d_{\omega}\left(y_{\omega}, x_{\omega}^{j}\right)<\epsilon$ for some $1 \leq j \leq N$. Hence we've seen that $B_{\star_{\omega}}(R)$ is totally bounded, and for all $\epsilon>0$ there is an ϵ-net in $B_{\star_{\omega}}(R)$ which is a Hausdorff limit point of ϵ-nets in the X_{i} 's. It follows that $\left(X_{i}, d_{i}, \star_{i}\right)$ subconverges to $\left(X_{\omega}, d_{\omega}, \star_{\omega}\right)$ in the pointed Hausdorff topology.

In general, the ultralimit X_{ω} is not Hausdorff close to the spaces X_{i} in the "approximating" sequence. However, the Hausdorff limits of any precompact sequence of subspaces $Y_{i} \subset X_{i}$ canonically embed into X_{ω}.

The importance of ultralimits for the study of the large-scale geometry from the following fact: If for each $i, f_{i}: X_{i} \rightarrow Y_{i}$ is a (L, C)-quasi-isometry with $d_{i}\left(f_{i}\left(\star_{i}\right), \star_{i}\right)$ bounded then the f_{i} induce an (L, C)-quasi-isometry $f_{\omega}: X_{\omega} \rightarrow Y_{\omega}$.

It follows that if for each i, and every pair of points $a_{i}, b_{i} \in X_{i}$ the distance $d_{i}\left(a_{i}, b_{i}\right)$ is the infimum of lengths of paths joining a_{i} to b_{i} then every pair of points $a_{\omega}, b_{\omega} \in X_{\omega}$ is joined by a geodesic segment.

Lemma 2.4.4 If $\left(X_{i}, d_{i}, \star_{i}\right)$ is a $C A T(\kappa)$ space for each i, then so is $\left(X_{\omega}, d_{\omega}, \star_{\omega}\right)$. If $d_{\omega}\left(a_{\omega}, b_{\omega}\right)<$ $D(\kappa)$, then the geodesic segment $\overline{a_{\omega} b_{\omega}}$ is an ultralimit of geodesic segments. If $\kappa \leq 0$ and each X_{i} has extendible geodesics then each ray (respectively complete geodesic) in X_{ω} is an ultralimit of rays (respectively complete geodesics) in the X_{i} 's.

Proof. If each $\left(X_{i}, d_{i}, \star_{i}\right)$ is a $C A T(\kappa)$ length space, then clearly $\left(X_{\omega}, d_{\omega}, \star_{\omega}\right)$ satisfies the δ_{κ}-fourpoint condition since this is a closed condition. Hence $\left(X_{\omega}, d_{\omega}, \star_{\omega}\right)$ is a $C A T(\kappa)$ length space since it is a geodesic space satisfying the δ_{κ}-four-point condition.

If $a_{\omega}, b_{\omega} \in X_{\omega}$ with $\left|a_{\omega} b_{\omega}\right|<D(\kappa)$, then there is a unique geodesic segment joining a_{ω} to b_{ω}. On the other hand, if $a_{\omega}=\omega-\lim a_{i}, b_{\omega}=\omega$ - $\lim b_{i}$, then the ultralimit of the geodesic segments $\frac{b_{\omega}}{a_{i} b_{i}}$ is a such a geodesic segment.

Now suppose $a_{\omega}^{0}, a_{\omega}^{1}, \ldots$ determine a ray, in the sense that $d_{\omega}\left(a_{\omega}^{i}, a_{\omega}^{k}\right)=d_{\omega}\left(a_{\omega}^{i}, a_{\omega}^{j}\right)+d_{\omega}\left(a_{\omega}^{j}, a_{\omega}^{k}\right)$ for $i \leq j \leq k$. Let $N_{1}=\mathbb{N}$. Inductively, there is an ω-full measure $N_{j} \subseteq N_{j-1}$ such that $\overline{a_{i}^{0} a_{i}^{l}}$ is within a $\frac{1}{2^{j}}$ neighborhood of the segment $\overline{a_{i}^{0} a_{i}^{j}}$ for $i \in N_{j}, 0 \leq l \leq j$. For $i \in N_{j}-N_{j-1}$ extend the segment $\overline{a_{i}^{0} a_{i}^{j}}$ to a ray $\overline{a_{i}^{0} \xi_{i}}$ with initial point a_{i}^{0}. Then the ultralimit of the sequence $\overline{a_{i}^{0} \xi_{i}}$ is the ray we started with. The case of complete geodesics follows from similar reasoning.

Lemma 2.4.5 Suppose that there is a $D>0$ such that for each i, $\operatorname{Isom}\left(X_{i}\right)$ has an orbit which is D-dense in X_{i}. If $\lambda_{i}>0$ and $\lambda_{i} \rightarrow 0$, then the ultralimit of $\left(X_{i}, \lambda_{i} d_{i}, \star_{i}\right)$ is independent of the choice of basepoints \star_{i}, and has a transitive isometry group.

2.4.3 Asymptotic cones

Let X be a metric space and let $\star_{n} \in X$ be a sequence of basepoints. We define the asymptotic cone $\operatorname{Cone}(X)$ of X with respect to the non-principal ultrafilter ω, the sequence of scale factors λ_{n} with $\omega-\lim \lambda_{n}=\infty$ and basepoints \star_{n}, as the ultralimit of the sequence of rescaled spaces $\left(X_{n}, d_{n}, \star_{n}\right):=\left(X, \frac{1}{\lambda_{n}} \cdot d, \star_{n}\right)$. When the sequence $\star_{n} \equiv \star$ is constant, then Cone (X) does not depend on the basepoint \star and has a canonical basepoint \star_{ω} which is represented by any sequence $\left(x_{n}\right) \subset X$ satisfying $\omega-\lim _{n} \frac{1}{\lambda_{n}} \cdot d\left(x_{n}, \star\right)=0$, for instance, by any constant sequence (x).
Proposition 2.4.6 - If X is a geodesic metric space, then $\operatorname{Cone}(X)$ is a geodesic metric space.

- If X is a Hadamard space, then $\operatorname{Cone}(X)$ is a Hadamard space.
- If X is a $C A T(\kappa)$-space for some $\kappa<0$, then $\operatorname{Cone}(X)$ is a metric tree.
- If the orbits of $\operatorname{Isom}(X)$ are at bounded Hausdorff distance from X, then $\operatorname{Cone}(X)$ is a homogeneous metric space.
- A (L, C) quasi-isometry of metric spaces $\phi: X \rightarrow Y$ induces a bilipschitz map $\operatorname{Cone}(\phi)$: Cone $(X) \rightarrow$ Cone (Y) of asymptotic cones.
If we're given an (L, C) quasi-isometry $\Phi: X \longrightarrow Y$, then
Assume now that X is a Hadamard space. Let $\left(F_{n}\right)_{n \in \mathbb{N}}$ be a sequence of k-flats in X and suppose that ω - $\lim _{n} \frac{1}{\lambda_{n}} d\left(F_{n}, \star\right)<\infty$. Then the ultralimit of the embeddings of pointed metric spaces

$$
\underbrace{\left(F_{n}, \frac{1}{\lambda_{n}} \cdot d_{F_{n}}, \pi_{F_{n}}(\star)\right)}_{\cong \mathbb{R}^{k}} \hookrightarrow\left(X, \frac{1}{\lambda_{n}} \cdot d_{X}, \pi_{F_{n}}(\star)\right)
$$

is a k-flat

$$
\mathbb{R}^{k} \hookrightarrow \operatorname{Cone}(X)
$$

in the asymptotic cone. We denote the family of all k-flats in $\operatorname{Cone}(X)$ arising in this way by $\mathcal{F}(k)$.

3 Spherical buildings

Our viewpoint on spherical buildings is slightly different from the standard one: for us a spherical building is a $C A T(1)$ space equipped with extra structure. This viewpoint is well adapted to the needs of this paper, because the spherical buildings which we consider arise as Tits boundaries and spaces of directions of Hadamard spaces. Apart from the choice of definitions and the viewpoint, this section does not contain anything new; the same results and many more can be found (often in slightly different form) in [Ti1, Ron, Brbk, Brn1, Brn2].

3.1 Spherical Coxeter complexes

Let S be a Euclidean unit sphere. By a reflection on S we mean an involutive isometry whose fixed point set, its wall, is a subsphere of codimension one. If $W \subset \operatorname{Isom}(S)$ is a finite subgroup generated by reflections, we call the pair (S, W) a spherical Coxeter complex and W its Weyl group.

The finite collection of walls belonging to reflections in W divide S into isometric open convex sets. The closure of any of these sets is called a chamber, and is a fundamental domain for the action of W. Chambers are convex spherical polyhedra, i.e. finite intersections of hemispheres. A face of a chamber is an intersection of the chamber with some walls.

A face (resp. open face) of S is a face (resp. open face) of a chamber of S. Two faces of S are opposite or antipodal if they are exchanged by the canonical involution of S; two faces are opposite iff they contain a pair of antipodal points in their interiors. A panel is a codimension 1 face, a singular sphere is an intersection of walls, a half-apartment or root is a hemisphere bounded by a wall and a regular point in S is an interior point of a chamber. The regular points form a dense subset. The orbit space

$$
\Delta_{\text {mod }}:=S / W
$$

with the orbital distance metric is a spherical polyhedron isometric to each chamber. The quotient map

$$
\begin{equation*}
\theta=\theta_{S}: S \longrightarrow \Delta_{\text {mod }} \tag{15}
\end{equation*}
$$

is 1-Lipschitz and its restriction to each chamber is distance preserving. For $\delta, \delta^{\prime} \in \Delta_{\text {mod }}$, we set

$$
D\left(\delta, \delta^{\prime}\right):=\left\{d_{S}\left(x, x^{\prime}\right) \mid x, x^{\prime} \in S, \theta x=\delta, \theta x^{\prime}=\delta^{\prime}\right\}
$$

and

$$
D^{+}(\delta):=D(\delta, \delta) \backslash\{0\}
$$

Note that D^{+}is continuous on each open face of $\Delta_{\text {mod }}$.
An isomorphism of spherical Coxeter complexes $(S, W),\left(S^{\prime}, W^{\prime}\right)$ is an isometry $\alpha: S \rightarrow S^{\prime}$ carrying W to W^{\prime}. We have an exact sequence

$$
1 \rightarrow W \rightarrow \operatorname{Aut}(S, W) \rightarrow \operatorname{Isom}\left(\Delta_{\bmod }\right) \rightarrow 1 .
$$

Lemma 3.1.1 If $g \in W$, then $\operatorname{Fix}(g) \subseteq S$ is a singular sphere. If $Z \subset S$ then the subgroup of W fixing Z pointwise is generated by the reflections in W which fix Z pointwise.

Proof. Every W-orbit intersects each closed chamber precisely once. Therefore the stabiliser of a face $\sigma \subset S$ fixes σ pointwise. So for all $g \in W, \operatorname{Fix}(g)$ is a subsphere and a subcomplex, i.e. it is a singular sphere.

By the above, without loss of generality we may assume that Z is a singular sphere. Let W_{Z} be the group generated by reflections fixing Z pointwise. If σ is a top-dimensional face of the singular sphere Z then each W-chamber containing σ is contained in a unique W_{Z}-chamber; therefore W_{Z} acts (simply) transitively on the W-chambers containing σ. Since W acts simply (transitively) on W-chambers, it follows that Fixator $(Z)=\operatorname{Fixator}(\sigma)=W_{Z}$.

3.2 Definition of spherical buildings

Let (S, W) be a spherical Coxeter complex. A spherical building modelled on (S, W) is a $C A T(1)$ space B together with a collection \mathcal{A} of isometric embeddings $\iota: S \rightarrow B$, called charts, which satisfies properties SB1-2 described below and which is closed under precomposition with isometries in W. An apartment in B is the image of a chart $\iota: S \rightarrow B ; \iota$ is a chart of the apartment $\iota(S)$. \mathcal{A} is called the atlas of the spherical building.
SB1: Plenty of apartments. Any two points in B are contained in a common apartment.
Let $\iota_{A_{1}}, \iota_{A_{2}}$ be charts for apartments A_{1}, A_{2}, and let $C=A_{1} \cap A_{2}, C^{\prime}=\iota_{A_{2}}^{-1}(C) \subset S$. The charts $\iota_{A_{i}}$ are W-compatible if $\left.\iota_{A_{1}}^{-1} \circ \iota_{A_{2}}\right|_{C^{\prime}}$ is the restriction of an isometry in W.
SB2: Compatible apartments. The charts are W-compatible.
It will be a consequence of corollary 3.9.2 below that the atlas \mathcal{A} is maximal among collections of charts satisfying axioms SB1 and SB2.

We define walls, singular spheres, half-apartments, chambers, faces, antipodal points, antipodal faces, and regular points to be the images of corresponding objects in the spherical Coxeter complex. The building is called thick if each wall belongs to at least 3 half-apartments. The axioms yield a well-defined 1-Lipschitz anisotropy map ${ }^{7}$

$$
\begin{equation*}
\theta_{B}: B \longrightarrow S / W=: \Delta_{m o d} \tag{16}
\end{equation*}
$$

satisfying the discreteness condition:

$$
\begin{equation*}
d_{B}\left(x_{1}, x_{2}\right) \in D\left(\theta_{B}\left(x_{1}\right), \theta_{B}\left(x_{2}\right)\right) \quad \forall x_{1}, x_{2} \in B \tag{17}
\end{equation*}
$$

If $\alpha: S \longrightarrow S$ is an automorphism of the spherical Coxeter complex, then we modify the atlas by precomposing with α; the atlases obtained this way correspond to symmetries of $\Delta_{\text {mod }}$.

If \mathcal{A}^{\prime} is an atlas of charts $\iota: S^{\prime} \longrightarrow B$ giving a $\left(S^{\prime}, W^{\prime}\right)$ building structure on B, then this spherical building is equivalent to (B, \mathcal{A}) if there is an isomorphism of spherical Coxeter complexes $\alpha:\left(S^{\prime}, W^{\prime}\right) \longrightarrow(S, W)$ so that $\mathcal{A}^{\prime}=\{\iota \circ \alpha \mid \iota \in \mathcal{A}\}$.

If B and B^{\prime} are spherical buildings modelled on a Coxeter complex (S, W), with atlases \mathcal{A} and \mathcal{A}^{\prime}, an isomorphism is an isometry $\phi: B \rightarrow B^{\prime}$ such that the correspondence $\iota \mapsto \phi \circ \iota$ defines a bijection $\mathcal{A} \rightarrow \mathcal{A}^{\prime}$.

[^3]
3.3 Join products and decompositions

Let $B_{i}, i=1, \ldots, n$, be spherical buildings modelled on spherical Coxeter complexes $\left(S_{i}, W_{i}\right)$ with atlases \mathcal{A}_{i} and spherical model polyhedra $\Delta_{\text {mod }}^{i}$. Then $W:=W_{1} \times \cdots \times W_{n}$ acts canonically as a reflection group on the sphere $S=S_{1} \circ \cdots \circ S_{n}$. We call the Coxeter complex (S, W) the spherical join of the Coxeter complexes $\left(S_{i}, W_{i}\right)$ and write

$$
\begin{equation*}
(S, W)=\left(S_{1}, W_{1}\right) \circ \cdots \circ\left(S_{n}, W_{n}\right) \tag{18}
\end{equation*}
$$

The model polyhedron $\Delta_{\text {mod }}$ of (S, W) decomposes canonically as

$$
\begin{equation*}
\Delta_{\text {mod }}=\Delta_{\text {mod }}^{1} \circ \cdots \circ \Delta_{\text {mod }}^{n} . \tag{19}
\end{equation*}
$$

The CAT(1)-space

$$
\begin{equation*}
B=B_{1} \circ \cdots \circ B_{n} \tag{20}
\end{equation*}
$$

carries a natural spherical building structure modelled on (S, W). The charts ι for its atlas \mathcal{A} are the spherical joins $\iota=\iota_{1} \circ \cdots \circ \iota_{n}$ of charts $\iota_{i} \in \mathcal{A}_{i}$. We call B equipped with this building structure the spherical (building) join of the buildings B_{i}.

Proposition 3.3.1 Let B be a spherical building modelled on the Coxeter complex (S, W) with atlas \mathcal{A} and assume that there is a decomposition (19) of its model polyhedron. Then:

1. There is a decomposition (18) of (S, W) as a join of spherical Coxeter complexes so that $S_{i}=\theta_{S}^{-1}\left(\Delta_{\text {mod }}^{i}\right)$.
2. There is a decomposition (20) of B as a join of spherical buildings so that $B_{i}=\theta_{B}^{-1}\left(\Delta_{\text {mod }}^{i}\right)$.

Proof. 1. We identify $\Delta_{\text {mod }}$ with a W-chamber in S and define S_{i} to be the minimal geodesic subsphere containing $\Delta_{\text {mod }}^{i}$. Then $S_{i} \subseteq \operatorname{Poles}\left(S_{j}\right)$ for all $i \neq j$ and hence $S=S_{1} \circ \cdots \circ S_{n}$ by dimension reasons. Each wall containing a codimension-one face of $\Delta_{\text {mod }}$ is orthogonal to one of the spheres S_{i} and contains the others. Hence $W=W_{1} \times \cdots \times W_{n}$ where W_{i} is generated by the reflections in W at walls orthogonal to S_{i}. W_{i} acts as a reflection group on S_{i} and the claim follows.
2. Since any two points in B are contained in an apartment, one sees by applying the first assertion that the B_{i} are convex subsets and B is canonically isometric to the join of CAT(1)-spaces $B=B_{1} \circ \cdots \circ B_{n}$. The collection of charts $\left.\iota\right|_{S_{i}}, \iota \in \mathcal{A}$, forms an atlas for a spherical building structure on B_{i} and B is canonically isomorphic to the spherical building join of the B_{i}.

We call a spherical polyhedron irreducible if it is a spherical simplex with diameter $<\pi / 2$ and dihedral angles $\leq \pi / 2$ or if it is a sphere or a point. Accordingly, we call a spherical Coxeter complex ${ }^{8}$ or a spherical building irreducible if its model polyhedron is irreducible. The spherical model polyhedron $\Delta_{\text {mod }}$ has dihedral angles $\leq \frac{\pi}{2}$. A polyhedron of this sort has a unique minimal decomposition as the spherical join (19) of irreducible spherical simplices (which may be single points) and, if non-empty, the unique maximal unit sphere contained in $\Delta_{\text {mod }}$. By Proposition 3.3.1, (19) corresponds to unique minimal decompositions (18) of the Coxeter complex (S, W) as a join of Coxeter complexes and (20) of B as a spherical building join. We call these decompositions the de Rham decompositions of (S, W) and B. The sphere factor in (19) occurs iff the fixed point

[^4]set of the Weyl group is non-empty. We call the corresponding factor in the de Rham decomposition the spherical de Rham factor.

If W acts without fixed point, then $\Delta_{m o d}$ is a spherical simplex ${ }^{9}$ and the collection of chambers in S and B give rise to simplicial complexes.

Lemma 3.3.2 Let (S, W) be an irreducible spherical Coxeter complex with non-trivial Weyl group W. Then for each chamber σ there is a wall which is disjoint from the closure $\bar{\sigma}$.

Proof. Let τ^{\prime} be a wall and $p \in S$ be a point at maximal distance $\frac{\pi}{2}$ from τ^{\prime}. Pick a chamber σ^{\prime} containing p in its closure. Then $\overline{\sigma^{\prime}} \cap \tau^{\prime}=\emptyset$, because $\operatorname{Diam}\left(\sigma^{\prime}\right)<\frac{\pi}{2}$ due to irreducibility. Since W acts transitively on chambers, the claim follows.

Proposition 3.3.3 Assume that B_{1} and B_{2} are $C A T(1)$-spaces and that their join $B=B_{1} \circ B_{2}$ admits a spherical building structure. Then the B_{i} inherit natural spherical building structures from B. In particular, the spherical building B cannot be thick irreducible with non-trivial Weyl group.

Proof. Applying lemma 2.2 .1 to apartments in B, we see that there exist $d_{1}, d_{2} \in \mathbb{N}$ so that every apartment $A \subseteq B$ splits as $A=A_{1} \circ A_{2}$ where A_{i} is a d_{i}-dimensional unit sphere in B_{i}. Fix a chart ι_{0} in the atlas \mathcal{A} for the given spherical building structure on B. Denote by S_{2} the d_{2}-sphere $\iota_{0}^{-1} B_{2}$ in the model Coxeter complex (S, W) and by $S_{1}:=\operatorname{Poles}\left(S_{2}\right)$ the complementary d_{1}-sphere. The subgroup $W_{1} \subseteq W$ generated by reflections at walls containing S_{2} acts as a reflection group on S_{1}. Consider all charts $\iota \in \mathcal{A}$ with $\left.\iota\right|_{S_{2}}=\left.\iota_{0}\right|_{S_{2}}$. The collection \mathcal{A}_{1} of their restrictions $\left.\iota\right|_{S_{1}}$ forms an atlas for a spherical building structure on B_{1} with model Coxeter complex (S_{1}, W_{1}).

If B is thick, then its chambers are precisely the (closures of the) connected components of the subset of manifold points. Hence the joins $\sigma_{1} \circ \sigma_{2}$ of chambers $\sigma_{i} \subset B_{i}$ are contained in chambers of B. So the chambers of B have diameter $\geq \frac{\pi}{2}$ and B cannot be irreducible with non-trivial Weyl group.

3.4 Polyhedral structure

Let Δ^{\prime} be a face of $\Delta_{m o d}$ and let $\sigma: \Delta^{\prime} \rightarrow B$ be the chart for a face in B, i.e. an isometric embedding so that $\theta_{B} \circ \sigma=\left.i d\right|_{\Delta^{\prime}}$.

Sublemma 3.4.1 $\sigma\left(\operatorname{Int} \Delta^{\prime}\right)$ is an open subset of $\theta_{B}^{-1}\left(\Delta^{\prime}\right)$.
Proof. Let x be a point in $\sigma\left(\operatorname{Int} \Delta^{\prime}\right)$ and assume that there exists a sequence $\left(x_{n}\right)$ in $\theta_{B}^{-1}\left(\Delta^{\prime} \backslash\right.$ $\sigma\left(\operatorname{Int}\left(\Delta^{\prime}\right)\right)$ which converges to x. There are points $x_{n}^{\prime} \in \operatorname{Im}(\sigma)$ with $\theta_{B}\left(x_{n}^{\prime}\right)=\theta_{B}\left(x_{n}\right)$ Since θ_{B} has Lipschitz constant 1 and σ is distance-preserving, we have

$$
d_{B}\left(x_{n}, x\right) \geq d_{\Delta_{\text {mod }}}\left(\theta_{B}\left(x_{n}\right), \theta_{B}(x)\right)=d_{B}\left(x_{n}^{\prime}, x\right)
$$

and by the triangle inequality

$$
2 \cdot \underbrace{d_{B}\left(x_{n}, x\right)}_{\rightarrow 0} \geq d_{B}\left(x_{n}^{\prime}, x_{n}\right) \geq D^{+}\left(\theta_{B}\left(x_{n}\right)\right)
$$

[^5]Since D^{+}is continuous on $\operatorname{Int} \Delta^{\prime}$, the right-hand side has a positive limit:

$$
\lim _{n \rightarrow \infty} D^{+}\left(\theta_{B}\left(x_{n}\right)\right)=D^{+}\left(\theta_{B}(x)\right)>0
$$

a contradiction.
Lemma 3.4.2 Any two faces of with a common interior point coincide. Consequently, the intersection of faces in B is a face in B.

Proof. To verify the first assertion, consider two face charts $\sigma_{1}, \sigma_{2}: \Delta^{\prime} \rightarrow B$ of the same type. By Sublemma 3.4.1, $\left\{\delta \in \Delta^{\prime} \mid \sigma_{1}(\delta)=\sigma_{2}(\delta)\right\} \cap \operatorname{Int} \Delta^{\prime}$ is an open subset of Int Δ^{\prime}. It is also closed, and hence empty or all of Int Δ^{\prime} if Δ^{\prime} is connected. If Δ^{\prime} is disconnected, it must be the maximal sphere factor of $\Delta_{m o d}$ and all apartment charts agree on Δ^{\prime}. Hence $\left.\sigma_{1}\right|_{\Delta^{\prime}}=\left.\sigma_{2}\right|_{\Delta^{\prime}}$ also in this case.

The intersections of two faces is a union of faces by the above; since it is convex, it is a face.
As a consequence, the collection of finite unions of faces of B is a lattice under the binary operations of union and intersection; we will denote this lattice by $\mathcal{K} B$. In the case that the Weyl group acts without fixed point, the chambers of B are simplices, and $\mathcal{K} B$ is the lattice of finite subcomplexes of a simplicial complex. In general the polyhedron of this simplicial complex is not homeomorphic to B since it has the weak topology.

3.5 Recognizing spherical buildings

The following proposition gives an easily verified criterion for the existence of a spherical building structure on a CAT(1)-space.

Proposition 3.5.1 Let (S, W) be a spherical Coxeter complex, and let B be a CAT(1)-space of diameter π equipped with a 1-Lipschitz anisotropy map θ_{B} as in (16) satisfying the discreteness condition (17). Suppose moreover that each point and each pair of antipodal regular points is contained in a subset isometric to S. Then there is a unique atlas \mathcal{A} of charts $\iota: S \longrightarrow B$ forming a spherical building structure on B modelled on (S, W), with associated anisotropy map θ_{B}.

Proof. The discreteness condition (17) implies that, for any face Δ^{\prime} of $\Delta_{m o d}$, the restriction of θ_{B} to $\theta_{B}^{-1}\left(\right.$ Int $\left.\Delta^{\prime}\right)$ is locally distance preserving and distance preserving on minimizing geodesic segments contained in $\theta_{B}^{-1}\left(\operatorname{Int} \Delta^{\prime}\right)$. Therefore, if $A \subset B$ is a subset isometric to S, the restriction of θ_{B} to $A^{\text {reg }}:=A \cap \theta_{B}^{-1}\left(\right.$ Int $\left.\Delta_{\text {mod }}\right)$ is locally isometric and the components of $A^{\text {reg }}$ are open convex polyhedra which project via θ_{B} isometrically onto $\operatorname{Int} \Delta_{\text {mod }}$. (17) implies moreover that $A^{\text {reg }}$ is dense in A. Hence A is tesselated by isometric copies of $\Delta_{m o d}$ and there is an isometry ι_{A} with $\theta_{B} \circ \iota_{A}=\theta_{S}$ which is unique up to precomposition with elements in W. If A_{1} and A_{2} are subsets isometric to S, and $\iota_{A_{1}}, \iota_{A_{2}}: S \longrightarrow B$ are isometries as above then $A_{1} \cap A_{2}$ is convex, and we see that $\iota_{A_{1}}$ and $\iota_{A_{2}}$ are W-compatible. We now refer to the isometries $\iota_{A}: S \longrightarrow B$ as charts and to their images as apartments. The collection \mathcal{A} of all charts will be the atlas for our spherical building structure.

Since any point lies in some apartment, it lies in particular in a face, i.e. in the image of an isometric embedding $\sigma: \Delta^{\prime} \rightarrow B$ of a face $\Delta^{\prime} \subseteq \Delta_{m o d}$ satisfying $\theta_{B} \circ \sigma=\left.i d\right|_{\Delta^{\prime}}$. Lemma 3.4.2 applies and the faces fit together to form a polyhedral structure on B. The apartments are subcomplexes.

It remains to verify that any two points with distance less than π lie in a common apartment. It suffices to check this for any regular points x_{1}, x_{2}, since any point lies in a chamber and an apartment
containing an interior point of a chamber contains the whole chamber (lemma 3.4.2). There is an apartment A_{1} containing x_{1}. Consider a minimizing geodesic c joining x_{1} and x_{2}. By sublemma 3.4.1, A_{1} is a neighborhood of x_{1}. Hence near its endpoint x_{1}, c is a geodesic in the sphere A_{1}. Since B is a CAT(1)-space, we can extend c beyond x_{1} inside A_{1} to a minimizing geodesic \bar{c} of length π joining x_{2} through x_{1} to a point $\hat{x}_{2} \in A_{1}$. By our assumption, the points x_{2}, \hat{x}_{2} are contained in an apartment $A_{2} . A_{2}$ contains all minimizing geodesics connecting x_{2} and \hat{x}_{2}, because x_{2} is regular. In particular \bar{c} and therefore both points x_{1}, x_{2} lie in A_{2}.

From the proof of proposition 3.5.1 we have:
Corollary 3.5.2 Let B be a spherical building of dimension d, and let $T \subseteq B$ be a subset isometric to the Euclidean unit sphere of dimension d. Then T is an apartment in B.

3.6 Local conicality, projectivity classes and spherical building structure on the spaces of directions

Suppose that the spherical building B has dimension at least 1 .
Lemma 3.6.1 Let $\left(B, \theta_{B}\right)$ be a spherical building modelled on $\Delta_{\text {mod }}$, and let $p, \hat{p} \in B$ be antipodal points, i.e. $d(p, \hat{p})=\pi$. Then the union of the geodesic segments of length π from p to \hat{p} is a metric suspension which contains a neighborhood of $\{p, \hat{p}\}$.

Proof. By the discussion in section 2.2.1, the union of the geodesic segment of length π from p to \hat{p} is a metric suspension. By (17) we can choose $\rho>0$ such that $\left\{q \in B_{2 \rho}(p) \mid \theta_{B}(q)=\theta_{B}(p)\right\}=\{p\}$, $\left\{q \in B_{2 \rho}(\hat{p}) \mid \theta_{B}(q)=\theta_{B}(\hat{p})\right\}=\{\hat{p}\}$. If $q \in B_{\rho}(\hat{p})$, then any extension of $\overline{p q}$ to a segment $\overline{p q r}$ of length π will satisfy $\theta(r)=\theta(\hat{p})$, forcing $r=\hat{p}$ by the choice of ρ. Likewise, if we extend $\overline{\hat{p} q}$ to a segment of length π, where $q \in B_{\rho}(p)$, then it will terminate at p. Hence the lemma.

As a consequence, for sufficiently small positive ϵ, the ball $B_{\epsilon}(p)$ is canonically isometric to a truncated spherical cone of height ϵ over $\Sigma_{p} B$, the isometry given by the "logarithm map" at p. In particular, $\Sigma_{p}^{*} B=\Sigma_{p} B$. Any face intersecting $B_{\epsilon}(p)$ contains p and the face σ_{p} spanned by p.

The lemma implies furthermore that for any pair of antipodes $p, \hat{p} \in B$ there is a canonical isometry

$$
\begin{equation*}
\operatorname{persp}_{p, \hat{p}}: \Sigma_{p} B \rightarrow \Sigma_{\hat{p}} B \tag{21}
\end{equation*}
$$

determined by the property that all geodesics c of length π joining p and \hat{p} satisfy persp $p_{p, \hat{p}}\left(\Sigma_{p} c\right)=$ $\Sigma_{\hat{p}} c$.

Two points in B are antipodal iff they have distance π. Two faces σ_{1} and σ_{2} are antipodal or opposite if there are antipodal points ξ_{1} and ξ_{2} so that ξ_{i} lies in the interior of σ_{i}; in this case each point in σ_{1} has a unique antipode in σ_{2}.

Definition 3.6.2 The relation of being antipodal generates an equivalence relation and we call the equivalence classes projectivity classes.

Lemma 3.6.3 Suppose that the spherical building B is thick. Then every projectivity class intersects every chamber.

Proof. Let C_{1} and C_{2} be adjacent chambers, i.e. $\pi=C_{1} \cap C_{2}$ is a panel. It suffices to show that for each point in C_{1}, C_{2} contains a point in the same projectivity class. To see this, pick an apartment $A \supseteq C_{1} \cup C_{2}$ and let $\hat{\pi}$ be the panel in A opposite to $\pi(\hat{\pi}=\pi$ is possible). Since B is thick there is a chamber C with $C \cap A=\hat{\pi}$. C is opposite to both C_{1} and C_{2} and our claim follows.

Pick $p_{0} \in S$ so that $\theta_{S}\left(p_{0}\right)=\theta_{B}(p)$. Now consider the collection of all apartment charts $\iota_{A}: S \longrightarrow B$ where $\iota_{A}\left(p_{0}\right)=p$. These induce isometric embeddings $\Sigma_{p_{0}} \iota_{A}: \Sigma_{p_{0}} S \longrightarrow \Sigma_{p} B$. Let $W_{p_{0}} \subseteq \operatorname{Isom}\left(\Sigma_{p_{0}} S\right)$ be the finite group generated by the reflections in walls passing through p_{0}.

Proposition 3.6.4 $\Sigma_{p} B$ together with the collection of embeddings $\Sigma_{p_{0}} \iota_{A}: \Sigma_{p_{0}} S \longrightarrow \Sigma_{p} B$ as above is a spherical building modelled on $\left(\Sigma_{p_{0}} S, W_{p}\right)$. If $\hat{p} \in B$ is an antipode of B, then we have a 1-1 correspondence between apartments (respectively half-apartments) in B containing $\{p, \hat{p}\}$ and apartments (respectively half-apartments) in $\Sigma_{p} B . \Sigma_{p} B$ is thick provided B is thick.

Proof. Any two points $\overrightarrow{p q_{1}}, \overrightarrow{p q_{2}} \in \Sigma_{p} B$ lie in an apartment; namely choose q_{1}, q_{2} close to p, then any apartment A containing q_{1}, q_{2} will contain p and $\overrightarrow{p q}_{i} \in \Sigma_{p} A$. So SB1 holds. $\Sigma_{p} B$ satisfies SB2 since we are only using charts $\iota_{A}: S \longrightarrow B$ with $\iota_{A}\left(p_{0}\right)=p$ and B itself satisfies SB2. The remaining assertions follow immediately from the definition of the spherical building structure on $\Sigma_{p} B$.

3.7 Reducing to a thick building structure

A reduction of the spherical building structure on B consists of a reflection subgroup $W^{\prime} \subset W$ and a subset $\mathcal{A}^{\prime} \subset \mathcal{A}$ which defines a spherical building structure modelled on $\left(S, W^{\prime}\right)$. The $\Delta_{\text {mod }}$-direction map θ_{B} can then be factored as $\pi \circ \theta_{B}^{\prime}$ where

$$
\theta_{B}^{\prime}: B \longrightarrow W^{\prime} \backslash S=: \Delta_{\text {mod }}^{\prime}
$$

is the $\Delta_{m o d}^{\prime}$-direction map for the building modelled on $\left(S, W^{\prime}\right)$, and $\pi: W^{\prime} \backslash S=\Delta_{m o d}^{\prime} \longrightarrow \Delta_{m o d}=$ $W \backslash S$ is the canonical surjection.

Proposition 3.7.1 Let B be a spherical building modelled on the spherical Coxeter complex (S, W), with anisotropy polyhedron $\Delta_{\text {mod }}=W \backslash S$. Then there exists a reduction $\left(W, \mathcal{A}^{\prime}\right)$ which is a thick building structure on $B . W^{\prime}$ is unique up to conjugacy in $W ; \mathcal{A}^{\prime}$ is determined by W^{\prime}. In particular, the thick reduction is unique up to equivalence, so the polyhedral structure is defined by the CAT(1) space itself.

The proof will occupy the remainder of this paper.
We set $d=\operatorname{dim}(B), R_{B}=\left\{p \in B \mid \Sigma_{p} B\right.$ is isometric to a standard $\left.S^{d-1}\right\}$, and $S_{B}=B \backslash R_{B}$. If $p \in B$ and $\rho>0$ is small enough that $B_{\rho}(p)$ is a (spherical) conical neighborhood of p, then $S_{B} \cap B_{\rho}(p) \backslash\{p\}$ corresponds to the cone over $S_{\Sigma_{p} B}$. It then follows by induction on $\operatorname{dim}(B)$ that $S_{B} \cap A$ is a union of $\Delta_{\text {mod }}$-walls for each apartment $A \subset B$.

