UNIQUENESS AND STABILITY OF RICCI FLOW THROUGH
SINGULARITIES

RICHARD H. BAMLER AND BRUCE KLEINER

ABSTRACT. We verify a conjecture of Perelman, which states that there exists a
canonical Ricci flow through singularities starting from an arbitrary compact Rie-
mannian 3-manifold. Our main result is a uniqueness theorem for such flows, which,
together with an earlier existence theorem of Lott and the second named author,
implies Perelman’s conjecture. We also show that this flow through singularities
depends continuously on its initial condition and that it may be obtained as a limit
of Ricci flows with surgery.

Our results have applications to the study of diffeomorphism groups of three
manifolds — in particular to the Generalized Smale Conjecture — which will appear
in a subsequent paper.
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1. INTRODUCTION

1.1. Overview. The understanding of many aspects of Ricci flow has advanced dra-
matically in the last 15 years. This has led to numerous applications, the most notable
being Perelman’s landmark proof of the Geometrization and Poincaré Conjectures.
Nonetheless, from an analytical viewpoint, a number of fundamental questions re-
main, even for 3-dimensional Ricci flow. One of these concerns the nature of Ricci
flow with surgery, a modification of Ricci flow that was central to Perelman’s proof.
Surgery, an idea initially developed by Hamilton, removes singularities as they form,
allowing one to continue the flow. While Perelman’s construction of Ricci flow with
surgery was spectacularly successful, it is not entirely satisfying due to its ad hoc
character and the fact that it depends on a number of non-canonical choices. Fur-
thermore, from a PDE viewpoint, Ricci flow with surgery does not provide a theory
of solutions to the Ricci flow PDE itself, since surgery violates the equation. In fact,
Perelman himself was aware of these drawbacks and drew attention to them in both
of his Ricci flow preprints:

“It is likely that by passing to the limit in this construction [of Ricci
flow with surgery] one would get a canonically defined Ricci flow through
singularities, but at the moment I don’t have a proof of that.” —
[Per02] p.37]

“Our approach . . . is aimed at eventually constructing a canonical Ricci
flow ... a goal, that has not been achieved yet in the present work.” —
[Per03] p.1]

Motivated by the above, the paper [KL14] introduced a new notion of weak (or
generalized) solutions to Ricci flow in dimension 3 and proved the existence within
this class of solutions for arbitrary initial data, as well as a number of results about
their geometric and analytical properties.

In this paper we show that the weak solutions of [KL14] are uniquely determined
by their initial data (see Theorem |1.3| below). In combination with [KL14], this im-
plies that the associated initial value problem has a canonical weak solution, thereby
proving Perelman’s conjecture (see Corollary . We also show that this weak so-
lution depends continuously on its initial data, and that it is a limit of Ricci flows
with surgery (see Corollary . In summary, our results provide an answer to the
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long-standing problem of finding a satisfactory theory of weak solutions to the Ricci
flow equation in the 3-dimensional case.

From a broader perspective, it is interesting to compare the results in this paper
with work on weak solutions to other geometric PDEs.

The theory of existence and partial regularity of such weak solutions has been stud-
ied extensively. As with PDEs in general, proving existence of solutions requires a
choice of objects and a topology that is strong enough to respect the equation, but
weak enough to satisfy certain compactness properties. Establishing the finer struc-
ture of solutions (e.g. partial regularity) requires, generally speaking, a mechanism
for restricting blow-ups. For minimal surfaces, harmonic maps and harmonic map
heat flow, good notions of weak solutions with accompanying existence and partial
regularity theorems were developed long ago [AIm66] [Sim68|, [SU82, [CS89]. By con-
trast, the theory of weak solutions to mean curvature flow, the Einstein equation
and Ricci flow, are at earlier stages of development. For mean curvature flow, for
instance, different approaches to weak solutions (e.g. (enhanced) Brakke flows and
level set flow) were introduced over the last 40 years [Bra78| [ES91, [CGGI1l Tlm94].
Yet, in spite of deep results for the cases of mean convex or generic initial conditions
[Whi00), Whi03, Whi05l, [CM16], to our knowledge, the best results known for flows
starting from a general compact smooth surface in R? are essentially those of [Bra7g],
which are presumably far from optimal. For the (Riemannian) Einstein equation
many results have been obtained in the Kéhler case and on limits of smooth Einstein
manifolds, but otherwise progress toward even a viable definition of weak solutions
has been rather limited. Progress on Ricci flow has been limited to the study of spe-
cific models for an isolated singularity [FIK03| [AKO07, [ACK12] and the Kéahler case,
which has advanced rapidly in the last 10 years after the appearance of [ST09].

Regarding uniqueness of weak solutions, our focus in this paper, much less is known.
The paper [[Im95] describes a mechanism for non-uniqueness, stemming from the
dynamical instability of cones, which is applicable to a number of geometric flows.
For example, for mean curvature flow of hypersurfaces in R this mechanism provides
examples of non-uniqueness in high dimensions. Ilmanen and White [Whi02] found
examples of non-uniqueness starting from compact smooth surfaces in R?. Examples
for harmonic map heat flow are constructed in [GR11, [GGMI17], and for Ricci flow in
higher dimensions there are examples in [FIK03], which suggest non-uniqueness. Since
any discussion of uniqueness must refer to a particular class of admissible solutions,
the interpretation of some of the above examples is not entirely clear, especially in
the case of higher dimensional Ricci flow, where a definition of weak solutions is
lacking. In the other direction, uniqueness has been proven to hold in only a few
cases: harmonic map heat flow with 2-dimensional domain [Str85], mean convex
mean curvature flow [Whi03] and Kéhler-Ricci flow [ST09, [EGZ16]. The proofs of
these theorems rely on special features of these flows. In [Str85], the flow develops
singularities only at a finite set of times, and at isolated points. The striking proof of
uniqueness in [Whi03] is based on comparison techniques for scalar equations and a
geometric monotonicity property specific to mean convex flow. Lastly, Kahler-Ricci
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flow has many remarkable features that play a crucial role in its uniqueness argument:
the singularities, whose form is quite rigid, arise at a finite set of times determined
by the evolution of the Kéhler class; also, techniques specific to scalar equations play
an important role.

The method of proving uniqueness used in this paper is completely different in spirit
from earlier work. Uniqueness is deduced by comparing two flows with nearby initial
condition and estimating the rate at which they diverge from one another. Due to the
nature of the singularities, which might in principle occur at a Cantor set of times,
the flows can only be compared after the removal of their almost singular regions.
Since one knows nothing about the correlation between the almost singular parts of
the two flows, the crux of the proof is to control the influence of effects emanating
from the boundary of the truncated flows. This control implies a strong stability
property, which roughly speaking states that both flows are close away from their
almost singular parts if they are sufficiently close initially. A surprising consequence
of our analysis is that this strong stability result applies not just to Ricci flows with
surgery and the weak solutions of [KL.14], but to flows whose almost singular parts are
allowed to evolve in an arbitrary fashion, possibly violating the Ricci flow equation
at small scales.

The main ideas of our proof may throw light on uniqueness problems in general.
When distilled down to its essentials, our proof is based on the following ingredients:

(1) A structure theory for the almost singular part of the flow, which is based on
a classification of all blow-ups, not just shrinking solitons.

(2) Uniform strict stability for solutions to the linearized equation, for all blow-
ups.

(3) An additional quantitative rigidity property for blow-ups that makes it pos-
sible to fill in missing data to the evolution problem, after recently resolved
singularities.

This list, which is not specific to Ricci flow, suggests a tentative criterion for when one
might expect, and possibly prove, uniqueness for weak solutions to a given geometric
flow. From a philosophical point of view, it is natural to expect (1) and (2) to be
necessary conditions for uniqueness. However, implementation of even (1) can be
quite difficult. Indeed, to date there are few situations where such a classification is
known. It turns out that (3) is by far the most delicate part of the proof in our setting
and it is responsible for much of the complexity in the argument (see the overview of
the proof in Section [2| for more discussion of this point). Another context where the
above criteria may be satisfied is the case of mean curvature flow of 2-spheres in R3,
where uniqueness is conjectured to hold [Whi(2].

We mention that our main result implies that weak solutions to Ricci flow behave
well even when one considers continuous families of initial conditions. This contin-
uous dependence leads to new results for diffeomorphism groups of 3-manifolds, in
particular for the Generalized Smale Conjecture, which will be discussed elsewhere

IBK].
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FIGURE 1. In a Ricci flow with surgery (left figure) surgeries are per-
formed at a positive scale, whereas a singular Ricci flow (right figure)
“flows through” a singularity at an infinitesimal scale. The hatched
regions in the left figure mark the surgery points, i.e. the points that
are removed or added during a surgery.

{

1.2. Background and setup. In preparation for the statements of our main results,
which will be presented in the next subsection, we now recall in greater detail some
facts about Perelman’s Ricci flow with surgery [Per03, [KLOS, MT07, BBM™10] and
the weak solutions from [KL14], which will be needed for our setup. The reader who
is already familiar with this material may skip this subsection and proceed to the
presentation of the main results in Subsection [1.3]

In his seminal paper [Ham82], Hamilton introduced the Ricci flow equation

dig(t) = —2Ric(g(t)),  9(0) = go

and showed that any Riemannian metric gy on a compact manifold can be evolved
into a unique solution (g(t)):cjo,r)- This solution may, however, develop a singularity
in finite time. In [Per02], Perelman analyzed such finite-time singularities in the
3-dimensional case and showed that those are essentially caused by two behaviors:

e FExtinction (e.g. the flow becomes asymptotic to a shrinking round sphere).

e The development of neck pinches (i.e. there are regions of the manifold that
become more and more cylindrical, ~ S? x R, modulo rescaling, while the
diameter of the cross-sectional 2-sphere shrinks to zero).

Based on this knowledge, and inspired by a program suggested by Hamilton, Perel-
man specified a surgery process in which the manifold is cut open along small cross-
sectional 2-spheres, the high curvature part of the manifold and extinct components
are removed, and the resulting spherical boundary components are filled in with 3-
disks endowed with a standard cap metric. This produces a new smooth metric on a
closed manifold, from which the Ricci flow can be restarted. The process may then be
iterated to yield a Ricci flow with surgery. More specifically, a Ricci flow with surgery
is a sequence of conventional Ricci flows (g1(t))ecio,rn], (92(8))ecr )5 (93(2) )ieim ) - - -
on compact manifolds My, My, M3, ..., where (M;,1, g;+1(71;)) arises from (M;, g;(T;))
by a surgery process, as described before.
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FIGURE 2. A Ricci flow with surgery (left figure) can be converted to a
Ricci flow spacetime (right figure) by identifying pre and post-surgery
time-slices and removing surgery points. The white circles in the right
figure indicate that surgery points were removed at times 7} and 7T5.

As mentioned in Subsection the construction of a Ricci flow with surgery
depends on a variety of auxiliary parameters, for which there does not seem to be a
canonical choice, such as:

e The scale of the cross-sectional 2-sphere along which a neck pinch singularity
is excised; this scale is often called the surgery scale.

e The precise position and number of these 2-spheres.

e The standard cap metric that is placed on the 3-disks which are glued into
the 2-sphere boundary components.

e The method used to interpolate between this metric and the metric on the
nearby necks.

Different choices of these parameters may influence the future development of the
flow significantly (as well as the space of future surgery parameters). Hence a Ricci
flow with surgery cannot be constructed in a canonical way or, in other words, a Ricci
flow with surgery is not uniquely determined by its initial metric.

It is therefore a natural question whether a Ricci flow with surgery can be replaced
by a more canonical object, which one may hope is uniquely determined by its initial
data. This question was first addressed in [KL14], where the notion of a singular
Ricci flow, a kind of weak solution to the Ricci flow equation, was introduced. In
these flows, surgeries have been replaced by singular structure, i.e. regions with
unbounded curvature, which may be thought of as “surgery at an infinitesimal scale”
(see Figure [1).
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In order to present the definition and summarize the construction of a singular
Ricci flow, we need to introduce the spacetime picture of a Ricci flow or a Ricci
flow with surgery. For this purpose, consider a Ricci flow with surgery consisting of
the conventional Ricci flows (M, (91(t))icp,n)s (M2, (g2(t))teiry 1)), - - - and form the
following 4-dimensional spacetime manifold (see Figure [2| for an illustration):

(11) M = (M1 X [O,Tl] U¢1 M2 X [Tl,TQ} U¢2 M3 X [TQ,Tg] U¢3 .. ) \S

Here S denotes the set of surgery points, i.e. the set of points that are removed or
added during a surgery step and ¢; : M; D U; — U;x1 C M;,, are isometric gluing
maps, which are defined on the complement of the surgery points in M; x {T;} and
M, 1 x{T;}. The above construction induces a natural time-function t : M — [0, 00),
whose level-sets are called time-slices, as well as a time-vector field J; on M with
Oy - t = 1. The Ricci flows (91(t))scjo,r1], (92())ecrry ), - - - induce a metric g on the
horizontal distribution {dt = 0} C T'M, which satisfies the Ricci flow equation

Ly g = —2Ric(g).

The tuple (M, t, 0, g) is called a Ricci flow spacetime (see Definition for further
details). We will often abbreviate this tuple by M.

Note that a Ricci flow spacetime M that is constructed from a Ricci flow with
surgery by the procedure above is incomplete (see Definition for more details).
More specifically, the time-slices corresponding to surgery times are incomplete Rie-
mannian manifolds, because surgery points, consisting of necks near neck pinches or
standard caps are not included in M. So these time-slices have “holes” whose “diam-
eters” are < C'§, where ¢ is the surgery scale and C is a universal constant. A Ricci
flow with this property is called C'd-complete (see again Definition for further
details).

In [KL14] it was shown that every Riemannian manifold is the initial time-slice of
a Ricci flow spacetime M whose time-slices are 0-complete, which we also refer to as
complete (see Figure |3 for an illustration). This means that the time-slices of M may
be incomplete, but each time-slices can be completed as a metric space by adding
a countable set of points. Note that since the curvature after a singularity is not
uniformly bounded, we cannot easily control the time until a subsequent singularity
arises. In fact, it is possible — although not known at this point — that the set of
singular times on a finite time-interval is infinite or even uncountable. See [KL14] for
a proof that this set has Hausdorff dimension < %

We briefly review the construction of the (0-complete) Ricci flow spacetime M in
[KL14]. Consider a sequence of Ricci flows with surgery with surgery scale §; — 0,
starting from the same given initial metric, and construct the corresponding Ricci
flow spacetimes M, as in (|1.1)). Using a compactness argument, it was shown in
[KL14] that, after passing to a subsequence, we have convergence

(1.2) M, — M

in a certain sense. The Ricci flow spacetime M can then be shown to be 0-complete.
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t A

FiGUre 3. Example of a 0-complete Ricci flow spacetime with initial
time-slice (M, go).

We remark that even though the surgery scale in this flow is effectively 0, which
seems more canonical than in a Ricci flow with surgery, the entire flow may a priori
not be canonical; i.e. the flow is a priori not uniquely determined by its initial data.

We also remind the reader that, while a Ricci flow spacetime describes a singular
flow, the metric tensor field g on M is not singular itself, since the spacetime manifold
M does not “contain the singular points”. In other words, M describes the flow only
on its regular part. A flow that includes singular points can be obtained, for example,
by taking the metric completion of the time-slices. However, we do not take this
approach, in order to avoid having to formulate the Ricci flow equation at the added
singular points. This is in contrast to weak forms of other geometric flows, such as the
Brakke flow (generalizing mean curvature flow), which is defined at singular points
and therefore not smooth everywhere.

In lieu of an interpretation of the Ricci flow equation at the (nonexistent) singular
points of a Ricci flow spacetime, it becomes necessary to characterize the asymptotic
geometry in its almost singular regions. This is achieved via the canonical neighbor-
hood assumption, which states that regions of high curvature are geometrically close
to model solutions — k-solutions — modulo rescaling (see Definition |5.7| for more de-
tails). Roughly speaking, this implies that these regions are either spherical, neck-like
or cap-like. k-solutions (see Definition [5.5/for more details) arise naturally as blow-up
limits of conventional 3-dimensional Ricci flows and have also been shown to char-
acterize high curvature regions in Ricci flows with surgery. Moreover, the Ricci flow
spacetimes constructed in [KL14] also satisfy the canonical neighborhood assumption
in an even stronger sense (for more details see the discussion after Definition [5.7)).
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1.3. Statement of the main results. We now state the main results of this paper
in their full generality. Some of the terminology used in the following was informally
introduced in the previous subsection. For precise definitions and further discussions
we refer the reader to Section [Bl

Our first main result is the uniqueness of complete Ricci flow spacetimes that
satisfy the canonical neighborhood assumptions. These flows were also sometimes
called “weak Ricci flows” in the previous two subsections.

Theorem 1.3 (Uniqueness of Ricci flow spacetimes, general form). There is a uni-
versal constant €., > 0 such that the following holds.

Let (M, t,0, g) and (M',t,0p,¢") be two Ricci flow spacetimes that are both (0,T)-
complete for some T € (0,00] and satisfy the €can-canonical neighborhood assumption
at scales (0,r) for some r > 0. If the initial time-slices (Mo, go) and (Mg, g,) are
isometric, then the flows (M, t, 0, g) and (M',¥,0v,q") are isometric as well.

More precisely, assume that there is an isometry ¢ : (Mo, go) — (Mg, g4). Then
there is a unique smooth diffeomorphism ¢ : Mg 1) — MEO,T] such that

~

¢*g/ =9, a}MO = ¢a a*at = a’t’a to C/b\: t.

A Ricci flow spacetime is “(0,7")-complete” if the 0-completeness property holds
up to time T (see Definition [5.4).

Both properties that are imposed on M and M’ in Theorem [1.3]| hold naturally for
the Ricci flow spacetimes constructed in [KL14]. So we obtain the following corollary.

Corollary 1.4. There is a universal constant .., > 0 such that the following holds.

For every compact Riemannian manifold (M, g) there is a unique (i.e. canoni-
cal) Ricci flow spacetime (M, t, 0y, g) whose initial time-slice (Mo, go) is isometric to
(M, g) and that is 0-complete, and such that for every T' > 0 the time-slab Mo r)
satisfies the €ca,-canonical neighborhood assumption at scales (0,rr) for some rp > 0.

Note that by a modification of the arguments in [Baml7al Baml7b, Baml7d,
Bam17d, Baml1T7e|, the flow M becomes non-singular past some time 7' > 0 and
we have a curvature bound of the form |[Rm| < C/t. So the scale 1 in Corollary
can even be chosen independently of T

Coming back to Theorem we draw attention to the fact that the time-slices of
M and M, including the initial time-slices, may have infinite diameter or volume.
Also, they may have unbounded curvature even in bounded subsets, for instance when
the flow starts from a manifold with cylindrical cusps. We also emphasize that the
constant €.,, is universal and does not depend on any geometric quantities.

Theorem [1.3] will follow from a stability result for Ricci flow spacetimes. We first
present a slightly less general, but more accessible version of this stability result. In
the following theorem, we only require the completeness and the canonical neighbor-
hood assumption to hold above some small scale ¢, i.e. where the curvature is < 72,
As such, the theorem can also be used to compare two Ricci flows with surgery or a
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Ricci flow with surgery and a Ricci flow spacetime, via the construction . Fur-
thermore, we only require the initial time-slices of M and M’ be close in the sense
that there is a sufficiently precise bilipschitz map ¢, which may only be defined on
regions where the curvature is not too large. As a consequence, the two Ricci flow
spacetimes M, M’ can only be shown to be geometrically close. More specifically,
the map gg is only bilipschitz and may not be defined on high curvature regions. The
map gg is also not necessarily O-preserving (see Definition |6.18]), but it satisfies the
harmonic map heat flow equation (see Definition [6.19)).

Theorem 1.5 (Stability of Ricci flow spacetimes, weak form). For every § > 0 and
T < oo there is an € = €(0,T) > 0 such that the following holds.

Consider two (e,T)-complete Ricci flow spacetimes M, M’ that each satisfy the
e-canonical neighborhood assumption at scales (e, 1).

Let ¢ : U — U’ be a diffeomorphism between two open subsets U C My, U C Mj,.
Assume that |Rm| > ¢72 on Mo\ U and

19"90 — go| < e.
Assume moreover that the e-canonical neighborhood assumption holds on U’ at scales
(0,1).

Then there is a diffeomorphism ggz U — U between two open subsets UcC Mio,m
and U’ CA MEQT] that evolves by the harmonic map heat flow and that satisfies ¢ = ¢
onUNU and R

6%9" — g <.
Moreover, |Rm| > 672 on M1\ U.

We remark that the condition that the e-canonical neighborhood assumption holds
on U" at scales (0,1) is automatically satisfied if the curvature scale on U’ is > e,
which is implied by a bound of the form |Rm| < ce™? on U’ (see Definition for
further details).

Theorem is formulated using only C%-bounds on the quantity ¢*¢’ — g, which
measures the deviation from an isometry. Using a standard argument involving local
gradient estimates for non-linear parabolic equations, these bounds can be improved
to higher derivatives bounds as follows:

Addendum to Theorem [1.5] Let mg > 1 and C < oo. If in Theorem we
additionally require that

V™ (¢ gy — g0)| < e
and
IV"Rm| < C
on U for allm =20,...,mg+ 1 and allow € to depend on mqy, C, then
V™o —g)| <

onﬁforallm:O,...,mo.
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A similar addendum applies to Theorem [1.7] below.
Combining Theorem [L.5] with [KL14, Thm. 1.2] (see also [KL14, p.6]) we obtain:

Corollary 1.6. Let (M,g) be a compact Riemannian manifold, and consider a se-
quence of Ricci flows with surgery starting from (M, g), for a sequence of surgery
scales 9; — 0. Let My, be the corresponding Ricci flow spacetimes, as defined in
. Then the Ms, converge to a unique Ricci flow spacetime as in .

We remark that in the case of mean curvature flow a similar result holds: In
[Heal3, Laul3] it was shown that the 2-convex mean curvature flow with surgery
constructed in [HS09] converges to level set flow as the surgery parameter tends to
zero. However, their proofs, which are remarkably elementary, are entirely different
from ours: they use a quantitative variant of the barrier argument from White’s
uniqueness theorem [Whi03].

Lastly, we state the stability theorem for Ricci flow spacetimes in its full generality.
The following theorem is an improvement of Theorem for the following reasons:

e It provides additional information on the bilipschitz constant and establishes
a polynomial dependence on the curvature.

o It states that the precision of the canonical neighborhood assumption can be
chosen independently of time and bilipschitz constant.

e In provides a condition under which the map ¢ is almost surjective.

Theorem 1.7 (Strong Stability of Ricci flow spacetimes). There is a constant E < 0o
such that for every 6 > 0, T < oo and E < E < oo there are constants €c,, =
€can(E), e = €(6,T, E) > 0 such that for all 0 < r <1 the following holds.

Consider two (er,T)-complete Ricci flow spacetimes M, M’ that each satisfy the
€can-canonical neighborhood assumption at scales (er,1).

Let ¢ : U — U’ be a diffeomorphism between two open subsets U C My, U C Mj,.
Assume that |Rm| > (er)™2 on My \ U and

|6"96 — g0l < €-7*P(|Rm| +1)"
on U. Assume moreover that the €..n-canonical neighborhood assumption holds on U’
at scales (0,1).

Then there is a diffeomorphism gb U — U between two open subsets UcC M, 7]

and U’ C M[o 7] that evolves by the harmonic map heat flow, satisfies gb ¢ on unu
and that satisfies

679 — gl < 6-r*"(|Rm| + 1)"
on U. Moreover, we have [Rm| > r=2 on Mo\ U.

If additionally |Rm| > (er)™ on Mg \ U, then we also have [Rm| > 772 on
!/
o\ U
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1.4. A brief sketch of the proof, and further discussion. We now give a very
brief and informal outline of the proof. See Section |2| for a more detailed overview.

Theorem [I.3] the main uniqueness theorem, is obtained from the Strong Stability
Theorem via a limit argument. In Theorem we are given a pair of Ricci flow
spacetimes M, M’, and an almost isometry ¢ : My D U — U’ C M, between open
subsets of their initial conditions, and our goal is to construct an almost isometry
gb M > U — U C M that extends ¢ forward in time. The construction of
gZ) involves a procedure for choosing the domain U of gb and the map gb on this
domain. These two procedures interact in a complex way, and for this reason they
are implemented by means of a simultaneous induction argument.

We now indicate some of the highlights in the two steps of the induction.

The domain U is chosen to contain all points in M whose curvature |Rm| lies
(roughly) below a certain threshold and is obtained from M by means of a delicate
truncation argument. The truncation uses the fact that, roughly speaking, the part
of M with large curvature looks locally either like a neck, or like a cap region. We cut
along neck regions so that the time-slices of U have spherical boundary lying in neck
regions. A critical complication stems from the occurrence of moments in time when
the presence of cap regions interferes with the need to cut along neck regions. This
occurrence necessitates modification of the domain by either insertion or removal of
cap regions.

The map (E is constructed by solving the harmonic map heat flow equation for its
inverse ¢~!. There are many interrelated issues connected with this step, of which
the three most important are:

e The distortion of the map gg must be controlled under the harmonic map heat
flow. For this, our main tool is an interior decay estimate, which may be
applied away from the spacetime boundary of U.

e The presence of boundary in U introduces boundary effects, which must be
controlled. It turns out that the geometry of shrinking necks implies that the
neck boundary recedes rapidly, which helps to stabilize the construction.

e The insertion of the cap regions alluded to above necessitates the extension of
the map ¢ over the newly added region. The implementation of this extension
procedure relies on a delicate interpolation argument, in which the geometric
models for the cap regions must be aligned with the existing comparison map
¢ within tolerances fine enough to prolong the construction. This step hinges
on several ingredients and their precise compatibility — rigidity theorems for
the models of the cap regions [Ham93b, Brel3], quantitative asymptotics of
the models [Bry05], and strong decay estimates for the distortion of the map

o.
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2. OVERVIEW OF THE PROOF

In this section we will describe the proof of the main theorem. Our aim here is to
cover the most important ideas in an informal way, with many technicalities omitted.
The first subsection of this overview provides an initial glimpse of the argument. It
is intended to be accessible to readers outside the field who would like to gain some
sense of how the proof goes. The remaining subsections delve into the proof in greater
detail and are primarily intended for people working in the area.

The main part of the paper is concerned with the proof of the Strong Stability
Theorem, Theorem which asserts that two Ricci flow spacetimes are geometrically
close, given that their initial data are geometrically close and we have completeness as
well as the canonical neighborhood assumption in both spacetimes above a sufficiently
small scale. All other results of this paper will follow from this theorem; in particular,
the Uniqueness Theorem, Theorem [I.3| will follow from Theorem via a limit
argument.

In the Strong Stability Theorem, we consider two Ricci flow spacetimes M and
M’ whose initial time-slices, (Mo, go) and (M, g(), are geometrically close or even
isometric. Our goal is the construction of a map ¢ : M D U — M’, defined on a
sufficiently large domain U, whose bilipschitz constant is sufficiently close to 1. In
Theorem , this map is denoted by ¢. However, in the main part of this paper, as
well as in this overview, the hat will be omitted.

Our basic method for constructing ¢, which goes back to DeTurck [DeT83]|, is to
solve the harmonic map heat flow equation for the inverse ¢~*. In the nonsingular case
when both Ricci flow spacetimes M and M’ may be represented by ordinary smooth
Ricci flows on compact manifolds (M, g(t)) and (M’, ¢'(t)), this reduces to finding a
solution ¢(t) : M — M’ to the equation d;(¢~1) = A(¢!). As DeTurck observed, the
family of difference tensors h(t) := (é(t))*g'(t) — g(t), which quantify the deviation of
¢(t) from being an isometry, then satisfies the Ricci-DeTurck perturbation equation

(2.1) Oh(t) = Dguyh(t) + 2 Rmy (h(t)) + VA(t) * VA(t) + h(t) x V?h(t) .

If ¢(0) is an isometry, then h(0) = 0. So by the uniqueness of solutions to the strictly
parabolic equation ({2.1]) one gets that h(t) = 0 for all ¢ > 0, and hence the two given
Ricci flows are isometric. In our case we are given that h(0) is small, and want to
show that it remains small. Equation has several properties that are important
for maintaining control over of the size of the perturbation h, as the construction
proceeds.

2.1. The construction process, an initial glimpse. In the general case, in which
M and M’ may be singular, the domain of the map ¢ will be the part of M that is
not too singular, i.e. the set of points whose curvature is not too large. Note that
this means that we will effectively be solving the harmonic map heat flow equation
with a boundary condition.
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!

M M

FIGURE 4. Comparison domain N’ C M and comparison ¢ between
M and M’. The extension cap on the initial time-slice of N7 is outlined
in bold.

The main objects of our construction are a subset N' C M, called the comparison
domain, and a time-preserving diffeomorphism onto its image ¢ : N' — M/’ called
the comparison (map). We construct N and ¢ by a simultaneous induction argument
using discrete time increments [t;_1,¢;]. The domain N is the union

(2.2) N=N'UN?*U...UN,

where A7 lies in the time-slab of M corresponding to the time-interval [¢;_1,¢;]. The
restriction of ¢ to each time-slab A7 is denoted by ¢/ : N7 — M’. In the induction
step, we enlarge A and ¢ in two stages: in the first we determine N/*!, and in the
second we define the map ¢/*1 : N1 — M.

Before proceeding, we introduce the curvature scale p, which will be used through-
out the paper. The precise definition may be found in Subsection but for the
purposes of this overview, p can be any function that agrees up to a fixed factor with
R~'/2 wherever |Rm| is sufficiently large. Here R denotes the scalar curvature. Note
that p has the dimension of length.

We will now provide further details on the geometry of N and ¢.

Fix a small comparison scale rcomp > 0. Our goal is to choose the comparison
domain A such that it roughly contains the points for which p 2 7comp. So we will
have R < Cr 2 on N and R > cr2,  on M\ N for some constants C,c > 0. The

comp comp
constant r¢omp Will also determine the length of our time steps: we set t; = jrgomp, SO

that the time steps have duration 72, .

Each time-slab A7 will be chosen to be a product domain on the time-interval
[tj_1,t;]. That is, the flow restricted to N7 can be described by an ordinary Ricci
flow parameterized by the time-interval [t;_1,¢;], on the initial time-slice of N7. We
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will sometimes denote this initial time-slice of A7 by ./\/;JF , and the final time-slice
by ./\ftjj Note that J\/fr
Each domain N7 will moreover be chosen in such a way that its time-slices N are

bounded by 2-spheres of diameter ~ rqm, that are central 2-spheres of sufficiently
precise necks.

, and Nj are diffeomorphic, as N- Jis a product domain.

We now discuss the inductive construction of N' and ¢. For this purpose, assume
that N1, ..., N7 and ¢',..., ¢’ have already been constructed. Our goal is now to
construct N/ and ¢/

We first outline the construction of A/*1. Our construction relies on the canonical
neighborhood assumption, which guarantees that the large curvature part of the Ricci
flow looks, roughly speaking, locally either neck-like or like a cap region diffeomorphic
to a 3-ball. Using this geometric characterization, the final time-slice ./\f,;‘]]il1 of N'/+1
is obtained by truncating the time-t;,.;-slice M;, , along a suitable collection of
central 2-spheres of necks of scale ~ 7¢omp. Due to the fact that a neck region shrinks
substantially in a single time step and our neck regions have nearly constant scale,
this process will ensure that the boundaries of successive time steps are separated
by a distance > r¢omp. S0 our truncation process typically yields a rapidly receding
“staircase” pattern (see Figure . However, it can happen that a cap region evolves
in such a way that its scale increases slowly over a time-interval of duration >> rfomp,
so that at time t;, this cap region is not contained in the final time-slice /\/;{] , but
is contained in the initial time-slice ./\/;‘ﬁ“. This behavior occurs, for instance, a
short time after a generic neck pinch singularity. In such a situation, the comparison
domain N is enlarged at time ¢; by a cap region, which we call an exztension cap (see
again Figure . It then becomes necessary to extend the comparison map ¢ over the
inserted region.

We now turn to the second stage of the induction step — the construction of the
comparison map ¢’*1 : N1 — M.

As mentioned above, we will construct ¢/*! by solving the harmonic map heat flow
equation for the inverse diffeomorphism (¢7*1)~!. For now, we will only provide a
brief indication of a few of the obstacles that arise, leaving more detailed discussion

to the subsequent subsections of this overview:

e (Controlling h, Subsection Since our objective is to produce a map that
is almost an isometry, one of the key ingredients in our argument is a scheme
for maintaining control on the size of the metric perturbation h = ¢*¢’ — g as
the map ¢ evolves. Our main tool for this is an interior decay estimate for |h|
with respect to a certain weight.

o (Treatment of the boundary, Subsection The Ricci flow spacetime re-
stricted to the product domain N/*! is given by an ordinary Ricci flow on
the manifold with boundary '/\/’ti]]i_ll The process for solving the harmonic map
heat flow equation must take this boundary into account and maintain control
on any influence it may have on the rest of the evolution.
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e (Extending the comparison, Subsections and As mentioned above,
it may be necessary to extend the comparison map ¢ over an extension cap
at time t;. This requires a careful analysis of the geometry of M and M’ in
neighborhoods of the cap and its image, showing that both are well approx-
imated by rescaled Bryant solitons. Then the extension of ¢ is obtained by
gluing the pre-existing comparison map with suitably normalized Bryant soli-
ton “charts”. This gluing construction is particularly delicate, since it must
maintain sufficient control over the quality of the comparison map.

The actual construction of ¢ is implemented using a continuity argument. The
above issues interact with one another in a variety of different ways. For instance,
both the treatment of the boundary and the procedure for extending ¢ over cap
regions are feasible only under certain assumptions on the smallness of h, and both
cause potential deterioration of h, which must be absorbed by the argument for
controlling h. We defer further discussion of these interactions, and other points of a
more technical nature, to Subsection [2.6]

2.2. Controlling the perturbation A. In order to control the perturbation A in the
inductive argument described above, we will consider the following weighted quantity:

(2.3) Qr~ e R E2|h| ~ e HpE|h| .

Here R denotes the scalar curvature and H > 0, £ > 2. We will show that this
quantity satisfies an interior decay estimate, which may be thought of as a quantitative
semi-local version of a maximum principle: rather than asserting that () cannot attain
an interior maximum, it roughly states that () must be a definite amount smaller than
its maximum over a suitable parabolic neighborhood (see below for a more precise
statement). This interior decay estimate will allow us to promote, and sometimes
improve, a bound of the form @ < @ forward in time. We emphasize that the presence
of the factor p¥, and the fact that E is strictly larger than 2, are both essential for
the interior decay estimate. Moreover, the freedom to choose E large (> 100 say)
will be of crucial importance at a later point in our proof (see Subsection .

Before providing further details on this estimate, we want to illustrate the function
of the weights in the definition of ). The weight e~ #* serves a technical purpose,
which we will neglect in this overview. To appreciate the role of the weight R=F/2,
consider for a moment a classical Ricci flow (M, g(t)) with a perturbation h(t) that
evolves by (2.1). Suppose that ~(0) is bounded and supported in a region of large
scalar curvature. So, due to the existence of the weight R=%/2, the quantity Q is
small at time 0. Our estimates will imply that ) remains small throughout the
flow. Therefore, at any later time, the perturbation A must be small at points where
the curvature is controlled. In the following we will exploit this phenomenon, since,
heuristically, we are considering two Ricci flow spacetimes M and M’ whose initial
data is either equal or very similar away from the almost singular regions, where the
scalar curvature is large. So even if M and M’ were a priori significantly different at
those almost singular scales — resulting in a large perturbation h(t) there — then @
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FIGURE 5. A parabolic ball B(x,t,7) x [t — 72, t] of radius .

will still be small, initially. Thus the perturbation is expected to decay as we move
forward in time and towards regions of bounded curvature, establishing an improved
closeness there. More specifically, as remarked in the previous subsection, h may a
priori only satisfy a rough bound near the neck-like boundary of each N7. However,
as R ~ rcomp near such a boundary and rqmp is assumed to be small, our estimate
suggests a significant improvement of this bound in regions where R ~ 1.

We now explain the statement of the interior decay estimate in more detail, in the
case of a classical Ricci flow on M x [0,7"). Assume that the perturbation h is defined
on a sufficiently large backwards parabolic region P C M x [0,T") around some point
(x,t). If H is chosen sufficiently large and |h| < ny, on P for some sufficiently small
Min, Where both H and ny;, depend on E, then our estimate states that

(2.4) Qz,t) < %sgp@

Here “P sufficiently large” means, roughly speaking, that the parabolic region P
contains a product domain of the form B(z,t,7) X [t — 72, t] (a parabolic ball), where
B(z,t,r) is the r-ball centered at (z,t) in the time-t slice M x {t} and r is equal to
a large constant times the scale p(x t) (see Figure |9)).

In fact, the choice of the factor 15 In 1' is arbitrary: for any a > 0 we have the
estimate

(2.5) Q(a,t) < asupQ
P

as long as we increase the size of the parabolic neighborhood P accordingly. An
important detail here is that the constant ny, in the bound |h| < my;, can be chosen
independently of a.

The decay estimate (2.4 will be used to propagate a bound of the form
(2.6) Q<@

throughout most parts of the comparison domain A. Here we will choose the constant
Q in such a way that holds automatically near the neck-like boundary of the
N7 and such that 1mphes |h| < min wherever p > 7comp. Note that at scales
p > Teomp, the bound implies a more precise bound on |h|, whose quality
improves polynomially in p.
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We will prove the interior decay estimate using a limit argument combined with
a vanishing theorem for solutions of the linearized Ricci-DeTurck equation on k-
solutions, which uses an estimate of Anderson and Chow [AC05]. See Section [9] for
more details.

2.3. Treatment of the boundary. We now discuss aspects of the inductive con-
struction of the map ¢/*1 : N+t — M’ (sketched in Subsection that are related
to the presence of a boundary in the time-slices N;/™'. While the actual approach
used in the body of the paper is guided by considerations that are beyond the scope
of this overview, we will describe some of the main points in a form that is faithful
to the spirit of the actual proof.

Recall from Subsection that we wish to construct ¢/*! by solving the harmonic
map heat flow equation (for the inverse (¢/71)7!), in such a way that ¢ yields a
perturbation h = ¢*¢’ — ¢ satisfying the bound @ < @ near the neck-like boundary
of N7, where Q is as in Subsection . Thus we need to specify boundary conditions
so that the resulting evolution respects the bound @ < Q.

Our strategy exploits the geometry of the boundary of N/*1. Recall from Sub-
section that A'/*1 is a product domain, and its boundary is collared by regions
that look very close to shrinking round half-cylinders (half-necks) with scale compa-
rable to 7comp. Under a smallness condition on h imposed in the vicinity of boundary
components of ./\ft‘?rl, we argue that at time t;, our map ¢ must map the half-neck
collar regions around the boundary to regions in the time-t;-slice M;  that are nearly
isometric to half-necks. Moreover, we will show that both half-necks evolve over the
time-interval [t;, ;.1 nearly like round half-necks. We then use this characterization
and a truncation procedure to find an approximate product domain N"/*! C M’
that serves as the domain for the evolving inverse map ¢~—!. It turns out that if the
half-neck regions in M and M’ are sufficiently cylindrical, and ¢ is initially (at time
t;) sufficiently close to an isometry near the collar regions, then the map ¢”/*! pro-
duced by harmonic map heat flow remains sufficiently close to an isometry near the
boundary of N/*1, in the sense that Q < Q.

The above construction is feasible only under improved initial control on |h|, which
necessitates an improved bound of the form @ < a@Q, for some av < 1, near the bound-
ary components of /\fgﬁ“. To verify this improved bound, we apply the strong form of
the interior decay estimate, , using parabolic regions that are large depending on
«. This requires the geometry of the staircase pattern to be “flat enough” to create
enough space for such a parabolic region “under the staircase” (see Figure @ Such
flatness can be guaranteed, provided the half-neck collars are sufficiently precise.

2.4. Defining ¢ on extension caps. We recall from Subsection that in the
inductive construction of the time slab N/*!, we sometimes encounter extension
caps, i.e. 3-disks C in the time-t;-slice M;, of M that belong to time slab N7/*1,
but which were not present in the preceding time slab A//. In this and the next
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FIGURE 6. A parabolic neighborhood (hatched region) inside a com-
parison domain (shaded region). In order to apply the interior estimate
at time t; near the boundary of N/*1, a large parabolic neighborhood
must fit underneath the staircase pattern.

subsection, we discuss how these extension caps are handled in the second stage of
the induction step, in which ¢/*! is defined on N7+

Recall that we assume inductively that the map ¢’ was constructed in the previous
step of the construction so that it restricts to an almost isometric map of the final
time-slice N 7 of N/ into M; . We would like to proceed with the construction of
¢’ on N s using harmonic map heat flow, as described in the previous subsection.
However, in order to do this, ¢/*' must be defined on the initial time-slice N ‘i“,
whereas the previous induction step only determined ¢/ on the complement of the

extension caps. Thus we must first extend ¢/ over the extension caps to an almost
isometry defined on A/t

A priori, it is unclear why such an extension should exist; after all, since ¢ has thus
far only been defined on /\ft‘i , one might not expect an extension cap C C /\fgﬁ“ to be
nearly isometric to a corresponding 3-ball region in M’.

To obtain such an extension, we will need to combine several ingredients. The first
is the canonical neighborhood assumption, which asserts that the geometry of M and
M/’ near any point of large curvature is well-approximated by a model Ricci flow —
a k-solution. For regions such as extension caps, the k-soliton model is a Ricci flow
on R3. Up to rescaling, the only known example of this type is the Bryant soliton, a
rotationally symmetric steady gradient soliton, which can be expressed as a warped
product

Bry = dr’ + a*(r)gse,
where a(r) ~ /r as r — 0o. Bryant solitons commonly occur as singularity models of
Type-II blowups of singularity models, for example in the formation of a degenerate
neck pinch [GZ08, [ATKT5]. Moreover, they also occur in Ricci flow spacetimes when a
singularity resolves. It is a well-known conjecture of Perelman that the Bryant soliton
is the only x-solution on R?, up to rescaling and isometry. This conjecture would imply
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that a Bryant soliton always describes singularity formation/resolution processes as
above, and in particular the geometry of extension caps. Although this conjecture
remains open, by using a combination of rigidity results of Hamilton and Brendle
[Ham93bl Brel3], it is possible to show that Bryant solitons always describe the
geometry at points where the curvature scale increases in time (i.e. where the scalar
curvature decreases). Such points are abundant near a resolution of a singularity, as
the curvature scale increases from zero to a positive value.

The above observation will be central to our treatment of extension caps. We will
show that it is possible to choose the time slabs {7} so that each extension cap arises
“at the right time”, meaning at a time when the geometry near the extension cap in
M and its counterpart in M’ is sufficiently close to the Bryant soliton — at possibly
different scales. The main strategy behind this choice of time will be to choose two
different thresholds for the curvature scale on N, specifying when an extension cap
may, and when it must, be constructed. As curvature scales only grow slowly in time
(with respect to the time scale corresponding to the curvature), this extra play will
produce sufficiently many time-steps during which an extension cap may, but need
not necessarily be constructed. It can be shown that at one of these time-steps the
geometry in M and M’ is in fact close to a Bryant soliton. This time-step will then
be chosen as the “right time” for the construction of the extension cap.

The fact that the geometry near both the extension caps in M and the corre-
sponding regions in M’ can be described by the same singularity model (the Bryant
soliton) is necessary in order to construct the initial time-slice of ¢/*!. However,
it is not sufficient, as it is still not guaranteed that ¢’ at time ¢; extends over the
extension caps almost isometrically, due to the following reasons:

e The scales of the approximate Bryant solitons regions in M and M’ may
differ, so that they are not almost isometric.

e Even if there is an almost isometry of the approximate Bryant soliton regions,
in order to define a global map, there must be an almost isometry that is close
enough to the existing almost isometry (given by ¢7) on the overlap, so that
the two maps may be glued together to form an almost isometry.

These issues will be resolved by the Bryant Ezxtension Principle, which will be dis-
cussed in the next subsection.

2.5. The Bryant Extension Principle. In the process of determining the initial
data (at time t;) of ¢’/*1 on or near the extension caps, as mentioned in the previous
subsection, we are faced with the following task (see Figure [7] for an illustration).
We can find two regions W C M;, and W' C M;  in the time-t;-slices of M and
M’ that are each geometrically close to a Bryant soliton modulo rescaling by some
constants A and X', respectively. Moreover, the region W contains an extension cap
C C M,,. The map ¢’ restricted to W\ C is an almost isometric map W\ C — W".
Our task is then to find another almost isometric map ¢ : W — W’ which is defined
on the entire region W, and that coincides with ¢’/ away from some neighborhood
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FiGURE 7. Extending the map ¢I{V\C over the extension cap C to an
almost isometry ¢ : W — W’.

of C. Although in this overview we have largely avoided any mention of quantitative
features of the proof, we point out that this step hinges on careful consideration of
asymptotics, in order to make our construction independent of the diameters of W,
W' and C. In particular, it turns out to be of fundamental importance that we have
the freedom to choose the exponent E in the definition of @) in to be large.

We obtain 1) as follows. We use the fact that W and W' are approximate (rescaled)
Bryant soliton regions to define an approximate homothety vy : W — W’ that scales
distances by the factor X' /A, possibly after shrinking W, W’ somewhat. The map
)y is unique up to pre/post-composition with almost isometries, i.e. approximate
rotations around the respective tips. We then compare 1y with ¢7 on W\ C, and
argue that 1)y may be chosen so that it may be glued to ¢/, to yield the desired map
1. To do this, we must show that:

e 1) is an approximate isometry not just an approximate homothety, i.e. the
ratio of the scales X'/ nearly equals 1.

e 1y may be chosen to be sufficiently close to ¢’ on a suitably chosen transition
zone V. .C W\ C.

However, we are only given information on the map ¢’ far away from tip of the
extension cap C, where the metric is close to a round cylinder. Using this information,
we must determine to within small error the scale of the tips and the discrepancy
between the two maps. This aspect makes our construction quite delicate, because
the only means of detecting the scale of the tip is to measure the deviation from a
cylindrical geometry near V', which is decaying polynomially in terms of the distance
to the tip. The crucial point in our construction is that we can arrange things so that
this deviation can be measured to within an error that decays at a faster polynomial
rate.
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We now explain in some more detail the delicacy of the construction and our strat-
egy for the case of showing that \’/\ is nearly equal to 1. The problem of matching
¢’ and 1)y on V will be handled similarly. The only instrument for comparing A and
N is the almost isometry ¢/ : W\ C — W’. This almost isometry implies that the
cross-sectional spheres of W\ C have approximately the same diameter as their images
in W’. Unfortunately, the closeness of these diameters does not imply a bound on
X'/ A, since these diameters vary — and even diverge — as we move away from the tips
of W and W', and ¢/ may map cross-sectional spheres of W to other almost-cross-
sectional spheres in W’ that are closer or farther from the tip. This fact requires us
to estimate the deviations from the cylindrical geometry in W and W’ by analyzing
the precise asymptotics of the Bryant soliton. If the precision of ¢’ is smaller than
these deviations, then ¢’ can be used to compare further geometric quantities on W
and W’ not just the diameters of the cross-sectional spheres. Combined with the
almost preservation of the diameters of these spheres, this will imply that \'/A ~ 1.

The precision of the almost isometry ¢’ is measured in terms of |h|. Using the
bound @ < @, as discussed in Subsection , we obtain a bound of the form

(2.7) hl S RP? S p7®.

Since W is a rescaled Bryant soliton and p — oo as one goes to infinity on W, the
bound improves as we move further away from the tip of W. If the exponent F
is chosen large enough, then the precision of the almost isometry ¢’ in the transition
zone V' C W is good enough to compare the deviations from a cylinder in V' and its
image, to very high accuracy. As mentioned before, this will imply that X'/ = 1.

For more details, we refer to Section [10]

We mention that the mechanism that we are exploiting here can be illustrated
using a cantilever: the longer the cantilever, and the less rigid it is, the more its tip
may wiggle. However, the rigidity of a cantilever depends not only on its length, but
also on the rigidity of the attachment at its base. A longer cantilever may be more
stable than a short one, as long as the attachment at its base is chosen rigid enough
to compensate for the increase in length. (Here we are assuming the lever itself to be
infinitely rigid.)

2.6. Further discussion of the proof. In this subsection we touch on a few ad-
ditional features of the induction argument sketched in Subsection [2.1. Due to the
complexity of the underlying issues, our explanations will be brief and relatively
vague. For more details, we refer to Section [7]

We recall the bound Q < @Q from Subsection which enabled us to guarantee a
bound of the form |h| < ny, in most parts of the comparison domain A. As discussed
in that subsection, this bound is propagated forward in time using the interior decay
estimate. The bound Q < @, especially the factor p” in its definition, was also
crucial in the Bryant Extension process. In fact, it could be used to construct the
initial time-slice of a new almost isometry ¢’*!, defined on the extension caps, that
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is precise enough such that a bound of the form |h| < ny;, holds on or near each
extension cap.

However, the bound Q < @, which is typically stronger than |h| < n,, may not
remain preserved during the Bryant Extension Process; it may deteriorate by a fixed
factor. In order to control the quality of the comparison map, measured by |h|, after
the Bryant Extension process has been performed, we will instead consider a bound
of the form .

Q* ~ 6H(Tt)% ~ eH(Tft)p?)lh‘ < Q*
The constant G* will be chosen such that this bound implies the bound |h| < my,
wherever it holds on /. Due to the small exponent 3 < E, which makes the bound
Q* < Q" weaker than Q < Q at large scales, this bound still holds on and near each
extension cap after the Bryant Extension process has been carried out.

Both bounds, Q@ < Q and Q* < Q  will be propagated forward in time via the
interior decay estimate from Subsection The bound @ < @ will hold at all points
on the comparison domain A that are sufficiently far (in space and forward in time)
from an extension cap, while the bound Q* < Q" will hold sufficiently far (in space)
from the neck-like boundary of N'. It will follow that, for a good choice of parameters,
at least one of these bounds holds at each point of the comparison domain N. This
fact will enable us to guarantee that |h| < ny;, everywhere on N.

Even though the bound @ < @ may not hold in the near future of an extension
cap, it may be important that it holds at some time in the future this extension
cap, as a tool to control the comparison map near a neck-like boundary component,
as described in Subsection In order to guarantee this bound near such neck-
like boundary components, in the future of extension caps, we first ensure that the
neck-like boundary and the extension caps of the comparison domain are sufficiently
separated (in space and time). Then we use the strong form of the interior decay
estimate to show that a weak bound of the form @ < W@, W >> 1, which holds after
a Bryant Extension process, improves as we move forward in time and eventually
implies @ < Q. This interior decay estimate relies on the fact that |h| < n,, which
is guaranteed by the bound Q* < Q.

3. ORGANIZATION OF THE PAPER

The theorems stated in the introduction are proven in Section [13] They are all
consequences of a more technical stability theorem, Theorem [13.1], which first appears
in Section [13| This theorem asserts the existence of a comparison map between
two Ricci flow spacetimes, satisfying a (large) number of geometric and analytic
bounds. As explained in the overview in the preceding section, Theorem|[13.1]is proven
using a simultaneous induction argument, in which the domain of this comparison
map and the comparison map itself are constructed. The induction step consists of
two stages; the first one is concerned with the comparison domain, and the second
with the comparison map. These two stages are implemented in Sections and
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12| respectively, and the induction hypotheses are collected beforehand as a set of a
priori assumptions, in Section [7} Both induction steps are formulated using objects
and terminology that are introduced in preliminaries sections, Sections [f] and [l The
arguments in Section [12| rely on two main ingredients: the interior decay estimate,
which is discussed in Section[d] and the Bryant Extension Principle, which is presented
in Section [I0} We will also make use of a number of technical tools, which appear in
Section [8

To facilitate readability and verifiability, we have made an effort to make the proof
modular and hierarchical. This eliminates unnecessary interdependencies, and mini-
mizes the number of details the reader must bear in mind at any given stage of the
proof. For instance, the two stages of the induction argument are formulated so as
to be completely logically independent of each other. Also, within Section [12] which
constructs the inductive extension of the comparison map, the argument is split into
several pieces, which have been made as independent of one another as possible.

4. CONVENTIONS

4.1. Orientability. Throughout the paper we impose a blanket assumption that all
3-manifolds are orientable. The results remain true without this assumption — for
instance Theorem can be deduced from the orientable case by passing to the
orientation cover. However, proving the main result without assuming orientability
would complicate the exposition by increasing the number of special cases in many
places. It is fairly straightforward, albeit time consuming, to modify the argument to
obtain this extra generality.

4.2. Conventions regarding parameters. The statements of the a priori assump-
tions in Section [7] involve a number of parameters, which will have to be chosen
carefully. We will not assume these parameters to be fixed throughout the paper;
instead, in each theorem, lemma or proposition we will include a list of restrictions
on these parameters that serve as conditions for the hypothesis to hold. These re-
strictions state that certain parameters must be bounded from below or above by
functions depending on certain other parameters. When we prove the main stability
result, Theorem [13.1], by combining our two main propositions, Propositions [I1.1]and
12.1], we will need to verify that these restrictions are compatible with one another.
This can be verified most easily via the parameter order, as introduced and discussed
in Subsection [7.5] This parameter order is chosen in such a way that each parameter
is only required to be bounded from below/above by a function depending on param-
eters that precede this parameter in this order, if at all. Hence, in order to verify the
compatibility of all restrictions, it suffices to check that each parameter restriction is
compatible with the parameter order in this way.