Consider an apartment $A \subset B$, and a pair of walls $H_{1}, H_{2} \subset A$ contained in S_{B}.
Lemma 3.7.2 If H_{2}^{\prime} is the image of H_{2} under reflection in the wall H_{1} (inside the apartment A), then H_{2}^{\prime} is contained in S_{B}.

Proof. To see this, consider an interior point p of a codimension 2 face σ of $H_{1} \cap H_{2} . \Sigma_{p} B$ decomposes as a metric join $\Sigma_{p} \sigma \circ B_{p}$ where B_{p} is a 1-dimensional spherical building, and the walls H_{1}, H_{2}, and H_{2}^{\prime} correspond to walls \bar{H}_{1}, \bar{H}_{2}, and \bar{H}_{2}^{\prime} in $B_{p} ; A$ corresponds to an apartment \bar{A} in B_{p}. The wall \bar{H}_{1} is just a pair of points in B_{p}, and this pair of points is joined by at least three differents semi-circles of length π. These three semi-circles can be glued in pairs to form three different apartments in B_{p}. Using the fact that an antipode of a point in $S_{B_{p}}$ also lies in $S_{B_{p}}$, it is clear that the image of \bar{H}_{2} under reflection in \bar{H}_{1} is also in $S_{B_{p}}$. Hence the wall $\Sigma_{p} H_{2}^{\prime} \subset \Sigma_{p} B$ is contained in three half-apartments, and proposition 3.6.4 then implies that H_{2}^{\prime} lies in three half-apartments.

The reflections in the walls in $A \cap S_{B}$ generate a group G_{A}, and by [Hum, p. 24] the only reflections in G_{A} are reflections in walls in $A \cap S_{B}$; also, the closures of connected components of $A \backslash S_{B}$ are fundamental domains for the action of G_{A} on A.

Sublemma 3.7.3 Let $U \subseteq B$ be a connected component of $B \backslash S_{B}$, and suppose $U \cap A \neq \emptyset$ for some apartment A. Then $U \subseteq A$.

Proof. $U \cap A$ is an open and closed subset of U, so $U \cap A=U$.
We claim that the isomorphism class of G_{A} is independent of A. To show this, it suffices to show that the isometry type of a chamber $\Delta_{m o d}^{A}$ is independent of A. For $i=1,2$ let A_{i} be an apartment, and let $\Delta_{m o d}^{A_{i}}$ be a chamber for $G_{A_{i}}$. If $A_{3} \subset B$ is an apartment containing an interior point from each $\Delta_{m o d}^{A_{i}}$, then the sublemma gives $\Delta_{m o d}^{A_{i}} \subset A_{3}$. But then the $\Delta_{\text {mod }}^{A_{i}}$ are both chambers for $G_{A_{3}}$, so they are isometric. Hence each pair $\left(A, G_{A}\right)$ is isomorphic to a fixed spherical Coxeter complex $\left(S, W^{t h}\right)$ for some reflection subgroup $W^{t h} \subseteq W$. We denote the quotient map and model polyhedron by

$$
\theta_{S}^{t h}: S \rightarrow S / W^{t h}=: \Delta_{m o d}^{t h}
$$

We call the closure of components of $B \backslash S_{B}, \Delta_{m o d}^{t h}$-chambers. We can identify the $\Delta_{m o d}^{t h}$-chambers with $\Delta_{m o d}^{t h}$ in a consistent way by the following construction: Let $A_{0} \subseteq B$ be an apartment and $p_{0} \in A_{0} \cap R_{B}$ be a smooth point. We define the retraction $\rho: B \rightarrow A_{0}$ by assigning to each point p in the open ball $B_{\pi}\left(p_{0}\right)$ the unique point $\rho(p) \in A_{0}$ so for which the segments $\overline{p_{0} p}$ and $\overline{p_{0} \rho(p)}$ have same length and direction $\overrightarrow{p_{0} p}=p_{o} \rho(p)$ at $p_{0} . \rho$ extends continuously to the discrete set $B \backslash B_{\pi}\left(p_{0}\right)$ which maps to the antipode of p_{0} in A_{0}. If A is an apartment passing through p_{0} then $A \cap A_{0}$ contains the $\Delta_{m o d}^{t h}$-chamber spanned by p_{0} and $\left.\rho\right|_{A}: A \rightarrow A_{0}$ is an isometry which preserves the tesselations by chambers. Composing ρ with the quotient map $A_{0} \rightarrow A_{0} / G_{A_{0}}$ we obtain a 1-Lipschitz map

$$
\begin{equation*}
\theta_{B}^{t h}: B \rightarrow \Delta_{\text {mod }}^{t h} \tag{22}
\end{equation*}
$$

which restricts to an isometry on each chamber. Applying proposition 3.5.1 we see that B is a spherical building modelled on $\left(S, W^{t h}\right) . B$ is a thick building since we already verified in lemma 3.7.2 above that if $H \subset S_{B}$ is a wall, then it lies in at least three half-apartments.

Corollary 3.7.4 For $i=1,2$ let B_{i} be a thick spherical building modelled on $\left(S_{i}, W_{i}\right)$ with atlas \mathcal{A}_{i}. If $\phi: B_{1} \rightarrow B_{2}$ is an isometry then we may identify the spherical Coxeter complexes by an isometry $\alpha:\left(S_{1}, W_{1}\right) \rightarrow\left(S_{2}, W_{2}\right)$ so that ϕ becomes an isomorphism of spherical buildings.

3.8 Combinatorial and geometric equivalences

We recall (section 3.4) that for any building $B, \mathcal{K} B$ is the lattice of finite unions of faces of B.
Proposition 3.8.1 Let B_{1}, B_{2} be spherical buildings of equal dimension. Then any lattice isomorphism $\mathcal{K} B_{1} \rightarrow \mathcal{K} B_{2}$ is induced by an isometry $B_{1} \rightarrow B_{2}$ of CAT(1) spaces. This isometry is unique if the buildings B_{i} do not have a spherical deRham factor.

Proof. First recall that lattice isomorphisms preserve the partial ordering by inclusion since $C_{1} \subset$ $C_{2} \Longleftrightarrow C_{1} \cup C_{2}=C_{2}$.

We first assume that the buildings B_{i} have no deRham factor and hence the $\mathcal{K} B_{i}$ come from simplicial complexes. In this case the lattice isomorphism $\mathcal{K} B_{1} \longrightarrow \mathcal{K} B_{2}$ carries k-dimensional faces of B_{1} to k-dimensional faces of B_{2}. To see this, note that vertices of B_{i} are the minimal elements of the lattice $\mathcal{K} B_{i}$ and k-simplices are characterized (inductively) as precisely those subcomplexes which contain $k+1$ vertices and are not contained in the union of lower dimensional simplices.

Consider a codimension-2 face σ of a chamber C in B_{i}. For an interior point $s \in \sigma, \Sigma_{s} B_{i}$ is isometric to the metric join $\Sigma_{s} \sigma \circ B_{i}^{\sigma}$ where B_{i}^{σ} is a 1-dimensional spherical building. The dihedral angle of C along σ equals the length of a chamber in the 1-dimensional building B_{i}^{σ}.

Sublemma 3.8.2 The chamber length of a 1-dimensional spherical building is determined combinatorially as $2 \pi / l$ where l is the combinatorial length of a minimal circuit.

Proof. Combinatorial paths in a 1-dimensional spherical building determine geodesics. Closed geodesics in a CAT(1) space have length at least 2π since points at distance $<\pi$ are joined by a unique geodesic segment. The closed paths of length 2π are the apartments.
Proof of proposition 3.8 .1 cont. As a consequence of the sublemma, the lattice isomorphism $\mathcal{K} B_{1} \rightarrow$ $\mathcal{K} B_{2}$ induces a correspondence between chambers which preserves dihedral angles. Since the dihedral angles determine the isometry type of a spherical simplex [GrBe][theorem 5.1.2], there is a unique map of CAT(1)-spaces $B_{1} \rightarrow B_{2}$ which is isometric on chambers and induces the given combinatorial isomorphism. Since the metric on each B_{i} is characterized as the largest metric for which the chamber inclusions are 1-Lipschitz maps, we conclude that our map $B_{1} \rightarrow B_{2}$ is an isometry. In the general case, the buildings B_{i} may have a spherical deRham factor S_{i} and split as $B_{i}=S_{i} \circ B_{i}^{\prime}$. The lattices $\mathcal{K} B_{i}$ and $\mathcal{K} B_{i}^{\prime}$ are isomorphic: to a subcomplex C_{i}^{\prime} of $\mathcal{K} B_{i}^{\prime}$ corresponds the subcomplex $S_{i} \circ C_{i}^{\prime}$ of $\mathcal{K} B_{i}$. The lattice isomorphism $\mathcal{K} B_{1}^{\prime} \cong \mathcal{K} B_{1} \rightarrow \mathcal{K} B_{2} \cong \mathcal{K} B_{2}^{\prime}$ is induced by a unique isometry $B_{1}^{\prime} \rightarrow B_{2}^{\prime}$ by the discussion above. It follows that $\operatorname{Dim}_{1}^{\prime}=\operatorname{DimB}_{2}^{\prime}$ and $\operatorname{Dim} S_{1}=\operatorname{Dim} S_{2}$. Any isometry $S_{1} \rightarrow S_{2}$ gives rise to an isometry $B_{1} \rightarrow B_{2}$ which induces the isomorphism $\mathcal{K} B_{1} \rightarrow \mathcal{K} B_{2}$.

3.9 Geodesics, spheres, convex spherical subsets

We call a subset of a CAT(1)-space convex if with every pair of points with distance less than π it contains the minimal geodesic segment joining them. The following generalises corollary 3.5.2.

Proposition 3.9.1 Let $C \subset B$ a convex subset which is isometric to a convex subset of a unit sphere. Then C is contained in an apartment.

Proof. We proceed by induction on the dimension of B. The claim is trivial if $\operatorname{dim}(B)=0$. We assume therefore that $\operatorname{dim}(B)>0$ and that our claim holds for buildings of smaller dimension than B.

Let A be an apartment so that the number of open faces in A which have non-empty intersection with C is maximal. Suppose $C \nsubseteq A$. Let $p \in C \cap A$ and $q \in C \backslash A$ be points with $\overrightarrow{p q} \notin \Sigma_{p} A$. Denote by V the union of all minimizing geodesics in A which connect p to its antipode \hat{p} and intersect $C-\{p, \hat{p}\}$. V is a convex subset of A and canonically isometric to the suspension of $\Sigma_{p}(C \cap A)=\Sigma_{p} C \cap \Sigma_{p} A$. By induction assumption, there is an apartment A^{\prime} through p such that $\Sigma_{p} C \subseteq \Sigma_{p} A^{\prime}$. A^{\prime} can be chosen to contain \hat{p}. Then $C \cap A \subseteq V \subseteq A^{\prime}$ and $\overrightarrow{p q} \in \Sigma_{p} A^{\prime}$. Hence the number of open sectors in A^{\prime} intersecting C is strictly bigger than the number of such sectors in A, a contradiction. Therefore $C \subseteq A$.

Corollary 3.9.2 Any minimizing geodesic in a spherical building B is contained in an apartment. Any isometrically embedded unit sphere $K \subseteq B$ is contained in an apartment. In particular $\operatorname{dim}(K) \leq \operatorname{rank}(B)-1$.

3.10 Convex sets and subbuildings

A subbuilding is a subset $B^{\prime} \subseteq B$ so that $\left\{\iota \in \mathcal{A} \mid \iota(S) \subseteq B^{\prime}\right\}$ forms an atlas for a spherical building structure; in particular B^{\prime} is closed and convex.

Lemma 3.10.1 Let $s \subset B$ be a subset isometric to a standard sphere. Then the union $B(s)$ of the apartments containing s is a subbuilding. There is a canonical reduction $\left(W^{\prime}, \mathcal{A}^{\prime}\right)$ of the spherical building structure on $B(s)$; its walls are precisely the W-walls of $B(s)$ which contain s. When equipped with this building structure, $B(s)$ decomposes as a join of s and another spherical building which we call $\operatorname{Link}(s)$. If $p \in s$ then $\log _{p}$ maps Link(s) isometrically to the join complement of $\Sigma_{p} s$ in $\Sigma_{p} B(s)$. Furthermore, if $p \in s$ lies in a W-face σ of maximal possible dimension, then there is a bijective correspondence between W-chambers containing σ, W^{\prime}-chambers of $B(s)$, chambers of $\operatorname{Link}(s)$, and W_{p}-chambers in $\Sigma_{p} B$.

Proof. Let ξ and $\hat{\xi}$ be interior points of faces in s with maximal dimension. Then $B(s)$ is the union of all geodesic segments of length π from ξ to $\hat{\xi}$. Proposition 3.6.4 implies that every pair of points in $B(s)$ is containined in an apartment $A \subset B(s)$.

Pick $\iota_{0} \in \mathcal{A}$ with $s \subseteq \iota_{0}(S)$, and set $\mathcal{A}^{\prime}=\left\{\iota \in \mathcal{A}|\iota|_{s_{0}}=\left.\iota_{0}\right|_{s_{0}}\right\}$. Let $W^{\prime} \subseteq W$ be the subgroup generated by reflections fixing s_{0} pointwise. According to lemma 3.1.1, the coordinate changes for the charts in \mathcal{A}^{\prime} are restrictions of elements of W^{\prime}. Therefore \mathcal{A}^{\prime} is an atlas for a spherical building structure on $B(s)$ modelled on $\left(S, W^{\prime}\right)$.

Since $s_{0} \subseteq S$ is a join factor of the spherical Coxeter complex $\left(S, W^{\prime}\right), B(s)$ decomposes as a join of spherical buildings $B(s)=s \circ \operatorname{Link}(s)$ by section 3.3. Any two points in $\operatorname{Link}(s)$ lie in an apartment $s \subseteq A \subset B(s)$, so $\log _{p} \operatorname{maps} \operatorname{Link}(s)$ isometrically to the join complement of $\Sigma_{p} s$ in $\Sigma_{p} B(s)$. The remaining statements follow.

The building $B(s)$ splits as a spherical join of the singular sphere s and a spherical building which we denote by $\operatorname{Link}(s)$:

$$
B(s)=s \circ \operatorname{Link}(s)
$$

Lemma 3.10.2 If $\xi \in B$ and η lies in the apartment $A \subseteq B$, then there is a $\hat{\xi} \in A$ with $\pi=$ $d(\xi, \hat{\xi})=d(\xi, \eta)+d(\eta, \hat{\xi})$. If $d(\xi, \eta) \geq \frac{\pi}{2}$ then ξ has an antipode in every top-dimensional hemisphere $H \subset A$.

Proof. When $\operatorname{Dim} B=0$ the lemma is immediate. If $d(\xi, \eta)<\pi$ then by induction $\overrightarrow{\eta \xi} \in \Sigma_{\eta} B$ has an antipode in $\Sigma_{\eta} A$. Therefore we may extend $\overline{\xi \eta}$ to a geodesic segment $\overline{\xi \eta \hat{\xi}}$ with $\overline{\eta \hat{\xi}} \subset A$ of length π. The second statement follows by letting η be the pole of the hemisphere.

Proposition 3.10.3 Let C be a convex subset in the spherical building B. If C contains an apartment then C is a subbuilding of full rank.

Proof. By the lemma, any point $\xi \in C$ has an antipode $\hat{\xi}$ in C. By lemma 3.6.1, the union $C_{\xi, \hat{\xi}}$ of all minimizing geodesics from ξ to $\hat{\xi}$ which intersect $C-\{\xi, \hat{\xi}\}$ is a neighborhood of ξ in C. In particular, for sufficiently small $\epsilon>0, C \cap B_{\epsilon}(\xi)$ is a cone over $\Sigma_{\xi} C$. Since $\hat{\xi}$ can be chosen to lie in an apartment $A_{0} \subseteq C$ by our assumption, and since the apartment $\Sigma_{\hat{\xi}} A_{0}$ in $\Sigma_{\hat{\xi}} C$ corresponds to an apartment in $C_{\xi, \hat{\xi}}$, we see that C is a union of apartments. It remains to check that any two points $\xi, \eta \in C$ lie in an apartment contained in C. Choose an apartment A with $\eta \in A \subseteq C$. For $\overrightarrow{\eta \xi} \in \Sigma_{\eta} C$ there exists an antipodal direction in $\Sigma_{\eta} A$ and we can extend $\overline{\xi \eta}$ into A to a geodesic $\overline{\xi \eta \hat{\xi}}$ of length π. To the apartment $\Sigma_{\hat{\xi}} A$ in $\Sigma_{\hat{\xi}} C$ corresponds an apartment $A^{\prime} \subseteq C_{\xi, \hat{\xi}}$ containing $\overline{\xi \eta \hat{\xi}}$.

3.11 Building morphisms

We call a map $\phi: B \rightarrow B^{\prime}$ between buildings of equal dimension a building morphism if it is isometric on chambers. Later, when looking at Euclidean buildings, we will encounter natural examples of building morphisms, namely the canonical maps from the Tits boundary to the spaces of directions.

A building morphism ϕ has Lipschitz constant 1. ϕ maps sufficiently short segments emanating from a point p isometrically to geodesic segments. Therefore it induces well-defined maps

$$
\begin{equation*}
\Sigma_{p} \phi: \Sigma_{p} B \rightarrow \Sigma_{\phi(p)} B^{\prime} \tag{23}
\end{equation*}
$$

Since the chambers in B containing p correspond to the chambers in $\Sigma_{p} B$ (with respect to its natural induced building structure, cf. Proposition 3.6.4), and similarly for B^{\prime}, the maps (23) are building morphisms, as well. We call the morphism ϕ spreading if there is an apartment $A_{0} \subseteq B$ so that $\left.\phi\right|_{A_{0}}$ is an isometry.
Lemma 3.11.1 Let $\phi: B \rightarrow B^{\prime}$ be a spreading building morphism. Then, if $\xi_{1}, \xi_{2} \in B$ are points with $\phi\left(\xi_{1}\right)=\phi\left(\xi_{2}\right)=: \xi^{\prime}$, the images of $\Sigma_{\xi_{1}} \phi$ and $\Sigma_{\xi_{2}} \phi$ in $\Sigma_{\xi^{\prime}} B^{\prime}$ coincide.

Proof. If ϕ is spreading then each point $\xi^{\prime} \in \phi(B)$ has an antipode $\hat{\xi}^{\prime} \in \phi(B)$. Any points $\xi \in \phi^{-1}\left(\xi^{\prime}\right)$ and $\hat{\xi} \in \phi^{-1}\left(\hat{\xi}^{\prime}\right)$ are antipodes and minimizing geodesics connecting ξ and $\hat{\xi}$ are mapped isometrically to geodesics connecting ξ^{\prime} and $\hat{\xi}^{\prime}$, i.e. $\left.\phi\right|_{B(\xi, \hat{\xi})}: B(\xi, \hat{\xi}) \rightarrow B^{\prime}\left(\xi^{\prime}, \hat{\xi}^{\prime}\right)$ is the spherical suspension of the morphism $\Sigma_{\xi} \phi$. There are canonical isometries $\operatorname{persp} p_{\xi, \hat{\xi}}: \Sigma_{\xi} B \rightarrow \Sigma_{\hat{\xi}} B$ and $\operatorname{persp}_{\xi^{\prime}, \hat{\xi}^{\prime}}: \Sigma_{\xi^{\prime}} B^{\prime} \rightarrow$ $\Sigma_{\hat{\xi}^{\prime}} B^{\prime}$, cf. 3.6.1, and we have:

$$
\begin{equation*}
\Sigma_{\hat{\xi}} \phi \circ \operatorname{persp}_{\xi, \hat{\xi}}=\operatorname{persp}_{\xi^{\prime}, \hat{\xi}^{\prime}} \circ \Sigma_{\xi} \phi \tag{24}
\end{equation*}
$$

The assertion follows.

Lemma 3.11.2 Let $\phi: B \rightarrow B^{\prime}$ be a spreading building morphism. Suppose $\xi_{1} \in B, \xi_{2}^{\prime} \in B^{\prime}$ and set $\xi_{1}^{\prime}:=\phi \xi_{1}$.

Then there is an apartment $A \subseteq B$ containing ξ_{1} such that $\left.\phi\right|_{A}$ is an isometry and the apartment $A^{\prime}:=\phi A \subseteq B^{\prime}$ contains ξ_{2}^{\prime}.

Proof. Let us first assume that $\xi_{2}^{\prime} \in A_{2}^{\prime}=\phi A_{2}$ where A_{2} is an apartment in B such that $\left.\phi\right|_{A_{2}}$ is an isometry. Then there is a geodesic segment $\overline{\xi_{1}^{\prime} \xi_{2}^{\prime} \hat{\xi}_{1}^{\prime}}$ of length π such that $\overline{\xi_{2}^{\prime} \hat{\xi}_{1}^{\prime}} \subset A_{2}^{\prime}$ (lemma 3.10.2). Let $\hat{\xi}_{1} \in A_{2}$ be the lift of $\hat{\xi}_{1}^{\prime}$. By proposition 3.6.4, the subbuilding $B\left(\xi_{1}, \hat{\xi}_{1}\right)$ contains an apartment A with $\Sigma_{\hat{\xi}_{1}} A=\Sigma_{\hat{\xi}_{1}} A_{2} .\left.\phi\right|_{A}$ is an isometry, because it is an isometry near $\hat{\xi}_{1}$. By construction, $\xi_{2}^{\prime} \in \phi A$.

The above argument implies that, since ϕ is spreading by assumption, that each point $\xi_{1} \in B$ lies in an apartment A_{1} so that $\left.\phi\right|_{A_{1}}$ is an isometry. Therefore the assumption in the beginning of the proof is always satisfied and the proof is complete.

Corollary 3.11.3 Let ϕ be as in lemma 3.11.2. Then:

1. $\phi(B)$ is a subbuilding in B^{\prime}.
2. The induced morphisms $\Sigma_{\xi} \phi$ are spreading.
3. For all $\xi_{1} \in B, \xi_{2}^{\prime} \in \phi(B)$ exists $\xi_{2} \in \phi^{-1} \xi_{2}^{\prime}$ such that

$$
\begin{equation*}
d_{B}\left(\xi_{1}, \xi_{2}\right)=d_{B^{\prime}}\left(\phi \xi_{1}, \xi_{2}^{\prime}\right) \tag{25}
\end{equation*}
$$

4. If ξ_{2} satisfies (25) then there exists an apartment $A \subseteq B$ containing ξ_{1}, ξ_{2} such that $\left.\phi\right|_{A}$ is an isometry.

Proof. The first three assertions follow immediately from the lemma. We prove the fourth assertion:
By 1. we find a geodesic segment $\overline{\xi_{1}^{\prime} \xi_{2}^{\prime} \hat{\xi}_{1}^{\prime}}$ of length π contained in $\phi(B)$. By 3. there exists a lift $\hat{\xi}_{1}$ of $\hat{\xi}_{1}^{\prime}$ such that $d_{B}\left(\xi_{2}, \hat{\xi}_{1}\right)=d_{B^{\prime}}\left(\xi_{2}^{\prime}, \hat{\xi}_{1}^{\prime}\right)$. Applying the previous lemma to the morphism $\Sigma_{\xi_{1}} \phi$, which is spreading by 2 ., we find an apartment $A \subseteq B\left(\xi_{1}, \hat{\xi}_{1}\right)$ containing the geodesic segment $\xi_{1} \xi_{2} \hat{\xi}_{1}$ and so that $\left.\Sigma_{\xi_{1}} \phi\right|_{\Sigma_{\xi_{1}} A}$, and therefore also $\left.\phi\right|_{A}$, is an isometry.
Proposition 3.11.4 Let B and B^{\prime} be spherical buildings modelled on $\Delta_{\text {mod }}$, and let $\phi: B \longrightarrow B^{\prime}$ be a surjective morphism of spherical buildings so that $\theta_{B}=\theta_{B^{\prime}} \circ \phi$. Suppose τ is a face of B and σ^{\prime} is a face of B^{\prime} contained in $\phi(B)$ so that $\phi \tau \subseteq \sigma^{\prime}$. Then there exists a face σ of B with $\tau \subseteq \sigma$ and $\phi \sigma=\sigma^{\prime}$.

Proof. Let ξ be an interior point of τ and let σ_{1} be a face of B with $\phi \sigma_{1}=\sigma^{\prime}$. σ_{1} contains (in its boundary) a point ξ_{1} with $\phi \xi_{1}=\phi \xi$, and by lemma 3.11.1 there exists a face σ containing ξ (and therefore τ) with $\phi \sigma=\phi \sigma_{1}=\sigma^{\prime}$.

Corollary 3.11.5 Let B, B^{\prime} and ϕ be as in proposition 3.11.4. If $h^{\prime} \subset B^{\prime}$ is a half-apartment with wall m^{\prime}, and $m \subset B$ lifts m^{\prime}, then there is a half-apartment $h \subset B$ containing m which lifts h^{\prime}.

Proof. Let $\tau^{\prime} \subset h^{\prime}$ be a chamber with a panel $\sigma^{\prime} \subset m^{\prime}$, and let $\sigma \subset m$ be the lift of σ^{\prime} in m. Applying proposition 3.11 .4 we get a chamber $\tau \subset B$ so that the half-apartment h spanned by $\tau \cup m$ lifts h^{\prime}.

3.12 Root groups and Moufang spherical buildings

A good reference for the material in this section is [Ron]
Definition 3.12.1 ([Ron, p. 66]) Let $\left(B, \Delta_{\text {mod }}\right)$ be a spherical building, and let $a \subset B$ be a root. The root group U_{a} of a is defined as the subgroup of $A u t\left(B, \Delta_{\text {mod }}\right)$ consisting of all automorphisms g which fix every chamber $C \subset B$ with the property that $C \cap a$ contains a panel $\pi \not \subset \partial a$.

We let $G_{B} \subset \operatorname{Aut}\left(B, \Delta_{\bmod }\right)$ be the subgroup generated by all the root groups of B.
Proposition 3.12.2 (Properties of root groups) Let B be a thick spherical building.

1. If U_{a} acts transitively on the apartments containing a for every root a contained in some apartment A_{0}, then the group generated by these root groups acts transitively on pairs (C, A) where C is a chamber in an apartment $A \subseteq B$.
2. Suppose $\left(B, \Delta_{m o d}\right)$ is irreducible and has dimension at least 1. Then the only root group element $g \in U_{a}$ which fixes an apartment containing a is the identity.

Lemma 3.12.3 Let A and A^{\prime} be apartments in the spherical building B. Then there exist apartments $A_{0}=A, A_{1}, \ldots, A_{k}=A^{\prime}$ so that $A_{i-1} \cap A_{i}$ is a half-apartment containing $A \cap A^{\prime}$ for all i.

Proof. Suppose that A and A^{\prime} are apartments which do not satisfy the conclusion of the lemma and so that the complex $A \cap A^{\prime}$ has the maximal possible number of faces. We derive a contradiction by constructing an apartment $A^{\prime \prime}$ whose intersection with A respectively A^{\prime} strictly contains $A \cap A^{\prime}$.

If $A \cap A^{\prime}$ is empty, we choose $A^{\prime \prime}$ to be any apartment which has non-empty intersection with both A and A^{\prime}. If $A \cap A^{\prime}$ is contained in a singular sphere s of $\operatorname{dimension} \operatorname{dim}\left(A \cap A^{\prime}\right)<\operatorname{dim}(B)$ we pick a chambers $\sigma \subset A$ and $\sigma^{\prime} \subset A^{\prime}$ with $\operatorname{dim}(\sigma \cap s)=\operatorname{dim}\left(\sigma^{\prime} \cap s\right)=\operatorname{dims}$. The subbuilding $B(s)$ contains an apartment $A^{\prime \prime}$ with $s \cup \sigma \cup \sigma^{\prime} \subset A^{\prime \prime}$ and $A^{\prime \prime}$ has the desired property. It remains to consider the case that $A \cap A^{\prime}$ contains chambers and is strictly contained in a half-apartment. Then there is a half-apartment $h \subset A$ containing $A \cap A^{\prime}$ and so that $\partial h \cap A \cap A^{\prime}$ contains a panel π. Let $\sigma^{\prime} \subset A^{\prime}$ be a chamber with $\sigma^{\prime} \cap A \cap A^{\prime}=\pi$. The convex hull $A^{\prime \prime}$ of $h \cup \sigma^{\prime}$ is an apartment with the desired property.
Proof of proposition: 1. Let G_{A} be the group generated by the root groups U_{a} where a runs through all roots contained in an apartment $A \subset B$. If $g \in U_{a}$ then $G_{A}=G_{g A}$ because $U_{g A}=g U_{a} g^{-1}$ for all roots $a \subset A$. By lemma 3.12.3, given any apartment A^{\prime} there is a sequence $A_{0}, \ldots, A_{k}=A^{\prime}$ such that $A_{i-1} \cap A_{i}$ is a root. Hence $G_{A_{0}}=G_{A_{1}}=\ldots=G_{A^{\prime}}$ and it follows that $G_{B}=G_{A^{\prime}}$ for all apartments A^{\prime}.

Let σ_{1} and σ_{2} be chambers in B which share a panel $\pi=\sigma_{1} \cap \sigma_{2}$. Since B is thick, there is a third chamber σ with $\sigma \cap \sigma_{i}=\pi$. Pick apartments A_{i} containing $\sigma \cup \sigma_{i}$. Applying lemma 3.12.3 again, we see that there is a $g \in G_{B}$ so that $g\left(A_{1}\right)=A_{2}$, and g fixes σ_{3}. Hence $g \sigma_{1}=\sigma_{2}$ and we conclude by induction that G_{B} acts transitively on chambers.

Let A_{1}, A_{2} be apartments and σ_{1}, σ_{2} be chambers such that $\sigma_{i} \subseteq A_{i}$. By the above argument, there exists $g \in G_{B}$ with $g \sigma_{1}=\sigma_{2}$. By lemma 3.12 .3 there is a $g^{\prime} \in G_{B}$ with $g^{\prime}\left(g A_{1}\right)=A_{2}$ and $g^{\prime} \sigma_{2}=\sigma_{2}$. Hence G_{B} acts transitively on pairs $C \subset A$ as claimed.
2. Since B is irreducible, there is a chamber σ contained in the interior of a (see lemma 3.3.2). Since the convex set $B^{\prime}=F i x(g)$ contains the apartment A it is a subbuilding by proposition 3.10.3. Moreover, B^{\prime} contains an open neighborhood of σ by the definition of U_{a}. Note that if π and π^{\prime} are
opposite panels in B^{\prime}, then B^{\prime} contains every chamber containing π iff it contains every chamber containing π^{\prime} (lemma 3.6.1). Since for each panel π there is a panel $\pi_{1} \subset \partial \sigma$ in the same projectivity class (see definition 3.6.2 and lemma 3.6.3) we see that B^{\prime} contains every chamber in B with a panel in B^{\prime}. When $\operatorname{Dim}(B)=\operatorname{Dim}\left(B^{\prime}\right)=1$ this implies that B^{\prime} is open in B, forcing $B^{\prime}=B$; in general we show by induction that $\forall p \in B^{\prime}$ we have $\Sigma_{p} B^{\prime}=\Sigma_{p} B$, which implies that $B^{\prime} \subset B$ is open and consequently $B^{\prime}=B$.

Definition 3.12.4 A spherical building $\left(B, \Delta_{\bmod }\right)$ is Moufang if for each root $a \subset B$ the root group U_{a} acts transitively on the apartments containing the root a. When B is irreducible and has rank at least 2, then by 2 above, U_{a} acts simply transitively on apartments containing a.

The spherical building associated with a reductive algebraic group ([Ti1, chapter 5] is Moufang. In particular, irreducible spherical buildings of dimension at least 2 are Moufang.

4 Euclidean buildings

There are many different ways to axiomatize Euclidean buildings. For us, the key geometric ingredient is an assignment of $\Delta_{\text {mod }}$-directions to geodesics segments in a Hadamard space. Just as with symmetric spaces, $\Delta_{\text {mod }}$-directions capture the anisotropy of the space, and they behave nicely with respect to geometric limiting operations such as ultralimits, Tits boundaries, and spaces of directions.

4.1 Definition of Euclidean buildings

4.1.1 Euclidean Coxeter complexes

Let E be a finite-dimensional Euclidean space. Its Tits boundary is a round sphere and there is a canonical homomorphism

$$
\begin{equation*}
\rho: \operatorname{Isom}(E) \rightarrow \operatorname{Isom}\left(\partial_{T i t s} E\right) \tag{26}
\end{equation*}
$$

which assigns to each affine isometry its rotational part. We call a subgroup $W_{a f f} \subset \operatorname{Isom}(E)$ an affine Weyl group if it is generated by reflections and if the reflection group $W:=\rho\left(W_{a f f}\right) \subset$ $\operatorname{Isom}\left(\partial_{T i t s} E\right)$ is finite. The pair $\left(E, W_{a f f}\right)$ is said to be a Euclidean Coxeter complex and

$$
\begin{equation*}
\partial_{T i t s}\left(E, W_{a f f}\right):=\left(\partial_{\text {Tits }} E, W\right) \tag{27}
\end{equation*}
$$

is called its spherical Coxeter complex at infinity. Its anisotropy polyhedron is the spherical polyhedron

$$
\Delta_{m o d}:=\left(\partial_{\text {Tits }} E\right) / W
$$

An oriented geodesic segment $\overline{x y}$ in a E determines a point in $\partial_{T i t s} E$ and we call its projection to $\Delta_{\text {mod }}$ the $\Delta_{\text {mod }}$ direction of $\overline{x y}$.

A wall is a hyperplane which occurs as the fixed point set of a reflection in $W_{a f f}$ and singular subspaces are defined as intersections of walls. A half-space bounded by a wall is called singular or a half-apartment. An intersection of half-apartments is a Weyl-polyhedron. Weyl cones with tip at a point p are complete cones with tip at p for which the boundary at infinity is a single face in $\partial_{\text {Tits }} E$.

Fix a point $p \in E$. By $W(p)$, we denote the subgroup of $W_{a f f}$ which is generated by reflections in the walls passing through p. $W(p)$ embeds via ρ as a subgroup of W. A Weyl sector with tip at
p is a Weyl polyhedron for the Euclidean Coxeter complex $(E, W(p))$; note that a Weyl sector need not be a Weyl cone, and a Weyl cone need not be a Weyl sector. A subsector of a sector σ is a sector $\sigma^{\prime} \subset \sigma$ with $\partial_{\text {Tits }} \sigma^{\prime}=\partial_{\text {Tits }} \sigma ; \sigma$ lies in a finite tubular neighborhood of σ^{\prime}. A Weyl chamber is a Weyl polyhedron for which the boundary at infinity is a $\Delta_{m o d}$ chamber; Weyl chambers are necessarily Weyl cones. The Coxeter group $W(p)$ acts on $\Sigma_{p} E$, so we have a Coxeter complex

$$
\Sigma_{p}\left(E, W_{a f f}\right):=\left(\Sigma_{p} E, W(p)\right)
$$

with anisotropy map by

$$
\theta_{p}: \Sigma_{p} E \longrightarrow \Sigma_{p} E / W(p)=: \Delta_{\bmod }(p) .
$$

The faces in $\left(\Sigma_{p} E, W(p)\right)$ correspond to the Weyl sectors of E with tip at p.
We call the Coxeter complex ($E, W_{a f f}$) irreducible iff its anisotropy polyhedron, or equivalently, its spherical Coxeter complex at infinity is irreducible. In this case, the action of W on the translation subgroup $T \triangleleft W_{a f f}$ forces T to be trivial, a lattice, or a dense subgroup. In the latter case we say that $W_{a f f}$ is topologically transitive.