Throughout the entire paper, we will adhere to the convention that small (greek or
arabic) letters stand for parameters that have to be chosen small enough and capital
(greek or arabic) letters stand for parameters that have to be chosen sufficiently large.
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When stating theorems, lemmas or propositions, we will often express restrictions on
parameters in the form

y<y(z), Z>Z(x).

By this we mean that there are constants ¥ and Z, depending only on x such that
if 0 <y <yand Z > Z, then the subsequent statements hold. Furthermore, in
longer proofs, we will introduce a restriction on parameters in the same form as
a displayed equation. This makes it possible for the reader to check quickly that
these restrictions are accurately reflected in the preamble of the theorem, lemma or
proposition. Therefore, she/he may direct their full attention to the remaining details
of the proof during the first reading.

5. PRELIMINARIES I

In the following we define the notions that are needed in the statement of the main
results of this paper, as stated in Subsection [I.3]

Definition 5.1 (Ricci flow spacetimes). A Ricci flow spacetime is a tuple (M, ¢,
O, g) with the following properties:

(1) M is a smooth 4-manifold with (smooth) boundary oM.

(2) t : M — [0,00) is a smooth function without critical points (called time
function). For any ¢ > 0 we denote by t(t) C M the time-t-slice of M.

(3) My =t"1(0) = OM, i.e. the initial time-slice is equal to the boundary of M.

(4) 0 is a smooth vector field (the time vector field), which satisfies Ot = 1.

(5) ¢ is a smooth inner product on the spatial subbundle ker(dt) C TM. For any
t > 0 we denote by g; the restriction of ¢ to the time-t-slice M, (note that g,
is a Riemannian metric on M,).

(6) g satisfies the Ricci flow equation: Lg,¢9 = —2 Ric(g). Here Ric(g) denotes the
symmetric (0, 2)-tensor on ker(dt) that restricts to the Ricci tensor of (M, g;)
for all t > 0.

For any interval I C [0,00) we also write M; = t (/) and call this subset the
time-slab of M over the time-interval /. Curvature quantities on M, such as the
Riemannian curvature tensor Rm, the Ricci curvature Ric, or the scalar curvature R
will refer to the corresponding quantities with respect to the metric ¢g; on each time-
slice. Tensorial quantities will be imbedded using the splitting T M = ker(dt) & (0;).

When there is no chance of confusion, we will sometime abbreviate the tuple

(M7t7 a{,Q) by M

Ricci flow spacetimes have been introduced by Kleiner and Lott (see [KL0S]). The
definition above is almost verbatim that of Kleiner and Lott’s with the exception that
we require Ricci flow spacetimes to have initial time-slice at time 0 and no final time-
slice. Ricci flows with surgery, as constructed by Perelman in [Per(3], can be turned
easily into Ricci flow spacetimes by removing a relatively small subset of surgery
points. See (|1.1]) in Subsection for further explanation.
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We emphasize that, while a Ricci flow spacetime may have singularities — in fact
the sole purpose of our definition is to understand flows with singularities, — such
singularities are not directly captured by a Ricci flow spacetime, as “singular points”
are not contained in the spacetime manifold M. Instead, the idea behind the defini-
tion of a Ricci flow spacetime is to understand a possibly singular flow by analyzing
its asymptotic behavior on its regular part.

Any (classical) Ricci flow of the form (g:)icpr), 0 < T < oo on a 3-manifold M
can be converted into a Ricci flow spacetime by setting M = M x [0,T), letting t be
the projection to the second factor and letting 0; correspond to the unit vector field
on [0,T). Vice versa, if (M,t,d,g) is a Ricci flow spacetime with t(M) = [0,T) for
some 0 < T < oo and the property that every trajectory of 0 is defined on the entire
time-interval [0,7"), then M comes from such a classical Ricci flow.

Let us now generalize some basic geometric notions to Ricci flow spacetimes.

Definition 5.2 (Length, distance and metric balls in Ricci flow spacetimes). Let
(M, t,0, g) be a Ricci flow spacetime. For any two points xz,y € M, in the same
time-slice of M we denote by d(x,y) or di(x,y) the distance between z,y within
(M4, g;). The distance between points in different time-slices is not defined.

Similarly, we define the length length(y) or length,(y) of a path ~ : [0,1] — M,
whose image lies in a single time-slice to be the length of this path when viewed as a
path inside the Riemannian manifold (M, g;).

For any x € M, and r > 0 we denote by B(z,r) C M, the r-ball around x with
respect to the Riemannian metric g;.

Our next goal is to characterize the (microscopic) geometry of a Ricci flow spacetime
near a singularity or at an almost singular point. For this purpose, we will introduce
a (curvature) scale function p : M — (0, c0] with the property that

(5.3) C™'p™® <|Rm| < Cp~?

for some universal constant C' < co. The quantity p will be a (pointwise) function of
the curvature tensor and therefore it can also be defined on (3-dimensional) Riemann-
ian manifolds. For the purpose of this section, it suffices to assume that p = ]Rm\_l/ 2,
However, in order to simplify several proofs in subsequent sections, we will work with
a slightly more complicated definition of p, which we will present in Subsection
(see Definition [6.1)). Nonetheless, the discussion in the remainder of this subsection
and the main results of the paper, as presented in Subsection [1.3] remain valid for
any definition of p that satisfies .

We now define what we mean by completeness for Ricci flow spacetimes. Intu-
itively, a Ricci flow spacetime is called complete if its time-slices can be completed by
adding countably many “singular points” and if no component appears or disappears
suddenly without the formation of a singularity.

Definition 5.4 (Completeness of Ricci flow spacetimes). We say that a Ricci flow
spacetime (M, t, 0y, g) is (rg, to)-complete, for some 7¢,ty > 0, if the following holds:



UNIQUENESS AND STABILITY OF RICCI FLOW 27

Consider a path v : [0, s9) — Mg such that sup,c( 5, P(7(5)) > 10 for all s € [0, s9)
and such that:

(1) Its image ([0, sp)) lies in a time-slice M; and the time-¢ length of v is finite
or
(2) v is a trajectory of 0 or of —0.

Then the limit lim, x5, v(s) exists.

If (M,t,0,q) is (ro,to)-complete for all ¢, > 0, then we also say that it is ro-
complete. Likewise, if (M, t,d;, g) is 0-complete, then we say that it is complete.

Note that the Ricci flow spacetimes constructed [KL14] are 0-complete, see [KL14,
Prop. 5.11(a), Def. 1.8]. A Ricci flow with surgery and J-cutoff, as constructed by
Perelman in [Per03], can be turned into a Ricci flow spacetime as in that is
cor-complete for some universal constant ¢ > 0, as long as the cutoff is performed in
an appropriate WayH, see [KL14, Section 3].

Lastly, we need to characterize the asymptotic geometry of a Ricci flow spacetime
near its singularities. This is done by the canonical neighborhood assumption, a
notion which is inspired by Perelman’s work ([Per03]) and which appears naturally
in the study of 3-dimensional Ricci flows. The idea is to impose the same asymp-
totic behavior near singular points in Ricci flow spacetimes as is encountered in the
singularity formation of a classical (smooth) 3-dimensional Ricci flow. The same char-
acterization also holds in high curvature regions of Perelman’s Ricci flow with surgery
that are far enough from “man-made” surgery points. Furthermore, an even stronger
asymptotic behavior was shown to hold on Ricci flow spacetimes as constructed by
Kleiner and Lott in [KL14].

The singularity formation in 3-dimensional Ricci flows is usually understood via
singularity models called k-solutions (see [Per(2, Sec. 11]). The definition of a k-
solution consists of a list of properties that are known to be true for 3-dimensional
singularity models. Interestingly, these properties are sufficient to allow a qualita-
tive (and sometimes quantitative) analysis of s-solutions. We refer the reader to
Appendix [C| and [Per03, [KLO§| for further details.

Let us recall the definition of a k-solution.

Definition 5.5 (x-solution). An ancient Ricci flow (M, (g¢)1e(-o0,0]) 01 & 3-dimensional
manifold M is called a (3-dimensional) k-solution, for x > 0, if the following holds:

(1) (M, g:) is complete for all t € (—o0, 0],
(2) |Rm| is bounded on M x I for all compact I C (—o0, 0],

TAs Perelman’s objective was the characterization of the underlying topology, he allowed (but did
not require) the removal of macroscopic spherical components during a surgery step. In contrast,
Kleiner and Lott’s version (cf [KLO08]) of the cutoff process does not allow this. However, both cutoff
approaches allow some flexibility on the choice of the cutoff spheres inside the e-horns. Some of these
choices may result in the removal of points of scale larger than cdr; in such a case cér-completeness
cannot be guaranteed. Nevertheless, in both approaches it is always possible to perform the cutoff
in such a way that the resulting Ricci flow spacetime is cér-complete.



28 RICHARD H. BAMLER AND BRUCE KLEINER

(3) secg, > 0 on M for all t € (—o0, 0],
(4) R>0on M x (—o0,0],
(5) (M, g;) is k-noncollapsed at all scales for all t € (—o0, 0]
(This means that for any (z,t) € M X (—00,0] and any r > 0 if |[Rm| < r2
on the time-t ball B(z,t,r), then we have |B(xz,t,r)| > xr™ for its volume.)

We will compare the local geometry of a Ricci flow spacetime to the geometry of
k-solution using the following concept of pointed closeness.

Definition 5.6 (Geometric closeness). We say that a pointed Riemannian manifold
(M, g, ) is e-close to another pointed Riemannian manifold (M, g,7) at scale A > 0
if there is a diffeomorphism onto its image

v BM(z, e ) — M
such that ¢(Z) = = and
—92 1 x —
[P g“mrll(sﬁ@,e—l)) <.

Here the Cl€ 'l-norm of a tensor h is defined to be the sum of the C°-norms of the
tensors h, VIh, VI2h, ..., V&l with respect to the metric g.

We can now define the canonical neighborhood assumption. The main statement of
this assumption is that regions of small scale (i.e. high curvature) are geometrically
close to regions of x-solutions.

Definition 5.7 (Canonical neighborhood assumption). Let (M, g) be a (possibly
incomplete) Riemannian manifold. We say that (M,g) satisfies the e-canonical
neighborhood assumption at some point  if there is a x > 0, a x-solution (M,
(G¢)te(-o00) and a point Z € M such that p(Z, 0) = 1 and such that (M, g, z) is e-close
to (M, gy, T) at some (unspecified) scale A > 0.

We say that (M, g) satisfies the e-canonical neighborhood assumption at
scales (r1,rs), for some 0 < r; < 7, if every point € M with r; < p(x) < ry
satisfies the e-canonical neighborhood assumption.

We say that a Ricci flow spacetime (M, t,d;, g) satisfies the e-canonical neigh-
borhood assumption at a point x € M if the same is true at = in the time-slice
(M), gez))- Moreover, we say that (M, t, d;, g) satisfies the e-canonical neighbor-
hood assumption at scales (71, 79) if the same is true for all its time-slices. Lastly,
we say that a subset X C M satisfies the e-canonical neighborhood assumption
at scales (r1,73), if the e-canonical neighborhood assumption holds at all x € X with

p(z) € (r1,72).

Note that if M is a Ricci flow spacetime as constructed in [KL14], then My
satisfies the e-canonical neighborhood assumption at scales (0,7), where r = r(e, T') >
0 [KL14, Thm. 1.3, Prop. 5.30]. If M is the Ricci flow spacetime of a Ricci flow
with surgery and d-cutoff, as constructed by Perelman in [Per03], then M satisfies
the e-canonical neighborhood assumption at x € M, provided the scale of z lies in
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the interval (10h,r). Here h = h(e,t), § = d(¢,t) and r(e,t) are decreasing functions
of time, which appear in Perelman’s construction, h < §%r, and 6 may be chosen as
small as desired.

Observe that we do not assume a global lower bound on s in Definition 5.7
This slight generalization from other notions of the canonical neighborhood assump-
tion does not create any serious issues, since by Perelman’s work [Per03|, every 3-
dimensional k-solution is a kg-solution for some universal ko > 0, unless it homothetic
to a quotient of a round sphere (see assertion (a) of Lemma for further details).

We also remark that in Definition we have put extra care in describing how
the Cl*"'-norm has to be understood. The reason for this is that the model metric g
in Definition is not fixed. So it would be problematic, for example, to define the
Cl< norm using coordinate charts on M, as the number and sizes of those coordinate
charts may depend on the Riemannian manifold (M,g).

It may seem more standard to require spacetime closeness to a k-solution on a
backwards parabolic neighborhood — as opposed to closeness on a ball in a single
time-slice — in the definition of the canonical neighborhood assumption. Such a
condition would be stronger and, as our goal is to establish a uniqueness property, it
would lead to a formally less general statement. We point out that spacetime closeness
to a k-solution is a rather straight forward consequence of time-slice closeness. The
main purpose of the use of time-slice closeness in our work is because our uniqueness
property also applies to Ricci flow spacetime with singular initial data. For this
reason the canonical neighborhood assumption also has to be applicable to the initial
time-slice Mg or to time-slices M, for small ¢.

6. PRELIMINARIES II

In this section we present basic definitions and concepts that will be important for
the proofs of the main results of this paper.

6.1. Curvature scale. As mentioned in Section [5, we will now define a notion of a
curvature scale p that will be convenient for our proofs. The main objective in our
definition will be to ensure that p = (3R)~'/* wherever the sectional curvature is
almost positive. For this purpose, observe that there is a constant ¢y > 0 such that
the following holds. Whenever Rm is an algebraic curvature tensor with the property
that its scalar curvature R is positive and all its sectional curvatures are bounded
from below by —::R, then ¢o|Rm| < $R. We will fix ¢y for the remainder of this

paper.

Definition 6.1 (Curvature scale). Let (M, g) be a 3-dimensional Riemannian mani-
fold and x € M a point. We define the (curvature) scale at = to be

(6.2) p(x) = min { (1R, (2)) ", (co|Rm|(x)) /?}.

1/2

Here R, (x) := max{R(x),0} and we use the convention 0~/* = co.
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If o > 0, then we set p,,(z) := min{p(z),ro}. Lastly, if (M,1t,d,g) is a Ricci flow
spacetime, then we define p, p,, : M — R such that they restrict to the corresponding
scale functions on the time-slices.

Lemma 6.3. There is a universal constant C < oo such that
(6.4) C~'p7(z) < [Rm|(z) < Cp*(x).

Moreover, there is a universal constant eg > 0 such that if v satisfies the €ca,-canonical
neighborhood assumption for some €can < €9, then R(z) = 3p~%(z).

Proof. The bound (6.4]) is obvious. For the second part of the lemma observe that for
sufficiently small €, we have R(z) > 0 and sec > —+R(x) at z. So (3R (z)) /2 <
(co|Rm|(z))~1/2. O

The normalization constant % in front of the scalar curvature in 1) is chosen
purely for convenience. More specifically, we will frequently consider the following
round shrinking cylinder evolving by Ricci flow:

(52 xR, (g = (% — 2t)gs> + gR)tE(—oo,%])'

The scale of this cylinder and the normalization of the curvature scale have been
chosen in such a way that p(-,0) = 1 and p(-, —1) = 2 hold, which can be remembered
easily; more generally, we have

p(-,t) =1 —3t.

Definition 6.5 ((Weakly) thick and thin subsets). Let X be a subset of a Riemannian
manifold (M, g) or Ricci flow spacetime (M, t,0;, g) and r > 0 a number. We say
that X is r-thick if p(X) > r and weakly r-thick if p(X) > r. Similarly, we say
that X is r-thin or weakly r-thin if p(X) < r or p(X) < r, respectively.

6.2. Basic facts about the Bryant soliton. In the following, we will denote by
(Mgyy, (gBry.t)ter) the Bryant soliton and with tip zp,y € Mg,y normalized in such
a way that p(xp,y) = 1. The Bryant soliton was first constructed [Bry05]. A more
elementary construction can also be found in [Appl7]. Recall that (Mp,y, (gBry.t)ier)
is a steady gradient soliton all whose time-slices are rotationally symmetric with
center zp,y. More specifically, (Mg,y, gry,+) can be expressed as a warped product of
the form

Iy = do? + wi(0)gse
where wy(0) ~ /o for large 0. We refer to Lemma for a more extensive list of
properties of the Bryant soliton that are being used in this paper.

We will set gpry := gBry,0 for the time-O-slice of the Bryant soliton. Furthermore,
we will denote by Mp,y(r) := B(xpy, ) the r-ball around the tip with respect to gp.y
and for 0 < r; < 7y, we will denote by Mg,y (r1,72) the open (rq,73)-annulus around

TBry-
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6.3. Geometry of Ricci flow spacetimes. The goal of this subsection is to intro-
duce several notions that we will frequently use in order to describe points or subsets
in Ricci flow spacetimes.

Definition 6.6 (Points in Ricci flow spacetimes). Let (M, t, 0, g) be a Ricci flow
spacetime and z € M be a point. Set ¢ := t(x). Consider the maximal trajectory
Yo : I — M, I C [0,00) of the time-vector field J; such that 7,(t) = z. Note that
then t(,(t')) = t' for all ¢ € I. For any ¢’ € I we say that x survives until time t'
and we write

z(t') == 7. (t).

Similarly, if X C M; is a subset in the time-t time-slice, then we say that X
survives until time ¢’ if this is true for every z € X and we set X (¢') := {z(¢)
re X}

We will also coin the following two notions.

Definition 6.7 (Time-slice of a subset). Let (M, t, 0, g) be a Ricci flow spacetime
and let X C M be a subset. For any time ¢ € [0,00) we define the time-t-slice of
X to be X; := X N M, and for any interval I C [0, 00) we define the /-time-slab of
X to be X7 := X N M;.

Definition 6.8 (Product domain). Let (M, t, d;, g) be a Ricci flow spacetime and let
X C M be a subset. We call X a product domain if there is an interval I C [0, 00)
such that for any ¢ € I any point x € X survives until time ¢ and z(t) € X.

Note that a product domain X can be identified with the product X;, x I for an
arbitrary to € I. If X, is sufficiently regular (e.g. open or a domain with smooth
boundary in My, ), then the metric g induces a classical Ricci flow (g¢)er on X;,. We
will often use the metric g and the Ricci flow (g;)er synonymously when our analysis
is restricted to a product domain.

Definition 6.9 (Parabolic neighborhood). Let (M, t, d;, g) be a Ricci flow spacetime.
For any y € M let I, C [0,00) be the set of all times until which y survives. Now
consider a point x € M and two numbers a > 0, b € R. Set t := (). Then we define
the parabolic neighborhood P(z,a,b) C M as follows:

P(z,a,b) U U y(t).
yEB(z,a) t'€[t,t+bNIy

If b < 0, then we replace [t,t+b] by [t +b,t]. We call P(x,a,b) unscathed if B(z,a)
is relatively compact in M, and if I, D [t,t + b] or I, D [t + b,t] N [0,00) for all
y € B(z,a). Lastly, for any r > 0 we introduce the simplified notation

P(z,r) := P(x,r,—1r?)

for the (backward) parabolic ball with center x and radius r.



32 RICHARD H. BAMLER AND BRUCE KLEINER

Note that if P(x,a,b) is unscathed, then it is a product domain of the form
B(x,a,b) x I, for any y € B(z,a). We emphasize that P(z,a,b) can be unscathed
even if ¢t +b < 0, that is when it hits the initial time-slice earlier than expected. So

an unscathed parabolic neighborhood is not necessarily of the form B(z,a) x [t + b, t]
if b < 0.

6.4. Necks. Borrowing from Definition [5.6) we will introduce the notion of a J-neck.

Definition 6.10 (d-neck). Let (M, g) be a Riemannian manifold and U C M an
open subset. We say that U is a )-neck at scale A > 0 if there is a diffeomorphism

:S*x (=676 —U
such that
H)\_Qili*g - (§QS2 + QR) Hc[s—lJ(sw(—é*l,&*l)) <0

We call the image 1/(S? x {0}) a central 2-sphere of U and every point on a central
2-sphere a center of U.

Note that by our convention (see Deﬁnition we have p = 1 on (S?XR, 2gg2+gr).
So on a d-neck at scale A we have p ~ A, where the accuracy depends on the smallness
of 4. We also remark that a d-neck U has infinitely many central 2-spheres, as we
may perturb v slightly. This is why we speak of a central 2-sphere of U, as opposed
to the central 2-sphere. Similarly, the centers of U are not unique, but form an open
subset of U.

6.5. Ricci-DeTurck flow and harmonic map heat flow. In this subsection we
recall some of the basic facts about the harmonic map heat flow and the Ricci-DeTurck
flow equation in the classical setting, which were first observed by DeTurck [DeT83].
More details, including precise statements of short-time existence and regularity of
these flows, can be found in Appendix [A]

Consider two n-dimensional manifolds M, M’, each equipped with a smooth family
of Riemannian metrics (g¢):cjo,77, (9;)tcpo,r)- Let moreover (x¢)icp1], Xt : M' — M be
a smooth family of maps.

Definition 6.11. We say that the family (x¢):co,/) moves by harmonic map heat
flow between (M’,g;) and (M, g,) if it satisfies the following evolution equation:

n

(6.12) Oxe = Dgrgxe = Y (Ve diales) — dxa(Viier)),

i=1
where {e;}; is a local frame on M’ that is orthonormal with respect to g;.
Assume now for the remainder of this subsection that (g;)¢cpo,r) and (g;)icpo,m evolve
by the Ricci flow equations
Orgr = —2 Ricy,, dg; = —2Ricy .

Furthermore, assume for the rest of this subsection that all the maps x; are diffeomor-
phisms and consider their inverses ¢, := x; *. A basic calculation (see Appendix
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for more details) reveals that the pull back g; := ¢} g, evolves by the Ricci-DeTurck
flow equation

(6.13) Orgi = —2Ricg: —Lx,, (41191,
where the vector field X, (g;) is defined by

n

(6'14) th (g:) = Agf,gt idM = Z (vg:el - vggei>v
i=1

for a local frame {e;}? ; that is orthonormal with respect to g;.

The advantage of the Ricci-DeTurck flow equation over the Ricci flow equation is
that it is a non-linear, strongly parabolic equation in the metric g;. More specifically,
if we express g; in terms of the perturbation h; := g/ — ¢4, then (6.13]) becomes the
Ricci-DeTurck flow equation for perturbations

(615) Vatht = Agtht + 2 ngt(ht> + Qgt [ht]

Here we view g; is a background metric. All curvature quantities and covariant
derivatives are taken with respect to g;. On the left-hand side of ([6.15]), we moreover
use Uhlenbeck’s trick:

(v{;‘tht)ij = (Gtht)ij + gfq (Rici}(@tht)ij + Ricz’; (atht)ij>
The expressions on the right-hand side of (6.15)) are to be interpreted as follows:

(R‘mgt(h‘t))ij = gqupiju(h't)qu
and Q,,[h] is an algebraic expression in g, hy, Vhy, V2h, of the form

Qulhd] = (g¢ + he) ' % (gr + he) ' % Vhy x Vhy
+ (ge + he) ™ x Ring, #hy + (g + he) ™ g % hy % V2D,

See (|A.11) in Appendix [A| for an explicit formula for Q. The precise structure of
the quantity 9, will, however, not be of essence in this paper.

We remark that in the classical setting and in the compact case, the uniqueness of
solutions to the Ricci flow equation follows from the existence of solutions to (|6.12)
and the uniqueness of solutions to (6.15)). More specifically, for any two Ricci flows
(9¢)tejo.r) and (g))tejo.r) on M and M’ for which there is an isometry x : M" — M
with x*go = g, one first constructs a solution (x)tcfo,r) of , for some maximal
7 < T, with initial condition yo = x. The resulting perturbation h; = ¢;g; — g,
for ¢, = x; !, solves , as long as it is well defined. As hy = 0, we obtain by
uniqueness that h; = 0, as long as it is defined. It then follows that y; is an isometry
for all t € [0, 7] = [0, 7] and by that d;x; = 0.

In this paper we will mostly analyze solutions h; to of small norm. Via a limit
argument, such solutions can be understood in terms the linearized Ricci-DeTurck
equation

Vo, by = Dg,hy + 2 Rmy, (hy).
For more details on this, see Section [0
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6.6. Maps between Ricci flow spacetimes. In this subsection consider two Ricci
flow spacetimes (M, t, 0, g) and (M’ ¥, 0y, g'), which we will abbreviate in the fol-
lowing by M and M’. Our goal will be to characterize maps between subsets of these
spacetimes. Using the newly coined terminology, we will then generalize the notions
introduced in the previous subsection to Ricci flow spacetimes.

Definition 6.16 (Time-preserving and time-equivariant maps). Let X C M be a
subset and ¢ : X — M’ be a map. We say that ¢ is time-preserving if t'(¢(z)) =
t(x) for all z € X. We say that ¢ is a-time-equivariant, for some a € R, if there is
some tg € R such that ¥'(¢(z)) = at(x) + to for all z € X.

Observe that a time-preserving map is also 1-time-equivariant.

Definition 6.17 (Time-slices of a map). If ¢ : X € M — M’ is time-equivariant
and ¢ € [0,00) such that X; = X N M, # ), then we denote by

¢t = ¢|Xt . Xt — Mt’ C M/
the time-t-slice of ¢. Here t' is chosen such that ¢(X;) C M;,.

Definition 6.18 (J-preserving maps). Let ¢ : X — M’ be a differentiable map
defined on a sufficiently regular domain X C M. If (d¢).0; = Oy, then we say that ¢
is Oi-preserving.

Note that the image of a product domain under a time-equivariant and O-preserving
map is again a product domain.

Definition 6.19 (Harmonic map heat flow). Let Y C M’ be a subset. We say that
amap x : Y — M evolves by harmonic map heat flow if it is 1-time-equivariant
and if at all times ¢,¢' € [0,00) with Y; # 0 and x(Yy) C M; the identity

(620) dX<at’) = & =+ Agg,ngt

holds on the interior of Y. The last term in this equation denotes the Laplacian of

the map ¢, : (M}, g5) — (M, g:) (see (6.12) for further details).

It is not difficult to see that the notions of harmonic map heat flow in Definition[6.19]
corresponds to Definition in the case in which M and M’ can be described in
terms of classical Ricci flows (M, (g¢)ier) and (M, (g})ier), respectively. The same is
true in the case in which y is the inverse of a diffeomorphism ¢ : X — Y C M’ where
X is a product domain in M whose time-slices are domains with smooth boundary.
In this case, which will be of main interest for us (see Definition , the equation
(6.20) makes sense and holds, by continuity, on all of Y.

Next, we generalize the concept of Ricci-DeTurck flow to the setting of Ricci flow
spacetimes.

Definition 6.21. Consider a smooth symmetric (0,2)-tensor h on the subbundle
ker(dt) C TM over a sufficiently regular domain N C M (in this paper we will only
consider the case in which N is a domain with smooth boundary or is a product
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domain whose time-slices are domains with smooth boundary). We say that h is a
Ricci-DeTurck perturbation (on N) if

(6.22) Lo (g +h) = =2Ric(g + h) = Lx,(g+n)(9 + h),
where X,(g + h) is defined on each time-slice X; as in (6.14)).

If X is a product domain of the form X’ x I, and if we identify g and h with smooth
families of the form (g;)ie; and (h¢)ier, then (6.22)) is equivalent to the classical Ricci-
DeTurck equation ((6.13]).

The following lemma is an immediate consequence of our discussion from Subsec-
tion [6.5

Lemma 6.23. Let X C M be open or a product domain whose time-slices are do-
mains with smooth boundary and consider a diffeomorphism ¢ : X —Y = ¢(X) C
M. Assume that the inverse map ¢~ : Y — X evolves by harmonic map heat flow.
Then the perturbation h := ¢*g' — g is a Ricci-DeTurck perturbation in the sense of

Definition [06.21]

7. A PRIORI ASSUMPTIONS

In this section we introduce the objects and conditions that will be used to formulate
and prove the main result, Theorem [13.1] which asserts the existence of a certain
type of map between subsets of Ricci flow spacetimes. The domain of the map will
be called a comparison domain (Definition , and the map itself a comparison
(Definition [7.2). The comparison and its domain will be subject to a number of a
priori assumptions (Definitions and . These definitions have been tailored to
facilitate an existence proof by induction over time steps.

We recommend reading the overview in Section [2| prior to reading this section, be-
cause it provides motivation for the structures defined here, and gives some indication
of the role they play in the proof. We refer the reader to Sections [5] and [6] for the
definitions relevant to this section.

7.1. Comparison domains. We begin with a definition that collects the qualita-
tive features of the domain of our comparison map. Additional assumptions of a
quantitative nature are imposed later, in the a priori assumptions. Loosely speak-
ing, a comparison domain is a sequence of product domains A*, ..., A/ defined on
successive time intervals, whose time-slices have spherical boundary (see Figure
for an illustration). One observes two types of behavior near the boundary as one
transitions from one product domain to the next: boundary components can either
“recede”, or they can be filled in by 3-balls. In the main existence proof, the latter
case corresponds to the situation when the comparison map is extended over a cap
region lying in a subset that is approximated by a Bryant soliton; for this reason, we
call the closures of such 3-balls extension caps.
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A

Y extension cap

NQ

Nl

FiGURE 8. Example of a comparison domain defined over the time-
interval [0, 5] and a cut. The dark shaded regions indicate the picture of
the comparison domain at integral time-steps %o, ..., t5. The extension
cap at time t3 is shaded very dark. This extension cap is contained
in a cut D, which is outlined in bold. Note that this cut is part of a
comparison and not the comparison domain.

Definition 7.1 (Comparison domain). A comparison domain (defined over the
time interval [0,,]) in a Ricci flow spacetime M is a triple (N, {N7}1<j<, {t;}7_0),
where:

(1) The times 0 = ¢, < ... < t; partition the time-interval [0, ¢,]. Each N7 (for
1 <j<J)isasubset of My, 1, and N' = Uy<j< N7 C Mgy,

(2) For all 1 < j < J the subset A7 is closed in M, and is a product domain, in
the sense of Definition [6.8]

(3) For all 1 < j < J, we have 8./\/;?1 C Int ./\ftjj Here Int /\/fj denotes the interior

of /\ftJJ inside M;,. Consequently, the difference ./\ftjj'_H\Int ./\ftjj is a closed subset
of My, that is a domain with smooth boundary, with boundary contained in

N7
J . .
(4) For every 1 < j < J, the components of j\/’,f;rl \ Int J\/’tjj are 3-disks, which are
called extension caps.



UNIQUENESS AND STABILITY OF RICCI FLOW 37

For any t < t;, we define the forward time-t slice N, of N to be the set of accumula-
tion points of N7 as t \ ¢, and if t = t; we define NV;, = N;. We define the backward
time-slices NV;_ similarly, but taking accumulation points as ¢ ¢, and when t = 0,
we put No- = Ny. Thusift € (t;_1,;) then Nix = N/ and NV, = /\/f], Ny = /\/fj+1
if1<j<J.

In the case J = 0 the comparison domain (N = 0,{},{to}) is called the empty

comparison domain.

J

When there is no chance of confusion, we will sometimes abbreviate (N, {7} i1

{tj}}zzo) by N.

7.2. Comparisons. Next, we collect the basic properties of our comparison maps
between Ricci flow spacetimes. Roughly speaking, a comparison is a map between
Ricci flow spacetimes that is defined on a comparison domain. Away from the tran-
sition times, the inverse of this map solves the harmonic map heat flow equation for
the evolving metrics, or equivalently, the pullback metric satisfies the Ricci-DeTurck
equation. At a transition time, the comparison is extended over the extension caps.
In order to guarantee a good interpolation, it is necessary to adjust the comparison
over a region that is much larger than the extension cap. As a consequence, the com-
parison, when viewed as a map between spacetimes, may have jump discontinuities
near every extension cap. The discontinuity locus is contained in a disjoint union of
closed disks, which we will call cuts (see Figure [§] for an illustration).

In the definition of a comparison, we allow the comparison domain to be defined
on a longer time interval than the comparison. This is done for technical reasons
having to do with a two part induction argument. More specifically, in Section [11],
we will analyze a comparison that is defined on an entire comparison domain (over a
time-interval [0, ¢;]) and then extend the comparison domain by one time-step (to the
time-interval [0,¢;41]), without extending the comparison itself. So we will end up
with a comparison domain that is defined up to some time ¢;,, while the comparison
itself still remains defined up to time ¢;.

Definition 7.2 (Comparison). Let M, M’ be Ricci flow spacetimes and consider a
comparison domain (N, {N7}/_,, {t;}7_;) defined over the time interval [0,,] in M.

A triple (Cut,¢,{¢’}/ ) is a comparison from M to M’ defined on (N,
{NI}_ {t;})_) (over the time interval [0,,.]) if:

(1) J* < J.

(2) Cut = Cut'U...UCut” ™ where each Cut? is a collection of pairwise disjoint
3-disks inside Int NV, 4.

(3) Each D € Cut contains exactly one extension cap of the domain (N, {N7}7_,

{t;}/_o) and every extension cap of (N, {N7}/_,, {t;}/_,) that is contained in

Mo,._,) is contained in one element of Cut.
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(4) Each ¢ : N7 — M’ is a time-preserving diffeomorphism onto its image.
More precisely, ¢/ may be extended to a diffeomorphism defined on an open
neighborhood of A7 in the manifold with boundary My, _, ;.

(5) If J* > 1, then ¢ : Ny ,.]\UpecuP — M’ is a continuous map that is smooth
on the interior of A"\ UpccwD. If J* = 0, then we assume that ¢ : 0 — 0 is
the trivial map. .

(6) ¢ = ¢’ on the open time slab ./\/'(jtj_htj) forall j=1,...,J%

(7) For all j = 1,...,J* the inverse map (¢/)~! : ¢/(N7) — N7 evolves by
harmonic map heat flow (according to Definition [6.19).

We define ¢, to be ¢]|N5 if 0 < j < J* and ¢} if j = 0. Similarly, we define Gr;4 O
be 31|13 0 < j < J* and ¢77,. if j = J*.
tj tJ*
Note that by Definition [7.2] the only comparison in the case J* = 0 is the trivial
comparison (Cut =0, ¢ : ) — 0,0).

As explained in Subsection [6.5, a map whose inverse is evolving by harmonic map
heat flow induces a Ricci-DeTurck flow on its domain. We will now use this fact and
to define associated Ricci-DeTurck perturbation for a comparison, which is defined
on a subset of the comparison domain.

Definition 7.3 (Associated Ricci-DeTurck perturbation). Consider a comparison
domain (N, {N7}/_;, {t;}7_,) in a Ricci flow spacetime M that is defined on the
time-interval [0,¢,] and a comparison (Cut,¢,{¢’}/_,) from M to M’ defined on

this domain over the time-interval [0, ¢+] for some J* < J.

Define h := ¢*g' —g on N\ UpecutD and b/ := (¢’ )¢ —gon N7 for all 1 < j < J*.
Then we say that (h, {h7}/_,) is the associated Ricci-DeTurck perturbation for
(Cut, ¢, {¢"}/_,). Moreover, for 1 < j < J* we set hy,_ = h{j, and define hy,_ := h}.
Likewise, for 0 < 7 < J* — 1 we set htj+ = h{;“l and hy,, 4 = h;’J**.

Note that by Lemma the tensors h and h? are Ricci-DeTurck perturbations in
the sense of Definition [6.21]

7.3. A priori assumptions I: the geometry of the comparison domain. Next,
we introduce a priori assumptions for a comparison (Cut, ¢, {¢’ 3]:1) defined on a
comparison domain (N, {N7}/_| {t;}7_). We first state the first six a priori as-
sumptions, [(APA 1)H(APA 6), which characterize the more geometric properties of
the comparison domain and the comparison. These are the only a priori assumptions
needed to implement the first part of the main induction argument, in Section [11]

To make it easier to absorb the list of conditions, we make some informal prelimi-
nary remarks. The construction of the comparison domain and comparison involves a
comparison scale reomp. Most of the a priori assumptions impose conditions at scales
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that are defined relative to 7r¢omp. For instance, the final time-slice of each prod-
uct domain A7 of the comparison domain is assumed to have boundary components
that are central 2-spheres of necks at scale r¢omp,. Moreover, we assume the com-
parison domain to be Ar¢omp-thick and to contain all Argemp-thick points at integral
time-slices. These and similar characterizations will be made in a priori assumptions
(APA 1)-(APA 3).

In addition, we impose two assumptions, [(APA 4)[ and |(APA 5)| that restrict the
situations when a component can be discarded or added, respectively. To appreciate
the role of these two conditions, the reader may wish to imagine a scenario when a
Bryant-like cap region in M evolves through a range of scales, initially well below
ATcomp, then well above Arcomp, possibly fluctuating between these over a time scale
> rfomp. Then initially the cap region will lie outside the comparison domain, because
its scale is too small, and later it will necessarily lie in the comparison domain,
because it has scale > Arcomp. A priori assumptions [(APA 4) and [(APA 5)| ensure
that these events occurs when the tip of the cap has scale in the range approximately
(ATcomps 10ATcomp), and that they do not occur unnecessarily too often. Finally, a
priori assumption (APA 6) states that the comparison itself is an almost isometry of
high enough precision.

We mention that a priori assumptions (APA 1)-(APA 6) depend on a number of,
which will be chosen in the course of this paper. Also, as with Definition [7.2] in
the following definition we do not require a comparison to be defined on the entire
comparison domain (see the discussion before Definition .

Definition 7.4 (A priori assumptions|(APA 1)H(APA 6))). Let (M, {N7}/_,, {t;}]_)

I,
be a comparison domain in a Ricci flow spacetime M that is defined ovér the time-
interval [0,¢,] and consider a comparison (Cut, ¢, {¢’}/_,) from M to M’ on this
domain to another Ricci flow spacetime M’ that is defined over the time-interval
0,t+] for some J* < J.

We say that (N, {N7}/_, {t;}7_,) and (Cut,¢,{¢’}/ ) satisfy a priori as-
sumptions (APA 1)-(APA 6) with respect to the tuple of parameters (7,

Ins A, Deapy A, 61, €can, Teomp) if the following holds:

(APA 1) We have t; = j - 72, for each 0 < j < J.
(APA 2) All points in N are Areomp-thick.
(APA 3) For every 1 < j < J, the backward time-slice N;,_ = /\/;JJ has following
properties:
(a) The boundary components of N, are central 2-spheres of d,-necks at
scale Teomp-
(b) N, contains all Aromp-thick points of M.
(c) Each component of Mj_ contains a Arcomp-thick point.
(d) Each component of M, \ Int N;,_ with non-empty boundary contains
a 10A7comp-thin point. ‘ ‘
(e) The points on each cut D € Cut are Arcomp-thin.
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(APA 4) (Discarded disks become thin)  For each 1 < j < J, if C is a component of
Ne,o - NIt N,y (if j > 2) or Mo\ Int Mo (if j = 1) such that
(a) C is diffeomorphic to a 3-disk.
(b) 0C C Ny, 4.
then either C does not survive until ¢; (as in Definition or for some
time ¢ € [t;_1,1;] we can find a weakly Arcomp-thin point on C(t) (recall the
notation C(t) from Definition [6.6])
(APA 5) (Geometry of extension caps) For each 1 < j < J* and every component
C of My, \ Int NV, _ the following holds.
C is an extension cap of (N, {N7}/_, {t;}]_,) if and only if there is a
component C" of M. \ ¢y, (Int Ny, ) such that
(a) C and C" are 3-disks.
(b) 9C" = ¢,-(9C).
(c) There is a point x € C such that (M,,,x) is d,-close to the pointed
Bryant soliton (Mp,y, gBry, TBry) at scale 10A7comp-
(d) There is a point 2’ € M;j, at distance < DeapTeomp from C’, such that
( ;j,x’ ) is dp-close to the pointed Bryant soliton (Mpyy, gBry; Tpry) at
some scale in the interval [D;&)Tcomp, D capTcomp)-
(e) C and C' have diameter < DeapTcomp-
(APA 6) Consider the Ricci-DeTurck perturbation (h, {h}7_,) associated to the com-
parison (Cut, ¢, {¢’ 3’;1) If J* > 1, then |h| < mim on Njgy,.] \ UpecuD-
Moreover, the €.,,-canonical neighborhood assumption holds at scales (0, 1)

on UL~ ¢ (N7).

We point out that a priori assumptions |[(APA 1)H(APA 4) are conditions on the
comparison domain only. On the other hand, a priori assumption places
restrictions on extension caps in terms of the comparison map and the local geometry
of the image. This is to ensure that extension caps arise only when the geometry
of the domain and target are nice enough to allow an extension of a comparison
on that is a precise enough almost isometry. We mention that there may be entire
connected components of the backward time-slice ./\/;]] whose scale lies within the
interval (ATcomp, ATcomp), and [(APA 1)H(APA 6)[ do not restrict what can happen
with these.

7.4. A priori assumptions II: analytic conditions on the comparison. Lastly,
we introduce further set of a priori assumptions, a priori assumptions (APA 7)—(APA
13), which characterize the behavior of the perturbation h and the geometry of the
cuts more precisely. These assumptions will become important in Section 12| where
we will extend the comparison by one time-step onto a larger comparison domain.
We now give a brief overview of a priori assumptions (APA 7)—(APA 13). A priori
assumptions (APA 7)—(APA 10) impose global bounds on the Ricci-DeTurck pertur-
bation h via two quantities () and QQ*. These bounds essentially introduce a pointwise
weight, which depends on the curvature scale p and time. A priori assumption (APA
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FIGURE 9. The bound Q < @ in (APA 7) holds on all of A/ except for
the hatched region. The bound Q* < Q" in (APA 9) holds on all of N/
except for the dotted region.

7) imposes a bound on () on the comparison domain, except on the complement of
forward parabolic neighborhoods of cuts. Similarly, a priori assumption (APA 9) im-
poses a bound on QQ* at points of the comparison domain that are far enough away
from its neck-like boundary. For an illustration of the domains on which these bounds
do or do not hold, see Figure @ A priori assumption (APA 8) introduces a bound
on (), which holds essentially everywhere on the comparison domain. Note that the
constant W in this bound will be chosen to be large. Therefore, a priori assumption
(APA 8) will not directly imply a priori assumption (APA 7).

A priori assumption (APA 10) states that Q* is small on each cut and a priori
assumption (APA 12) guarantees a good bound on @) and @* on the initial time-slice.
A priori assumption (APA 11) ensures that the diameters of cuts are sufficiently large.
Lastly, a priori assumption (APA 13) imposes a bound on t;.

Definition 7.5 (A priori assumptions|(APA 7)H(APA 13))). Let (M, {N7}/_,, {t;}]_)
be a comparison domain in a Ricci flow spacetime M that is defined on the time-
interval [0,¢,] and consider a comparison (Cut, ¢, {¢’}7_,) on this domain to another

Ricci flow spacetime M’ that is defined on the same time-interval [0, ¢,].
We say that (N, {N7}/_;, {t;}]_;) and (Cut,¢,{¢’}]_,) satisfy a priori as-

=1
sumptions (APA 7)—(APA 13) with respect to the tuple of parameters (7,
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E, H, Min, U, A, Newty Deut, Wy A, Teomp) if the following holds. Define the functions
Q=T pEn|, Q=" TV pl|n|

on N '\ Upecut D, where t: M — [0, 00) is the time-function. On N+ we denote by
Q)+ and Q% the corresponding values for iy, . We also set Q1 := Q) on N\ UpecuD.
Set

@ = 107E71771in70chmp? G* = 10717711n()\7”comp)3-
Then

(APA 7) (Q < Q if no cuts in nearby past) For all x € N\ UpecyD for which
P(x, Api1(z)) N D = () for all D € Cut we have

Qr) < Q.
Note that the bound is also required to hold if P(z, Api(x)) ¢ N.
(APA 8) We have
Q<W-Q on  N\UpecuD.

(APA 9) (Q* < Q" away from time-slice boundary) For all x € N\ UpecuD for
which B(z, Api(z)) C Nyw)— we have
Q(x) < Q"
(APA 10) On every cut D € Cut we have
Qj_ S ncut@*'

(APA 11) For every cut D € Cut, D C My, the following holds: The diameter of
D is less than Dey¢Tcomp and D contains a %Dcutrcomp—neighborhood of the
extension cap C =D \ Int M, _.

(APA 12) We have Q < v@Q and Q* < vQ" on A (i.e. at time 0).

(APA 13) We have t; <T.

Note that a priori assumptions (APA 7)-(APA 13) are vacuous if J = 0.
We briefly comment on the purpose of a priori assumptions (APA 7)—(APA 9).

As explained in Section , a priori assumption (APA 7), the bound Q < Q, serves
as a main ingredient for the Bryant Extension Principle, as long as E is chosen large
enough. It will also be used to ensure that |h| < n;, at most points of the comparison
domain.

Note however that @ is chosen such that the bound @ < @ only implies |h| < i,
when p1 2 Teomp. S0 it does not imply |h| < ny, everywhere on the comparison
domain. Unfortunately, we will not be able to remedy this issue by replacing @ in
a priori assumption (APA 7) by a smaller constant, as our solution of the harmonic

map heat flow will introduce an error of magnitude depending on 6, near the neck-like
boundary of N.

More specifically, if the bound Q < @ held everywhere, then errors near the neck-
like boundary, which has scale & Teomp, would force Q 2 rf 0 where i/ = 7/(d,).
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Tcut

w A A 5]9 €can
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Tcomp

FiGURE 10. All restrictions on the parameters that will be imposed
throughout this paper. Each parameter in this graph can be chosen
depending only on the parameters that can be reached by following the
arrows backwards. Note that the graph does not contain any oriented
circles.

On the other hand, since we would want the inequality @ < Q to enforce the bound
|h| < mn everywhere in N, and since N’ may contain points of scale &= Areomp,
we would need to have Q < (/\Tcomp)Emin. Combining the two inequalities, we get
7' (0,) < My, so we end up with a condition of the form 8, < &, (i, A). However, to
construct the comparison domain so that its boundary consists of (roughly) d,-necks,
we need a condition of the form A < A(9,,), which is incompatible. In summary, the
constant () cannot be chosen such that a priori assumption (APA 7) is both weak
enough to hold near the boundary of A/ and strong enough to imply |h| < my, at all
points of scale 2 Areomp-

The bound Q" < @ in a priori assumption (APA 9), on the other hand, automat-
ically implies |h| < my, everywhere on N. However, we are not imposing it near the
neck-like boundary of N.

Lastly, note that the bound @ < @ may be violated after a Bryant Extension
construction. Therefore, we have not imposed it in a priori assumption (APA 7) at
points that lie in the future of cuts. At these points, the bound Q* < @* will be
used to guarantee |h| < my,. Moreover, the bound @ < W(Q from a priori assumption
(APA 8) will be used to partially retain a priori assumption (APA 7) in the future of a
cut. Using the interior decay from Subsection [9] this bound can in turn be improved
to the bound Q < @ from a priori assumption (APA 7) after a sufficient time.

7.5. Parameter order. As mentioned earlier, the a priori assumptions, as intro-
duced in the last two subsections, involve several parameters, which will need to be
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chosen carefully in the course of this paper. Each step of our construction will require
that certain parameters be chosen sufficiently small/large depending on certain other
parameters. In order to show that these parameters can eventually be chosen such
that all restrictions are met, we need to ensure that these restrictions are not circular.
For this purpose, we introduce the following parameter order:

T; E, H7 Thin, V, 5117 )\7 Dcapa Ncut, Dcut7 W» A7 A7 5b7 €can, TCOmp

In the entire paper, we will require each parameter to be chosen depending only on
preceding parameters in this list. So parameters can eventually be chosen successively
in the order indicated by this list.

For a more detailed picture of all the parameter restrictions imposed in this paper
see Figure These restrictions also appear in the preamble of our main technical
result, Theorem [13.1] Note that, as these restrictions are not completely linear, there
are several admissible parameter orders. We have chosen the above parameter order,
because we found it to be most intuitive.

We advise the first-time reader that it is not necessary to follow all parameter
restrictions in detail when going through the proofs of this paper. Instead, it suffices
to check that the above parameter order is obeyed in each step.

8. PREPARATORY RESULTS

In this section we collect a variety of technical results that will be needed in the
proof of the main theorem. These are based on definitions from Sections [5H7. The
reader may wish to skim (or skip) this section on a first reading.

8.1. Consequences of the canonical neighborhood assumption. The com-
pleteness and canonical neighborhood assumptions, as introduced in Definitions [5.4
and lead in a straightforward way to local bounds on geometry, including local
control on curvature and its derivatives, as well as control on neck and non-neck
structure. We begin this subsection with a few such results (Lemmas [8.1H8.14]), and
then use them to deduce control on scale distortion of bilipschitz maps (Lemma|8.23)),
self-improvement of necks (Lemmal[8.29) and scale bounds near necks (Lemma [3.30)).

Our first two results are direct consequences of the definition of the canonical
neighborhood assumption, and properties of k-solutions.

Lemma 8.1. The following hold:
(a) For every A < oo there is a constant C' = C'(A) < oo such that if
€can < Ecan(A)

and a Riemannian manifold M satisfies the €can-canonical neighborhood as-
sumption at x € M, then the following holds on the ball B(x, Ap(x)) for all
0<m<A

p=V3R:,  C7p(a) <p<Cplx),  |V"Rm|< CR™E ().
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(b) There is a C' < oo such that if
Ecan S Ecan

and M is a Ricci flow spacetime that satisfies the €can-canonical neighborhood
assumption at some point x € M, then

10ip%|(2) = 3|0,R~"|(2) < C'.
(¢) Given § > 0, if
€can < €can(0)
and M is a Ricci flow spacetime that satisfies the €..n-canonical neighborhood
assumption at some point x € M, then

op*(z) = 30,R 1 (x) < 6.

Proof. Assertion @ follows from the definition of the canonical neighborhood as-
sumption, assertions (c¢) and (d) of Lemma and Lemma 6.3

For assertions [(b)] and [(c)] we recall that in a Ricci flow the time derivative 9,R(x)
may be expressed as a universal continuous function F(Rm(z), V Rm(z), V? Rm(z))
of spatial curvature derivatives. Now assertions and follow from the definition
of the canonical neighborhood assumption, and assertion (e) of Lemma . 0

Lemma 8.2. For every § > 0 there is a constant Cy = Cy(d) < oo such that if

€can S Ecaun(5>7
then the following holds.

Assume that (M,g) is a Riemannian manifold that satisfies the €a,-canonical
netghborhood assumption at some point x € M. Then the one of the following hold:

(a) x is the center of a d-neck at scale p(x).
(b) there is a compact, connected domain V- C My with connected (possibly empty
boundary) such that the following hold:
(1) B(z,6 'p(x)) C V.
(2) p(y1) < Cop(ya) for all y1,y2 € V.
(8) diam V' < Cyp(z).
(4) If OV £ 0, then:
(i) OV is a central 2-sphere of a d-neck.
(11) Either V is a 3-disk or is diffeomorphic to a twisted interval bundle
over RP?.
(111) Any two points z1,zy € OV can be connected by a continuous path
inside OV whose length is less than

min{d;(z1, ), di(z, 22) } — 100p(z).
(5) If V is diffeomorphic to a twisted interval bundle over RP?, then p(y;) <
2p(y2) for all y, ys.

Proof. This follows immediately from Lemma [C.2] using the definition of the canonical
neighborhood assumption. 0J
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Lemma 8.3. Suppose M is an (ro,ty)-complete Ricci flow spacetime. If for some
r > ro we have p > r on a parabolic neighborhood P(x,a,b) C My, then it is
unscathed.

Proof. Let t = t(x). From the (rg,ty)-completeness of M, any unit speed geodesic
in M, starting at  can be extended up to a length of at least a. Therefore the
exponential map exp, : T, M; D B(0,a) — M, is well-defined, and has compact
image exp, (B(0,a)) = B(z,a). If y € B(x,a), then since p > r on P(z, a,b), it follows
from (7o, tp)-completeness that y(t) is defined on [t,t + b] if b > 0 or [t + b,t] N[0, 00)
if b < 0. O

Next, we derive a few results based on the bounds in Lemma 8.1
Lemma 8.4 (Scale nearly constant on small two-sided parabolic balls). If L > 1 and
77 S ﬁ(L) Y 6C&l’l S EC&HJ

then the following holds.

Suppose 0 < r < 1 and M is an (€canT, to)-complete Ricci flow spacetime sat-
isfying the €can-canonical neighborhood assumption at scales (€cant, 1). If for some
point x € M, with t € [0,ty] we have pi(x) > r, then the parabolic neighborhoods
Py := P(z,npi(z), £(np1(2))?) N Moy, are unscathed and

(8.5) L7 pi(z) < p1 < Lpa(x)
on P, UP_.
Proof. 1f

Ecan S Ecany

then by Lemma and assertions @ and @ of Lemma there is a constant
Cy < oo such that near any point that satisfies the e.,,-canonical neighborhood
assumption we have

(8.6) Vo, [0p%| < Co..

Now choose a point y € Py, and let v : [0,a] — M be a curve from z to y that
is a concatenation of curves 71,7, where 7 is a unit speed curve from x to y(t) of
length < npi(z), and 7, is the integral curve of 8, from y(t) to y. Then by (8.6),
for 1 = 1,2, we have

(8.7) [(prom) (s)] < Co, [(pf o) (s2)] < Co
wherever the derivatives are defined and p; o 7;(s;) > €canr. Therefore if
n <7(L),

then (8.5)) follows by integrating the derivative bound (8.7). The fact that Py are
unscathed follows from Lemma [8.3 O
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Lemma 8.8 (Backward survival control). If§ >0, A < oo and
Ecan S E(33‘1'1((57 A) )
then the following holds.

Suppose v > 0 and M is an (€canr, to)-complete Ricci flow spacetime satisfying the
€can-canonical neighborhood assumption at scales (€eant, 7). Let x € My with t € [0, o]
and assume that p(x) > r. Then x(t') exists for allt € [t — Ar?,t] N [0,00) and we
have p(z(t)) > (1 — d)r.

Proof. Set t := t(x) and let 6x > 0 be a constant whose value we will choose at the
end of the proof. Recall that p, = min{p,r}. By assertion of Lemma , and
assuming

€can S Ecan(é#)a
we have

(59 L (@) <o,

for all ¢ < ¢ for which both x(f) and the derivative exist and p?(z(t)) > (€canr)?.
Therefore, if

5# S 5(57 A)a

then we may integrate to obtain that p?(z(t)) > (1 — d)r for all £ < ¢ for which
t —t < Ar? and z(1) is defined. Assuming

€can < - 57

we can use the (€canr, to)-completeness to show that x(¢) is defined for all ¢ € [t —
Ar? t] N[0, 00). O

Lemma 8.10 (Bounded curvature at bounded distance). For every A < oo there is
a constant C' = C(A) < oo such that if

€can S Ecam(‘A)a
then the following holds.

Let 0 < r <1 and consider an (€canr, to)-complete Ricci flow spacetime M that
satisfies the €can-canonical neighborhood assumption at scales (€cantr, 1). If x € Mo ]
and pi(x) > r, then P(x, Api(x)) is unscathed and we have

(8.11) C'pi(z) < p1 < Cpi(z) on Pz, Api(x)).

Proof. We claim that there is a constant C; = C}(A) < oo such that
(8.12) Ciipi(zr) <pr < Cipr(z)  on Bz, Api(z)).

This is immediate if p; = 1 on B(x, Api(x)), so suppose p1(y) < 1 for some y €
B(z, Api(z)). By the continuity of p;, we may choose y such that pi(y) > 3p1(x).
Applying assertion [(a)] of Lemma[8.1] to the ball B(y,4A4p(y)) D B(z, Ap:(x)), we get
812).
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If
€can S ECan(14)
then using (8.12), we may apply Lemma[3.8 at any point z € B(xz, Ap:(z)) to conclude
that v(f) is defined and
(3.13) p1(=(0) > 107 p1(2) > et
for all £ € [t — Api(2)?,¢] N[0, 00). Thus Pz, Api(z)) is unscathed by Lemma [8.3]

Next, by assertion of Lemma there is a universal constant Cy < oo such
that if
€can < Eean(A),
then for all £ € [t— Ap}(2)]N[0, 0o) we have |L(p2(z(t))| < Cs, provided the derivative
is defined. Integrating this bound yields p?(z(t)) < C?p}(z) for C = C(A) < oo. Thus
holds. 0

In the next result we combine the bounded curvature at bounded distance esti-
mate (Lemma with a distance distortion estimate to find a parabolic neigh-
borhood centered at a point x that contains all parabolic neighborhoods of the form
P(y, Aspi(y)), where y varies over some parabolic neighborhood P(x, A1p;(x)).

Lemma 8.14 (Containment of parabolic neighborhoods). For any Ay, Ay < 0o there
is a constant A’ = A'(Ay, Ay) < oo with A" > Ay + Ay such that if

€can S E(:311(1417 A2)7
then the following holds.

Let 0 < r < 1 and consider an (€canr, to)-complete Ricci flow spacetime M that
satisfies the €qan-canonical neighborhood assumption at scales (€cant, 1). If £ € Mgy
and pi(x) > r, then the parabolic neighborhood P(x, A'pi(x)) is unscathed and we
have

(8.15) P(y, Axpi(y)) € Pz, A'pi(x))
for ally € P(x, Aipi(x)).

Proof. We first use Lemma [8.10 assuming
€can < €can(A1),
to argue that P(z, A1p1(z)) is unscathed and
(8.16) p1 < Ci(A1)pi(z) on P(x, Aipi(z))
for some C] = C1(A;) < 0.

The constant A’ will be determined in the course of the proof. Again, by Lemma(8.10}
assuming

(8.17) €can < Ecan(A'),

we find that P(x,2A'pi(z)) is unscathed and that p; > co(A")p1(x) > cor > €canr o1
it. At any point z € P(x,2A'p;(x)) with p;(2) < 1 the curvature operator is close
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to that of a k-solution. Since k-solutions have non-negative Ricci curvature, we can
argue that

Ric > —c3(A")p %(2) > —p; *(2)
at z if we assume a bound of the form (8.17). On the other hand, at any z €

P(z,2A'p1(x)) with pi(z) = 1 we have p(z) > 1 and therefore Ric > —C5 at z for
some universal constant Cs. So, in summary, we have

(8.18) Ric > —p;2(z) — O on P(x,2A'p1(x)).

Now consider a point y € P(x, Aipi(z)). Set to := t(x) and ¢ := t(y). We first
claim that

(8.19) By, Aspi(y)) C Pz, A'pi(x)).

Assume not and choose a smooth curve v : [0,1] — (P(x,2A'p1(z)); between y and
a point in z € P(x,2A'py(z)) \ P(z, A'p1(z)) such that £;(y) < 2A2p1(y). Note that
for all ¢ € [t,to] the curve v : [0, 1] = M, with v(s) := (7(s))(¢) is defined and its
image is contained in P(z,2A'p;(x)). So by and we have

deo (y(to), 2(t0)) < iy (320) < exp (o1 () + C2)ATpi(y)) - A2pr(y)
< CiAsexp ((1+ Co)CTAT) pi ()

So
A'pi(x) < d(z,y) + diy(y, 2(t0)) < Aipr(2) + CrAgexp ((1+ Co)CYAT) pr ().

Now set

A/(Al, Ag) = Al + OlAQ exXp ((1 + 02)01214?) + A/ A% + A%

Then we obtain a contradiction and thus (8.19) holds. Since A” > A2+ A3, we obtain
B15).

O

The next two results concern the behavior of the curvature scale p under nearly
isometric mappings. We begin with a convergence lemma that shows that an im-
mersion between Riemannian manifolds must nearly preserve the scale, provided it
is nearly an isometry, and we have sufficient control on the curvature and possibly
curvature derivatives on the domain and target. The main point is that the map is
only assumed to be an almost isometry in the C°-sense.

Lemma 8.20. Suppose {(Z},gi, 21155, {(Z2,g2,23)}52, are sequences of pointed
smooth Riemannian manifolds such that for some ro > 0 and for each i = 1,2 the
ball B(z.,10) C Z. 1is relatively compact for all k, and one of the following holds:

(i) Supp (i vy [Rmlg; — 0 as k — oo.

(1) Hm supy, o SUP (. ) [V Ry < oo for 0 < j <5.
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Let {¢r : Z} — Z32}2, be a sequence of smooth maps such that ¢y(z}) = z7 and

(8.21) (Sl}p {(qb’,;gz — gi)‘gi —0 as k— oo.
B(z,m0)

Then, after passing to a subsequence, the scale functions converge to the same limit:
lim p(z;) = lim p(z}) € [0,00) U {oc}.
k—oo k—o0

Proof. We first prove the lemma under the additional conditions that the ¢xs are
diffeomorphisms and the injectivity radii at z; satisfy

(8.22) lim inf InjRad(Z}, g, 2) > 0.
—00

Using standard injectivity radius estimates, conditions (i), (ii), (8:21), and
imply that for every r < ry, and sufficiently large k, the injectivity radius is bounded
uniformly from below on B(z},r) C Zi. By standard compactness arguments, after
passing to a subsequence, the sequence of pointed balls {(B(zL,70), g5, 25) 3>, con-
verges to a pointed C*-Riemannian manifold (Z° ¢’ ,2" ) that is a proper rq-ball
(i.e. balls of radius < rg are relatively compact, and there is a basepoint preserving
mapping ¢ : (ZL,2L) — (Z%,2%) that is an isometry of the Riemannian distance

o0 Yoo o0 Yoo
functions, where for each ¢ = 1, 2:

o If {g;} satisfies (i), then the pointed convergence (B(z},70), 64, 2k) — (ZL,
z,) is with respect to the Gromov-Hausdorff topology and Z7_ is flat. .
o If {g;} satisfies (ii), then the pointed convergence (B(z},70), g1, 2.) — (Zs,

)

gl.,zL.) is with respect to the C*-topology.

In view of the above we have p(z%) — p(z%.) € [0,00) U {oo} as k — oo for i = 1,2.
Since ¢, is an isometry (of distance functions) between C* Riemannian manifolds, it
is a C3-isometry of Riemannian manifolds, and hence it preserves curvature tensors:
' (Rm(z2)) = Rm(zL). Tt follows that p(zL) = p(z2).

We now return to the general case. We may assume after shrinking ry that the
conjugate radius of Z} at z}, is > 2rg. For i = 1,2 let (W}, w}) be the ball B(0,2rq) C
T.1Z;, with basepoint wj, = 0 € B(0, 2rp), and let hy, := expy Gi» Wi = (droexp,1)*gi
Then the injectivity radius at w}, satisfies InjRad(W}!, i, w}) > ro, and B(wi,rg) C
W} is relatively compact. Therefore, applying the above argument to the identity
maps W} — W72, we obtain the lemma. O

Lemma 8.23 (Scale distortion of bilipschitz maps). There is a constant 10% < Cyp <
oo such that the following holds if

Min S ﬁlina 5n S 5ny €can S Ecana Tcomp S Fcomp'

Let M, M’ be (€canTcomp, to)-complete Ricci flow spacetimes that satisfy the €can-
canonical neighborhood assumptions at scales (€canTcomp, 1). Consider a closed product
domain X C Moy, on a time-interval of the form [t — 12 t], t > 12, . such that
the following holds:
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(1) 0X: consists of embedded 2-spheres that are each centers of d,-necks at scale
Tcomp -
(11) Each connected component of X; contains a 2romp-thick point.

Lett e [t— rfomp, t], t > 0 and consider a diffeomorphism onto its image ¢ : X; —
M., such that |¢*g, — g7l < Min. We assume that the ecan-canonical neighborhood
assumption holds at scales (0,1) on Xi and on ¢(Xz).

Then we have
(8.24) Coppi(r) < pr(¢(x)) < Csppr().

This lemma will later be applied whenever a bound on the distortion of the scale
function under a comparison (as defined in Definition is needed. The product
domain X in this lemma will later be taken to be a time-slab A7 of a comparison
domain (as defined in Definition and ¢ will denote the time-slice of a comparison.
Assumptions (i) and (ii) correspond to a priori assumptions (APA 3)(a) and (APA
3)(b), respectively (see Definition [7.4)).

In order to avoid confusion, we point out that usually it is possible to derive stronger
scale distortion bounds than (8.24)), with Csp replaced by a constant that can be
chosen arbitrarily close to 1. These stronger bounds follow simply via local gradient
estimates, due to the parabolic nature of the comparison. This approach, however,
fails if the point x lies close to the spatial or time-like boundary of X. This is why
we have to work with a larger constant Csp in this paper.

Proof. Assume that the lemma was false. Then there are sequences M, — 0, o —
0, €cank —7 0, Tcomp,k —7 0, {Mk}7 {M,k}a {Xk}a {xk}a {tk}v {Ek}7 {t;:}a ¢k : thz -

M} satisfying the assumptions of the lemma, such that
k

(8.25) M—M) or oo as k— 0.

p1(Pr(Tr))

To simplify notation, we let M; := ./\/lé—“k and M| := M;f: denote the time-slices,
with metrics g and g, respectively, and let Y := X i C My, be the relevant time-slice

of the product domain X*.

Let r := min{p;(zx), p1(¢r(zx))}. In view of (8.25) we have r, — 0. Note that
by our assumptions, for each of zy, ¢i(xy), either the eqap -canonical neighborhood
assumption holds or we have p;(zg) = 1 or p1(¢x(zx)) = 1, respectively. In the first

case we may use the estimates on the derivatives of curvature in assertion @ of
Lemma 8.1 and we have

(8.26) |V/Rm| < Cyry > on B(xg,ri) or B(op(zk),mr),

respectively for some universal 'y < oo and large k£ and 0 < 57 < 5, and in the second
case we may apply Lemma to obtain

(8.27) [Rm| <Cy;  on  B(xg,m) or B(éw(wr), k),
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respectively, for some universal (5 < oo and large k.
Case 1: liminfj_ o r,;ld(xk,ﬁYk) > 0.
If we let Gy, = 7}, %k, G} = T}, “d, then the assumptions of Lemma 8.20] hold for

the sequence {¢y @ (Int Y, gk, zx) — (ML, G, dr(xr))} by (8.25), (8.26), (8.27) and
the fact that r, — 0. Hence, after passing to a subsequence,

lim pg, (xx) = lim_ pg (¢x(zx)) -

k—o0

Since for every k the €.,y r-canonical neighborhood assumption holds at one of the
points xy, ¢r(xy), the above limit must equal 1. This contradicts .

Case 2:  liminfj_ o r,;ld(xk, dYy) = 0.

After passing to a subsequence, we may assume that limy_,., 75, 'd(x, Y},) = 0. For
each £ we may choose a boundary component ¥, C X{jﬁ such that limj_,.. r;ld(xk,
Yk(tk)) = 0. Let Up be the 10rcomp e-neighborhood of ¥y, in X[ . If k is large, then
%rcompk < p < 2Teompi o0 Ug. So by assumption (ii) Uy does not fully contain the
component of XZZ in which it lies. Therefore, we can pick y; € XZZ with d(y, Xr) =
Teompk- By Lemma there is a universal constant C3; < oo such that for large k
we have C’glrcomp,k < p < CsTeompr 00 Ug(ty). So . < p1(xr) < Cseomp for large k
and therefore limy_,o, 71 d(zy,0Yy) = 0. By a distance distortion estimate, there

comp,k
is a universal constant Cy < oo such that for large k

(8.28) C reompe < Ay (), o), d(yi(tr), 0Yi) < CiTcompyk -
So using (8.28)) and Case 1, we can find a uniform C5 < oo such that

C?,_ICE,_lrcomp,k: S C’5_1p1 (yk(fk» S P1 <¢k‘(yk(fk))) S C5P1 (yk(fk)) S C’3615'rcomp,lc~

Since d(pr(y(tr)), dr(zr)) < 2C37compr for large k, Lemma gives C’glrcompyk <
p1(or(x)) < Coreompr for some uniform Cs < oo and large k. This contradicts

(3-25). O

In the following lemma we show that a region that is bilipschitz close to a cylinder
contains a smaller region on which we have closeness to a cylinder in the C™-sense,
provided that the canonical neighborhood assumption holds. So the smaller region
is a neck of arbitrarily high accuracy, as long as the bilipschitz control on the larger
region is strong enough.

Lemma 8.29 (Self-improvement of necks). If
5# > 07 ) S 5(5#)7 €can S Ecan((sal;ﬁ)?
then the following holds.

Let (M,g) be a Riemannian manifold and © € M be a point that satisfies the
€can-canonical neighborhood assumption. Let v > 0 be a constant and 1) : S? x
(—=671,671Y) — M be a diffeomorphism onto its image that satisfies x € ¥(S* x {0})
and

HT_Q@D*9—932XR||00 <,
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where gSQX]R denotes the round cylindrical metric with p = 1 and the C°-norm is taken
over the domain of .

Then x is a center of a dx-neck in M at scale r.

Proof. Without loss of generality we may assume that r = 1.

Assume that the lemma was false for some 04 > 0. Then we can find sequences
Ok — 0, €can — 0, as well as a sequence {(My, gx)} of Riemannian manifolds and a
sequence {ty : S? x (=6, ',6, ') — My} of diffeomorphisms onto their images such
that:

(1) (My, gi) satisfies the €can i canonical neighborhood assumption at xy.
(2) zx € Ye(S5? x {0}),

(3) llvrg — 9° o < 0k — 0.

(4) x), is not a center of a dy-neck at scale 1 for any k.

Let 7 := p1(xg). Then letting

(Zi ghs 20) = (S” x (=057, 80), 7 2™ %, ()

(lev gl%? ZZ) = (Mk‘7 %;ng, xk) s
and ¢y, := 1, the assumptions of Lemma hold by (3) above and assertion @ of
Lemmatogether with the choice of 7. Therefore we have p(zy) — p(¢; ' (7x)) = 1
as k — oo. It follows that (Mg, gk, Tk) 1S €cank-close at scale tending to 1 to the
final time-slice (M\k,/g\k,fk) of a kg-solution with p(Zy) = 1, as k — oo. Hence
diam(]\/I\k,ﬁk) — 00. Since p(Ty) = 1, it follows that (]\//Tk,ﬁk) cannot be a round
metric for large k. Hence, by assertions (a) and (b) of LemmalC.1], after passing to a
subsequence, the sequence {(Mg, gx, )} converges in the pointed smooth topology
to the final time-slice (My, goo, Too) Of some k-solution. However, by property (3)
above we conclude that (Ma, goo) is isometric as a metric space to (S? x R, g% *F)
equipped with the induced length metric. So (M, goo) is isSometric as a Riemannian

manifold to (52 x R, ¢5**®). Thus z;, is a center of a d4-neck at scale 1 for large k,
contradicting (4). O

The next lemma gives control on the scale at bounded distance to a neck, assuming
the canonical neighborhood assumption.

Lemma 8.30 (Scale bounds near necks). There is a constant g > 0 such that for
every X < oo there is a constant Y =Y (X) < oo such that if

€can S Ecan(X)a
then the following holds.

Let (M, g) be a (possibly incomplete) Riemannian manifold and let ¥ C M be a
central 2-sphere of a dyg-neck at scale 1 in M. Assume that M satisfies the €can-
canonical neighborhood assumption at some point in X.
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Consider a point x € M \ ¥ and let C be the component of M \ ¥ containing x.
If d(z,%) < X and diamC > Y, then pi(x) > 5. Here the diameter is taken with
respect to the distance function of (M, g).

The proof uses the geometry of non-negatively curved manifolds to bound neck
scales from below. The argument that is a variation on part of Perelman’s proof of
compactness of k-solutions (see [Per(2]).

Proof. Fix X < oo and some constant small §, > 0. The precise conditions on the
smallness of g will become clear in the course of the proof.

Assume that the statement of the lemma was false (for fixed X') and choose se-
quences Y — 0o and €can p — 0. Then we can find counterexamples (My, i), Xk, Tk,
Cr, C M\ X such that (M, g) satisfies the €can x-canonical neighborhood assumption
at some point yy € Xg, d(zx, Xx) < X, diam Cy > Y, but p(xy) < %.

If

do < do,
then the injectivity radius at y; is uniformly bounded from below by a positive con-
stant. So, after passing to a subsequence, we may assume that:

e The sequence of pointed Riemannian manifolds (M, gk, yx) converges to the
pointed final time-slice (M, goo, Yoo) 0f some k-solution.

e The 2-spheres ¥, C M) converge to a central 2-sphere Y., of a 2dg-neck
U, C M4, at scale 1.

e The points xj converge to a point T, € My \ X such that p(z) < %0.

o d(Too,Yoo) > }160_1, since we may assume that p > % on the 2dp-neck Uy,.

As diamCj, > Y, — oo, the k-solution M., must be non-compact. If
do < b9,

then M., cannot be isometric to a quotient of a round cylinder, because U, is a
25p-neck of scale 1, while p(z.) < %. Therefore M, is diffeomorphic to R3, and the
2-sphere Y., bounds a compact domain, and a non-compact domain Z. We cannot
have 2., € My \ Z, since this would imply that diam C;, < 2diam(M, \ Z) for large
k, contradicting the fact that diam C, — oo.

Let v C M., be a minimizing geodesic ray starting from ¥, and pick z € yN Z,
to be determined later. Let U0z, 2T, and Tools be geodesic segments between the
corresponding pairs of points. Assuming

8o < do,

the segments Yoz, Yooloo May intersect >, at most once and are nearly parallel to
the R-factor of the neck U,. Therefore both segments are contained in Z apart
from the endpoint y.., and they form an angle of at most § at y... By Toponogov’s

theorem, this implies that the comparison angle Zyoo (oo, 2) is at most §. Provided

that d(z, yss) is sufficiently large, we therefore have Z, (Yoo, 2) > J.
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Fix some small ; > 0 whose value we will determine later. If
8o < do

and d(z, Yoo ) is sufficiently large, then p™ (24) min{d(zoo, 2), d(Too, Yoo ) } is large enough
that we may apply [KLOS|, Corollary 49.1] to conclude that x, is a center of a d;-neck,
with central 2-sphere 3, . If §; < 01, then the segments Too?, Too, Yoo iltersect 2,
only at x, and are nearly parallel to the R-factor the neck at x,. Since their angle at
Too is > 7, it follows that y, and z lie in distinct connected components of M \X,

Let ¢y be the diameter of a central 2-sphere of a round cylinder of scale 1. If
o < 8y, we may choose a a point yh € Yo such that d(y.,, Yso) > .99¢o. Now consider
geodesic segments 7z, y. 2. If 6y < o, both segments are contained in Z, and since
Y., separates 9o, from z, both segments intersect ¥,_. If 5y < &y then |d(z,yoo) -
d(z,y..)| < .0lc, as follows by applying the triangle inequality to points on 7z,
Y’z at distance %50_ !. Therefore, after swapping the labels of y., and 3/, if necessary,

we may assume without loss of generality that there is a point Yo €y z such that
d(z,y2) = d(z Yoo) aNd d(Yoo, Yo) > .98co. Similarly, if 6; < 0y, there will be points
Woo € Yooz, Wh, € Yy 2z such that

d(Woo, wh) < 1.01cop(7s0) < £,

d(Weo, 2) = d(wl,,z) and one of wy, w._ lies on 3, . By Toponogov’s theorem
(monotonicity of comparison angles) we have

Ayerl) _ dlwsut,)
Ay, 2) — d(Wso, 2)
So if d(z, Y ) is sufficiently large, then
99¢o < d(Y2, Yoo) < 2d(Weo, W) < %co,

which is a contradiction. O

8.2. Promoting time-slice models to spacetime models. Our next two results
show that under appropriate completeness and canonical neighborhood assumptions,
if a time-slice of a Ricci flow spacetime is close to a neck or a Bryant soliton, then
a parabolic region is also close to a neck or Bryant soliton, respectively. The proofs
are standard convergence arguments based on a rigidity property of necks and Bryant
solitons among k-solutions.

Lemma 8.31 (Time-slice necks imply spacetime necks). If
6y >0, 0<d<8(64), 0 < €can < ean(04), 0<r<T,
then the following holds.

Assume that M is an (€canT, to)-complete Ricci flow spacetime that satisfies the €can-

canonical neighborhood assumption at scales (€cant, 1). Let a € [—1, %] and consider a

"4
time t > 0 such that t + ar? € [0, to].
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Assume that U C Myyq2 is a 0-neck at scale /1 — 3ar. So there is a diffeomor-
phism
(8.32) PSP x (=076 — U
such that ,

It gesar = g2 | oy < 6.

Here (gf2XR)ltE(_OO%) denotes the shrinking round cylinder with p(-,0) = 1 at time 0
and the C 1-norm is taken over the domain of 1.

Then there is a product domain U* C M[t—r2,t+ir2}n[o,to] and an r*-time-equivariant
and O-preserving diffeomorphism

Wy 0 8% x (0,1, 0,0) x [th, 7] — U™,

with t + t*r* = max{t — r?,0} and t + t**r? = min{t + 1% to}, such that

(2 ‘32 x(~651.85 ) x{a} — U

and ,
Ir*v59 - 9° XRHC@H < 0.

Here the C% L_norm is taken over the domain of Vs.

Note that the lemma can be generalized to larger time-intervals. We have omitted
this aspect, as it will not be important for us later. We also remark that one may prove
a more general result to the effect that any parabolic region is close to a parabolic
region in a x-solution.

Proof. For the following proof, we may assume that 7 and €., are chosen small
enough such that any point z € M with lior < p(z) < 10 satisfies the €qqp-canonical
neighborhood assumption.

Assuming B
0<9,
we have the following bound on the image of );:

(8.33) r<3V1-=3ar <p<2V1l—3ar <d4r.

Assume now that the statement of the lemma was false for some fixed 4 > 0. So
there are sequences €eanr — 0, 0 — 0, i, < T, tp > 17, ax € [—1, i], tog >0, 1) €
[—1,0], t;* € [0, 3] with ¢, +t;r7 = max{t,—r¢,0} and t,+ 5"} = min{t,+ 377, tox},
as well as a sequence {MP*} of Ricci flow spacetimes that satisfy the €can, k-canonical
neighborhood assumption at scales (€can 7%, 1) and maps ¢ , belonging to d,-necks at
time t; and scale /1 — 3ay, 7, but for which the conclusion of the lemma fails. After
passing to a subsequence, we may assume that 7 := limy_,o ¢}, t5 = limy_,o0 7
and ao := limy_,o. a; exist.

Choose af, € [t%,, ax] and a2} € [aoo, %] minimal and maximal, respectively, such

* *%

that for any d > 0 and any compact interval [sq, s3] C (a%,,a%k) the following holds

o0 Yoo
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for large k (possibly depending on d, sy, sp): For all x € 9 4(S? x (—d,d)), t' €
[t + 5172, tg + so72] the point x(t') is defined and we have

(8.34) e < p(x(t')) < 1074

Note that by the remark in the beginning of the proof, this implies that x(t') satisfies
the canonical €.,y g-canonical neighborhood assumption. By (8.33]) and Lemma

we know that a’, < ax if ase > —t5 and al} > a if as < 3.
B}lf the choices of a’_, a%* we can find sequences dy — oo, aj € [—1,a;] and a}* €

lak, ] with limy_,o aj; = a, and limy_,o a;* = a} such that the set

Pk = (77[)17;9(52 X (—dk,dk)))([tk —I—a};r%,tk + CL]:*T%])

is well defined and such that 1—10'rk < p < 10ry on P,. For every k consider the
parabolically rescaled flow (g; ,)se(ar.arv) O S? x (—dg, dy,) with

/ =2
ks = Tr Gtytsrs

where g, ter? denotes the pullback of g, tor? under the composition of 1; ; with the
map

ka(Sz X (—dk,dk)) — Pk
that is given by the time (s — ax)ri-flow of 4.

By (8.34) and the €,y p-canonical neighborhood assumption (see assertion (a) of

Lemma ' , we obtain that the curvature of (g}, ,)se(az ar+), along with its derivatives,

is uniformly bounded. Together with (8.32)), these bounds imply uniform C™-bounds
on the tensor fields (g,’w) themselves. So, by passing to a subsequence, we obtain that
the (g}, ,) converge to a Ricci flow (g, ,)se(az, aze) 00 S* X R, which extends smoothly

ko

to the time-interval [a®_, a].

(o ekihade e}

The €can x-canonical neighborhood assumption implies that all time-slices of this
limit are final time-slices of k-solutions. By 1} we know that g, , = gf:XR.

*

Since S x R has two ends, g/ , splits off an R factor for all s € (aZ,, s},) and must

therefore be homothetic to a round cylinder. It follows that g. ., = g5 R for all

s € |ak,,akl].

As 1 <p<2on (S*xR) x (a%,ak), we obtain that for any d’ > 0 and [sq, s5] €

[cekinade'e]

(a%,az) we have 11, < p < 4ry on (¢14(S? x (—=d',d')))([s1, s2]) for large k. So

o) Yoo
by Lemma and the minimal and maximal choices of a’_, a’}, we have a} = t%
and aX = t%:. Moreover, after adjusting the sequence d; — 0o, we may assume that
a; =ty and af* = t;* for large k.

For large k we now define v, by extending . restricted to S? x (—(57;1,5;)
forward and backward using the flow of 779;. Then we have 7”;:21/157;691@ = () O

(52 x (—5;,(5;)) X [tp, ti7]. So it suffices to show that g; , converges to g R on

(52 x (—(5;, 5;1)) X [tr, t7*] uniformly in the %) sense. To see this, note that gj , is
uniformly bounded on (S? x (—5;, 6,'))x[—1, 1] in every C™-norm and that we have



58 RICHARD H. BAMLER AND BRUCE KLEINER

uniform convergence of gj ; to g%"*® on every subset of the form (52 x (—5;, 57;1)) X

S1, So| for |sq, 89| C (t5 ., ¢ 1n ever -norm.
[51, 82] for [s1,s0] C (t5,,15), i y C™

o0 Yoo

Lemma 8.35 (Propagating Bryant-like geometry). If

5# > 0, T < o, 0 < S((S#,T), €can < Ecan(é#,T), r <
then the following holds.

Assume that M is an (€canT, to)-complete Ricci flow spacetime that satisfies the €can-
canonical neighborhood assumption at scales (€cant, 1). Let t € [0,t9] and consider a
diffeomorphism onto its image

¢1 : MBry((;_l) X {O} — M,

el

with the property that

(8.36) 77245 = gy

Then there is an r*-time equivariant and Oy-preserving diffeomorphism onto its image
Py MBry(5?;1> X [t ] — Mp—rr2 14 1r2)000,10]

where t* < 0 < t** are chosen such that t + t*r? = max{t — Tr? 0} and t + t*r* =
min{t +Tr? to}. The map 1o has the property that 1y = 1 on MBry(é?;l) x {0} and

< 9.

Cl™ N (M (5-1)x{0})

HT_QI/)SQ — YBry ‘0[6;1] < Oy,

where the norm is taken over the domain of 5.

Proof. The proof is similar to the proof of Lemma [8.31}

In the following, we may assume that 7 and €.,, are chosen small enough such that
any point with x € M with %T < p(z) < 10r satisfies the €.ap-canonical neighborhood
assumption.

Assuming B
0<6
we have
r<p on Imuy, 1 < p(Ur(zpry)) < 4r.

Assume now that the statement of the lemma was false for some fixed 4 > 0,
T < oo. So there are a sequences {€cank}, {0k}, {tox}, {r}, {tx}. {t;}, {t5} such
that €canx — 0, & — 0, as well as a sequence {M*} of (€canx7k, tox)-complete Ricci
flow spacetimes that satisfy the e..,-canonical neighborhood assumption at scales
(€cankTk, 1) and a sequence of maps {11} satisfying the hypotheses of the lemma,
but for which the conclusion of the lemma fails for all k. By passing to a subsequence,
we may assume that €% = limy_, t; and ¢3} := limj_, t;* exist.

Choose a’, € [t 0], a¥* € [0,¢5] minimal and maximal, respectively, such that for
any d > 0 and any compact interval [s1, so] C (a*_,a’*) the following holds for large

o0 Yoo

k: For every x € ¢ 1(Mpyy(d)) and t' € [ty + s173, tr + sori] the point z(¢) is well
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defined and we have p(z(t')) > 1575 and p((¢1x(2Bry))(t')) < 10r,. Note that a%, < 0
if t, < 0 and a¥; > 0 if £5% > 0 due to Lemma [8.4]

As in the proof of Lemma|8.31} we can now find sequences d, — oo and a} € [t} 0],
ayt € 0,67 with limg0 af = @, and limy_,o af = @, such that the product
domains

Pk = (’g[)Lk (MBry(dk:)>) ([tk + CL}:’I“]%, tk + a;j’l“i])
are well defined and such that

p> 55 on P,
p((wl,k(:cgry))(t’)) <107, for all t € [ty +ajri, tp +af ry).

So (Y1,6(xpry))(t') satisfies the €cap p-canonical neighborhood assumption for all ¢’ €
[tk + CLZT]%, tk + CLZ*T’,%].

For every k consider the parabolically rescaled flow (gj, ;) se(az azv] 00 Mpyy(dy) with
Ghs = r,;Qﬁtk 12, Where [ 1125 denotes the pullback of g, ;2 under the composition
of Y1 with the map

Mfk D Y1 (MBry(dk) X {0}) — P,

given by the time ris-flow of 9;. By the €can,k-canonical neighborhood assumption at
(Y15 (2Bry))(t') (see assertion (a) of Lemma and a distance distortion estimate on
Py, we obtain that the curvature of this flow, along with its derivatives, is uniformly
bounded by a constant that may only depend on space direction. Together with ,
these bounds imply uniform local C"™-bounds on the tensor fields (g;, ,) themselves.

So, by passing to a subsequence, we obtain that (g,’w) converges to a Ricci flow

(95.s)seaz, azz) on Mpyy, with uniformly bounded curvature, which extends smoothly

*k

to the time-interval [a% ,a%:]. By the €cani-canonical neighborhood assumption at

(1 x(2Bry))(t'), we find that all time-slices of this limit are final time-slices of -
solutions. By ({8.36]), we furthermore know that g_ ; = gBuy.0-

We now claim that g, , = gpry,s for all s € [a,, aX}]. For s > 0, this follows from the

o0 oo

uniqueness of Ricci flows with uniformly bounded curvature. To verify this in the case
s < 0, recall that there is a r-solution (g} )se(-oo,0 00 Mp,y such that gy = gg. . Set

9y = Goo s ifas, < s <0and g =g, .. if s <al. Then (¢;")se(—o0,0) is @ smooth k-

solution (possibly after adjusting ). Since 0, Ryw(2pyy, 0) = 0, it follows from Propo-
sition that (Mpry, (97')se(—o0,00: TBry) 18 isometric to (Mpry, (9Bry,t)te(—o0,0]s TBry)-

* **]

Thus g7, ; = gBuy,s for all s € [aZ,, aZ}

S0 (9h.s)selax, azz] satisfies p > 1 everywhere and p(zp.y, s) = 1 for all s € [a,, aZl].

e 2ie el

Therefore, by the minimal and maximal choices of a*, and ¢ and Lemma we

*k

obtain that a’ =t  and aZ} = t3’. Moreover, after possibly adjusting the sequence

dy, — oo, we may assume that a; = t; and a;* = t;* for large k. The claim now
follows as in the proof of Lemma [8.31] 0J
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8.3. Identifying approximate Bryant structure. In the next result, we exploit
the rigidity theorems of Hamilton and Brendle to show that a large region must be
well approximated by a Bryant soliton if the scale is nearly increasing at a point.

Lemma 8.37. If
5# > 07 ) S 5(5#) s €can S ECan(é#) )
then the following holds.

If M is a Ricci flow spacetime satisfying the €can-canonical neighborhood assumption
at x € M, and O,p*(z) > —0, then (My,z) is d4-close to (Mpyy, gpry, TBry) at any
scale a € ((1 —0)p(x), (14 §)p(x)).

Proof. Suppose the lemma was false for some d4 > 0. Then there a sequence {M*}
of Ricci flow spacetimes satisfying the %—canonical neighborhood assumption at x; €
M,’fk, such that 9;p*(zy) > —%, but (Mfk,xk) is not dx-close to (Mpyy, gBry, TBry) at
some scale a; € (1 — 1)p(zk), (1 + £)p(zk)).

By the definition of the canonical neighborhood assumption, for every k there is a
pointed ry-solution (M, (Gy4)te(—oc,0) Tk) With p(Zy) = 1 and a diffeomorphism onto
its image

¥y, : B(Ty, 0, k) — ME
with ¢y (Ty) = x, such that
[ *¥rgn — ngck(B(ak,k)) <k

Hence 0;p*(Tx) — 0 as k — oo. Therefore (My, (g ;)te(—o0,0) cannot be a shrinking
round spherical space form for large k. So by assertions (a) and (b) of Lemma[C.1] af-
ter passing to a subsequence, (My, (G1.t)te(~o0,0); Tr) converges in the pointed smooth
topology to a r-solution (M, (G s)te(-00,0): Too) With 9yp*(To) = 0. By Proposi-
tion it follows that (Mas, (Goss)te(~s0,0), Too) is isometric to a Bryant soliton. This
is a contradiction. O

By combining Lemma [8.37 with Lemma [8.35| we can deduce closeness to a Bryant
soliton on a parabolic region.

Lemma 8.38 (Nearly increasing scale implies Bryant-like geometry). If
a,d >0, 1<J < o0, B < pB(a,d,J),
€can < €can (v, 0, J), r <T7(«)
then the following holds.

Let 0 < r < 1. Assume that M is an (€canr, to)-complete Ricci flow spacetime that
satisfies the €can-canonical neighborhood assumption at scales (€canr, 1).

Let t € [Jr? ty] and x € M,. Assume that x survives until time t — r* and that
ar < p(z) <a”lr
p(a(t —1%)) < p(x) + pr.
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Let a € [p(x(t — %)), p(z) + Br]. Then (My,z(t')) is d-close to (Mpry, gBrys TBry)
at scale a for all t' € [t — 12 t]. Furthermore, there is an a*-time equivariant and
O-preserving diffeomorphism onto its image

Y Mpyy (071) % [—J - (ar™")7%,0] — M

such that (xpyy,0) = = and
a9 g = gBry|| i1y < 9,
where the norm is taken over the domain of 1.
Proof. Let 2 > L > 1, &' > 0 be constants whose values will be determined in the
course of this proof. By Lemma 8.8 and assuming
€can < €can(a, L), 7 <T(a),

we obtain that for all ' € [t — r?, t] we have

Lar < L7p(z) < p(a(t) < Lp(a(t — %)),

So x(t') satisfies the €.,,-canonical neighborhood assumption for all such ¢'. If more-
over

B < Bla, L),
then
p(a(t —1?)) < p(x) + Br < p(z) + (L — ar < Lp(x).
So L7'p(x) < p(z(t')) < L?p(z) and a € [L~ ' p(z(t)), L*p(z(t"))] for all ¢’ € [t —r?,¢].
By the Intermediate Value Theorem, we can find a ¢’ € [t — r?t] at which

(9tp2(as(t’)) > —QP(Z'(t,)) . (L2 _ L—l)p(x)

= > —2a 3(L* -~ LML
Therefore, if

L <1+ L(J),

then Lemma implies that (My,x) is ¢’-close to (Mpy, gpry, Trry) at scale a.
Assuming

5/ < Sl(& T)a €can < Ecam(éa T), r < T,

the claim now follows from Lemma [8.35 0O

8.4. The geometry of comparison domains. The results in this subsection an-
alyze the structure of comparison domains (and related subsets) of spacetimes that

satisfy completeness and canonical neighborhood conditions, as well as some of the a
priori assumptions [[APA T)H(APA 6)] as introduced in Section [7

The first two results — the Bryant Slice Lemma [8.39 and the Bryant Slab Lemma
8.40[— describe the structure of comparison domains in approximate Bryant regions.
These results are helpful in showing that neck-like boundaries of comparison domains
and cuts are far apart (Lemma [8.44]), and in facilitating the construction of the
comparison domain in Section [11]
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The Bryant Slice Lemma characterizes how a domain X in a time-slice M, that
is bounded by a central 2-sphere of a sufficiently precise neck intersects a domain
W C M, that is geometrically close to a Bryant soliton. The domain X will later
be equal to either backward time-slice Mj_ of a comparison domain or the domain

Q from Section 11l
Lemma 8.39 (Bryant Slice Lemma). If
0<A<l, 50 < O, A> A, § <5\ A),
then the following holds for some Dy = Dy(\) < oc.
Consider a Ricci flow spacetime M and let r > 0 and t > 0. Consider a subset
X C My such that the following holds:

(i) X is a closed subset and is a domain with smooth boundary.

(ii) The boundary components of X are central 2-spheres of o,-necks at scale .
(11i) X contains all Ar-thick points of M,.

(iv) Every component of X contains a Ar-thick point.

Consider the image W of a diffeomorphism

W W* = Mpy(d) — W C M,
such that d > 6~ and
||(1O)\T)’2w*gt — gBry”C[a—l](W*) <.
Then (xpyy) s 11Ar-thin. Moreover, if C := W \ Int X # 0, then
(a) C is a 3-disk.
(b) C is a component of M; \ Int X.

(¢) C is 9\r-thick and 1.1r-thin.
(d) C C (Mpry(Do(N))) C Int W.

Proof. Assuming
5 <3N\ A),
it follows from the definition of W* that OW is Ar-thick, W is 9Ar-thick, and the
image of the tip ¢ (xp,y) is 11Ar-thin. The fact that OW is Ar-thick and assumption
(iii) imply that OW C Int X.
Consider a boundary component ¥ C X with X NW # 0. Let Ug C M, be a
on-neck that has ¥ as a central 2-sphere. If

On < On,
then we have .99r < p < 2.01r on Us. Assuming
A > 10,
we find that, then Uy, N OW = () and hence Uy, C W.

Next, if
§ < o(N),
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then .98(10A\) ™! < p < 1.02(10\) "' on ¢y ~!(Us). Moreover, the 2-sphere 3* := ¢~ 1(%)
is isotopic within the set {.98(10A)™' < p < 1.02(10A)"'} C W* to the 2-sphere
¥* = {p=1.02(10A)"'} in W*.

By Alexander’s theorem, ¥* bounds a 3-disk Vi C W*. By the previous paragraph,
we have V& C V55 := {p < 1.02(10\)"'}. Thus, if

§ <8N,

then Vs := (Vi) C (V) is 1.1r-thin and contains ¢ (zp,y).

Lastly, suppose that >, ¥ are distinct components of 0.X that intersect W. Let

Vs,, Vs, be the corresponding 3-disk components, as defined in the discussion above.
Since ¢ (zpy) € Vi, N Vs, we may assume (after reindexing) that Vs, C Vs,.

If Xy is the component of X containing >, = dVs,, then it must be contained in
Vs, since every arc leaving Vs, must intersect 0X D 0Vy,. Thus Xy is 1.1r-thin,
contradicting assumption (iv) for

A>1.1.

Thus W intersects at most one component of 0.X.

Assertions (a)—(c) now follow immediately. For assertion (d) recall that C C

(V) = v({p < 1.02(10A)~'}), which can easily be converted into the desired
bound. 0

Next we consider a parabolic region W' C My, 4,) inside a time-slab of a Ricci flow
spacetime that is geometrically close to an evolving Bryant soliton. Moreover, we
consider two domains X, X; that are contained in the initial and final time-slices
My, My, of this time-slab and whose boundary components are central 2-spheres
of sufficiently precise necks. The Bryant Slab Lemma describes the complements of
these domains in W and characterizes their relative position.

Lemma 8.40 (Bryant Slab Lemma). If
0<\<1, 8y < O, A> A, § <86\ A),
then the following holds.

Consider a Ricci flow spacetime M and let r > 0 and to > 0. Set t| :==to+1r2. For
1 =0,1let X; C My, be a closed subset that is a domain with boundary, satisfying
conditions (i)-(iv) from Lemma[8.39, and in addition:

(v) X1(t) is defined fort € [to,t1], and 0X1(to) C Int Xo.
Consider a “6-good Bryant slab” in My, 4,1, i.e. the image W of a map
Y WH = MBry(d) X [_(1())‘)_270] — M[to,tl]

where d > 61 and 1 is a (10A\r)*-time equivariant and Oy-preserving diffeomorphism
onto its image such that Y(xp,y,0) € My, and

(8.41) | (10AF)"*Y*g — gpuy <.

clu (W)
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Set C; .= Wy, \ Int X; C My, fori=0,1. Then

(a) Ci(t) is well-defined and 9A\r-thick.
(b) [fC1 75 @, then Cy C Cl(to) and Cy = Cl(to) \ Int X,.

Proof. Assuming
0<A<1, A > A, 5 < O, § <6(\A),

Lemma [8.39| may be applied in the ¢;-time-slice for ¢ = 0,1 and W is 9Ar-thick. Since
by definition C; C W;,, assertion (a) now follows from the fact that W is a product
domain.

We now verify assertion (b). If C; # 0, then ¢(xpy,0) € Cy, by Lemma [8.39 So
since W is a product domain, we get that ¢(zp,y,, —(10A)~2) € C1(to). If Cy # 0, then
both Cy(tp) and Cy are 3-disks in W, containing ¢ (zp,y, —(10A)~2). By assumption
(v) we have 0Cy(ty) C 0X1(tp) C Int Xy and hence 9C(to) is disjoint from Cy C
Mto \ Int Xo. Therefore Co C Cl<t0) This gives Co = (Wto \ Int X(]) N Cl(to) =
Cl(to) \ Int Xo. O

We now show that a parabolic region P(x,a, —b) lies in a comparison domain (N,
{NY }] 124t }/—0), provided the ball B(x,a,b) lies in N and P(x,a, —b) “avoids the

cuts”.

Lemma 8.42 (Parabolic neighborhoods inside the comparison domain). Consider
a Ricci flow spacetime M, a comparison domain (N, {N7}/_, {t;}/_g) in M and a
set Cut = Cut' U... U Cut’/™!, where Cut? is a collection of pairwise disjoint 3-disks
inside Mj+ in such a way that each extension cap of N is contained in some D € Cut.

Let x € M, a,b > 0 and assume that B(z,a) C N and that P(z,a,—b) ND =)
for all D € Cut. Then

(8.43) P(z,a,—b) C N \ UpecuD.

As the notation suggests, the set Cut will later denote the set of cuts of a compar-
ison, according to Definition However, we will use Lemma at a stage of the
proof when this comparison will not have been fully constructed. More specifically,
we will later consider a comparison domain defined over the time-interval [0,%;4]
and have to take Cut to be the union CutUCut’. Here Cut is the set of cuts of a
comparison that is only defined on the time-interval [0,¢;] and Cut” is a set of freshly
constructed cuts at time t;, which will not be part of a comparison yet. For this
reason we have phrased Lemma without using the terminology of a comparison
and have instead only listed the essential properties of Cut.

Proof. Set t := t(x). Consider a point y € B(x,a) and choose j minimal with the
property that y(t) is defined and y(t) € N for all ¢ € [t;,t]. Assume that ¢; > 0 and
t; >t—b. Theny € /\/}J.Jr \Mj_. So y is contained in an extension cap and therefore
y € D for some D € Cut in contradiction to our assumption. So t; =0 or t; <t —b.
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It follows that P(x,a,—b) C N. Combining this with the assumption of the lemma

yields (8.43)). O

The following result shows that any point near the neck-like boundary of a com-
parison domain is far from cuts, in the sense that there is a large backward parabolic
region that is disjoint from the cuts. This result plays an important role in Section [12),
where it allows us to isolate behavior occurring at the cuts from behavior that occurs
near the neck-like boundary.

Lemma 8.44 (Boundaries and cuts are far apart). If
Min >0,  0n<dn,  ASA D >0, A=A,
Ao > 0, 8 < Ob(A, Deut, Ao, A), €can < €can(A, Deut, Ao, A),
Teomp < Tcomps
then the following holds.

Consider Ricci flow spacetimes M, M’ that are (€canTcomp, I')-complete and that
satisfy the €can-canonical neighborhood assumption at scales (€canTcomp, 1). Let (N,
{NIYH {t;3720) be a comparison domain on the time interval [0,t41], and (Cut,
0, {gbj}‘j]:l) be a comparison from M to M’ defined on this comparison domain over
the interval [0,t;]. Assume that t;.1 < T and that this comparison domain and
comparison satisfy a priori assumptions (APA 1)—(APA 6) for the tuple of parameters
(Thina 5117 )\7 Dcapy A» 6b7 €can) rcomp)-

Let Cut” be a set of pairwise disjoint 3-disks in Int N, + such that each D € Cut’
contains an extension cap of the comparison domain. Assume that the diameter of
each D € CutU Cut’ is less than Dyt Tcomp-

Suppose x € N; and P(x, Agp1(z)) N D # O for some D € CutUCut’, where
D CM,,.

Then B(z, Aop1(z)) C Niw NN if t > ty,, and B(x, Aop1(z)) C Ny if t = ty.

As in Lemma we have introduced a set Cut’ of “synthetic” cuts at time t; in
order to avoid complications due to the possible lack of a map ¢”*! that extends the
comparison (Cut, ¢, {¢’}7_,) past time .

The sketch of the proof is as follows. The cut D contains an extension cap, which

by a priori assumption [(APA 5){and Lemma implies that a large future parabolic
region is Bryant-like. Then the Bryant Slice and Slab Lemmas, applied inductively

on time steps, imply that the comparison domain contains this Bryant-like region for
many time steps, which excludes neck-like boundary in the vicinity.

Proof. Pick y € P(x, Appi(z)) N D. By Lemma |8.10}, if
€can < Ecan(N; Ao)

then

(8.45) Cyipi(@) < puly) < Cipa(a)
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for some Cy = C1(Ap) < 0.

By Definition (3) of our assumptions regarding Cut”’, we know that D contains

an extension cap C. A priori assumption [(APA 5)[implies that there is a point z € C
such that (M, 2) is dp-close to a Bryant soliton at scale 10A7comp.

Let 04 > 0 be a constant that will be chosen at the end of the proof.
Choose [ € {2,...,J + 1} such that t € [t;_1,t;) or [t;—1,t] if | = J + 1. Since
D C M,,, we have k <[ — 1. By a priori assumption |(APA 3)(e) and (8.45) we have

(846) tl — tk S (Aopl(x))2 -+ Tgomp S ((AQC]_A)2 + 1)7"2

comp *

Assuming
5b S gb()\a AOa Av 5#)7 €can S Ecan<)\; A07 Aa 5#)7 Tcomp S ?compa

we can use (8.46)), a priori assumption (APA 2) and Lemma to find a (107 comp)*
time equivariant and O-preserving diffeomorphism

b W* = Mpyy (05,1) % [0, (t — ti) - (10A)7?] — M
onto its image, such that ¢(zp,y,0) = 2z and

—2 /%
(8.47) | (LOATcomp) 20 g — gBryHC[é;](W*) < Oy
Let W :=y(W*).

In the following we will apply the Bryant Slice Lemma at time ¢; for X = Mj_,
using the time-slice Wy, where k¥ < j < [. We will also apply the Bryant Slab
Lemma for Xo = N;,_,— and X; = N;,_, using the time slab Wy, _ ,, where
k+1 < j <. Note that assumptions (i)—(iv) of the Bryant Slice Lemma hold due to
a priori assumptions |[(APA 3){a)—(c) and assumption (v) of the Bryant Slab Lemma
holds due to Definition [7.1{(3). If

8 < O, 0<A<1, A>A, 64 < 04(A, Ag, A),

then the remaining assumptions of both the Bryant Slice and the Bryant Slab Lemma
are satisfied. This means, in particular, that the time-slice W;, and the slab W, ;;
satisfy the assumptions of the Bryant Slice/Slab Lemma for all k£ < j < [ and all
k+1<j <, respectively.

Claim.

(a) Wy, C Ny~ forallk+1<j<I.
(b) Wt C./\/;pr ﬂ./\ft, th >tk, and Wt C./\/;ur th:tk

Proof. Let C; := W, \ Int Ny, for k < j < 1. By assertion (a) of the Bryant Slice
Lemma we know that C; is either empty or is a 3-disk in Int 1, for all &k < j < [.
Furthermore, assertion (b) of the Bryant Slice Lemma implies that C, = C.

We will now show by induction that C; = ) for all £k + 1 < j <. This will imply
assertion (a)
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To see this, observe first that if Cx; # (), then by the Bryant Slab Lemma we
have C = C, C Cy1(tr). However, since C is an extension cap, we have C C N, 4, in
contradiction to the fact that Int Cyy1(tx) C My, \ Ni, -

Next, assume that k+2 < j <[ and that C;_; = (), but C; # (). Then by the Bryant
Slab Lemma, C;(t) is defined and 9Areomp-thick for all ¢ € [t;_1,¢;]. Since C;—; = 0,
W is a product domain and C; C Int W, , we have C;(t;_1) C Int W,,_, C NV;,_,_. So
C;(tj—1) is a component of Ny, _,_ \Int N;,_ . and 9C;(t;_1) C N;,_ 4. This, however,
contradicts a priori assumption (APA 4), finishing the induction.

To see assertion (b), observe that W, = W, (t) C N, () since I > k + 1. Ast <
ifl # J+1and Ny = N,_ if | = J+1, this implies that W; C N;;. Assume now that
t > t;. If t > t;_1, then we trivially have W, C Ny = N,_. Lastly, if t = t;_; > 1y,
then I — 1 > k + 1 and therefore assertion (a) yields that W;, |, C N;,_,_. O

We will now show that B(x, Agpi(x)) C W;. In combination with assertion (b) of
the claim, this completes the proof of the lemma.

By the assumption of the lemma we have d;, (v, 2) < DeytTcomp- S0 if
5# S g#()‘a Dcut)7
then y € D C W,,. Recall that Ric > 0 on (Mgyy, gBry)- SO gy is decreasing in time.

Therefore, if
5# < g#()V Dcut)a

then di(y(t), 2(t)) < 2dy, (v, 2) < 2DcutTcomp- Now by [(APA 3)|(e)
di(w, 2(t)) < de(, y(t)) + de(y(t), 2(1))
S AOpl (ill') + 2l)cutrcomp
S A001,01 (y) + 2Dcutrcomp
< (AoclA + 2Dcut>rcomp .