4.1.2 The Euclidean building axioms

Let $\left(E, W_{a f f}\right)$ be a Euclidean Coxeter complex. A Euclidean building modelled on $\left(E, W_{a f f}\right)$ is a Hadamard space X endowed with the structure described in the following axioms.
EB1: Directions. To each nontrivial oriented segment $\overline{x y} \subset X$ is assigned a $\Delta_{\text {mod }}$-direction $\theta(\overline{x y}) \in \Delta_{\text {mod }}$. The difference in $\Delta_{\text {mod-directions of two segments emanating from the same point }}$ is less than their comparison angle, i.e.

$$
\begin{equation*}
d(\theta(\overline{x y}), \theta(\overline{x z})) \leq \tilde{Z}_{x}(y, z) \tag{28}
\end{equation*}
$$

Recall that given $\delta_{1}, \delta_{2} \in \Delta_{\text {mod }}, D\left(\delta_{1}, \delta_{2}\right)$ is the finite set of possible distances between points in the Weyl group orbits $\theta_{\partial_{T i t s} E}^{-1}\left(\delta_{1}\right)$ and $\theta_{\partial_{T i t s} E}^{-1}\left(\delta_{2}\right)$.
EB2: Angle rigidity. The angle between two geodesic segments $\overline{x y}$ and $\overline{x z}$ lies in the finite set $D(\theta(\overline{x y}), \theta(\overline{x z}))$.

We assume that there is given a collection \mathcal{A} of isometric embeddings $\iota: E \longrightarrow X$ which preserve $\Delta_{m o d}$-directions and which is closed under precomposition with isometries in $W_{a f f}$. These isometric embeddings are called charts, their images apartments, and A is called the atlas of the Euclidean building.
EB3: Plenty of apartments. Each segment, ray and geodesic is contained in an apartment.
The Euclidean coordinate chart ι_{A} for an apartment A is well-defined up to precomposition with an isometry $\alpha \in \rho^{-1}(W)$. Two charts $\iota_{A_{1}}, \iota_{A_{2}}$ for apartments A_{1}, A_{2} are said to be compatible if $\iota_{A_{1}}^{-1} \circ \iota_{A_{2}}$ is the restriction of an isometry in $W_{a f f}$. This holds automatically when $W_{a f f}=\rho^{-1}(W)$. EB4: Compatibility of apartments. The Euclidean coordinate charts for the apartments in X are compatible.
It will be a consequence of Corollary 4.6 .2 below that the atlas \mathcal{A} is maximal among collections of charts satisfying axioms EB3 and EB4.

We define walls, singular flats, half-apartments, Weyl cones, Weyl sectors, and Weyl polyhedra in the Euclidean building to be the images of the corresponding objects in the Euclidean Coxeter
complex under charts. The set of Weyl cones with tip at a point x will be denoted by \mathcal{W}_{x}. The rank of the Euclidean building X is defined to be the dimension of its apartments. X is thick if each wall bounds at least 3 half-apartments with disjoint interiors. We call X a Euclidean ruin if its underlying set or the atlas \mathcal{A} is empty.

4.1.3 Some immediate consequences of the axioms

Axiom EB1 implies the following compatibility properties for the $\Delta_{m o d}$-directions of geodesic segments.

Lemma 4.1.1 Let x, y, z be points in X.

1. If y lies on $\overline{x z}$, then $\theta(\overline{x z})=\theta(\overline{x y})=\theta(\overline{y z})$.
2. If $\overrightarrow{x y}, \overrightarrow{x z} \in \Sigma_{x} X$ coincide, then $\theta(\overline{x y})=\theta(\overline{x z})$.
3. Asymptotic geodesic rays in X have the same $\Delta_{\text {mod }}$-direction.

We call a segment, ray or geodesic in X regular if its $\Delta_{\text {mod }}$-direction is an interior point of $\Delta_{\text {mod }}$.
Lemma 4.1.2 1. If $p \in X$ and $x_{i} \in \bar{X}-p$, then the $\overline{p x_{i}}$ initially span a flat triangle if $\angle_{p}\left(x_{1}, x_{2}\right)>0$, and they initially coincide if $\angle_{p}\left(x_{1}, x_{2}\right)=0$.
2. If $p_{i} \in X$ and $\xi_{i} \in \partial_{\text {Tits }} X$, then the rays $p_{i} \xi_{i}$ are asymptotic to the edges of a flat sector

Proof. 1. After extending the segments $\overline{p x_{i}}$ to rays if necessary, we may assume without loss of generality that $x_{i} \in \partial_{\text {Tits }} X$. If $z \in \overline{p x_{1}}$, then $\theta\left(\overline{z x_{i}}\right)=\theta\left(x_{i}\right)$ so $\angle_{z}\left(x_{1}, x_{2}\right) \in D\left(\theta\left(x_{1}\right), \theta\left(x_{2}\right)\right)$ which is a finite set. But $\angle_{z}\left(x_{1}, x_{2}\right) \rightarrow \angle_{p}\left(x_{1}, x_{2}\right)$ monotonically as $z \rightarrow p$, which implies that $\angle_{z}\left(x_{1}, x_{2}\right)=\angle_{p}\left(x_{1}, x_{2}\right), \angle_{z}\left(p, x_{2}\right)=\pi-\angle_{p}\left(x_{1}, x_{2}\right)$ when z is sufficiently close to p. Therefore $\Delta\left(p, z, x_{2}\right)$ is a flat triangle (with a vertex at ∞) when z is sufficiently close to p.
2. follows from similar reasoning and the property (6) of the Tits distance.

4.2 Associated spherical building structures

4.2.1 The Tits boundary

The Tits boundary $\partial_{\text {Tits }} X$ is a $C A T(1)$-space, see 2.3.2. Lemma 4.1.1 implies that there is a welldefined $\Delta_{m o d}$-direction map

$$
\begin{equation*}
\theta_{\partial_{T i t s} X}: \partial_{\text {Tits }} X \longrightarrow \Delta_{\bmod } \tag{29}
\end{equation*}
$$

which is 1-Lipschitz by (28).
Proposition 4.2.1 $\partial_{\text {Tits }} X$ carries a spherical building structure modelled on the spherical Coxeter complex $\left(\partial_{\text {Tits }} E, W\right)$ with $\Delta_{\text {mod }}$-direction map (29).

Proof. We verify that the assumptions of proposition 3.5.1 are satisfied. Axiom EB2 implies that (29) satisfies the discreteness condition (17). If A is a Euclidean apartment in X then $\partial_{\text {Tits }} A$ is a standard sphere in $\partial_{\text {Tits }} X$. Clearly, any point $\xi \in \partial_{\text {Tits }} X$ lies in a standard sphere. It remains to check that any two points ξ_{1} and ξ_{2} in $\partial_{\text {Tits }} X$ with Tits distance π are ideal endpoints of a geodesic
in X. To see this, pick $p \in X$ and note that the angle $\angle_{z}\left(\xi_{1}, \xi_{2}\right)$ increases monotonically as z moves along the ray $\overline{p \xi_{1}}$ towards ξ_{1}. But by EB2 $\angle_{z}\left(\xi_{1}, \xi_{2}\right)$ assumes only finitely many values, so when z is sufficiently far out we have $L_{z}\left(\xi_{1}, \xi_{2}\right)=\angle_{\text {Tits }}\left(\xi_{1}, \xi_{2}\right)=\pi$, and the rays $\overline{z \xi_{i}}$ fit together to form a geodesic with ideal endpoints ξ_{1} and ξ_{2}.

4.2.2 The space of directions

The space of directions $\Sigma_{x} X$ is a $C A T(1)$-space (see section 2.1.3). Lemma 4.1.1 implies that there is a well-defined 1-Lipschitz map from the space of germs of segments in a point $x \in X$:

$$
\begin{equation*}
\theta_{\Sigma_{x} X}: \Sigma_{x}^{*} X \longrightarrow \Delta_{m o d} \tag{30}
\end{equation*}
$$

In this section we check that this map induces a spherical building structure on $\Sigma_{x} X$. By axiom EB2, $\theta=\theta_{\Sigma_{x} X}$ satisfies the discreteness condition (17).

Lemma 4.2.2 $\Sigma_{x}^{*} X$ is complete, so $\Sigma_{x}^{*} X=\Sigma_{x} X$.

Proof. Let $\left(x_{k}\right)$ be a sequence in $X-\{x\}$ such that $\left(x \vec{x}_{k}\right)$ is Cauchy in $\Sigma_{x}^{*} X$. Then $\theta\left(x \vec{x}_{k}\right)$ is Cauchy in $\Delta_{\text {mod }}$ and we denote its limit by δ. If $A_{k} \subset X$ is an apartment containing $\overline{x x_{k}}$ then $x \overrightarrow{x x}_{k} \in \Sigma_{x} A_{k} \subset$ $\Sigma_{x}^{*} X$ and $\Sigma_{x} A_{k}$ contains a spherical polyhedron σ_{k} such that $x \vec{x}_{k} \in \sigma_{k}$ and $\left.\theta\right|_{\sigma_{k}} ; \sigma_{k} \rightarrow \Delta_{\text {mod }}$ is an isometry. There is a unique $\xi_{k} \in \sigma_{k}$ with $\theta\left(\xi_{k}\right)=\delta$ and we have $d\left(\xi_{k}, x \vec{x}_{k}\right)=d_{\Delta_{\text {mod }}}\left(\delta, \theta\left(x \vec{x}_{k}\right)\right) \rightarrow 0$. Hence $\left(\xi_{k}\right)$ is Cauchy with $\theta\left(\xi_{k}\right) \equiv \delta$ and $\lim x \vec{x}_{k}=\lim \xi_{k}$ in $\Sigma_{x} X$. The discreteness condition (17) implies that $\left(\xi_{k}\right)$ is eventually constant and therefore $\left(x \vec{x}_{k}\right)$ has a limit in $\Sigma_{x}^{*} X$.

We now apply proposition 3.5 .1 to verify that $\Sigma_{x} X$ carries a natural structure as a spherical building modelled on $\left(\partial_{\text {Tits }} E, W\right)$. The only condition which remains to be checked is that antipodal points $\overrightarrow{x x}_{1}$ and $x \vec{x}_{2}$ in $\Sigma_{x} X$ lie in a subset isometric to $S=\partial_{\text {Tits }} E$. But $\angle_{x}\left(x_{1}, x_{2}\right)=\pi$ implies that $\overline{x_{1} x_{2}}=\overline{x x_{1}} \cup \overline{x x_{2}}$ and if $A \subset X$ is an apartment containing $\overline{x_{1} x_{2}}$ then $\Sigma_{x} A \subset \Sigma_{x} X$ is a spherical apartment containing $x \vec{x}_{1}$ and $x \overrightarrow{x x}_{2}$.

Lemma 4.2.3 All standard spheres in $\Sigma_{x} X$ are of the form $\Sigma_{x} A$ where A is an apartment in X passing through x.

Proof. By corollary 3.9.2, standard spheres are $\Delta_{\text {mod }}$-apartments, so we can find antipodal regular points $\xi_{1}, \xi_{2} \in \alpha$. Then there is a segment $\overline{x_{1} x_{2}}$ through x with $\overrightarrow{x x}_{i}=\xi_{i}$. If $A \subseteq X$ is an apartment containing $\overline{x_{1} x_{2}}$ then $\Sigma_{x} A \cap \alpha \supseteq\left\{\xi_{1}, \xi_{2}\right\}$ and the spherical apartments α and $\Sigma_{x} A$ coincide because they share a pair of regular antipodes (lemma 3.6.1).

There are two natural reductions of the Weyl group which we shall consider. First, according to section 3.7 there is a thick spherical building structure with atlas $\mathcal{A}^{\text {th }}(x)$ and anisotropy map

$$
\begin{equation*}
\theta_{x}^{t h}: \Sigma_{x} X \longrightarrow \Delta_{m o d}^{t h}(x) \tag{31}
\end{equation*}
$$

This structure is unique up to equivalence. The second reduction is analogous to the structure constructed in proposition 3.6.4. We postpone discussion of this structure until 4.4.1 because we don't have an analog of lemma 3.1.1 in the case of nondiscrete Euclidean Coxeter complexes.

4.3 Product(-decomposition)s

Let $X_{i}, i=1, \ldots, n$, be Euclidean buildings modelled on Coxeter complexes ($E_{i}, W_{a f f}^{i}$) with atlases \mathcal{A}_{i} and anisotropy polyhedra $\Delta_{\text {mod }}^{i}$. Then $W_{a f f}:=W_{a f f}^{1} \times \cdots \times W_{a f f}^{n}$ acts canonically as a reflection group on $E:=E_{1} \times \cdots \times E_{n}$. We call the Coxeter complex $\left(E, W_{a f f}\right)$ the product of the Coxeter complexes ($E_{i}, W_{a f f}^{i}$) and write

$$
\begin{equation*}
\left(E, W_{a f f}\right)=\left(E_{1}, W_{a f f}^{1}\right) \times \cdots \times\left(E_{n}, W_{a f f}^{n}\right) \tag{32}
\end{equation*}
$$

There are corresponding join decompositions

$$
\begin{equation*}
\left(\partial_{T i t s} E, W\right)=\left(\partial_{T i t s} E_{1}, W_{1}\right) \circ \cdots \circ\left(\partial_{\text {Tits }} E_{n}, W_{n}\right) \tag{33}
\end{equation*}
$$

of the spherical Coxeter complex at infinity and

$$
\begin{equation*}
\Delta_{m o d}=\Delta_{m o d}^{1} \circ \cdots \circ \Delta_{m o d}^{n} \tag{34}
\end{equation*}
$$

of the anisotropy polyhedron. The Hadamard space

$$
\begin{equation*}
X=X_{1} \times \cdots \times X_{n} \tag{35}
\end{equation*}
$$

carries a natural Euclidean building struture modelled on $\left(E, W_{a f f}\right)$. The charts for its atlas \mathcal{A} are the products $\iota=\iota_{1} \times \cdots \times \iota_{n}$ of charts $\iota_{i} \in \mathcal{A}_{i}$. We call X equipped with this building structure the Euclidean building product of the buildings X_{i}.

Proposition 4.3.1 Let X be a Euclidean building modelled on the Coxeter complex ($E, W_{a f f}$) with atlas \mathcal{A} and assume that there is a join decomposition (34) of its anisotropy polyhedron. Then

1. There is a decomposition (32) of $\left(E, W_{a f f}\right)$ as a product of Euclidean Coxeter complexes so that a segment $\overline{x y} \subset E$ is parallel to the factor E_{i} iff its $\Delta_{\text {mod }}$-direction $\theta(\overline{x y})$ lies in $\Delta_{\text {mod }}^{i}$.
2. There is a decomposition (35) of X as a product of Euclidean buildings so that a segment $\overline{x y} \subset E$ is parallel to the factor E_{i} iff its $\Delta_{\text {mod }}$-direction $\theta(\overline{x y})$ lies in $\Delta_{\text {mod }}^{i}$.

Proof. 1. Proposition 3.3.1 implies that the spherical Coxeter complex at infinity decomposes as a join

$$
\begin{equation*}
\left(\partial_{T i t s} E, W\right)=\left(S_{1}, W_{1}\right) \circ \cdots \circ\left(S_{n}, W_{n}\right) \tag{36}
\end{equation*}
$$

of spherical Coxeter complexes. By proposition 2.3.7, this decomposition is induced by a metric product decomposition $E=E_{1} \times \cdots \times E_{n}$ so that $\partial_{\text {Tits }} E_{i}$ is canonically identified with S_{i} and, hence, a segment $\overline{x y} \subset E$ is parallel to the factor E_{i} iff $\theta(\overline{x y}) \in \Delta_{m o d}^{i}$. (36) implies that $W_{a f f}$ decomposes as the product $W_{a f f}=W_{a f f}^{1} \times \cdots \times W_{a f f}^{n}$ of reflection groups $W_{a f f}^{i}$ acting on E_{i}, thus establishing the desired decomposition (32).
2. Arguing as in the proof of the first part, we obtain a metric decomposition (35) as a product of Hadamard spaces so that $\overline{x y} \subset X$ is parallel to the factor X_{i} iff $\theta(\overline{x y}) \in \Delta_{\text {mod }}^{i}$. Furthermore, the $\partial_{\text {Tits }} X_{i}$ carry spherical building structures modelled on $\left(\partial_{T i t s} E_{i}, W_{i}\right)$ so that the spherical building $\partial_{\text {Tits }} X$ decomposes as the spherical building join of the $\partial_{\text {Tits }} X_{i}$. Each chart $\iota: E \rightarrow X, \iota \in \mathcal{A}$, decomposes as a product of $\Delta_{m o d}^{i}$-direction preserving isometric embeddings $\iota_{i}: E_{i} \rightarrow X_{i}$. The
collection \mathcal{A}_{i} of all ι_{i} arising in this way forms an atlas for a Euclidean building structure on X_{i} and (35) becomes a decomposition as a product of Euclidean buildings.

We call a Euclidean building irreducible if its anisotropy polyhedron is irreducible, compare section 3.3. According to the previous proposition, the unique minimal join decomposition of the anisotropy polyhedron $\Delta_{\text {mod }}$ into irreducible factors corresponds to unique minimal product decompositions of the Euclidean Coxeter complex ($E, W_{a f f}$) and the Euclidean building X into irreducible factors. We call these decompositions the de Rham decompositions and the maximal Euclidean factors with trivial affine Weyl group the Euclidean de Rham factors.

4.4 The local behavior of Weyl-cones

In this section we study the set \mathcal{W}_{p} of Weyl cones with tip at p. The main result (corollary 4.4.3) is that in a sufficiently small neighborhood of p, a finite union of these cones is isometric to the metric cone over the corresponding finite union of $\Delta_{m o d}$ faces in $\Sigma_{p} X$. This proposition plays an important role in section 6.

Let W_{1} and W_{2} be Weyl cones in X with tip at p. The Weyl cone W_{i} determines a face $\Sigma_{p} W_{i}$ in the spherical building $\left(\Sigma_{p} X, \Delta_{m o d}\right)$.

Sublemma 4.4.1 Suppose that $\Sigma_{p} W_{1}=\Sigma_{p} W_{2}$ in $\Sigma_{p} X$. Then $W_{1} \cap W_{2}$ is a neighborhood of p in W_{1} and W_{2}.

Proof. According to lemma 4.1.2 each point in the face $\Sigma_{p} W_{1}=\Sigma_{p} W_{2}$ is the direction of a segment in $W_{1} \cap W_{2}$ which starts at p. We can pick finitely many points in $\Sigma_{p} W_{1}=\Sigma_{p} W_{2}$ whose convex hull is the whole face. The convex hull of the corresponding segments is contained in the convex set $W_{1} \cap W_{2}$ and is a neighborhood of p in W_{1} and W_{2}.

Locally the intersection of Weyl cones with tip at a point p is given by their infinitesimal intersection in the space of directions $\Sigma_{p} X$:

Lemma 4.4.2 If $W_{1}, W_{2} \in \mathcal{W}_{p}$, then there is a Weyl cone $W \in \mathcal{W}_{p}$ with $\Sigma_{p} W=\Sigma_{p} W_{1} \cap \Sigma_{p} W_{2}$. For every such W there is an $\epsilon>0$ so that:

$$
W_{1} \cap W_{2} \cap B_{\epsilon}(p)=W \cap B_{\epsilon}(p)
$$

Hence the intersection of Weyl cones with tip at the same point is locally a Weyl cone.

Proof. By lemma 3.4.2 the intersection $\Sigma_{p} W_{1} \cap \Sigma_{p} W_{2}$ is a $\Delta_{\text {mod }}$-face and hence there is a $W \in \mathcal{W}_{p}$ such that $\Sigma_{p} W=\Sigma_{p} W_{1} \cap \Sigma_{p} W_{2}$. By the previous sublemma, there are $W_{i}^{\prime} \in \mathcal{W}_{p}$ with $W_{i}^{\prime} \subseteq W_{i}$ and a positive ϵ so that

$$
W_{1}^{\prime} \cap B_{\epsilon}(p)=W_{2}^{\prime} \cap B_{\epsilon}(p)=W \cap B_{\epsilon}(p)
$$

for any such W. If x is a point in $W_{1} \cap W_{2}$ different from p then $\overrightarrow{p x} \in \Sigma_{p} W$, so $\overline{p x} \subset W_{1}^{\prime} \cap W_{2}^{\prime}$. Therefore

$$
W_{1} \cap W_{2} \cap B_{\epsilon}(p)=W_{1}^{\prime} \cap W_{2}^{\prime} \cap B_{\epsilon}(p)=W \cap B_{\epsilon}(p) .
$$

Corollary 4.4.3 If $W_{1}, \ldots, W_{k} \in \mathcal{W}_{p}$, then there is an $\epsilon>0$ such that $\left(\cup_{i} W_{i}\right) \cap B_{p}(\epsilon)$ maps isometrically to $\left(\cup_{i} C_{p} W_{i}\right) \cap B(\epsilon) \subset C_{p} X$ via $\log _{p}$.

Proof. Let \mathcal{C} denote the finite subcomplex of $\Sigma_{p} X$ detemined by $\cup_{i} \Sigma_{p} W_{i}$. Pick $\sigma_{1}, \sigma_{2} \in \mathcal{C}$. By lemma 4.2.3 these lie in an apartment $\Sigma_{p} A_{\sigma_{1} \sigma_{2}} \subseteq \Sigma_{p} X$ for some apartment $A_{\sigma_{1} \sigma_{2}} \subset X$ passing through p. If σ_{1} is a face of $\Sigma_{p} W_{i}$ and σ_{2} is a face of $\Sigma_{p} W_{j}$, then by the sublemma above we may assume without loss of generality that $\left(W_{i}^{\sigma_{1}} \cup W_{j}^{\sigma_{2}}\right) \cap B_{p}(\epsilon) \subseteq A_{\sigma_{1} \sigma_{2}}$ where $W_{i}^{\sigma_{1}}$ (resp. $W_{j}^{\sigma_{2}}$) is the subcone of W_{i} (resp. W_{j}) with $\Sigma_{p} W_{i}^{\sigma_{1}}=\sigma_{1}$ (resp. $\Sigma_{p} W_{j}^{\sigma_{2}}=\sigma_{2}$). Since there are only finitely many such pairs $\sigma_{1}, \sigma_{2} \in \mathcal{C}$, for sufficiently small $\epsilon>0$, every pair of segments $\overline{p x_{1}}, \overline{p x_{2}} \subseteq \cup_{i} W_{i}$ bounds a flat triangle provided $\left|p x_{i}\right|<\epsilon$.

4.4.1 Another building structure on $\Sigma_{p} X$, and the local behavior of Weyl sectors.

Let $\alpha \subset \Sigma_{p} X$ be a $\Delta_{m o d}$-apartment. By lemma 4.2 .3 there is an apartment $A \subset X$ with $\Sigma_{p} X=\alpha$, and by corollary 4.4.3 any two such apartments coincide near p. Hence the walls in A which pass through p define a reflection group $W_{\alpha} \subset \operatorname{Isom}(\alpha)$.

Lemma 4.4.4 The reflection group W_{α} contains the reflection group $W_{\alpha}^{t h}$ coming from the thick spherical building structure on $\Sigma_{p} X$.

Proof. Let $m \subset \alpha$ be a wall for the $\Delta_{m o d}^{t h}(p)$ structure. There are apartments $A_{i} \subset X$ through $p, i=1,2,3$, so that $\Sigma_{p} A_{1}=\alpha$ and the $\Sigma_{p} A_{i}$ intersect in half-apartments with boundary wall m. By corollary 4.4.3 the pairwise intersections of the A_{i} are half-spaces near p. Choose charts $\iota_{A_{1}}, \iota_{A_{2}}, \iota_{A_{3}} \in \mathcal{A}$ and let $\phi_{i j} \in W_{a f f}$ be the unique isometry inducing $\iota_{A_{i}}^{-1} \circ \iota_{A_{j}}$. Then $\phi_{12} \circ \phi_{23} \circ \phi_{31}$ is a reflection at a wall w passing through $x=\iota_{A_{1}}^{-1}(p)$ and satisfying $\Sigma_{p} \iota_{A_{1}} w=m$.

Fixing one apartment $\alpha \subset \Sigma_{p} X$, we take a chart $\iota: S \longrightarrow \alpha$ from the atlas $\mathcal{A}^{\text {th }}(p)$, and enlarge $\mathcal{A}^{t h}(p)$ by precomposing each chart $\iota^{\prime} \in \mathcal{A}^{t h}(p)$ with elements of $\iota_{*}^{-1}\left(W_{\alpha}\right) \subset \operatorname{Isom}(S)$. Clearly this defines an atlas $\mathcal{A}(p)$ for a spherical building structure modelled on $\Delta_{\text {mod }}(p) \stackrel{\text { def }}{=} \alpha / W_{\alpha}$.

Let $A, A_{1} \subset X$ be apartments so that $\Sigma_{p} A=\alpha, \Sigma_{p} A_{1}=\alpha_{1}$, and $\alpha \cap \alpha_{1}$ contains a chamber $C \subset \alpha$. If $\iota_{A}, \iota_{A_{1}}: E \longrightarrow X$ are charts from the atlas \mathcal{A}, then since $A \cap A_{1}$ is a cone near p by lemma 4.4.3, it follows that $\Sigma_{p}\left(\iota_{A_{1}} \circ \iota_{A}^{-1}\right): \Sigma_{p} A=\alpha \longrightarrow \alpha_{1}=\Sigma_{p} A_{1}$ carries W_{α} faces in α to $W_{\alpha_{1}}$ faces in α_{1}, while at the same time it carries $\Delta_{\bmod }(p)$ faces of α to $\Delta_{\bmod }(p)$ faces of α_{1}. So every $\Delta_{\bmod }(p)$ face $\sigma \subset \Sigma_{p} X$ is a $W_{\alpha^{\prime}}$ face for every apartment α^{\prime} containing σ. Since the $W_{\alpha^{\prime}}$'s are all isomorphic, this clearly implies that $\Sigma_{p} W$ is a $\Delta_{\bmod }(p)$ face for every Weyl sector with tip at p. So we have shown:

Proposition 4.4.5 There is a spherical building structure $\left(\Sigma_{p} X, \mathcal{A}(p)\right)$ modelled on $\left(S, \Delta_{\text {mod }}(p)\right)$ so that $\Delta_{\bmod }(p)$-faces in $\Sigma_{p} X$ correspond bijectively to the spaces of directions of Weyl sectors with tip at p. In particular, if $A \subset X$ is any apartment passing through p, then there is a 1-1 correspondence between walls $m \subset A$ passing through p and $\Delta_{\bmod }(p)$-walls in the apartment $\Sigma_{p} A$, given by $m \mapsto \Sigma_{p} m$. When X is a thick building, then $\mathcal{A}(p)$ coincides with $\mathcal{A}^{\text {th }}(p)$ for every $p \in X$.

Corollary 4.4.6 Corollary 4.4.3 holds when the W_{i} are Weyl sectors with tip at p. If A_{1} and A_{2} be apartments in X then $A_{1} \cap A_{2}$ is either empty or a Weyl polyhedron. In particular, if $A_{1} \cap A_{2}$ contains a complete regular geodesic then $A_{1}=A_{2}$.

Proof. Each Weyl sector with tip at p is a finite union of Weyl cones with tip at p. Hence a finite union of Weyl sectors with tip at p is a finite union of Weyl cones with tip at p, and the first statement follows.

If $A_{1}, A_{2} \subset X$ are apartments and $p \in A_{1} \cap A_{2}$, then $\Sigma_{p} Q_{1} \cap \Sigma_{p} A_{2}$ is a convex $\Delta_{\bmod }(p)$ subcomplex of $\Sigma_{p} A_{i}$. Hence there are $\Delta_{\bmod }(p)$ half apartments $h_{1}, \ldots, h_{k} \subset \Sigma_{p} A_{1}$ so that $\cap_{i} h_{i}=$ $\Sigma_{p} A_{1} \cap \Sigma_{p} A_{2}$. By proposition 4.4.5, for each i there is a half-apartment $H_{i} \subset A$ with $\Sigma_{p} H_{i}=h_{i}$. Therefore $A_{1} \cap A_{2} \cap B_{p}(\epsilon)=\left(\cap H_{i}\right) \cap B_{p}(\epsilon)$ and so $A_{1} \cap A_{2}$ is a Weyl polyhedron near p. Consequently $A_{1} \cap A_{2}$ is a Weyl polyhedron.

4.5 Discrete Euclidean buildings

We call the Euclidean building X discrete if the affine Weyl group $W_{a f f}$ is discrete or, equivalently, if the collection of walls in the Euclidean Coxeter complex E is locally finite.

If p is a point in E then σ_{p} denotes the intersection of all closed half-apartments containing p, i.e. the smallest Weyl polyhedron containing p. By corollary 4.4.6, each affine coordinate chart $\iota_{A}: E \rightarrow X$ maps σ_{p} to the minimal Weyl polyhedron in X which contains $\iota_{A}(p)$. Hence for any point $x \in X$ there is a minimal Weyl polyhedron σ_{x} containing it. We say that x spans σ_{x}. σ_{x} is the intersection of all half-apartments containing x and, if X is thick, the intersection of all such apartments. The lattice of Weyl polyhedra σ_{y} with $x \in \sigma_{y}$ is isomorphic to the polyhedral complex $\mathcal{K} \Sigma_{x} X$.

Proposition 4.5.1 In a discrete Euclidean building X each point x has a neighborhood $B_{\epsilon}(x)$ which is canonically isometric to the truncated Euclidean cone of height ϵ over $\Sigma_{x} X$.

Proof. Let $\iota_{A}: E \rightarrow X$ be a chart with $x=\iota_{A}(p)$ and choose $\epsilon>0$ so that any wall intersecting $B_{\epsilon}(p)$ contains p. Then for any point $y \in B_{\epsilon}(p)$, the polyhedron σ_{y} contains x and any apartment intersecting $B_{\epsilon}(p)$ passes through x. Hence any two segments $\overline{x y}$ and $\overline{x z}$ of length $<\epsilon$ lie in a common apartment and it follows that $B_{\epsilon}(p)$ is isometric to a truncated cone.

Assume now that $W_{a f f}$ is discrete and cocompact. Then the walls partition E into polysimplices which are fundamental domains for the action of $W_{a f f}$. This induces on X a structure as a polysimplicial complex. The polysimplices are spanned by their interior points. If X is moreover irreducible, then this complex is a simplicial complex.

4.6 Flats and apartments

Proposition 4.6.1 Any flat F in X is contained in an apartment. In particular, the dimension of a flat is less or equal to the rank of X.

Proof. Among the faces in $\partial_{\text {Tits }} X$ which intersect the sphere $\partial_{\text {Tits }} F$ we pick a face σ of maximal dimension. Then $\sigma \cap \partial_{\text {Tits }} F$ is open in $\partial_{\text {Tits }} F$. Let c be a geodesic in F with $c(\infty) \in \operatorname{Int}(\sigma)$ and let A be an apartment containing c. Then $\partial_{\text {Tits }} A$ contains σ and $c(-\infty)$ and convexity implies $\partial_{\text {Tits }} F \subseteq \partial_{\text {Tits }} A$. Since $F \cap A \neq \emptyset$, it follows that F is contained in the apartment A.

As a consequence, we obtain the following geometric characterization of apartments in Euclidean buildings:

Corollary 4.6.2 The r-flats in X are precisely the apartments.
The next lemma says that a regular ray which stays at finite Hausdorff distance from an apartment approaches this apartment at a certain minimal rate given by the extent of its regularity.

Lemma 4.6.3 Suppose $\xi \in \partial_{T i t s} X$ is regular and that the ray $\overline{p \xi}$ remains at bounded distance from an apartment F. Then every point $x \in \overline{p \xi}$ with

$$
d(x, p) \geq \frac{d(p, F)}{\sin \left(d_{\Delta_{\text {mod }}}\left(\theta \xi, \partial \Delta_{\text {mod }}\right)\right)}
$$

lies in F.

Proof. Let y be a point on the ray $\overline{\pi_{A}(p) \xi}$, and let $z \in \overline{p y}$ be the point where the segment $\overline{p y}$ enters A (we may have $z=y$). By lemma 4.1.2 $\angle_{z}(p, A)>0$, and by lemma 3.4.1 we have $\angle_{z}(p, A) \geq d_{\Delta_{m o d}}\left(\theta(\overline{p z}), \partial \Delta_{m o d}\right)$. The comparison triangle $\Delta(a, b, c)$ in the Euclidean plane for the triangle $\Delta\left(p, \pi_{A}(p), z\right)$ satisfies $\angle_{b}(a, c) \geq \frac{\pi}{2}$ and $\angle_{c}(a, b) \geq d_{\Delta_{m o d}}\left(\theta(\overline{p z}), \partial \Delta_{m o d}\right)$. Hence $d(p, A) \geq$ $d(p, z) \sin \left(d_{\Delta_{\text {mod }}}\left(\theta(\overline{p z}), \partial \Delta_{\text {mod }}\right)\right)$. Since $\theta(\overline{p z})=\theta(\overline{p y}) \rightarrow \theta(\overline{p \xi})$ as $y \in \overline{p \xi}$ tends to ∞, the claim follows.

Corollary 4.6.4 Each complete regular geodesic which lies in a tubular neighborhood of an apartment A must be contained in A. If A_{1} and A_{2} are apartments in X and A_{2} lies in a tubular neighborhood of A_{1}, then $A_{1}=A_{2}$.

Another implication of the previous lemma is the following analogue of lemma 4.4.2 at infinity.
Lemma 4.6.5 If $C_{1}, C_{2} \subset X$ are Weyl chambers with $\partial_{\text {Tits }} C_{1}=\partial_{\text {Tits }} C_{2}$, then there is a chamber $C \subseteq C_{1} \cap C_{2}$.

Proof. It is enough to consider the case that the building X is irreducible. The claim is trivial if the affine Weyl group is finite and we can hence assume that $W_{a f f}$ is cocompact. If ρ is a regular geodesic ray in C_{1} then, by the previous lemma, it enters C_{2} in some point p and $C_{1} \cap C_{2}$ contains the metric cone K centered at p with ideal boundary $\partial_{\text {Tits }} K=\partial_{T i t s} C_{i}$. Since $W_{a f f}$ is cocompact, K clearly contains a Weyl chamber.

Proposition 4.6.6 There is a bijective correspondence between apartments in X and $\partial_{\text {Tits }} X$ given by:

$$
A \subseteq X \leftrightarrow \partial_{T i t s} A \subseteq \partial_{T i t s} X
$$

Proof. We have to show that every apartment K in $\partial_{\text {Tits }} X$ is the boundary of a unique apartment in X. Since K contains a pair of regular antipodal points, there is a regular geodesic c whose ideal endpoints lie in $K . c$ is contained in an apartment A. Since the apartments $\partial_{\text {Tits }} A$ and K have antipodal regular points in common, they coincide as a consequence of lemma 3.6.1. A is unique by corollary 4.6.4.

Lemma 4.6.7 Let A be an apartment in X. If c is a geodesic arriving at $p \in A$, it can be extended into A.

Proof. If η is the direction of c at p then, by lemma 3.10.2, η has an antipode in the spherical apartment $\Sigma_{p} A$. Hence c has an extension into A.

Corollary 4.6.8 For any point x and any apartment A in X the geodesic cone over A at x lies in the cone over $\partial_{\text {Tits }} A$. In particular, it is contained in a finite union of apartments passing through x.

Sublemma 4.6.9 Let Ybe a Euclidean building with associated admissible spherical polyhedron $\Delta_{\text {mod }}$. Then for each direction $\delta \in \operatorname{int}\left(\Delta_{\text {mod }}\right)$ the subset $\theta^{-1}(\delta)$ in the geometric boundary $\partial_{\infty} Y$ is totally disconnected with respect to the cone topology.

Proof. Suppose that $y, y^{\prime}, y^{\prime \prime} \in Y$ so that $\theta\left(\overline{y y^{\prime}}\right)=\theta\left(\overline{y y^{\prime \prime}}\right)=\delta$. Define the point z by $\overline{y y^{\prime}} \cap \overline{y y^{\prime \prime}}=\overline{y z}$. If $z \neq y^{\prime}, y^{\prime \prime}$ then the angle rigidity axiom EB2 implies that $\angle_{z}\left(y^{\prime}, y^{\prime \prime}\right) \geq \alpha_{0}:=2 c d o t d_{\Delta_{\text {mod }}}\left(\delta, \partial \Delta_{\text {mod }}\right)$ and by triangle comparison we obtain:

$$
\left|y^{\prime} z\right| \leq \frac{1}{\sin \alpha_{0}} \cdot d\left(y^{\prime}, \overline{y y^{\prime \prime}}\right)
$$

As a consequence, for each $z \in Y$ the closed subset $\left\{\xi \in \partial_{\infty} Y \mid \theta(\xi)=\delta\right.$ and $\left.z \in \overline{y \xi}\right\}$ of $\theta^{-1}(\delta)$ is also open and we see that each point in $\theta^{-1}(\delta)$ has a neighborhood basis consisting of open and closed sets.

4.7 Subbuildings

A subbuilding $X^{\prime} \subseteq X$ is by definition a metric subspace which admits a Euclidean building structure. This implies that X^{\prime} is closed and convex and that $\partial_{\text {Tits }} X^{\prime}$ is a spherical subbuilding of $\partial_{\text {Tits }} X$ which is closed with respect to the cone topology. We consider a partial converse:

Proposition 4.7.1 Let X be a Euclidean building and $B \subseteq \partial_{\text {Tits }} X$ a subbuilding of full rank. Then the union X^{\prime} of all apartments A with $\partial_{\text {Tits }} A \subseteq B$ has the following properties:

- If X^{\prime} is closed then it is a subbuilding of full rank and the subbuilding $\partial_{\text {Tits }} X^{\prime} \subseteq \partial_{\text {Tits }} X$ is the closure \bar{B} of B with respect to the cone topology. Furthermore, X^{\prime} is the unique subbuilding with $\partial_{\text {Tits }} X^{\prime}=\bar{B}$.
- If X is discrete or locally compact then X^{\prime} is closed.

Proof. Observe that

$$
X^{\prime} \cup\left\{A \text { apartment } \mid \partial_{T i t s} A \subseteq B\right\}=\cup\left\{A \text { apartment } \mid \partial_{T i t s} A \subseteq \bar{B}\right\}
$$

We first show that X^{\prime} is a convex subset. Consider points $x_{1}, x_{2} \in X^{\prime}$. There are apartments A_{i} with $x_{1} \in A_{i} \subseteq X^{\prime}$. By lemma 3.10 .2 , there exist $\xi_{i} \in \partial_{\text {Tits }} A_{i}$ with $\angle_{x_{i}}\left(x_{3-i}, \xi_{i}\right)=\pi$. The canonical map $\psi: \partial_{\text {Tits }} X \rightarrow \Sigma_{x_{1}} X$ is a building morphism and satisfies the assumption of proposition 3.11.2. Thus, since $\angle_{x_{1}}\left(\xi_{1}, \xi_{2}\right)=\pi$, there is an apartment $\partial_{T i t s} A \subseteq X^{\prime}$ which contains ξ_{1}, ξ_{2} and projects isometrically to $\Sigma_{x_{1}} X$ via ψ. This means that $x_{1} \in A$. Consequently $\overline{x_{1} x_{2}} \subset A$ and X^{\prime} is convex. Similarly, one shows that any ray and geodesic in X^{\prime} lies in an apartment A which is limit of apartments A_{n} with $\partial_{\text {Tits }} A_{n} \subseteq B$, i.e. $\partial_{\text {Tits }} A \subseteq \bar{B}$ and $A \subseteq X^{\prime}$. The building axioms are inherited from X and if X^{\prime} is a closed subset then it is complete and a Hadamard space. This proves assertion (i).
(ii) Assume that X is discrete and $x \in \bar{X}^{\prime}$. Any point $x^{\prime} \in X^{\prime}$ lies in an apartment $A \subseteq X^{\prime}$, and if x^{\prime} is sufficiently close to x then A contains x. Hence X^{\prime} is close in this case.

Assume now that X is locally compact and that $\left(x_{n}\right) \subset X^{\prime}$ is Cauchy with limit $x \in X$. Let $p \in X^{\prime}$ be some base point. Any segment $\overline{p x_{n}}$ lies in some apartment $A_{n} \subseteq X^{\prime}$ and we can pick rays $\overline{p x_{n}^{\prime} \xi_{n}}$ in A_{n} so that $\lim x_{n}^{\prime}=x$ and $\theta \xi_{n}=\theta \overline{p x}$. After passing to a subsequence, we may assume that $\left(\xi_{n}\right)$ converges to a point $\xi \in \underline{\bar{B}}$. Since $\theta \xi_{n}=\theta \xi$, lemma 4.1.2 implies that the segments $\overline{p \xi_{n}} \cap \overline{p \xi} \subset X^{\prime} \cap \overline{p \xi}$ converge to $\overline{p \xi}$. Hence $\overline{p \xi}$ contains x lies in X^{\prime}.

4.8 Families of parallel flats

Let X be a Euclidean building and $F \subseteq X$ a flat. If another flat F^{\prime} has finite Hausdorff distance from F then F and F^{\prime} bound a flat strip, i.e. an isometrically embedded subset of the form $F \times I$ with a compact interval $I \subset \mathbb{R}$. In this case, the flats F and F^{\prime} are called parallel. Consider the union P_{F} of all flats parallel to $F . P_{F}$ is a closed convex subset of X and splits isometrically as

$$
P_{F} \cong F \times Y
$$

Proposition 4.8.1 P_{F} is a subbuilding of X and Y admits a Euclidean building structure.
Proof. By proposition 4.6.1, P_{F} is the union of all apartments which contain F in a tubular neighborhood, and $\partial_{\text {Tits }} P_{F}$ is the union of all apartments in $\partial_{\text {Tits }} X$ which contain the sphere $\partial_{\text {Tits }} F$. The subset $\partial_{T i t s} P_{F} \subseteq \partial_{T i t s} X$ is convex by lemma 4.1.2 and a subbuilding by proposition 3.10.3. Proposition 4.7.1 implies that P_{F} is a subbuilding of X. As a consequence, the Hadamard space Y inherits a Euclidean building structure.

If $\operatorname{dim}(F)=\operatorname{rank}(X)-1$, then Y is a building of rank one, i.e. a metric tree. Since $\Sigma_{y} Y$ is in this case a zero-dimensional spherical building, any two rays $\overline{y \eta_{1}}$ and $\overline{y \eta_{2}}$ in Y either initially coincide or their union is a geodesic. This implies:

Lemma 4.8.2 (i) Let H_{1} and H_{2} be two flat half-spaces of dimension rank (X) whose intersection $H_{1} \cap H_{2}$ coincides with their boundary flats. Then $H_{1} \cup H_{2}$ is an apartment.
(ii) If $A_{1}, A_{2}, A_{3} \subseteq X$ are apartments, and for each $i \neq j$ the intersection $A_{i} \cap A_{j}$ is a halfapartment, then $A_{1} \cap A_{2} \cap A_{3}$ is a wall in X.

Lemma 4.8.3 Let $C_{1}, C_{2}, C_{3} \subset \partial_{\text {Tits }} X$ be distinct adjacent chambers, with $\pi=C_{1} \cap C_{2} \cap C_{3}$ their common panel. Then there is a $p \in X$ so that if $\operatorname{Cone}(p, \pi)=\cup\{\overline{p \xi} \mid \xi \in \pi\}$, then $\log _{p^{\prime}}\left(C_{i}\right) \subset \Sigma_{p^{\prime}} X$ are distinct chambers for every $p^{\prime} \in \operatorname{Cone}(p, \pi)$ and any apartment $A \subset X$ such that $\partial_{\text {Tits }} A$ contains two of the C_{i} must intersect Cone (p, π).

Proof. Let $m \subset \partial_{\text {Tits }} X$ be a wall containing the panel π. Then each chamber C_{i} lies in a unique half-apartment h_{i} bounded by m, and pairs of these half-apartments form apartments. Let $A_{i j}$ be the apartment in X with $\partial_{\text {Tits }} A_{i j}=h_{i} \cup h_{j}$. By lemma 4.8.2, $\cap A_{i j}$ is a wall $M \subset X$, and we clearly have $\partial_{\text {Tits }} M=m$. If $p \in M$, then the half-apartments $\log _{p} h_{i} \subset \Sigma_{p} X$ are bounded by $\log _{p} m=\Sigma_{p} M$, so they are distinct; otherwise $\cap A_{i j} \neq M$. Hence the chambers $\log _{p} C_{i} \subset \log _{p} h_{i}$ are distinct chambers.

If $A \subset X$ is an apartment with $C_{i} \cup C_{j} \subset \partial_{\text {Tits }} A, i \neq j$, then there are chambers $\hat{C}_{i}, \hat{C}_{j} \subset A \cap A_{i j}$ with $\partial_{T i t s} \hat{C}_{i}=C_{i}, \partial_{T i t s} \hat{C}_{j}=C_{j}$. The Tits boundary of the Weyl polyhedron $P=A_{i j} \cap A$ contains $C_{i} \cup C_{j}$, so it intersects $\operatorname{Cone}(p, \pi)$.

4.9 Reducing to a thick Euclidean building structure

This subsection is the Euclidean analog of section 3.7.
Definition 4.9.1 Let X be a Euclidean building modelled on the Euclidean Coxeter complex ($E, W_{a f f}$), with atlas \mathcal{A}^{\prime}. The affine Weyl group may be reduced to a reflection subgroup $W_{a f f}^{\prime} \subset W_{a f f}$ if there is a $W_{\text {aff }}^{\prime}$ compatible subset $\mathcal{A}^{\prime} \subset \mathcal{A}$ forming an atlas for a Euclidean building modelled on $\left(E, W_{a f f}^{\prime}\right)$.

In constrast to the spherical building case, the affine Weyl group of a Euclidean building does not necessarily have a canonical reduction with respect to which it becomes thick. For example, a metric tree with variable edge lengths does not admit a thick Euclidean building structure. However, there is always a canonical minimal reduction, and this is thick when it has no tree factors.

Proposition 4.9.2 Let X be a Euclidean building modelled on ($E, W_{a f f}$). Then there is a unique minimal reduction $W_{a f f}^{\prime} \subset W_{a f f}$ so that $\left(X, E, W_{a f f}^{\prime}\right)$ splits as a product ΠX_{i} where each X_{i} is either a thick irreducible Euclidean building or a 1-dimensional Euclidean building. The thick irreducible factors are either metric cones over their Tits boundary (when the affine Weyl group has a fixed point) or their affine Weyl group is cocompact.

Proof. We first treat the case when $\left(\partial_{\text {Tits }} X, \Delta_{\text {mod }}\right)$ is a thick irreducible spherical building of dimension at least 1.

Step 1: Each apartment $A \subset X$ has a canonical affine Weyl group G_{A}. If $A \subset X$ is an apartment, a wall $M \subset A$ is strongly singular if there is an apartment $A^{\prime} \subset X$ so that $A \cap A^{\prime}$ is a half apartment bounded by M. Since $\partial_{\text {Tits }} X$ is thick and irreducible, for every wall $m \subset \partial_{\text {Tits }} A$ there is a strongly singular wall $M \subset A$ with $\partial_{\text {Tits }} M=m$.

Sublemma 4.9.3 The collection \mathcal{M}_{A} of strongly singular walls in A is invariant under reflection in any strongly singular wall in A.

Proof. Note that a wall $M \subset A$ is strongly singular iff $\Sigma_{p} M \subset \Sigma_{p} X$ is a wall with respect to the thick building structure $\left(\Sigma_{p} X, \Delta_{m o d}^{t h}(p)\right)$; this is because any half-apartment $h \subset \Sigma_{p} X$ with boundary $\Sigma_{p} M$ can be lifted to a half-apartment $H \subset X$ with boundary $M, \Sigma_{p} H=h$ by applying proposition 3.11 .4 to the surjective spherical building morphism $\log _{p}: \partial_{\text {Tits }} X \longrightarrow \Sigma_{p} X$.

If $M_{1}, M_{2} \subset A$ are strongly singular walls intersecting at $p \in A$, then $\Sigma_{p} M_{i}$ is a $\Delta_{\text {mod }}^{t h}(p)$ wall in $\Sigma_{p} A \subset \Sigma_{p} X$, and so if we reflect $\Sigma_{p} M_{2}$ in $\Sigma_{p} M_{1}$ (inside the apartment $\Sigma_{p} A$), we get another $\Delta_{m o d}^{t h}(p)$ wall which is then the space of directions of the desired strongly singular wall M_{3}.

Now suppose that $M_{1}, M_{2} \in \mathcal{M}_{A}$ are parallel. $\Delta_{\text {mod }}$ is irreducible so there is a strongly singular wall M_{3} intersecting both M_{i} at an acute angle. Reflect M_{2} in M_{3} to get M_{4}, reflect M_{3} in M_{1} to get M_{5}, and M_{4} in M_{1} to get M_{6}, and finally reflect M_{6} in M_{5} to get a wall which is the image of M_{2} under reflection in M_{1}. The walls M_{i} are all in \mathcal{M}_{A}, so we're done.
Proof of proposition 4.9.2 continued. Hence for every apartment $A \subset X$ the collection of strongly singular walls in A gives us a group $G_{A} \subset \operatorname{Isom}(A)$ which is generated by reflections.

Step 2: The group G_{A} is independent of A. Since $\partial_{\text {Tits }} G_{A} \subset \operatorname{Isom}\left(\partial_{\text {Tits }} A\right)$ is an irreducible Coxeter group, it follows that G_{A} is either a discrete group of isometries or it has a dense orbit. When G_{A} is discrete, it is generated by the reflections in the strongly singular walls which intersect a given
G_{A}-chamber in codimension 1 faces. When G_{A} has a dense orbit, it is generated by all the reflections in strongly singular walls passing through any open set. If two apartments A_{1} and A_{2} intersect in an open set, it follows that $G_{A_{1}}$ is isomorphic to $G_{A_{2}}$; therefore G_{A} is independent of A. So there is a well-defined Coxeter complex $\left(E, W_{a f f}^{\prime}\right)$ attached to X.
Step 3: Finding $\left(E, W_{a f f}^{\prime}\right)$ apartment charts. If Z is a convex domain in an apartment $A \subset X$ and $\iota: U \longrightarrow Z$ is an isometry of an open set $U \subset E$ onto an open set in Z, then there is a unique extension of ι to an isometry of a convex set $\hat{Z} \subset E$ onto Z.

Pick an apartment $A_{0} \subset X$ and an isometry $\iota_{0}: E \longrightarrow A_{0}$ which carries $W_{a f f}^{\prime} \subset \operatorname{Isom}(E)$ to $G_{A_{0}}$. Then restrict to a $W_{a f f}^{\prime}$ chamber $\hat{C}_{0} \subset E$ and its image $C_{0} \stackrel{\text { def }}{=} \iota_{0}\left(\hat{C}_{0}\right) \subset A_{0}$. Given any chamber $C \subset X$, there is an apartment A_{1} containing subchambers of C and C_{0}. There is a unique isometry $\iota_{1}: E \longrightarrow A_{1}$ so that ι_{1}^{-1} and ι_{0}^{-1} agree on the subchambers $C_{0} \cap A_{0} \subset A_{1}$, and a unique isometry $\iota_{C}: E \supset \hat{C} \longrightarrow C$ so that ι_{C}^{-1} and ι_{1}^{-1} agree on the subchamber $C \cap A_{1}$. If A_{2} is another apartment with $\partial_{\text {Tits }} C_{0}, \partial_{T i t s} C \subset \partial_{\text {Tits }} A_{2}$, we get another isometry $\iota_{2}: E \longrightarrow A_{2}$; but the convex set $A_{1} \cap A_{2}$ contains subchambers of C_{0} and C, so ι_{1}^{-1} and ι_{2}^{-1} agree on a subchamber of C. Therefore ι_{C} is independent of the choice of apartment asymptotic to $C_{0} \cup C$.

Sublemma 4.9.4 Let $A \subset X$ be an apartment, and let $C_{1}, C_{2} \subset \partial_{\text {Tits }} A$ be adjacent $\Delta_{\text {mod }}$-chambers ($C_{1} \cap C_{2}$ is a panel). For $i=1,2$ we let $\iota_{C_{1}}(A): E \longrightarrow A$ be the unique isometric extension of $\iota_{\bar{C}_{i}}$ where $\bar{C}_{i} \subset A$ is a $W_{a f f}^{\prime}$-chamber with $\partial_{T i t s} \bar{C}_{i}=C_{i}$. Then $\iota_{C_{2}}^{-1}(A) \circ \iota_{C_{1}}(A) \in W_{a f f}^{\prime}$.

Proof. For $i=1,2$ let $A_{i j} \subset X$ be an apartment with $C_{0} \cup C_{i} \subset \partial_{T i t s} A_{i}$. If C_{1} is contained in the convex hull of $C_{0} \cup C_{2}$ (or $C_{2} \subset$ ConvexHull $\left(C_{0} \cup C_{1}\right)$) then $C_{1} \cup C_{2} \subset \partial_{\text {Tits }}\left(A \cap A_{2}\right)$, so the sublemma follows from the fact that $\iota_{C_{i}}^{-1}(A)$ restricted to $A \cap A_{2}$ coincides with $\left.\iota_{2}^{-1}\right|_{A \cap A_{2}}$. So we may assume that there is a chamber $C_{3} \subset \partial_{T i t s} A_{1} \cap \partial_{T i t s} A_{2}$ which meets C_{1} and C_{2} in the panel $\pi=C_{1} \cap C_{2}$. By lemma 4.8.3 (applied to the original Euclidean building $\left(X, E, W_{a f f}\right)$), there is a point $p \in A_{1} \cap A_{2}$ so that $\operatorname{Cone}(p, \pi) \subset A_{1} \cap A_{2}$ and $\log _{p}\left(C_{i}\right) \subset \Sigma_{p} X$ are distinct chambers for $i=1,2,3$. Therefore ι_{1}^{-1} and ι_{2}^{-1} agree on $\operatorname{Cone}(p, \pi)$. Hence the isometries $\iota_{C_{1}}^{-1}(A), \iota_{C_{2}}^{-1}$ agree on $\operatorname{Cone}(p, \pi)$, which means that $\iota_{C_{2}}^{-1}(A) \circ \iota_{C_{1}}(A): E \longrightarrow E$ is a reflection. But since $\Sigma_{p}(\operatorname{Cone}(p, \pi))=\log _{p}\left(C_{1}\right) \cap \log _{p}\left(C_{2}\right) \cap \log _{p}\left(C_{3}\right)$, $\operatorname{Cone}(p, \pi)$ spans a strongly singular wall in A and so the reflection $\iota_{C_{2}}^{-1}(A) \circ \iota_{C_{1}}(A) \in W_{a f f}^{\prime}$.
Proof of proposition 4.9.2 continued. By sublemma 4.9.4, we see that for each apartment $A \subset X$, there is a canonical collection of isometries $\iota: E \longrightarrow A$ which are mutally $W_{a f f}^{\prime}$ compatible, and which are compatible with the $\iota_{C}: \hat{C} \longrightarrow C$ for every chamber $C \subset A$. We refer to such isometries as $W_{a f f}^{\prime}$-charts, and to the collection of $W_{a f f}^{\prime}$-charts (for all apartments) as the $\left(E, W_{a f f}^{\prime}\right)$ atlas \mathcal{A}^{\prime}.

Sublemma 4.9.5 Let $A_{1}, A_{2} \subset X$ be apartments with d-dimensional intersection $P=A_{1} \cap A_{2}$. If $p \in P$ is an interior point of the Weyl polyhedron P, then there is an apartment $A_{3} \subset X$ so that A_{3} contains a neighborhood of $p \in P$, and $A_{3} \cap A_{i}$ contains a Weyl chamber.

Proof. We have $\Sigma_{p} A_{1} \cap \Sigma_{p} A_{2}=\Sigma_{p} P$ by lemma 4.4.3. Let $\sigma_{1} \subset \Sigma_{p} P$ be a d - 1 -dimensional face of $\Sigma_{p} P$, and let σ_{2} be the opposite face in $\Sigma_{p} P$. If $\tau_{1} \subset \Sigma_{p} A_{1}$ is a chamber containing σ_{1}, then we may find an opposite chamber $\tau_{2} \subset \Sigma_{p} A_{2}$. But then τ_{2} contains a face opposite σ_{1}, and this must be σ_{2} since each face in an apartment has a unique opposite face in that apartment. Let $C_{i} \subset \partial_{\text {Tits }} A_{i}$ be the chamber such that $\log _{p} C_{i}=\tau_{i}$. Then there is a unique apartment $A_{3} \subset X$ with $C_{1} \cup C_{2} \subset \partial_{T i t s} A_{3} . \Sigma_{p} P \subset \Sigma_{p} A_{3}$, so A_{3} has the properties claimed.

Proof of proposition 4.9.2 continued. If $A_{1}, A_{2} \subset X$ are apartments with $A_{1} \cap A_{2} \neq \emptyset$, then any $W_{a f f}^{\prime}$ charts $\iota_{i}: E \longrightarrow A_{i}$ are $W_{a f f}^{\prime}$ compatible since by sublemma 4.9 .5 we have a third apartment $A_{3} \subset X$ so that ι_{1} and ι_{2} are both $W_{a f f}^{\prime}$ compatible with $\iota_{3}: E \longrightarrow A_{3}$ on an open set $U \subset A_{1} \cap A_{2}$. Hence \mathcal{A}^{\prime} gives X the structure of a Euclidean building modelled on $\left(E, W_{a f f}^{\prime}\right)$. From the construction of $W_{a f f}^{\prime}$ it is clear that $\left(X, \mathcal{A}^{\prime}\right)$ is thick.

Step 4: The case when X is a 1-dimensional Euclidean building, i.e. a metric tree. Let $A_{0} \subset X$ be an apartment, $\partial_{\text {Tits }} A_{0}=\left\{\eta_{1}, \eta_{2}\right\}$. For each $p \in X$ let $\pi_{A_{0}}(p) \in A_{0}$ be the nearest point in A_{0}, and $p_{A_{0}} \in A_{0}$ be a point (there are at most two) with $d\left(p_{A_{0}}, \pi_{A_{0}}(p)\right)=d\left(p, A_{0}\right)$. Let $\mathcal{M} \subset A_{0}$ be the set of points $p_{A_{0}}$ where $p \in X$ is a branch point: $\left|\Sigma_{p} X\right| \geq 3$; let $G \subset \operatorname{Isom}\left(A_{0}\right)$ be the group generated by reflections at points in \mathcal{M}. For each $\xi \in \partial_{\text {Tits }} X \backslash \eta_{1}$ there is a unique isometry ι_{ξ} from the apartment $A_{0}=\overline{\eta_{1} \eta_{2}}$ to the apartment $\overline{\eta_{1} \xi}$ which is the identity on the half-apartment $\overline{\eta_{1} \eta_{2}} \cap \overline{\eta_{1} \xi}$. If $\xi_{1} \neq \xi_{2}$, then we have two isometries $\iota_{1}, \iota_{2}: A_{0} \longrightarrow \overline{\xi_{1} \xi_{2}}$ where ι_{i}^{-1} agrees with $\iota_{\xi_{i}}$ on $\overline{\eta_{1} \xi_{i}} \cap \overline{\xi_{1} \xi_{2}}$. By inspection $\iota_{2}^{-1} \circ \iota_{1} \in G$. Hence for each apartment $A \subset X$ we have a well-defined set of isometries $A_{0} \longrightarrow A$. As in step 3 it follows that these isometries are G-compatible, so they define an atlas \mathcal{A}^{\prime} for a Euclidean building structure on X.

Step 5: X is an arbitrary Euclidean building modelled on $\left(E, W_{a f f}\right)$. Let $W \stackrel{\text { def }}{=} \partial_{\text {Tits }} W_{a f f}$, and let $W^{\prime} \subset W \subset \operatorname{Isom}\left(\partial_{\text {Tits }} E\right)$ be the canonical reduced Weyl group of $\partial_{T i t s} X$ given by section 3.7. Let $\bar{W}_{\text {aff }} \subset \operatorname{Isom}(E)$ be the inverse image of W^{\prime} under the canonical homomorphism $\operatorname{Isom}(E) \longrightarrow$ $\operatorname{Isom}\left(\partial_{\text {Tits }} E\right)$. Let $\theta^{\prime}: \partial_{\underline{\text { Tits }}} X \longrightarrow \Delta_{m o d}^{\prime} \stackrel{\text { def }}{=} S / W^{\prime}$ be the $\Delta_{m o d}^{\prime}$-anisotropy map. We may define $\Delta_{\text {mod }}^{\prime}$-directions for rays $\overline{x \xi} \subset X$ by the formula $\theta^{\prime}(\overline{x \xi})=\theta^{\prime}(\xi) \in \Delta_{\text {mod }}^{\prime}$. We define the $\Delta_{\text {mod }}^{\prime}$ direction of a geodesic segment $\overline{x y} \subset X$ by setting $\theta^{\prime}(\overline{x y})=\theta^{\prime}\left(\overline{x \xi_{1}}\right)$ for any ray $\overline{x \xi_{1}}$ extending $\overline{x y}$; if $\overline{x \xi_{2}}$ is another ray extending $\overline{x y}$ then $\xi_{1} \in \partial_{\text {Tits }} X$ and $\xi_{2} \in \partial_{\text {Tits }} X$ are both antipodes of $\eta \in \partial_{\text {Tits }} X$ where $\overline{y \eta}$ is a ray extending $\overline{y x}$, so $\theta^{\prime}(\overline{x y})$ is well-defined. The remaining Euclidean building axioms follow easily from the fact that any two segments $\overline{p x}, \overline{p y}$ initially lie in an apartment $A \subset X$ (corollary 4.4.3) and for our compatible ($E, \bar{W}_{a f f}$) apartment charts we may take all isometric embeddings $i: E \longrightarrow X$ for which $\partial_{\text {Tits }} i: \partial_{\text {Tits }} E \longrightarrow \partial_{\text {Tits }} X$ is an apartment chart for $\left(\partial_{\text {Tits }} X, \Delta_{\text {mod }}^{\prime}\right)$.

We may now apply proposition 4.3 .1 to see that $\left(X, E, \bar{W}_{a f f}\right)$ splits as a product of Euclidean buildings $\left(X, E, \bar{W}_{a f f}\right)=\left(\prod X_{i}, \Pi E_{i}, \prod W_{a f f}^{i}\right)$ so that each $\partial_{T i t s} X_{i}$ is irreducible. Let $\left(W_{a f f}^{i}\right)^{\prime} \subset$ $W_{a f f}^{i}, \mathcal{A}_{i}$ be the canonical subgroup and atlas constructed in steps 1-4, and set $W_{a f f}^{\prime}=\prod\left(W_{a f f}^{i}\right)^{\prime} \subset$ $\operatorname{Isom}(E), \mathcal{A}^{\prime}=\prod \mathcal{A}_{i}$. Then $\left(X_{i}, E_{i},\left(W_{a f f}^{i}\right)^{\prime}, \mathcal{A}_{i}\right)$ has the properties claimed in the proposition. Fix an apartment $A_{0} \subset X$ and a chart $\iota_{A_{0}} \in \mathcal{A}$. If $A_{0}, \ldots, A_{k}=A_{0}$ is a sequence of apartments so that $A_{i-1} \cap A_{i}$ is a half-apartment for each i, then there is a unique isometry $g_{i}: A_{i-1} \longrightarrow A_{i}$ so that g_{i} is the identity on $A_{i-1} \cap A_{i}$. Axiom EB4 implies that $g_{i} \circ \ldots \circ g_{1} \circ \iota_{A_{0}} \in \mathcal{A}$ for each i, so in particular $g=g_{k} \circ \ldots \circ g_{1} \in \iota_{A_{0} *}\left(W_{a f f}\right)$. From the construction of $\left(W_{a f f}^{i}\right)^{\prime}$ it is clear that the group of all such isometries $g: A_{0} \longrightarrow A_{0}$ contains $\iota_{A_{0}}^{\prime}\left(W_{a f f}^{\prime}\right) \subset I \operatorname{som}\left(A_{0}\right)$ where $\iota_{A_{0}}^{\prime} \in \mathcal{A}^{\prime}$. So $W_{a f f}^{\prime} \subset W_{a f f}$ is a minimal reduction of $W_{a f f}$.

4.10 Euclidean buildings with Moufang boundary

This is a continuation of section 3.12.
Proposition 4.10.1 (More properties of root groups) Let B be a thick irreducible spherical building of dimension at least 1, and let X be a Euclidean building with Tits boundary B.

1. For every root group $U_{a} \subset A u t\left(B, \Delta_{\text {mod }}\right)$ and every $g \in U_{a}$ there is a unique automorphism $g_{X}: X \longrightarrow X$ so that $\partial_{T i t s} g_{X}=g$. In other words, if G is the group generated by the root groups, then the action of G on $\partial_{\text {Tits }} X$ "extends" to an action on X by building automorphisms. Henceforth we will use the same notation to denote this extended action.
2. Suppose $g \in U_{a}$ is nontrivial. If $A \subseteq X$ is an apartment such that $\partial_{\text {Tits }} A \supset a$, then $g(A) \cap A$ is a half-apartment; moreover $\operatorname{Fix}(g) \cap A=g(A) \cap A$.

Proof. See [Ron, Affine buildings II, esp. prop. 10.8], or [Ti2, p. 168].
For the remainder of this section X will be a thick, nonflat irreducible Euclidean building of rank ≥ 2. Therefore $\Delta_{m o d}$ is a spherical simplex with diameter $<\frac{\pi}{2}$ and the faces of $\partial_{\text {Tits }} X$ define a simplicial complex.

Lemma 4.10.2 Let $A \subset X$ be an apartment, $p_{0} \in X, p \in A$ the nearest point in A, and $a \subset \partial A a$ root. Then the stabilizer of p_{0} in the root group U_{a} fixes p.

Proof. Using lemma 3.10.2 extend the geodesic segment $\overline{p_{0} p}$ to a geodesic ray $\overline{p_{0} \xi}=\overline{p_{0} p} \cup \overline{p \xi}$ so that the ray $\overline{p \xi}$ lies in the half apartment $\operatorname{Cone}(p, a) \subset A$. If $g \in U_{a}$ fixes p_{0}, then it fixes the ray $\overline{p_{0} \xi}$, and hence the half-apartment $\operatorname{Cone}(p, a)$.

We now assume that the spherical building $\left(\partial_{\text {Tits }} X, \Delta_{\text {mod }}\right)$ is Moufang. Pick $p \in X$, and let $\left(\Sigma_{p} X, \Delta_{m o d}^{t h}(p)\right)$ denote the thick spherical building defined by the space of directions $\Sigma_{p} X$ with its reduced Weyl group (see section 3.7). Suppose $H_{+} \subset X$ is a half-apartment whose boundary wall passes through $p, h_{+} \stackrel{\text { def }}{=} \Sigma_{p} H_{+} \subset \Sigma_{p} X$ is a $\Delta_{m o d}^{t h}(p)$ root, and let $a_{+}=\partial_{\text {Tits }} H_{+} \subset \partial_{\text {Tits }} X$. If $U_{a_{+}}$is the root group associated to a_{+}, and $V_{a_{+}} \subset U_{a_{+}}$is the subgroup fixing p, then we have a homomorphism $\Sigma_{p}: V_{a_{+}} \longrightarrow \operatorname{Aut}\left(\Sigma_{p} X, \Delta_{\text {mod }}^{t h}(p)\right)$.

Lemma 4.10.3 The image of $V_{a_{+}}$is the root group $U_{h_{+}}$associated with h_{+}, and this acts transitively on apartments in $\Sigma_{p} X$ containing h_{+}. In particular, $\left(\Sigma_{p} X, \Delta_{m o d}^{\text {th }}(p)\right)$ is a thick Moufang spherical building.

Proof. By corollary 3.11.5, if $h_{-} \subset \Sigma_{p} X$ is a $\Delta_{m o d}^{t h}(p)$ root with $\partial h_{-}=\partial h_{+}=\Sigma_{p}\left(\partial H_{+}\right)$, then there is a half-apartment $H_{-} \subset X$ so that H_{-}and H_{+}have the same boundary and $\Sigma_{p} H_{-}=h_{-}$. Given two such $\Delta_{\bmod }(p)$ roots $h_{-}^{1}, h_{-}^{2} \subset \Sigma_{p} X$ so that $h_{-}^{i} \cup h_{+}$forms an apartment in $\Sigma_{p} X$, we get two half apartments H_{-}^{i} so that $H_{-}^{i} \cup H_{+}$forms an apartment in X. Since ($\partial_{\text {Tits }} X, \Delta_{\text {mod }}$) is Moufang, the root group $U_{a_{+}} \subset \operatorname{Aut}\left(\partial_{\text {Tits }} X, \Delta_{\bmod }\right)$ contains an element which carries H_{-}^{1} to H_{-}^{2}. By $3.12 .2, g$ "extends" uniquely to an isometry $g: X \longrightarrow X$ which carries the apartment $H_{-}^{1} \cup H_{+}$ to the apartment $H_{-}^{2} \cup H_{+}$, fixing H_{+}(see 4.10.1). It remains only to show that the isometry $\Sigma_{p} g: \Sigma_{p} X \longrightarrow \Sigma_{p} X$ is contained in the root group $U_{h_{+}} \subset A u t\left(\Sigma_{p} X, \Delta_{m o d}^{t h}(p)\right)$. Clearly $\Sigma_{p} g$ fixes h_{+}. Let $C \subset \Sigma_{p} X$ be a $\Delta_{m o d}^{t h}(p)$ chamber such that $C \cap h_{+}$contains a panel π with $\pi \not \subset \partial h_{+}$. Using proposition 3.11.4 we may lift C to a (subcomplex) $\tilde{C} \subset \partial_{\text {Tits }} X$ so that $\tilde{C} \cap \partial a_{+}$maps isometrically to $C \cap \partial h_{+}$under $\log _{p}: \partial_{T i t s} X \longrightarrow \Sigma_{p} X . g$ fixes an interior point of \tilde{C}, so $\Sigma_{p} g$ fixes an interior point of C, which implies that $\Sigma_{p} g$ fixes C as desired.

Definition 4.10.4 A point $s \in X$ is a spot if either

1. The affine Weyl group $W_{a f f}$ has a dense orbit or
2. $W_{a f f}$ is discrete and s corresponds to a 0-simplex in the complex associated with X.

If $A \subseteq X$, then $\operatorname{Spot}(A)$ is the set of spots in A.
Lemma 4.10.5 If $A \subset X$ is an apartment, $p_{0} \in A$ is a spot, then for every $p \neq p_{0}$ there is a root $a \subset \partial_{\text {Tits }} A$ and $a g \in U_{a}$ so that g fixes p_{0} but not p.