Therefore, assuming
4 < 04 (X, Deut, Ao, M),
we have B(x, Agpi(x)) C Wy, as desired. O

The next lemma characterizes parabolic neighborhoods whose initial time-slices
intersect a cut of a comparison. It states that points that belong to such an initial
time-slice, but not to the corresponding cut, must have large scale if certain parame-
ters are chosen appropriately. We also obtain that such an initial time-slice must be
far from cuts that occur at earlier times. The first assertion will follow from the fact
that the geometry on and near a cut is geometrically sufficiently close to a Bryant
soliton and the second assertion will be a consequence of Lemma [8.44]

The results of the following lemma are specific for the proof in Subsection [12.4] As
in the previous lemmas, we will not use the explicit notion of a comparison. Instead,
we have listed the relevant properties of the cuts as assumptions of the lemma.
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Lemma 8.48. If

8y < O, A<, Dewt > Do\, Cy), A > A,

5b S Sb(AaDcumAOaA)? €can > E ()\ Dcut>A0>A)7
rcomp = Tcomp( )
then the following holds.

Consider Ricci flow spacetimes M, M’ that are (€canTcomp, 1')-complete and that
satisfy the €can-canonical neighborhood assumption at scales (€canTcomp, 1). Let (N,

{NIYH {t;3720) be a comparison domain on the time interval [0,t;41], and (Cut,

0, {¢j}j: ) be a comparison from M to M’ defined on this comparison domain over
the interval [0,t;]. Assume that t;11 < T and that this comparison domain and
comparison satisfy a priori assumptions (APA 1)—-(APA 6) for the tuple of parameters
(Thin, Ons Ay Deaps A, Ob, €can, Teomp) - Let Cut’ be a set of pairwise disjoint 3-disks in
N, 4+ such that each D € Cut’ contains an extension cap of the comparison domain.

Assume that the diameter of every D € CutUCut’ is less than Dewi7eomp and
that the %Dcutrcomp—neighborhood of every extension cap is contained in some D €
Cut U Cut”.

Let v € N and t :== t(z). Let By 1, := (B(x, Aop1(2)))(t — To) be the initial time-
slice of the parabolic neighborhood P(x, Agp1(z), —Tp) for some 0 < Ty < (Agpy(x))?
and assume that By_1, N Dy # O for some Dy € Cut U Cut”.

Then

p1 > CyTeomp  on Bin \ Do.
Moreover, for all y € By_r1, we have

P(y, Aopr(y)) ND =1
for all D € Cut with D C Mg )
Proof. Let t := t(x) and choose j € {1,...,J} such that t; =t — Tp, so By_g, UDy C
M;;. Let Cy be the extension cap that is contained in Dy.
By Lemma and a priori assumption (APA 2), and assuming
€can < Ecan (A, Ap),
we find that the parabolic neighborhood P(z, Agp;(z)) is unscathed and that
(8.49) Cripi(x) < p1 < Cipa ()

on P(z, App1(z)), where C; = C1(Ap) < oco. By a distance distortion estimate this
implies that B;_g, C B(z(t;), Aip1(x)) for some A; = A;(Ag) < 0.

Choose a point z € 0Cy C N;,— N'Dy. By a priori assumption (APA 3)(a) and
assuming

On < O,
we have %Tcomp < p1(2) < 2reomp. S0, again by Lemma , and assuming

€can S Ecan (Dcut) 9
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we obtain that
C'2717,c0mp S P1 S CZTCOIHI) on DO

for some Cy = C(Deyy) < 0o. Combining this bound with (8.49) and the fact that
Bi_1, N Dy # (), we obtain that

(8.50) C’l_2C’2_1rcomp <p < C’%C’grcomp on B 1.
Therefore for all y € B;_r,
(851) dtj (y7 Z) S (201202/41 + Dcut)rcomp S C’?>7,tzorrlp7

for some C3 = C3(Deyy, Ag) < 0.
By a priori assumption (APA 5)(c) there is a diffeomorphism

¥ Mpy(6,') — W C M,
such that ¢ (zp,,) C Cy and
1(10ATcomp) " g1, — gBay

So by (8.51), and the fact that z € dCy and that the diameter of Cy C Dy is bounded
by DeutTcomp We have

(852) Btho C VV,

—1 < 6b-
P N (M (651)

assuming that
5b S 5b()\y Dcuta AO)

Choose Dy = D4 (A, Cy) < oo such that p > 20A\C'y on Mg,y \ Mp,y(Dy). So if

5b S (_Sba Tcomp S Fcomp(cv#%
then
(853) P1 2 C’#Tcomp on W \ MBTY(D#)'
If

Dcut > D <)‘7 D#()‘7C#))7 5b < gbv

=cut

then Mp,y(D4) C Dy. Together with (8.52) and (8.53)) this implies the first assertion
of this lemma.

For the second assertion note that by (8.50) and (8.51)) we have

B(y, CYCaCspi(y)) & N,

forally € By_g, C B(x(t;), Ai1p1(z)). So the second assertion follows from Lemma|8.44]
assuming

5n ng A Sxa A ZA; 5b §3b<>\; Dcut7A07A)>
€can S ECam()\? Dcut7 AO: A)7 Tcomp S Fcomp‘
This finishes the proof. U
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9. SEMILOCAL MAXIMUM PRINCIPLE

In this section we will show that small Ricci-DeTurck perturbations satisfy a uni-
form decay estimate when weighted by a suitable function of time and scale. More
precisely, we show that quantities of the form

Q = T | p|

satisfy a semi-local maximum principle as long as the Ricci-DeTurck perturbation
h is small enough, and the Ricci flow background satisfies appropriate geometric
assumptions. The estimates of this section are based on a vanishing theorem for
solutions h of the linearized Ricci-DeTurck equation on a k-solution background,
for which |h|R717X is uniformly bounded (see Theorem [9.8). The most important
ingredient for the proof of this vanishing theorem is a maximum principle due to
Chow and Anderson (see [AC05]).

We first present the two main results of this section, Proposition [9.1 and Proposi-
tion [9.3] The first result states that a Ricci-DeTurck perturbation decays by a factor
of at least 10 in the interior of a large enough neighborhood, in a weighted sense, as
long as the solution is small enough. The factor 10 is chosen arbitrarily here and can
be replaced by any number > 1.

Proposition 9.1 (Semi-local maximum principle). If
E>2, H > H(E), Min < Min(E), €can < Ecan(E),

then there are constants L = L(E),C = C(E) < oo such that the following holds.

Let M be a Ricci flow spacetime and pick x € M;. Assume that M is (€canp1(T),t)-
complete and satisfies the €can-canonical neighborhood assumption at scales (€canpr(T),
1).

Then the parabolic neighborhood P := P(x, Lpi(x)) is unscathed and the following is
true. Let h be a Ricci-DeTurck perturbation on P. Assume that |h| < my, everywhere
on P and define the scalar function

(9.2) Q =T 9| 1|
on P, where T' >t is some arbitrary number.

Then in the case t > (Lpi(z))? (i.e. if P does not intersect the time-0 slice) we
have

Qo) < 5w Q.

In the case t < (Lpy(x))?* (i.e. if P intersects the time-0 slice) we have

1
Qz) < —sup@ + C sup Q.
10 p PAMo

Note that the parabolic neighborhood P may be defined on a time-interval of size
less than (Lp;(x))? if P intersects the initial time-slice My. By performing a time
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shift, Proposition [9.1] can be generalized to the case in which P is defined on a time-
interval of size less than (Lp;(x))? that does not necessarily intersect M. This fact
will be used in Section 12| when P intersects a cut, i.e. a discontinuity locus of h, at
some positive time.

We also remark that the constant 7" in Proposition does not have any math-
ematical significance and could be eliminated from the statement. It is present in
Proposition [9.1| only to conform with the notation later in the paper where it is used.

In the next result, we improve the interior estimate and replace the factor 10 by
an arbitrary factor. As a trade-off, we need to choose the parabolic neighborhood on
which h and ) are defined large enough; note however that we don’t need to change
the bound on |h| appearing in the assumptions.

Proposition 9.3 (Interior decay). If

E > 27 H Z E(E)7 Thin S ﬁlin(E)a a > Oa
A > A(E, Oé), €can < Ecan(Eva Oé),

then there is a constant C = C(FE) < oo such that the following holds.

Let M be a Ricci flow spacetime and x € M. Assume that M is (€canpr(T),t)-
complete and satisfies the €can-canonical neighborhood assumption at scales (€canpr (),
1).

Consider the parabolic neighborhood P := P(x,Api(x)) and let h be a Ricci-
DeTurck perturbation on P such that |h| < m, everywhere. Define Q as in .

Then in the case t > (Ar)? (i.e. if P does not intersect the time-0 slice) we have

Q(x) < asup Q.
P

In the case t < (Ar)? (i.e. if P intersects the time-0 slice) we have

Q(z) <asupQ+C sup Q.
P PNMy

We remark that it follows from the proof that the parabolic neighborhood P(z,
Api(x)) is unscathed, although we cannot guarantee this for P(x, Ap;(x)). Due to
the way the proposition will be applied later, it is more convenient to state the
conditions using the possibly larger scale A.

The proofs of Propositions [0.1] and [9.3] are based on the following strong maximum
principle for solutions of the linearized Ricci-DeTurck flow. This maximum principle is
a special case of a result of Anderson and Chow (cf [AC05]). The proof of Anderson
and Chow’s result simplifies in this special case, which is why we have decided to
include it in this paper.

Lemma 9.4 (Strong maximum principle of Anderson-Chow). Let (M, (g¢)ic(-1,0]),
T > 0, be a Ricci flow on a connected 3-manifold M such that (M, g;) has non-
negative sectional curvature for allt € (=T,0].
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Consider a solution (hy)icj—1,0) of the linearized Ricci-DeTurck equation on M, i.e.
Othy = Ap g hy = Vo.hi = Dghy + 2 Rmy, (hy).
Assume that
|h| < CR on M x (=T,0]
for some C > 0 and that |h|(xo,0) = CR(z0,0) for some xy € M. Then

|h| = CR on M x (=T,0].

Proof. Using Kato’s inequality it is not hard to see that wherever |h| # 0 we have

Rm(h, h
iR < Ay || + 2% .
On the other hand, whenever R > 0 we have
Ric|?
AWCR) = A, (CR) + 2L g

So the claim follows by the strong maximum principle applied to |h| — C'R if we can
show that for any symmetric 2-tensor h

Rm(h, h) < |Ric|?

(9.5 SR

To see (9.5) let h;; # 0 be a 3-dimensional symmetric 2-tensor and Rmy;;; a 3-
dimensional algebraic curvature tensor with non-negative sectional curvature. We
denote by Ric;; and R its Ricci and scalar curvatures. Without loss of generality, we

may assume that |h| = 1 and that Ric;; is diagonal. Then Rm;j;y; is only non-zero
if {i,7,k,l} has cardinality 2. Set a; := Rmasss,as := Rmigsi, a3 := Rmjge; and
Tr; = hu Then

Rm(h, h) = Rmyjx hihjy,

= —2a1h3; — 2ashis — 2a3hiy + 2a1hoshss + 2a0h1has + 2ashiiho

< 2(ayw9x3 + asx1x3 + a3T173)
On the other hand

[Ric|® = (az + a3)® + (a1 + a3)® + (a1 + as)?
and
R =2(ay + as + a3).

Since 23 + 23 + 22 < |h|> = 1 the next lemma implies (9.5)). O
Lemma 9.6. If 22 + 23 + 22 < 1 and ay,a2,a3 > 0 and a; + ay + az > 0, then

(CZQ + &3)2 + (a1 + (13)2 + ((11 + CLQ)Q
4(ay + as + as)

(9.7) 1T2x3 + aaT1x3 + a3T1T2 <

Y
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Proof. Let \; < Ay < A3 be the eigenvalues of the matrix

0 az as

A== as 0 aq
2

Ao aq 0

and denote by vy, v9,v3 € R? the corresponding orthonormal basis of eigenvectors.
The left-hand side of (9.7) is bounded from above by As.

Since the trace of A vanishes and its determinant equals %a1a2a3 > 0, we must
have A\, Ay < 0 and A3 > 0. In the case \3 = 0 we are done. So assume from now on
that A3 > 0. Consider the vector

1
u:=11] = cv + covy + c3vs.
1
Since
a9 + as
Au= = | a; + a3 and ul Au = ay + as + as,
ai + as
we obtain

AN+ BN+ 3N, (a2 +ag) 4 (ay + ag)® + (a1 + az)?

M+ Bl + B3 4(ay + as + az) ‘
Since A1, Ay < 0 and numerator and denominator of the first fraction are both positive,
we obtain

A — Cg)\g < (CLQ -+ CL3>2 -+ (CLl + CL3)2 + (a1 + (Zg)z

3 s~ 4(ay + az + as) .
This is what we wanted to show. U
Theorem 9.8 (Vanishing Theorem). Consider a 3-dimensional k-solution (M, (g¢)ie(-o0,0])

and a smooth, time-dependent tensor field (hi)ic(—co0) 0n M that satisfies the lin-
earized Ricci-DeTurck equation

Othy = A g,y
Assume that there are numbers x > 0 and C' < oo such that
(9.9) || < CR'fX on M x (—o0,0].
Then h = 0 everywhere.

Proof. Assume that ho # 0. Since (M, (g¢)te(—o0,0) has uniformly bounded curvature,
we have
|h| < C'R
for some C” < oco. Choose a sequence (z,t;) € (—oo, 0] x M such that
h t h
D] (s tr) M

lim —— 2% — .
koo R(Tp,tr)  mx(—oo0] B
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It follows from that
|h|(zy, tr)
R(l’k,tk) '

So there is a ¢ > 0 such that R(xg,t;) > ¢ for all k. Consider the sequence of pointed
flows (M, (g1, )te(—o0,0], T)- After passing to a subsequence, this sequence converges
to a pointed r-solution (Mu, (goo,t)te(—o0,0)s Too). Similarly, consider the sequence of
time-dependent tensor fields hy(-, ¢+ ). After passing to another subsequence, these
tensor fields converge to a solution of the linearized Ricci-DeTurck ow (Ao t)te(—oo,0]
on My, x (—o00,0]. The bound carries over in the limit to

CRX(l’k, tk) 2

(9.10) ho] < CRI
and by the choice of the points (xy, tx) we obtain the extra property that
|hoo (%o, 0) 7o A :
— Sup e Sup _— = C > O
R(r,0) Moox(=00,0] B Mx(=o0,0]

We can now apply the strong maximum principle, Lemma |9.4] and obtain that
lheol =C'R on My x (—00,0].
Combining this with yields that on M., X (—o0, 0]
C'R < CR'™X,

So R is uniformly bounded from below on M, x (—o0,0]. It follows that (M,
(goo,t)te(—00,0)) cannot be the round shrinking cylinder or a quotient thereof. If M,
was non-compact, then we can obtain the round shrinking cylinder as a pointed limit
of (M, (goo,t)te(—o00,0)), Which contradicts the positive lower bound on R. If, on the
other hand, M., was compact, then the maximum principle applied to the evolution
equation of R would imply that min,,_ R(-,t) — 0 as t — —o0, again contradicting
the positive lower bound on R. O

Proof of Proposition (9.1 Fix some E > 2 for the remainder of the proof. By linearity
of the desired bounds, we may assume for simplicity that 7" = t(x).

Next, observe that, by bounded curvature at bounded distance, Lemma for
any choice of L < oo we may choose €cn < €an(L) small enough such the para-
bolic neighborhood P(x, Lp;(z)) is unscathed and such that p; > ¢o(L)p1(x) on this
parabolic neighborhood for some ¢y = ¢o(L) > 0.

Assume now that the statement was false (for fixed £ > 2). Choose sequences
Mink» €cane — 0 and Hy, Ly, Cy, — oo such that € is small enough depending
on Ly, as discussed in the preceding paragraph. For each k£ we can choose a Ricci
flow spacetime My, points x € My, an (unscathed) parabolic neighborhood Py :=
P(zg, Lipi(zy)) and a Ricci-DeTurck perturbation hy on Py such that |hy| < mnx on
Py, which violate the conclusion of the proposition. Thus, setting

Quy) = W pE ()| (y)  for y € Py,
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either t; := t(zy) > (Lyp1(zx))? and

1
(9.11) Qr() > — sup Qi
10 p,
or ty = t(zy) < (Lip1(zx))? and
1
(9.12) Qr(wy) > —supQp + Cp _sup Q.
10 Py PN Mg.o

Let us rephrase the bounds (9.11)) and (9.12)) in a more convenient form. To do
this, let ag := |hg(xr)|] < Mming — 0 and consider the tensor field hj := a,;lhk. Then
h}. is a solution to the rescaled Ricci-DeTurck equation (A.12) for a = ay,

(9.13) |h|(x) =1
and on P,
-E
‘h/ ’ — |hk| — e*Hk(tkft) pl i Qk )
S VATEN) p1(zr) Qr(zr)
So by (9.11)) and (9.12)) we have
-E
9.14 BL| < 106 Hrte0 [ PL j2
( ) |hi,| < 10e 1 (z2) on k
and if P, N My # 0, then
-EB
(9.15) by < Cte ity (ﬁ) on PN My

We now distinguish two cases.
Case 1:  t, > cpi(zy) for all k and some ¢ > 0.

The metric g, restricted to P, can be expressed in terms of a classical Ricci flow
(Gk,t)tcltn—Aty ] OO By := B(xy, Lipi(xx)), where

Aty, := min{ty, (Lypi (1))} -
Let 4, := py(x;) and Ty := limsup, .. rk’zAtk > ¢ > 0. Consider the parabolically
rescaled flows
(gfg,t = T]g_zgk,rzt—&-tk)te[—r,?QAtk,O] :

By bounded curvature at bounded distance, Lemma [8.10] and since €can i — 0, for
any s < 0o, T" < Ty, for sufficiently large k we find uniform bounds on the curvature
on the curvature of g; , on the g; ,-ball B(xy,0,s) over the time interval [-T7",0].

Case la: We have liminfy_,o, p1(xx) > 0, and the injectivity radius satisfies
lim infj,_ o Ianad(g;%O, xy) > 0.

After passing to a subsequence, we may extract a smooth limiting pointed flow
(Moo, (goo,t )te(—Tm 0], Toc)- Due to (9.14) and the local gradient estimates from Lemma
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/
kr2t+ty,

ing to another subsequence, to a smooth solution (h, ;)ic(-7..,0 on My of the lin-
earized Ricci-DeTurck equation with background metric (goot)te(—1.0,0 (see (A.10))),
such that

(9.16) 7| (00, 0) = 1.

A.13| the reparameterized tensor fields (1} *h

)te[fr,ZQ Aty0] converge, after pass-

Since limy, o Hyp?(71) = 00, we can use the exponential factor in (9.14) to show
that A, = 0 on My X (=T, 0), which implies h/_(z~,0) = 0. This contradicts
[©.10).

Case 1a': We have liminfy_ . p1(zx) > 0, and the injectivity radius satisfies
liminfy_, . InjRad(g;,, %) = 0.

For some 7 > 0 we may pull back g to the 7-ball in the tangent space at zj, via
the exponential map to reduce to Case 1la. Note that in Case 1a it was not important
that the time-slices of the limiting flow (M, (goo,t)te(—7,0]» Too) Were complete.

Case 1b:  liminfy o p1(zx) = 0, and the injectivity radius satisfies liminfy_,
InjRad(g;.(0), zx) > 0.
As explained in the beginning of Case 1a, by passing to a subsequence, we may as-

sume that the pointed flows (B, (g}, )k, T1) converge to a smooth pointed flow (M,

/
k,r§t+tk)te[—rlj

to a smooth solution (hl ;)iec(-7..,0 0N My of the linearized Ricci-DeTurck equation

with background metric (goot)te(—1.,0) (see (A.10)), such that (9.16) holds.

Using Lemma [8.10 it follows that R > 0 everywhere on My X (—7T,0]. By
assertion (a) of Lemma there is a Ky > 0 such that every s-solution is either a
shrinking round spherical space form or is a kg-solution. Therefore, in view of the
injectivity radius bound, there is a k; > 0 such that by the canonical neighborhood
assumption every time-slice (M, goot), t € (=T, 0] is isometric to the final time-
slice of a ki-solution. Since by assertion (e) of Lemma we have O,R > 0 on
r-solutions, we get that (Mu, (goot)te(~7m,0]» Too) has bounded curvature, so it is a
k-solution if T, = oo.

Passing (9.14)) to the limit yields
W | < 10p7F < (C")E/2RE/? on My x (—Ts,0],

(oo t)te(~Tu 0> Too) and, moreover, the tensor fields (rj*h 2 A4,,0] COLIVEIge

for some universal constant " < oo.

If T, = oo, then the Vanishing Theorem yields that A = 0, in contradiction
to (9.16)).

Now suppose that T, < co. We will show that for some constant C” < oo we have
(9.17) |l (z, )| < C"(t + Tw) -
for all z € M, t € (=T, 0].

As (Mwo, goo) is isometric to the final time-slice of a x-solution, and therefore has
uniformly bounded curvature, we can find a constant a; > 0 such that for any L’ we
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have

p > api(zk) on  B(xg, L'pi(z1)),
as long as k is chosen large enough. So, by bounded curvature at bounded distance,
Lemma [8.10] there is a constant a; > 0 such that for any L' < co we have

p > a2p1(xk) on P(‘Tk? L/pl(xk’)v _tk)
for large k. By (9.14]), (9.15) and Proposition we find a sequence ¢, — 0 and a

constant C” < oo such that for any L' < oo we have
(9.18) \h| < C"p%(xg) - t+c  on Py, L'pi(xr), —tr)
for large k. Passing this bound to the limit implies (9.17]).

Since sup |hl_| < oo this forces h._ = 0, again contradicting (9.16]).

Case 1b':  liminfy .o p1(zx) = 0, and the injectivity radius satisfies liminfy_,
InjRad(g;.(0), zx) = 0.

After passing to a subsequence, we may assume that InjRad(g,(0),zx) — 0 as
k — oo. By Lemma the universal covers of the flows (M, g, ,) converge to
shrinking round spheres on the time interval (—oo,0]. We may now pull back the
tensor fields h; to the universal covers and reduce to Case 1b.

Case 2:  liminfy_.o py 2(z1)t, = 0.

In this case, by combining the curvature bounds from Lemma with
and , we can apply Proposition to show that there is a sequence ¢ —
0 and constants C”, L' < oo such that (9.18) holds for large k. It follows that
limy 00 |R5|(zx) = 0, in contradiction to O

Proof of Proposition[9.5 The bound follows by iterating the bound from Proposi-
tion Q.11

Assume that
E > 27 H Z E(E), 771111 S ﬁ]in(E)7 Ecan S gcan(E')a

and set C' = 2C(E) and L = L(E) according to Proposition 0.1} So Proposition
holds if v > %. Assume now by induction that oy < % and that Proposition
holds for v = 10y under an assumption of the form

A> A = A(E,10ayp), €can < €can(F, 10arp).
Consider the point x € M. By Lemma we can find a constant A” =
A"(L(E), A (E,1009)) < oo such that if
€ean < Eean(L(E), A'(E, 10ay)),
then the parabolic neighborhood P(z, A’pi(x)) is unscathed and we have
Py, A'pi(y)) C Pz, A"pr(z))  forall  y€ Pz, Lpi(z)).

Also, by bounded curvature at bounded distance, Lemma [8.10 assuming €c., <
€can(L(E)), we know that p; > cpi(x) on P(z, Lp;(z)) for some ¢ = ¢(L(FE)) > 0.
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Assume now that A > A” and apply Proposition 9.3 at each y € P(z, Lp;(x)) for
a = 10cy. Note that in order to do this, we need to ensure that M is (€canp1(v), t(y))-
complete and satisfies the canonical neighborhood assumption at scales (€canp1(y), 1).
This can always be guaranteed if we assume that €.y < ¢(L(E))écan(E, 10ap). Propo-
sition for a = 100y gives us

sup Q@ <10ap sup Q+C sup Q.
P(z,Lp1(z)) P(z,A" p1(x)) P(z,A" p1(z))NMo

Applying Proposition then implies (recall that we have replaced C by 2C)

C 1
Q(x) < sup Q-+ (— + —C’) sup Q
10 pa,Lpi(2)) 10 2 ) pa,ampy ()Mo

<ap sup Q+C sup Q.
P(z,A” p1(z)) P(z,A” p1(z))NMo

This finishes the induction. O

10. EXTENDING MAPS BETWEEN BRYANT SOLITONS

In this section we consider two regions that are close to Bryant solitons, at possibly
different scales, and an almost isometry between annular subdomains inside these
regions. We will then prove that the scales of both Bryant soliton regions are almost
equal and that the given almost isometry can be extended to an almost isometry, of
possibly worse accuracy, over the entire Bryant soliton regions. An important aspect
of the main result of this section is that the accuracy that is required from the given
almost isometry depends only polynomially on the local scale — or on the distance
from the tip.

Our main result, the Bryant Extension Proposition (Proposition , will be
needed in the proof of Proposition in Section[I2 In this proposition, we extend an
almost isometry between two Ricci flow spacetime time-slices over an extension cap.
By assumption, the accuracy of this almost isometry improves at a large polynomial
rate as we move away from the extension cap. As long as this polynomial rate is
sufficiently large, we can use Proposition to construct an extension of the almost
isometry over the extension cap whose accuracy still improves at a large polynomial
rate. This enables us to retain the fine geometric bounds needed to prolong our
comparison.

In this section we will use the notation (Mp,y, gpry, TBry) for the pointed Bryant soli-
ton with p(xp,y) = 1; for this and other notation related to the geometry of the Bryant
soliton, we refer to Subsection [6.2] We will also frequently use the curvature scale
function p : Mg,y — (0,00) as introduced in Definition . Recall that (Mg,y, gBry)
is an O(3)-invariant gradient steady soliton diffeomorphic to R? and p(z) — oo as
T — 0.

We first present a version of the Bryant comparison result in a form that is most
useful for its application in the proof of Proposition [12.3]
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Proposition 10.1 (Bryant Extension). If
E>E, C>0, (>0, D>D(EC,DPp),
0<b<C, 0<d<d(E,C,b,p),
then the following holds for any D' > 0.

Let g and ¢' be Riemannian metrics on Mg,y (D) and Mg,y (D"), respectively, such
that for some A € [C~1, C]

(10.2) Hg - gBry“c[é*l](MBry(D))a H)\_zg/ - gBryHc[é*l](MBry(D/)) < 0.
Consider a diffeomorphism onto its image ¢ : Mpyy (3D, D) — Mg,y (D') such that
for h == ¢*q — g we have for allm =0,... 4
prIVIhly <b  on Mgy (3D, D),
where py denotes the scale function with respect to the metric g. Then there is a

diffeomorphism onto its image ¢ : Mpyy(D) — Mpy(D') such that the following
holds:

(a) d=¢ on Mp,y(D — 1, D).
(b) For h:=¢*q — g we have

p§|mg < Bb on Mg,y (D).

We remark that there are several ways in which one could strengthen or sharpen this
proposition. We chose the statement above, because it is adequate for our purposes
and keeps the complications in the proof to a minimum. For example, the constant
E in this proposition could be taken to be equal to 100, or even smaller. Also, the
choice of the exponent 3 in assertion (b) is arbitrary. This exponent is needed in the
proof of Proposition [12.3] but it could be replaced by any other number, assuming
that E is chosen sufficiently large.

The Bryant Extension Proposition [10.1]is a consequence of the following simpler
result, on which we will focus for the larger part of this section. A proof that Propo-
sition [10.3| implies Proposition [10.1]is provided at the end of this section.

Proposition 10.3 (Bryant Extension, simple form). There is a constant C' < oo
such that if
0<a<l, E>F, D > D(a),
then the following holds. Assume that:
(1) g1 = gBry and g, = A%gBry 15 a rescaled Bryant soliton metric.

(ii) \a € [, a7

(iti) ¢ : M,y (2D, D) — Mg,y is a diffeomorphism onto its image.

(iv) For h = ¢*gy — g1 and for some b < a™' we have for allm =0, ...,4

(10.4) IVithlg, <bD™"  on Mgy (3D, D).

Then there a diffeomorphism onto its image 5: Mp,y(D) — Mg,y such that:
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(a) 5:? on Mp,y (D —1,D).
(b) For h:= ¢*go — g1 we have

(10.5) |hly, <b-Ca™“D7ETY  on Mg,y (D).

The strategy of the proof is as follows. We first show that ¢ almost preserves
the curvature operator and its first covariant derivative, up to an error that decays
polynomially in D. As the scale of a Bryant soliton can be expressed in terms of
the curvature and its derivative, this will imply that the scale Ay of go is close to the
scale 1 of g1, up to an error that decays polynomially in D. Similarly, we can argue
that ¢ preserves the distance function to the tip xg,, up to a polynomially decaying
error. Using this extra information, we can in turn argue that ¢ is sufficiently close
to an isometric rotation of (Mpg,y, gBry) around the tip xp,y, again up to an error that
decays polynomially in D. By an interpolation argument, we eventually extend ¢ to
a map on Mg,y (D) that is equal to this isometric rotation sufficiently far away from
the boundary.

The proof will use some standard properties geometric properties of the Bryant
soliton, which are reviewed in appendix @ Recall that zg,y € Mg,y denotes the tip,
i.e. the center of rotational symmetry, of Mg,,. In the following we furthermore
denote by o := dg;, (-, 7B:y) the distance function from the tip.

The remainder of this section will be devoted to the proof of Proposition [10.3]
Until the end of the section we will let g1 = ggry, g2, A2, etc, be as in the statement
of this proposition. Let g3 = ¢*g2. We begin with some estimates on the difference
between geometric quantities for g, and gs.

We will use the convention that 1 < C' < co denotes a generic universal constant,
which may change from line to line.
Lemma 10.6. If
E>E,  D2>D(a),
then the following holds.

Let D = V,, — V,, be the difference tensor for the Levi-Civita connections of gs,
g1, respectively. Then we have

Tl <b-CD™"  on Mgy (3D, D),
where T is any tensor field from the following list:
{V; (95— 91)Yoskea, {Vi,DYo<kes
{Vi (Rmg, —Rmy,), VI (Ricy, —Ricy,), Vi (Rg — Rg,)}o<kes -
The bound also holds if we view Ricg,, 1 = 1,3, as a (1, 1)-tensor.
Proof. Consider a point x € MBry(%D, D) and identify T, Mp,, with R? such that g; ,

corresponds to the Euclidean inner product. The tensors hy, Vg by, ... ,V‘gll h, and
Rmy, 4, ... ,V?]l Rmg, , and T}, can be viewed as tensors on R3. As T can be written
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in the form of an algebraic expression involving the tensors gy, (g1 +h) ™1, A, ..., Vglh,

Rmy,, ... ,th Rmy, , there is a smooth tensor-valued function F such that
Ty, = F(hg, ...,V he, Rmg, 5, ..., V2 Rmg, ;).
Note that
F(0,...,0,Rmy, ,,..., V2 Rmy, ;) = 0.
So by we have
| Tolgy < Cf(has -, Vg ha) |, < Cllhalgy + .+ Vg Taly) < COD™E,

as long as £ > F and D > D(«). O

We now prove that the scales of g; and g, are close, up to an error that decays
polynomially in D.

Lemma 10.7 (Scale detection). If
E>FE, D > D(a),

then we have
Ao — 1| <b-Ca“D7EH,

Proof. Set A\; := 1. Then g; = A2gp,y for i = 1,2 and by rescaling (B.3)), (B.4) by \;
we obtain that for ¢ = 1,2

(10'8) Rgi + |ngf|3I = Rgi(xBr}') = )\’L'_QRgBry (‘TBry)v ngz = Ricgi(vgif’ )

In the following, we will express these equations in terms of the metrics g1, g2, by
combining the difference estimates from the previous lemma with some estimates on
the geometry of the normalized Bryant soliton from Lemma [B.1} It will then follow
that A\; and )\ are close.

In the following, we will work on the annulus MBry(%D, D) and assume that D >
2C'g, where Cp is the constant from Lemm Therefore o > %D > (g on
Mg,y (3D, D) and thus the bounds of Lemma apply for g;. We may also assume
that £ > E and D > D(«) have been chosen large enough so that g; and g are
2-bilipschitz on Mg, (3D, D).

From in Lemma we obtain the following bound for the Ricci tensor,
viewed as a quadratic form on T*M,
Ric,, > Cz'D ?g;.

-1

5> viewed as a map T"M —

Therefore, assuming D large enough, the inverse Ric
T*M, is well-defined and satisfies

(10.9) |Ricy,'|, < CCpD?.
Hence by Lemma [10.6] if £ > E and D > D(«), then
|Ricy,' (Ricg, — Ricy, )| < |Ric!| |Ricg, —Ricy,| < b-Ca™“D7FF2
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Soif E > FE and D > D(«), then the inverse of
I + Ric,,'(Ricy, — Ricy, ) = Ric, ' Ricy,
exists and we have
|Ricy,' Ricy, —I|, <b-Ca”CD™F*2
Therefore again by ,
|Ricy," — Ricy!| < [Ricy Ricy, —I| |Ricy!| <b-Ca™“D75M,
Using the second relation in we find that
(10.10) d(f o ¢) —df = Ric,, (dRy,) — Ric,,'(dRy,)
= (Ric,,' — Ric,,")(dR,,) + Ric, ' (dRy, — dRy,).

So, as |dRyly, < C|dRyls, < CA;? < Ca™3) we obtain by ((10.10), (10.9) and
Lemma [I0.6] that

d(f o @) —df], <b-Ca CDEH,
It follows using that
d(f o @) 2, = 1df 15| < [ld(f o @)I2, = 1df[2,] + [1df1Z, — ldfI?,
< |d(fo¢)—df|, - |d(fod)+df|, +Clhlgldf],
<b-Ca "D (|d(f 0 §)lgs + |df|gs) + - Ca D"
<b-Ca “D P (ld(f o ¢) — df g, + 2|df|gs) +b-Ca D7
<b-Ca “DEH

Combining this with (10.8]) and Lemma yields
IA2? = AT Ry, (wm1y) < [Ryy — Ry, |+ |[d(f 0 9)[7, — |df17,
<b-Ca 9D F+,

So the bound on |\y — 1] follows for large enough D, as A\; = 1. O

Next, we prove that ¢ nearly preserves the radial distance function o, up to an
error that decays polynomially in D.

Lemma 10.11 (¢ nearly preserves o). If

(10.12) E>E, D> D),

then we have for k =0,1,2

(10.13) Vi (009 —0)|, <b-Ca “DF*C.



UNIQUENESS AND STABILITY OF RICCI FLOW 83

Proof. Let F': (0,00) — (0,00) be the function with the property that R = F oo on
(Mpyy, gBry). Consider the constant Cp from Lemma [B.1} By (B.5), (B.7) and
we have for s > Cp
(10.14) Cz's™ < F(s) < Cps™*, Cpls™ < —F'(s) < Cg,
[E"(s), [F"(s)] < C.
So there is a ¢y > 0 such that F~1((0,¢)) = (Cp, o) and such that there is an inverse
H :(0,c9) = (Cp,00) of Flcy.00). A straight-forward application of the chain rule
gives
|H'(r)| < Cpr2, |H"(r)| < Cr~°, \H" (r)| < Cr—'2,

(Note that these bounds are not optimal.)

Assume now that E and D have been chosen large enough, in the sense of (10.12]),
that % < A9 < 2 and that by ((10.14]) and Lemma we have for 1 = 1,3

(10Cp) D' < R,, < 100D~ < ¢y/10
on Mg,y (3D, D). Then on Mg, (3D, D)
(10.15) go¢p—o0=DP(Ry,Ry, — Ry, \2),
where
P(ry,r9, ) := NH(N*(ry +13)) — H(ry).
Note that P(r,0,1) = 0 for all » € (0,¢y) and that on ((2Cp)~'D~!,2C5D1)? x
(3,2) we have
|0*P| < CD¥
for k =1,2,3. So for £ =0,1,2 we have
0{ P|(r1,m2,A\) < CD2(|rs| + A =1]) on ((2C)"'D™",2C05D™")* x (3,2)

29
So (10.13)) follows by differentiating (10.15]) and using Lemmas and [10.7] O

Recall that the Bryant soliton metric is a warped product gp,, = do? + w?gs2 on
Mgy \ {7y} and that C5'y/s < w(s) < Cpy/s for large s (see Lemma for more
details). Fix some D that is sufficiently large such that D > w(D). We now let
ga = do} + wjgs2 be a warped product metric on Mg,y (D — 3w(D), D + jw(D)) with
_o—-D

w(D)

and the warping function
- D
w4:w4(0):1+04:1+2}<—D).

Note that there is an isometry
® : Mp,y (D — 2w(D), D+ tw(D)) — Ays5/4 C R?
to a Euclidean annulus such that 1+ o4(z) = |®(z)|gs. So
(D(MBry(D - lw(D), D)) = A2,

2
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Due to Lemma|10.11| we may assume in the following that ¢(Mp,y (D, D+ 3w(D))) C

Mg,y (D — 3w(D), D + fw(D)). So ¢ induces a map

Pogo G A1/271 — A1/4,5/4~

We now show that ¢ restricted to Mg,y (D — w(D), D) almost preserves the metric
g4 and the function o,. This is equivalent to saying that ® o ¢ o ®~! almost preserves

the Euclidean metric and distance function on R3.

Lemma 10.16. If

(10.17) E>E, D> D(a),

then for k=0,1

(10.18) Vi (0100 —0ay)|  <b-Ca™“D7FFC,
(10.19) Ve, (6791 = g4)|,, <b-Ca™CD7FHC,

on Mgy (D — sw(D), D).

Proof. Let us first consider the rescaled metric g, := w™2(D)g;. This metric is a
warped product of the form

G, = do} + Wgse,

where
. w
W= ———.

w(D)

Note that for large D the metric g5 on Mg,y (D —3w(D), D+ w(D)) is geometrically
close to S? x (—%, %) equipped with the standard cylindrical metric. More precisely,

if we express W = w(oy4) as a function in oy, then by (B.11)) in Lemma we have

the following bounds when o4 € (-2, 1
dw d*w
10.20 w—1|, |-—|, |5=|<CD Y~
( ) |w ’7 d(74 ’ dO’z

Let us now consider the map ¢. We have

"G — g1 = AP0 (D) (¢" g2 — g1 + (1 — A3)gn),
Combining this with the scale detection Lemma [10.7| gives us the following bound for
k = 0,1, assuming an estimate of the form ((10.17)):
k *— — —-C n—E+C
(10.21) Vi (91 — gl)|§1 <b-Ca “D7FC,

Note that here we have taken the covariant derivative with respect to g, as opposed
to g1. This change produces a factor of the order of O(D*/?), which can be absorbed
in the right-hand side. Similarly, by rescaling in Lemma and assuming
an estimate of the form , we obtain that for £ =0,1,2

(10.22) |V (0409 — 04)\§1 <b-Ca “D7FHC
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This implies (10.18)) for £ = 0 immediately and for k£ = 1 after observing that g, and
g4 are uniformly bilipschitz for large D.

So it remains to show (10.19). The bound (10.22)) implies that for £ = 0,1
(10.23) V2 (¢*do} — dof)| <b Ca 9D~ P,

g

Combining ((10.22)) and ((10.23)) one gets

(10.24) |Vg (¢*(@°gs2) = @gs2) |, = V5, ((6°91 — 1) + (¢7dof — do))|
S b- Oa*CDfE+C )

Set now

w? 1+04\°
Yo \w )

Let us first express y(o4) as a function of 4. Then by ((10.20|) we have for k = 0, 1, 2,
as long as —% <oy < }1,
d*x

2
doj

dx

< CD™ /2,
d0'4

(10.25) Ix — 1],

Y

It follows that
(10.26) |Xooi00—xoo04 < CD V2 o40¢— 04 <b-Ca D FFC,
Vg, (xoo106—xoa)| <[(X 00s0¢)d*dos— (X 0os)dou|
<|Xoos00||¢*dos — d04‘§1

+ | (X 0040 ¢) = X'(04)] - |doalg,
<b-Ca “DFHC

So, assuming a bound of the form ((10.17)), we get using that for £ =0,1
V2 (6" (wigs>) — wigse)lg,
= |V, (&"((x 0 00)@gs2) — (x © 04)Wgs2)lg,
< }V§1 ((xoou0¢—xo0u)e" (Wys2)) ‘?1
+ V5, ((x 0 04)(¢" (@Pgs2) — WPgs2) )|, < b-Ca CDFHC.
Combining this again with gives us that for £ = 0,1
‘V§1(¢*94 _ 94)‘§1 <b- Ca ¢ p—E+C

This implies (10.19)) for k£ = 0, as g4 and g, are uniformly bilipschitz for large D. To
see (10.19) for £ = 1 note that due to ((10.25) we have |Vy, — Vg |5, < cD7YV2. O

In the following lemma we extend the map ®o¢po d ! : Aiyo1 — Aijas/a to a map
¢ on the unit ball B; C R3.
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Lemma 10.27. If

(10.28) E>FE, D > D(a),

then there is a diffeomorphism onto its image gE: B, — R3 such that:

(a) |$*94: 94 g, SAb .Ca~¢D E+C,

(b) |oyo ¢ — 04l |p*doy — doyl,, <b-Ca D FHC,

(c) dp=Dopod ! on As /6.1

(d) b= on By for an orthogonal map ¢ € O(3) of R3.

Proof. By Lemma [10.16| and the fact that g, = ®*ggrs we have for £k =0, 1

(10.29) |Vis(Podo® ") grs — grs)|ps < b- Ca ¢D~EFC,
(10.30) |VEs(ro(®o¢god™!)—r)|, <b-Ca “DFHC,
where r(z) := |z|gs denote the radial distance function on R3.

From now on we will only work on R3. To simplify notation, we will write ¢ instead

of ® oo d L. Expressing (10.29) for k = 1 in Euclidean coordinates yields

3
92 ﬁs 9¢8 92 s 5 s o
Z 0 <b- +C
‘ s=1 ( w0zt Oxd — OxkOxi axz)' <b-Ca™"D

Permuting the indices i, j, k cyclicly and using

5 a2¢s a¢s ( 82¢s 8¢s 82¢s agbs)

Oridzs Oxk  \ Oxidxd OxF  Oxidxk Oxd
a2¢s 8@58 + 02¢s 8¢S B 82¢s agbs N 82¢s a¢s
Oxioxk Oxt  Oxidxt Oxk orkoxt Ox7  OxkOxi Oxt

gives us
3

82(255 a(bs
— 0x'0xd Oxk
Combining this with ((10.29)) for £ = 0 implies that under a condition of the form
(110.28|)

(10.31) |d*¢|gs < b-Ca~CDFFC,

<b-Ca ¢DEC,

Let now xg € Aj51 be a point and consider the differential (d¢),, : R* — R?. By
(10.29)) there is a Euclidean isometry 9" : R® — R? with 1'(x¢) = ¢(z¢) and

}(dd/)ro - <d¢)xo‘R3 <b- Ca~¢DE+C,
Combining this with (10.30]) gives us
|(dw/)x0((vr)x0) - <VT)w/(mO)|R3 S b : CO[_CD_EJ’_C_
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So again by ((10.30)) we have
W ‘R3 - |¢ 330 ‘xO‘R?’(d¢ )xo((vr o ‘RS
~ ‘gf) (L’O ’I‘0|R3<v7’ é(x0) ‘Rg +b- COZ_CD_E+C
< |¢(w0) = @(xo)lra (V1) oao) |gs +b- Ca”D7FFC

=b-Ca D FHC
Set now ¢ := ¢’ — ¢’(0). Then ¢ € O(3) and for k =0, 1
(10.32) |dv(x0) — do(zo)|ps < b- Ca™CDFHC

Integrating (10.31) along paths in A;/; starting from x, implies that under an
assumption of the form (10.28)) we have for all z € A; /2,

(10.33) |d(z) — d(x)|ps < [(de)) (o) — d)(wo)| 4o
+10 sup |d*p — alqu}]R3 <b-Ca ¢DF+C,

Ay/21

Integrating this bound once again along paths in A;/,; yields that

(10.34)  [¢(x) — ¢(z)[rs < [¢h(w0) — d(x0)|ra
+10 sup |dp(z) — dp(x)]gs < b- Ca”CDPC,

1/2,1

We now let {(i,(2} be a partition of unity on A/, such that (; = 1 on A5/,
G =11in By, and |VesGlrs < C. Let ¢ := (1¢ + (1. Then assertions (c) and (d)
hold immediately and assertion (a) follows from ((10.33]) and ((10.34)). Assertion (b)
follows from ({10.30)), the fact that dr = doy and that r o) = r. U

Proof of Proposition[10.3. We only need to translate the result of Lemma [10.27] back
to Mp,y. By assertion (d) of Lemma |10.27] and the fact that MBry is rotationally

symmetrlc we can find an 1sometry ¢ Mg,y — Mgy, with @D(mBry) = Ipyy and

Y =0"lohoU. Set ¢ := d! ogboCI)onMBry(D Lw(D),D) and ¢ := 1 on the

2

closure of Mg,y (D — sw(D)). By assertion (d) of Lemma [10.27, we know that & is
smooth. By assertion (b) the map ¢ is injective if £ > E, D > D(a). So it remains to
bound ¢*gs — g, on Mg,y (D — 2w(D), D). To do this, we first deal with the rescaling
factor Ay

6°g2 — 1|, < |01 — g, + (X5 —1)é*an]
<|¢"g1 — |, +b-Ca D,

So it remains to bound ¢*g; — g;. For this purpose consider the rescaled metric
9, = w2(D)g; = do? +W?gg:, as used in the proof of Lemma [10.16] and observe that
w? w?
g, = do° +wgge = —Q(dE2 + wigsz) + (1 — —2) do>.
wy wy
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Set Xoa4 Y- as in the proof of Lemma(10.16, As explained in this proof, we obtain

using that
‘05*91 - gl‘g1 = |$*!_J1 _gl}gl
< (X°U4)}<g*94 —94|§1 + |X0<74 05— XOU4‘ |94,
+ |1 — (Xoa4)| | ¢*d5? —d52‘§

1
+|xooi0p—xoau-|d,
<b-Ca¢DEFC,

This concludes the proof. 0

Proof that Proposition |10.5 implies Proposition |10.1. Set Ay := A, g1 = ¢y and
g2 = A3gry. Assuming § < §(D), we have, using (B.5)

(10.35) Py = 5Pgmy = 3C5' D on Mpy (3D, D).

Now consider the map ¢ from Proposition and note that by assumption of this
proposition and (|10.35)) we have for m =0,...,4

(10.36) Vi (¢g' = g)|, < bpy© < 2°Cf - D",

We now claim that for D > D(E,C) and 6§ < 6(E,C, D, b) we have

(10.37) Vi (6792 — q1)|,, < C"(E)pD™F

for all m = 0,...,4 and some constant C] = C](F) < oo. To see this, assume first

that D > D(E,C) and § < § such that the pairs of metrics {g, ¢*¢'}, {g,9:}, and
{d', g2} are each 2-bilipschitz with respect to one another. So ¢1,g,¢"q, ¢*go are
pairwise 8-bilipschitz. As A € (C~1, ('), we can find a constant C, = (C') < oo such
that by we have for all m =0,...,4

(10.38) \vgl g— g1)| < Cho,
(10.39) V(67 — 0" g0)| < 8|Vin(g' = 2)],, 0 < C30.
We now argue similarly as in the proof of Lemma m The tensor Vi (¢*ga — g1) can

be written as an algebraic expression in terms of the tensors g~', (¢*g2) ™, V"' (¢*g' —
9), ng (g—g1) and Vi (¢"g" — ¢ g2), m" < m (we use g; as a background metric).

So, pointwise,
V(¢ gs—g1) = F(¢*g —g.....VId*d —g),
9= g1 V(g =01, 00 — g2, ..., Vi (0°g — ¢ g2)).

for some smooth function F. By (10.36)), (10.38)) and (10.39), we therefore obtain
(10.37) as long as 2°CEbD~F and C"§ are sufficiently small.
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So the conditions of Proposition are fulfilled for a = a(E,C) := min{C; !,
C~'}. Therefore, if
E>FL, D > D(a),
we obtain a diffeomorphism onto its image QNS : Mg,y (D) — Mg,y such that 5 = ¢ on
Mg,y (D — 1, D) and moreover if h = ¢*go — gy there is a universal constant C4§ < oo

such that _
‘¢*92 _ gl‘gl < b- Céa—C4D—E+C4'

If § <6(E,b,o, D), then we can assume that the metrics g, g1, ¢*g’, ¢*gs are pairwise
sufficiently bilipschitz close to another such that we still have for some universal
C) < o0

Fg — ], < b- ClaCiD#,

By we have Cja~“1D~F+C: < BOL3 D3 as long as
E>C)+4, D>D(E, Q).

This implies assumption (b) of Proposition . Lastly, note that if

E>E, D2>D(a),

then ¢ is an immersion. So since

¢(MBry(D —-1,D)) = ¢<MBry(D -1, D)) C MBry(D/>
the image of ¢ must be contained in Mg,y (D') as well. O

11. INDUCTIVE STEP: EXTENSION OF THE COMPARISON DOMAIN

11.1. Statement of the main result. Consider two Ricci flow spacetimes M and
M. The goal of this section is to extend a comparison domain N in M that is defined
over a time-interval of the form [0,¢;] by one time-step, to a comparison domain that
is defined over the time-interval 0,211 = t; + 72,,,]. In order to carry out this
construction, we will assume the existence of a comparison from M to M’ defined
on N that together with N satisfies a priori assumptions [(APA 1)H(APA 6)|for some
tuple of parameters. Assuming that these parameters are chosen appropriately, we
will show that the extended comparison domain and the given comparison satisfy the
same a priori assumptions for the same tuple of parameters.

The precise statement of the main result of this section is the following. We remind
the reader that we are using the notation for expressing parameter bounds explained
in Section Ml

Proposition 11.1 (Extending the comparison domain). Suppose that
Mo < Ty 00 <0n ASAGn),  Deap = Doy (M),
(11.2) A > A(0n, N), 5 < op(\,A),
€can < €can(0n, A, Ay 0b),  Teomp < Teomp(A, A)

and assume that
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(1) M, M’ are two (€canTcomp, I')-complete Ricci flow spacetimes that each satisfy
the €can-canonical neighborhood assumption at scales (€canTcomp, 1)-

(it) (N AN}, {t;}20) is a comparison domain in M that is defined on the time-
interval [0,t;]. We allow the case J = 0, in which this comparison domain is
empty (see Definition [7.1).

(iii) (Cut,d,{¢’}7_,) is a comparison from M to M’ defined on (N, {N” }] At —o)
over the (same) time-interval [0,t;]. In the case J = 0, this comparison is the
trivial compam’son (see the remark aﬁer Definition .

(i) (N ANV At} o) and (Cut, ¢, {¢'}]_,)) satisfy a priori assumptions
. for the parameters (M, 5n, )\ Deap, A, Ob, €cans Tcomp ) -

(’U) tJ+1 = tJ+rcomp S T.

Then there is a subset N7 C My, 4., such that (N UNTTANTYEL {8,3740)

is a comparison domain defined on the time-interval [0,t;41] and such that N U
NITHL NI Lt Jfl and (Cut, ¢, {¢’}]_,) satisfy the a priori assumptions
. ((APA 6) for the same parameters (mm,én,)\ Deap, A, Ob, €cans Teomp) -

We remind the reader that a priori assumptions [(APA 1)H(APA 6)| allow for the
possibility that the comparison (Cut, ¢, {¢’ }3-]:1) is defined on a shorter time-interval
than the underlying comparison domain (see Definition [7.4). In particular, [[APA 5)
and are only required to hold over the time interval on which the comparison
is defined, which in the context of Proposition is [0,t,].

We briefly explain the strategy of the proof of Proposition [11.1] which will be car-
ried out in the remainder of this section. In Subsection [I1.2], we will first construct
a domain € C M, , such that the corresponding product domain Q([t;,t;41]) C
M{i,+,.,) satisfies most of the a priori assumptions (APA 1)-(APA 6). The final
time-slice N/ JH will later arise from ) by adding certain components of its comple-
ment M, \Q This is by far the most delicate part of the proof, because we need to
accommodate both a priori assumption (APA 3)(d), which forces certain components
to be added to €2, and a priori assumption (APA 5), which imposes strong restric-
tions whenever the addition of such components creates extension caps. The precise
criterion for which components of M;,,, \  will be added to €2, will be given in Sub-
section and some of the less problematic a priori assumptions will be verified in
Subsection [11.3] The most important and complex step in our proof is Lemma
in Subsection [11.5] which effectively states that cap extensions only arise when a
priori assumption (APA 5) is satisfied. For more details, we refer the reader to the
explanations given before and after the statement of this lemma.

We make the standing assumption that hypotheses (i)—(iv) of Proposition [I1.1]
hold for the remainder of this section. The construction of the domain N/*! and the
verification of its properties will proceed in several stages, with each stage requiring
additional inequalities on the parameters. The inequalities on the parameters imposed
in the assumptions of lemmas or in discussions in between lemmas will be retained
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for the remainder of this section. So the assertions of these lemmas or the conclusions
of these discussions continue to hold until the end of this section.

We remind the reader that, while the dependence on the parameters may seem
complex, it essentially suffices to observe that the parameter order, as discussed in
Subsection [7.5] is respected. We will continue our practice of introducing parameter
bounds in separate displayed equations, to facilitate verification of the parameter
dependences.

11.2. Choosing an almost minimal domain containing all Ar.,,-thick points.
As a first step toward the construction of N/*!, we will construct a precursor of its
final time-slice N}/ ™! — a subset Q C M, 7.1 bounded by central 2-spheres of d,-necks

J+1

at scale 7¢omp that contains all Argomp-thick points. The final time-slice /\/;‘{:11 of N7+

will later emerge from by the addition of certain components of its complement

inside My, ..
Consider the collection S of all embedded 2-spheres ¥ C M, that occur as
central 2-spheres of d,-necks at scale reomp in My, .

Lemma 11.3. We can find a subcollection 8" C S such that

(a) di,, (31,52) > 107comp for all 1,55 € S'.
(b) For every ¥ € S there is an X' € S such that dy,, (3, %") < 1007 comp-

Proof. Let {x1,x2,...} C My,,, be a countable dense subset. We can successively
construct a sequence of collections ) = S C S; C ... C S by the following algorithm:
If z; is in an 7comp-neighborhood of some ¥ € S with the property that d,,, (3,%") >
107comp for all ¥ € S/_;, then we set S; :=S;_; U{X}. Otherwise, we set S} := S/_;.

Set &’ := U2, S!. Then assertion (a) holds trivially and for assertion (b) observe
that every 3 € Sis reomp-close to some ;. If S = §;_, then dy,, (3, %') < 107 omy, for
some ¥’ € §/_; and if S] = S]_; U{X'}, then w; is contained in an reomp-neighborhood
of ¥'. In both cases, d,,, (X, %) < 1007 ¢omp- O

We now fix the collection &’ for the remainder of this section.

Lemma 11.4. If

5n S Sny A S X(5n)7 A Z A((Sn); €can S EczaLn(5H)7 70comp < 17

then the collection 8" separates the 100Arcomp-thin points of My, from the ATcomp-
thick points.

Proof. Suppose that the assertion of the lemma was false. Then there is a continuous
path v : [0,1] = My,,, \Uses X such that 7(0) is Areomp-thick and (1) is 100A7comp-
thin. Without loss of generality, we may assume that v has been chosen almost
minimal in the sense that any other such path has length at least length, (7) = Tcomp-

We first argue that we may assume in the following that
(11.5) diyy (7([0,1]), %) > 1000rcomp — forall X' e,
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Assume that d;,,, (7(s"), %) < 10007comp for some s” € [0, 1] and some X' € S’. Let
U C M,;,,, bead,-neck at scale reoyp that has > as a cross-sectional 2-sphere. If

On < O,
then (s") € U. Moreover, if
0 <0 ASA AZA

then no point on U is Arcomp-thick or 100A7eomp-thin and therefore v(0),v(1) € U.
Let ¥* C U be a cross-sectional 2-sphere of U, close to its boundary such that >* ¥’
bound a domain diffeomorphic to S? x [0,1] inside U that contains v(s"). It follows
that v|j0,¢1, V|[s,1] intersect 3*. If
On < On,

then the diameter of X* is less than 107¢mp and X* may be chosen such that the
distance between X* and y(s’) is larger than 107¢y,. This implies that we can replace
v by a path whose length is shorter than length, it (7) — Tcomp, in contradiction to its
almost minimality. Therefore, we may assume in the following that holds.

By the intermediate value theorem, assuming

A< L+

5 A>1, Teomp < 1,

we may pick s € [0, 1] such that z := ~(s) has scale p(z) = reomp. By the construction

of § and ([11.5]), assuming

On < O,
the point = cannot be the center of a d,-neck at scale 7comp. S0 assuming
€can S Ecan(6n>7 rcomp < 17

we can use Lemma to find a compact subset V' C M, with x € V that
has connected boundary and on which Cj lrcomp < p < Coreomp holds, where Cp =
Co(6n) < 00. So, assuming

A < (1000 (0,)) 71, A > Co(6y),
we can conclude that «v(0),v(1) € V. Therefore, V must have exactly one boundary
component and this component is a central 2-sphere of a §,-neck.
We claim that 0V is disjoint from all elements of S’. Assume by contradiction that
JV intersects some X/ € §'. If
(11.6) 5 < O,

then we have %rcomp < p < 2reomp o0 XN IV, Again, assuming a bound of the form
(11.6]), we find that OV is a central 2-sphere of a neck at some scale of the interval
(§7comps 4Tcomp)- S0 the intersection of V" with ([0, 1]) is not further than 407comp
from the intersection with ¥’, in contradiction to (11.5).

Choose now s; € [0,s) and so € (s,1] such that y(s;) € dV. By Lemma
the path 7|, s,) can be replaced by a continuous path inside OV of length less than
length, J+1(7|[81752]) — Teomp, contradicting the minimality assumption of . 0
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Let now £2 C M,,,, be the union of the closures of all components of
Mt]+1 \ UEGS/Z
that contain Arcomp-thick points.

Lemma 11.7. If
€can S Ecan()\)a

then all points in ) survive until time t;.

Proof. This follows immediately from Lemma and the fact that € is weakly

100AT comp-thick. O
Lemma 11.8. If J > 1 and
51’1 S 51’1 bl A Z A? ecan S Ecan b Tcomp < Tcomp <A> )

then for every Areomp-thick point x € My, we have x(t;) € Int NV, _.

Recall that z(t;) € M,;, denotes the image of z under the time —(¢,41 — t;)-flow
of the time vector field d; (see Definition [6.6]).

Proof. Assume that x(t;) & Int V;,_. By a priori assumptions (APA 3a), assuming
On < O,

we also have z(t;) & ON;,—. So by a priori assumption (APA 3c) we must have
p((t1)) < Areomp < p(2).
Let 64 > 0 be a constant whose value we will determine in the course of the proof.
Assuming
A>1, ean SEan(dg),  Toomp < Teomp(A),
we can use Lemma [8.38] (for a = 1) to argue that (M,,,z(t,)) is dg-close to (Mp,y,

JBry, TBry) at scale p(z) > Arcomp. Since p is uniformly bounded from below on
(Mg,y, gBry) and diverges at infinity, there is a universal constant ¢ > 0 such that for

6y < Oy

we can find a path v : [0,1] — M,;, with v(0) = x(t;), p(7(1)) > Arcomp and
p(7(8)) > cAreomp for all s € [0,1]. So by a priori assumption (APA 3c) we have
y(1) € Ni,—. If

8 < O, A > A,

then by a priori assumption (APA 3a), the image ([0, 1]) is disjoint from ON;,_. Tt
follows that x(t;) = v(0) € My, . O

We remark that in the proof of Lemma|[I1.8] the use of Lemma[8.38] which is based
on the rigidity theorems of Hamilton and Brendle, may be replaced by a longer but
more elementary argument involving the maximum principle and the geometry of
r-solutions.
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Lemma 11.9. If J > 1 and

0 <bn,  A<A(n),  AZAGn), o <Ean(On),  Teomp < Teomp(d),
then Q(t;) C Int Ny, —.

Proof. Let g be the closure of a component of M, \Uses X that contains a Areomp-
thick point z. Note that by definition of 2 we have €2y C 2 and the lemma follows if
we can show that Qqg(¢;) C Int Mj_ for all such €.

Fix 0y and a Arcomp-thick point z € €y for the remainder of the proof and assume
by contradiction that Qo(t;) ¢ Int Ni,—. Let z € Qg be a point with the property that
z(ty) & Int N, . Choose a path 7,41 : [0,1] — €y within Qg such that x = v,41(0)
and z = v;,41(1). Without loss of generality, we may assume that we have chosen z
and 7,41 almost minimal in the sense that for any other such choice of 2/,~/,, we
have

(1]‘]‘0) lengthtj+1 (7(/]—&-1) > ]'engthtj+1 (ry(]-‘rl) - rcomp~

By Lemma|l1.8} assuming
511 S Sna A 2 A? Ecan S Ecana 7‘.COITIP S FCOII"Ip(jX)?

we have x(t;) € N;,—. Denote by v, : [0, 1] — M, the curve at time ¢; corresponding
to 41 under the (=72, )-flow of the time vector field d, i.e. y;(s) = (ys41(5))(ts).
This path exists due to Lemma [I1.7] Since v,(1) = z(t;) € IntN;,_, we can find
a parameter so € [0,1] such that v;(sg) € ON,,— and v,([0,s0)) C IntN;,_. By
truncating vy and v;11, we may assume without loss of generality that so = 1 and
therefore z(t;) = v,(1) € ON;,— and v,([0,1)) C Int N;,—. The almost minimality

property ([11.10) of z and 7, remains preserved under this truncation process.

Let ¥; C ON;,- the boundary component that contains z(¢,). By a priori assump-
tion (APA 3a), ¥, is a central 2-sphere of a d,-neck at scale reomp in My,. Let d, > 0
be a constant whose value we will determine later. By Lemma [8.31] assuming

51’1 S Sn(é#)a €can S Ecan<5#)a rcomp S Fcompa

this implies that all points on X ; survive until time ¢; + %rfomp and X, (t; + irfomp)

is a central 2-sphere of a dx-neck at scale %Tcomp. So p(z(t; + }lrfomp)) < 0.67comp,
assuming

54 < 0y
By Lemma this implies that p(v,11(1)) = p(2) < 0.7rcomp, assuming

Ecan < EC&H’ rCOl’Ilp < 1

Recall that at the other endpoint of 7,41 we have p(7,41(0)) = p(z) > Arcomp. So
by the intermediate value theorem, assuming

A>1,

we can find a parameter s € (0, 1) such that y := 7,41(s) has scale p(y) = Tcomp-
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Assuming B
O < 6, A=A,
we can conclude that x, z cannot lie in d,-necks at scale reomp and therefore d; | ({z, =},

0€) > 20007 comp. So by the almost minimal choice of v,4; we find, using the same
argument as the one leading to ((11.5)) in the proof of Lemma [11.4] that

(11.11) di,,, (7([0,1]),090) > 10007 comp,

assuming that
b < Oy

As the interior of € is disjoint from all elements of S’, we can use assertion (b) of
Lemma and a priori assumption (APA 3a) to conclude that the point y cannot
be a center of a d,-neck assuming B

On < y.
We can hence apply Lemma [8.2] and find a smooth domain V- C M,,,, with y € V.
Moreover, we have C; ™ (6u)7comp < £ < Co(6n)7comp on V. So by Lemma and
assuming
ecan S EC&H(6H>’
all points on V' survive until time ¢; and
(11.12) p> 105 (0n)reomp o V(ty).
Also, if
A > Cy(6n),
then z € V. In particular, this implies that OV # (. By Lemma the boundary
OV is a central 2-sphere of a d,-neck. Choose s; € [0, s) such that v;,1(s1) € V.

We claim that

(11.13) zeV.

If not, then we can choose sy € (s, 1] such that v;,4(s) € V. By Lemma 8.2l we can
connect yy11(s1),7s41(82) by a path v : [s1, s3] — OV C Int ©y whose length is less
than length, (7¥](s;.s]) — 100rcomp. The concatenation of vy41(0,6), 7 and v41ls, 1)
would have length less than length, J+1(7 J+1) — 1007¢omp, contradicting the almost
minimal choice of 7,1 and confirming .

Next, we argue that
(11.14) (OV)(ty) C Int N, .

Note that by our choice of 7,41 we have (vy11(s1))(ts) € Int N;,—. So if (11.14)
was false, then (OV')(t;) N ON;,— # 0. Therefore, by Lemma and we would
find a continuous curve 7" : [s1,1] — OV between v,41(s1) and a point 2/ € OV
with z'(t;) € ON;,— such that length,,  (v") < d(vs41(51),7541(5)) — 1007rcomp. The
concatenation of 7|y ,) with v would then have length of at most

length, . (v11) = dt,,, (V41(51),7541(8)) + length,  (7")
< lengthtJ+1(’yJ+1) — 1007 comp-
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This, however, contradicts again the almost minimal choice of v, 1, confirming ({11.14)).

The inclusion implies that z(t;) € V(t;). Let C* be the component of
M, \ Int V;,_ that is adjacent to X;. As C* is path-connected and z(t;) € C*, we
can conclude, using , that C* C V. By a priori assumption (APA 3d) there
must be a 10Arqomp-thin point in C*. So if we choose

A < 3Cy 1 (0),
then we obtain a contradiction to (11.12]). O

11.3. The definition of N7+, We will now enlarge ) to a subset Q* C M, ,, that
will become the final time-slice N‘t{zﬂ of the product domain N/*!. The components
Z of the difference My, \ Int 2 fall into one of the following four types:

(I) Z has non-empty boundary and all points on Z are weakly 10Aromp-thick (in
particular Z is not a closed component of M, ).
(IT) (a) Z is diffeomorphic to a 3-disk.
(b) Z(t) is well-defined and Areomp-thick for all ¢ € [t;, t;41].
c) Z(ty) C Ny, if J>1.
) Z is diffeomorphic to a 3-disk.
) Z(t) is well-defined and Areomp-thick for all ¢ € [t;,t,41].
¢) C:= Z(t;) \ Int Nt,_ is a component of M, \ Int N;,_, and there is a
component C" C Mj '\ ¢(Int Vy,_) such that a priori assumptions
5)(a)—(d) hold, that is:
e C and C’ are 3-disks.
° IC' = d)tJ—(aC)'
e There is a point z € C such that (M, z) is d,-close to the pointed
Bryant soliton (MBry, GBry, TBry) at scale 10A7¢omp.
e There is a point 2’ € M, ,» at distance < DeapTeomp from C’, such
that (M;j, x') is dp-close to the pointed Bryant soliton (Mgyy, 9By,

(
(1) (a
(b
(

Tpry) at some scale in the interval [Dc_ai)rcomp, D capTcomp) -
e C and (' have diameter < DypTcomp-
(IV) None of the above.

Let " be the union of €2 with all components Z C M, , \ Int (2 that are of type
(I), (II) or (III). Assuming
€can S Ecan()\)a
each component of type (I)—(III) survives until time t;, either by definition or by

Lemma The subset €2 survives until time t; by Lemma|l1.7. Thus we may define
N7*1 to be the product domain with final time-slice *:

(11.15) N = Uiy 025 (1),

To provide some motivation for the choice of £2*, we point out that if Q* C M,
is a manifold with boundary obtained from 2 by adding some components of the

complement, and N/ is defined by (11.15), then (N, {N7}/2! {t;}74]) and (Cut,
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¢, {¢"};]_,) will satisfy a priori assumptions |(APA 1)H{(APA 5)only if Q* includes all
components of type (I)—(III). In this sense Q* is the “minimal” extension of 2 that
yields a comparison (domain) satisfying the a priori assumptions.

In the remainder of this section we will complete the proof of Proposition by
verifying that (N, {NY j;rll, {t; ;]iol) is a comparison domain, and that (N, {NY j;rll :
{tj};]i&) and (Cut, ¢, {¢/}7_,) satisfy a priori assumptions |(APA 1)|—|(APA 6)| Most
of the verification is straightforward, using the results already established. The main
difficulty will be establishing the properties of extension caps, especially .
The crucial fact here, which we will prove in Lemma [11.17] is that components Z
of type (I) and (II) satisfy Z(t;) C N;,—. In other words, extension caps are only

caused by components of type (III), which satisfy a priori assumption [(APA 5)|

The main idea of the proof of Lemma will be to show that if Z(t;) ¢ N, _,
then a priori assumptionwould have forced an extension cap to have occurred
at some earlier time. For more details we refer to the reader to the overview preceding
the proof of Lemma in Subsection [11.5

11.4. Verification of Proposition , except for Definition and
. We will now verify that (N U N/ {NTFEL {8;37+1) satisfies properties (1)-
(3) of the definition of a comparison domain (Definition and that (N UN7TL
{N jill, {t;}/*1) and (Cut, ¢, {¢’}]_,) satisfy a priori assumptions (APA 1)-(APA
4) and (APA 6) (see Definition [7.4). Most of these properties and assumptions will
follow fairly easily, apart from some technical points. The remaining verification of
Definition [7.1[4) and a priori assumption (APA 5) requires some deeper discussion,

which we postpone to the next subsection.

We remind the reader that we assume inequalities of the form ([11.2), such that the
conclusions of the lemmas from the preceding subsections are valid.

Property (1) of Definition [7.1| holds by construction.

Next, let us verify property (2) of Definition . Since it is a union of €2 with
connected components of its complement, Q" is a closed subset of M,  , and is
a domain with smooth boundary, where the boundary components are connected
components of 9. Since N}/ = Q*(t) is the image of Q* under the (¢ — ¢;,)-flow
of 0, which is defined on a neighborhood of Q*, it follows that ;'™ is a domain with
smooth boundary for all ¢ € [t;,t,41]. Next, recall that © is weakly 100Arcomp-thick
by Lemma [11.4] By the definition of components of types (I)~(III) and Lemmas

and [8.10, assuming
)\ S X? Ecan S Ecan<)\) ) Tcomp S FCOI"I'Ip?
we find that for all ¢ € [t t;1]:

(A) The time-slice N/t = Q*(t) is Meomp-thick.
(B) For every x € Q the parabolic neighborhood P(z,7comp) is unscathed and is
T eomp-thick, where ¢ = ¢(A) > 0.
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Now suppose that {yx} C N/* and yp — yso € M, . Then yp = z(tz) for some
xp € Oty € [ty,ty41], and ty — t. Clearly, 2x(ts) = Yoo- S0 {x(ts)} is a Cauchy
sequence in M. Therefore {x;} is Cauchy in M,,,, by (B) above and a distance
distortion argument. Since Q2* is closed and Arqomp-thick, it is complete, assuming

€can S €can (>\) .

It follows that {x)} converges to some zo, € Q*, and Zoo(ts) = Yoo. Hence N+ is
closed, and we have verified property (2) of Definition [7.1]

We have ON™ = (0Q*)(t;) C Q(ts). Since Q(t;) C IntN;,_ by Lemma m,
part (3) of Definition [7.1] holds.

We now turn to the a priori assumptions.

A priori assumption is obvious. By (A) above, N7*1 is Aromp-thick; so a
priori assumption holds.

Note that we need only verify a priori assumption for V¢, - =2 A
priori assumptions [(APA 3)(a)—(c) follow directly from the construction of Q*. To
see a priori assumption [(APA 3)(d), consider a component Z C M,,,, \Int Ny, _ =
M, ., \ Int Q* with non-empty boundary. Then, by construction, Z is a type-(IV)
component of My, \Q. As Z is not of type (I), it must contain a weakly 107 ¢omp-thin

point. A priori assumption (e) holds since in Propositionthe comparison
is defined over the time interval [0,¢,], and does not include any cuts in My, .

Next, we verify a priori assumption Let C be a 3-disk component of
NI\NInt NZHE (if J > 1) or Mo \Int Ny (if J = 0), such that 0C C N/ *!. Assume by
contradiction that all points on C survive until time ;41 and that C(t) is Areomp-thick
for all t € [t;,t;41]. Then C(t;41) is contained in My, \ Int Q* by the definition
of N/*1. Moreover, 9(C(t;11)) = (OC)(ts+1) is a 2-sphere contained in 9Q*, and
hence an entire boundary component of Q*. It follows that C(¢;.1) is a component
of My, \ Int Q* that is also a component of M,  \ Int of type (IV). However, it
is also of type (II), which is a contradiction.

Lastly, we point out that by the hypotheses of Proposition [11.1 we know that
a priori assumption |(APA 6)| holds for (N, {N7}/2! {t;}72]) and (Cut, ¢, {¢/}7_,)
(recall that Definition only requires the bound in a priori assumption to
hold in the time interval [0, ,]).

11.5. Proof of Proposition ‘11.1|, concluded. It remains to verify Definition

and a priori assumption |[(APA 5

We first verify the “if” direction of [((APA 5)l To that end, suppose that J > 1
and that C is a component of M, \ Int N;,_ such that there is a component C’ of

M\ ¢, (Int N, ) satisfying a priori assumptions [[APA 5)[(a)-(e); in other words:
(a) C and C’ are 3-disks.
(b) C" = ¢,-(C).
(c) There is a point « € C such that (M, z) is d,-close to the pointed Bryant soliton
(Mpry, gBry; TBry) at scale 10T comp.
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(d) There is a point ' € M; ,» at distance < Deapreomp from C’ such that (./\/lgj,x’ )
is dp-close to the pointed Bryant soliton (Mp,y, gpry, TBry) at some scale in the
interval [Dc_a;rcomp, D capTcomp) -

(e) C and C’ have diameter < DeapTcomp-

We now claim that, under suitable assumptions on the parameters, C is a component
of /\/’t‘i \ Int /\/;i“. Since C is a 3-disk by assumption, this will imply that C is an
extension cap.

To see this, we will apply the Bryant Slab Lemma for Xy = /\/ti and X; =
2. Note that assumptions (i)—(iv) of the Bryant Slab Lemma hold due to Defi-
nition [7.1[1), a priori assumptions (APA 3)(a)—(c) and by the construction of €.
Assumption (v) of the Bryant Slab Lemma holds due to Lemma[l1.9] So the Bryant
Slab Lemma can be applied on the time-interval [t;, ;4] if

(11.16) O<A<l, = 6,<d, A>A  §<3T\A)

and if there is a map ¢ with ¥ (zp.y, —(10A)7%) and a §’-good Bryant slab W C
Mit,.t,,1), @s required in the Bryant Slab Lemma. The existence of the map ¢ and
the ¢’-good Bryant slab W follows from (c) above and Lemma [8.35 and assuming

5b S gb()\y 5,)7 €can S Ecan()\a 6/)a Tcomp < Tcomp-

Under assumptions of the same form as ({11.16)) we can also apply the Bryant Slice
Lemma at time t;, 1 = J,J + 1, for ¢ =, W =W,, and X = X,_.

Let Co := W, \ Int X and C; := W, , \ Int X; as in the Bryant Slab Lemma. By
the Bryant Slice Lemma applied at time ¢;.; we know that x(t;11) = ¥ (pyy,0) is
117 comp-thin. So, by construction of €2, we have x(t;11) € C; # (). By assertions (a),
(b) of the Bryant Slice Lemma we find that Cy = C and that C; is a 3-disk component
of My,,, \ Int Q. Assertions (a), (b) of the Bryant Slab Lemma imply that C;(t) is
9T comp-thick for all ¢ € [t;,t;11] and Ci(t;) D Cp and C = Cy = Ci(ty) \ Int/\/’t‘i. It
follows that Z := C; is a component of type (III), and so Z(t;) C Q*(t;) = N/
Thus C C N7\ Int Ny, and since C is a component of M,, \ Int A/, it is also a
component of A"\ Int V7. Hence the “if” direction of holds.

In order to verify Definition and the “only if” direction of a priori assumption
(APA 5), we need the following fundamental result.

Lemma 11.17 (Structure of extension caps). If
Min <Tins 0 <0n,  ASA Dep>D
&b < O, €can < €can( A, A, 0p) Teomp < Teomp(A),
then the following holds.
If Z € My,,, \ IntQ is a component of type (1), then Z(t;) C Ny, .

(11.18)

Before proceeding, we first explain how Lemma completes the verification of
Proposition [11.1
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For this purpose consider a component C* C N, \ Int N;,—. As Q(t;) C Int Ny, _,
we have C* C N, \Q(t;). Thus C* C Int Z(t,) for some component Z C M, \Int Q2
of type (I), (II) or (III). By the above lemma and condition (II)(c), Z cannot be
of type (I) or (II) and therefore must be of type (III). Next, observe that C* C
Z(t) \IntN;,— =: C and C = Z(t;) \ Int Ny, C N, \IntN;,—. As C* is a
connected component of NV, \ Int V;,_, it follows that C = C*.

By (III)(c) we know that C* = C is a 3-disk, which proves Definition [7.1J{4]). The
remaining statements of (I1I)(c) imply that C* = C satisfies (APA 5)(a)—(e).

Next, we provide an outline of the proof of Lemma [11.17] neglecting several tech-
nicalities.

Assume by contradiction that Z is a type (I) component with Z(t;) ¢ N;,—. This
means that Z(t;) contains a component C of the complement M,,_ \ Int N},_. As
Z consists of weakly 10A7rcomp-thick points and C contains a 10A7reemp-thin point by
a priori assumption (d), there must be a point in C whose scale increases
over the time-interval [t;,¢,11]. By Lemma [8.38] this is only possible if Z and C lie
in a large spacetime region W C M that is very close to a Bryant soliton. More
specifically, we may assume that this region is 9Arqomp-thick and defined over a long
backward time-interval of the form [t;_;,,t;1], where Jy > 1.

The existence of the component C and the Bryant like geometry on W will then
force the existence of a sequence of components C; C M, \ Int j\/}j_ for y = J,J —
1,...,J — Jg, where C; = C. This will follow from a priori assumption ,
which forbids the discard of components that remain Arcomp-thick during a time step.

Next, using the bilipschitz bound on the comparison map ¢ imposed by [(APA 6)}
and the fact that W is not too neck-like, we will find that for ¢ € [t;_;,,t;], the

image ¢;(W N N;) intersects a smoothly varying 3-disk region W\t’ C M with scale
and diameter comparable to 7¢omp.

The union W’ C M’[tJ o t] of these regions forms a “barrier region” that will help
s

us show the existence of a point 2 € W/

has the property that 2/(t) € W' for all ¢ € [tr—s,,ts]. The scale of 2'(t) will be
controlled from above and below by a constant that is independent of Jx. Therefore,
if we choose J large enough, then we can find a time-step t; € [t;_j,41,%;-1] such
that the scale of z(t) hardly decreases over the time-interval [t;_;,¢;]. Using again
Lemma [8.38 (this time in M’), we will deduce that the geometry near z'(t;) is close
to a Bryant soliton. This means that applies and would have forced C; to

be an extension cap, giving a contradiction.

. that survives until time ¢; and that

Proof of Lemma[11.17 Fix a type (I) component Z C M, \Int Q for the remainder
of the proof and assume that Z(t;) ¢ N;,. So Z(t;) intersects a component C of
M, \ Int V;,_. Because Z(t;) is a closed subset, its topological boundary in M,
is 0Z(t;), and since 0Z(t;) C 0Q(t;) C Int Ny, _, it is disjoint from M, \ Int Ny, _.
The connectedness of C now implies that C C Z(t).
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By a priori assumption [[APA 3)[(d) there is a 10Arcomp-thin point z € C C Z(t,).
By the type (I) property and the discussion in Subsection [11.3] we know that z
survives until time ¢;;; and that z(t,41) is weakly 10A7comp-thick. We can therefore
apply Lemma to x and obtain that a large spacetime neighborhood of x(t;,;) is
close to a Bryant soliton. More specifically, Lemma [8.38| implies the following. Let
04 > 0 and Jyu < oo be constants whose values will be determined in the course of
the proof. Then, under a condition of the form

A S %7 €can S Ecan(/\a J#» 5#),
we can find a (10A7¢omp)?-time equivariant and d-preserving diffeomorphism
W W* = Mpy (05,') x [—min{J, Jg + 1} - (10A)7%,0] — M
onto its image such that ¢ (xp,y,0) = z(t;41) and

(1119) ||(10)\Tcomp)_2¢*g - gBry

- < Oy

0[5#1](W*) #

Let W = ¢ (W*). Note that W* has been chosen in such a way that its image W has
initial time-slice ¢;_;, if Jy < J and t; otherwise.

Next, we show that the existence of the component C of M;, \ Int NV}, forces the
existence of components C; C M, \Int Mj_ at a large number of earlier times ¢; < ¢;.
The existence of these components will be deduced using priori assumption (APA 4)
and the Bryant-like geometry on W.

Claim 1 (Cap hierarchy). If, in addition,
6n < O, A<, A>A, 6 < 6u(N A, Jy),
then J > Jyu + 1 and:

(a) For all J — Jy < j < J the subset C; := Wy, \ Int Ny, _ is a 3-disk.

(b) For all J — Jg +1 < j < J all points on C; survive until time t;_; and
Ci1 C Ci(tj-1).

(C) C= CJ.

Proof. In the following we will apply the Bryant Slice Lemma at time t; for
X =N, where J — Jy < j < J. We will also apply the Bryant Slab Lemma [8.40]
for Xo = N;,_,— and X, = N;,_, where J — Jx +1 < j < J. Note that assumptions
(i)—(iv) of the Bryant Slice Lemma hold due to a priori assumptions (APA 3)(a)—(c)
and assumption (v) of the Bryant Slab Lemma holds due to Definition [7.1}(3). If

5n§5n, 0< A< 1, AEA, 5# SS#(J#,)\,A),

then the remaining assumptions of both the Bryant Slice and the Bryant Slab Lemma
are satisfied. This means, in particular, that the time-slice W, and the slab Wy, _, ;
satisfy the assumptions of the Bryant Slice Lemma and the Bryant Slab Lemma, for
all J —Jyu <j<Jand J—Jg+1<j <J, respectively.
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Since x € C N (Wy, \ Int V;,_), we know by the Bryant Slice Lemma at time ¢,
that C; := Wi, \ Int V, is a 3-disk and is a component of M, \ Int V;,_. Hence it
coincides with C, which proves assertion (c).

Fix some j with J —J, < j < J. Assume inductively that j > 1 and that assertion
(a) holds for all j < j* < J and assertion (b) holds for all j +1 < 5/ < J. If
j=J—Jyu, then J > Ju +1, as claimed, and assertions (a) and (b) hold. So assume
in the following that j > J — J.

By assertion (a) of the Bryant Slab Lemma, C;(t) is defined and 9Aromp-thick for all
t € [tj—1,t;]. Moreover, the subset C;(t;_1) is a 3-disk component of M, _ \Int N}, _ 4
and 9C;(t;_1) C ONy,_ 4. It follows from that j — 1 > 1. Now suppose that
Ci—1 = Wy, \Int N,_,_ = 0. It follows that C;(t;_1) C W, , C Int N;,_,_. Therefore
Ci(tj—1) € Ny,_,— \ Int My, 4, and since it is a 3-disk with boundary contained in
ONy,_,4, it is a component of Ny, _,_\Int N}, _, ;. This contradicts a priori assumption
(APA 4)| Thus C;—; # 0 and by the Bryant Slice Lemma at time ¢;_; it must be a
3-disk. So assertion (a) holds for j — 1 and assertion (b) holds for j.

By induction we conclude that J > Jx + 1, and (a) and (b) hold. O

We remark that in the following construction, we have to choose W and W larger
than the reader may anticipate. The reason is purely technical: Due to the fact that
only gives us C° bounds on the metric distortion of ¢, the weakness of the
resulting scale distortion control (see Lemma forces us to work in a region whose
boundary has scale a large multiple of 7comp.

We will now construct the subset W C W. For this purpose fix the (universal)

constant Csp from Lemma [8.23|and assume without loss of generality that C'sp > 100.
Define

W* C Mgy x [—(J4 + 1)(10A) 2, = (10A) 2]

to be the set of points on which p < 20C2, - (10A)=2. Then W* is closed and

connected, and its time-slices W}* are pairwise isometric 3-disks for all ¢ € [—(J4 +
1)(10A) 72, —(10X) 2. If

Op < 0u(A, Jy),
then
W* C W* = My (6,7 x [~ (Jg +1)(100) 72, —(10A) 2] .

So we may define

—~

W .= w(W*) C M[t‘,i‘]#ﬂgJ] .
Then, assuming

5# S S#()\a J#) ) Tcomp S Fcomp )
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we obtain that for all t € [t;_,,,t;], the time-slice Wt is a 3-disk and

1OC§Drcomp <p=p < 4OC§Drcomp on 8/1/17,5.
(11.20) W \Int W, is 1002y Teomp-thick

o~

W, is 4OC§Drcomp—thin
Claim 2. If
5n S gn, 5# S g#()\v A7 J#)7 €can S Ecana Tcomp < Fcompa

then:

(a) W C M\ UpecusD, and hence by Definition[7.4(5) the map ¢ is well-defined
on W[tJ_J tJ] ﬂ/\/
#7
(b) Forall J —Jyu <j<Jandt € [t;_1,t;],

(11.21) W\ Int W, C Int N7 .
(¢c) C; CIntW,, forall J — Jyu <j<.J.

Proof. 1f
5# < 5#0‘7 A, J#) )

then for every J — Ju < j < J+1 we get that aWtj is A7 comp-thick.

Suppose that DNW,, # () for some D € Cut. Note that this implies that J — .Jy <
Jj < J. Since D is Ar¢omp-thin by !APA 3!(6), it is disjoint from OW,;.. So since D
is connected by Definition (2)7 we have D C W;,. By Definition (3) the cut D
contains an extension cap. However, this contradicts assertion (b) of Claim 1. So we
have shown assertion (a) of this claim.

Now suppose that J — Ju <j<J+1landt € [tj_q,t;]orj=J—Jyand t =t,.
As OW,, is Arcomp-thick, it is contained in /\/tj_ by [(APA 3)(b). Thus oW, C N7.

Moreover, if

51’1 S gl’l? Ecan S Ecan7 Tcomp S FCOl’l’lp?
then we obtain from Lemma that 8Mj is 2.1r¢.omp-thin. In view of the fact that

Wi\ Int(/T/IZ) is connected and 1003y eomp-thick by (11.20)), it is disjoint from ON}
and hence contained in N;. This proves assertion (b) and assertion (c¢) follows in the
case t = t;. O

Next we consid/\er the image of W, \ Int /V[Z under ¢, and show that the boundary
component ¢,(0W;) is adjacent to a region with controlled geometry.
Claim 3. Assuming
Min <7, 00 <0n,  ASA, AR, Gy <Op(NJy),
Teomp < Teomp(A) s €can < €ean(N)

there is a constant C; = C1(\) < oo with the following property.



104 RICHARD H. BAMLER AND BRUCE KLEINER

There is a subset W' C M’[tJ o] such that for every t € [ty_j,,t/]
e

(a) /I/I?t’ is a 3-disk.

(b) /Mitl N qbt(Wt \ Int Wt) = gzﬁt(aWt) = 3Wt'.

(¢c) W' is compact and its relative topological boundary inside the time-slab M{tk‘l#’t‘]]
is equal to Uept,_,, ,tJ](?/Wt’.

(d) ﬁ/\t’ is C17comp-thin and Oy 'reomp-thick and diam, /Wt’ < C7comp-

(e) OW/ is 10CspT comp-thick.

(f) For any J — Jy < j < J the difference C; := W/ \ ¢y,—(Int Ny, ) is a 3-disk
component of My \ ¢, (Int Ny, —) and we have 9C; = ¢y, (9C;).

Proof. Fix t € [t;_;,,t;]. By (11.20)), a priori assumption (APA 6) and Lemma @,

assuming

(11.22) Min < Tins 00 <0n,  €can < €ans  Teomp < Tcomp s
we have

(11.23) 10CsD comp < p1 = p < 40C35Tcomp 00 G (OW,),

and

(11.24) diam ¢t(8/V[7t) < 10 diam 8/1/[7,5 < C1Tcomps

where (] < oo is a universal constant that can be determined in terms of Cgp.

Choose = € a/VIZ. Using (11.20) and assuming
5# S S#()\a J#)7 Tcomp S Fcompv

we can find a point y € W, \ Int /Wt with p1(y) = p(y) = 80CSpTcomp that can be

connected to x by a path of length C)r e, inside Wy \ Int W,, for some Ch=Ch(\) <
o0o. Let 2’ = ¢(z), ¥ = ¢i(y). Again by the scale distortion Lemma [8.23] a priori
assumption (APA 6), and assuming a bound of the form (11.22)), we conclude using

(11.23) that
(11.25) p(y') > 8003 T comp > 20(7)

and d g (7', y') < 2037 comp. So there is a constant 0° = §°(A) > 0 such that 2’ cannot
be a center of a 6°-neck in M.
Let us now apply Lemmato x’ for § = §°(A). In order to satisfy the assumptions
of this lemma, we need to assume that
ecan S Ecan()\)a rcomp S FCOI‘ﬂp'

We obtain a constant Cy = Cy(6°(A)) < oo and a compact subset V' C Mj, containing

2’ such that (compare with (11.23)))
(11.26) 10C;  CspTeomp < p1 = p < 40CoCEpT comp on Vv’
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and such that diam; V' < 40C,C8preomp. Moreover, we may assume that 6°(\) is
chosen small enough such that B(z', max{C},2C}}7comp) C V’. This implies that
y' € Int V' and

(11.27) ¢ (OW,) C Int V.

We claim that V' is a 3-disk. To see this, we assume
6# S S#()\a J#)a Tcomp S Fcomp()\)>

such that OW,; is 40CoCEpTeomp-thick and that 40CoCEpTreomp < 1. So, again, by the
scale distortion Lemma [8.23] a priori assumption (APA 6), and assuming ((11.22)), we
obtain that ¢,(0W;) is 40CoCpT comp-thick. Thus by (11.26) we have

As 2’ and ¢;(0W,) lie in the same connected component of M}, we must have OV’ # ()
and due to (|11.25)), Lemma implies that V'’ is a 3-disk.

By (11.27) the 2-sphere gzﬁt(@/V[Z) bounds a 3-disk /Wt’ C V’'. We now repeat the
construction above for all ¢ € [t;_ Tyt s and set W' := Uep, st ;JW/. Then assertion
(a) holds automatically.

Next, observe that /Wt’ and ¢y (W \ Int(/Wt)) are compact connected domains with
smooth boundary that share a single boundary component gzﬁ(@wt) Therefore as-
sertion (b) of this claim can fail only if ¢,(W; \ Int Wt) C /Wt’ C V', which would
contradict (11.28)). Thus assertion (b) holds.

In order to show assertion (c), it suffices to show that for all ¢ € [t;_;,,t;], every

point g € Int /Wt’ is not contained in the relative boundary of W’ inside M

ty—gyits]”

To see this, let U C /\/l’[tJ uits] be a product domain containing W/ that is open in
e

- By Claim 2 and Definition , the map ¢ is well-defined and smooth on a

/
. it
[t]fJ# ty

neighborhood of Uz, st AWz \ Int /Wg. Therefore, after shrinking U if necessary, we
may assume that if £ € [t;_;,,t;] is close to ¢, then (¢(W7\ Int /Wg) NUz)(t) is defined

and moves by smooth isotopy as ¢ varies. So by assertion (b) the 3-disk (W\g’ NU)(t)
varies by smooth isotopy as well and therefore it contains a small neighborhood of ¢
inside M}, for ¢ close to t. This implies that a small neighborhood of ¢ is contained in
Uzel

trmsy it ,)W7, which finishes the proof of assertion (c). The same argument implies

that W' is a finite union of compact subsets and must therefore be compact.
Assertions (d) and (e) follow by construction of /V[Z’ and (11.26) and (11.23), as
long as C; > 40C,C8p,.
Lastly, consider assertion (g). Suppose that J — J, < j < J.
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Recall that C; = W, \ Int Ny, _ is a 3-disk by assertion (a) of Claim 1. By assertion
(/‘ti) of Claim 2 we hixie Wy, \ Int Wy, € IntN;,_. So C; C IntW,,. Therefore,
Wi, \IntC; = ./\ftj, N W, is a compact connected manifold with boundary.

As gbtj_((?wtj) = 8Wt/j and ¢y, :/\//’E_ — ./\/l;j is injective, the image ¢, (Int Wtj N
./\ftj,) must either be contained in Wt’j or in its complement. Since ¢, maps a
neighborhood of dW;, in W, into Wt’j, we obtain by connectedness that gbtj_(Mj_ N
Wi,) C Wt’j. By the same argument, if Ny is the component of A, _ that contains
OW4;, then ¢y, (No \ Wy,) is disjoint from Wy .

Assume now that there is a component Ny # Ny of N,_ with the property that
¢¢;(IN1) intersects I/Vt'j. Then again, since ¢, (OW;;) = 8Wt’j and ¢y, is injective,
we must have ¢ (N1) C Wy . By a priori assumption (APA 3)(c), we know that Ny
must contain a Areemp-thick point. So by Lemma [8.23] and assuming

Min S ﬁlim 5n S 5n7 €can S ECana rcomp S ?compa

these points must be mapped by ¢ _ to Cgp min{A, 1}7¢omp-thick points in /I/IZ’]
Assuming

A Z A()\)7 Tcomp S Fcornp<>\)a
this, however, contradicts assertion (d) of this claim.

Combining the conclusions of the last two paragraphs, we obtain that
b1, (N2 ) VWV, = i, (No) NV = 6y, (No N W) = o, (N, - NI,
Since 8/I/I7t’j = ¢tj,(8wtj) we obtain from Alexander’s theorem that C; = /Wt’j \
Gu;—(Int N, —) = Wi\ &y, - (W, NInt Ny, ) is a 3-disk. As €, C Int W, it is also a
component of Mj \ ¢, (Int NV, ). This establishes assertion (f). O

Choose 2/ = gbtJ_J#_(Z) e ¢tJ_J#_(aCJ_J#). We now show that 2’ survives until
time t; and at some time lies at the tip of an approximate Bryant soliton.

Claim 4. If
Min < Tin s 00 <0n,  Ju=Ju(N ),  €can < Can(0b, J4)
Teomp < Teomp(A) 5
then:
(a) Z'(t) is defined and contained in /Wt’ forallt € [t;_;,,t;].
(b) There is a jo € {J — Jg,...,J — 1} such that (M;J_O,z’(tjo)) is Op-close to
(Mpgyy, gBry; TBry) at scale p(2'(t;,)) < C1(A)7comp-

Proof. By the scale distortion Lemma and a priori assumptions (APA 3)(a),
(APA 6) we obtain, assuming

Tin S Min, 5n S 5n7 €can S ECana Tcomp S Fcompa
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that p(2') = p1(2') < Cspp1(2) < 2CspTcomp-
Next, recall that the scalar curvature on any s-solution is pointwise non-decreasing
in time. So assuming
€can S Ecan(J#)a Tcomp S FComp7

we obtain from Lemma that at any y € M’ with p(y) < 4CspTcomp We have
(11.29) 0’ (y) = 0 (3R) < CapJy "

Choose now t* € [t;_;,,t;] maximal such that 2'(t) is well defined for all ¢ €
ts—s,,t*). By we have p?(2/(t)) < 5C3pregm, for all t € [tJ,J#H,t*)/\and
therefore p(2'(t)) < 10CspTeomp for all such t. Suppose that t* < t;. As W' is
compact, we must have z(t) ¢ W' for t close to t*. So there is a ¢/ € [tr—g,.t")
By
assertions (c) and (e) of Claim 3 this, however, implies that p(z(t')) > 10CspTcomp.

such that z(¢') lies on the relative topological boundary of W' inside M

tr—gyts]®

contradicting our previous conclusion. Therefore, t* = t; and z(t) € W' for all
t e [tJ,J#,tJ].
Since
J—1

Y (pE () = p(2'(t5-1)) = pla(ts-1)) = p(=') > =p(2') > —2CspTcomp,

j=J—Jy+1
we can find a jo € {J — Jg +1,....J — 1} such that
2Csp
p(z/(tjo)) - p(Z/(th_l)) > _ﬁrcomp'
#

Next, observe that C7 ' (A)reomp < p(2'(tj,)) < C1(N)Tecomp by assertion (d) of Claim 3.
So by Lemma [8.38] assuming

J# 2 i#(A, 5b)7 €can S Ecan()\a (5b)7 Tcomp S Fcomp<)\)7
we find that (M;jo,z'(tjo)) is dp-close to (Mpyy, gBry, Tary) at scale p(2/(t;,)). O
Consider the component C; from assertion (f) of Claim 3. We will now verify that
(APA 5)(a)-(e) hold for C = Cj, and C" = C; , forcing the existence of an extension cap

at time ¢,. A priori assumptions (APA 5)(a), (b) hold by Claim 1(a) and Claim 3(f).
A priori assumption (APA 5)(c) is implied by (11.19)), assuming

A priori assumption (APA 5)(d) and the diameter bound on C} in a priori assumption
(APA 5)(e) hold by Claim 3(d) and Claim 4(b), as long as

Deap > C1(N).
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Lastly, the diameter bound on Cj, in a priori assumption (APA 5)(e) follows from the
fact that C;, C Wy, and by construction, assuming that

Dcap Z Qcap()‘>‘

The conclusions of the previous paragraph imply that C;, must be an extension cap,
which implies that C;, C Mj0+. This, however, contradicts assertion (b) of Claim 1
for j = jo + 1, which finishes the proof. 0

12. INDUCTIVE STEP: EXTENSION OF THE COMPARISON MAP

12.1. Statement of the main result. In this section we consider a comparison
domain defined on the time-interval [0,%,41], as constructed in Section [11] and a
comparison defined on the time-interval [0,¢;]. Our goal will be to extend the com-
parison to the time-interval [0, ¢;,1]. The following proposition will be the main result
of this section.

Proposition 12.1 (Extending the comparison map by one step). Suppose that

T>0, E>E,  H>H(E), i <T(E),

v <v(T,E, H,min), b0 < 0u(T, B, H, mhin), A <A,

Newt < Teuts Dewe 2 Doy (Ta E, H, Min, A, Deap, Neut)

(12.2) W >W(E,\ Do), A>AENW), A>ANA),
dp < 5b(T, E, H, Min, A, Dcap777cut7 Dy, AvA)a
€can < €ean(T, B, H, Miny A, Deap, Neut, Deus, W, A, A),
Teomp < Teomp(Ts H, A, Deut),

and assume that:

(1) M, M are two (€canTcomp, I')-complete Ricci flow spacetimes that each satisfy
the €can-canonical neighborhood assumption at scales (€canTcomps 1)-

(ii) (N ANTYEL At;320) is a comparison domain in M, which is defined over
the time-interval [0,t;41]. We allow the case J = 0.

(ii) (Cut,¢,{¢"}/_,) is a comparison from M to M’ defined on (N,{N7 ‘]];rll,
{t; fiol) over the time-interval [0,t,]. If J = 0, then this comparison is trivial,
as explained in Definition[7.3,

() (N ANIYEL Lt jjiol) and (Cut, ¢, {¢’}]_,) satisfy a prior assumptions
for the parameters (Min, On, Ay Deaps A, Oby €cans Teomp) and a pri-
ori assumptions (APA 7)-(APA 13) for the parameters (T, E, H, iy, V, \, Neut,
Dcuta VV; A7 Tcomp) .

(v) ty <T.

(vi) If J = 0, then we assume in addition the existence of a map ¢ : X — M;

with the following properties. First, X C My is an open set that contains
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the 0, 'Tcomp-tubular neighborhood around Ny. Second, ¢ : X — M} is a
diffeomorphism onto its image that satisfies the following bounds on X :

1" g0 — 9ol < Min,
el g0 — gol S vQ =v - 107" T

6HTp:1)"C*g() - gO‘ S V@* =Ur: 10_17711n()\rcomp)3-

Assume moreover that the €..,-canonical neighborhood assumption holds at
scales (0,1) on the image ¢(X).

Then, under the above assumptions, there are a set Cut’ of pairwise disjoint disks
in My, a time preserving diffeomorphism onto its image ¢’ : N/t — M’ and a
continuous map

¢ N\ Upecwruou? D — M

such that the following holds.

The tuple (CutUCut”’, ¢, {¢’ j;rll) is a comparison from M to M’ defined on

(N, {NY 3];“11, {t]}jiol) over the time-interval [0,t;11]. This comparison and the cor-
responding domain still satisfy a priori assumptions |(APA 1){(APA 6) for the pa-
rameters (Min, On, A, Deap, A, Ob, €can, Teomp) and a priori assumptions [(APA 7)H(APA

fOT’ the pammeters (Ta E7 H) Min, V, )‘7 Neut s Dcut7 VI/’ A7 Tcomp)-
Lastly, in the case J =0 we have ¢} = C|N&.

The proof of Proposition is divided into three steps, which are of rather differ-
ent character. These are presented in Subsections [12.2] [12.3| and [12.4] respectively.

In the first step, we identify the set of disks Cut”, and construct the initial map
o] JH, at time t;, so that it is defined on the union of N;,_ with the extension caps,
and agrees with ¢,,_ away from the cuts in Cut”. Here we use the Bryant Extension
Proposition, Proposition [I0.1]

In the second step, we promote this extended map to a map ¢’ *! that is defined on a
time-interval of the form [t;, t*], for some t* € (t;,t,.1], by solving the harmonic map
heat flow equation. Unfortunately, at this point we cannot guarantee a priori that
the harmonic map heat flow equation admits a solution on the entire time-interval
[t7,ts11], as it may develop a singularity at an earlier time. However, we can rule out
such a singularity as long as the solution satisfies certain uniform bounds. In such a
case we can indeed choose t* =1 ;,4.

In the third step, we verify that the map ¢”/*!, as constructed in the second step,
satisfies a priori assumptions [(APA 1)H(APA 12)l Our main focus will be on a priori
assumptions|(APA 6)H(APA 9)| as the remaining a priori assumptions follow relatively
easily from our construction. Once this is done, a priori assumption provides
sufficient control on the map ¢’*! to rule out the development of a singularity up to
and slightly after time ¢*. It thus follows a posteriori that ¢* = t;, 1, which finishes
the proof.




110 RICHARD H. BAMLER AND BRUCE KLEINER

Readers interested in a more detailed description of the steps above will find further
explanations embedded in Subsections [12.2H12.4]

This section is organized as follows. The intermediate results, Propositions
and are presented in the next two subsections. In order to reduce complexity,
we have organized the discussion in each of these subsections to be independent from
the remaining subsections; no assumptions are implicitly carried over to from one
subsection to the next. The last subsection (Subsection contains the proof of
the main proposition (Proposition . This proof is linked to subsections
and only via the intermediate results, Propositions [12.3 and [12.22, and does not
depend on the details of their proofs.

As in Section [T1], we introduce parameter bounds in displayed equations.

12.2. Extending the comparison over the extension caps. In this subsection,

we consider a comparison domain (N, {N7}/2! {t;}74]), which is defined on the
time-interval [0,¢741], and a comparison (Cut, @, {¢’ 3-]:1), which is defined on the
time-interval [0,¢;]. Based on this data, we will construct a collection of cuts Cut”’

at time ¢; and a map ¢ : Nj,— UN;,, — M , which can be seen as an extension of
¢¢,— away from the cuts. In Proposition [12.22 which is the main result of the next
subsection, the initial value ¢, of the map ¢”*! will be taken to be the restriction

of gg to Ni,+. In the proof of this proposition, it will turn out to be necessary that

-~

¢ is defined on a slightly larger domain than ¢;,. due to technical reasons having to
do with our process for promoting ¢, to later times ¢t > ¢;.

Proposition 12.3 (Extending the comparison over the extension caps). Suppose that

E>E,  n<T, 0 <0y, A<\
Dew > Do (T, E, H, Mhin, A, Deaps Neut ) A=A,
(12.4) b < 0u(T, E, H, Mins A, Deaps Neuts Deut, A4, A),
€can < €can (T, B, H, Min; A, Deap, Neut, Deut, A, A),
Teomp < Teomp(Ls H, A, Deyt)

and assume that assumptions (i)—(v) of Proposition hold and that J > 1.

Then there is a set of cuts Cut”’ at time t;, i.e. a family of pairwise disjoint 3-disks
in Int Ny, 4, and a diffeomorphism onto its image ¢ : Ni,— UN;, 4 — M, such that
the following hold:

(a) Each D € Cut’ contains evactly one extension cap of the comparison domain
(N ANV {t;372)) and each extension cap of this comparison domain that
is in M, is contained in one D € Cut”.

(b) ¢ =or,— on MJ_ \ Upecu? D-

(c) Every cut D € Cut’ has diameter < Dcyreomp and contains a %Dcutrcomp—
neighborhood of the corresponding extension cap in D.
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(d) The associated perturbation b= a*gfu — gt, satisfies ]ﬁ] < Min on Ni,— UN;, ¢
and

T p31h) < D@

on each D EACutJ.
(e) The image ¢(Ny,— UN, 1) S €canTcomp-thick.

The main idea of the proof of this proposition is to use the Bryant Extension
Proposition in order to construct the cuts D € Cut’ and the map ¢ on each D.
The assumptions of the proposition hold due to a priori assumptions and
: the former implies that regions in M that are close to extension caps, as
well as the corresponding regions in M’, are geometrically close to Bryant solitons;
the latter gives the bound @ < @ near each extension cap.

While the strategy of proof can be summarized in a relatively straightforward way,
there are several technical issues that we need to address. First, we need to argue that
extension caps at time t; are positioned close enough to a tip of an almost Bryant
soliton region and that those regions are far enough away from one another to allow a
separate construction of ¢ in a large neighborhood of each extension cap. Second, we
need to verify the condition under which a priori assumption guarantees the
bound @ < Q. Lastly, once the cuts D and the extensions have been constructed on
each D, we need to verify that the resulting map ¢ satisfies all the desired properties,
for example that it is a diffeomorphism onto its image.

Proof. In the following proof we will always assume, without further mention, that

(12.5) Mhiny A Teomp < 1072
and that
0n < O
is chosen small enough such that by a priori assumption [[APA 3)|(a) we have
(12.6) 0.97comp < p1 = p < L.17comp on ONG,—.

By definition of the comparison domain (N, {N7}/F}, {t;}74}) we know that N, .\
Int NV;,— is a disjoint union of (possibly infinitely many) extension caps C;, i € I,
which are 3-disks. A priori assumption [(APA 5) implies the existence of components

Ci, i€ I, of Mj \ ¢,—(Int Ny, ) such that the following holds for all i € I:
(1) C!is a 3-disk.
(2) é1,-(0C;) = OC;.
(3) There is a diffeomorphism v; : Mg, (6, ') — W; C M, such that 1;(zp.) €
C; and

[ (10N comp) >4 91, — gBay <.