Proof. For each $\Delta_{m o d}^{t h}\left(p_{0}\right)$ root $h_{+} \subset \Sigma_{p_{0}} X$ we have a singular half-apartment $H_{+} \subset A$ with $\Sigma_{p_{0}} H_{+}=h_{+}$, and this gives us a root $a_{+}=\partial_{\text {Tits }} H_{+} \subset \partial_{\text {Tits }} X$, the root group U_{a+}, and the subgroup $V_{a+} \subset U_{a_{+}}$fixing p_{0}. By lemma 4.10.3, the image of $V_{a_{+}}$in $A u t\left(\Sigma_{p_{0}} X, \Delta_{m o d}^{t h}\left(p_{0}\right)\right)$ is the root group $U_{h_{+}}$. Since $\left(\Sigma_{p_{0}} X, \Delta_{m o d}^{t h}\left(p_{0}\right)\right)$ is Moufang, the group $G_{p_{0}}$ generated by the $V_{h_{+}}$'s as h_{+} runs over all $\Delta_{m o d}^{t h}\left(p_{0}\right)$ roots in $\Sigma_{p} A$ acts transitively on $\Delta_{m o d}^{t h}\left(p_{0}\right)$ chambers in $\Sigma_{p_{0}} X$ (see 3.12.2). If $p \in X-p_{0}$ is fixed by every $V_{a_{+}}$, then $\overrightarrow{p_{0} p} \in \Sigma_{p_{0}} X$ is fixed by $G_{p_{0}}$, which means that it lies in every $\Delta_{m o d}^{t h}\left(p_{0}\right)$ chamber of $\Sigma_{p_{0}} X$, forcing $\overrightarrow{p_{0} p} \in \Sigma_{p_{0}} A$. Hence the point $q \in A$ nearest p is different from p_{0}, so we may find a singular half-apartment $H_{+} \subset A$ containing p_{0} but not q (because p_{0} is a spot), and use the root group $U_{\partial_{T i t s} H_{+}}$to move q while fixing H_{+}. This contradicts the assumption that p is fixed by every $V_{a_{+}}$.

Proposition 4.10.6 Let X be a thick, nonflat Euclidean building of rank at least two, and suppose $\partial_{\text {Tits }} X$ is an irreducible Moufang spherical building. Let $G \subset A u t\left(\partial_{\text {Tits }} X, \Delta_{\text {mod }}\right)$ be the subgroup generated by the root groups of $\partial_{\text {Tits }} X$, and consider the isometric action of G on X.

1. The fixed point set of a maximal bounded subgroup $M \subset G$ is a spot, and the stabilizer of a spot is a maximal bounded subgroup.
2. A spot $p \in X$ lies in the apartment $A \subset X$ iff p is the unique spot in X which is fixed by the stabilizer of p in U_{a} for every root $a \subset \partial_{\text {Tits }} A$.
3. If $A \subset X$ is an apartment, and $a \subset \partial_{\text {Tits }} A$ is a root, then as g runs through all non-trivial elements of U_{a}, we obtain all singular half-apartments $H \subset A$ with $\partial_{\text {Tits }} H=a$ as subsets $A \cap \operatorname{Fix}(g)$.

Proof. Let $M \subseteq G$ be a maximal bounded subgroup. By the Bruhat-Tits fixed point theorem [BT], M has a nonempty fixed-point set $F i x(M)$. $\operatorname{Fix}(M)$ contains a spot since when $W_{a f f}$ is discrete the fixed point set of a group of building automorphisms is a subcomplex. By lemma 4.10.5, we see that if $p_{0} \in \operatorname{Fix}(M)$, then maximality of M forces $\operatorname{Fix}(M)=\left\{p_{0}\right\}$. Conversely, if $p_{0} \in X$ is a spot, then the stabilizer of p_{0} has fixed point set $\left\{p_{0}\right\}$ by lemma 4.10.5, and by the Bruhat-Tits fixed point theorem, the stabilizer is a maximal bounded subgroup.

For every $p \in X$ and every apartment $A \subset X$, let $G(p, A)$ be the group generated by the stabilizers of p in the root groups U_{a}, where $a \subset \partial_{T i t s} A$ is a root. If $p \in A \subset X$ is a spot, then by lemma 4.10.5 we have $\operatorname{Fix}(G(p, A))=\{p\}$. If $p \notin A \subset X$, then the nearest point $p_{0} \in A$ to p is contained in $\operatorname{Fix}(G(p, A))$ by lemma 4.10.2; hence $\operatorname{Fix}(G(p, A))$ contains a spot other than p_{0}.

Claim 3 follows from property 2 of proposition 4.10.1, the fact that $\partial_{\text {Tits }} X$ is Moufang, and the fact that every singular half-apartment is the intersection of two apartments.

Definition 4.10.7 If $A \subset X$ is an apartment, then the half-apartment topology on $\operatorname{Spot}(A)$ is the topology generated by open singular half-apartments contained in A.

With the half-apartment topology, $\operatorname{Spot}(A)$ is discrete when $W_{a f f}$ is discrete and coincides with the metric topology when $W_{a f f}$ has dense orbit.

5 Asymptotic cones of symmetric spaces and Euclidean buildings

In this section we arrive at the heart of the geometric part in the proof of our main results. We show that asymptotic cones of symmetric spaces and ultralimits of sequences of Euclidean buildings (of bounded rank) are Euclidean buildings.

Our main motivation for choosing the Euclidean building axiomatisation EB1-4 is that these axioms behave well with respect to ultralimits. Indeed, the Euclidean building axioms EB1, EB3 and EB4 which are also satisfied by symmetric spaces, i.e. the existence of $\Delta_{m o d}$-directions and an apartment atlas, pass directly to ultralimits. However, unlike Euclidean buildings, symmetric spaces do not satisfy the angle rigidity axiom EB2. The verification of EB2 for ultralimits of symmetric spaces (lemma 5.2.2) is the only technical point and, as opposed to the building case (lemma 5.1.2), non-trivial. Symmetric spaces satisfy angle rigidity merely at infinity; their Tits boundaries are spherical buildings. Intuitively speaking, the rescaling process involved in forming ultralimits pulls the spherical building structure (the missing angle rigidity property) from infinity to the spaces of directions.

5.1 Ultralimits of Euclidean buildings are Euclidean buildings

Theorem 5.1.1 Let $X_{n}, n \in \mathbb{N}$, be Euclidean buildings with the same anisotropy polyhedron $\Delta_{m o d}$. Then, for any sequence of basepoints $\star_{n} \in X_{n}$, the ultralimit $\left(X_{\omega}, \star_{\omega}\right)=\omega-\lim \left(X_{n}, \star_{n}\right)$ admits a Euclidean building structure with anisotropy polyhedron $\Delta_{\text {mod }}$.

Proof. X_{ω} is a Hadamard space (lemma 2.4.4). A Euclidean building structure on X_{ω} consists of an assignment of $\Delta_{m o d}$-directions for segments (axioms EB1 +EB 2) and of an atlas of compatible charts for apartments (axioms EB3+EB4), cf. section 4.1.2. We assume that X has no Euclidean deRham factor. The general case allowing a Euclidean deRham factor is a trivial consequence.

EB1: We can assign a $\Delta_{m o d}$-direction to an oriented geodesic segment in X_{ω} as follows. A segment $\overline{x_{\omega} y_{\omega}}$ arises as ultralimit of a sequence of segments $\overline{x_{n} y_{n}}$ in X, and we define the direction as:

$$
\begin{equation*}
\theta\left(\overline{x_{\omega} y_{\omega}}\right):=\omega-\lim _{n} \theta\left(\overline{x_{n} y_{n}}\right) \in \Delta_{\text {mod }} \tag{37}
\end{equation*}
$$

The ultralimit (37) exists because $\Delta_{m o d}$ is compact. Inequality (28) in EB1 passes to the ultralimit:

$$
d_{\Delta_{m o d}}\left(\omega-\lim \theta\left(\overline{x_{n} y_{n}}\right), \omega-\lim \theta\left(\overline{x_{n} z_{n}}\right)\right) \leq \tilde{L}_{x_{\omega}}\left(y_{\omega}, z_{\omega}\right)
$$

This implies that the left-hand side of (37) is well-defined and

$$
d_{\Delta_{\text {mod }}}\left(\theta\left(\overline{x_{\omega} y_{\omega}}\right), \theta\left(\overline{x_{\omega} z_{\omega}}\right)\right) \leq \tilde{Z}_{x_{\omega}}\left(y_{\omega}, z_{\omega}\right)
$$

Thus axiom EB1 holds. EB1 implies lemma 4.1.1. Therefore, segments which contain a given segment have the same $\Delta_{m o d}$-direction and we can assign $\Delta_{m o d}$-directions to geodesic rays.
$E B 2$: Since geodesics are extendible in X_{ω}, it suffices to show:
Lemma 5.1.2 If $x_{\omega} \in X_{\omega}$ and $\xi_{\omega}, \eta_{\omega} \in \partial_{\text {Tits }} X_{\omega}$ then $\angle_{x_{\omega}}\left(\xi_{\omega}, \eta_{\omega}\right)$ is contained in $D:=D\left(\theta\left(\overline{x_{\omega} \xi_{\omega}}\right), \theta\left(\overline{x_{\omega} \eta_{\omega}}\right)\right)$.

Proof. The rays $\overline{x_{\omega} \xi_{\omega}}$ and $\overline{x_{\omega} \eta_{\omega}}$ are ultralimits of sequences of rays $\overline{x_{n} \xi_{n}}$ and $\overline{x_{n} \eta_{n}}$ in X_{n} and we can choose $\xi_{n}, \eta_{n} \in \partial_{\text {Tits }} X_{n}$ so that $\theta\left(\xi_{n}\right)=\theta\left(\overline{x_{\omega} \xi_{\omega}}\right)$ and $\theta\left(\eta_{n}\right)=\theta\left(\overline{x_{\omega} \eta_{\omega}}\right)$. Let $\rho_{n}:[0, \infty) \rightarrow X_{n}$ be a unit speed parametrisation for the geodesic ray $\overline{x_{n} \xi_{n}}$. The angle $\angle_{\rho_{n}(t)}\left(\xi_{n}, \eta_{n}\right)$ is non-decreasing and continuous from the right in t (lemma 2.1.5) and, since X_{n} satisfies EB2, takes values in the finite set D. For $d \in D$ set $t_{n}(d):=\min \left\{t \geq 0: \angle_{\rho_{n}(t)}\left(\xi_{n}, \eta_{n}\right) \geq d\right\} \in[0, \infty]$ and $t_{\omega}(d):=\omega-\lim t_{n}(d)$. Then there exist $d_{0} \in D$ and $T>0$ with $t_{\omega}\left(d_{0}\right)=0$ and $2 T \leq t_{\omega}(d)$ for all $d>d_{0}$. The points $x_{n}^{\prime}:=\rho_{n}\left(t_{n}\left(d_{0}\right)\right)$ and $x_{n}^{\prime \prime}:=\rho_{n}(T)$ satisfy for ω-all $n: x_{\omega}^{\prime}:=\omega$ - $\lim x_{n}^{\prime}=x_{\omega}, x_{\omega}^{\prime \prime}:=\omega$ - $\lim x_{n}^{\prime \prime} \neq x_{\omega}$ and the ideal triangle $\Delta\left(x_{n}^{\prime}, x_{n}^{\prime \prime}, \eta_{n}\right)$ has angle sum π. By a version of the Triangle Filling Lemma 2.1.4 for ideal triangles in Hadamard spaces, $\Delta\left(x_{n}^{\prime}, x_{n}^{\prime \prime}, \eta_{n}\right)$ can be filled in by a semi-infinite flat strip S_{n}. The ultralimit ω-lim S_{n} is a semi-infinite flat strip filling in the ideal triangle $\Delta\left(x_{\omega}, x_{\omega}^{\prime \prime}, \eta_{\omega}\right)$ and therefore $\angle_{x_{\omega}}\left(\xi_{\omega}, \eta_{\omega}\right)=\omega-\lim \angle_{x_{n}^{\prime}}\left(\xi_{n}, \eta_{n}\right)=d_{0} \in D$, as desired.
$E B 3$ and EB4: After enlarging the affine Weyl groups of the model Coxeter complexes of the buildings X_{n}, we may assume that the X_{n} are modelled on the same Euclidean Coxeter complex $\left(E, W_{a f f}\right)$ whose affine Weyl group $W_{a f f}$ contains the full translation subgroup of $\operatorname{Isom}(E)$, i.e. $\rho^{-1}(W)=W_{a f f}$ where $\rho: \operatorname{Isom}(E) \rightarrow \operatorname{Isom}\left(\partial_{\text {Tits }} E\right)$ is the canonical homomorphism (26) associating to an affine isometry its rotational part. (Here we use that the X_{n} don't have Euclidean factors.)

The atlases \mathcal{A}_{n} for the building structures on X_{n} give rise to an atlas for a building structure on X_{ω} as follows: If $\iota_{n} \in \mathcal{A}_{n}$ are charts for apartments in X_{n} so that $\omega-\lim d\left(\iota_{n}(e), \star_{n}\right)<\infty$ for (one and hence) each point $e \in E$, then the ultralimit $\iota_{\omega}:=\omega-\lim \iota_{n}: E \rightarrow X_{\omega}$ is an isometric embedding which parametrises a flat in X_{ω}. The collection \mathcal{A}_{ω} of all such embeddings ι_{ω} satisfies axiom EB3 in view of lemma 2.4.4. Axiom EB4 holds trivially, because coordinate changes $\iota_{\omega}^{-1} \circ \iota_{\omega}^{\prime}$ between charts $\iota_{\omega}, \iota_{\omega}^{\prime} \in \mathcal{A}_{\omega}$ are $\Delta_{\text {mod }}$-direction preserving isometries between convex subsets of E and such isometries are induced by isometries in $\rho^{-1}(W)=W_{a f f}$. Hence \mathcal{A}_{ω} is an atlas for a Euclidean building struture on X_{ω} with model Coxeter complex ($E, W_{a f f}$), and the proof of the theorem is complete.

Corollary 5.1.3 Let X be a Euclidean building modelled on the Coxeter complex ($E, W_{a f f}$) and denote by $\hat{W}_{a f f}$ the subgroup of Isom (E) generated by $W_{a f f}$ and all translations which preserve the de Rham decomposition of $\left(E, W_{a f f}\right)$ and act trivially on the Euclidean de Rham factor. Then any asymptotic cone X_{ω} inherits a Euclidean building structure modelled on ($E, \hat{W}_{a f f}$). The building X_{ω} is thick if X is thick and the affine Weyl group $W_{a f f}$ is cocompact.

Proof. $\quad X_{\omega}=\omega-\lim \left(X_{n}, *_{n}\right)$ where the λ_{n} are scale factors with ω - $\lim \lambda_{n}=0, X_{n}$ is the rescaled building $\lambda_{n} X_{n}$ and $*_{n} \in X_{n}$ are base points. X_{ω} inherits the Euclidean building structure modelled on ($E, \hat{W}_{a f f}$) which was constructed in the proof of the previous theorem.

Suppose now in addition that X is thick and $W_{a f f}$ is cocompact. Then any wall $w_{n} \subset X_{n}$ branches, i.e. there are half-apartments $H_{n i} \subset X_{n}, i=1,2,3$, so that the intersection of any two of them equals w_{n} and the union of any two of them is an apartment (lemma 4.8.2). If a sequence of walls w_{n} satisfies ω - $\lim d\left(w_{n}, \star_{n}\right)<\infty$, it follows that the ultralimit of the sequence $\left(w_{n}\right)$ is a branching wall in X_{ω}. Since $W_{a f f}$ is cocompact by assumption, there is a positive number d so that any flat in X, whose ideal boundary is a wall in $\partial_{\text {Tits }} X$, lies within distance at most d from a branching wall in X. In view of ω - $\lim \lambda_{n}=0$, this implies that any flat in X_{ω}, whose ideal boundary is a wall in $\partial_{T i t s} X_{\omega}$, is a branching wall. Thus, the Euclidean building structure on X_{ω} is thick.

5.2 Asymptotic cones of symmetric spaces are Euclidean buildings

We start by recalling some well-known facts from the geometry of symmetric spaces which will be needed later; as references for this material may serve [BGS, Eb].

Let X be a symmetric space of noncompact type. In particular, X is a Hadamard manifold, i.e. a complete simply-connected Riemannian manifold of nonpositive sectional curvature. To simplify language, we assume that X has no Euclidean factor. The identity component G of the isometry group of X is a semisimple Lie group and acts transitively on X. A k-flat in X is a totally geodesic submanifold isometric to Euclidean k-space. We recall that G acts transitively on the family of maximal flats. In particular, any two maximal flats in X have the same dimension r; it is called the rank of X. We will call the maximal flats also apartments. Pick an apartment E in X and let $W_{a f f}$ be the quotient of the set-wise stabiliser $\operatorname{Stab}_{G}(E)$ by the point-wise stabiliser $F i x_{G}(E)$. Then $W_{a f f}$ can be identified with a subgroup of $\operatorname{Isom}(E)$. This subgroup is generated by reflections at hyperplanes and contains the full translation group. We call ($E, W_{a f f}$) the Euclidean Coxeter complex associated to X. Its isomorphism type does not depend on the choice of E, because G acts transitively on apartments. Consider the collection of all isometric embeddings $\iota: E \rightarrow X$ so that $W_{a f f}$ is identified with $\operatorname{Stab}_{G}(\iota(E)) / \operatorname{Norm}_{G}(\iota(E))$. Walls, singular flats, Weyl chambers et cetera are defined as images of corresponding objects in E via the maps ι. Note that the singular flats are precisely the intersections of apartments. The induced isometric embeddings $\partial_{\text {Tits }} \iota: \partial_{\text {Tits }} E \rightarrow \partial_{\text {Tits }} X$ form an atlas for a thick spherical building structure on $\partial_{\text {Tits }} X$ modelled on the spherical Coxeter complex $\left(\partial_{\text {Tits }} E, W\right)=\partial_{\text {Tits }}\left(E, W_{a f f}\right) . \quad W$ is isomorphic to the Weyl group of the symmetric space X. Composing the anisotropy map $\theta_{\partial_{T i t s} X}: \partial_{\text {Tits }} X \rightarrow \Delta_{\text {mod }}$ with the map $S X \rightarrow \partial_{\text {Tits }} X$ which assigns to every unit vector v the ideal endpoint of the geodesic ray $t \mapsto \exp (t v)$ one obtains a natural map

$$
\begin{equation*}
\theta: S X \rightarrow \Delta_{\bmod } \tag{38}
\end{equation*}
$$

from the unit sphere bundle of X to the anisotropy polyhedron $\Delta_{m o d}$. We will call $\theta(v)$ the $\Delta_{m o d^{-}}$ direction of $v \in S X ; \Delta_{\text {mod }}$-directions of oriented segments, rays and geodesics are defined as the $\Delta_{m o d}$-direction of the velocity vectors for a unit speed parametrisation. The orbits for the natural G-action on $S X$ are precisely the inverse images under θ of points. Let $S_{p} X$ be the unit sphere at $p \in X$, equipped with the angular metric, and let G_{p} be the isotropy group of p. Then θ induces a canonical isometry $S_{p} / G_{p} \simeq \Delta_{\text {mod }}$ where S_{p} / G_{p} is equipped with the orbital distance metric. The quotient $\operatorname{map} S_{p} X \rightarrow \Delta_{\text {mod }}$ is 1-Lipschitz and, for any $x, y \in X$ we have the following counterpart to inequality (28):

$$
\begin{equation*}
d_{\Delta_{\text {mod }}}(\theta(\overrightarrow{p x}), \theta(\overrightarrow{p y})) \leq \angle_{p}(x, y) \leq \tilde{\angle}_{p}(x, y) \tag{39}
\end{equation*}
$$

The goal of this section is to prove the following theorem.
Theorem 5.2.1 Let X be a non-empty symmetric space with associated Euclidean Coxeter complex $\left(E, W_{a f f}\right)$. Then, for any sequence of base points $*_{n} \in X$ and scale factors λ_{n} with ω-lim $\lambda_{n}=0$, the asymptotic cone $X_{\omega}=\omega-\lim \left(\lambda_{n} X, *_{n}\right)$ is a thick Euclidean building modelled on $\left(E, W_{a f f}\right)$. Moreover, X_{ω} is homogeneous, i.e. has transitive isometry group.

Proof. EB1: Let $\Delta_{m o d}$ be the anisotropy polyhedron for $\left(E, W_{a f f}\right)$. The construction of $\Delta_{m o d}{ }^{-}$ directions for segments in X_{ω} is the same as in the building case. We define directions by (37) and (39) implies that the definition is good and that EB1 holds.

EB3 and EB4: The Euclidean Coxeter complex $\left(E, W_{a f f}\right)$ is invariant under rescaling, because $W_{a f f} \subset \operatorname{Isom}(E)$ contains all translations. Apartments in X_{ω} and their charts arise as ultralimits
of sequences of apartments and charts in X, and axioms EB3 and EB4 follow as in the building case, cf. section 5.1.

EB2: The only nontrivial task is to verify the angle rigidity axiom EB2. This will be done in the following lemma.

Lemma 5.2.2 If $p \in X_{\omega}$ and $x_{1}, x_{2} \in X_{\omega}-\{p\}$, then $\angle_{p}\left(x_{1}, x_{2}\right) \in D\left(\theta\left(\overline{p x_{1}}\right), \theta\left(\overline{p x_{2}}\right)\right)$.
Proof. If $z_{k}^{\prime} \in \overline{p x_{1}}-p$ and $z_{k}^{\prime} \rightarrow p$, then $\angle_{z_{k}^{\prime}}\left(x_{1}, x_{2}\right) \rightarrow \angle_{p}\left(x_{1}, x_{2}\right)$ and $\angle_{z_{k}^{\prime}}\left(p, x_{2}\right) \rightarrow \pi-\angle_{p}\left(x_{1}, x_{2}\right)$ by lemma 2.1.5. Since $\theta\left(\overline{z_{k}^{\prime} x_{2}}\right) \rightarrow \theta\left(\overline{p_{2}}\right)$ we can find $x_{1 k}^{\prime} \in \overline{z_{k}^{\prime} x_{1}}, x_{2 k}^{\prime} \in \overline{z_{k}^{\prime} x_{2}}$, and $p_{k}^{\prime} \in \overline{z_{k}^{\prime} p}$ such that $\tilde{L}_{z_{k}^{\prime}}\left(x_{1 k}^{\prime}, x_{2 k}^{\prime}\right) \rightarrow \angle_{p}\left(x_{1}, x_{2}\right), \tilde{L}_{z_{k}^{\prime}}\left(p_{k}^{\prime}, x_{2 k}^{\prime}\right) \rightarrow \pi-\angle_{p}\left(x_{1}, x_{2}\right)$, and $\theta\left(\overline{z_{k}^{\prime} x_{2 k}^{\prime}}\right)=\theta\left(\overline{z_{k}^{\prime} x_{2}}\right) \rightarrow \theta\left(\overline{p x_{2}}\right)$. Since geodesic segments in X_{ω} are ultralimits of geodesic segments in $\lambda_{n} X$, we can find sequences $p_{k}, x_{1 k}, x_{2 k}, z_{k} \in X$ such that $z_{k} \in \overline{p_{k} x_{1 k}}, \tilde{L}_{z_{k}}\left(x_{1 k}, x_{2 k}\right) \rightarrow \angle_{p}\left(x_{1}, x_{2}\right), \tilde{L}_{z_{k}}\left(p_{k}, x_{2 k}\right) \rightarrow \pi-\angle_{p}\left(x_{1}, x_{2}\right)$, $\theta\left(\overline{z_{k} x_{2 k}}\right) \rightarrow \theta\left(\overline{p x_{2}}\right), \theta\left(\overline{p_{k} x_{1 k}}\right) \rightarrow \theta\left(\overline{p x_{1}}\right)$, and finally $\left|z_{k} x_{1 k}\right|,\left|z_{k} x_{2 k}\right|,\left|z_{k} p_{k}\right| \rightarrow \infty$. Applying a sequence of elements $g_{k} \in G=(\operatorname{Isom}(X))^{o}$ we may assume in addition that z_{k} is a constant sequence, $z_{k} \equiv o$. Hence the sequences of segments $\overline{o x_{1 k}}, \overline{o x_{2 k}}, \overline{o p_{k}}$ subconverge to rays $\overline{o \xi_{1}}, \overline{o \xi_{2}}$, and $\overline{o \eta}$ respectively, which satisfy the following properties:

1. $\theta_{\partial_{T i t s} X}\left(\xi_{i}\right)=\theta\left(\overline{o \xi_{i}}\right)=\theta\left(\overline{p x_{i}}\right)$
2. $\angle_{\text {Tits }}\left(\xi_{1}, \xi_{2}\right) \leq \angle_{p}\left(x_{1}, x_{2}\right), \angle_{\text {Tits }}\left(\eta, \xi_{2}\right) \leq \pi-\angle_{p}\left(x_{1}, x_{2}\right)$ by lemma 2.3.1.
3. $\overline{o \xi_{1}} \cup \overline{o \eta}$ is a geodesic, so $\angle_{\text {Tits }}\left(\xi_{1}, \eta\right)=\pi$.

We conclude that

$$
\angle_{p}\left(x_{1}, x_{2}\right)=\angle_{\text {Tits }}\left(\xi_{1}, \xi_{2}\right) \in D\left(\theta\left(\xi_{1}\right), \theta\left(\xi_{2}\right)\right)=D\left(\theta\left(\overline{p x_{1}}\right), \theta\left(\overline{p x_{2}}\right)\right)
$$

as desired.
Hence we have constructed a Euclidean building struture on X_{ω}. Since G acts transitively on Weyl chambers in X, it follows that the isometry group of X_{ω} acts transitively on Weyl chambers in X_{ω}; in particular, X_{ω} is homogeneous. To see that the building structure on X_{ω} is thick it is therefore enough to check that the induced spherical building structure of $\Sigma_{*_{\omega}} X_{\omega}$ modelled on $\left(\partial_{T i t s} E, W\right)$ is thick. One way to see this is to construct a canonical isometric embedding α of the thick spherical building $\partial_{\text {Tits }} X$ modelled on $\left(\partial_{T i t s} E, W\right)$ into $\Sigma_{*_{\omega}} X_{\omega}$ by assigning to $\xi \in \partial_{\text {Tits }} X$ the initial direction in $*_{\omega}$ of the geodesic ray ω - $\lim \overline{*_{n} \xi}$ in X_{ω}. That α is isometric follows, for instance, from the definition (8) of the Tits distance. This finishes the proof of the theorem.

6 The topology of Euclidean buildings

In this section, X will denote a rank r Euclidean building. The main goal in this section is to understand homeomorphisms of X. As motivation for the approach taken here, consider a closed interval I topologically embedded in an \mathbb{R}-tree T. Because every interior point $p \in I-\partial I$ of the interval disconnects T, every path $c:[0,1] \longrightarrow T$ joining the endpoints of I must pass through p, i.e. $c([0,1]) \supseteq I$. A similar phenomenon occurs in X if we consider topological embeddings of closed balls $B \subset X$ of dimension equal to $\operatorname{rank}(X)$: if $[c] \in H_{r}(X, \partial B)$ and $[\partial c] \in H_{r-1}(\partial B)$ is the fundamental class of ∂B, then the image of the chain c contains B. By using 4.6.8, we can construct such c so that $\operatorname{Image}(c)-U$ is contained in finitely many flats, where U is any given neighborhood of ∂B. It follows that any $b \in B-\partial B$ has a neighborhood V_{b} in X such that $B \cap V_{b}$ is contained in finitely many flats.

6.1 Straightening simplices

If Z is a Hadamard space, there is a natural way to "straighten" singular simplices $\sigma: \Delta_{k} \longrightarrow Z$ (cf. [Thu]). Using the usual ordering on the vertices of the standard simplex, we define the straightened simplex $\operatorname{Str}(\sigma)$ by "coning": if $\operatorname{Str}\left(\left.\sigma\right|_{\Delta_{k-1}}\right)$ has been defined, then $\operatorname{Str}(\sigma)$ is fixed by the requirement that on each segment joining $p \in \Delta_{k-1}$ with the vertex opposite Δ_{k-1} in $\Delta_{k}, \operatorname{Str}(\sigma)$ restricts to a constant speed geodesic. $\operatorname{Str}(\sigma)$ lies in the convex hull of the vertices of σ. This straightening operation induces a chain equivalence on $C_{*}(Z)$. By using the geodesic homotopy between $\operatorname{Str}(\sigma)$ and σ, one constructs a chain homotopy H from the chain map $S t r$ to the identity with the property that $\operatorname{Image}(H(\sigma)) \subseteq$ ConvexHull $(\operatorname{Image}(\sigma))$ for any singular simplex σ.

When Z is the Euclidean building X, then it follows from lemma 4.6 .8 that for every singular chain $c \in C_{k}(\operatorname{Cone}(X))$, Image $(\operatorname{Str}(c))$ is contained in finitely many apartments.

Corollary 6.1.1 If $V \subseteq U \subseteq X$ are open sets, then $H_{k}(U, V)=0$ for every $k>r=\operatorname{rank}(X)$.
Proof. If $[c] \in H_{k}(U, V)$, then after barycentrically subdividing if necessary, we may assume that the convex hull of every singular simplex in c (respectively ∂c) lies in U (respectively V). The straightened chain $\operatorname{Str}(c)$ determines the same relative class as c since $\operatorname{Image}(H(c)) \subset U, \operatorname{Image}(H(\partial c)) \subset V$ and

$$
S t r(c)-c=\partial H(c)+H(\partial c)
$$

But the straightened chain is carried by a finite union of apartments (corollary 4.6.8), which is a polyhedron of dimension $\operatorname{rank}(X)$, so $[\operatorname{Str}(c)]=[c]=0$.

Lemma 6.1.2 Let Z be a regular topological space, and assume that $H_{k}\left(U_{1}, U_{2}\right)=0$ for every pair of open subsets $U_{2} \subseteq U_{1} \subseteq Z, k>r$. If $Y \subseteq Z$ is a closed neighborhood retract and $U \subset Z$ is open, then the homomorphism $H_{r}(Y, Y \cap U) \longrightarrow H_{r}(Z, U)$ induced by the inclusion is a monomorphism. In particular, the inclusion $Y \longrightarrow Z$ induces a monomorphism $H_{r}(Y, Y-y) \rightarrow H_{r}(Z, Z-y)$ of local homology groups for every $y \in Y$.

Proof. If $\left[c_{1}\right] \in H_{r}(Y, Y \cap U)$, then there is a compact pair $\left(K_{1}, K_{2}\right) \subseteq(Y, Y \cap U)$ and $\left[c_{2}\right] \in$ $H_{r}\left(K_{1}, K_{2}\right)$ so that $i_{*}\left(\left[c_{2}\right]\right)=\left[c_{1}\right]$ where $i:\left(K_{1}, K_{2}\right) \longrightarrow(Y, Y \cap U)$ is the inclusion. If $\left[c_{1}\right]$ is in the kernel of $H_{r}(Y, Y \cap U) \longrightarrow H_{r}(Z, U)$ then there is a compact pair $\left(K_{1}, K_{2}\right) \subseteq\left(K_{3}, K_{4}\right) \subseteq(Z, U)$ such that $j_{*}\left(\left[c_{2}\right]\right)=0$, where $j:\left(K_{1}, K_{2}\right) \longrightarrow\left(K_{3}, K_{4}\right)$ is the inclusion.

Let $r: V \longrightarrow Y$ be a retraction, where V is an open neighborhood of Y in Z. Choose disjoint open sets $W_{1}, W_{2} \subset Z$ such that $Y-U \subseteq W_{1}, K_{4} \subseteq W_{2}$; this is possible since $Y-U$ is closed, K_{4} is compact, and Z is regular. Shrink V if necessary so that $r^{-1}(Y-U) \subset W_{1}$. We now have: $H_{r}(Y, Y \cap U) \longrightarrow H_{r}\left(V, r^{-1}(Y \cap U)\right)$ is a monomorphism since r is a retraction; $H_{r}\left(V, r^{-1}(Y \cap U)\right) \longrightarrow$ $H_{r}\left(V \cup W_{2}, r^{-1}(Y \cap U) \cup W_{2}\right)$ is an isomorphism by excision; $H_{r}\left(V \cup W_{2}, r^{-1}(Y \cap U) \cup W_{2}\right) \longrightarrow$ $H_{r}\left(Z, r^{-1}(Y \cap U) \cup W_{2}\right)$ is a monomorphism by the exact sequence of the triple $\left(Z, V \cup W_{2}, r^{-1}(Y \cap\right.$ $\left.U) \cup W_{2}\right)$ and $H_{r+1}\left(Z, V \cup W_{2}\right)=0$. It follows that $\left[c_{1}\right]=0$.

6.2 The Local structure of support sets

Recall that X denotes a rank r Euclidean building. Let Y be a subset of a topological space Z. If $[c] \in H_{k}(Z, Y)$, then we define $\operatorname{Support}(Z, Y,[c]) \subset Z-Y$ to be the set of points $z \in Z-Y$ such that the image of $[c]$ in the local homology group $H_{k}(Z, Z-\{z\})$ is nonzero. Support $(Z, Y,[c])$ is a closed subset in $Z-Y$, and contained in the image of the chain c.

Lemma 6.2.1 Let B be a topologically embedded closed r-ball in X, Y a subset containing ∂B, and denote by μ the image of a generator of $H_{r}(B, \partial B)$ induced by the inclusion $(B, \partial B) \rightarrow(X, Y)$. Then $\operatorname{Support}(X, Y, \mu)=B-Y$.

Proof. We may apply lemma 6.1.2 since B is a closed (absolute) neighborhood retract. Therefore $\operatorname{Support}(X, Y, \mu)$ coincides with $\operatorname{Support}(B, B \cap Y,[B])=B-Y$ where $[B]$ denotes the generator of $H_{r}(B, \partial B)$ which is mapped to μ.

Now let U be an open subset of X and consider $[c] \in H_{r}(X, U)$. After subdividing the chain c if necessary, we may assume that the convex hull of each simplex of ∂c is contained in U, so that $[\operatorname{Str}(c)]=[c]$. By 6.1, $c_{1}=\operatorname{Str}(c)$ is carried by a finite union of apartments \mathcal{P}, so $[c]$ is the image of $\left[c_{1}\right] \in H_{r}(\mathcal{P}, \mathcal{P} \cap U)$ under the inclusion $H_{r}(\mathcal{P}, \mathcal{P} \cap U) \longrightarrow H_{r}(X, U)$. Applying lemma 6.1.2 to the neighborhood retract \mathcal{P}, we find that the inclusion $\operatorname{Support}\left(\mathcal{P}, \mathcal{P} \cap U,\left[c_{1}\right]\right)$ in X coincides with $\operatorname{Support}(X, U,[c])$. Hence we have reduced the problem of understanding Support $(X, U,[c])$ to a problem about supports in the finite polyhedron \mathcal{P}.

Recall that $\Sigma_{p} X$ has a thick spherical building structure with anisotropy polyhedron $\Delta_{m o d}^{t h}(p)$ (see section 4.2.2).

Lemma 6.2.2 Pick $p \in \mathcal{P} \backslash \bar{U}$. When $\epsilon>0$ is sufficiently small, $\log _{p}$ maps $\operatorname{Support}(\mathcal{P}, \mathcal{P} \cap$ $\left.U,\left[c_{1}\right]\right) \cap B_{p}(\epsilon)$ isometrically to $\left(\cup_{i} C\left(C_{i}\right)\right) \cap B(\epsilon) \subset C\left(\Sigma_{p} X\right)=C_{p} X$, where the $C_{i} \subset \Sigma_{p} X$ are $\Delta_{\text {mod }}^{t h}(p)$ chambers and $C\left(C_{i}\right) \subset C_{p} X$ is the cone over C_{i}.

Proof. \mathcal{P} is a finite union of apartments, so by corollary 4.4 .3 when $\epsilon>0$ is sufficiently small $\log _{p}$ maps $\mathcal{P} \cap B_{p}(\epsilon)$ isometrically to $\left(\cup_{i} C_{p} A_{i}\right) \cap B(\epsilon) \subset C_{p} X$, where the $A_{i} \subset \mathcal{P}$ are the apartments passing through p. We may assume that $U \subset X \backslash \overline{B_{p}(\epsilon)}$. Then $\left[c_{1}\right]$ determines a class $\left[c_{2}\right] \in$ $H_{r}\left(\mathcal{P} \cap \overline{B_{p}(\epsilon)}, \mathcal{P} \cap \partial B_{p}(\epsilon)\right) . \cup_{i} \Sigma_{p} A_{i} \subset \Sigma_{p} X$ has a polyhedral structure induced by the thick building atlas $\mathcal{A}^{\text {th }}(p)$, and this induces a polyhedral structure on the pair $\left(\mathcal{P} \cap \overline{B_{p}(\epsilon)}, \mathcal{P} \cap \partial B_{p}(\epsilon)\right)$. The r-dimensional faces of this polyhedron are (truncated) cones over $\Delta_{m o d}^{t h}(p)$ chambers in the $\Delta_{m o d}^{t h}(p)$ subcomplex $\cup_{i} \Sigma_{p} A_{i} \subset \Sigma_{p} X$. Hence the lemma follows from elementary homology theory.

Corollary 6.2.3 If B is a topologically embedded r-ball in X, then for every $p \in X \backslash \partial B$ there are finitely many $\Delta_{m o d}^{\text {th }}(p)$ chambers $C_{i} \subset \Sigma_{p} X$ so that $\log _{p}$ maps $B \cap B_{p}(\epsilon)$ isometrically to $\left(\cup_{i} C\left(C_{i}\right)\right) \cap$ $B(\epsilon) \subset C_{p} X$ for sufficiently small $\epsilon>0$.

Proof. Let $\mu \in H_{r}(B, \partial B)$ be the relative fundamental class. Then $\operatorname{Support}(X, \partial B,[\mu])=B \backslash \partial B$ by lemma 6.2.1, and the corollary follows from lemma 6.2.2.

6.3 The topological characterization of the link

If Z is a topological space and $z \in Z$, then we say that two subsets $S_{1}, S_{2} \subset Z$ have the same germ at z if $S_{1} \cap N=S_{2} \cap N$ for some neighborhood N of z. The equivalence classes of subsets with the same germ at z will be denoted $\operatorname{Germ}_{z}(Z)$.

Pick a point x in the rank r Euclidean building X. Consider the collection $\mathcal{S}_{1}(x)$ of germs of topological embeddings of \mathbb{R}^{r} passing through $x \in X$. Let $\mathcal{S}_{2}(x)$ be the lattice of germs generated by $\mathcal{S}_{1}(x)$ under finite intersection and union.

Lemma 6.3.1 The lattice $\mathcal{S}_{2}(x)$ is naturally isomorphic to the lattice $\mathcal{K} \Sigma_{x} X$ generated by the $\Delta_{\text {mod }}^{t h}(x)$ faces of $\Sigma_{x} X$ under finite intersection and union.

Proof. By lemma 6.2 .2 we know that elements of $\mathcal{S}_{1}(x)$ correspond to finite unions of $\Delta_{m o d}^{\text {th }}(x)$ chambers in $\Sigma_{x} X$. Intersections of $\Delta_{m o d}^{t h}(x)$ chambers yield $\Delta_{m o d}^{t h}(x)$ faces of $\Sigma_{x} X$, so we have a well defined map of lattices $\Xi: \mathcal{S}_{2}(x) \longrightarrow \mathcal{K} \Sigma_{x} X$ by taking each element of $\mathcal{S}_{2}(x)$ to its space of directions at x (which is a finite union of $\Delta_{m o d}^{t h}(x)$ faces). Ξ is injective by Corollary 4.4.3. The image of Ξ contains the apartments in $\mathcal{K} \Sigma_{x} X$, and since $\left(\Sigma_{x} X, \mathcal{A}^{t h}\right)$ is a thick spherical building every $\Delta_{m o d}^{t h}(x)$ face of $\Sigma_{x} X$ is an intersection of apartments, and hence Ξ is onto.

6.4 Rigidity of homeomorphisms

In this section we prove the following results about homeomorphisms of Euclidean buildings:
Proposition 6.4.1 A homeomorphism of Euclidean buildings carries apartments to apartments.
Note that homeomorphic Euclidean buildings must have the same rank since the rank is the highest dimension where local homology groups don't vanish.

Theorem 6.4.2 Let X, X^{\prime} be thick Euclidean buildings with topologically transitive affine Weyl group and $\phi: Y=X \times \mathbb{E}^{n} \rightarrow Y^{\prime}=X^{\prime} \times \mathbb{E}^{n^{\prime}}$ a homeomorphism. Then $n=n^{\prime}$, and ϕ carries fibers of the projection $Y \rightarrow X$ to fibers of the projection $Y^{\prime} \rightarrow X^{\prime}$ inducing a homeomorphism $\bar{\phi}: X \rightarrow X^{\prime}$.

Theorem 6.4.3 Let $X=\prod_{i=1}^{k} X_{i}, X^{\prime}=\prod_{i=1}^{l} X_{i}^{\prime}$ be thick Euclidean buildings with topologically transitive affine Weyl groups, and irreducible factors X_{i}, X_{j}^{\prime}. Then a homeomorphism $\phi: X \rightarrow X^{\prime}$ preserves the product structure.

Theorem 6.4.4 Let X, X^{\prime} be irreducible thick Euclidean buildings with topologically transitive affine Weyl group, and suppose $\operatorname{rank}(X) \geq 2$. Then any homeomorphism $X \longrightarrow X^{\prime}$ is a homothety.

6.4.1 The induced action on links

Let X, X^{\prime} be Euclidean buildings, and let $\phi: X \longrightarrow X^{\prime}$ be a homeomorphism. Pick a point x in X, and set $x^{\prime}=\phi(x) \in X^{\prime}$. The homeomorphism ϕ induces an isomorphism of lattices $\mathcal{S}_{2}(x) \rightarrow \mathcal{S}_{2}\left(x^{\prime}\right)$ (see section 6.3) and therefore a dimension preserving isomorphism $\mathcal{K} \phi_{x}: \mathcal{K} \Sigma_{x} X \longrightarrow \mathcal{K} \Sigma_{x^{\prime}} X^{\prime}$ of lattices. By proposition 3.8 .1 the lattice isomorphism $\mathcal{K} \phi_{x}$ is induced by an isometry $\Sigma_{x} \phi: \Sigma_{x} X \rightarrow$ $\Sigma_{x^{\prime}} X^{\prime}$.

6.4.2 Preservation of flats

Consider a singular k-flat F. Its germ at a point $x \in F$ is a subcomplex of $\mathcal{K} \Sigma_{x} X$. The image of this subcomplex L under $\mathcal{K} \phi_{x}$ is the subcomplex L^{\prime} associated to the germ of $\phi(F)$ in $\mathcal{K} \Sigma_{\phi(x)} X . L$ determines a standard $(k-1)$-sphere in $\Sigma_{x} X$. Since $\mathcal{K} \phi_{x}$ is induced by an isometry $\Sigma_{x} \phi: \Sigma_{x} X \rightarrow$ $\Sigma_{\phi(x)} X, L^{\prime}$ determines a standard $(k-1)$-sphere in $\Sigma_{\phi(x)} X$. This sphere is the space of directions of a singular k-flat $F^{\prime} . \phi(F)$ and F^{\prime} coincide locally, because their germs coincide. Hence $\phi(F)$ is a complete simply-connected metric space which is locally isometric to Euclidean k-space \mathbb{E}^{k}. Therefore, $\phi(F)$ is isometric to \mathbb{E}^{k}.

6.4.3 Homeomorphisms preserve the product structure

Let X, X^{\prime} be Euclidean buildings which decompose as products

$$
X=\prod_{i=1}^{k} X_{i}, \quad X^{\prime}=\prod_{i=1}^{l} X_{i}^{\prime}
$$

of thick irreducible Euclidean buildings X_{i}, X_{j}^{\prime} with almost transitive affine Weyl group. We have a corresponding decomposition of the spherical buildings $\Sigma_{x} X$ and $\Sigma_{x^{\prime}} X^{\prime}$ into joins of irreducible spherical buildings:

$$
\Sigma_{x} X=\circ \Sigma_{x_{i}} X_{i}, \quad \Sigma_{x^{\prime}} X^{\prime}=\circ \Sigma_{x_{i}^{\prime}} X_{i}^{\prime}
$$

We recall that this metric join decomposition is unique, cfproposition 3.3.3, and therefore for each $x \in X$ the isometry $\Sigma_{x} \phi: \Sigma_{x} X \rightarrow \Sigma_{\phi(x)} X^{\prime}$ decomposes as a join $\Sigma_{x} \phi=\circ \Sigma_{x} \phi_{i}$ of isometries $\Sigma_{x} \phi_{i}: \Sigma_{x_{i}} X_{i} \rightarrow \Sigma_{(\phi(x))_{i}} X_{\sigma(i)}^{\prime}$ where σ is a permutation of $\{1, \ldots, k\}$. In particular, X and X^{\prime} have the same number of irreducible factors. We claim that the permutation σ is independent of the point x. To see this, note that any two points $y, z \in X$ lie in an apartment A and consider the map between apartments $\left.\phi\right|_{A}: A \rightarrow \phi(A)$ (compare section 6.4.2). A parallel family of singular flats in A is carried by $\left.\phi\right|_{A}$ to a continuous family of singular flats in $\phi(A)$; since there are only finitely many parallel families of singular subspaces, we conclude by continuity that $\left.\phi\right|_{A}$ carries parallel singular flats to parallel singular flats. Consequently the permutation σ is independent of x as claimed. We assume without loss of generality that σ is the identity. Our discussion implies that a singular flat contained in a fiber of the projection $p_{i}: X \rightarrow X_{i}$ is carried by ϕ to a flat in a fiber of the projection $p_{i}^{\prime}: X^{\prime} \rightarrow X_{i}^{\prime}$. Therefore each fiber of the projection $p_{i}: X \rightarrow X_{i}$ is carried by ϕ to a fiber of the projection $p_{i}^{\prime}: X^{\prime} \rightarrow X_{i}^{\prime}$. Hence for each i there is a homeomorphism $\phi_{i}: X_{i} \rightarrow X_{i}^{\prime}$ such that $\phi_{i} \circ p_{i}=p_{i}^{\prime} \circ \phi$, and it follows that $\phi=\prod_{i} \phi_{i}$.

6.4.4 Homeomorphisms are homotheties in the irreducible higher rank case

Let X, X^{\prime} be as in theorem 6.4.4. Let A be an apartment in X and consider the foliations of A by parallel singular hyperplanes. Since X is irreducible of rank r, we can pick out $r+1$ of these foliations $\mathcal{H}_{0}, \ldots, \mathcal{H}_{r}$ such that the corresponding collection of roots is r-independent (i.e. every subset of r elements is linearly independent) (compare section 3.1). In fact, this property of the root system is equivalent to irreducibility.

The image of A under ϕ is an apartment A^{\prime} and the foliations \mathcal{H}_{i} are carried to foliations \mathcal{H}_{i}^{\prime} of A^{\prime} by parallel singular hyperplanes. Note that these are also r-independent, since any r-fold intersection of mutually non-parallel hyperplanes belonging to these foliations is a point. Choose affine coordinates x_{1}, \ldots, x_{r} for A such that the leaves of \mathcal{H}_{0} are level sets of $x_{1}+\cdots+x_{r}$ and the leaves of the foliation \mathcal{H}_{i} for $i \geq 1$ are level sets of x_{i}. Choose similar coordinates $x_{1}^{\prime}, \ldots, x_{r}^{\prime}$ on the target A^{\prime} so that $\phi\left(\left\{x_{i}=0\right\}\right)=\left\{x_{i}^{\prime}=0\right\}$ and $\phi\left(\left\{\sum x_{i}=1\right\}\right)=\left\{\sum x_{i}^{\prime}=1\right\}$. Consider those leaves in A which contain lattice points. Since ϕ maps leaves to leaves one sees by taking successive intersections of these leaves that ϕ carries lattice points to lattice points by a homomorphism. By the same reason ϕ induces a homomorphism on rational points and hence, by continuity, an \mathbb{R}-linear isomorphism.

We now know that $\left.\phi\right|_{A}: A \rightarrow A^{\prime}$ is an affine map preserving singular subspaces. Angles between singular subspaces are preserved, because the isomorphisms of simplicial complexes $\mathcal{K} \phi_{x}$ are induced by isometries. Hence the simplices $\left\{x_{i} \geq 0, \sum x_{i} \leq 1\right\}$ and $\left\{x_{i}^{\prime} \geq 0, \sum x_{i}^{\prime} \leq 1\right\}$ are homothetic and
ϕ is a homothety on A. By considering intersections of apartments one sees that the homothety factors are the same for all apartments. We conclude that ϕ is a homothety.

6.4.5 The case of Euclidean deRham factors

We now consider Hadamard spaces $X=Y \times \mathbb{E}^{n}$ where Y is a thick Euclidean building of rank $r-n$ with almost transitive affine Weyl group. Clearly lemma 4.6.7 continues to hold for X, and so do lemma 4.6.8 and the homological statements in section 6.1. Applying the reasoning from section 6.2 we conclude:

Lemma 6.4.5 Every topologically embedded r-ball in X is locally a finite union $\cup_{i} C_{i} \times \mathbb{E}^{n}$ where the $C_{i} \subset Y$ are Weyl chambers.

It follows that every closed subset of X which is homeomorphic to \mathbb{E}^{n} is a union of deRham fibers, since its intersection with each fiber of $p: X \rightarrow Y$ is open and closed in this fiber. If $x \in X$, we may characterize the fiber of $p: X \rightarrow Y$ passing through x as the intersection of all closed subsets homeomorphic to \mathbb{E}^{n} which contain x.

Now let $X^{\prime}=Y^{\prime} \times \mathbb{E}^{n^{\prime}}$, where Y^{\prime} is a thick building of rank $r^{\prime}-n^{\prime}$. If $\phi: X \rightarrow X^{\prime}$ is a homeomorphism, then we have $r=r^{\prime}$ by comparing local homology groups. Since the fibers of the projection maps $p: X \rightarrow Y, p^{\prime}: X^{\prime} \rightarrow Y^{\prime}$ are characterized topologically as above, we conclude that ϕ maps fibers of p homeomorphically onto fibers of p^{\prime}; therefore $n=n^{\prime}$ and ϕ induces a homeomorphism $\bar{\phi}: Y \rightarrow Y^{\prime}$ of quotient spaces.

7 Quasiflats in symmetric spaces and Euclidean buildings

In this section, X will be a Hadamard space which is a finite product of symmetric spaces and Euclidean buildings. We have a unique decomposition

$$
\begin{equation*}
X=\mathbb{E}^{n} \times \prod_{i} X_{i} \tag{40}
\end{equation*}
$$

where $n \in \mathbb{N}_{0}$ and the X_{i} are non-flat irreducible symmetric spaces or Euclidean buildings. The maximal Euclidean factor \mathbb{E}^{n} is called the Euclidean deRham factor. An apartment is by definition a maximal flat and splits as a product of apartments in the factors. All apartments in X have equal dimension and it is called the rank of X. Singular flats are defined as products of singular flats in the factors. If the building factors are thick, then singular flats can be characterized as finite intersections of apartments. Note that the only singular flat in \mathbb{E}^{n} is \mathbb{E}^{n} itself and hence every singular flat in X is a union of deRham fibers

7.1 Asymptotic apartments are close to apartments

Proposition 7.1.1 Let \mathcal{Q} be a family of subsets in X with the property that for any sequence of sets $Q_{n} \in \mathcal{Q}$, base points $q_{n} \in Q_{n}$, and scale factors d_{n} with ω-lim $d_{n}=\infty$, the ultralimit $\omega-\lim _{n}\left(\frac{1}{d_{n}} Q_{n}, q_{n}\right)$ is an apartment in the asymptotic cone ω-lim $\left(\frac{1}{d_{n}} X, q_{n}\right)$. Then there is a positive constant D so that any set $Q \in \mathcal{Q}$ is a D Hausdorff approximation of a maximal flat $F(Q)$ in X.

Proof. Let us consider a single set Q in \mathcal{Q} and choose a base point $q \in Q$. The ultralimit ω - $\lim \left(\frac{1}{n} Q, q\right)$ is an apartment in the asymptotic cone $\omega-\lim \left(\frac{1}{n} X, q\right)$ which contains the base point $*:=(q)$.

Step 1. We first show that Q is, in a sense to be made precise, quasi-convex in regular directions. Let $\overline{x_{\omega} y_{\omega}}$ be a regular segment in $\omega-\lim \left(\frac{1}{n} Q, q\right)$ which contains $*$ as interior point. $\overline{x_{\omega} y_{\omega}}$ is the ultralimit of a sequence of segments $\overline{x_{n} y_{n}}$ in X with endpoints $x_{n}, y_{n} \in Q$. There is a compact set $A \subset \operatorname{Int}\left(\Delta_{\bmod }\right)$ which contains the directions of ω-all segments $\overline{x_{n} y_{n}}$. Let F_{n} be a maximal flat containing the segment $\overline{x_{n} y_{n}}$. (F_{n} is unique for ω-all n.) Pick $\epsilon>0$ so that $d\left(A, \partial \Delta_{\text {mod }}\right)>\epsilon$. Denote by D_{n} the diamond-shaped subset of all points $p \in F_{n}$ so that $\angle_{x_{n}}\left(p, y_{n}\right) \leq \epsilon$ and $\angle_{y_{n}}\left(p, x_{n}\right) \leq \epsilon$.
Sublemma 7.1.2 There exists $r>0$ so that for ω-all n the sets D_{n} are contained in the tubular r-neighborhood of Q.

Proof. We prove this by contradiction: Choose a point $z_{n} \in D_{n}$ at maximal distance d_{n} from Q and assume that ω - $\lim d_{n}=\infty$. Then the asymptotic cone ω - $\lim \left(\frac{1}{d_{n}} X, z_{n}\right)=\operatorname{Cone}(X)$ contains the apartments $F^{\prime}:=\omega-\lim _{n} \frac{1}{d_{n}} F_{n}$ and $F^{\prime \prime}:=\omega-\lim _{n} \frac{1}{d_{n}} Q$. The point $z_{\omega}=\left(z_{n}\right)$ is contained in F^{\prime} but not in $F^{\prime \prime}$ and therefore F^{\prime} and $F^{\prime \prime}$ are distinct apartments in Cone (X). Let $\overline{z_{\omega} x_{\omega}^{\prime}}$ (respectively $\left.\overline{z_{\omega} y_{\omega}^{\prime}}\right)$ be the ultralimits of the sequences of segments $\overline{z_{n} x_{n}}$ (respectively $\overline{z_{n} y_{n}}$). By the choice of the points z_{n}, the points x_{ω}^{\prime} and y_{ω}^{\prime} are contained in $F^{\prime \prime} \cup \partial_{\infty} F^{\prime \prime}$. Since we can extend incoming geodesic segments in apartments according to 4.6.7, we may assume without loss of generality that $x_{\omega}^{\prime}, y_{\omega}^{\prime} \in \partial_{\infty} F^{\prime \prime}$. Let W_{1} and W_{2} be the Weyl chambers in Cone (X) centered at z_{ω} which are spanned by the rays $r_{1}:=\overline{z_{\omega} x_{\omega}^{\prime}}$ and $r_{2}:=\overline{z_{\omega} y_{\omega}^{\prime}}$. By the choice of ϵ and the definition of D_{n}, the rays r_{1} and r_{2} yield in the space of directions $\Sigma_{z_{\omega}} \operatorname{Cone}(X)$ interior points of antipodal chambers. Consequently, the union $W_{1} \cup W_{2}$ contains a regular geodesic c passing through z_{ω}. Since $\partial_{\infty} W_{i} \cap \partial_{\infty} F^{\prime \prime}$ contains the regular point $r_{i}(\infty)$, the chamber $\partial_{\infty} W_{i}$ is entirely contained in $\partial_{\infty} F^{\prime \prime}$. Thus the ideal endpoints $c(\pm \infty)$ of c are contained in $\partial_{\infty} F^{\prime \prime}$ and we conclude by 4.6 .4 that $c \subset F^{\prime \prime}$ and hence $z_{\omega} \in F^{\prime \prime}$, a contradiction.

Step 2. Suppose $q_{n} \in Q$ and ω - $\lim \frac{1}{n} d\left(q, q_{n}\right)=0$.
Sublemma 7.1.3 $\omega-\lim d\left(q_{n}, D_{n}\right)<\infty$.
Proof. The constant sequence q and the sequence q_{n} yield the same point in the ultralimit ω - $\lim \left(\frac{1}{n} X, q\right)$, which is an interior point of ω - $\lim \left(\frac{1}{n} D_{n}, q\right)$. Therefore

$$
\begin{equation*}
\omega-\lim \frac{d\left(q_{n}, D_{n}\right)}{d\left(q_{n}, F_{n} \backslash D_{n}\right)}=0 . \tag{41}
\end{equation*}
$$

If $\omega-\lim d\left(q_{n}, D_{n}\right)=\infty$, then $\dot{F}:=\omega-\lim \left(\frac{1}{d\left(q_{n}, D_{n}\right)} D_{n}, q_{n}\right) \subseteq \omega-\lim \left(\frac{1}{d\left(q_{n}, D_{n}\right)} F_{n}, q_{n}\right)$ is a complete apartment in $\omega-\lim \left(\frac{1}{d\left(q_{n}, D_{n}\right)} X, q_{n}\right)$ (by (41)) which lies at unit distance from $\omega-\lim q_{n} \in$ $\left(\frac{1}{d\left(q_{n}, D_{n}\right)} Q, q_{n}\right)$, which is also an apartment in $\omega-\lim \left(\frac{1}{d\left(q_{n}, D_{n}\right)} X, q_{n}\right)$. This contradicts corollary 4.6.4.

We now know that there is a $r_{1}>0$ such that for every $R>0, Q \cap B_{q}(R) \subset N_{r^{\prime}}\left(D_{n}\right)$ for ω-all n, for otherwise we could produce a sequence contradicting sublemma 7.1.3 ${ }^{10}$.

Step 3. By steps 1 and 2, we know that there is an r_{2} such that for every $R, Q \cap B_{q}(R)$ and $D_{n} \cap B_{q}(R)$ are r_{2}-Hausdorff close to one another for ω-all n.

[^6]Sublemma 7.1.4 For every $R>0, D_{n} \cap B_{q}(R)$ form an ω-Cauchy sequence ${ }^{11}$ with respect to the Hausdorff metric.

Proof. Suppose X is a symmetric space. Since for ω-all n the sets $D_{n} \cap B_{q}(R)$ have mutual Hausdorff distance $\leq 2 r_{2}$, if the sublemma were false we could find Hausdorff convergent subsequences of $\left\{D_{n}\right\}$ with distinct limits. The limits would be distinct maximal flats lying at finite Hausdorff distance from one another, which is a contradiction.

If X is a Euclidean building, then failure of the sublemma would give sequences $k_{n}, l_{n} \rightarrow \infty$ and a radius R so that the Hausdorff distance between $D_{k_{n}} \cap B_{q}(R)$ and $D_{l_{n}} \cap B_{q}(R)$ remains bounded away from zero. Then the $\omega-\lim \left(D_{k_{n}}, q\right)$ and $\omega-\lim \left(D_{l_{n}}, q\right)$ are distinct apartments in the Euclidean building ω - $\lim (X, q)$ lying at finite Hausdorff distance from one another, contradicting corollary 4.6.4.

By the sublemma, ω-lim $D_{n} \cap B_{q}(R)$ exists for all R (as an ω-limit of a sequence in the metric space of subsets of $B_{q}(R)$ endowed with the Hausdorff metric) and so we obtain a maximal flat $F \subset X$ with Hausdorff distance $\leq r_{2}$ from Q.

Step 4. We saw that each set Q in \mathcal{Q} is the Hausdorff approximation of a maximal flat $F(Q)$. Denote by $d(Q)$ the Hausdorff distance of Q and $F(Q)$. Assume that there is a sequence of sets $Q_{n} \in \mathcal{Q}$ with $\lim d\left(Q_{n}\right)=\infty$. Choose base points $u_{n} \in X$ so that u_{n} is contained in one of the sets Q_{n} or $F\left(Q_{n}\right)$ but not in the tubular $d\left(Q_{n}\right) / 2$-neighborhood of the other. Then the apartments $\omega-\lim \frac{1}{d\left(Q_{n}\right)} Q_{n}$ and $\omega-\lim \frac{1}{d\left(Q_{n}\right)} F\left(Q_{n}\right)$ have finite non-zero Hausdorff distance in the asymptotic cone $\omega-\lim \left(\frac{1}{d\left(Q_{n}\right)} X, u_{n}\right)$. This contradicts 4.6.4. The proof of the proposition is now complete.

Corollary 7.1.5 There is a positive constant $D_{0}=D_{0}\left(L, C, X, X^{\prime}\right)$ such that for any (L, C)-quasiisometry $\phi: X \rightarrow X^{\prime}$ and any apartment A in X, the image $\phi(A)$ is a D_{0}-Hausdorff approximation of an apartment A^{\prime} in X^{\prime}.

Proof. According to proposition 6.4.1, for any sequence of basepoints and any sequence of scale factors λ_{k}, the asymptotic cone Φ_{ω} of Φ carries apartments to apartments. We can apply proposition 7.1.1 to the collection \mathcal{Q} of all images $\phi(A) \subseteq X^{\prime}$ of apartments A in X.

7.2 The structure of quasi-flats

In this section X will be a symmetric space or a locally compact Euclidean building of rank r, with model polyhedron $\Delta_{\text {mod }}$. Y will be an arbitrary Euclidean building with model polyhedron $\Delta_{\text {mod }}$.

The goals of this section are:
Theorem 7.2.1 For each (L, C) there is a ρ such that every $(L, C) r$-quasiflat $Q \subset X$ is contained in a ρ-tubular neighborhood of a finite union of maximal flats, $Q \subset N_{\rho}\left(\cup_{F \in \mathcal{F}} F\right)$ where card $(\mathcal{F})<\rho$.
and
Corollary 7.2.2 The limit set of an $(L, C) r$-quasiflat $Q \subset X$ consists of finitely many Weyl chambers in $\partial_{\text {Tits }} X$; the number of chambers can be bounded by L and C.

[^7]Lemma 7.2.3 Let $P \subset Y$ be a closed subset homeomorphic to \mathbb{R}^{r}. P is locally conical (by corollary 6.2.3), so it has a well-defined space of directions $\Sigma_{p} P$ for every $p \in P$. We have:

1. If $p \in P$ then every $v \in \Sigma_{p} Y$ has an antipode in $\Sigma_{p} P$.
2. If $w \in \Sigma_{p} P$, then there is a ray $\overline{p \xi} \subset P, \xi \in \partial_{\text {Tits }} Y$ such that $\overrightarrow{p \xi}=w$.

Proof. Since P is locally a cone over a $\Sigma_{p} P$, we have $H_{r-1}\left(\Sigma_{p} P\right) \simeq \mathbb{Z}$, and the inclusion $\Sigma_{p} P \rightarrow \Sigma_{p} Y$ induces a monomorphism $H_{r-1}\left(\Sigma_{p} P\right) \rightarrow H_{r-1}\left(\Sigma_{p} Y\right)$ since $\Sigma_{p} Y$ is an r - 1-dimensional spherical building. Now if the first claim weren't true, then $\Sigma_{p} P \subset \Sigma_{p} Y$ would lie inside the contractible open ball $B_{v}(\pi) \subset \Sigma_{p} Y$, making $H_{r-1}\left(\Sigma_{p} P\right) \rightarrow H_{r-1}\left(\Sigma_{p} Y\right)$ trivial.

The second claim now follows from the first by a continuity argument: w is the direction of a geodesic segment contained in P since P is locally conical, and a maximal extension of this segment must be a ray.

Although we won't need the following corollary, we include it because its proof is similar in spirit to - but more transparent than - the proof of theorem 7.2.1.

Corollary 7.2.4 If $P \subset Y$ is is bilipschitz to \mathbb{E}^{r} then P is contained in a finite number of apartments. The number of apartments is bounded by the biLipschitz constant of P.

Proof. Let $\alpha \in \Delta_{\text {mod }}$ be the barycenter of $\Delta_{m o d}$, and consider the collection of rays with $\Delta_{m o d}{ }^{-}$ direction α contained in P. Since P is biLipschitz to \mathbb{E}^{r}, a packing argument bounds the number of equivalence classes of such rays (we know that the Tits distance between distinct classes of rays is bounded away from zero (cf. 4.1.2)). Let $\mathcal{S} \subset \partial_{\text {Tits }} Y$ be the (finite) set of Weyl chambers determined by this set of rays, and let \mathcal{T} be the finite collection of flats in Y which are determined by pairs of antipodal Weyl chambers in \mathcal{S}. We claim that P is contained in $\cup_{F \in \mathcal{T}} F$. To see this, note that if $p \in P$ then by lemma 7.2 .3 we can find a geodesic contained in P with $\Delta_{m o d}$-direction α which starts at p. This geodesic has ideal boundary points in \mathcal{S}, so by 4.6 .3 the geodesic lies in $\cup_{F \in \mathcal{T}} F$.

Another consequence of lemma 7.2.3 is
Corollary 7.2.5 Pick $\alpha \in \Delta_{\text {mod }}$ and $L, C, \epsilon>0$. Then there is a D such that if $Q \subset X$ is an $(L, C) r$-quasiflat, $y \in Q$, and $R>D$, then there is a $z \in Q$ with $\angle(\theta(\overline{y z}), \alpha)<\epsilon,|d(y, z)-R|<\epsilon R$.

Proof. If not, then there is a sequence Q_{k} of quasiflats, $y_{k} \in Q_{k}$, and $R_{k} \rightarrow \infty$ such that for every $z_{k} \in Q_{k}$ with $\left|d\left(y_{k}, z_{k}\right)-R_{k}\right|<\epsilon R_{k}$ we have $\angle\left(\theta\left(\overline{y_{k} z_{k}}\right), \alpha\right) \geq \epsilon$. Taking the ultralimit of $\frac{1}{R_{k}} Q_{k} \subset \frac{1}{R_{k}} X$ we get $y_{\omega} \in Q_{\omega} \subset X_{\omega}$ and for every $z_{\omega} \in Q_{\omega}$ with $\left|d\left(y_{\omega}, z_{\omega}\right)-1\right|<\epsilon$ we have $\angle\left(\theta\left(y_{\omega} z_{\omega}\right), \alpha\right) \geq \epsilon$. But this contradicts lemma 7.2 .3 since Q_{ω} is biLipschitz to \mathbb{E}^{r} : we can pick $v \in \Sigma_{y_{\omega}} Q_{\omega}$ with $\theta(v)=\alpha$ and find a geodesic segment $\overline{y_{\omega} z_{\omega}} \subset Q_{\omega}$ with $y_{\omega} \vec{z}_{\omega}=v$, and for $\omega-$ all k z_{k} satisfies the conditions of the lemma.

Lemma 7.2.3 implies that quasi-flats "spread out": a pair of points y_{0}, z_{0} lying in a quasiflat $Q \subset X$ can be extended to an almost collinear quadruple $y_{1}, y_{0}, z_{0}, z_{1}$ while maintaining the regularity of $\Delta_{m o d}$-directions. To deduce this we first prove a precise statement for Euclidean buildings.

Lemma 7.2.6 Let $\alpha_{1} \in \Delta_{\text {mod }}$ be a regular point, and let $\epsilon_{1}>0$. Then there is a $\delta_{1} \in\left(0, \epsilon_{1}\right)$ with the following property. If $P \subset Y$ is a closed subset homeomorphic to \mathbb{R}^{r} and $y_{0}, z_{0} \in P$ satisfy $\angle\left(\theta\left(\overline{y_{0} z_{0}}\right), \alpha_{1}\right) \leq \delta_{1}$, then there are points $y_{1}, z_{1} \in P$ so that

$$
\begin{gather*}
d\left(z_{0}, z_{1}\right)=d\left(y_{0}, y_{1}\right)=d\left(y_{0}, z_{0}\right) \tag{42}\\
\tilde{L}_{y_{0}}\left(y_{1}, z_{0}\right), \tilde{L}_{z_{0}}\left(y_{0}, z_{1}\right)>\pi-\epsilon_{1} \tag{43}\\
\angle\left(\theta\left(\overline{y_{1} z_{1}}\right), \alpha_{1}\right)<\delta_{1} \tag{44}
\end{gather*}
$$

The proof requires:
Sublemma 7.2.7 Suppose $x, y, z \in Y$ and $\angle_{x}(y, z)=\max (D(\theta(\overline{x y}), \theta(\overline{x z}))$ (cf. 3.1). Then x, y, z are the vertices of a flat (convex) triangle and $\overrightarrow{y z} \in \Sigma_{y} Y$ lies on the segment joining $\overrightarrow{y x}$ to a point $v \in \Sigma_{y} Y$, where $\theta(v)=\theta(\overline{x z})$ and v and $\overrightarrow{y x}$ lie in a single chamber.

Proof of sublemma 7.2.7: Extend the geodesic segments $\overline{x y}, \overline{x z}$ to geodesic rays $\overline{x \xi_{1}}$ and $\overline{x \xi_{2}}, \xi_{i} \in$ $\partial_{\text {Tits }} X$. By hypothesis

$$
\angle_{x}(y, z)=\max (D(\theta(\overline{x y}), \theta(\overline{x z})))=\max \left(D\left(\theta\left(\xi_{1}\right), \theta\left(\xi_{2}\right)\right)\right)=\angle_{\text {Tits }}\left(\xi_{1}, \xi_{2}\right)
$$

So $x \xi_{1} \xi_{2}$ determine a flat convex sector S. Note that $\overrightarrow{y x}$ and $y \vec{\xi}_{2}$ lie in a single chamber of $\Sigma_{y} X$ since $\angle_{y}\left(x, \xi_{2}\right)=\pi-\angle_{y}\left(\xi_{1}, \xi_{2}\right)=\pi-\max D\left(\theta\left(\xi_{1}\right), \theta\left(\xi_{2}\right)\right)=\min D\left(\operatorname{Ant}\left(\theta\left(\xi_{1}\right)\right), \theta\left(\xi_{2}\right)\right)=\min D(\theta(\overrightarrow{y x}$), $\left.\theta\left(\xi_{2}\right)\right)$. Hence $\Delta x y z$ bounds a flat convex triangle $T \subset S$, and so $\overrightarrow{y z}$ lies on the geodesic segment which has endpoints $\overrightarrow{y x}$ and $\vec{\xi}_{2}$.
Proof of lemma 7.2.6: Pick $z_{1} \in P$ so that $\overline{z_{0} z_{1}} \subset P, d\left(z_{0}, z_{1}\right)=d\left(y_{0}, z_{0}\right), \theta\left(\overline{z_{0} z_{1}}\right)=\alpha$, and $z_{0} \vec{z}_{1} \in \Sigma_{z_{0}} Y$ lies in a chamber antipodal to $z_{0} \vec{y}_{0}$; similarly choose $y_{1} \in P$ so that $\overline{y_{0} y_{1}} \subset P, d\left(y_{0}, y_{1}\right)=$ $d\left(y_{0}, z_{0}\right), \theta\left(\overline{y_{0} y_{1}}\right)=\operatorname{Ant}(\alpha)$, and $\vec{y}_{0} \vec{y}_{1} \in \Sigma_{y_{0}} Y$ lies in a chamber antipodal to $\vec{y}_{0} \vec{z}_{0}$. Applying sublemma 7.2 .7 we conclude that z_{0}, y_{0}, z_{1}, are the vertices of a flat convex triangle, and $y_{0} z_{1} \in \Sigma_{y_{0}} Y$ lies on the segment joining $\vec{y}_{0} \vec{z}_{0}$ to $v \in \Sigma_{y_{0}} Y$ where $\theta(v)=\theta\left(\overline{z_{0} z_{1}}\right)=\alpha$ and v and $\vec{y}_{0} z_{0}$ lie in the same chamber. In particular $\vec{y}_{0} \vec{z}_{1}$ and $\vec{y}_{0} \vec{y}_{1}$ lie in antipodal chambers of $\Sigma_{y_{0}} Y$, so applying lemma 7.2.7 again, we find that $\theta\left(\vec{y}_{1} \vec{z}_{1}\right)$ lies on the segment joining $\theta\left(\overline{y_{0} z_{1}}\right)$ to $\theta\left(\overline{y_{1} y_{0}}\right)=\alpha$. y_{1} and z_{1} clearly satisfy the stated conditions since $\tilde{Z}_{y_{0}}\left(y_{1}, z_{0}\right) \geq \angle_{y_{0}}\left(y_{1}, z_{0}\right)=\pi-\angle\left(\theta\left(\overline{y_{0} z_{0}}, \alpha\right) \geq \pi-\delta_{1}>\pi-\epsilon_{1}\right.$ and $\tilde{L}_{z_{0}}\left(y_{0}, z_{1}\right) \geq \angle_{z_{0}}\left(y_{0}, z_{1}\right)=\pi-\angle\left(\theta\left(\overline{y_{0} z_{0}}, \alpha\right) \geq \pi-\delta_{1}>\pi-\epsilon_{1}\right.$.