71 e —
’c[“b (Mery (551))
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(4) There is a diffeomorphism ¢} : Mp,(6;") = W/ C M; such that dy, (¢}(2psy),
C!) < DeapTeomp and

Hai_2<¢z/‘)*g£J - gBryHC[agl](m) <y

for some scale a; € [D;ai)rwmp, DeapT comp)-
(5) C; and C; have diameter < D apTcomp-
Since ¢y, : Ni,— — ¢(N;,—) C M;, is a diffeomorphism onto its image, we obtain
from items (1) and (2) that the components C;, ¢ € I, are pairwise distinct.

We will assume in the following that
S, < O,
is chosen sufficiently small such that for all ¢ €

(6) lengths of curves in Mp,, (6, ') are distorted by t; by a factor of at least 9A7comp
and at most 11A7comp.

We now fix a constant Dy < oo whose value we will determine in the course of
the proof. This constant controls the size of the neighborhood around each extension

cap C; in which we will carry out our construction of g/b\ More specifically, each such
neighborhood will be of the form ;(Mg,,(D4)) D C;; in particular, its diameter will

be approximately D - 10A7comp. Outside these neighborhoods, we will set $ =,
and we will choose the cuts Cut” to be disks that are contained in the corresponding

Vi(Mpry (Dg)).

As we proceed with the proof of Proposition [12.3], we will establish several claims,
which hold under certain bounds on the parameters. At any point in the proof we
will assume that the parameter bounds of the preceding claims hold, so that we can
apply the assertions of these claims without restating the parameter bounds.

We first show that, under certain assumptions on our parameters, the neighbor-
hoods ;(Mp,y(Dy)) are pairwise disjoint and the extension caps C; lie in bounded
domains of the form v;(Mp,y(Do(N))).

Claim 1. There is a constant Dy = Do(\) < oo such that if
5n Sgna A ZA> D# 2 DO()\)a 5b Sgb()\w/\?D#)a
Tcomp S Fcomp(l)#>7

then Dy < &;' and the images ¥;(Mp,, (D)), i € I, are pairwise disjoint. Moreover,
for all i € I we have

(12.7) Ci C¥i(Mpry(Do)),  ¥i(Mpry(Dy)) C Wi C N, - UG
and

(12.8) 9reompp(x) < p(¥i(x)) = pr(¥i()) < T1ATcompp()
for all € Mp,y(Dy).
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Proof. Fix some index i € I. The bound ([12.8)) follows immediately from (3), provided
that

5b S gb(D#)a Tcomp S Fcomp(D#)'
Next, we invoke the Bryant Slice Lemma [8.39] for X = N, , assuming

5 < O, A > A, &b < Op(A,A).

Assumptions (i)—(iv) of this lemma hold due to Definition|7.1|and a priori assumptions
(APA 3)(a)—(c). The first inclusion in ((12.7)) is a restatement of assertion (d) of the
Bryant Slice Lemma and the second bound is a consequence of assertion (a).

Finally, assume that ¢;, (Mpry (D)) N ¢y (Mpey(Dyg)) # 0 for some iy # iy. Then,
assuming

8, < 107D,
we must have C;, C vy, (Mpyy(Dy)) C Wi, contradicting the second inclusion of
(12.7). This finishes the proof of the claim. U

In the second claim we show that the neighborhoods ;(Mp,y(Dx)) around the
extension caps C; are mapped by ¢,,_ into the regions W/, which are geometrically
close to Bryant solitons.

Claim 2. If
6b S gb()\a Dcapa D#)v
then Dy < 6" and ¢;,_ (i(Mpry(Dy)) \ IntC;) C W/ for alli € I.

Proof. Fix an index i € I and a point y € 1;(Mp,y(Dy)) \ IntC;. By Property [(6)]
above, we can find a continuous path ~ : [0, 1] — N;,_ between y and a point z € JC;

whose length is at most 11A7comp - 2D 4. Assuming (12.5)), we find that the length of
its image ¢, o is bounded by 100D 4Ar¢omp. S0 since ¢y, (9C;) = IC;, we have

di, (91, (y), 9C;) < 100Dy AT comp-
On the other hand, by Properties (4), (5) above we have
9C; C B(Y;(Bry), 2DcapTcomp)-
So if
b < 0b(A, Deap, D),
then we obtain that y € W/, as desired. O

This concludes our discussion on the relative positions of the components C;, C; and
the images of the maps ¢; and ;. We will now focus on the associated perturbation
hi,~ = ¢, g;, — gi,- In the next claim, and its proof, we use the bound @ < Q, as
asserted by a priori assumption , to deduce a bound on the weighted norm
pElhy,—| on ;(Mpey(Dy)) \ C;. Using a standard local derivative estimate, we will
also deduce similar weighted bounds on covariant derivatives of the form V™h,,_.
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Claim 3. There is a constant C = C(E) < oo such that if
Min Sﬁlinv 511 Sgny A ZA 5b Sgb(Aa Dcut7A7A7 D#))
€can < Ecan()\a Dcut7 Aa A7 D#)7 Tcomp < Fcomp7

then for the associated perturbation hy,— = ¢;,_g; — g, the following holds for all
1€l and allm=0,1,...,4:

(12.9) AT pE|g™y, | < CX Ty HE on (Mg (Do+1,Dy —1)).

comp

As mentioned earlier, the main idea of the proof of this claim is to invoke the bound
@ < Q from a priori assumption |(APA 7). However, this bound is predicated on the
remoteness of cuts. In order to verify this remoteness, we will invoke Lemma [8.44]

Proof. Fix an index ¢ € I and a point x € 9;(Mp,y(Do+1, Dy —1)) for the remainder
of this proof. Then by Claim and Property @ above, we have
(12.10) B(x, Areomp) C i(Mpry(Do, Dg)) C N, —.
So for the corresponding parabolic neighborhood we have
P(x, AMrcomp) C /\/({Jiht‘]] C N\ Upecu D,
since D C My, ,) for all D € Cut.

Our goal will be to use a priori assumption |[(APA 7)|to deduce the bound Q < Q
on P(x, Arcomp)- S0 consider a point y € P(z, Arcomp) and set t' := t(y). We now
claim that for an appropriate choice of constants we have

(12.11) Py, Api(y))ND =10 forall D e Cut.

To see this choose a point z € C; C ON;,_ nearest to y(t;). Then, by (12.10) and
Property @ above,

(12.12) di, (y(ts), z) < 11D AT comp-

Let 2/ := z(t'). Since t' € (t;_1,t,], we can use the curvature bound on the product
domain N’ from a priori assumption to derive a distortion estimate of
the minimizing geodesic between y(t;) and z over the time-interval [t/,¢;]. Since
t; —t < (Meomp)?, we obtain that for some universal constant C] < oo

(12.13) dy(y, 2") < 111 Dy M eomp-

Next, let us apply bounded curvature at bounded distance, Lemma [8.10, at z, along

with (12.12)), while assuming
€can S Ecan(l)#)-
We obtain a constant C = C4(Dy) < oo such that by (12.6)
Cépl(y) Z Pl(z) Z 0-9Tcomp-
Combining this with ((12.13]), yields that

du(y,2") < D'p1(y)
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for some D" = D'(\,Dy4) < oco. So if t' < t;, then B(y,D'p1(y)) ¢ N. We can now
apply Lemma [8.44] (Boundaries and cuts are far apart) along with a priori assumption

(APA 11)| assuming
6n Sgna A 2A7 5b Sgb()\aDcuhAaA:D/()\?D#))a
€can < Ev:aun()\; Dcut7 A; A, DI()\v D#))7 Tcomp < Fcornp7

and obtain ((12.11]). The case ¢’ = t; follows from the case ¢’ < t; by continuity.
Using ((12.11)) and a priori assumption [(APA 7)| we can now deduce that

(12.14) T o (y)[he—(y)] = Qy) < Q = 107 g
Next, we apply bounded curvature at bounded distance, Lemma [8.10, at z, along

with a priori assumption [(APA 2)| while assuming
€can S Ecan(>\)-

We obtain that there is a universal constant C% < oo such that

(12.15) p(x) = pi(z) < Cyp(y).
The equality statement follows from ((12.8). Combining ((12.14)) with ((12.15)) yields
(12.16) e pB (@) |y, (y)| < 10757 CoPrint G-

If y = z, then this bound implies (12.9) for m = 0. The bounds on the higher
derivatives follow from ([12.16)) using (12.15]), a priori assumption |(APA 6), Shi’s

estimates and standard local gradient estimates for the Ricci-DeTurck flow (see also

Lemma |[A.13)), assuming
Min < M-
This finishes the proof. O

We will now apply the Bryant Extension Proposition [10.1] to the restrictions of
the map ¢;,_ to each W;, for suitably chosen D,. The resulting maps, which will be

denoted by ¢;, will be only defined on the domains ;( Mg,y (D)), but will be equal
to ¢.,— near the boundaries of these domains.

Claim 4. If
E Z Ev Necut S ﬁcutv D# Z Q#(T7 E7 H7 Min )\7 Dcapancut)y
5b § gb(Ta Ea H7 Thin, )‘7 Dcapa ncut);

then for each v € I there is a diffeomorphism onto its image

(12.17)

(12.18) @i+ Pi(Mpry(Dy)) — W]
and a 3-disk

D; = I/Ji(MBry(D# - 1)) Cc M.,
such that the following holds:
(b) ¢i = ¢1,— on i(Mpry(Dy)) \ Int D;.
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(¢) The perturbation h; == ¢7g;, — gs, satisfies the following bounds on D;

|hz| S Min, eH(T_tJ)p?‘%i‘ S ncut@* = Neut * 10_1nlin()\rcomp>3'

(d) $:(D;) = ér,—(D; NN, ) UInt ..
(e) D; contains the 8A\D 47 comp-tubular neighborhood around C;.

Proof. Fix some i € I. Set b; := ai(lO)\rwmp)*1 and notice that Property from
above gives
bi € [(10N) 7' Dy (10A) ™ Deap ).
Assume that
Dy >2(Do(N)+1)+1

and consider the map
¢ =1 0B, 0t Mpry(5(Dy — 1), Dy — 1) — My (6,1),

which is well-defined by Claims [I] and 2| Let g¢ := (10Arcomp) 2¥}g:, and g° :=
(10ATcomp) 2ti*g;, be the pull-back metrics on W; and W} to Mg,y (Dx). Notice that
these pull-backs are close to gp,y and bigp,y, respectively, by Properties |(3)| and

above. Rescaling (12.9) from Claim [3| by (10Areomp) ™" yields for kS := (¢9)*gl° — ¢¢
pP|Vmhy| < C(E)e PT=1)(100)"F < C(E)(10A) 7,

97
for all m =0,1,...,4. Here we have used t; < T.

We now apply the Bryant Extension Proposition with D = Dy — 1, b =
C(E)(10N)7E, p = e HTt)n. 107 - myyy - 071, € = max{(10A) ' Deap, b}, ¢ = 62,
g=97, 9 = g°. We obtain that if

EZE) D# ZQ#(TyE;H7771in7>\aDcap777cut)7

5b S gb<T7 E, H7 Min, >\a Dcap> ncut)’
then there is a smooth map ¢S : Mg,y (Dy — 1) — Mg,y (6, ") such that for h =
(69)"g;° — ¢"g; we have

(12.19) p* |

g° < Tcut eiH(TitJ) : 1074771in'

Now set 5, =1l o 5;’ o1, !, Then assertion (b) holds due to assertion (a) in Propo-

sition Rescaling (12.19)) by 10Areomp implies the second bound in assertion (c).
The first bound in assertion (c) follows from the second assuming

ncut S ﬁcut? 6}:) S 3b

Assertion (a) follows from Claim 1.

To see assertion (d) observe first that by assertion (b) and ((12.7)) from Claim [1| we
have

8(d:(D1)) = 6i(IDy) = ¢y, (9D;) = (s, (D; NN, ) UTnt Cy).
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So the smooth domains on both sides of the equation in assertion (d) share the same
boundary and by assertion (b) these domains lie on the same side of this boundary.
So they have to agree.

Assertion (e) follows for
D # > Q#()‘)

from ([12.7) in Claim [I] and Property [(6)] from above. O

Next, we combine the maps qbz and ¢;,_ to a map gb Ny, UN, - — /\/l’ To do
this, recall that by Claim [I] the subsets ¢;(Mp,y(Dy)), i € I, are pairwise dlsjoint.
So by Claim 4| I ), the 3-disks D;, ¢ € I, are pairwise disjoint as well. Moreover, recall
that by Claim 1 and Claim (a) we have

Niym UN o = Ny, - Uier Int C; = N, Uier D
Therefore we can define ¢ : AV, = UN, 4+ = M, as follows:

QE'_ 251 on each D;, 1el
. G, on Niy—\ UierD;

Claim 5. gg 1s a diffeomorphism onto its image.

Proof. By assertions (a) and (b) of Claim 4 we know that ¢ is smooth and has non-
degenerate differential. Next we argue that ¢ is injective. To see this, observe that
the maps ¢;, ¢ € I, and ¢,,_ are each injective. So it suffices to show that the images

¢:i(D;), i € I, and &1,—(Ni,— \ UierD;) are pairwise disjoint. Using Clannl and
the fact that the 3-disks D;, as well as the 3-disks C!, i € I, are pairwise dlSJOlIlt, it

follows immediately that the images (ZZ-(Di), i € I, are pairwise disjoint. Similarly,
using Claim [4f(d), we have for all i € I

$i(D;) N ey~ (Niy— \ Uier D)
(¢, (D; NN, —) UInt C)) N ¢y, — (N, = \ UierD;) = 0,

as desired.

So ¢ is an injective smooth map with non-degenerate differential. In order to see
that ¢ is even a diffeomorphism onto its image, it suffices to show that gb L Im ¢ —
Ni,— UM, is continuous, i.e. for any sequence xp € N, UMN;,; and any point
Too € Np,— UNG, 4 if limygoo gg(xk) = QAS(JJOO), then limy_ oo 2 = T itself. This can
be seen as follows: If z lies in the interior of N;,— U N, 4, then we are done by
the inverse function theorem and the fact that g/g is injective and has non-degenerate
differential. So assume that

(1220) Loo € 8(./\@,, U./\[tJ+) = 8/\@], \ UielaCi = 8]\/;,, \ Uieﬂ/Vi.

The first equality follows from Definition [7.1[3) and the last equality follows from
(12.7) in Claim 1. If for some k we have z;, € D;, for some i, € I, then by Claim [4](d)
by the construction of D;, and by a priori assumption|(APA 6)| a ball of uniform radius
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around gg(ask) must still be contained in (Z(wik(MBry(D#))) C a(W,k) Therefore, by
(12.20), the distance d,(¢(ro0), ¢(zx)) must be bounded from below by a uniform

constant. It follows that for large k we have x € N;,_ \ Uie;D;, and thus gg(xk) =
¢1,—(x1) by Claim 4(b). Since ¢y, is a diffeomorphism onto its image, we must have
limy_,o0 1 = T, Which proves our claim. O

Now let
Cut’ :={D; : iel}.
Then assertion (a) of this proposition holds due to Claim [f{(a). Assertion (b) holds

by Claim (b) and by the construction of ¢. Assertion (d) of the proposition follows
from Claim [4fc) and priori assumption (APA 6). For assertion (e) recall that by

-~

Claim 4(d) we have ¢(N;,—- UN;,+) = ¢r,—(Ni,—) Uier C; and C, C W] for all i € I.
By a priori assumption (APA 6) we know that ¢, (N;,-) 1S €canTcomp-thick and by

Property (4) above we have p > %D;&)rcomp > €canlcomp ON W/ for all ¢ € I, assuming

5b S 3b; €can S Ecan(Dcap>-

Lastly, we argue that assertion (c) holds if we choose
(12.21) Dot = 22\D.

Fix some ¢ € I. By Property (6) from the beginning of this proof, we have diam D; <
2-11AD4y = DeytTeomp- On the other hand, Claim (e) states that D; contains a
8AD 4T omp-tubular neighborhood around C; and 8ADy > :522ADy = 15 Dey;.

Lastly, let us review the choice of parameters. In the course of the proof, we have
introduced the auxiliary parameter Dy, which is related to A and Dy via .
Once A has been fixed, any lower bound on Dy implies a lower bound on Dy, as
indicated in . After fixing Dy, the auxiliary parameter Dy can be viewed as a
constant of the form D (A, Dey). This constant influences the choices of dy,, €can, Tcomp-
So these parameters are bounded in terms of A\, Dy, as shown in ({12.4]).

This completes the proof of Proposition [12.3] 0

12.3. Extending the comparison map past time ¢;. The goal of this subsection
is to evolve the map &E, as constructed in Proposition E forward in time by the
harmonic map heat flow. More specifically, we consider again a comparison domain
(N AN {t;372]), defined over the time-interval [0, ,4], and a comparison (Cut,
¢, {¢"};]_,) from M to M’ defined over the time-interval [0, #,]. We moreover consider

the map & : N, ,—UN;,+ — M’ from Proposition m We will then promote the
map 9| Ao, toamap ¢/t N[{ij*] — M, which is defined on a time-interval of the
form [t;,t*], where t* € (t;,t;4+1]. In this subsection we will not be able to guarantee
that t* = t;,; — in fact t* may be quite close to t; — since we will only solve
the harmonic map heat flow until |h| reaches a certain threshold. However, we will
find that if |h| does not reach this threshold on the time-interval [t;,t*], then in fact
t* = ts41. In the next subsection, we will then deduce various bounds on ||, which
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will imply that |h| stays below this threshold. Hence, it will follow that t* = ¢,,4
and so ¢! can indeed be used to extend the comparison (Cut,®,{¢’}7_,) to the
time-interval [0,¢44].

In the course of our construction, we will also discuss the case J = 0, i.e. the
case in which ¢/*! is the comparison map in the first time-step. In this case, the
comparison (Cut, ¢, {W}] 1) is empty to start with and Proposition does not

apply. Instead, we will assume in this case that <b is the initial map ¢, as introduced
in the assumptions of Proposition [12.1]

Let us now state our main result of this subsection.

Proposition 12.22 (Extending the comparison map until we lose control). If
E>2  H>H(E), mn<hu(E), F>0,
v<U(T,E,Hmin, F), 00 <6u(T, B, Hymn, F), A<,
8, < 0u(T, B, H, Min, F, A, Do, A, A),
€can < €can(T, By H, Miin, Fy A, Doyt A, A), Teomp < Tcomp»

(12.23)

then the following holds.
Assume that assumptions (i)—(vi) of Proposition hold.
Recall that in the case J = 0, assumption (vi) imposes the existence of a domain

X C My, and map ¢ : X — M, with certain properties. In this case we set ¢ := (.

In the case J > 1, we set X := N;,_ UN;,; and consider the set Cut’ and the
map ¢ : X — My, satisfying all assertions of Proposition |12.5,

Then there is some time t* € (t;,t;11] and a smooth, time preserving diffeo-
morphism onto its image ¢’ : Af[}Htl — M with ¢]7" = d|w,,. whose inverse
(p7 1)L quH(./\/'[‘{J“tl* ) — /\/'[t o evolves by harmonic map heat flow and such that

the following holds for the assocmted perturbation h'*1 := (¢71)*g' — g (which is a
Ricci-DeTurck flow):

(a) |h| < 10m, on ./\ft -

(b) For anyt € [t;,t"] a,nd x € N whose time-t distance to ON;™ is smaller
than F'reomp we have

Q-i—( ) H(T H)) ( )|h( )| < Q =10~ B 1771111Tc0mp

(c) If even |h| < min on /\/'J+1 then t* =t;,4.
(d) "N N is €canT comp-thick.

We emphasize that we have introduced another auxiliary parameter, F', which we
will choose in Subsection depending only on E. The bound in assertion (b),
which holds Freomp-close to the boundary of ON7*!, will be helpful later as we are
not able to apply the semi-local maximum principle, Proposition 0.1} too close to the



120 RICHARD H. BAMLER AND BRUCE KLEINER

boundary. For this purpose, we will later choose F' > L(E), where the latter is the
constant from Proposition [9.1]

Let us now explain the main strategy of the proof of Proposition [12.22] Observe
first that the parabolic domain N/*! C M is a product domain and the Ricci flow on
it can be viewed as a conventional, non-singular Ricci flow. A similar domain, which
contains the image ¢(N;,4), can be found in M’. So the proof of Proposition
can be reduced to a relatively standard short-time and long-time existence statement
for the harmonic map heat flow between conventional Ricci flows on manifolds with
boundary. Rather than solving the harmonic heat flow equation with a boundary
condition, we found it technically simpler to use a “grafting” construction to eliminate
the boundary.

A large part of the following proof will be devoted to the characterization of the
geometry near the boundary of Ny, and the boundary of its image ¢(N;, ), which
will serve as a setup for the subsequent grafting construction. More specifically, our
goal will be to show that the boundary of N;,_ and its image qg(/\/; ,+) are contained
in regions that look sufficiently neck-like on the time-interval [t;,¢;,1]. To achieve
this, we employ the following strategy. A priori assumption (a) provides neck
structures near ON;, .- at time ¢;4,. Using Lemma , these neck structures can
be promoted backwards onto the time-interval [t;,¢;,1]. The newly constructed neck
structure at time ¢, near Ny, ., a priori assumption and the interior decay
estimate, Proposition , can then be used to identify C%neck structures near the
boundary of ¢(N;,1) C M, .- Using the canonical neighborhood assumption and the
self-improving property of necks in s-solutions, Lemma , these C%-neck structures
imply the existence of neck structures of higher regularity in Mj . Lastly, we use
Lemma to promote these neck structures forward in M’ onto the time-interval
[tj, tJ+1].

Based on this characterization of the boundary of N;,; and its image, we perform
a grafting construction in the last phase of the proof. This grafting construction
involves cutting My, ¢,,,j and My, inside the previously identified neck regions,
gluing on shrinking round half-cylinders, and passing to a map between the grafted
spacetimes. We have thus reduced our discussion to standard existence results for the
harmonic map heat flow betwg\en complete manifolds. We remark that our approach
is facilitated by the fact that ¢ is already defined on a larger neighborhood of AV, .,
therefore providing enough space for an interpolation between the metric on M;
and the cylindrical metric.

tytryil

Proof of Proposition[12.29. Let 64 > 0 be a constant whose value we will determine
at the end of the proof. To avoid an accumulation of a large number of different
constants, in what follows we will be using the standard practice of making a series of
adjustments to the constant d4. This means, strictly speaking, that 4 is not really
a single constant, but takes on different values at different places in the proof, and
the earlier values are adjusted as functions of the later values.
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By a priori assumption |(APA 3)(a), each boundary component ¥ C 8./\/%111 is the
central 2-sphere of a d,-neck Us C My, at scale Tcomp. Lemma implies that if
511 S 5n<5#)7 €can S Ecam(d:/f/:)a Tcomp S Fcomp7

then for each such ¥ there is a product domain Uy, C M, ) that contains 3 and on
which the flow is d4-close at scale 7comp to the round shrinking cylinder on the time-
interval [—1,0]. By this we mean the following: we can find an rfomp—time—equivariant
and Oi-preserving diffeomorphism

Uy 8% x (=051, 05") x [-1,0] — U,
such that ¥ = ¢ (5% x {0} x {0}) and
(12.24) Hr;ﬁnpwgg — gS XRHC@” < g

Here 952XR denotes the metric of the standard round shrinking cylinder spacetime
and the norm is taken over the domain of 5.

By (12.24]) and assuming

5# S 5#, Tcomp < Fcompa

there is a universal constant ¢ > 0 such that

(12.25) (14 )Tcomp < p1 =P < 107 comp on Uyg, .
So, by a priori assumption [(APA 3)[a), applied at time ¢, and assuming
On < On,

we find that U3y, is disjoint from N if J > 1. So, if J > 1, since X(t;) C 8/\/;{,“ C
N;,— if J > 1, it follows that Ug, C N;,— C X.

On the other hand, if J = 0, and
On < O,

then Uy, has diameter < 105;. S0 assuming

511 S gn((g#)7
we have Uy, C X. So, in summary,

(12.26) Ui, CN,-CX ifJ>1 and Ug, CX ifJ=0.

Consider the Ricci-DeTurck perturbation (h, {h’/}7_,) associated to the compari-
son (Cut, {N7}/_,, {t;}7_,) and let Q be defined as in Definition of the a priori
assumptions [(APA 7)H(APA 13) We will now use a priori assumption to
show that we have a bound on () in large parabolic neighborhoods near the boundary
of Ni,+. In Claim [2] this bound will be used obtain an improved bound on @, and
therefore on h, via the interior decay estimate, Proposition [9.3] For this purpose, let

Ay < 0o be a constant whose value will be determined in the proof of Claim [2]
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Claim 1. If J > 1 and
(12.27) 6, < 0u(Ag), 0 < 0p(Ay, A, Dews, A),
€can S Ecam(14:/f/:7 A)a rcomp S Fcomp:

then for any x € ON; ' the parabolic neighborhood P(z, AyTeomp) 1S unscathed,

J

(12.28) P(x, Ag7comp) C N\ Upecutucu’ P
and we have the bound
(12.29) Q<@ on P(z, AgTcomp)-

Proof. Choose a boundary component ¥ C 0/\/%11 such that z € X(t;) C a/\/;frl‘ So
r € U5y, ,. Assuming

5n S SH(A#)’
we obtain by similar arguments as those that led to (12.26)) that
(12.30) B(2, AyTeomp) C N,

Next, using Lemma along with ([12.25)), and assuming
€can S Ecar1("4#) A),

we can find a constant A" = A'(Ax, A) < oo with A" > A such that P(z, A'pi(z)) is
unscathed and

(12.31) P(y,Ap1(y)) C P(z, A'pi(x)), for all  y e P(x, Aygpi(x)).

We now show that P(z, A’, p1(z)) is disjoint from the cuts. To do this, observe
that for any ¢’ € (t;,t;.1] we have B(z(t'), A'p1(x)) ¢ N. So by Lemma [8.44] along
with (12.25)) and a priori assumption [(APA 11)| assuming

5n ng A ZA) 6b Sgb(/\chutaAaAl(A#aA))v
€can S Ecan<)\7 Dcut7 Aa AI (A#7 A))a Tcomp < Fcomp7

we find that P(z, A'Teomp) N D = @ for all D € CutUCut’. Combining this with

(12.30) gives us ([12.28)) via Lemma [8.42, Combining it further with (12.31]) and a
priori assumption [(APA 7)|yields ((12.29)). O

Next we improve the estimate from Claim 1 and use it to identify more precise
necks in M.

Claim 2. If
E>2, H > E(E) Min < ﬁlin(E)’ A# > A#(E,(S#),
v S ﬁ(E, 6#)7 €can S E(:am(E'a 6#)7 Tcomp S Fcomp7

then for any component ¥ C ON/ ™!

ty+1

(12.32)

we have

(12.33) O, — 9| <op  on Usy,
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and
(12.34) Irecnap (@0 ¥s.6,) 61, = 95| o < 64

Proof. Consider first the case J = 0. In this case, by (12.26|) and assumption (vi) of
this proposition we have on Uy

"ol h| <vQ =v- 107" Twrl g ;

recall that i = (Z*ggo — Gt,- S0 (12.33) follows from ([12.25)), assuming

Min < 1, v <7(0y).

Second, consider the case J > 1. By ([12.28)) and assuming
Ay > Ay (04),

we have UitJ ND = for all D € Cut’. So therefore on Us, ¢, We have 5 = ¢,— and
hence éﬁ\* 9i, — 9, = he,—. We will now apply Proposition at every point of Uy, .
To do this, note that by the perturbation h is defined and smooth on all of
P(x, Aygreomp) and by a priori assumptions [(APA 6)[ and [(APA 7)| we have |h| < i,
and @ < @ everywhere on this parabolic neighborhood. Moreover, if P(x, A4Tcomp)
intersects the initial time-slice M, then by a priori assumption we have
Q < vQ on the intersection. Lastly, note that the diameter of Uy, is bounded
by 105;7’60mp for sufficiently small 04 and that p; > reomp on Us,, by 1} So
assuming

E>2, H> E(E)7 Min < ﬁlin(E)7 A# > A#(Ea 5#)7
v < E<E7 5#)7 €can < Ecam(Ely 5#)7 Tcomp < Ft:ompa
we conclude by Proposition that Q < 64Q on Us,,,- Note that here we have

used ((12.25) and we applied Proposition centered at all points in Uy, , with an
appropriate choice for the radius A.

So on Uy,
M plhe, | = Q < 64Q = 04 - 1075 iy,

Using ((12.25]) and the fact that t; < T', due to assumption (v) of this proposition, we
obtain (12.33]) assuming

Min < Min-
Finally, the bound (|12.34]) follows by combining (|12.33]) with (12.24) and adjusting
(the earlier instance of) . O

Next, we use (12.34) to establish the existence of a dx-neck in M’
Claim 3. Assuming parameter bounds of the same form as in and
On < O,
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the following holds. For any component ¥ C ONy,,,— there is a dy-neck Uy, C M,
at scale 27comp that has a central 2-sphere which intersects ¢(X(ty)) C My, .

Proof. Note that ¢(X(t;)) = ¢} (S(ty)), as D C Int N, for all D € Cut’ (see
Definition . The €can-canonical neighborhood assumption holds on a(E(t 7)) by
assumption (vi) of this proposition (if J = 0) and by assertion (e) of Proposition [12.3]
(if J > 1). The statement now follows from Lemma [8.29 assuming

€can < Ecan(é#)a
after possibly adjusting 0. O

By Lemma [8.31] and assuming

€can S Ecan(é#)a Tcomp S Fcompa

we obtain furthermore after adjusting d4:

Claim 4. Assuming parameter bounds of the same form as in , the following
holds.

For any component ¥ C ONy,,,— there is a product domain Uy C M/[t.hthtﬂ’

the time-interval [ty,ty41], with $(S(ty)) C Uss;, on which the metric is 04-close at
scale Teomp to the standard round shrinking cylinder. More specifically, there is an

r2  -time-equivariant and O-preserving diffeomorphism

comp
Py 8 x (=01, 0,") x [-1,0] — Ugt

on

such that

— * 2
(1235) Hrco%npwlilg, - gS ><]R”C[éq;kl] < 6#
We furthermore have

U5(S? % {0} x {=1}) N o((ts)) # 0.

We now carry out the grafting construction. We begin by identifying product do-
mains in the time slabs M, ;. ; and M{t ty] that will be used in the construction.
’ JHotJ+1
For k =0,...,5 let Ny be the (open) 100kromp-tubular neighborhood around M, ¢
in M;, and set N} := ¢(Nj). Assuming
On < On,
we obtain from ((12.26]) and assumption (vi) of this Proposition that
NOCN1C...CN5CX,
(12.36) . , .~
Ny C N C...CN;Co(X).

Moreover, assuming
Tin S 10_27 5# S 5#7
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Claim 4] and a priori assumption [(APA 6)| (if J > 1) or the assumptions from the
proposition (if J = 0) yield

(12.37) N:\Noc |J Uz, NANcC |J Ug,
ScoN BN

By construction and by (12.37), all points on N5 = N, U (N5 \ Ny) and N, \ N/
survive until time ¢,,1. A priori assumptions [(APA 2)| (APA 6), assertions (d) and
(e) of Proposition [12.3] (12.36)), assumption (vi) of this proposition and Lemma [8.23]

imply, assuming

Min S ﬁ]ina 5n S 5117 A S 1; €can S Ecan()\>7 rcomp S Fcompa

that
p > Ot Mcomp > €canTeomp 00 Ni C d(Ni,— UN;,4).

Let t} € [ts,ts+1] be maximal with the property that N:(t) is defined and weakly
%C’S_S AT eomp-thick for all ¢ € [t;, t}], where Csp is the constant from Lemma . Note
here that ¢} is well-defined by the (€canTcomp, 1')-completeness of M’ and Lemma ,
assuming

€can < Ecan()‘) .

We can now express the flows g and ¢’ restricted to the product domains Nj([t, t3])
and N{([ts,t;]) by conventional Ricci flows (Vs, (gt)te[tJ,tT]), (NL, (gg)te[thtﬂ).

Claim 5 (Grafting on round half-cylinders). After adjusting d4 there are smoothly
varying Riemannian metrics (g;r)te[tj,t{]; (9£+)te[tJ,ti«] on smooth manifolds N* and
N'*, respectively, and a diffeomorphism ¢t : NT — N'* such that:

(a) N5 and N. can be viewed as open subsets of Nt and N'*, respectively.

(b) For all t € [t;,t;], we have g/ = g, on Ny C NT and g;" = g, on N| C N'T.
(c) g, gt are complete for all t € [t;,t7].

(d) For some constant C' = C(\) < oo we have

[Rmg+|, [Rmg | < Cr. 2

comp *

(e) (g;r)te[mm, (gfr)te[mtﬂ are “Oy-approzimate Ricci flows”:
_5#7";)%@9;“ < 8tgt+ +2Ricgt+ < 5#7“;0?@9:,

—2
comp

(f) For some C* = C*(\) < oo,

Vo Rmn(g, )], [ Ve Rm(gi) g < CFropt™™?

-2

—OuT o dit < OhgyT +2 Ricg+ < 5#Tcompg£+.

comp

|Vm18m2 +| |vm1 om2 /+| < C* -2 tf(m271+m1/2)
+0¢ "G¢ gt 1O "Gy gt Tcom
9¢ 9t 9¢ 9t p

for allt € (t;,t7] and m,my,me =0, ..., 100.
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(g9) There is a universal constant C** < oo such that at every x € NT with
dg;L (x, NT\ Np) < (5_1rcomp we have
J

Vi Rm(g)")| () < C™rggnay”

comp
|v;';a:”2gt [ (@) < O —2me

for all t € (t;,t] and m, my,me =0, ..., 100.

(h) ¢* = ¢ on Ny.
(i) We have |(¢+)*g£j—gtJ|g:r < 04 at every point x € N with dg:; (x, NT\Np) <

5;&lrcomp.
(G) t1 >ty and if t7 < tyy1, then Usep, ) N5(t) must contain a Cng)\rcomp—thz’n
point.

Proof. Using Lemma [8.4] we find that ¢} > ¢, and that if ¢§ < ¢,41, then N{([t;,#7])
must contain a C’S_D1 Areomp-thin point. This proves assertion (j).

For each component ¥ C 6/\/;?“11, 5> under 5, and (s

to obtain spacetime metrics on Us;, and UE . Using the product structure on Uy, and
Uy, these yield evolving metrics (g3 )icr,i,,1]s (90 )telts iy, OO the initial time-slices

Uy U/EftJ, and hence also on N5 \ No, N\ Nj by (12.37).

By a standard interpolation argument we can construct smooth families of metrics
(9t)eeits s> (9)ierts ) on N5 and Ny such that g, = g; and g; = g; on Ny and Ny,
respectively, and such that for every component ¥ C 8./\/;‘]:11 we have g; = ¢, ¢’ = g~
on (N5 \ N2) NUy;,, and (N5 \ Ny) N U, , respectively. Moreover, using (12.24)) and
(12.35)), and after possibly adjusting 4, we may assume that for every component
¥ C ON T ml,m2<(5#,andt€[tj,t] we have

Vg O (G = 90 gz < Oompy

comp

we may pushforward rcomp g

J+17

12.38
( ) |vm1 amQ (gt 922”922 < 5#T—m1—2m2

comp

on (N5 \ No) NUs;,, and (Ng \ No) NUs3, - So, after possibly adjusting d4 once again,
we may assume that on N; and N} we have

—04T C_O?’npgt < O0gr + 2 Ricy, < 0y,

compgt )

—O0uT ommpdt < OuJ; + 2 Ricg < 41 )

com comp g t:

Since these flows are isometric to round shrinking cylindrical flows near the ends of
N5 and N{, we can attach round shrinking half-cylinders to these flows at each end.
This produces flows (g;" )iert, .1 and (g7 e, 41y on N D Ny and N'* D Ny satisfying
assertions (a)—(e) of this claim. Assertion (f) follows from Shi’s estimates in Ny, Ny,
NT\ Ny, N't\ Nj, and in N5\ No, NI\ Nj. Assertion (g) also follows from

(12.38]), after adjusting 0.
Since ¢ is a (1+04)-bilipschitz map on N5\ Ny C UsUs; ,, (see (12.37)) and g;, and

g;, are isometric to subsets of round cylinders on the interior of N5\ Ny and Ny \ Ng,
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respectively, we can use a smoothlng procedure (see also Lemma to construct
a dlffeomorphlsm onto its image ¢ Ny — ¢(N4) C N! such that ¢ gb on Ny and
ng*gtJ = gb 9i, =G, = gtJ on N, \ N3 and such that, after adjusting 0,

(12.39) \gb*ggj — g5 | < b4 on Usy, N Ny,

for every component ¥ C ON;/ . We can now extend the diffeomorphism gg : Ny —

N ty41”

#(Ny) to a diffecomorphism ¢ : Nt — N'* such that it remains an isometry on

N\ Ny Adjusting d4 again, the map ¢ will satisfy assertions (h) and (i) of this

claim, by ((12.39) and the fact that (¢%)*g;" = g/ on N\ Ns. O
We now construct the map ¢’*! by solving the harmonic map heat flow equation

starting from (¢™)~!, where ¢+ : N*™ — N'T is the map constructed in Claim
Using Claim [5] and Proposition from the appendix, we obtain that if

Min S ﬁlin? 5# S S# (Thin)v
then we can find a time t* € (t;,t]] and a solution (x¢)iefe, e+, X¢ : Nt — N* to the

harmonic map heat flow equation with respect to (g;")sept s and (97 et s,¢x] with the
following properties:

(1) xe, = (67)7
(2) x¢ is a dlffeomorphism for all t € [t t*].

(3) IX; g — g [+ < 1.5y for all £ € [t;, "],
(4) Tf
(12.40) X393+ — 9ot
holds in N'*, then t* = ¢;.

ggir < 1.1’[71111

Note that if
Min < ﬁlin )
then Property (3) above implies that
(12.41) ()79 = g |+ < 2o

We first show that
(12.42) x;H(No) C Ny forall  t€ [ty t].

After rescaling by r_2 | assuming

comp’
Tin < Miin 5 Oy < Oy,

we may apply Proposition [A.28] taking the constants d, A in the hypotheses to be

§ = A =1, to conclude that x; ' (ONy) C Nj for all t € [t;,t*]. Here we have used a

continuity argument, the fact that x;,(ONy) = (¢7) 1 (ON]) = ¢~ (IN]) = 0Ny by

assertion (h) of Clalm Bl and (12.41), to retain the hypotheses of Proposition
Therefore, since x; * is a smoothly varying diffeomorphism, ( m follows.
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Now set ¢, := x; '|n, for t € [t;,t*]. Since g/ = g, on Ny and g;" = g, on N/
by assertion (b) of Claim , we can view (¢;)wcpt,++] as a smooth, time preserving
diffeomorphism onto its image of the form

¢ NGTL — N{([t, 1)) € M

[t,t*]

that evolves by harmonic map heat flow equation with respect to g and ¢'.

Consider the perturbation h/™! = (¢7/*1)*¢’ — g. Assertion (a) of this proposition
follows from ([12.41)).

If
Thin S ﬁlin? 6# S g# (Ta E7 H7 Ulin) 5
then for every x € Nt with d,+ (&, NT\ Nyp) < (5;7"601@, after adjusting 4, and
ty
by assertions (e), (g), (i) of Claim [5| and (12.41]), we may apply Proposition to

conclude that

(12.43) OG0 = i g (@) < e 107518t (@) i < hin
for all t € [t;,t*]. If
Oy < 04(F),
then implies that for every t € [t;,t*] and every = € N/*t such that
dy(z, 8NJ+1) < Freomp we have d ( (ty), Nt \ Ng) < 5;;1rcomp. Hence
B @) = 106 0" = g g () < e 1107 r ot ™ (@) i
by (12.43)). This yields assertion (b) of this proposition.

Finally, we verify assertion (c) of this proposition. Assume that |h/*!
N*L Then by the definition of ¢7* we have the bound |(xz')*gi — g,
on Ny. By (12.43) it follows that |(x;=')*gi" — g;tl,
So if

< Thin O1N
+ S Thin
- < My holds everywhere in NT.

Thin S ﬁlina

then (12.40) holds, which by Property (4) above implies t* = t;. Using a priori
assumptions |(APA 2)| (APA 6) and Lemma [8.23, and assuming

Min S ﬁ]ina 5n S 5n7 A S )\; €can S Ecan()\>7 rcomp < 7’compp

we find that all points in ¢’ (N J+1) are CspAreomp-thick. Assertion (j) of Claim
implies that t* = t{ = ¢;,1. This establishes assertion (c) of this proposition. Assum-
ing

€can < CS_Dl)\a

we also obtain assertion (d). O
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12.4. Proof of Proposition [12.1} concluded. In this subsection we use the results
of the previous subsections to prove our main Proposition More specifically,
we will analyze the map ¢’/*! : [‘gﬁﬂ — M’ that was constructed in Proposi-
tion [12.22] We will verify that this map satisfies a priori assumptions [[APA T)H(APA]
and show that t* = t;,;. Therefore ¢’/*! can be used to extend the comparison
(¢, {¢’}/_;, Cut) to the time-interval [0,¢,4,]. This will finish the proof of Proposi-
tion [2.11

Our proof can be roughly summarized as follows: By the assumptions of Proposi-
tion we may assume that a priori assumptions [(APA 1)H(APA 12)|already hold
until time t;. We will refer to this assumption as the “induction hypothesis” hence-
forth. Using the induction hypothesis and the conclusions of Propositions [12.1] and
we will then establish that a priori assumptions [(APA 1)H(APA 12)| hold up
to time t*. The only non-trivial assumptions in this step will be a priori assumptions
[(APA 6)H(APA 9)| We will prove these assumptions using another continuity argu-
ment: We will assume that relaxed versions of a priori assumptions |(APA 7)H(APA 9)|
hold up to some almost maximal time ¢** < ¢* and, based on these extra assumptions,
we prove a priori assumptions [((APA 6)H(APA 9)[ up to time t**. By a straightfor-
ward openness argument it therefore follows that ¢** = t* and therefore that a priori
assumptions [(APA 6)H(APA 9)[ hold up to time t*. Eventually, the fact that a priori
assumption |(APA 6) holds up to time ¢* and assertion (c) of Proposition imply

that we indeed have t* = t;,;. This will finish our proof.

We remark that throughout this entire subsection, we will introduce global termi-
nology and assumptions on the parameters, which will be understood to remain valid
for the remainder of the subsection. In particular, conditions on the parameters that
can be found in the following lemmas will be assumed to hold for the remainder of
the subsection so that the conclusions of these lemmas can be applied immediately.

This subsection is structured as follows: We first set up our argument by recalling
the important assumptions from Proposition [12.1, In Lemma [12.45] we will then
summarize and put into context the results of the constructions from Propositions

and |12.22] Next, we introduce the relaxed versions of a priori assumptions |(APA 7)|
(APA 9)| in equations ((12.46)—(12.48), which hold up to some time t** < t*. In
Lemma [12.49] we show that ¢** > t; and that if the strong versions of a priori

assumptions [(APA 7)H(APA 9)/hold up to time ¢**, then we must in fact have t** = t*.
Based on these relaxed versions of a priori assumptions [(APA 7)H(APA 9), we will
establish a priori assumptions [(APA 6)H(APA 9)[in Lemmas [12.59] [12.61} [12.64] and
[12.66] — one lemma per a priori assumption and in this order. Lastly, we wrap up our
discussion, argue that t** = ¢* = ¢, and verify the assertions of Proposition [I2.1]

Further explanations of the arguments may be found after the statements of the
Lemmas below.

In what follows, we will be considering the setup as described in assumptions
(i)—(vi) of Proposition |12.1l So, among other things, we assume that M, M’ are
(€canTcomp, 1')-complete and satisfy the ec.n-canonical neighborhood assumption at
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scales (€canTcomp, 1). We consider a comparison domain (N, {N7}EL {t;}/4]) over
the time-interval [0,t;41], for J > 0, and a comparison (Cut, ¢, {gb]}j: ) from M
to M’ defined on this comparison domain over the time interval [0,¢;]. If J = 0,
then this comparison is trivial, as explained after Definition [7.2] We also assume
(N, {N’}jill,{t }‘]H) and (Cut ¢, {¢7}]_,) satisfy a priori assumptions [(APA 1)

for the parameters (A, A, 5n,(5b,nhn,rcomp) and a priori assumptions (APA
7)-(APA 13) for the parameters (A, N, £, A, W, Neap, Tcomp). Moreover, we assume in

the following that

(12.44) tya <T.

If J > 1, then assumptions (i)f(v) of Proposition allow us to apply Proposi-

tion [12.3| Doing so yields the map qb Ny, UN, 4 — ./\/l’ and the set of cuts Cut’
with the properties as explained in assertions (a)—-(d) of this proposition. If J = 0,
then we skip this step.

Next, we fix an auxiliary constant F' < oo, whose value will be determined in the
course of this subsection depending only on E. We can then apply Proposition [12.22

for X := N, UNy,4 — M, and ¢ from Proposition 12.3[ (if J > 1) or X and

¢ = ¢ from assumption (vi) of Proposition [12.1] (if J = 0). Then Proposition [12.22

yields a time t* € (t;,t;41] and a map ngJ N’{iﬁ — M’ satisfying assertions

(a)—(d) of this proposition. Note that Propositions|12.3[and [12.22|are only applicable
if our parameters satisfy the bounds ((12.4) and (12.23). These bounds are implied

by bounds of the form ((12.2)) and

(511 S gn<TaE7H7nlin7F)7 v SE(T, E7 Hanlin7F)7
5b S gb(Ta E, H7 nlimFy)\aDcutaA)? €can S Ecam(T;E’a H> nlin7F> )\)7

Tcomp < ?Comp .

(Note that assuming F' = F(FE), these bounds also follow from bounds of the form
M22).)

In the following lemma we summarize the important properties of Cut”’ and e
and we show how these objects can be used to extend the comparison (Cut, ¢, {¢/}7_, )
to a comparison that is defined over the time-interval [0, ¢*].

Lemma 12.45. There is a unique map ¢ such that (CutUCut’, {¢J}J+(]1) is a
comparison defined on the comparison domain (N, 4+, {N7, [i;rtl*]}J L {t],t*}jzo).
This comparison is an extension of the comparison (Cut, ¢, {¢7}]_,) in the sense that

b=¢ on N\ UpecutD.

Furthermore, this extended comparison and the comparison domain (N, 4, {N7,

./\/[‘gf*] At 7)) satisfy the following properties:
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(a) They satisfy a priori assumptions (APA 2)-(APA 5) for the parameters (Min,
Ons Ay Deap, A, Ob, €cans Teomp) and a priori assumptions|(APA 10)H(APA 13) for
the parameters (T, E, H, min, v, A, Neut, Deuts Wy A, Teomp ) -

(b) Let (h,{h’ j;“ll) be the associated Ricci-DeTurck perturbation (note that h’*1
is only defined over the time-interval [t;,t*]). Then |h| < mim on Ny, \
Upecutucu?’ P and |h| < 10m, on -/V[;t];tl*}

(¢) For any t € [t;,t*] and x € N/ with d;(z, ON) < Freomp we have

Q+(x) = TP (@) |h(x)] < Q = 1075 iy
(d) If even |h| < mun on NI then t* =t;4.

Proof. The construction of the map ¢ and the verification of the properties of Defi-
nitions [7.1] and [7.2] are straightforward. A priori assumptions (APA 2)—(APA 5) only
concern the comparison domain and they continue to hold after restricting this do-
main to the time-interval [0, ¢*]. A priori assumptions [(APA 10){and [(APA 11)|follow
directly from the corresponding a priori assumptions of the induction hypothesis and
Proposition [12.3(c) and (d). A priori assumption follows directly from a
priori assumption [(APA 12)| of the induction hypothesis (if J > 1) or from assump-
tion (vi) in Proposition [12.1] (if J = 0). Assertions (b)—(d) are just restatements of
assertions (a)—(c) of Proposition [12.22] O

It remains to verify a priori assumptions (APA 6 m Once this has been
accomplished, assertion (d) of Lemma will immediately imply that t* = ¢,,4.
So we have reduced our discussion to an analysis of the associated Ricci-DeTurck
perturbation and its derived quantities () and Q*.

We will verify a priori assumptions (APA 6)-{(APA 9)|via another continuity argu-
ment, which we will set up now. Consider the comparison (CutU Cut’, ¢ {qbf}‘] iry
from Lemma |12.45 and let (h, {h’ ‘”1) be the associated Ricci- DeTurck perturba-

tion, as mentioned in assertion (b) of this lemma. As in Definition [7.5| we define the
quantities

Q=e"T0pPn], Q=TT
and the extensions Q1 and Q% to N, +. Moreover, again as in Definition , we set

Q:=10"%" lmmrcomp, Q = 10_17711n()\7"comp)3.

Choose a time t** € [t;, t*] such that the following conditions hold for all x € ./\/'[‘gjg]\

Upecu’ P:

(12.46) Q(z) <10Q whenever P(x,10Ap;(z)) ND =)
for all D € Cut U Cut’

(12.47) Q(z) < 10WQ

(12.48) Q*(z) < 10Q" whenever B(z,104p;(z)) C Ny)-
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Note that these conditions are relaxed versions of a priori assumptions [(APA 7)|
(APA 9)l The main objective of this subsection will be to show — under certain

bounds on our parameters — that assumptions ((12.46)—(12.48)) imply a priori as-
sumptions [(APA 6)[ and |[(APA 7)H(APA 9)[up to time ¢**. The following lemma will

help us conclude that it is possible to choose t** = t* if a priori assumptions
(APA 9)[ have been established.

Lemma 12.49. If
E>E,  in<Thm F>2F,  6:<0n  Nout < Teuss
Dewt 2 Dee(A), W 2W(E, A\ Daw),  AZA, A=A
&b < 0b(A, Deut, A, N), €can < €can( A, Deuts A, A),

Tcomp S FCOI‘Ilp()\)7

then we can choose t** > t;.

Furthermore, there is a constant T = 7(T, E, H, Min, A\, A, Tcomp) > 0 with the follow-
ing property. If a priori assumptions|(APA TH(APA 9) hold up to time t**, meaning
that for all x € .A/'[tjjf] \ Upecu? D

(12.50) Qz)<Q whenever P(x, Api(z))ND =0
for all D € CutU Cut’

(12.51) Qz) <WQ
(12.52) Q*(z) < Q" whenever B(z, Ap1(z)) C Nyq)—
then (12.46)-(12.48) even hold for all x € J\/[f:rlnin{twﬂ’t*}] \ Upecut? D-

In other words, if[(APA 7)H(APA 9) hold up to time t**, then we may replace t** by
min{¢** + 7,t*}. The important point here is that 7 can be chosen independently of
t**. In Lemmas below we will show that a priori assumptions
indeed hold up to time t**, regardless of the choice of ¢**. It will then follow
by iterating Lemma that we can choose t** = t* and that a priori assumptions
[((APA 7)H(APA 9) hold up to time t*.

The main idea of the proof is that the relaxed conditions ((12.46))—((12.48) hold in
the neighborhood of any point at which the stricter conditions ((12.50)—(12.52) are
satisfied. Using the canonical neighborhood assumption, we will find a uniform lower
bound on the size of such a neighborhood. Extra care has to be taken near the cuts
at time ¢;. Here we will use the a priori assumptions from our induction hypothesis
along with the geometry of the cuts to deduce that and even hold on
and near the cuts.

Proof. We first show that for all # € N;,; (which may possibly lie on a cut)

(12.53) Q. (1) <WQ
(12.54) Qi(x) < Q" whenever B(z, 10Ap;1(x)) C Ni,+
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Note that the condition in ([12.54) refers to the forward time-slice, in contrast to
(112.52)).

Let us first prove (12.54). If € D € Cut’, then (12.54) follows from a priori
12.45

assumption (APA 10) (see assertion (a) of Lemma [12.45]), assuming
Ncut S 1.
So assume that * € N, \ UpcewsD. If B(x, Api(z)) C N, -, then (12.54) fol-

lows from a priori assumption (APA 9) of the induction hypothesis. So assume that
B(x, Ap1(z)) ¢ Ni,—, but B(z, Api(x)) C Ni,+. In other words, B(z, Api(x)) inter-
sects an extension cap Cy C N4 \ Int V;,_. Choose Dy € Cut’ with Cy € Dy and
let Cy < 0o be a constant whose value we will determine in the course of the proof.
We now apply Lemma for Ay = A and T, = 0, assuming

8y < O, Dews > Doye(N, Cy), A > A, 6 < 0p (N, Dewt, A, N),
6can S Ecan<)\a Dcut7 Aa A): Tcomp S ?comp(c#)

Note that the assumptions of this lemma on the set Cut U Cut’ hold due to a priori

assumption (APA 11), which holds due to assertion (a) of Lemma [12.45, We find
that

(1255) ,01($) Z C(#’r‘cornp

and that P(z, Api(z)) ND = 0 for all D € Cut. So by a priori assumption (APA 7)
of the induction hypothesis we have

" pp () ()] = Q(x) < Q = 1075 gy,
Combining this with m 12.55)) yields
Q*(x) = T pi (@) ()| < p¥F (@) - 107 ity < O tint S
It follows that Q*(z) < Q" if C’i‘E < 1073, which holds assuming
E >4, Cy > Cyu(N).
This finishes the proof of (|12.54)).