Corollary 7.2.8 Let $\alpha_{2} \in \Delta_{\text {mod }}$ be a regular point, and let L, $C, \epsilon_{2}>0$ be given. Then there are $D_{2}>0, \delta_{2} \in\left(0, \epsilon_{2}\right)$ with the following property. If $Q \subseteq X$ is an $(L, C) r$-quasiflat, and $y_{0}, z_{0} \in Q$ satisfy

$$
\begin{equation*}
d\left(y_{0}, z_{0}\right)>D_{2}, \angle\left(\theta\left(\overline{y_{0} z_{0}}\right), \alpha_{2}\right) \leq \delta_{2} \tag{45}
\end{equation*}
$$

then there are points $y_{1}, z_{1} \in Q$ so that

$$
\begin{gather*}
\left|d\left(z_{0}, z_{1}\right)-d\left(y_{0}, z_{0}\right)\right|,\left|d\left(y_{0}, y_{1}\right)-d\left(y_{0}, z_{0}\right)\right|<\epsilon_{2} d\left(y_{0}, z_{0}\right) \tag{46}\\
\tilde{L}_{y_{0}}\left(y_{1}, z_{0}\right), \tilde{L}_{z_{0}}\left(y_{0}, z_{1}\right)>\pi-\epsilon_{2} \tag{47}\\
\angle\left(\theta\left(\overline{y_{1} z_{1}}\right), \alpha_{2}\right)<\delta_{2} \tag{48}
\end{gather*}
$$

Proof. Let δ_{2}, λ_{2} be the constants produced by the previous lemma with $\alpha_{1}=\alpha_{2}, \epsilon_{1}=\epsilon_{2}$. We claim that when $y_{0}, z_{0} \in Q$ and $\angle\left(\theta\left(\overline{y_{0} z_{0}}\right), \alpha_{2}\right)<\delta_{2}$ and $d\left(y_{0}, z_{0}\right)$ is sufficiently large, then there will exist points y_{1}, z_{1} satisfying (46), (47), (48). But this follows immediately from the previous lemma by taking ultralimits.

By applying corollary 7.2.8 inductively we get
Corollary 7.2.9 With notation as in corollary 7.2.8, there are sequences $y_{i}, z_{i} \in Q, i \geq 1$ such that the inequalities (45), (46), (47), (48) hold when we increment all the indices on the y 's and z 's by i.

Lemma 7.2.10 Fix $\mu>0$, and consider all configurations (y, z, F) where $y, z \in X, \angle\left(\theta(\overline{y z}), \partial \Delta_{\text {mod }}\right) \geq$ μ, and $F \subset X$ is a maximal flat. Then there is a D_{3} such that the fraction of the segment $\overline{y z}$ lying outside the tubular neighborhood $N_{D_{3}}(F)$ tends to zero with $\nu(y, z, F) \stackrel{\text { def }}{=} \max \left(\frac{d(y, F)}{d(y, z)}, \frac{d(z, F)}{d(y, z)}\right)$.

Proof. Recall that the distance function $d(F, \cdot)$ is convex, so if the lemma were false there would be sequences $y_{k}, z_{k}, w_{k} \in X, F_{k} \subset X$, with $\angle\left(\theta\left(\overline{y_{k} z_{k}}\right), \partial \Delta_{\text {mod }}\right) \geq \mu, d(y, z) \rightarrow \infty, w_{k} \in \overline{y_{k} z_{k}}$ with $d\left(w_{k}, y_{k}\right), d\left(w_{k}, z_{k}\right)>\epsilon d\left(y_{k}, z_{k}\right), \nu_{k}\left(y_{k}, z_{k}, F_{k}\right) \rightarrow 0$ but $d\left(w_{k}, F_{k}\right) \rightarrow \infty$. Let $p_{k}, q_{k}, r_{k} \in F_{k}$ be the points nearest y_{k}, w_{k}, z_{k} respectively. By various triangle inequalities and property (39) from section 5.2 we have $\tilde{L}_{q_{k}}\left(p_{k}, y_{k}\right), \tilde{L}_{q_{k}}\left(r_{k}, z_{k}\right) \rightarrow 0$ and $\angle\left(\theta\left(\overline{p_{k} q_{k}}\right), \theta\left(\overline{y_{k} z_{k}}\right), \angle\left(\theta\left(\overline{q_{k} r_{k}}\right), \theta\left(\overline{y_{k} z_{k}}\right)\right) \rightarrow 0\right.$. Therefore if we set $R_{k}=d\left(q_{k}, w_{k}\right)$ and take the ultralimit of $\left(\frac{1}{R_{k}} X, q_{k}\right)$ we will get a configuration $q_{\omega}, w_{\omega} \in X_{\omega}$, an apartment $F_{\omega} \subset X_{\omega}$, and $\xi_{1}, \xi_{2} \in \partial_{T i t s} X_{\omega}$ so that q_{ω} is the point in F_{ω} nearest to $w_{\omega},\left(\overline{q_{\omega} \xi_{1}}, q_{\omega}\right)=\omega-\lim \left(\overline{q_{k} p_{k}}, q_{k}\right),\left(\overline{q_{\omega} \xi_{2}}, q_{\omega}\right)=\underline{\omega-\lim }\left(\overline{q_{k} r_{k}}, q_{k}\right),\left(\overline{w_{\omega} \xi_{1}}, q_{\omega}\right)=\omega-\lim \left(\overline{w_{k} y_{k}}, q_{k}\right)$, $\left(\overline{w_{\omega} \xi_{2}}, q_{\omega}\right)=\omega-\lim \left(\overline{w_{k} z_{k}}, q_{k}\right)$. In particular, the rays $\overline{w_{k} \xi_{1}}$ and $\overline{w_{k} \xi_{2}}$ fit together to form the geodesic $\omega-\lim \overline{y_{k} z_{k}}$ and $\angle\left(\theta\left(\xi_{i}\right), \partial \Delta_{\text {mod }}\right) \geq \mu$. But this contradicts corollary 4.6.4.

Corollary 7.2.11 Fix $\alpha_{3} \in \Delta_{\text {mod }}$. Then there are constants $\epsilon_{4}, \nu_{4}, D_{4}$ such that if

1. $y_{i}, z_{i} \in X, i \geq 0$ are sequences which satisfy (45), (46), (47), (48) (when subscripts are incremented by i) with $\epsilon_{2}<\epsilon_{4}, d\left(y_{0}, z_{0}\right)>D_{4}$.
2. A maximal flat $F \subset X$ satisfies $d\left(y_{k}, F\right), d\left(z_{k}, F\right)<\nu_{4} d\left(y_{k}, z_{k}\right)$ for some k.

Then $d\left(y_{i}, F\right), d\left(z_{i}, F\right)<\nu_{4} d\left(y_{i}, z_{i}\right)$ for all $0 \leq i \leq k$.

Proof. If ν_{4} is sufficiently small, then the trisection points \tilde{y}, \tilde{z} of any sufficiently long segment $\overline{y z} \subset X$ with $\angle\left(\theta(\overline{y z}), \partial \Delta_{\text {mod }}\right) \geq \mu, \max \left(\frac{d(y, F)}{d(y, z)}, \frac{d(z, F)}{d(y, z)}\right)<\nu_{4}$ will satisfy $\max \left(\frac{d(\tilde{y}, F)}{d(\tilde{y}, \tilde{z})}, \frac{d(\tilde{z}, F)}{d(\tilde{y}, \tilde{z})}\right) \ll \nu_{4}$ by lemma 7.2.10. If we take $\epsilon_{4} \ll \nu_{4}$ then $\angle\left(\theta\left(\overline{y_{i} z_{i}}\right), \partial \Delta_{\text {mod }}\right)$ will be bounded away from zero and y_{i-1}, z_{i-1} will lie close to the trisection points of $\overline{y_{i} z_{i}}$ so corollary 7.2 .11 follows by induction on $k-i$.

Proof of theorem 7.2.1:
Step 1: Fix $\alpha_{4} \in \Delta_{m o d}$, and let $\epsilon_{5}, \nu_{5}, D_{5}$ be the constants produced by corollary 7.2 .11 with $\alpha_{3}=\alpha_{4}$. Let D_{6}, δ_{6} be the constants given by corollary 7.2 .8 with $\alpha_{2}=\alpha_{4}, \epsilon_{2}=\epsilon_{5}$. Finally, let D_{7} be the constant produced by corollary 7.2 .5 with $\alpha=\alpha_{4}, \epsilon=\min \left(\delta_{6}, \frac{1}{2}\right)$. Setting $D_{8}=\max \left(D_{5}, D_{6}, D_{7}\right)$, for each $y_{0} \in Q$ we may find a $z_{0} \in Q$ with $D_{8}<d\left(y_{0}, z_{0}\right)<2 D_{8}$ so that $\angle\left(\theta\left(y_{0}, z_{0}\right), \alpha_{4}\right)<\delta_{6}$ (by corollary 7.2.5). By corollary 7.2 .9 we may extend the pair $y_{0}, z_{0} \in Q$ to a pair of sequences y_{i}, z_{i}
satisfying (45)-(48) with $\alpha_{2}=\alpha_{4}, \epsilon_{2}=\epsilon_{5}$. Then any maximal flat $F \subset X$ with $d\left(y_{k}, F\right), d\left(z_{k}, F\right)<$ $\nu_{5} d\left(y_{k}, z_{k}\right)$ for some $0 \leq k<\infty$ satisfies $d\left(y_{i}, F\right), d\left(z_{i}, F\right)<\nu_{5} d\left(y_{i}, z_{i}\right)$ for all $0 \leq i \leq k$ by corollary 7.2.11; in particular

$$
\begin{equation*}
d\left(y_{0}, F\right)<\nu_{5} d\left(y_{0}, z_{0}\right)<2 \nu_{5} D_{8} \tag{49}
\end{equation*}
$$

We may assume in addition that ϵ_{5} is small enough that

$$
\begin{align*}
& 2 d\left(y_{i-1}, z_{i-1}\right)<d\left(y_{i}, z_{i}\right)<4 d\left(y_{i-1}, z_{i-1}\right) \tag{50}\\
& \text { and } d\left(y_{i}, y_{i-1}\right), d\left(z_{i}, z_{i-1}\right)<2 d\left(y_{i-1}, z_{i-1}\right) \tag{51}
\end{align*}
$$

It follows that

$$
\begin{equation*}
\max \left(d\left(y_{i}, y_{0}\right), d\left(z_{i}, y_{0}\right)\right)<2 d\left(y_{i}, z_{i}\right) \tag{52}
\end{equation*}
$$

for all i.
Step 2: Fix $q \in Q$ and set $\nu_{6}=\frac{\nu_{5}}{16}$. For each R pick a covering of $B_{q}(R) \cap Q$ by $\nu_{6} R$-balls $\left\{B_{p_{i}}\left(\nu_{6} R\right)\right\}$ with minimal cardinality; the cardinality of this covering can be bounded by r and the quasiflat constants (L, C). For each pair p_{i}, p_{j} of centers pick a maximal flat containing them, and denote the resulting collection of maximal flats by \mathcal{F}_{R}.

Claim: If $y_{0} \in Q$, then $d\left(y_{0}, \cup_{F \in \mathcal{F}_{R}} F\right)<2 \nu_{5} D_{8}$ for sufficiently large R.
Proof of claim: We will use the sequences y_{i}, z_{i} constructed in step 1 and estimate (49). Take the maximal i such that $y_{i}, z_{i} \in B_{q}(R)$. Then

$$
\begin{gathered}
\max \left(d\left(y_{i+1}, q\right), d\left(z_{i+1}, q\right)\right)>R \\
\Longrightarrow \max \left(d\left(y_{i+1}, y_{0}\right), d\left(z_{i+1}, y_{0}\right)\right)>R-d\left(q, y_{0}\right) \\
\Longrightarrow d\left(y_{i+1}, z_{i+1}\right) \geq \frac{1}{2}\left(R-d\left(q, y_{0}\right)\right) \text { by }(52) \\
\Longrightarrow d\left(y_{i}, z_{i}\right) \geq \frac{1}{8}\left(R-d\left(q, y_{0}\right)\right) \text { by }(50) .
\end{gathered}
$$

Since \mathcal{F}_{R} contains a maximal flat F with

$$
\begin{aligned}
d\left(y_{i}, F\right), d\left(z_{i}, F\right. & <\nu_{6} R=\left(\frac{8 \nu_{6} R}{R-d\left(q, y_{0}\right)}\right) \cdot \frac{1}{8}\left(R-d\left(q, y_{0}\right)\right) \\
\leq & 8 \nu_{6}\left(\frac{R}{R-d\left(q, y_{0}\right)}\right) d\left(y_{i}, z_{i}\right) \\
& \leq \frac{\nu_{5}}{2}\left(\frac{R}{R-d\left(q, y_{0}\right)}\right) d\left(y_{i}, z_{i}\right)
\end{aligned}
$$

Therefore for sufficiently large R there is an $F \in \mathcal{F}_{R}$ and k such that $d\left(y_{k}, F\right), d\left(z_{k}, F\right)<\nu_{5} d\left(y_{k}, z_{k}\right)$, so $d\left(y_{0}, F\right)<2 \nu_{5} D_{8}$ as claimed.
Proof of theorem 7.2.1 concluded: We may now take a convergent subsequence of the \mathcal{F}_{R} 's, and the limit collection \mathcal{F} satisfies $Q \subset N_{2 D_{8}}\left(\cup_{F \in \mathcal{F}} F\right)$ and $\operatorname{card}(\mathcal{F}) \leq \limsup \operatorname{card}\left(\mathcal{F}_{R}\right)$ which is bounded by r and (L, C).
Proof of corollary 7.2.2: By theorem 7.2.1 there is a finite collection \mathcal{F} of maximal flats so that Q lies in a finite tubular neighborhood of $\cup_{F \in \mathcal{F}} F$. The limit set of each $F \in \mathcal{F}$ is its Tits boundary
$\partial_{\text {Tits }} F$, which is an apartment of $\partial_{\text {Tits }} X$. The union of these apartments gives us a finite subcomplex $\mathcal{G} \subset \partial_{\text {Tits }} X$ which is a union of closed Weyl chambers.

Clearly $\operatorname{LimSet}(Q) \subseteq \mathcal{G}$; we will show that if $\xi \in \operatorname{LimSet}(Q)$ then ξ lies in a closed Weyl chamber $C \subset \operatorname{LimSet}(Q)$. We have $q_{k} \in Q$ such that $\overline{\star q_{k}} \rightarrow \overline{\star \xi}$ in the pointed Hausdorff topology. Consider $\cup_{F \in \mathcal{F}} F$. Any ultralimit $\omega-\lim \left(\frac{1}{R_{k}}\left(\cup_{F \in \mathcal{F}} F\right), \star\right)$ is canonically isometric to the Euclidean cone over $\mathcal{G} . \omega-\lim \left(\frac{1}{R_{k}} Q, \star\right)$ embeds in $\omega-\lim \left(\frac{1}{R_{k}}\left(\cup_{F \in \mathcal{F}} F\right), \star\right)$ as a biLipschitz copy of \mathbb{E}^{r}; by the discussion in section $\left.6.2 \omega-\lim \left(\frac{1}{R_{k}} Q, \star\right)\right)$ is the cone over a collection of closed Weyl chambers in \mathcal{G}. In particular $\omega-\lim \overline{\star q_{k}}=\overline{\star_{\omega} q_{\omega}}$ lies in a closed Weyl chamber contained in $\left.\omega-\lim \left(\frac{1}{R_{k}} Q, \star\right)\right)$, so the corresponding Weyl chamber of \mathcal{G} is contained in $\operatorname{LimSet}(Q)$, and it contains ξ.

8 Quasi-isometries of symmetric spaces and Euclidean buildings

In this section our goal is to prove theorems 1.1.2 and 1.1.3 stated in the introduction.
Let X, X^{\prime}, and Φ be as in theorem 1.1.2. By corollary $7.1 .5, \Phi$ carries apartments close to apartments; in particular, X and X^{\prime} have the same rank r.

8.1 Singular flats go close to singular flats

Lemma 8.1.1 For any $R>0$ there is an $D(R)>0$ such that if F is a singular flat in X and $\mathcal{A}(F)$ is the collection of apartments containing F, then $\cap_{A \in \mathcal{A}(F)} N_{R}(A) \subset N_{D(R)}(F)$.

Proof. It suffices to verify the assertion for irreducible non-flat spaces X.
Consider first the case that X is a symmetric space. The transvections along geodesics in F preserve all the flats containing F. Hence, if there is a sequence $x_{n} \in \cap_{A \in \mathcal{A}(F)} N_{R}(A)$ with $d\left(x_{n}, F\right)$ tending to infinity, then we may assume without loss of generality that the nearest point to x_{n} on F is a given point p. The segments $\overline{p x_{n}}$ subconverge to a ray $\overline{p \xi}$ which lies in $\cap_{A \in \mathcal{A}(F)} N_{R}(A)$ and is orthogonal to F. Since for each apartment $A \in \mathcal{A}(F)$, we have $p \in A$ and the ray $\overline{p \xi}$ remains in a bounded neighborhood of A, it follows that $\overline{p \xi} \subset \cap_{A \in \mathcal{A}(F)} F$. Hence $\cap_{A \in \mathcal{A}(F)} F$ contains a ($k+1$)-flat, which is a contradiction.

Assume now that X is an irreducible thick Euclidean building with cocompact affine Weyl group. Consider a point $x \in X \backslash F$ and let $p \in F$ be the nearest point in F. Then $u:=\vec{p} \in \Sigma_{p} X$ satisfies $\angle_{p}\left(u, \Sigma_{p} F\right) \geq \frac{\pi}{2}$. We pick a chamber C in $\Sigma_{p} X$ containing u and choose a face σ of C at maximum distance from u. Denote by v the vertex of C opposite to σ. By our assumption, $\operatorname{diam}\left(\Delta_{\text {mod }}\right)<\frac{\pi}{2}$ and therefore $v \notin \Sigma_{p} F$. Since F is a finite intersection of apartments, lemma 4.1.2 implies $\Sigma_{p} F=\cap_{A \in \mathcal{A}(F)} \Sigma_{p} A$ and there is an apartment A with $F \subset A \subset X$ and $v \notin \Sigma_{p} A$. $\Sigma_{p} A$ is then disjoint from the open star of v, and so $d\left(u, \Sigma_{p} A\right) \geq d(u, \sigma) \geq \alpha_{0}>0$ where α_{0} depends only on the geometry of $\Delta_{\text {mod }}$. If $x \in N_{R}(A)$ then angle comparison implies that $d(x, F) \leq \frac{R}{\sin \alpha_{0}}$ and our claim holds with $D(R)=\frac{R}{\sin \alpha_{0}}$. This completes the proof of the lemma.

Proposition 8.1.2 For every apartment $A \subset X$, let $A^{\prime} \subset X^{\prime}$ denote the unique apartment at finite Hausdorff distance from $\Phi(A)$. There are constants $D_{0}\left(L, C, X, X^{\prime}\right)$ and $D\left(L, C, X, X^{\prime}\right)$ so that if $F=\cap_{A \supseteq F} A \subset X$ is a singular flat, then

1. $\Phi(F) \subset \cap_{A \supset F} N_{D_{0}}\left(A^{\prime}\right)$,
2. The Hausdorff distance $d_{H}\left(\Phi(F), \cap_{A \supset F} N_{D_{0}}\left(A^{\prime}\right)\right)<D$,
3. There is a singular flat $F^{\prime} \subset \cap_{A \supset F} N_{D_{0}}\left(A^{\prime}\right)$ with $d_{H}\left(\Phi(F), F^{\prime}\right)<D$.

In particular, two quasi-isometries $\Phi_{1}, \Phi_{2}: X \longrightarrow X^{\prime}$ inducing the same bijection on apartments induce the same map of singular flats up to $2 D$-Hausdorff approximation.

Proof. Let F and $\mathcal{A}(F)$ be as in the previous lemma. By corollary 7.1.5, for every apartment $A \subseteq X, \phi(A)$ is D_{0}-Hausdorff close to an apartment in X^{\prime} which we denote by A^{\prime}. Thus $\phi(F) \subset$ $\cap_{A \in \mathcal{A}(F)} N_{D_{0}}\left(A^{\prime}\right)$.

Sublemma 8.1.3 For each $d \geq D_{0}$ there exists a constant $D_{1}=D_{1}(L, C, d)>0$ with the property that $\cap_{A \in \mathcal{A}(F)} N_{d}\left(A^{\prime}\right)$ lies within Hausdorff distance D_{1} from $\phi(F)$.

Proof. Pick a quasi-inverse ϕ^{-1} of ϕ. For each point $y \in \cap_{A \in \mathcal{A}(F)} N_{d}\left(A^{\prime}\right)$ and each $A \in \mathcal{A}(F), \phi^{-1} y$ is uniformly close to $\phi^{-1} A^{\prime}$. But $\phi^{-1} A^{\prime}$ is uniformly Hausdorff close to $\phi^{-1} \phi A$ and therefore to A. Lemma 8.1.1 implies that Y has uniformly bounded distance from F.

Proof of proposition 8.1.2 continued. Fixing $A_{0} \in \mathcal{A}(F)$, we conclude that $C:=\left(\cap_{A \in \mathcal{A}(F)} N_{2 D_{0}}\left(A^{\prime}\right)\right) \cap$ A_{0}^{\prime} is a convex Hausdorff approximation of $\phi(F)$.

Sublemma 8.1.4 Let $C \subset \mathbb{E}^{l}$ be a convex subset which is quasi-isometric to \mathbb{E}^{k}. Then C contains a k-dimensional affine subspace.

Proof. Fix $q \in C$ and let $\hat{C} \subseteq C$ be the convex cone consisting of all complete rays starting in q and contained in C. For any sequence $\lambda_{n} \rightarrow 0$ of scale factors, the ultralimit $\omega-\lim \left(\lambda_{n} \cdot C, q\right)$ is isometric to \hat{C}. Therefore \hat{C} is homeomorphic to \mathbb{E}^{k} and hence isometric to \mathbb{E}^{k}.
Proof of proposition 8.1.2 continued. It follows that $\phi(F)$ is uniformly close to a flat \bar{F} in X^{\prime}. Since ϕ_{ω} carries singular flats to singular flats, $\partial_{\text {Tits }} \bar{F}$ is a singular sphere in $\partial_{\text {Tits }} X^{\prime} . X^{\prime}$ has cocompact affine Weyl group, so \bar{F} lies within uniform Hausdorff distance from a singular flat F^{\prime}.

8.2 Rigidity of product decomposition and Euclidean deRham factors

We now prove theorem 1.1.2. The product decompositions of X and X^{\prime} correspond to a decompositions of asymptotic cones

$$
\begin{equation*}
X_{\omega}=\mathbb{E}^{n} \times \prod_{i} X_{i \omega}, \quad X_{\omega}^{\prime}=\mathbb{E}^{n^{\prime}} \times \prod_{j} X_{j \omega}^{\prime} \tag{53}
\end{equation*}
$$

where the $X_{i \omega}, X_{j \omega}^{\prime}$ are irreducible thick Euclidean buildings. They have the property that every point is a vertex and their affine Weyl group contains the full translation subgroup, in particular the translation subgroup is transitive. We are in a position to apply theorems 6.4.2 and 6.4.3: The Euclidean deRham factors of X and X^{\prime} have equal dimension, $n=n^{\prime}$, and X, X^{\prime} have the same number of irreducible factors. After renumbering the factors if necessary, there are homeomorphisms $\left(\phi_{\omega}\right)_{i}: X_{i \omega} \rightarrow X_{i \omega}^{\prime}$ such that

$$
\left(\phi_{\omega}\right)_{i} \circ p_{i \omega}=p_{i \omega}^{\prime} \circ \phi_{\omega}
$$

where $p_{i}: X \rightarrow X_{i}$ and $p_{i}^{\prime}: X^{\prime} \rightarrow X_{i}^{\prime}$ are the projections onto factors. Now let F be a singular flat which is contained in a fiber of p_{i}. By proposition 8.1.2, $\phi(F)$ is uniformly Hausdorff close to a flat $F^{\prime} \subset X^{\prime}$. Since $F_{\omega}^{\prime} \subset X_{\omega}^{\prime}$ is contained in a fiber of $p_{i \omega}^{\prime}, F^{\prime}$ must be contained in a fiber of p_{i}^{\prime}. Any two points in a fiber $p_{i}^{-1}\left(x_{i}\right), x_{i} \in X_{i}$, are contained in some singular flat $F \subset p_{i}^{-1}\left(x_{i}\right)$ and consequently ϕ carries fibers of p_{i} into uniform neighborhoods of fibers of p_{i}^{\prime}. Since an analoguous statement holds for a quasi-inverse of ϕ, we conclude that ϕ carries p_{i}-fibers uniformly Hausdorff close to p_{i}^{\prime}-fibers and so there are quasi-isometries $\phi_{i}: X_{i} \rightarrow X_{i}^{\prime}$ so that

$$
\phi \circ p_{i}=p_{i}^{\prime} \circ \phi
$$

holds up to bounded error. This concludes the proof of Theorem 1.1.2.

8.3 The irreducible case

In this section we prove theorem 1.1.3. Note that theorem 1.1.2 implies that X^{\prime} is also ireducible, with $\operatorname{rank}(X)=\operatorname{rank}\left(X^{\prime}\right)$.

8.3.1 Quasi-isometries are approximate homotheties

We recall from proposition 7.1 .5 that Φ carries each apartment A in X uniformly close to a unique apartment in X^{\prime} which we denote by A^{\prime}. We prove next that in our irreducible higher-rank situation the restriction of Φ to A can be approximated by a homothety. As a consequence, the quasi-isometry Φ is an almost homothety. This parallels the topological result in section 6.4.4.

Proposition 8.3.1 There are positive constants $a=a(\Phi)$ and $b=b\left(L, C, X, X^{\prime}\right)$ such that for every apartment $A \subset X$ exists a homothety $\Psi_{A}: A \rightarrow A^{\prime}$ with scale factor a which approximates $\left.\Phi\right|_{A}$ up to pointwise error b.

Proof. If we compose $\left.\Phi\right|_{A}$ with the projection $X^{\prime} \rightarrow A^{\prime}$, we get a map $\Psi_{A}^{\prime}: A \rightarrow A^{\prime}$ which, according to proposition 8.1.2, carries walls to within bounded distance of walls. Parallel walls in A are carried to Hausdorff approximations of parallel walls in A^{\prime}. Moreover, due to our assumption of cocompact affine Weyl group, each hyperplane parallel to a wall is carried to within bounded distance of a wall. By lemma 3.3.2 exist $r+1$ singular half-spaces in A which intersect in a bounded affine r-simplex with non-empty interior. Consider the collection \mathcal{C} of hyperplanes in A which are parallel to the boundary wall of one of these half-spaces. Any r pairwise non-parallel hyperplanes in \mathcal{C} lie in general position, i.e. intersect in one point. Hence we may apply lemma 8.3.3 below to the collection \mathcal{C} and conclude that Ψ_{A}^{\prime} is within uniform finite distance of an affine transformation $\Psi_{A}: A \rightarrow A^{\prime}$. Since Φ_{ω} is a homothety on asymptotic cones by the discussion in section 6.4.4, it follows that Ψ_{A} is a homothety: For suitable positive constants a_{A} and b we therefore have

$$
\left|d\left(\Psi_{A}\left(x_{1}\right), \Psi_{A}\left(x_{2}\right)\right)-a_{A} d\left(x_{1}, x_{2}\right)\right| \leq b \quad \forall x_{1}, x_{2} \in A
$$

and b depends on L, C, X, X^{\prime} but not on the apartment A. To see that the constant a_{A} is independent of the apartment A note that for any other apartment $A_{1} \subset X$ there is a geodesic asymptotic to both A and A_{1}. It follows that $a_{A_{1}}=a_{A}$.

Corollary 8.3.2 There are positive constants $a=a(\Phi)$ and $b=b\left(L, C, X, X^{\prime}\right)$ such that the quasiisometry $\Phi: X \longrightarrow X^{\prime}$ satisfies

$$
\left|d\left(\Phi\left(x_{1}\right), \Phi\left(x_{2}\right)\right)-a \cdot d\left(x_{1}, x_{2}\right)\right| \leq b \quad \forall x_{1}, x_{2} \in X
$$

Here $L^{-1} \leq a \leq L$.
Proof. This follows from the previous proposition, because any two points in X lie in a common apartment.

Lemma 8.3.3 For $n \geq 2$, let $\alpha_{0}, \ldots, \alpha_{n} \in\left(\mathbb{R}^{n}\right)^{*}$ be a collection of linear functionals any n of which are linearly independent, and let \mathcal{H}_{i} be the collection of affine hyperplanes $\left\{\alpha_{i}^{-1}(c)\right\}_{c \in \mathbb{R}}$. There is a function $D(C)$ with $\lim _{C \rightarrow 0} D(C)=0$ satisfying the following: If $\phi: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is a locally bounded map such that for all $H \in \mathcal{H}_{j}, \phi(H) \subset N_{C}\left(H^{\prime}\right)$ for some $H^{\prime} \in \mathcal{H}_{j}$, then there is a an affine transformation ϕ_{0} with scalar linear part which preserves the hyperplane families \mathcal{H}_{j} such that $d\left(\phi, \phi_{0}\right)<D(C)$.

Proof. After applying an affine transformation if necessary we may assume that $\alpha_{0}=\sum_{i=1}^{n} x_{i}$, $\alpha_{j}=x_{j}$ for $1 \leq j \leq n$, and $\phi(0)=0$. There is a $C_{2} \in \mathbb{R}$ such that the image of each k-fold intersection of hyperplanes from $\cup_{i} \mathcal{H}_{i}$ lies within the C_{2} neighborhood an intersection of the same type. In particular, for each $1 \leq j \leq n, \phi$ induces a $\left(C_{3}, \epsilon_{3}\right)$ quasi-isometry ϕ_{j} of the $j^{\text {th }}$ coordinate axis, with $\phi_{j}(0)=0$. It suffices to verify that each ϕ_{j} lies at uniform distance from a linear map since ϕ lies at uniform distance from $\prod_{j=1}^{n} \phi_{j}$. Also, it suffices to treat the case $n=2$ since for each $1 \leq j \leq n$ we may consider the $\left(C_{4}, \epsilon_{4}\right)$-quasi-isometry that ϕ induces on the $x_{i} x_{j}$ coordinate plane, and this satisfies the hypotheses of the lemma (with somewhat different constants).

We claim there is a C_{5} such that for y, z in the first coordinate axis, we have $\mid \phi_{1}(y+z)-\left(\phi_{1}(y)+\right.$ $\left.\phi_{1}(z)\right) \mid<C_{5}$. To see this first note that when C equals zero the additivity can be deduced from a geometric construction involving 6 lines and 6 of their intersection points. When $C>0$, the same construction can be performed with uniformly bounded error at each step.

By lemma 8.3.4 below, ϕ_{1} and analgously ϕ_{j} lies at uniform distance from a linear map.
Lemma 8.3.4 Suppose $\psi: \mathbb{R} \rightarrow \mathbb{R}$ is a locally bounded function satisfying $|\psi(y+z)-\psi(y)-\psi(z)| \leq$ D for all $y, z \in \mathbb{R}$. Then $|\psi(x)-a x| \leq D$ for some $a \in \mathbb{R}$.

Proof. Since $\left|\psi\left(2^{n}\right)-2 \psi\left(2^{n-1}\right)\right| \leq D$, the sequence $\left(\frac{\psi\left(2^{n}\right)}{2^{n}}\right)$ is Cauchy and converges to a real number a. Let $x>0$ and choose numbers $q_{n} \in \mathbb{N}$ and $r_{n} \in \mathbb{R}$ with $\left|r_{n}\right| \leq x$ such that $2^{n}=q_{n} x+r_{n}$. Then

$$
\left|\psi\left(2^{n}\right)-q_{n} \psi(x)-\psi\left(r_{n}\right)\right| \leq\left(q_{n}+1\right) D
$$

and hence, using that ψ is locally bounded,

$$
|\underbrace{\frac{\psi\left(2^{n}\right)}{2^{n}}}_{\rightarrow a} x-\underbrace{\frac{q_{n} x}{2^{n}}}_{\rightarrow 1} \psi(x)-\underbrace{\frac{\psi\left(r_{n}\right) x}{2^{n}}}_{\rightarrow 0}| \leq \underbrace{\frac{\left(q_{n}+1\right) x}{2^{n}}}_{\rightarrow 1} D
$$

When n tends to infinity, we obtain in the limit

$$
|a x-\psi(x)| \leq D
$$

Similarly, there is a real number a_{-}such that for all $x<0$ we have $\left|a_{-} x-\psi(x)\right| \leq D$. Since $|\psi(x)+\psi(-x)| \leq D+|\psi(0)|$, it follows that $a=a_{-}$.

Proof of theorem 1.1.3 concluded. By corollary 8.3 .2 we may scale the metric on X^{\prime} by the factor $\frac{1}{a}$ so that Φ becomes a $\left(1, \frac{A}{a}\right)$ quasi-isometry. Applying proposition 2.3 .9 we conclude that Φ induces a map $\partial_{\infty} \Phi: \partial_{\infty} X \longrightarrow \partial_{\infty} X^{\prime}$ which is a homeomorphism of geometric boundaries preserving the Tits metric. By the main result of $3.7, \partial_{\infty} \Phi$ gives an isomorphism of spherical buildings $\partial_{\infty} \Phi$: $\left(\partial_{\text {Tits }} X, \Delta_{\text {mod }}\right) \longrightarrow\left(\partial_{\text {Tits }} X^{\prime}, \Delta_{\text {mod }}^{\prime}\right)$, after possibly changing to an equivalent spherical building structure on $\partial_{\text {Tits }} X^{\prime}$. Consequently, for every $\delta \in \Delta_{\text {mod }}, \partial_{\infty} \Phi$ maps the set $\theta^{-1}(\delta) \subset \partial_{\text {Tits }} X$ to the corresponding set $\theta^{\prime-1}(\delta) \subset \partial_{\text {Tits }} X^{\prime}$, and $\left.\Phi\right|_{\theta^{-1}(\delta)}$ is a cone topology homeomorphism. When δ is a regular point, the subsets $\theta^{-1}(\delta) \subset \partial_{\text {Tits }} X$ and $\theta^{\prime-1}(\delta) \subset \partial_{\text {Tits }} X^{\prime}$ are either manifolds of dimension at least 1 or totally disconnected spaces by sublemma 4.6 .9 , depending on whether X and X^{\prime} are symmetric spaces or Euclidean buildings. Therefore either X and X^{\prime} are both symmetric spaces of noncompact type, or they are both irreducible Euclidean buildings with Moufang boundary. In the latter case we are done by theorem 8.3 .9 ; when X and X^{\prime} are both symmetric spaces we apply proposition 8.3.8 to get a homothety $\Phi_{0}: X \longrightarrow X^{\prime}$ with $\partial_{\infty} \Phi_{0}=\partial_{\infty} \Phi$. By proposition 8.1.2, $d\left(\Phi(v), \Phi_{0}(v)\right)<D$ for every vertex $v \in X$, and since the affine Weyl group of X is cocompact the vertices are uniform in X, and so we have $d\left(\Phi, \Phi_{0}\right)<D^{\prime}$. Hence Φ_{0} is an isometry.

8.3.2 Inducing isometries of ideal boundaries of symmetric spaces

We consider a symmetric space X of non-compact type and denote by G the identity component of its isometry group.

Sublemma 8.3.5 Let $F \subset X$ be a maximal flat and let $\pi_{F}: X \rightarrow F$ be the nearest point retraction. Given a compact set $K \subset \operatorname{Int}\left(\Delta_{m o d}\right)$ and $\epsilon>0$, there is a $\delta>0$ such that if $p \in X, x \in F$, $\theta(\overline{p x}) \in K$, and $\angle_{p}\left(x, \pi_{F}(p)\right)>\frac{\pi}{2}-\delta$, then $d(p, F)<\epsilon$.

Proof. Note that as q moves from p to $\pi_{F}(p)$ along the segment $\overline{\pi_{F}(p) p}, \angle_{q}\left(x, \pi_{F}(p)\right)$ increases monotonically. If the sublemma were false, we could find a sequence $p_{k} \in X, x_{k} \in F$ so that $\angle_{p_{k}}\left(x_{k}, \pi_{F}\left(p_{k}\right)\right) \rightarrow \frac{\pi}{2}$ and $d\left(p_{k}, F\right) \geq \epsilon$. Since $\angle_{\pi_{F}\left(p_{k}\right)}\left(x_{k}, p_{k}\right)=\frac{\pi}{2}$, triangle comparison implies that $\frac{\left|p_{k} \pi_{F}\left(p_{k}\right)\right|}{\left|p_{k} x_{k}\right|} \rightarrow 0$. Hence by taking $q_{k} \in \overline{p_{k} \pi_{F}\left(p_{k}\right)}$ with $d\left(q_{k}, F\right)=\epsilon$ we have $\angle_{x_{k}}\left(p_{k}, q_{k}\right) \rightarrow 0$, so $d_{\Delta_{\text {mod }}}\left(\theta\left(\overline{q_{k} x_{k}}\right), K\right) \rightarrow 0$. Modulo the group G, we may extract a convergent subsequence of the configurations $\left(F, \overline{q_{k} x_{k}}\right)$ getting a maximal flat F, a point q_{∞} with $d\left(q_{\infty}, F\right)=\epsilon$, and $x_{\infty} \in \partial_{\infty} F$ such that $\angle_{q_{\infty}}\left(x_{\infty}, \pi_{F}\left(q_{\infty}\right)\right)=\frac{\pi}{2}$, and $\theta\left(x_{\infty}\right) \in K$. This is absurd.

Sublemma 8.3.6 Let F_{i} be a sequence of maximal flats in X so that $\partial_{\infty} F_{i} \rightarrow \partial_{\infty} F$ where F is a maximal flat, i.e. for each open neighborhood U of $\partial_{\infty} F$ in $\partial_{\infty} X$ with respect to the cone topology, $\partial_{\infty} F_{i}$ is contained in U for sufficiently large i. Then $F_{i} \rightarrow F$ in the pointed Hausdorff topology.

Proof. Let $\xi, \eta \in \partial_{\infty} F$ be antipodal regular points and choose points $\xi_{i}, \eta_{i} \in \partial_{\infty} F_{i}$ so that $\xi_{i} \rightarrow \xi$ and $\eta_{i} \rightarrow \eta$. Then for $x \in F$ we have $\angle_{x}\left(\xi_{i}, \eta_{i}\right) \rightarrow \pi$ and consequently $\angle_{x}\left(\pi_{F_{i}} x, \xi_{i}\right) \rightarrow \frac{\pi}{2}, \angle_{x}\left(\pi_{F_{i}} x, \eta_{i}\right) \rightarrow$ $\frac{\pi}{2}$. Applying sublemma 8.3.5, we conclude that $d\left(x, F_{i}\right) \rightarrow 0$. The claim follows since this holds for all $x \in F$.

Lemma 8.3.7 Let $\partial_{\infty}: G \rightarrow H o m e o\left(\partial_{\infty} X\right)$ be the homomorphism which takes each isometry to its induced boundary homeomorphism. Then ∂_{∞} is a topological embedding when Homeo $\left(\partial_{\infty} X\right)$ is given the compact-open topology.

Proof. ∂_{∞} is continuous, because the natural action of G on $\partial_{\infty} X$ is continuous. To see that ∂_{∞} is a topological embedding, it suffices to show that if $g_{i} \in G$ is a sequence with $\partial_{\infty}\left(g_{i}\right) \rightarrow e \in$ $\operatorname{Homeo}\left(\partial_{\infty} X\right)$, then $g_{i} \rightarrow e \in G$. Let x be a point in X and choose finitely many (e.g. two) maximal flats F_{1}, \ldots, F_{k} with $F_{1} \cap \cdots \cap F_{k}=\{x\}$. Since $\partial_{\infty}\left(g_{i}\right) \rightarrow e \in \operatorname{Homeo}\left(\partial_{\infty} X\right), \partial_{\infty} g_{i} F_{j}$ converges to $\partial_{\infty} F_{j}$ in the sense that for each open neighborhood U_{j} of $\partial_{\infty} F_{j}$ in $\partial_{\infty} X$ with respect to the cone topology, $\partial_{\infty} g_{i} F_{j}$ is contained in U_{j} for sufficiently large i. By the previous sublemma we know that $g_{i} F_{j} \rightarrow F_{j}$ in the pointed Hausdorff topology.

Proposition 8.3.8 Let X and X^{\prime} be irreducible symmetric spaces of rank at least 2. Then any cone topology continuous Tits isometry

$$
\psi: \partial_{\text {Tits }} X \rightarrow \partial_{\text {Tits }} X^{\prime}
$$

is induced by a unique homothety $\Psi: X \rightarrow X^{\prime}$.

Proof. We denote by G (resp. G^{\prime}) the identity component of the isometry group of X (resp. X^{\prime}). By lemma 8.3.7 the homomorphisms $\partial_{\infty}: G \rightarrow \operatorname{Homeo}\left(\partial_{\infty} X\right)$ and $\partial_{\infty}^{\prime}: G^{\prime} \rightarrow \operatorname{Homeo}\left(\partial_{\infty} X^{\prime}\right)$ are topological embeddings, where $\operatorname{Homeo}\left(\partial_{\infty} X\right)$ and $\operatorname{Homeo}\left(\partial_{\infty} X^{\prime}\right)$ are given the compact-open topology. According to [Mos, p.123, cor. 16.2], conjugation by ψ carries $\partial_{\infty} G$ to $\partial_{\infty}^{\prime} G^{\prime}$. Hence ψ induces a continuous isomorphism $G \rightarrow G^{\prime}$. Such an isomorphism carries (maximal) compact subgroups to (maximal) compact subgroups and it is a classical fact that the induced map $\hat{\Psi}$: $X \rightarrow X^{\prime}$ of the symmetric spaces is a homothety. ψ and the induced isometry $\partial_{\text {Tits }} \hat{\Psi}$ at infinity are G-equivariant with respect to the actions of G on $\partial_{\text {Tits }} X$ and $\partial_{\text {Tits }} X^{\prime}$ and we conclude that $\partial_{\text {Tits }} \hat{\Psi}=\psi$.

8.3.3 (1, $A)$-quasi-isometries between Euclidean buildings

Here we prove
Theorem 8.3.9 Let X, X^{\prime} be thick Euclidean buildings with Moufang Tits boundary, and assume that the canonical product decomposition of X has no 1-dimensional factors ${ }^{12}$. Then for every A there is a C so that for every $(1, A)$ quasi-isometry $\Phi: X \longrightarrow X^{\prime}$ there is an isometry $\Phi_{0}: X \longrightarrow X^{\prime}$ with $d\left(\Phi, \Phi_{0}\right)<C$.

The proof of theorem 8.3.9 combines corollary 7.1 .5 and material from sections 3.12 and 4.10 . We first sketch the argument in the case that X and X^{\prime} are irreducible, of rank at least 2, and have cocompact affine Weyl groups.

Let $\left(B, \Delta_{m o d}\right)$ be a spherical building. Attached to each root (i.e. half-apartment) in B is a root group $U_{a} \subseteq \operatorname{Aut}\left(B, \Delta_{\text {mod }}\right.$) (see 3.12). Remarkably, when B is irreducible and has rank at least 2 , the U_{a} 's - and consequently the group $G \subseteq \operatorname{Aut}\left(B, \Delta_{m o d}\right)$ generated by them - act canonically and isometrically on any Euclidean building with Tits boundary B (see 4.10). Now let $\left(B, \Delta_{m o d}\right)=\left(\partial_{T i t s} X, \Delta_{m o d}\right)$. If $\Phi: X \longrightarrow X^{\prime}$ is an (L, A) quasi-isometry, then by 2.3 .9 we

[^8]get an induced isometry $\partial_{\text {Tits }} \Phi: \partial_{\text {Tits }} X \longrightarrow \partial_{\text {Tits }} X^{\prime}$, so the group $G \subseteq A u t\left(B, \Delta_{m o d}\right)$ acts on $\partial_{\text {Tits }} X, \partial_{\text {Tits }} X^{\prime}$, and hence on X and X^{\prime}. By comparing images of apartments (and using the quasi-isometry Φ), ones sees that a subgroup $K \subseteq G$ has bounded orbits in X iff it has bounded orbits in X^{\prime}. Because B is Moufang (3.12) the maximal bounded subgroups $M \subset G$ pick out "spots" $v_{M} \in X$ and $\bar{v}_{M} \in X^{\prime}$ (proposition 4.10.6), and the resulting 1-1 correspondence between the spots of X and the spots of X^{\prime} determines a homothety $\Phi_{0}: X \longrightarrow X^{\prime}$ with $\partial_{\text {Tits }} \Phi_{0}=\partial_{\text {Tits }} \Phi$.

Proof of theorem 8.3.9. Step 1: Reduction to the irreducible case.
Lemma 8.3.10 Every $(1, A)$ quasi-isometry $\phi: \mathbb{E}^{r} \longrightarrow \mathbb{E}^{r}$ lies within uniform distance of a homothety.

For every distance function $d: \mathbb{E}^{r} \longrightarrow \mathbb{E}^{r}$ the function $d \circ \phi$ lies within uniform distance of a distance function. By taking limits we see that for every Busemann function $b: \mathbb{E}^{r} \longrightarrow \mathbb{E}^{r}, b \circ \phi$ is uniformly close to a Busemann function. But the Busemann functions are affine functions, so ϕ is uniformly close to an affine map ϕ_{0}. Obviously ϕ_{0} is an isometry.

By corollary 7.1.5, there is a constant $D\left(A, X, X^{\prime}\right)$ so that the image of every apartment $A \subset X$ is D Hausdorff close to an apartment $A^{\prime} \subset X^{\prime}$. Composing $\left.\Phi\right|_{A}$ with the projection onto A^{\prime} we get a map which is uniformly close to an isometry $\Psi_{A}: A \longrightarrow A^{\prime}$. Hence if $F \subset A$ is a flat, then $\Phi(F) \subset X^{\prime}$ is uniformly Hausdorff close to the flat $\Psi_{A}(F) \subset A^{\prime}$. Therefore we may repeat the reasoning of 8.2 to see that if $X=\Pi X_{i}, X^{\prime}=\Pi X_{j}^{\prime}$ are the decompositions of X and X^{\prime} into thick irreducible factors, then after reindexing the factors X_{j}^{\prime} there are $(1, \bar{A})$ quasi-isometries $\Phi_{i}: X_{i} \longrightarrow X_{i}^{\prime}$ so that Φ is uniformly close to $\prod \Phi_{i}(\bar{A}$ depends only on the quasi-isometry constant of Φ and $\left.X, X^{\prime}\right)$. Hence we are reduced to the irreducible case.
Step 2: X and X^{\prime} are irreducible. The affine Weyl groups $W_{a f f}, W_{a f f}^{\prime}$ of X, X^{\prime} are either finite or cocompact, since their Tits boundaries are irreducible. If $W_{a f f}$ is finite then it has a fixed point, so all apartments intersect in a point $p \in X$ and X is a metric cone over $\partial_{\text {Tits }} X$. If $\alpha \in \Delta_{\text {mod }}$ is a regular point, then $\theta^{-1}(\alpha) \subset \partial_{\text {Tits }} X$ is clearly discrete in the cone topology. On the other hand, if $W_{a f f}$ is cocompact then $\theta^{-1}(\alpha) \subset \partial_{\text {Tits }} X$ is nondiscrete since any regular geodesic ray $\overline{p \xi} \subset A$ can branch off at many singular walls. Since Φ induces a homeomorphism of geometric boundaries $\partial_{\infty} \Phi: \partial_{\infty} X \longrightarrow \partial_{\infty} X^{\prime}$ by 2.3.9, and this induces an isomorphism of spherical buildings $\partial_{\text {Tits }} \Phi: \partial_{\text {Tits }} X \longrightarrow \partial_{\text {Tits }} X^{\prime}$, either X and X^{\prime} are both metric cones, or they both have cocompact affine Weyl groups. If they are both cones, we may produce an isometry $\Phi_{0}: X \longrightarrow X^{\prime}$ by taking the cone over $\partial_{\text {Tits }} \Phi: \partial_{\text {Tits }} X \longrightarrow \partial_{\text {Tits }} X^{\prime}$. This induces the same bijection of apartments as Φ, and lies at uniform distance from Φ by lemma 8.3.10.
Step 3: X and X^{\prime} are thick, irreducible, and have cocompact affine Weyl group. Letting $G \subset$ $\operatorname{Aut}\left(\partial_{\text {Tits }} X\right) \stackrel{\partial_{\text {Tits }} \Phi_{*}}{\sim} A u t\left(\partial_{\text {Tits }} X^{\prime}\right)$ be the group generated by the root groups of $\partial_{\text {Tits }} X$, we get actions of G on $\partial_{\text {Tits }} X, \partial_{\text {Tits }} X^{\prime}$, and by 3.12.2 actions on X and X^{\prime} by automorphisms as well.

Lemma 8.3.11 A subgroup $B \subset G$ has bounded orbits in X iff it has bounded orbits in X^{\prime}.

Proof. We show that if K has a bounded orbit $K(p)=\{g p \mid g \in K\} \subset X$ then K has a bounded orbit in X^{\prime}.

Let $p \in X$ be a vertex, let \mathcal{F}_{p} be the collection of apartments passing through p, and let $\mathcal{F}_{K(p)}=\cup_{g \in K} \mathcal{F}_{g p} . \mathcal{F}_{K(p)}$ is a K-invariant collection of apartments in X, and when $R>\operatorname{Diam}(K(p))$
we have $p \in \cap_{A \in \mathcal{F}_{K(p)}} N_{R}(A)$. Let $\Phi\left(\mathcal{F}_{p}\right)$ and $\Phi\left(\mathcal{F}_{K(p)}\right)$ denote the corresponding collections of apartments in X^{\prime}. Then $\Phi\left(\mathcal{F}_{K(p)}\right)$ is K-invariant, and $\Phi(p) \in \cap_{A^{\prime} \in \Phi\left(\mathcal{F}_{K(p))}\right.} N_{R+C_{1}}\left(A^{\prime}\right)$, where C_{1} is a constant such that for every apartment $A \subset X$, the Hausdorff distance $d_{H}\left(\Phi(A), A^{\prime}\right)<C_{1}$. By proposition 8.1.2, $\cap_{A^{\prime} \in \Phi\left(\mathcal{F}_{p}\right)} N_{R+C_{1}}\left(A^{\prime}\right)$ is bounded. Thus $\cap_{A^{\prime} \in \Phi\left(\mathcal{F}_{K(p))}\right.} N_{R+C_{1}}\left(A^{\prime}\right)$ is a nonempty K-invariant bounded set.

Proof of theorem 8.3.9 continued. By proposition 4.10 .6 we now have a bijection

$$
\operatorname{Spot}(\Phi): S p o t(X) \rightarrow \operatorname{Spot}\left(X^{\prime}\right)
$$

between spots in X and X^{\prime} via their correpondence with maximal bounded subgroups in G. Moreover by item 2 of proposition 4.10 .6 for every apartment $A \subset X$, we have $\operatorname{Spot}(\Phi)(\operatorname{Spot}(A))=\operatorname{Spot}\left(A^{\prime}\right)$ where $A^{\prime} \subset X^{\prime}$ is the unique apartment with $\partial_{\text {Tits }} A^{\prime}=\partial_{\text {Tits }} \Phi\left(\partial_{\text {Tits }} A\right)$. Since by item 3 of proposition 4.10.6 $\left.\operatorname{Spot}(\Phi)\right|_{S p o t(A)}: \operatorname{Spot}(A) \rightarrow \operatorname{Spot}\left(A^{\prime}\right)$ is a homeomorphism with respect to half-apartment topologies we see that X is discrete iff X^{\prime} is discrete.
Case 1: Both X and X^{\prime} are non-discrete, i.e. their affine Weyl groups have a dense orbit. In this case $\operatorname{Spot}(A)=A, \operatorname{Spot}\left(A^{\prime}\right)=A^{\prime}$, and $\left.\operatorname{Spot}(\Phi)\right|_{A}: A \rightarrow A^{\prime}$ is a homeomorphism since the half-apartment topology is the metric topology. By item 3 of proposition 4.10.6 $\left.\operatorname{Spot}(\Phi)\right|_{A}$ maps singular half-apartments $H \subset A$ with $\partial_{\text {Tits }} H=a$ to singular half-apartments $\operatorname{Spot}(\Phi)(H) \subset A^{\prime}$ with $\partial_{\text {Tits }}(\operatorname{Spot}(\Phi)(H))=\partial_{\text {Tits }} \Phi(a)$. By considering infinite intersections of singular half-apartments with Tits boundary $a \subset \partial_{\text {Tits }} A$, it follows that $\operatorname{Spot}(\Phi)$ carries all half-spaces $H \subset A$ with $\partial_{\text {Tits }} H=a$ to half-spaces $\operatorname{Spot}(\Phi)(H)$ with $\partial_{\text {Tits }}(\operatorname{Spot}(\Phi)(H))=\partial_{\text {Tits }} \Phi(a)$. By considering intersections of halfspaces $H_{ \pm}$with opposite Tits boundaries, we see that $\operatorname{Spot}(\Phi)$ carries hyperplanes whose boundary is a wall $m \subset \partial_{\text {Tits }} A$ to hyperplanes in A^{\prime} with boundary $\partial_{\text {Tits }} \Phi(m) \subset \partial_{\text {Tits }} A^{\prime}$. By section 6.4.4 it follows that $\Phi_{0} \stackrel{\text { def }}{=} \operatorname{Spot}(\Phi): X \rightarrow X^{\prime}$ is a homothety and $\partial_{\text {Tits }} \Phi_{0}=\partial_{\text {Tits }} \Phi$.
Case 2: X and X^{\prime} are both discrete. In this case A and A^{\prime} are crystallographic Euclidean Coxeter complexes; $S p o t(A)$ and $S p o t\left(A^{\prime}\right)$ coincide with the 0 -skeleta of A and A^{\prime}. Again by item 3 of proposition 4.10 .6 , if $S \subset A$ is either a singular subspace or singular half-apartment, then there is a unique singular subspace or singular half-apartment $S^{\prime} \subset A^{\prime}$ so that $\operatorname{Spot}(\Phi)(S \cap \operatorname{Spot}(A))=$ $S^{\prime} \cap \operatorname{Spot}\left(A^{\prime}\right) . k+1$ spots $s_{0}, \ldots, s_{k} \in \operatorname{Spot}(A)$ are the vertices of a k-simplex in the simplicial complex iff they don't lie in a singular subspace of dimension $<k$ and the intersection of all singular halfapartments containing $\left\{s_{0}, \ldots, s_{k}\right\}$ contains the $k+1$ spots s_{i}. Hence $\left.\operatorname{Spot}(\Phi)\right|_{\operatorname{Spot}(A)}: \operatorname{Spot}(A) \rightarrow$ $\operatorname{Spot}\left(A^{\prime}\right)$ is a simplicial isomorphism and hence is induced by a unique homothety $A \rightarrow A^{\prime}$. It follows that $\operatorname{Spot}(\Phi): \operatorname{Spot}(X) \rightarrow \operatorname{Spot}\left(X^{\prime}\right)$ is the restriction of a unique homothety $\Phi_{0}: X \rightarrow X^{\prime}$ with $\partial_{\text {Tits }} \Phi_{0}=\partial_{\text {Tits }} \Phi$.

Since vertices are uniform in X, we may apply proposition 8.1.2 to conclude that in both cases $d\left(\Phi_{0}, \Phi\right)<D^{\prime}\left(L, C, X, X^{\prime}\right)$, forcing Φ_{0} to be an isometry.

$9 \quad$ A abridged version of the argument

In this appendix we offer an introduction to the proof of theorem 1.1.2 via the special case when $X=X^{\prime}=\mathbb{H}^{2} \times \mathbb{H}^{2}$.

Step 1: The structure of asymptotic cones $\omega-\lim \left(\lambda_{i}\left(\mathbb{H}^{2} \times \mathbb{H}^{2}\right), z_{i}\right)$. Readers unfamiliar with asymptotic cones should read section 2.4. By 2.4.4, any asymptotic cone $\omega-\lim \left(\lambda_{i} \mathbb{H}^{2}, x_{i}\right)$ is a $C A T(\kappa)$ space for every κ, so it is a metric tree; since there are large equilateral triangles centered at any point in \mathbb{H}^{2}, the metric tree branches everywhere. The ultralimit operation commutes with taking products, so one concludes that $\omega-\lim \left(\lambda_{i}\left(\mathbb{H}^{2} \times \mathbb{H}^{2}\right), z_{i}\right) \simeq \omega-\lim \left(\lambda_{i} \mathbb{H}^{2}, x_{i}\right) \times \omega-\lim \left(\lambda_{i} \mathbb{H}^{2}, y_{i}\right)$ where $z_{i}=x_{i} \times y_{i}$ and \times denotes the Euclidean product of metric spaces. So any asymptotic cone of $\mathbb{H}^{2} \times \mathbb{H}^{2}$ is a product of metric trees which branch everywhere.
Step 2: Planes in a product of metric trees are "locally finite". For $i=1,2$ let T_{i} be a metric tree. For simplicity we assume that geodesic segments and rays are extendible to complete geodesics. Since the convex hull of two geodesics in a metric tree is contained in the union of at most 3 geodesics, the convex hull of two 2-flats $\gamma_{i} \times \delta_{i} \subset T_{1} \times T_{2}$ is contained in at most nine 2-flats. Section 6 may now be read up to the paragraph after lemma 6.2.1, replacing the word "apartment" with " 2 -flat", and corollary 4.6 .8 with the observation above. Hence every topologically embedded plane in $T_{1} \times T_{2}$ is locally contained in a finite number of 2-flats.

Step 3: Homeomorphisms of products of nondegenerate trees preserve the product structure. We now make the additional assumption that our metric trees T_{i} branch everywhere: for every $x \in T_{i}$, $T_{i} \backslash x$ has at least 3 components. Let $P \subset T_{1} \times T_{2}$ be a topologically embedded plane, and let $z=x \times y \in P$. We know that there are finite trees $\bar{T}_{i} \subset T_{i}$ with $z \in \bar{T}_{1} \times \bar{T}_{2} \subset T_{1} \times T_{2}$ so that $B_{z}(r) \cap P \subset B_{z}(r) \cap\left(\bar{T}_{1} \times \bar{T}_{2}\right)$. Shrinking r if necessary, we may assume that \bar{T}_{1} and \bar{T}_{2} are cones ($x \in \bar{T}_{1}$ and $y \in \bar{T}_{2}$ are the only vertices). Elementary topological arguments using local homology groups show that $B_{z}(r) \cap P$ coincides with $B_{z}(r) \cap\left(\cup Q_{i}\right)$, where each $Q_{i} \subset \bar{T}_{1} \times \bar{T}_{2}$ is a quarter plane with vertex at z, i.e. a set of the form $\gamma \times \delta \subset \bar{T}_{1} \times \bar{T}_{2}$ where $\gamma \subset T_{1}$ (resp. $\delta \subset T_{2}$) is a geodesic leaving x (resp. y).

Say that two sets $S_{1}, S_{2} \subset T_{1} \times T_{2}$ have the same germ at z if $S_{1} \cap U=S_{2} \cap U$ for some neighborhood U of z. We see from the above that for every $z \in P, P$ has the same germ at z as a finite union of quarter planes. Moreover, since the intersection of two quarter planes Q_{1}, Q_{2} with vertex at z either has the same germ as Q_{i}, the same germ as a horizontal or vertical segment, or the same germ as $\{z\}$, it follows that a set $S \subset T_{1} \times T_{2}$ has the germ of a quarter plane with vertex at z iff it has the same germ as a two-dimensional intersection of topologically embedded planes, and is minimal among such. Hence we have a topological characterization of 2 -flats and vertical/horizontal geodesics: a closed, topologically embedded plane $P \subset T_{1} \times T_{2}$ is a 2-flat if for every $z \in P, P$ has the same germ at z a the union of four quarter planes with vertex at z; a closed connected subset $S \subset T_{1} \times T_{2}$ is a vertical or horizontal geodesic if for every $z \in S$, S has the same germ at z as the boundary of two adjacent quarter planes with vertex at z. From this one may easily recover the product structure on $T_{1} \times T_{2}$ using only the topology of $T_{1} \times T_{2}$. Hence a homeomorphism $\phi: T_{1} \times T_{2} \longrightarrow T_{1} \times T_{2}$ preserves the product structure (although it may swap the factors, of course).
Step 4: Quasi-isometries of $\mathbb{H}^{2} \times \mathbb{H}^{2}$ preserve the product structure. Let $\Phi: \mathbb{H}^{2} \times \mathbb{H}^{2} \longrightarrow \mathbb{H}^{2} \times \mathbb{H}^{2}$ be a quasi-isometry. If $z, z^{\prime} \in \mathbb{H}^{2} \times \mathbb{H}^{2}$, let $\theta\left(z, z^{\prime}\right)$ be the angle between the segment $\overline{z z^{\prime}}$ and the horizontal direction.

Sublemma 9.0.12 There is a function $f:[0, \infty) \longrightarrow \mathbb{R}$ with $\lim _{r \rightarrow \infty} f(r)=0$ so that if z, z^{\prime} are horizontal, then $\left|\theta\left(\Phi(z), \Phi\left(z^{\prime}\right)\right)-\frac{\pi}{4}\right|>\frac{\pi}{4}-f(r)$.

Proof. If not, we could find a sequence $z_{i}, z_{i}^{\prime} \in \mathbb{H}^{2} \times \mathbb{H}^{2}$ of horizontal pairs so that $\frac{1}{\lambda_{i}}=d\left(z_{i}, z_{i}^{\prime}\right)=\infty$
and $\limsup \operatorname{sum}_{i \rightarrow \infty}\left|\theta\left(\Phi\left(z_{i}\right), \Phi\left(z_{i}^{\prime}\right)\right)-\frac{\pi}{4}\right|<\frac{\pi}{4}$. Then $z_{\omega}, z_{\omega}^{\prime} \in \omega-\lim \left(\lambda_{i}\left(\mathbb{H}^{2} \times \mathbb{H}^{2}\right), z_{\omega}\right)$ is a horizontal pair with $\theta\left(\Phi_{\omega}\left(z_{\omega}\right), \Phi_{\omega}\left(z_{\omega}^{\prime}\right)\right) \neq 0, \frac{\pi}{2}$. This contradicts step 3 .

Since any two horizontal pairs z_{1}, z_{1}^{\prime} and z_{2}, z_{2}^{\prime} may be joined with a continuous family z_{t}, z_{t}^{\prime} of horizontal pairs with $\min d\left(z_{t}, z_{t}^{\prime}\right) \geq \min \left(d\left(z_{1}, z_{1}^{\prime}\right), d\left(z_{2}, z_{2}^{\prime}\right)\right)$, we see that for horizontal pairs z, z^{\prime}, the limit $\lim _{d\left(z, z^{\prime}\right) \rightarrow \infty} \theta\left(\Phi(z), \Phi\left(z^{\prime}\right)\right)$ exists and is either 0 or $\frac{\pi}{2}$. We assume without losing generality that the former holds.

Hence as $y \in \mathbb{H}^{2}$ varies, the compositions $\mathbb{H}^{2} \longrightarrow \mathbb{H}^{2} \times\{y\} \xrightarrow{\Phi} \mathbb{H}^{2} \times \mathbb{H}^{2} \xrightarrow{p_{1}} \mathbb{H}^{2}$ are quasiisometries with quasi-isometry constant independent of y, and they lie at finite distance from one another. It follows that they lie at uniform distance from one another, and so Φ preserves the fibers of p_{1} up to bounded Hausdorff error. Repeating this argument for p_{2} we see that Φ is within uniform distance of a product $\Phi_{1} \times \Phi_{2}$ of quasi-isometries.

References

[ABN] A.D. Aleksandrov, V.N. Berestovskij, I.G. Nikolaev, Generalized Riemannian Spaces, Russ. Math. Surveys 41, no. 3(1986), 1-54.
[AS] Anderson, Michael T., Schroeder, Viktor, Existence of flats in manifolds of nonpositive curvature, Invent. Math., 85 (1986), no. 2, 303-315.
[Ba] W. Ballmann, Lectures on spaces of nonpositive curvature, preprint 1995.
[BGS] W. Ballmann, M. Gromov, V. Schroeder, Manifolds of nonpositive curvature, Birkhäuser 1985.
[Brbk] N. Bourbaki, Groupes et Algèbres de Lie, ch. 4-6, Masson, Paris 1981.
[Brn1] K. Brown, Buildings, Springer 1989.
[Brn2] K. Brown, Five lectures on Buildings, pp. 254-295 in: Group theory from a geometric viewpoint, Trieste 1990.
[BT] F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Publ. IHES 60 (1984), pp. 5-184.
[ChE] J. Cheeger and D. Ebin, Comparison theorems in Riemannian geometry, North Holland 1975.
[DW] L. Van den Dries, A.J. Wilkie, On Gromov's Theorem concerning groups of polynomial growth and elementary logic, J. of Algebra 89(1984), 349-374.
[Eb] P. Eberlein, Structure of manifolds of nonpositive curvature, in LNM 1156, Springer 1985.
[Gro] M. Gromov, Asymptotic invariants for infinite groups, in: Geometric group theory, London Math. Soc. lecture note series 182, 1993.
[GrPa] M. Gromov and P. Pansu, Rigidity of lattices: An introduction, in: Geometric Topology: Recent developments, Springer Lecture Notes 1504.
[GrBe] L. C. Grove and C. T. Benson, Finite reflection groups, Springer GTM 99 sec. ed. 1985.
[Hum] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge studies in advanced mathematics 29, Cambridge Univ. Press 1990.
[KKL] M. Kapovich, B. Kleiner and B. Leeb, Quasiisometries preserve the de Rham decomposition, in preparation.
[KaLe] M. Kapovich and B. Leeb, Asymptotic cones and quasi-isometry classes of fundamental groups of 3-manifolds, GAFA vol. 5, no. 3 (1995), 582-603.
[KILe] B. Kleiner and B. Leeb, in preparation.
[Mos] G. D. Mostow, Strong rigidity of locally symmetric spaces, Ann. of Math. Studies, vol. 78.
[Nik] I. Nikolaev, The tangent cone of an Aleksandrov space of curvature $\leq K$, to appear in Manuscripta Mathematica.
[Pan] P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129(1989), 1-60.
[Ron] M. Ronan, Lectures on Buildings, Perspectives in Mathematics, vol. 7, Academic Press 1989.
[Sch] R. Schwartz, Quasi-Isometric Rigidity and Diophantine Approximation, preprint.
[Ti1] J. Tits, Buildings of spherical type and finite BN-pairs, Springer Lecture Notes in Mathematics, vol. 386 (1974).
[Ti2] J. Tits, Immeubles de type affine, in: Buildings and the geometry of diagrams, Proceedings Como 1984.
[Thu] W. Thurston, The geometry and topology of 3-manifolds, lecture notes, Princeton University.
[Tuk] P. Tukia, Quasiconformal extension of quasisymmetric mappings compatible with a Möbius group, Acta. Math. 154 (1985), pp. 153-193.

Bruce Kleiner:
Department of Mathematics
David Rittenhouse Laboratory
209 S. 33rd St
Philadelphia, PA 19104-6395
email: bkleiner@math.upenn.edu

Bernhard Leeb:
Mathematisches Institut der Universität,
Beringstr. 1,
53115 Bonn, Germany
email: leeb@rhein.iam.uni-bonn.de

[^0]: ${ }^{\dagger}$ The first author was supported by NSF and MSRI Postdoctoral Fellowships and the Sonderforschungsbereich SFB 256 at Bonn.
 *The second author was supported by an MSRI Postdoctoral Fellowship, the SFB 256 and IHES.
 ${ }^{1}$ Any quasi-conformal homeomorphism arises as the boundary homeomorphism of a quasi-isometry by [Tuk].
 ${ }^{2}$ The boundary of $\mathbb{C} \mathbb{H}^{n}$ can be endowed with an $\operatorname{Isom}\left(\mathbb{C} \mathbb{H}^{n}\right)$ invariant contact structure by projecting the contact structure from a unit tangent sphere $S_{p}^{2 n-1} \mathbb{C} \mathbb{H}^{n}$ to $\partial \mathbb{C} \mathbb{H}^{n}$ using the exponential map.

[^1]: ${ }^{3}$ The distance function on the product space is given by the Pythagorean formula.

[^2]: ${ }^{4}$ If $\mathbb{Z}^{r} \subset \Gamma$ acts cocompactly on a maximal flat $F \subset X$, then \mathbb{Z}^{r} will stabilize $\Phi(F)$ and a flat F^{\prime} in X^{\prime}. One can then get a uniform estimate on the Hausdorff distance between $\Phi(F)$ and F^{\prime}.
 ${ }^{5}$ Obviously this statement is true by theorems 1.1.2 and 1.1.3.
 ${ }^{6}$ An r-quasi-flat is a quasi-isometric embedding $\phi: \mathbb{E}^{r} \rightarrow X$; a quasi-isometric embedding is a map satisfying condition (1), but not necessarily (2).

[^3]: ${ }^{7}$ The motivation for this terminology comes from the role θ_{B} plays in the structure of symmetric spaces and Euclidean buildings.

[^4]: ${ }^{8}$ This definition is slightly different form the usual one, which corresponds to irreducibility of linear representations.

[^5]: ${ }^{9} \mathrm{By}[\mathrm{GrBe}]\left[\right.$ theorem 4.2.4], $\Delta_{m o d}$ is a simplex if W acts fixed point freely. Observe that having distance less than $\pi / 2$ is an equivalence relation on the vertices. This implies the decomposition (19).

[^6]: ${ }^{10}$ EXPLANATION OF THIS STATEMENT

[^7]: ${ }^{11}$ A sequence x_{n} in a metric space X is ω-Cauchy if a subsequence with full ω-measure is Cauchy. If X is complete, then we define ω - $\lim x_{n}$ to be the limit of this subsequence.

[^8]: ${ }^{12}$ The statement is false for $(1, A)$ quasi-isometries between trees.