To see the bound (12.53)), we only need to consider the case z € D € Cut”’, due
to a priori assumption |(APA 8)|of the induction hypothesis. Then, again by a priori
assumption (APA 10) (see assertion (a) of Lemma |12.45) we have Q% (z) < Nt @ -
By a priori assumptions [(APA 5)[and [(APA 11)| and assuming

6b S gb()\a Dcut)a

we conclude that there is a constant C" = C”(\, Deyt) < 00 such that p; < C'reomp On
D. So

Qi (x) = " T pE () | hy, o ()] = pf 3 (2) Q7 ()
(C,>E 5 CEom?;) ncth ( )E 3TCE()m?£) Tleut 1071771in()\7acomp>3
_ (C/>E73)\310Encut . @
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It follows that Q. (x) < WQ, assuming
ncut S 17 W Z K(Eu )\7 Dcut)-
This finishes the proof of ((12.53)).

We will show that (12.46|)—(12.48)) hold slightly beyond time t** if ¢t** < t*. The
fact that we can choose t** > t; will follow along the lines of the proof.

Let 7 > 0 be a constant to be determined in the course of the proof. It suffices
to argue that if t** < ¢* and if (12.50)—(12.52)) hold on ./\ft 1 \ Upecutucu’ D and
(12:53), (12.54) hold on A, 1, then (12.46)(12.48) hold in /\/’J+1 whenever t’ € (¢, t*]
and t' —t** < 7 where 7 < 7(T, E, H, Miin, A\, A, Tcomp)- 10 that end, choose t' € (t**, t*]
with ¢ — t** < 7, and a point 2’ € N/ ™. Since ./\f[JJrl is a product domain we have

tJ,t*]
2" = z(t') for some x € NI

First suppose that dy(z, ON) <

> ?()\, Tcornp) ;

then by a distance distortion estimate based on a priori assumption [(APA 2)| and

the fact that /\/'[t +t* is a product domain, we obtain dg-- (x('), ONI) < 107comp. S0

Tcomp- Assuming

assuming

F > 10,
assertion (c) of Lemma [12.45| implies that (12.46]) holds for z(¢'). Thus if
W >1,

then (12.47) holds as well. Next, by a priori assumption (APA 3)(a), Lemma [8.31]

and assuming

5 < g €can < €can, Tcomp > < Tcomp7
we obtain that p(z(t')) > Lreomp. So B(z(t'), Api(z(t))) ¢ N, assuming
A> 20,

and thus (|12.48]) holds.

Now suppose that de(z,ON L) > reomp. By a priori assumption (APA 2),
Lemma [8.4] and assuming

T <T(E, X\, Tcomp) » €can < Ecan(A),
we obtain that
(12.56) (0.9)1/Ep1(:c) <p < (1.1)1/Ep1(:c) on P(z,7,7).
Thus on P(x,T,T)
(12.57) 0.9-e HTVpE) | <Q < 1.1- e HT=9,E(2) - |n).

Assume now that P(x(t'), 10Ap;(x(t'))) N'D = for all D € Cut U Cut”’. By a priori
assumption (APA 2) and bounded curvature at bounded distance, Lemma |8.10, and
assuming

Ecan S Ecan()\y A)?
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we conclude that P(x(t'),10Apy(z(t'))) is unscathed. We also obtain a curvature
bound on this parabolic neighborhood, which implies via a distance distortion esti-
mate that

Pz, 94p(2(t)) € Pa(), 104p(2(t))),
assuming
T <T(X\, A, Teomp)-
Combining this with and a priori assumption (APA 2), and assuming
E>1, A>A, T <T(\A),

we obtain that P(y, Api(y)) C P(z(t'),10Ap1(z(t"))) for all y € B(x, 7). This implies
that for all such y we have P(y, Api(y)) N D = () for all D € CutUCut’. Therefore,

by (12.50) we have @ < @Q on B(x,7). So if
Min < Min »

then we can use Proposition together with a priori assumption (APA 2), (12.56))
and ((12.57)), and assuming

(12.58) T <T(T,E, H, Min, A\, Tcomp) »
to get that ((12.46[) holds.

Using similar arguments, Properties (12.47) and ((12.48)) can be verified at x(t') as
well, assuming a bound of the form (12.58]). Note that if t** = ¢, then we need to
use the bounds ((12.53)) and (12.54]). O

Assume for the remainder of this subsection that the parameter bounds of Lemma
hold and that ¢** > t;.

In the following we will verify a priori assumptions [(APA 6)H(APA 9)| up to time
t**. Whenever we say that “a priori assumption (APA :,E) holds”, then we mean that
(A[[O,t**]a {NJ7Mi;:**]}j:1> {tja t }']:1) and (Cut U CUtJ7 (blMo,t**]a {¢]’ ¢J+1|_/\[[J“I"1 }3']:1)

t g, t%¥)
satisfy a priori assumption (APA z) for the set of parameters (A, Min, £, A, W, neus, T,
Teomp)- Note that it follows from assertion (a) of Lemma [12.45] that a priori assump-
tions [[APA T0J(APA 13) hold.

Let us first verify a priori assumption [(APA 6)}

Lemma 12.59 (Verification of |(APA 6))). If
511 Sgny A Sxa A 2A<)\aA)7 5b Sgb()\chutaAaA)v
€can S Ecan()\a Dcut7 A7 A)? Tcomp < Fcomp:

then a priori assumption |(APA 0) holds. In other words, we have |h| < mu, on
‘/\/’[O’t**} \ U'DECutUCutJD‘
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We summarize the idea of the proof. For points that are far enough away (compared
to A) from the neck-like boundary of NUN7*!, we have Q* < 10Q" from , and
together with the lower bound p; > Areomp on AU N7 from a priori assumption
[(APA 2J| this implies |h| < mm. On the other hand, points that are close to this
boundary are far from the cuts, by Lemma [8.44 So at these points we may rely
instead on the bound @ < 10Q from (12.46)). This bound implies |h| < 7, as long
as p; > l—zrcomp, a fact which follows from the neck-like structure of the boundary of
N7*1 and almost nonnegative curvature (see Lemma .

Proof. Consider a point € Njg ] \ Upccurucu’ P and set t := t(z). In the case
t € [0,t,], we are done by a priori assumption |(APA 6)|from our induction hypothesis,
and the fact that M, \ Upecuucur? C Ni,—. So assume that ¢t € (¢;,t™] and

therefore © € N7*L ...
(tg,t%*]

We now distinguish the following two cases:
Case 1:  B(x,10Ap:(z)) € N = N,_.
In this case we can apply (12.48) and obtain that

T=0pd () ()| = Q" () < 10Q" = 1hin(Mreomp)”.

Since by a priori assumption [(APA 2)land assumption ([12.44)) we have p1(z) > A\reomp
and t < t;4; < T, this implies |A(x)] < Min.

Case 2:  B(x,10Ap (7)) ¢ N/

Let us first apply Lemma along with a priori assumption |(APA 11), We obtain
that if

5n Sgna A SX7 A ZA? 5b §5b<)\7 DcuthaA)v
€can S Ecan(>\a Dcuta Aa A)a Tcomp S Fcomp7

then P(z,10A4p,(z)) N D = () for all D € Cut UCut”. So by ((12.46) we have
TP ()| h(2)| = Q) < 10Q = 10~ Py,

comp*

By assumption (12.44)) we have t <t;.; <T. So in order to show that |h(x)| < My,
it suffices to verify the bound

1
(1260) Pl(I) > Ercomp-
To see that (12.60) holds, choose first some point y € IN/*! with dy(z,y) <
10Ap,(z). Let ¥ C ON/™ be the (spherical) boundary component of N that
contains y. Consider the constant oy > 0 from Lemma [8.30, If

51“1 S 6H7 ecan S E(33.1’17 rcomp < Fcompa

then by a priori assumption [(APA 3)(a) and Lemma the component ¥ has to
be a central 2-sphere of a dp-neck in M, at scale arcomp for some a € [1,2] and we

must have
0.97comp < P1(y) < 2.17comp-
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By bounded curvature at bounded distance, Lemma [8.10, along with a priori assump-
tion applied at x, and assuming
€can < Eean(A; A),
we find that pi(z) < C'p1(y) < 2.1C"reomp for some C' = C'(A) < c0. So
di(z,y) < 10Ap1(x) < 21C" AT comp.

Let Y < oo be a constant whose value we will fix at the end of the proof. By a
priori assumption [(APA 3)|(c) we can pick a Arcomp-thick point z € N, in the same
component of N,  _ as 3(t;41). By a priori assumption [(APA 3)[(a) and bounded
curvature at bounded distance, Lemma, [8.10, applied at all points on ON,,,,—, and
assuming B

5n S 6n; A Z A(Y#) ) €can S Ecan(Y;J§E>7
we obtain that di,(2(t), ONi,+) > Yarcomp-

By a priori assumption [(APA 2)|and a distance distortion estimate, it follows that
then

dy(2(1), N7 > e Yircomp
for some universal constant C” < co. We can then apply Lemma [8.30} assuming that
5n S Sna Y# 2 X#()V A)7 €can S Ecan(A)y

to show that py(z) > %arcomp > liorcomp. So (/12.60)) holds. O

Next, we establish a priori assumption [(APA 7)|

Lemma 12.61 (Verification of |(APA 7))). If
E>E, HZH(E), mn<h(E), F2zE(E),

v <7(E), 6n < 0n(E), A> AE,W), A > A,

5b S Sb<E7 )‘7 Dcut7 A7 A)a €can S EC&H<E7 )‘7 Dcuta I/Va A7 A)7

then a priori assumption |[(APA 7) holds. In other words, for all x € Njgp \
Upecutucur? P for which P(z, Ap1(z)) "D =0 for all D € CutU Cut’, we have

(12.62) Qz) < Q.

The strategy of the proof is the following: Near the neck-like boundary of A the
bound is a direct consequence of assertion (c) of Lemma[l2.45] So it remains
to consider points that are far away from this neck-like boundary. If a relaxed bound
of the form @ < 10Q holds on a parabolic neighborhood of size comparable to L(FE)
around such a point, either via a priori assumption [(APA 7)or (12.46)), then we can
use the semi-local maximum principle, Proposition[9.1] and a priori assumption [(APA]
to improve this bound by a factor of 10. On the other hand, points for which such
a relaxed bound is absent in such a parabolic neighborhood must be close enough to
a cut, and even farther from the neck-like boundary. In this case we can guarantee
a bound of the form Q < 10WQ by either [(APA 8)| or (12.47) on an even larger
parabolic neighborhood, of size comparable to A. The bound then follows
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from the interior decay estimate, Proposition and a priori assumption [(APA 12)|
for large enough A.

Proof. Let © € N+ \ Upccutucue? and assume that P(z, Apy(x)) N'D =  for all
D € CutUCut’. Set t := t(z). Our goal will be to show that Q(z) < Q. By a priori
assumption from our induction hypothesis, we only need to consider the case
t>t;and x G./\f(tH

J:t**].
Let L = L(E) < oo be the constant from Proposition 9.1l By Lemma and a
priori assumption (APA 2), and assuming

€can S Ecan(L(E>’ /\7 A)u

we can find a constant A" = A'(L(F),A) < oo with A" > max{A, L} such that
P(z, A'pi(x)) is unscathed and

(12.63) P(y,104p:(y)) C P(x, A'py(x)) for all y € P(z, Lpi(x)).

We now distinguish two cases:

Case 1:  B(x, Lpi(z)) ¢ N/

The goal in this case will be to apply assertion (c¢) of Lemma [12.45] To do this,
we first need to bound p;(z) from above. For this purpose, choose z € AN/ ™! such
that di(x, 2) < Lpi(z). Let 4 > 0 be a constant whose value we will determine in

the course of the proof. By a priori assumption (APA 3)(a) and Lemma [8.31) and
assuming

5n S gn(a#)a €can S Ecan(CS:/f/:)a Tcomp S Fcomp7

we know that z is a center of a dg-neck U C M, at scale arcom, for some a € [1,2]
and p;(z) < 2.17comp. By bounded curvature at bounded distance, Lemma [8.10, and
assuming

ecan S Ecan(L(E))a

we therefore obtain p;(x) < Creomp for some C' = C(L(E)) < oo. Thus di(z,2) <
CLreomp- So if

0y < 0u(L(E)),
then z € U and therefore p1(z) < 2.17¢omp. 1t follows that
di(z, ONT) < dy(2, 2) < 2.1 L7 comp-

We can now apply assertion (c) of Lemma [12.45] assuming
F>21L(E),
and obtain that Q(z) < Q.
Case 2:  B(x, Lp(z)) € N7/t
We distinguish two subcases.
Case 2a:  P(x,A'pi(2))N'D =0 for all D € Cut UCut’.
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Recall that P(z, Lpi(z)) C P(x, A'pi(z)). So by Lemma we have
Pz, Lpi(2)) € N1 \ Upecutu cur’ D-

Using the assumption of Case 2a, (12.63), a priori (APA 7) from the induction
hypothesis and (12.46|), we obtain that @ < 10Q) on P(z, Lp;(z)). By Lemma [12.59

we have |h| < min on P(z, Lpi(z)). If P(z, Lpi(x)) intersects the initial time-slice Mo,
then a priori assumption [(APA 12)|also implies that @ < vQ on P(x, Lp(z)) N M,.
So by Proposition , a priori assumption (APA 2), and assuming

E > 2a H Z E(E)7 nlin S ﬁlin(E)y 4 S E(E), €can S ECam(Ea )‘)7
we obtain the improved estimate Q(z) < Q.

Case 2b:  P(x, A'py(x)) N'D # 0 for some D € Cut U Cut”.

Applying Lemma with Ay = A’ and a priori assumption [(APA 11)| and as-

suming
0 <bn,  A<SA A=A 86 < O0(A Do, A'(E, A),A),
€can < Ean (A Dewts A'(E, A), A)s - Teomp < Teomp,
we find that B(z, Api(z)) C N. Recall moreover that by assumption of the lemma we

have P(z, Ap1(z)) N'D = for all D € Cut UCut”. Therefore, again by Lemma m,
we obtain that

P(z, Api(x)) C Mo,t**] \ Upecutu cut? D-

By ([12.63)), a priori assumption [(APA 8)| from the induction hypothesis and ([12.47)),
we have @ < 10WQ on P(x, Api(z)). We will now apply Proposition to P(z,
Api(x)) in order to improve this estimate at x. To do this, observe that, by Lemma

[12.59 we have |h| < mi, on P(x, Api(z)) and if P(z, Ap;()) intersects the initial time-
slice M, then a priori assumption implies that Q < vQ on P(x, Apy(x))N
M. We can therefore apply Proposition to P(x, Api(x)), along with a priori
assumption (APA 2), assuming that

E > 27 H Z E(E), Thin S ﬁlin(E)J 4 S ﬁ(E>7
A Z A(Ea W)a €can S EC&H(E7 >\7 W)v

and conclude that Q(x) < Q. This finishes the proof. O

Next, we verify a priori assumption [(APA 8)]
Lemma 12.64 (Verification of [(APA 8))). If

EZE; HZE(E>7 Min Sﬁlin(E)v USD<E)7
5n§3n7 )\SX7 WEE(Ea)\;DCut) AZA<E)7
A Z Aa 5b S gb(Ea A; DCuta A7 A)7 €can S ECa,n(Evy Av DCut7A7 A)7

Tcomp S ?comp )



140 RICHARD H. BAMLER AND BRUCE KLEINER

then a priori assumption [(APA 8) holds. In other words, we have
(1265) Q S W@ on '/\/’[O,t**} \UDECutUCutJD‘

Note that a main aspect of this lemma is that W does not depend on A. Otherwise

the inequality (12.65)) would follow easily from ((12.46)) and (12.48]). More specifically,

at points whose distance to an extension cap is bounded in terms of A, we can only
use (|12.48) to obtain a bound on (). However, the “conversion” factor between Q*
and @) at such a point depends on A. So the bound ([12.48)) cannot be used directly

to verify ((12.65)).
J+1

The idea of the proof is the following. We may focus on the time-slab ./\f[tJ .
since the bound ((12.65]) follows from a priori assumption (APA 8) of the induction
hypothesis. The bound (12.65)) follows from ((12.46|) (the relaxed version of [(APA 7))

at points that are far away from the cuts, i.e. at distance comparable to A. For points
that are close to the cuts we distinguish two cases. The strategy in the first case is

to deduce ([12.65)) from a priori assumption [(APA 8)[ and its relaxed version ((12.47)

via the semi-local maximum principle, Proposition [9.1l This argument only works
at points that are still sufficiently far away from the cuts, this time with separation
comparable to L(E) < A. In the second case we consider points that are close to

cuts, comparable to L(F). At these points ((12.48) (the relaxed version of |[(APA 9))

guarantees a bound of the form Q* < 10Q". This bound translates into a bound on
@ and the conversion factor can be controlled in terms of L(E), E, A and D.y. So
(12.65|) follows as long we choose W larger than this conversion factor.

Proof. Consider a point = € /\/'[J+1 \ Upecut? D- Note that the case when t := t(z) =

tJ7t**]
t; follows from the induction hypothesis, so we assume in the following that ¢ > ¢;.

We distinguish the following cases.
Case 1:  B(x,10Ap; (7)) ¢ N/

Then we can apply Lemma along with a priori assumption |(APA 11)| assuming
that

5n Sgna >\ SX, A ZA, 5b Sgb(Aa DcutaAaA)a
€can < Ecan<)\7 Dcut7 A, A)7 Tcomp < Fcompv
and obtain that P(z,10A4p;(z)) N D = for all D € Cut UCut”’. So by (12.46) we
have Q(x) < 10Q). Therefore, Q(x) < WQ), as long as
W > 10.

Case 2:  B(x,10Ap;(v)) C N/
Choose L = L(E) from Proposition 0.1 We distinguish two subcases.
Case 2a:  P(x,Lpi(z))ND = for all D € CutU Cut”.

Assume that
10A > L(E).
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So B(z, Lpi(x)) C N and thus by Lemma [8.42]
P(z, Lp:(z)) C /\/{é}fﬂ \ Upecutucut’ D-

Let us now apply Proposition to P(x, Lpi(z)). To do this, note that by Lemma

a priori assumption (APA 8) from the induction hypothesis and (12.47)), we
know that |h| < m, and Q < 10WQ on P(z, Lpi(z)). If P(z, Lpi(z)) intersects Mo,
then by a priori assumption we also have QQ < v(Q) on the intersection.
Lastly, by a priori assumption (APA 2) we have p1(x) > Arcomp. S0 assuming

E>2, H > H(E), v <V(E), Min < My (E), €can < €can(E, A),
we obtain that Q(z) < WQ, as desired.

Case 2b:  P(x, Lpi(x))N'D # () for some D € CutUCut”.
By a priori assumptions [(APA 5) and [(APA 11)| and assuming

&b < 0b(A, Deut),

we can conclude that there is a constant C" = C”(A, Deyt) < 00 such that p; < C'reomp
on D. Next, by bounded curvature at bounded distance, Lemma [8.10], applied at z,
a priori assumption (APA 2), and assuming that

€ean < Eean(L(E), A),
we obtain a constant C” = C"(L(FE)) < oo such that
p1() < C"C o
Since B(z,10Ap;(z)) € N/, we obtain from that Q*(z) < 10Q". Assuming
E >3, A <1,
we can now convert this bound to a bound on Q(z) as follows:
Qz) = pi *(@)Q"(x) < p*(2)10Q"

(
< (CH(L(E))C/()\, Dcut)rcomp) Eigrllirl()\rcomp)3
< 107 (C"(L(E))C" (A, Dewt))* 1075 miar

comp

< 10BN C"(L(E))C' (N, Dewt))E2Q.

So Q(z) < WQ, as long as
W Z w(E7 /\7 Dcut)-
This finishes the proof. O

Lastly, we establish a priori assumption [(APA 9)!



142 RICHARD H. BAMLER AND BRUCE KLEINER

Lemma 12.66 (Verification of [(APA 9))). If
E>E, ~ H>H, <7y V<7, 0 <o
Tcut S ﬁcut? Dcut Z cht()\)7 A Z A(Ea /\)7 A A?

5b Sgb(/\aDcutaAyA>7 €can Sgcan(Ea/\aDcut7A7A)7
Tcomp S Fcomp<)\)7
then a priori assumption [(APA 9) holds. In other words, we have

(12.67) Q" (x) < Q" = 10" Nin (M comp)®
for all x € Mo,t**] \ U'DECutUCutJD for which B($, Apl ($)) C j\/’t(x)f-

Let us first summarize the strategy of the proof. As in the previous proofs, the
semi-local maximum principle, Proposition , can be used to deduce from a
priori assumption or its relaxed version at points that are sufficiently
far away from the cuts and the neck-like boundary of AN'. Now, consider points that
are close to the neck-like boundary, but far enough (comparably to A) from this
boundary such that the assertion does not become vacuous. At such points we use
the bound Q < 10Q) from a priori assumption and its relaxed version (|12.46)
and the interior decay estimate, Proposition to overcome the conversion factor
between () and Q* for sufficiently large A. Lastly, consider points that are close to
a cut. At such points we invoke the semi-local maximum principle, Proposition [9.1
with initial condition, on a truncated parabolic neighborhood whose initial time-slice
intersects the cut. We then use a priori assumption |(APA 10)|or |[(APA 7)[to deduce a
very good bound for )* on this initial time-slice. Propositionthen implies ((12.67)).

Proof. Consider a point © € N+ \ Upccusucus P such that B(z, Api(z)) C Ny)-
and set t := t(z). The case t < t; follows from a priori assumption of the
induction hypothesis. So in the following we assume that ¢ > ¢; and therefore that
B(z, Api(z)) € N

Let L(3) be the constant from Proposition (for £ = 3). Using Lemma [8.14] a
priori assumption (APA 2), and assuming that

€can S Ecaun(L<3)7 )‘7 A)7

we can find a constant A" = A'(A) < oo with A" > A such that the parabolic
neighborhood P(x, A’p(z)) is unscathed and such that

(12.68) P(y,104p1(y)) C P(x, A'pi(x))  forall  ye P(x, Api(x)).
Let us now distinguish three cases.
Case 1: ~ We have
P(z, A'pi(x), —(Lpr(2))*) € Mo+ \ Upecutucus D
and P(x, A'py(x), —(Lp1(x))?) does not intersect the initial time-slice M.

So, assuming

A= L(3),
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we have P(z, Lpi(z)) C Njpp+ \ Upecurucu? P- Using (12.68), a priori assumption
I(APA 9)| (12.48) and Lemma [12.59] we find that Q* < 10Q" and |h| < T, on
P(z, Lpi(x)). Since the exponent in the definition of Q* is 3 > 2, if

H 2 ﬂv Min S ﬁlim €can S Ecan(>\)a
we may apply the semi-local maximum principle, Proposition 0.1 to deduce that

Q*(z) < Q", which finishes the proof in this case. Note that here we have used a
priori assumption (APA 2).

Case 2: We have

Bz, A'pi(x)) £ N

By Lemma and a priori assumption |(APA 11), and assuming
5n Sgna )\ §X> AZAa 5b S 6b(/\7Dcut7A/(A)aA)>

e < Eomn Dots XA A), Teomp < Foom.
we find that
(12.69) Pz, A'pi(z))N'D =0, forall D€ CutUCut’.
So by Lemma [8.42
(12.70) Pz, Api(x)) C Nior1 \ Upecusucur’ D-

Combining (|12.69) with (12.68)), we obtain that for all y € P(z, Ap(z))
P(y,10Ap(y))ND =10 for all D € CutUCut” .
Therefore, by a priori assumption |(APA 7) and ((12.46]), we obtain that Q < 10Q on
P, Apy(z).
Let us now convert this bound into a bound on Q*. There are two ways of doing
this. One way would be to use Lemma [8.30 as in the proof of Lemma [12.59| leading

up to (see (12.60) to show that py(z) > 57comp. In the following, however, we will
use a different strategy, as it is technically easier.

Assuming
E>3

and using a priori assumption [(APA 2)[and (12.70]), we have on P(z, Ap;(z))

Q" = pzl))_EQ < ()‘Tcomp)S_E -10Q = ()‘rcomp)g_E ) 10_E7711n7a£3mp
< N B (Mromp)? = 10X EQ".
We will now apply Proposition to @Q* on P(xz, Api(z)). To do this, observe that
by Lemma [12.59 we have |h| < my, on P(x, Api(x)). In addition, if P(z, Api(z))
intersects the initial time-slice My, then by a priori assumption [(APA 12)| we have

Q*F < y@* on the intersection. We also have p;(z) > Arcomp by a priori assumption
(APA 2). So if

H Z ﬁ? Thln S ﬁlin’ v S v) A Z A(E7 )\)7 Ecan S EC&I’](E; )\>7
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then we obtain that Q*(z) < @, as desired.
Case 3:  We have
(12.71) B(z, A'pi(z)) C N,

and either
P(:Ea A,PI (@7 _(Lpl(x))2> Z MO,t**] \ U'DGCutUCutJD7

or P(z, A'py(z), —(Lpi(x))?) intersects the initial time-slice M.
In the following we will use the notation
Cut/ = {D € CutUCut’ : D C M,}.
Choose jo € {1,...,J} maximal with the property that
Pz, A'pi(x), —(t — tj,)) € Nos) \ Upecurucur’ D-
If no such jy exists, then set jy := 0. By Lemma we have P(z, A'pi(x), —(t —1"))

C No+1 \ Upecurucue? D for all ¢ € (t;,,t]. Letting t' — ¢;, and using the fact that
No++ is a closed subset of M, we obtain

(12.72) Pz, A'pi(x), =(t = tjo)) € Nog) \ Upecuriot u..ucu? P
and either jo = 0 or there is a cut Dy € Cut’ such that
(12.73) Pz, A'py(z),—(t — t;,)) N Dy # 0.

Let

Btjo = (B(SL’, L,O1 (.T))) (tjo)'
In other words, B, is the initial time-slice of the parabolic neighborhood P(z, Lp;(z),
—(t —tj,)). Note that by the perturbation h is defined everywhere on P(z,
Lpi(x), —(t — tj,)) \ By, and it can be smoothly extended to the entire parabolic
neighborhood by setting h = hy; 4 on By, . Similarly, we can extend ) to the entire
parabolic neighborhood P(z, Lpi(x), —(t — tj,)) by setting Q* = Q% on By, .

We will now bound Q" = Q% on By, . Let y € By, . Then the two cases indicated
above lead to the following three cases:

Case 3a:  We have jo = 0 and therefore y € M.

In this case, by a priori assumption (APA 12) we have
Q*(y) <v@Q.

Case 3b:  We have jo > 1 and y € Dy.

In this case, a priori assumption (APA 10) yields

Q* (y) < ncuta*-
Case 3c: We have jo > 1 and y & Dy.

Our strategy in this case is to use the bound on @(y) from a priori assumption
[(APA 7)[and (12.46|) and translate it into a bound on Q*(y). In order to do this, we
need to ensure that a priori assumption [(APA 7)| or (12.46)) apply at y (or slightly
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earlier) and that p;(y) is sufficiently large so that the @-bound implies a good bound
on Q*.

Let Cy < oo be a constant whose value we will determined at the end of the proof.
We can now apply Lemma assuming

O <0n, Dot 2 DA, Cy), A=A 0y < 0u(A Deur, A'(A), A),
€can < €can(A, Doty A'(A), A), Teomp < Teomp(C),
to find that
1Y) = CyTeomp
and P(y, 11Ap;(y))ND = @ for all D € Cut' U...UCut?'. So for any ¢’ € [t,_1,tj,),
sufficiently close to t;,, we have P(y, 10Ap;(y))ND = () for all D € Cut U Cut’. So by

a priori assumption (APA 7) and its relaxed version (12.46) we have Q(y(t')) < 10Q.
Letting ¢ — t;, yields Q(y) < 10Q).
Assuming
E >4,

we obtain similarly as in the proof of Lemma [12.49

Q"(y) = pi " QY) < (Cyreomp)’ " - 10Q
= (C#Tcomp)?’_ElO_Enhnrimp < 03;1/\_310_Emm()\rc0mp)3
<C'NQ
Summarizing the results of subcases 3a—3c, we obtain that

Q* S (V + Tcut + C#—/:l)\—?))@* on Bt- .

J0
Similarly as in case 1, we can use (|12.68]) and ((12.72]) together with a priori assump-
tion [(APA 9)[ and (12.48) to show that Q* < 10Q on P(z, Lpi(z), —(t — t;,)). By

Lemma [12.59| we have |h| < mu, on P(z, Lpi(z), —(t — tj,)). We can now apply
Proposition along with a priori assumption (APA 2), assuming

Min S ﬁlin? H 2 ﬂa v S va C# 2 Q#()‘)a
Tlcut S ﬁcuta €can S Ecan()‘)7
to show that Q*(z) < @, as desired. O

We can finally finish the proof of Proposition [12.]] - Lemmas [12.59] [12.66] [12.64
and (12.61imply that (Mo ), {N7, N}y, {8, 67 }/,) and (CutUCut‘] ¢|N0t**],

[ty b=

{¢7, o’ NIHL, } 1) satisfy a priori assumptions (APA 6)—(APA 9)|whenever (|12.46[)—
m hold up to time t**. So by iterating Lemma [12.49] we may choose t** = t*.
Since a priori assumption [(APA 6)[ holds for the aforementloned comparison domain
and comparison, we have |h| < nhn on N:I™. So by assertion (d) of Lemma [12.45] we

obtain that t** = ¢* = t,41. So (N, {N7}/Z {t;}72)) and (CutUCut”, ¢, {¢/} /1)
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satisfy a priori assumptions (APA 1) and [(APA 6)H(APA 9)l A priori assumptions
(APA 2)—(APA 5) and (APA 10)—(APA 13) follow from assertion (a) of Lemma [12.45]

Lastly note that the auxiliary parameter F was assumed to be large depending
only on E. So it is straight forward to check that the assumptions of the parameters
imposed in the course of this proof all follow from ((12.2)). This finishes the proof of

Proposition [12.1]

13. PROOFS OF THE MAIN RESULTS

In this section we will combine the results of Sections [11] and [12|to prove the main
result of the paper, Theorem [13.1} We then prove some corollaries, including several
stability results and a uniqueness theorem, as presented in Subsection [1.3

Theorem 13.1 (Existence of comparison domain and comparison). If
T>0, E>E  H>H(E), mn<n,(E),
v <v(H,mw, T), O < On(H, i, T), A < A(0n),
Dcap > D (A)v Neut < Neuts Dy > cht(Dcapa ncut)y

— —Cap
W Z E(Dcut)v A Z A(W>7 A Z A(A)a 5b S gb<A)7
€can < Ecan(é‘b% Tcomp < 7_ncomp (A)7

then the following holds.

Consider two (€canTcomp, I')-complete Ricci flow spacetimes M, M’ that each satisfy
the €can-canonical neighborhood assumption at scales (€cancomps 1)-

Let ¢ : {z € My : p(x) > ANreomp) — My be a diffeomorphism onto its image
that satisfies the following bounds:

1¢* g6 — 90| < Mrim,
el |C g0 — go) < vQ = v - 107 F

comp’
eHTp:l‘)‘C*gll) - gO’ S I/@* =U: 1071771in(>\7acomp)3
Assume moreover that the €..n-canonical neighborhood assumption holds at scales
(0,1) on the image of .

Then for any J > 1 with Jr2,, < T there is a comparison domain (N, {N7}]_,,
{t;}/_o) and a comparison (Cut,d,{¢?}7_,) from M to M’ defined on this domain
such that a priori assumptions |(APA 1)H{(APA 6) hold for the tuple of parameters
(Thin, On, A, Deaps A, Ob, €can, Teomp) and a priori assumptions |(APA 7H(APA 13) hold
for the tuple of parameters (T, E, H, Min, V, A, Newt, Dewt, W, A, Teomp ). Moreover, ¢oy =

06 = Clnp-
Proof of Theorem |15.1. The theorem follows from Propositions and by in-

duction on J. Both propositions can be applied under restrictions on the parameters
that follow from the restrictions stated in the beginning of this theorem. Note that
in the first step of the induction one applies Proposition to produce the first
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time slab A/! of the comparison domain. By a priori assumption [(APA 2)| we have
Ny C X :={z € M| p(x) > Areomp}- Assuming

)\ S X(§n> y €can S Ecan(én) 9

by|(APA 3)land Lemma if follows that the &, '7comp-tubular neighborhood around
N is contained in X. Hence the map ¢ from the assumptions of Theorem satisfies
assumption (vi) of Proposition [12.2}

Note that we have simplified the restrictions on the parameters in the first part
of this theorem by omitting arguments in parameter restrictions if they have already
appeared in earlier restrictions. This simplification does not change the nature of
these restrictions. For example, since we have imposed the restriction H > H(E), we
can assume without loss of generality that H > E. Therefore, it is not necessary to
list F in the restriction for v < U(H, ny,, T'), as v already depends on H. O

Next, we prove Theorem [I.7 This theorem is similar to Theorem [I3.1} however
the parameters associated with the a priori assumptions have been suppressed. The
proof of Theorem requires the following result.

Lemma 13.2. If
Ecan S Ecan7 r S F?
then the following holds.

Let M be an (€canr, T')-complete Ricci flow spacetime that satisfies the €can-canonical
neighborhood assumption at scales (€cant, 1). Let x € Mo be a point with p(z) > 7.
Then there is a continuous path v : [0, 1] = Mg between x and a point in My such
that t o~y is non-increasing and such that p(y(s)) > .9r for all s € [0, 1].

Proof. A slightly different version of this statement, which would also be adequate
for our needs here, was proven in [KL14, Prop. 3.5]. For completeness, we provide
an alternative argument.

Set to := t(z) and ro := p1(z) > r. By Lemma |8.38| assuming
Ecan S Ecarh

we know that x survives until time max{t, — rZ,0} and z(t) > .9ry > 9r for all
t € [max{ty — rZ,0}, o). So if to < r2, then we are done. Consider now the case
to>rg. If ro < 3 and p(x(to — r3)) < p(x), then we can use Lemma [3.38, assuming

Ecan S E(3:':1.117

to show that (M, z) is close enough to (Mp,y, gBry, TBry) such that there is a point
y € My, with p(y) > 2p(z) and such that x can be connected with y by a continuous
path inside M;, whose image only consists of .97-thick points.

So, summarizing our conclusions, for z € Mg can be connected with a point
y € Mi with a path v : [0,1] = M such that t o+ is non-increasing and
p(7(s)) > .9 for all s € [0, 1], and one of the following holds:

(1) Yy e M,
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(2) ply) > § and t(y) = t(z) — pi(2),
(3) p(y) > p(x) and t(y) = t(x ) pi(x),
(4) p(y) > 2p(x), p(z) < § and t(y) = t(z).

Iterating this process yields a sequence of points g = x, 1, 72, ... € M[g 7] such that
x; and x;,1 can be connected by a path with the desired properties. It now remains
to show that this sequence terminates at some index ¢ and that z; € M,. To see
this, note that by (1)—(4) the sequence of times t(x;) is non-increasing and p(z;) > r,
assuming

"<

=

If t(z;) # 0 for large ¢, then case (4) must hold for large 7, i.e. p(z;41) > 2p(z;) and
p(z;) < 3. This is impossible. O

Proof of Theorem[1.7. Since we will invoke Theorem [I3.1] below, in order to make the
estimates in Theorem [L.7] conform more closely with those in Theorem [I3.1] it Wlll
be convenient to prove the theorem for E replaced by E/2, ¢ replaced by ¢ and gb
replaced by ¢. So we assume that  : U — U’ satisfies

C*gh — 9ol < e~ rP(|Rm| + 1)%/2
and our goal is to construct ¢ : U — U’ such that

[6°90 — gol < 8- rF(|Rm| + 1)772.

We will first prove a slightly weaker version of the theorem in which we allow €ga,
to also depend on T". We will mention how we can remove this dependence at the end
of this proof.

Fix T and E > E, where E is the constant from Theorem and assume that
E > 3. Based on these choices, fix constants H, Min, v, 0n, A, Deap, Neut, Deut, W, A,
A, Op, €can and Teomp that satisfy the restrictions stated in Theorem . Without
loss of generality, we may assume that Teomp < 1. Choose 7T¢omp = a1 - Teomp, Where
0<a=a6,T,E) <1is a constant whose value will be determined in the course of
this proof.

We now verify the assumptions of Theorem [13.1]
Assuming
€ S €can * aFcomp )

we get that M, M’ are (€canrcomp, I')-complete and satisfy the ec,,-canonical neigh-
borhood assumption at scales (€can”comp, 1). 1f

ESCl)\,

for some universal constant ¢; > 0, then U* :={z € My : p(z) > Mcomp} C U.
So, without loss of generality,

Let us now verify the bounds on hy := (*g{,— go in the assumptions of Theorem 13.1]
For this purpose note that there is a universal constant C; < oo such that C;'p;* <
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IRm| + 1 < C1p;%. Now by assumption of this theorem and the fact that
[Rm|+1 < C’lpl_2 <O\ %2 < Cl()\aﬂomp)_Qr_z ,

comp —
on U*, we have
|h0| S € TE(lRm| + 1)E/2 S € OlE/Q(/\OéFcomp)_E S Min,
as long as
€ S Cl_E/2<)\aFComp>Enlin .

Similarly, we obtain that

e pP ho| < CEPHT(|Rm| + 1) /2| ho| < C’{E/QGHT cer®
S v- 10_E_1771in<0”' : Tcomp)E>

as long as
—E/2 _ B _
e < Cl / (& AT v-10 E 17]lin(arcomp>E

and
T 3l ho| < C22HT (IRm| + 1)7/2| hy|
< Cf/Q()\Oz?comp)g_ETg_E - e(|Rm| + 1)_E/2|h0|
< CFP (AT eomp)> T - er® < v 1071 (AT - Feomp)s

as long as
e < C’I_E/Qe_HT v 107 (AT comp) ©

Note that the three bounds that we have imposed on € in this paragraph depend only
on 6, T, E, assuming that a can be chosen depending on these three constants.

Lastly, note by assumption of this theorem the e.,,-canonical neighborhood as-
sumption holds on the image of (.

We can therefore apply Theorem and obtain a comparison domain (N, {N7}/_
{t;}7_y) and a comparison (Cut, ¢, {¢’}7_,) that satisfy the a priori assumptionsm
APA 6)|for the parameters (i, 6n, A, Deap, A, Ob, Tcomp, €can) and a priori assump-
tions [(APA 7)H(APA 13)|for the parameters (T, E, H, Min, V, A, Neut, Deut, Wi A, Teomp ) -
Without loss of generality, we may assume that 7" is an integral multiple of rfomp, ie.

t; = T'; otherwise we may decrease 7¢omp Or increase 1" slightly.

Let now U C Mo be the set of Coreomp-thick points, where Cy = C(A) < oo is
a constant whose value will be determined at the end of this paragraph. We claim
that U C N \ UpecuD. To see this consider z € U and choose j € {1,...,J} such
that © € My, , ;). Then by Lemma , if

03 2 Q3 ) 02 2 ACS ’ €can S Ecan ) rcomp < Fcomp

then z survives until time ¢; and z(¢;) is Areomp-thick. So by a priori assumption
APA 3)(b) we have z(t;) € NM;,— and thus x € N. Lastly, by a priori assumption
APA 3)fe) we have x ¢ D for all D € Cut.




150 RICHARD H. BAMLER AND BRUCE KLEINER

By the choice of U we have
Rm|+1>C o2 > C7tCy %2 =CorC 2 a2

comp comp
on Moz \ U, assuming
Teomp < Cy L
So if .
o< 50171/20271/276(“p

then [Rm|+ 1> 4772 > 72 4 1 and therefore [Rm| > 72 on M7\ U.
Lastly, by a priori assumption [(APA 7)| we have
B < M0 107 B g (1T gmp) P

< CFPHT (IRm| + 1) P 2nnaPrPFE < §- (|Rm| + 1)F/%F

comp —
as long as

-1/2 HT/E 1/E_
a < 5CT T B IEF

We now show that |[Rm| > r=2 on Mgy \ U’ for sufficiently small o if we
additionally assume that |[Rm| > (er)™2 on M \ U’. To see this, assume that
|[Rm|(2’) < r~2 for some 2’ € Moz \ U. So p(z) > 1C'r. We can now ap-
ply Lemma [13.2 assuming that €.,, is smaller than some universal constant, to find
a continuous path v : [0,1] — M,y between 2’ and a point y' € Mj such that
p(v(s)) > i(]l_l/zr for all s € [0,1] and t o~ is non-increasing. On the other hand,

we have p < C1*|Rm|~"/2 < C}er on M)\ U’. So if
1,
€ S ZOI 17
then y' € U'. Set y := ¢~ (¢/).

Our next goal is to show that ¢y’ € (7(’) To see this, we will argue that p(y) > Carcomp-

By Lemma we can find a universal constant ¢y > 0 such that p > éCl_ 121 on
B(y', cor). So, as in the last paragraph, we obtain that B(y', cor) C U’, assuming

1
€§§Cl_1

If p(y') < 1, then we can use the €.,-canonical neighborhood assumption at y' to
deduce bounds on higher curvature derivatives on B(y', cor') (as in Lemma [8.1)). On
the other hand, if p(y’) > 1, then we obtain an improved bound of the form p > ¢3 on
B(y', cor) for some universal constant ¢; > 0 (via Lemma(8.10)). So using Lemma(8.20)]
applied similarly as in the proof of Lemma [8.23] we obtain a universal constant ¢4 > 0
such that p(y) > ¢4r, assuming that

Min Sﬁlina a Sa

So if
(07 S C4CY2_17



UNIQUENESS AND STABILITY OF RICCI FLOW 151

then p(y) > C'grcomp and therefore by construction of U we have y € Uo It follows
that i = &(y) € UO

Choose sg € [0,1] minimal with the property that v((sg,1]) C U'. As NS U', we
know that sy < 1 and since U’ is open and 2’ & U’ we obtain y(sg) & U'. For any
s € (s, 1] we have ¢'(v(s)) € U C N. So by Lemma [3.23

(671 (4(9))) = Capm(1(s) > Canh - 1712
Therefore, if
a < éCSDoll/chl :

then R

p(67(7(5))) > 2CoTcomp-
Using Lemma [8.4] Proposition and the uniform lower bounds on the scales of
v(s) and g/g*l('y(s)), we obtain that z := lim, g/g*l('y(s)) exists. It follows that
p(2) > 2C5Tcomp. S0 2z € U and thus v(s0) = ¢( ) € U’ contradicting the choice of
So-

This finishes the proof of the theorem if we allow €., to depend on T'. To see that
€can Can even be chosen indepe/\ndently of T', we revert back to the notation used in
the theorem and we construct ¢ successively on time intervals of the form [0, 1], [1, 2],

. More specifically, given E > E set €can = €can(1, E), (i.e. the value in the weaker
version of the theorem for 7" = 1). Now assume that § > 0 and T < oo are given
and assume without loss of generality that 7' is an integer. Set inductively ¢, := §
and ¢€; := min{e(e;_1,1, E), ¢;, 1}, where €(-, 1, FE) is as in the statement of the weaker
version of the theorem in the T = 1 case, as well as ry := r and r; := €r;_1, for
i=1,...,T. Assume now that |[Rm| > (¢ --- ETT)_Z = (eprr—1)~2 on My \ U and

6796 — gol < er - 17%,(JRm| + 1)".

We can then apply the weaker version of the theorem for r = rp_; and § = €r—i+1 to
find a sequence of subsets U C M1y, U c M | and diffeomorphisms ¢Z U —

Ui’ such that

[i—1,

079" = gl < er—i - 177, (|Rm| + 1)”
and |[Rm| > (ep_irr—;) 2 on My, for i =1,...,T. Then ¢ can be constructed by
combining the diffeomorphisms ¢, ..., ¢r. O

Proof of Theorem[1.5 The theorem is a consequence of Theorem To see this,
assume § < 1, choose E := FE and consider the constants €ca, = €can(E) and € = 6(3%6,
T, E) from Theorem [1.7} Set ¢ := min{0%, ecan} and r := 4.

We claim that Theorem [I.5] holds for € = €¢’. By the assumption of this theorem we
have

19*gh — go| < € <e-0*"(|Rm| +1)".
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So Theorem can be applied and yields the existence of an extension 5 U = U
such that

(13.3) 59— ol < - (R + 1)F <,

on U N {|Rm| < 2672} and [Rm| > 62 on Mz \ U. We can now replace U by
U N {|Rm| < 202} and then U’ by ¢(U). Then [13.3)) holds on all of U and we still
have [Rm| > 62 on M\ U. O

Proof of Addendum to Theorem [7.5. The bounds on the higher derivatives follow from
Lemma since ¢*g' — ¢ satisfies that Ricci-DeTurck equation. 0

We now apply the stability theorem, Theorem 1.7} to prove Theorem asserting
the uniqueness of the Ricci flow spacetimes with a given initial condition, under
completeness and canonical neighborhood assumptions.

The idea of the proof is as follows. We first apply Theorem|1.7] -to produce a sequence
of maps d)l U — MOT] such that U;U; = Mo ) and the |¢j¢g' — g| < §; — 0. We
then show that the ngZs converge locally smoothly to the desired diffeomorphism <$ To
do this, we appeal to the drift bound in Proposition to propagate the region of

convergence over time, and we use uniqueness of isometries of Riemannian manifolds
to propagate the convergence within time-slices.

Proof of Theorem[1.5 We will prove the theorem in the case T < oo. The case
T = oo follows by letting T — o0o. Choose E and €can = €can(E) according to
Theorem [1.7] Also, by parabolic rescaling, we may assume without loss of generality
that r = 1.

By Theorem we can find a sequence of open subsets Uy C Uy C ... C My

such that U2, U; = M|y and a sequence of diffeomorphisms onto their images ¢; :

Ui — MEQT] that satisfy the harmonic map heat flow equation, such that ggl
t' o, =tand
(13.4) 6g — g| < 6 — 0.

Let Y be the set of points © € My such that the pointwise limit ¢o(x) =
lim; o ¢;(x) exists. Let
X={zeMypm : B(x,r) CY for somer >0},

so X is the set of points x € My 1) that belong to relative interior of Y N My, in
My(z). Recall that X, = X NM, for t > 0. Our main goal is to show that X = M7

and that the pointwise limit 500 is smooth, preserves the metric, and time vector field.
Obviously, Xy = Yy = My, since ¢; = ¢ on U; N M.

Claim 1. For every t € [0,T]:
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(a) doo |x,— My is a smooth isometric immersion.
(b) Xy is a union of connected components of M.

(c) For all z € Xy, p(doo(z)) = p(x).

Proof. Suppose t € [0,T] and z is in the closure of X;. Choose rq > 0 such that
B(z,6r9) is compact, and pick = € B(z,79)NX;. Hence B(x, 5rg) is compact. There is
a sequence L; — 1 such that for large i we have B(z,5ry) C U;, and L; 'g < gg;‘g’ < L;g
on B(x,5r). An elementary Riemannian geometry argument gives, for large ¢, that
ggi(B(x, 519)) D B(g/b\,(x), 4rg) and the restriction of &; to B(z,10) is Ls-bilipschitz with
respect to the Riemannian distance functions on M; and M;. Since @(:p) — &500(33),
for large ¢ we have

¢i(B(w,10)) C B(¢i(x),2r0) C B(doo(),3r0) C B(i(),4re) C 6:(B(x,5r9)) .

and therefore B ((Eoo(x), 3rp) is compact.

Put B := B(x,r5). Suppose {g/b\l|3} does not converge pointwise. Then by the
Arzela-Ascoli theorem, the sequence {¢;|s} has two distinct subsequential limits
v, Y+ B — M), and since L; — 1, both maps preserve the distance functions
on M and M’. Hence ¢ and v/ are smooth Riemannian isometries. They agree
on a neighborhood of x in X;, because x € X, and since B is connected, they must
coincide, contradicting ¢ # ¢’. Thus B C X}, and the pointwise limit qgoo is a smooth
Riemannian isometry on B. This shows that the closure of X; is open, which implies
assertion (b). Our proof also implies assertion (a), which implies assertion (c). O

Claim 2. There is a universal constant ¢ > 0 such that for every x € Y; =Y N M,
and 1, = cpi(z) the following holds for allt' € [t — 7,,t + 7,] N[0, T):

(a) x survives until t', and x(t') € Y.
(b) aoo(x) survives until t', and (aoo(a:))(t’) = (Zoo(x(t/)).

Proof. The claim follows from Proposition[A.28]via a continuity argument. Let x € X;
and set o’ := aoo(x)

Using assertion (d) of Claim 1 and Lemma we can find a universal constant
¢ > 0 such that for 7o := c¢'/2p, () the following holds: For all t; > 0 with |t —#| < r2
the parabolic neighborhoods P(x(ty), 70, 2r3) and P(z'(ty), 1007, 2r3) are unscathed
and |Rm| < r;? and |V Rm| < r;® on both. Moreover, lengths of curves inside these
parabolic neighborhoods are distorted by at most a factor of 2.

For each 4 choose ¢* ; minimal and ¢} ; maximal with 0 < ¢*, < ¢ < #% ; and

|t; . — t| < 7§ such that we have di, (di(2(to)), (65(2))(to)) < 1o for all ty € (t* ot )
Since x € Y}, we have dt(ai(a:), x') < rg for large i. So by the length distortion bound
on P(x'(ty), 100r¢, 2r) we have dy, ((¢s(x(t')))(to), ' (to)) < 4ro for all ty € (t* ;1]

and t' € [to,t" ;) if 7 is large (we use the convention [t,t) = (¢,t] = {t} here). By
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(13.4) and the distance distortion bounds on P(z(ty), 7o, 2r3) and P(z'(to), 10070, 213)
we therefore obtain that for large 7 and ¢y € (t* ;, ]

i (P(x(to), 0, t%; — to)) C P(a(to), 1007, 2r2).

We can therefore apply Proposition for M = B(x(to),ro), M' = B(2'(ty), 1007r9),
r =r19/2 and A = 164, along with ([13.4) to find that there is a sequence ¢; — 0 such
that for large ¢ we have

(13.5) diy ((91(2(t)))(t0), (61(2))(t0)) < €

for all ty € (t* ;,t] and ¢’ € [t, 7 ;). By the distance distortion bound on P(2'(t),

—27

100rg, 2r2) this implies that

(13.6) dy (6i(x(t)), (9:(x))(t) < 2eimy

for all such ¢, and #'. The bounds (13.5)) and (13.6) imply that for large i we have
tr,=t—rgort, = () and tf, =t 41§ or t;, = T due to their minimal and
maximal choice. So and the distance dlstortlon bound on P(2'(t* ;), 1007,
2r2) imply assertions ( ) and (b). O

Claim 3. (a) X is (relatively) open and closed in M.

(b) oo is smooth, and (gboo) (0y) = Oy
(c) X = M.

Proof. Suppose z € M, and z belongs to the closure of X. For r > 0 sufficiently
small, by assertion (c) of Claim 1, there exists ¢’ € [t — r*,¢t + 72| N [0,T] such that
(B(z,7))(t") is contained in X. Shrinking r if necessary, we may assume that for all
z € (B(z,7))(t'), we have 7, > 2r® where 7, is as in Claim 2. Thus by assertion (a)
of Claim 2 we conclude that (B(z,r))(f) C X for all £ € [t — r?, ¢ +r* N[0, T]. This
implies the closure of X in Mo 7] is open, which implies assertion (a).

By assertion (b) of Claim 2, it follows that oo locally commutes with the flows of
the time vector fields d; and 0y on M and M’ respectively. Combining this with
assertion (b) of Claim 1, we obtain assertion (b). By assertion (a), it follows that
X is a union of connected components of M 7). Assertion (c) now follows from
Lemma and the fact that My C X. O

By Claim 3 we have constructed a smooth map (Zoo s Mo — MEO’T] such that
(137> Q?Zog/ =9, &5\00|M0 = ¢, (ggoo)*@t = 8’(’7 to Q/b\oo =t

We now claim that the map aoo is uniquely characterized by 1} To see this,

consider two such maps ggoo, (E’ As both maps satisfy the harmonic map heat flow
equatlon we can apply the conclusion of our proof so far to the sequences U; = Mg 1

and (bgl 1= gboo, (bgl ¢’ It follows that <bl converges pointwise, and therefore we
must have gboo qb' as asserted.
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It remains to show that q/goo is bijective. To see this, we can interchange the roles
of M and M’ and apply our discussion to obtain a map . : MEO’T] — Mo,) such
that

~

Vig=0d,  Uelag =1 =07 (e)le =0, totn =t.

Now consider the composition « := 121\00 o g/goo such that

*

a g=4dg, a'Mo:idMO, Oz*at:@t, fOOg:f’

By the uniqueness property, as discussed in the previous paragraph (for M = M’),

we obtain that ¢ 0 poo = @ = id s, - Similarly, we obtain that ¢o; 0 thee = id Mg 1y

This shows that qgoo is bijective, finishing the proof. 0

APPENDIX A. RICCI-DETURCK FLOW AND HARMONIC MAP HEAT FLOW

In this section we discuss the main estimates for harmonic map heat flow and Ricci-
DeTurck flow that will be needed in the paper. While the general methodology is
fairly standard, and we were unable to find suitable references in the general PDE
literature for these results.

A.1. The main equations. In this subsection we derive the general equations for
harmonic map heat flow with time dependent metrics on the source and target, and
the associated Ricci-DeTurck flow. Most of the ideas presented in this subsection go
back to DeTurck [DeT83].

Consider two n-dimensional manifolds M, M’ each equipped with a smooth family
of Riemannian metrics (g¢)icjo,77, (9;)tcpo,r)- Let moreover (xi)icp1], Xt : M' — M be
a smooth family of maps.

Definition A.1. We say that the family (x;):c[o,r) moves by harmonic map heat
flow between (M’ g;) and (M, g,) if the family satisfies the following evolution
equation:

n

atXt - Agl’t,gtxt = Z (vgt)(t(ez)dxt(eZ) - dXt(vgfez))a

i=1

where {e;}_; is a local frame field on M’ that is orthonormal with respect to ¢,.

Assume now for the remainder of this subsection that all the maps x; are diffeo-
morphisms and consider their inverses x; '. Let

(A.2) he:=(x;") g, — 9
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be the associated perturbation. The pullback (x;')*g, = g; + h; evolves by the
following equation

*

(A.3) (i) 9) = (") 091 = Loyeoni ((6) 91)
= (x; ) (0 + 2Ric(g;)) — 2(x; ") Ric(g;)
- ‘C@tXtOXt_I ((X;l)*g:f)

= (X;l)* (&tgé +2 Ric(gé))
-2 Ric(gt + ht> - £atXtOX;1 (gt + h’t)

= (x; )" (dug; + 2 Ric(g;)) — 2 Ric(g;) + X,
where X; can be expressed as follows (in the following identity, covariant derivatives

and curvature quantities are taken with respect to ¢; and the time-index t is sup-
pressed)

Xij = (g +h)PI(V2hij 4 Ry hag + Ryji"hag — Rigg"huj — Ripg"huj)
1
- 5(9 + h)pq<g + h)uv (_vihpuvthv - ZVuhipvthv

We will now use (A.3) to derive an evolution equation for h;. First observe that

Oihy = at((Xt_l)*gé) — Ot

Similarly as in Uhlenbeck’s trick, we define (we will suppress the time-index again
wherever it interferes with the index notation)

1
(Va,he)ij = (Ophe)ij — §9pq (hpjatng’ + hipOigyj)-
Then

(A.4) (Vohe)iy = (") (9t + 2Ric(g))),; — (Gige + 2 Ric(gr)),,
— 2" (hPhg + hidigg) +
= (") (0gs +2 Ric(gg)))ij — (9hge +2 Ric(gt))ij
— 57 (Dge + 2Ric(g)),

1 .
— §9pq (@gt +2 Rlc(gt))pjhiq + Vij,
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where
Vij = Xij + g7 Ricip hy; + g7 Ricp hy;
= (94 h)P(Vi,hij + Ry hug + Ry hag)
+ (0" — (g + WP (Ripg P + Ry hus)

ipq
1
- 5(9 + h)pq(g + h)uv( - vihpuvthv - 2Vuhipvthv
+ OV iy Vohg + 2V hio Vg + 2V Vol

In the following, we will focus on the case in which h; is small and in which the
families of metrics (g¢)tcjo,r) and (g;)sejo,r) almost satisfy the Ricci flow equation in
the following sense. For parameters 0 < 1 < 0.1 and § > 0 we assume that for all
tel0,7]

—nge < hy < ngy
and
(A.5) —dg; < Oigy + 2Ric(g;) < dg;,  —0dg: < O + 2Ric(gr) < dgr.
If we now multiply (A.4) by 2¢g¢’9h,,, then we obtain that for some dimensional
constant Cy < oo.
(A6) OuR|* < (g+n)IVG[R* = 2(g + h)7 979" Vil V jhe,

+ Cod - |h| + Co|Rm| - |h|> + Co|h| - |[VR|?.

Let us assume in the following that 7 < min{0.1,C;'}. Then
(A7) OIh|* < (9+ h)IVE R + Cob - |h] 4+ Co|Rm] - [,

Next, let us consider the case in which (g¢)icio,r) and (g;):co,r; both satisfy the
(exact) Ricci flow equation. Then (A.3) implies the Ricci DeTurck equation for
the pull back metric g, + hy = (x; )*g..

@(gt + ht) = -2 RlC(gt + ht) — Eth(gtJrht)(gt + ht),

where the vector field X, (g; + h¢) is defined by

n

(A.8) Xg(g%) = Dgegidyr =D (Veei = Vie;),

i=1
for a local frame {e;}"_; that is orthonormal with respect to ¢g*. Note that
(A.9) X (gs +he) = Opxe o Xz -

From an analytical point of view, (A.4) implies that the Ricci-DeTurck equation
can be expressed as follows in terms of the perturbations h;.

(Al()) Vatht = Agt ht + 2 ngt (ht) + Qgt {ht]
The expression on the left-hand side now denotes the conventional Uhlenbeck trick:

(Vorhe)ij = (Oiha)ij + gi* (Ricy; (0yhe)ij + Ricpi(9pha)ss)
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Moreover,
(Rmy, (ht))ij = 6" R hau
and Q,, [hy] = Q% [hy] where
(A1) (Q ), = ((g+ ah)P® — ") (Vi hij + Ryiifhug + Ry hug)
+ (9" = (g + ah)™) (Ripy"huj + Ry hus)
- %(g + ah)P(g + ah)™ (=Y iV ihgs — 2V uhiyVohi,
+ 2V Vohg + 2V hiy Vg + 2V iV ohi).

In this paper, we also consider the rescaled Ricci-DeTurck equation for pertur-
bations of the form h; := o 'h; (we will be interested in the case a < 1 mostly):

(A.12) Vo = D,y + 2Ry, (hy) + Q9 [Ry).

Note that Q[h] = 0. So for & — 0, the equation (A.12)) converges to the linearized
Ricci-DeTurck equation

Vat,ﬁt = Agtﬁt + Qngt (Et) = AL,gtEt'

A.2. Local derivative estimates. In the following, we will derive local bound on
derivatives of Ricci-DeTurck equation and the harmonic map heat flow equation. Let
us first consider the Ricci-DeTurck perturbation equation. We obtain the following
local derivative bounds.

Lemma A.13 (Local derivative estimates for Ricci-DeTurck flow). For any m,n > 1
there are constants 1y, = Nym(n) > 0 and Cy, = Cyy(n) < 0o such that the following
holds.

Consider a Ricci flow (g¢)iejo,2) on an n-dimensional manifold M. Let p € M be a
point, v > 0 and assume that the time-0 ball B(p,0,7) C M is relatively compact and
that |[V™Rm| < r=2=™" on B(p,0,7) x [0,7?] for allm’' =0,...,m + 2.

Consider a solution (ht)icor2) on (M, (g¢)icpr2)) to the Ricci-DeTurck perturbation
equation . Then the following holds:

(a) If
H = sup \helge < N,
B(z,0,r)x[0,r2]

then
V™' h| < C, Ht™™ /2
on B(p,0,7/2) x (0,7?] for allm' =1,...,m.
(b) If
7 o T B 2, Y S e
then
V™ h| < Cy Hor ™
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on B(p,0,7/2) x (0,7%] for allm' =1,...,m.

Proof. This follows directly from [Bam14, Proposition 2.5], [App16, Lemma 4.4] and
(A-10). 0

Next, we discuss similar local derivative bounds for the harmonic map heat flow.
To that end, consider families of metrics (g¢)jor7 on M and (g;)jpr] on M’ and a
solution (x; : M" — M )c(o,r] to the harmonic map heat flow equation between A/’
and M. Choose local coordinates (z!,...,2") on U C M and (y',...,y") on V. C M’
such that x,(V) C U for all t € [0,T]. Express the families of metric (g¢):cjo,r) on U
and (g;)p,r) on V as

gt = Gt,ij da'da?, 9 = gilﬁ,ij dy'dy’ .
The maps y; can be expressed on V as an n-tuple of functions (xi(y*,...,y"),...,

X*(yt, ..., y")) and the harmonic map heat flow equation takes the form (we again
suppress the t-index)

asz _ g (2ag:u 892]>3Xk

Ayt Oy’ Oyl Oy ) oy

o0 = g

%7 n aXU aXU agul aguv
+d7g" (X", X (2

oyt oyi \“Ozv  Oxl

Using this notation, we can now state the following local regularity result.

Lemma A.14 (Local gradient bounds for harmonic map heat flow). For anym,n > 1
and A < oo there is a constant Cp, = Cp,(A,n) < 0o such that the following holds.

Choose v > 0 such that > < T and p € V and assume that the time-0 ball
B(p,0,7) C V is relatively compact. Assume that on B(p,0,7) x[0,72] and U x [0, 2
we have

(A.15) A6 < gij < Abyj, AT, < gij < Adj
and
(A.16) 0™ 02 gy < ArTmiTER g gl | < ApTmTime

for all 0 < my 4 2mo < m + 2 (here “O™ ” denotes spatial derivatives).
Then the following holds:
(a) We have

(A.17) 0™ 02 \E| < Cppt~tmitema= /2,

on B(p>077n/2) X (077“2] for all 0 < my +2my < m.
(b) If moreover for all 0 < my; < m + 2 we have

|8mlej| < Aptmm on B(p,0,7) x {0}
(fort =0), then we even have

|amlaznleg| < Cfm,r—(ml—‘erQ—l)
11 —
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on B(p,0,7/2) x [0,7%] for all 0 < my + 2my < m.

Proof. Without loss of generality, we may assume via parabolic rescaling that r = 1.
Let «, 8 > 0 be constants whose value we determine in the course of this proof. Note
that it suffices to establish (A.17)) on a smaller parabolic neighborhood of uniform

size. So by parabolic rescaling, we may assume that we even have
™ g| < a

on B(p,0,1) x [0,1] for all 1 < mg + 2ms < m.

Set now Y¥ := - xF. Then Y satisfies an equation of the form

X =g Oix + [z, .. 2" 1)« OX

+ap™t ozt 2™ BT, L BTN ) + OX x OX,

where fi, fo are functions with
(A.18) |0™ 0™ fi| < C(A,m,n)

on B(p,0,1) x[0,1] for all 0 < my +2my < m. Assume for the remainder of the proof
that o < ™*!. Then

fa(zh, ..o 2™ 2t 2t = aB T et B L B )
also satisfies a bound of the form (A.18]).
Next, note that
|%| SBA on B(p7071) X [O,to]
So if 3 is chosen small, depending on A, m and n, then we can again use [Bam1l4,
Proposition 2.5] in assertion (a) to derive bounds for |0™ 9]"*x*.| on B(p,0,1/2)x(0, 1]
that depend only on «, 3, A, m,n. These bounds imply (A.17). For assertion (b) we
can use [Appl6, Lemma 4.4]. O

Using this local gradient estimate, we can now prove the following drift bound.

Lemma A.19 (Drift bound in local coordinates). For everyn > 1 and A < oo there
are constants T = 7(A,n) > 0 and C = C(A,n) < oo such that the following holds.

Letr >0 and let (g¢)icpo,r), (9:)e0.2) be smooth families of Riemannian metrics on
n-dimensional manifolds M, M'. Assume that (X:)cjo,2) is a solution to the harmonic
map heat flow equation

O Xt = Ag{,thlt
such that x; is A-Lipschitz for all t € [0,72].

Letp' € M’ and p := xo(p) € M. Consider local coordinates (z*,...,z") onU C M
and (y*,...,y") on'V.C M’ and assume that B(p,0,r) C U, B(p',0,r) CV and that
B(p,0,7) is relatively compact in M. Assume that we have the bounds and
for all my + 2my < 3.

Then do(x:(p'),p) < Ct/2 for all t € [0, 7r?).

We emphasize that we did not assume that x,(V) C U for all t € [0,7?].
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Proof. Without loss of generality, we may assume that » = 1. Choose t* € [0,1]
maximal with the property that do(x.(p'),p) < % for all ¢ € [0,t*]. Obviously, t* > 0.
In the following we will find a lower bound on ¢* in terms of A, n.

Note that due to the A-Lipschitz bound on x; we have for all ¢ € [0, t*]
x(B(p',0,(24)™")) € B(p.0,1) C U.
So we can apply Lemma and obtain that
0ixe] < C't12
for some C" = C'(A) < co. Integrating this bound yields do(x:(p'),p)) < Ct'/? for all
t € [0,t*], where C = C(A) < 0.

Set 7 := min{(2C) "2, 1}. If ¢* < 7, then do(x:(p'),p)) < 3 for all ¢ € [0,¢*], in
contradiction to the maximal choice of t*. So t* > 7, which finishes the proof. OJ

A.3. Short-time existence. In this subsection, we prove our main short-time exis-
tence result, Proposition [A.25] for the harmonic map heat flow. The main technical
challenges come from the fact that we will work in the non-compact setting and
that the background metrics on domain and target are time-dependent and may not
strictly satisfy the Ricci flow equation.

We first derive the following bound for solutions of the harmonic map heat flow,
which is a consequence of (A.7)).
Lemma A.20. For everyn > 1 and 0 <nyg <m <1 and 0 < §,C < oo there is a
constant T = 7(ng, m, 0, C,n) > 0 such that the following holds.

Consider smooth families of metrics (g¢)icjo,r) and (g;)tcpo,r on n-dimensional man-

ifolds M and M’ such that holds. Assume moreover that (M, g;) and (M, g;) are
complete and |[Rm(g;)|, |Rm(g})| < C for allt € [0,T] and that |NV90yg4| is uniformly
bounded on M x [0,T] (by some constant that may be different from C).

Let (Xt)teppr) be a smooth family of diffeomorphisms between M' and M moving
by harmonic map heat flow and set hy == (x;')*gs — g;. Assume that |ho| < 0y and
that |0,(x; ')*g,| is uniformly bounded on M x [0,T] (by some constant that may be
independent of C).

Then for allt € [0, min{7,T}] we have |h| < n;.
Note that in this lemma the constants 19, 7;1,d can be chosen independently of C'.

Proof. By we have
O |h|> < (g + h)IVE AP + CF6° + |h]> + CoC - ).
So by the weak maximum principle applied to (A.7) we obtain
i
CoC+1

Note that for the application of the weak maximum principle we need to use the fact
that |V90,g;| is uniformly bounded on M x [0, T.

’htlz < nge(CoC-i-l)t + (e(CoC-H)t . 1)'
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The lemma now follows immediately. 0

We first discuss the existence theory in the case in which the domain M’ is compact
and we will derive a lower bound on the time of existence.

Lemma A.21 (Short-time existence of harmonic map heat flow, compact case). For
everyn > 1 and C < oo there are constants T = 7(C,n) > 0 and C* = C*(C,n) < oo
such that the following holds.

Let (g¢)iepo11, (91)ico,r) be smooth families of Riemannian metrics on n-dimensional
manifolds M, M’ and X : M' — M a smooth map such that:

(i) (M, go) is complete and M' is compact.
(ZZ) ‘Rm(gt)ya \Rm(gg)], |atgt‘7 ’atg” < C on M or M’ fOT‘ all t € [OaT]
(1i) X is C-Lipschitz.
Then the harmonic map heat flow equation

(A.22) dexe = Dl g Xt Xo =X

has a smooth solution on the time-interval [0, min{7, T'}) and x; is C*-Lipschitz for
all't € [0, min{r, T'}].

Proof. By standard parabolic theory, we find that (A.22) has a solution (x)tcfo,r+)
for some 0 < T* < T. If T* < T, then this solution does not extend smoothly until
time 7. It remains to deduce a lower bound on 7™ that only depends on C, n.

As explained in [BB15], the norm of the differential dy; € C°(M;T*M' @ x;TM)
satisfies the evolution inequality

Oldxe|> < Dgyldxi]? + Oig, * dxi * dxe + Ric(gy) * dx * dx
+ Opge * dxe * dxe + Rm(ge) * dxe * dxe * dx; * dx.
So for some C' = C'(C,n) < co we have
Oldxe| < Aggldxe]* + C'|dxa|* + C'|dxq|*.

So using assumption (iii) and the weak maximum principle, we can find constants 7 =
7(C,n) > 0 and C” = C"(C,n) < oo such that |dx;|* < C” for all t € [0, min{7,T*}).
So ¢ remains C*-Lipschitz for all ¢ € [0, min{7,T*}) for some C* = C*(C,n) < cc.

We can now use Lemmas|A.19(and [A.14] to derive bounds on higher derivative of x;
that are independent of ¢. This shows that y; extends smoothly to time min{7, 7*}.
This yields a contradiction to the property of 7% in the case in which 7% < min{r, T'}.

O

Next, we remove the compactness assumption on M’, but assume that the injec-
tivity radius of M’ is positive.

Lemma A.23 (Short-time existence of harmonic map heat flow, non-compact case,
positive injectivity radius). Lemma continues to hold if we modify the assump-
tions by replacing (i) and (ii) by
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(i) (M, go) and (M, g{) are complete.
(ii') |Vg Rm(g,)], [V Rm(gy)], [V 0ugl, [V 0u9:] < C on M and M’ for all t €

t

[0,7] and m =0,...,10.
and if we assume in addition that

(') The injectivity radius of (M, go) and (M', g})) is uniformly bounded from below
by a positive constant.

Proof. We will reduce the non-compact case to the compact case via a standard
doubling construction. By [CG91] we can find a sequence N ¢ N® c ... ¢ M’ of
domains with smooth boundary such that U2, Int N = M’ and such that the second
fundamental form of N is bounded by some constant C' = C'(C,n) < oo. Let
M’'® be the manifold that arises by identifying two copies of N along their boundary
and define ¥ : M'®) — M to be equal to Y|y on each copy of N, By a smoothing
construction, and using assumption (iv’), we can find families of metrics (gi(i))te[o;p]
on M'® that agree with ¢Y away from a 1-tubular neighborhood of ON® and such
that the bounds in assumption (ii’) continue to hold. Moreover, by modifying ¥ in
a 1-tubular neighborhood of ON® | we can construct maps X' : M’® — M that are
C"-Lipschitz, for some C” < oo that is independent of 7. Note that C” may, however,
depend on the injectivity radius bound in assumption (iv’).

Using Lemma A.21] we can evolve X' by the harmonic map heat flow to some
family (X;(Z))te[O,T*] for some T* > 0 that is independent of i, but may depend on

the injectivity radius bound in assumption (iv’). Moreover, the maps X;(i) are C"*-
Lipschitz for some uniform C™* < oo.

Using Lemmas [A.19 and [A.14] we obtain uniform local derivative bounds on the

families (X;(i))te[O,T*]- So after passing to a subsequence, these families converge to a
solution x; : M’ — M of the harmonic map heat flow on the time-interval [0, T™].

By the same maximum principle argument as used in the proof of Lemma [A.2]]
we obtain a Lipschitz bound on x; of the form C*(C,n) that holds up to some time
7 =7(C,n) > 0. The fact that we can choose 7% > min{r, T} now follows similarly
as in the proof of Lemma [A.21] O

Using a similar construction, we can remove the assumption on the positivity of
the injectivity radius.

Lemma A.24. Lemmal[A.25 continues to hold if we remove assumption (iv’).

Proof. The solution (y;) arises again via a limit argument with the help of Lemma[A.23]
For this purpose we represent (M, go) and (M’, g) as a limit of Riemannian manifolds
with positive injectivity radius. The methods used here can also be found in [CZ06].

Choose p' € M’ and p := X(p') € M and denote by r := dy(p,-) and 1" := do(p',-)
the distance to the basepoint. Due to assumption (i) we have InjRad > ce~“1" and
InjRad > ce~ %" on M and M’ for some ¢ = ¢(C) > 0 and C} = C(C) < oc.
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Let ¢ > 1. By evolving the functions ¢ := max{0,r—i—1} and (/* := max{0,Cr’'—
i—1} by the heat flow for some uniform time, we obtain approximations ¢; € C*(M)
and ¢/ € C°°(M’) such that

) GG >r—Fkand (> Cr' —i.

) GioX <G+ 10.

) V™G, VT < C for allm =1, ..., 9, for some C), = C4(C') < 0.
(

Set gti = exp(C1¢)g: and gg(i) = exp(C]¢!)g;. Then the injectivity radius on
(M, g(()i ) and (M, g(/)(i)) is uniformly bounded from below, by a constant that may
depend on i. By property (4) assumptions (ii’) of Lemma continues to hold for
g+ and g; replaced by gt(k) and gz(k) and C replaced by some constant C§ = C4(C') < oc.

By property (3), the map X is moreover C)j-Lipschitz for some C}(C) < oc.

We can now use Lemma to solve the harmonic map heat flow starting from

X with the background metrics (gg(k))te[o,T] and (gt(k))te[o,T], on a time interval of the
form [0, min{r, T'}] for some 7 = 7(C,n) > 0. Similarly as in the proof of Lemma[A.23]
these solutions then subsequentially converge to the desired solution of the harmonic
map heat flow with background metrics (g;):co,r) and (g¢)eejo,r)- O

Using Lemmas [A.20] and [A.24] we can finally prove the main short-time existence
result that is used in Section [12]

Proposition A.25 (Short-time existence of harmonic map heat flow, general form).
For everyn > 1,0 <ny <m <1 and 0 < §,C < oo there is a constant T =
7(no, M1, 9, C,n) > 0 such that the following holds.

Let (g¢)tepo), (91)tco,r) be smooth families of Riemannian metrics on n-dimensional
manifolds M, M’ and consider a smooth map X : M' — M such that the following
holds for some C' < .

(1) (M, go) and (M, g() are complete.

(i1) |IRm(g:)|,|Rm(g;)| < C on M and M' for all t € [0,T].
(i) [V Rm(gy)], [V Rm(g)l, [V, 0egel, [V 0gi| < C't=™/% on M and M’ for all

t € (0,T) and m=0,...,10.
(iv) —0g; < Orgr + 2 Ric(gs) < 0gy for allt € [0,T].
(v) —dg, < Oug; + 2 Ric(g;) < dg, for allt € [0,T].
(vi) X is a diffeomorphism and
* 7

(X)) 9) — 90| < mo-

Then the harmonic map heat flow equation

(A26> atXt = Ag{,thta Xo =X

has a smooth solution on the time-interval [0,T*] for some min{r,T} < T* < T
and for hy == (x;')*g, — g; we have |hy] < ny for all t € [0,T*]. Moreover, if
|hT* < 7’]/ <M, then T* =T.
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Proof. Fix some sequence §; — 0. By assumptions (iii) and (vi) we can find a sequence

'r]((]i) — 7)o such that

‘(Y_l)*géi — go;| < n((f).

Let 7 = 7(2n9,m, 9, C,n) be the constant from Lemmas [A.20, Fix some large i and

assume that 7)(()1) < 219. By Lemma and assumptions (i)—(iii), (vi), we can solve
the harmonic map heat flow equation

(A.27) o) = Dgaxt, XY =¥

on a time-interval of the form [0;, T;], where 6; < T; < T. Assume that T; < T is

chosen maximally with the property that for hﬁ“ = (x; Vg, — g: we have || < my
for all ¢t € [0;,T;). By Lemmas [A.20| and |A.24| we find that 7; > min{6; + 7, T'}.

As in the proof of Lemma we can now use Lemmas |[A.19/and [A.14]to deduce
local gradient bounds on (Xil))te[ei,m- So after passing to a subsequence, these families
smoothly converge to some solution (x):cjo,7..) of @ such that |hy| < my for all
t €1]0,Tw). Let now T,,, < T* < T be maximal with the property that a solution to
exists on [0, 7*) and satisfies |h;| < n for all ¢ € [0,7*). Then by Lemmas[A.19]
and the flow extends smoothly until time 7.

It remains to show that last assertion. So assume by contradiction that |hp«| <
n < m, but T* < T. Then by Lemma we can extend the flow past time T and
by Lemma with 79 = 7’ we have |h;| < n; for t close to T*, contradicting our
choice of T™*. O

A.4. Further results. In the following we will prove several analytical results that
are needed in Section |12 The results will mostly build on the conclusions of Subsec-

tion [A]]

The follow proposition provides a bound on the drift of a solution to the harmonic
map heat flow, whenever the associated perturbation h is small.

Proposition A.28 (Drift control). For anyn > 1, 6 > 0 and A < oo there is a
constant n = n(d, A,n) > 0 such that the following holds.

Let v > 0 and T < Ar? and consider Ricci flows (g¢)iecpor) and (9;)iejor) on n-
dimensional manifolds M and M'. Let (¢¢)icjor), ¢r 2 M — M', be a smooth family
of diffeomorphisms onto their images whose inverses ¢; ' : ¢,(M) — M’ satisfy the
harmonic map heat flow equation

at¢;1 = Ag{,gt¢;1'
Let x € M and assume that for ' := ¢o(z):
(i) B(x,0,r) is relatively compact in M.
(ii) |IRm| < Ar~2 and [VRm| < Ar=3 on B(z,0,r) x [0,T].
(iii) [Rm| < Ar=2 on B(2/,0,7) x [0,T].
(iv) —ng; < he = ;9. — g, < ng; for all t € [0,T7.
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Then for all t € [0,T]
do(e(x), Ppo(x)) < or.

We note that this proposition is similar to Lemma In fact, this lemma could
be used in lieu of Proposition [A.28] Nevertheless, we have included this proposition
since its proof is somewhat shorter and does not use local coordinates.

Proof. By parabolic rescaling we may assume without loss of generality that » = 1.

Using Lemma[A T3] we obtain that if n is sufficiently small depending on A, n, then
for all t € [0, 7] we have

Vhi|(a) < Cipt ™12,
where C} = C1(A,n) < oco. So by and we obtain
1By (de())] = [ X (95 + i) | < Comt ™2,
where Cy = Cy(A,n) < 0o. As 0,¢; = —dg, (0,6, ' o ¢;), we obtain that
|Orpn ()| < Camt="2,

where C5 = C3(A,n) < oco. Integrating this bound, and taking into account the
distance distortion in M’ via assumption (iii), we obtain that do(¢;(z), do(z)) <
0477751/2 for some C; = C4(A,n) < oo, as long as 0477t1/2 < 1. So the proposition
follows if n < Cy ' min{4, (24)71/2}. O

Next, we derive short-time bounds for solutions to the Ricci-DeTurck equation. To
do this, we first establish the following barrier-type estimate.

Lemma A.29. For any n > 1 and A < oo there is a constant C' = C(A,n) < oo
such that the following holds.
Let r > 0. Consider smooth families of metrics (g:)ic0.2), (9t + he)iepor2) on an

n-dimensional manifold M, a point x € M and a smooth function uw € C*(B(z,r) X
0,72]) such that:

(i) B(x,0,r) is relatively compact in M.
(it) 39¢ < hy < 2g; on B(z,0,7) for all t € [0,7?].
(11i) w satisfies the inequality

(iv) IRm(gi)lg, 10:9tlge < Ar=2 on B(z,0,r) for all t € [0,r?].
(v) |V90,g4|,, < Ar~2t7Y% on B(z,0,7) for all t € [0,7?].
(vi) lu| <1 on B(z,0,r) x [0,r%].

Then for all t € [0,r*] we have

(A.31) u(z,t) < Ct+ sup wup.
B(z,0,r)
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Proof. Without loss of generality we may assume that » = 1. Fix a function f :
[0,1] — [0, 00) such that f = 0 on [0,1] and f(3) > 1 and f’ > 0 everywhere. Set
w(y) := f(d(x,y)) for all y € B(z,0,1). By Hessian comparison and assumptions (i),
(ii) there is a constant C] = C}(n, A) < oo such that V*%w < gy on B(z,0,1) in
the barrier sense. By a local smoothing procedure (see for example [GWT2]) we can
construct a smooth w' € C*(B(z,0,1)) such that for some C), = Ci(n, A) < oo we

have |[V%u'| < C}, V9w < Chge and w' > 1 on B(z,0,1) \ B(z,0, 3).
For any vector v € T, M, y € B(z,0,1), we have by assumptions (ii), (iii)

‘ivg;gtw’ = ‘dw’((%vgt>(v,v)>‘
= ’dw/’gtw}:l((vgtatgtxva ) - %(V.gtatgt)(v>v)) }gt S C{%tilﬂ

dt
for some C§ = C4(n, A) < oco. Integrating this bound over ¢ and tracing in v, we
conclude using assumption (ii) that there is a constant C} = Cj(n, A) < oo such that

(A.32) (g¢ + he) V"W < C;  on B(,0,1) forall tel0,1].
We now show that for any € > 0 we have
(A.33) u <w +Cit+ sup ug+e
B(z,0,1)

on B(x,0,1) for all t € [0,1]. Evaluating this bound at x and letting ¢ — 0 will then
imply (A.31)).

Note that (A.33) trivially holds for ¢ = 0 and for ¢ > 0 it can only fail on B(z,0, 1)
due to assumption (iv) since w’ > 1 on B(z,0,1)\B(z,0, ). Assume by contradiction
that (A.33) fails for some ¢ € [0, 1]. As B(x,0, 1) is relatively compact in M, we may
assume that ¢ is chosen minimal with this property. Then ¢ > 0 and there is a point
y € B(z,0,1) at which equality holds in (A.33). It follows that at y we have, using
(A.32)

&tut - (gt + ht)ijV?jgtut Z CZ; - (gt + ht)ijvlzjgtw, > 0.
This, however, contradicts ({A.30)).

Therefore (A.33) holds on B(z,0,1) for all ¢t € [0,1] and € > 0, which finishes the
proof. 0

Using Lemma [A.29] we can prove the following short-time bounds.

Proposition A.34 (Short-time bounds for Ricci-DeTurck flow). For anyn > 1 there
is a constant ny = no(n) > 0 and for any A < oo there is a constant C' = C(A,n) < oo
such that the following holds.

Let (g¢)icpo2), 7 > 0, be a Ricci flow on an n-dimensional manifold M and (hy)icpo 2]
a Ricci-DeTurck flow with background metric (gi)icjo,2). Let x € M be a point and
assume that

(i) B(z,0,r) is relatively compact in M.
(ii) IRm(g;)| < Ar=2 on B(z,0,7) for all t € [0,7?].
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(iii) |hi| <m <mo on B(x,0,r) for all t € [0,7%].
Then for all t € [0,r*] we have

(2, t)[* < Ct + sup |hol*.
B(z,0,r)

Proof. By (A.7)), if n is smaller than some dimensional constant, then
O hel® < (g + ht)ijv?j|ht|2 + Cf|he|?

for some constant C] = C(A,n) < 0o. So the proposition follows from Lemma
by setting u := 1~ 'e~“1*|h|2. Note that assumption (ii) in Lemma is guaranteed
if we choose 1 sufficiently small and assumption (v) follows using Shi’s estimates. [J

Lastly, we prove that solutions to the Ricci-DeTurck perturbation equation remain
small in a parabolic neighborhood if they are small on a larger ball at time 0. The
following proposition also holds for perturbations that arise from almost Ricci flows,
as discussed in Subsection [A]

Proposition A.35 (Smallness of h at time 0 implies smallness of h at later times).
For any n > 1 there is a constant n = n(n) > 0 such that for any e > 0 and A < o0
there is a constant 0 < § = 0(e, A,n) < 1 such that the following holds.

Let v > 0. Consider smooth families of metrics (gi)icjo,2) and (g;)iejo 2 on n-
dimensional manifolds M and M’, respectively, as well as a smooth family of diffeo-
morphisms (Xi)icjo2) between M’ and M that satisfies the harmonic map heat flow
equation

Oxt = Agé,tht-

Set hy == (x;')*g. — g¢ as in and assume that for some x € M the following
bounds hold on B(z,0,67'r) for all t € [0,7?]:

(i) B(x,0,57'r) is relatively compact in M.
(i) [Rm(g,)| < Ar—2.
(ZZZ) |V9t(9tgt| < AT’_l.
(iv) —dg; < Orgr + 2 Ric(gy) < 0gy.
(v) —0g; < Og; + 2 Ric(g;) < g;.
(vi) |he| <.
(vii) |ho| < 0.

Then |h(z,t)| < € for all t € [0,7?].

Proof. By parabolic rescaling we may assume r = 1. The constant ¢ will be chosen
in the course of the proof. In the following we will always assume that 6 < 1.

By assumptions (ii), (iv)—(vi) and (A.7)), and assuming that 7 is smaller than some
dimensional constant, we can find a constant C; = C(A,n) < oo such that h; satisfies
the evolution inequality

(A.36) Olhel® < (g + he) V5| e|* + C16 4 Cr |
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on B(z,0,671) x [0,1]. So
(A.37) up = e~ (|hy|* + 1)
satisfies the evolution inequality

We will now derive a bound on w by an argument that is analogous to the proof
of Lemma [A.29] Fix a function f : [0,1] — [0,00) such that f = 0 on [0, 4] and

"1
f(3) > 1. Set w(y) := f(6 - d(z,y)). By Hessian comparison and assumption (ii) we
obtain that at any y € B(x,0,57!) in the barrier sense, for d := d(x,y),

cosh(Cd)

290, < 20105
V29w < Oy (5 f(6-d) + G sinh(Cad)

S d))go <5

where C; = C;(A,n) < oo for i = 2,3, 4.

As |V9w| < Cyo for some Cy = Cy(A,n) < oo, we can argue similarly as in
the proof of Lemma using assumption (iii), that there is a smoothing w’ €
C>(B(x,0,07")) of w such that w' > 1 on B(z,0,1) \ B(z,0,1) and

(g6 + h) V5w < Cs-6  on  B(x,0,6°") forall tel0,1],

where C5 = C5(A,n) < co. Compare this inequality with (A.32)). We can now argue
similarly as for (A.33)) to show that for all ¢ > 0 and ¢ € [0, 1]

w<w +Csd-t+ sup ug+e.
B(z,0,671)

So by assumption (vii) and letting ¢ — 0, we obtain that for all ¢ € [0, 1]
The proposition now follows using ({A.37) if J is chosen small depending on A,n. O

APPENDIX B. PROPERTIES OF BRYANT SOLITONS

In this appendix we discuss properties of the (normalized) Bryant soliton (Mg,y,
gpry) that are needed in this paper. In the following we denote by zp,, € Mgy
the tip of the Bryant soliton, i.e. the center of rotational symmetry, and denote by

0 = dyg, (-, TBry) the distance function from the tip.

Lemma B.1 (Properties of the Bryant soliton). There is a radially symmetric po-
tential function f € C°°(Mp,y) such that

(B.2) Ric+V?f =0
(B.3) R+ |Vf|]> = R(wp.y)
(B.4) dR =2Ric(Vf,")
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Moreover, there is a constant C'g < oo such that the following holds: If o > Cp, then

(B.5) Cgzlo' < R< Cpo™!

(B.6) Ric > Cpo?gp,y as quadratic forms
(B.7) —0,R > Cglo?

(B.8) IVl <Cp

(B.9) IVR|,|V?*Rm |, |[V?Rm | < Cp

The metric gy is a warped product of the form gpyy, = do? + w?(0)gs2 such that for
o>Cpg

(B.10) Cz'o < w(o) < Cpy/o.

Moreover, for any oy > Cp if we consider the normalized function and parameter

o w _ 0O — 0y
w . —= ——— g =
w(UO)’ w(oo) ’

and if we express W in terms of @, then for all G € [—1,1]
dw d*w
b =

—-1/2

(B.11) [w(z) — 1], < Cpoy

In other words, w=?(0g)gp.y s geometrically C*-close to a piece of a round cylinder
on Mp,y (09 — w(0g), 09 + w(0y)).

Proof. Identities and are standard bounds for a complete gradient steady
soliton with bounded curvature, where f satisfies the steady gradient soliton potential
equation (B.2). For (B.3) observe that the left-hand side is constant and |V f| = 0 at
Tpry. Identity (B.8)) is a direct consequence of .

By [Bry05, Theorem 1] we know that w ~ ¢;4/0 for large o and that the radial
and orbital sectional curvatures, Kr, Ko behave like

KRNCQO'_z, KO NCgU_1

Here ¢y, c9, c3 are positive constants that depend on the normalization of gg,. The
bounds (B.5]), (B.10)) and (B.6) follow immediately. It also follows that R decays to 0
at infinity and, therefore, by (B.3) we have |V f|*> — R(xp,y) at infinity. Combining

this with (B.4)) yields (B.7)). The bound follows by Shi’s estimates.
Lastly, by the Jacobi equation, we obtain

"

w' = —Krpw ~ —01030_3/2.

Integrating this bound and using (B.10), we obtain that w’ ~ 2c;c50'/2. Rescaling
both bounds by w(og) implies the bounds on the second and third term in (B.11)).
The first bound follows by integration over [—1, 1] and observing that w(0) =1. O
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APPENDIX C. PROPERTIES OF k-SOLUTIONS

In this section we discuss properties of k-solutions (Definition [5.5) that are be
needed in the paper.

Lemma C.1. 3-dimensional k-solutions have the following properties:

(a) There is a Ko > 0 such that every 3-dimensional k-solution (M?,(gt)te(—c00])
1s either a ko-solution or a shrinking round spherical space form.

(b) (Compactness) For any k > 0, the collection of pointed r-solutions (M?3,
(9t)te(~o0,0 ) with k > K and R(x,0) = 1 is compact in the pointed smooth
topology.

(¢) For every A < oo there is a constant C' = C(A) < oo such that for any point
(z,t) in a Kk-solution (M?,(g:)te(—o00]), we have

C™'p(x,t) < p < Cp(x,t)

on the parabolic neighborhood P(x,t, Ap(x,t)).
(d) For every k,{, A < oo there is a constant C' = C(A,k,l) < oo such that for
any point (x,t) in a k-solution (M3, (g)ie(—s00)) we have

0PV Rm | < Cpy REDF2 (2, 1)

on the parabolic neighborhood P(x,t, Ap(x,t)).

(e) ;R >0 and —C < O;R™ < 0 on every k-solution.

(f) The shrinking round cylinder is the only 3-dimensional k-solution with more
than one end.

Proof. For assertions (a), (b), (f), and the first part of (e), see [Per02, Section 11]
or [KLOS, Sections 38-51]. Assertions (c), (d), and the second part of (e) follow
immediately from the compactness assertion (b). O

The following lemma is a variation on the geometric definition of canonical neigh-
borhoods used by Perelman in [Per03), Subsections 1.5, 4.1].

Lemma C.2. For every § > 0 there is a constant Cy = Cy(d) < oo such that the
following holds.

If (M, (9¢)te(~o00)) @8 a 3-dimensional k-solution and (x,t) € M x (—o00,0], then
one of the following holds:

(a) The point (z,t) is the center of a d-neck at scale p(x,t).
(b) There is a compact, connected domain' V- C M with connected (possibly empty)
boundary such that the following holds:
(1) B(x,t,6 p(x)) C V.
(2) p(y1,t) < Cop(ys,t) for all yi,y2 € V.
(8) diam, V' < Cyp(x,t).
(4) If OV # 0, then:
(i) OV is a central 2-sphere of a 6-neck at time t.
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(i1) Either V is a 3-disk and (M, g;) has strictly positive sectional cur-
vature, or V is diffeomorphic to a twisted interval bundle over RP?
and (M, g;) is a Za-quotient of the shrinking round cylinder.

(11i) Any two points z1,zy € OV can be connected by a continuous path
inside OV whose length is less than

min{d;(z1, z), di(z, 22)} — 110p(z, t).

Proof. Suppose the lemma were false for some § > 0. Then there exists a sequence
(Mg, (gr,t)te(—00,0); Tr) of pointed ri-solutions and a sequence Cj, — oo such the con-
clusion of the lemma fails for all k, where Cy replaced by C). Without loss of gen-
erality we may assume that p(xg,0) = 1 for all k. Since the conclusion holds for
shrinking round spherical space forms when C} is sufficiently large, we may assume
by assertion (a) of Lemma that Kk, > ko > 0 for large k. So by assertion (b)
of Lemma we may assume that, after passing to a subsequence, the sequence
{(My, (gr.t)te(—o0,0), k) } converges to a pointed s-solution (Mus, (Goot)te(—o0,0 Too)
in the pointed smooth topology. Note that M, must non-compact, and (M,
(g¢)te(~o00,0)) cannot be a shrinking round cylinder, since otherwise assertion (a) or
(b) will hold for large k, contradicting our assumptions. Now by [KLO0S, Lemma
59.1], its proof, and the discussing preceding the statement of that lemma, there is
a compact manifold with boundary V., C M, such that the boundary 0V, is the
central 2-sphere of a %5—neck at time t, and either V, is diffeomorphic to a 3-disk and
(Moo, (9¢)te(—o0,0)) has strictly positive sectional curvature, or V, is diffeomorphic to a
twisted interval bundle over RP? and (Mo, (G¢)te(—o0,0]) 18 isometric to a Z?-quotient
of a shrinking round cylinder. Now for large k, the domain V,, yields a compact
domain with boundary satisfying assertions (i)-(iii). This is a contradiction. O

Proposition C.3. Let (M, (g:)ic(—c0,0) be 3-dimensional k-solution. If 0,R(p,0) =0
for some p € M then modulo parabolic rescaling there is a pointed isometry of Ricci
flows

<M7 (gt)te(—oo,O]ap) — (MBry7 (gBry,t)tE(—oo,O}u xBry) .

Proof. The fact that (M, (g:):e(—0,0]) is a steady gradient soliton was shown by Hamil-
ton in [Ham93a], where he analyzed the equality case of his matrix Harnack inequality
for the Ricci flow (see [Ham93b]). Below we have included an alternate proof of this
that incorporates several simplifications. Brendle showed that up to homothety the
Bryant soliton is the only s-solution that is a gradient steady soliton (see [Brel3]).
Finally, for gradient steady solitons we have

O,R = dR(Vf) = 2Ric(Vf, V),

where f is the soliton potential. Since Ric > 0 we have V f(p) = 0. Because zp,y
is the unique critical point of the soliton potential of gg,y, this forces the homothety
(Mpyy, gBry) — (M, go) to map g,y to p. 0



UNIQUENESS AND STABILITY OF RICCI FLOW 173

In the remainder of this appendix, we will give a simplified proof of the first part
of Proposition [C.3| which was shown by Hamilton in [Ham93a]. The proof is based
on his matrix Harnack inequality (see [Ham93b]) and Brendle’s strong maximum
principle in vector bundles (see [BS08| sec 2]). The reader may also consult a more
general treatment of Hamilton’s Harnack inequality due to Brendle (see [Bre09]), as
we will mainly rely on the terminology developed in this work. As a preparation we
briefly recall the main ideas of Hamilton’s proof. The bound 0;R > 0 follows from
the following theorem after passing to the limit 7" — oo.

Theorem C.4. Let (M, (g¢)ie(-1,0) be a 3-dimensional Ricci flow with complete time-
slices and bounded, non-negative sectional curvature. Then

R

. > -
(C.5) OR > 75—

The proof of this bound follows from the following matrix Harnack estimate: Con-
sider the bundle £ = TM & AyTM over M. We introduce the following (time-
dependent) generalized curvature quantity S € Sym, F*:

Se((x,ur Aug), (y,v1 Avg)) = Wiz, y) + Plup Aus,y) + P(vy A vy, x)
+ R(Ul,U/Q,'UQ,'Ul),

where

3
1
W(;U, y) = (A RIC)(JJ, y) - §Vi,yR + 2 Z R('T7 €i, €j7 y) R‘ic(eiu ej)

ij=1

3
— Z Ric(z, e;) Ric(e;, y).

i=1
and
P(uy,ug,y) = (Vu, Ric)(uz,y) — (Vy, Ric)(u1, ).
Hamilton (see also [BreQ9] for the terminology used here) observes that this general-

ized curvature quantity satisfies an evolution equation that is similar to the evolution
equation for the curvature tensor:

(C.6) Dy, S = AS 4+ Q(59).

Here A = 2?21 ﬁeiﬁei is the connection Laplacian on Sym, E* with respect to the
connection V that is induced by the following connection on E:

V.(X,a) = (V.X, V.a + Ric(z) A z)
and
D, (X, Uy AUs) = ((8:X + Ric(X) — LU, AUL)(VR,-), 0,(Uy A Uy)
+R1C(U1) N U2 + U1 N RIC(UQ))
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(X,U;,U; and « denote time-dependent local sections of T'M and AyT M, respec-
tively.) The quadratic part Q(.S) is non-negative definite, whenever S is non-negative
definite. By a more general approach, which takes into account the case in which S
is indefinite, but bounded from below, Hamilton deduces the following lower bound
for the quadratic form S: For all (z,«) € E we have

(C.7) S((z,a), (z,a)) > — Ric(z, ).

2T — 1)

This implies that
1

W(z,z) = —m

Ric(z, ).
Tracing this equation in z yields

1 1
(C.8) FOR=AR— SAR+ IRic|? = tr W > — R,

which implies ((C.5]).

We can now present the proof of Proposition

2T - 1)

Proof of Proposition[C.3 Tt remains to consider the case in which 9;R(p,0) = 0 for
some p € M. We first argue that the all sectional curvatures on M x (—o0,0] are
positive. If not, then by a standard strong maximum principle argument, this implies
that the flow locally splits off an R-factor. It follows that the universal covering flow
is homothetic to the round shrinking cylinder, in contradiction to 9,R(p,0) = 0.

Letting 7' — oo in we obtain that S, and hence W are non-negative definite
everywhere on M x (—o0,0]. As 0;R(p,0) = 0, we obtain from that W(p,0) = 0.
So S(p,0) has nullity of at least 3. On the other hand, S(p,0) restricted to the
0@ AT M is strictly positive definite, as the sectional curvatures at (p, 0) are positive.

So the nullity of S(p,0) is equal to 3. We can now apply the strong maximum
principle due to Brendle (see [BS08| sec 2]) and conclude that for all (z,t) € M x
(—o0, 0] the nullity of S(z,t) is 3 the nullspace N, of S(z,t) forms a time-dependent
subbundle in E that is invariant under parallel transport with respect to V (in space)
and Dy, (in time).

Next, observe that since all sectional curvatures on M X (—o0,0] are positive,
the subbundle 0 @& A;TM C M intersects N only in the origin at every (z,t) €
M x (—00,0]. So, at every time t < 0, the vector bundle E is the direct sum of the
subbundles N, and 0 @ AT M. It follows that there is a smooth, time-dependent,
section (F})ie(—o0,0) Of the endomorphism bundle End(T'M, A;T'M) such that for all
t<0

Ny ={(z, F(x)) : ze€TM}.

Let us now express the fact that N is parallel with respect to V in terms of F , at
some fixed time ¢ < 0. To do this, let ¢ € M and w € T, M and consider a locally
defined vector field X be a locally defined vector field such that at ¢

0=V.(X,F(X)) = (V.X,(V.F)(X) + F(V.X) 4+ Ric(zA) A W).
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It follows that V,X = 0 and
(C.9) (V.F)(X)+ Ric(z) A X = 0.

Let A := tri3 F' be the trace of the first two factors of F' viewed as a section of
T*"M @ TM @ TM. Tracing (C.9)) yields

V.A —2Ric(z) = V, A+ Z ((Ric(2), ei)e; — (es, €;) Ric(z)) = 0.

So

(Lag)(z,y) = (VaA,y) + (z, vyA> = 4 Ric(z, y),
which implies that (M, ¢;) is a steady soliton. As (V,A,y) = 2 Ric(z,y) is symmetric
in z,y, the vector field A is a gradient vector field if M is simply connected.

We can now apply Brendle’s result (see [Brel3|]) and conclude that the universal
cover of (M, g;) is homothetic to (Mp,y, gpry) for all ¢ < 0. Since all isometries of Mg,y
leave xp,, invariant it follows that (A, g;) is homothetic to (Mp,y, gpry) for all ¢ < 0.
So by uniqueness of Ricci flows with bounded curvature, the flow (M, (g¢)se(—o0,0) has
to be homothetic to the Bryant soliton. 0

APPENDIX D. SMOOTHING MAPS

Lemma D.1 (Smoothing bilipschitz maps between cylinders). For every e > 0 there
is a constant & > 0 such that the following holds.

Let ¢ : S? x (0,3) = S? X R be a (1 + §)-bilipschitz map, where both cylinders are
considered to be round and of the same scale. Then there is a (1 + €)-bilipschitz map
¢ 5% % (0,3) = S? x R such that ¢ = ¢ on S* x (0,1) and such that ¢|s2(12) is an

1sometry.

Proof. Let a > 0 be a small constant whose value we will determine in the course of
the proof, depending on €. A limit argument implies that if

(D.2) § <6(a),
then there is an isometric embedding 1 : S?x(.1,2.9) — S?xR such that d(¢(x), x())

< aforallz € S?x(.1,2.9). After replacing ¢ with Y 'o¢, where Y : S?xR — S?xR
is the isometric extension of x, we may assume without loss of generality that

(D.3) d(p(z),z) < a forall — x€ 5% x(.1,2.9).

Next, we will carry out a mollification procedure on S? x (0, 3) producing a family
of bilipschitz maps ¢ : S* x (0,2.9) — S? x R such that ¢}; = ¢ on S* x (0,1) and
such that ¢} has improved regularity on S? x (1.5,2.9). This would be a completely
standard mollification procedure, except for the fact that the scale of the mollification
varies slowly. For this purpose, we fix a smooth cutoff function p : 5% x (0, 3) — [0, 1],
depending only on the (0, 3)-factor, such that p = 0 on S? x (0,1) and p = 1 on
S? x (1.5,3). Let moreover, 0 < 8 < .1 be a constant whose value we will fix in the
course of the proof. The function Sp will determine the scale at which we mollify ¢.
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Let X := 5? x R C R3 x R = R* be the standard embedding. Our mollification
construction is similar to that in [Kar77]. However, in our case we can simplify
the construction by using the embedding X C R* and the nearest point projection
projy : R*\ ({(0,0,0)} xR) — X. Let ¢ : [0,00) — [0, 1] be a smooth cutoff function
such that ¢ =1 on [0, %] and ¥ = 0 on [1,00). Set

12
a:= / Y(|v|)dv.
R3
Then we can define ¢ : S* x (0,2.9) — 5* x R as follows:

(D.1) o) =iy ([ s(emwalon)aull)an).

Claim.
(a) ¢j5 is smooth.
(b) @3 = ¢ on {p =0} along with all higher derivatives.
(c) d(¢(x), z) < 3(a +20), for all x € S* x (.1,2.9), assuming o, 6 < .1.
(d) For any € > 0, the following holds if 3 < B(¢'), § < 0(€) and o < a(e, ).
The map ¢y is (1 + €')-bilipschitz and for all x € S* x (1.5,2.9) we have

|(d¢y)e — (didszyp)s| < €.

Here we compare both differentials within the ambient space R,

Proof. Assertion (a) follows from the definition of ¢j; and assertion (b) holds since all
derivatives of p vanish on {p = 0}.

For assertion (c) observe that [, \ ¢(exp,(Bpv))a"(|v|)dv is the center of mass
of a distribution that is supported on

¢<Bx(l’,ﬁ)> - BR4(¢(I)726) - BR4(I7Q + 25)

Due to the convexity of the latter ball, the center of mass must be contained in the
same ball, and hence the nearest point projection lies in Bga(z,2(a 4+ 23)). Since
f < .1 we have Bra(z,2(a+25)) N X C Bx(z,3(a+ 2p)).

We now prove assertion (d) using a contradiction argument. Assume that assertion
(d) was false for some fixed ¢ > 0. Choose a sequence §;,;, 5; — 0 such that
a;/B; — 0. Then we can find a sequence of (1 + §;)-bilipschitz maps satisfying
for & = a; and points z; € 5% x (.1,2.9) such that one of the following holds:

(A) We have
(D.5) [1(d} ), (Vi) = 1] > ¢

for some unit tangent vector v; at x;.

(B) We have x; € S? x (1.5,2.9) and

(D.6) (A6, 5. ) — (didsp)us| > €.
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By assertion (b) we have p(x;) > 0 for large ¢ in case (A) and p(z;) = 1 in the case
(B), by the definition of p. Moreover, by passing to a subsequence, we may assume
that one of the above cases holds for all :.

Consider the rescaled metric g; := (B;p(;)) "2gs2xr. Then the sequences of pointed
manifolds {(S5? x (0,3), g, z;)} and {(S? x (0,3), g;, ¢i(x;))} converge in the pointed
smooth topology to pointed Euclidean space. Moreover, with respect to the cor-
responding rescaling, the maps ¢;, ¢; 5 converge in the pointed topology to maps
boo, P, : R? — R3, after passing to a subsequence. As the ¢; are (1 + ;)-bilipschitz,
their limit ¢, must be a Euclidean isometry. Furthermore, note that in case (B) we
have dg, (¢i(y),y) < ;/B; — 0, so in this case the limits above are the same and we
even have ¢, = idgs.

On the other hand, due to the mollification procedure (D.4)), the maps ¢; 5 converge
smoothly to ¢/ and

Po(x) = /R3 Y(|v]) oo ( + v)dv.

This implies that ¢/_ is also a Euclidean isometry, and in case (B) we even have ¢/ =
idgs. This contradicts, however, the smooth convergence and (D.5) or (D.6). OJ

We now apply a standard gluing procedure on S? x (1.5,2) to obtain a map ¢ :
5%x(0,3) — S* xR that agrees with ¢f; on 5% x (0, 1.5) and with idg> g on S%x (2,3).
In order to ensure that this map is (1 + €)-Lipschitz, we use assertions (c¢) and (d) of
the Claim and assume that

a+ 28 < c(e), € < c(e)

for some constant c¢(e) > 0. We now verify that we can choose «a, 3,9 such that
these bounds, the conditions of assertions (c¢) and (d) of the Claim and hold.
Choose € < c(e) and then 8 < min{B(¢’), 1}, where B(€’) denotes the upper bound
from assertion (d) of the Claim. Next, choose o < min{a(¢, 8), 1¢}, where (¢, )
denotes the upper bound from assertion (d) of the Claim. Lastly, we choose § < §(¢’)

according to assertion (d) of the Claim and ¢ < d(«) according to (D.2). O
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