
TOPOLOGY OF SOBOLEV MAPPINGS II
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Abstract. We generalize and improve some recent results obtained by H.
Brezis and Y. Y. Li [BL] concerning topologies of Sobolev mappings between
Riemannian manifolds. We also settle two of their conjectures. In connections
with the latter results, we find some global topological obstructions for smooth
maps to be weakly sequentially dense or to be dense in the strong topology
for Sobolev spaces of mappings. In fact, we obtain a necessary and sufficient
condition for smooth maps to be dense in the strong topology, which corrects
theorem 1 of [Be2].
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1. Introduction

Throughout the paper, unless otherwise stated explicitly, we always assume M
and N are compact smooth Riemannian manifolds without boundary and they are

isometrically embedded into Rl and Rl̄ respectively. Denote n = dimM .
For any 1 ≤ p <∞, we consider the space of Sobolev mappings

(1.1) W 1,p (M,N) =
{
u : u ∈W 1,p

(
M,Rl̄

)
, u (x) ∈ N for a.e. x ∈M

}
,

with d (u, v) = |u − v|W 1,p(M,Rl̄) as the metric. In [BL], Brezis and Li initiated

the study of path connectedness of the space W 1,p (M,N). As in [BL], one defines
u ∼p v for two maps u, v ∈ W 1,p (M,N) if there exists a continuous path w (·) ∈
C
(
[0, 1] ,W 1,p (M,N)

)
such that w (0) = u and w (1) = v. Then it was shown in

[BL] thatW 1,p (M,N) is path connected when 1 ≤ p < 2, n ≥ 2 andN is connected.
In fact, Brezis and Li showed that if 1 ≤ p < n, and N is ([p]− 1)-connected, that
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is πi (N) = 0 for 0 ≤ i ≤ [p]−1, then W 1,p (M,N) is path connected. On the other
hand, they observed the following facts

(i) W 1,2
(
S1 × Λ, S1

)
is not path connected for any compact Riemannian man-

ifold Λ with dim (Λ) ≥ 1. SimilarlyW 1,p (Sn × Λ, Sn) is not path connected
for p ≥ n+ 1 ≥ 2.

(ii) W 1,p (Sn, N) is path connected if 1 ≤ p < n and N is connected.
(iii) For any m ≥ 1, 1 ≤ p < n+1 and any connected N , W 1,p (Sn ×Bm

1 , N) is
path connected.

One of the main results of the present work is the following (see Theorem 5.1)

Theorem 1.1. Assume 1 ≤ p < n, and u, v ∈ W 1,p(M,N). Then u ∼p v if and
only if u is ([p]− 1)-homotopic to v.

For an accurate description of “([p]− 1)-homotopy”, one should refer to Defi-
nition 4.1. Roughly speaking, we say two maps u, v ∈ W 1,p (M,N) are ([p]− 1)-
homotopic, if for a generic ([p]− 1)-skeleton M [p]−1 of M , u|M [p]−1 and v|M [p]−1 are
homotopic. Note that on generic ([p]− 1)-skeletons, u and v are both in W 1,p and
hence they are essentially continuous. It, therefore, makes sense to say whether or
not they are homotopic in the usual sense. It was proved by B. White in section 3
of [Wh2] that this definition does not depend on the specific choice of generic skele-
tons. With Theorem 1.1 we are able to reduce the question of path connectedness
for W 1,p (M,N) to a purely topological problem. For the latter the answers are
standard in topology. Indeed we have (see Corollary 5.3)

Corollary 1.1. Assume M and N are connected, and 1 ≤ p < n. If there exists
a k ∈ Z with 0 ≤ k ≤ [p] − 1, such that πi(M) = 0 for 1 ≤ i ≤ k, πi (N) = 0 for
k + 1 ≤ i ≤ [p]− 1, then W 1,p (M,N) is path connected.

Note that when 1 ≤ p < 2, we may simply take k = 0. Hence W 1,p(M,N) is
always path connected as long as n ≥ 2 and bothM andN are connected. Corollary
1.1 generalizes theorem 0.2, theorem 0.3 and proposition 0.1 in [BL]. Recall that for
any 1 ≤ q < p, we have a map ip,q : W 1,p (M,N) / ∼p→ W 1,q (M,N) / ∼q defined
in a natural way (see [BL]). Then another interesting implication of Theorem 1.1
is the following positive answer to the conjecture 2 (and its strengthened version
conjecture 2′) of [BL] (see Corollary 5.1).

Corollary 1.2. Assume k ∈ N, k ≤ q < p < k + 1. Then ip,q is a bijection.

We now turn to the question whether a given map u ∈ W 1,p (M,N) can be
connected to a smooth map by a continuous path in W 1,p (M,N). It was shown
in theorem 0.4, theorem 0.5 in [BL] that either if dimM = 3 and ∂M 6= ∅ (for
any 1 ≤ p < ∞ and any connected N) or if N = S1 (any 1 ≤ p < ∞ and any
M), then any u ∈W 1,p (M,N) can be connected to a smooth map by a continuous
path in W 1,p (M,N). It was conjectured in [BL] that this is always the case for
general smooth compact connected Riemannian manifolds. However, we find the
issue is closely related to the question that whether such a map u can be weakly
approximated by a sequence of smooth maps in W 1,p (M,N). Recall two mapping
spaces closely related to W 1,p (M,N),

H1,p
S (M,N) = the strong closure of C∞ (M,N) in W 1,p (M,N) ;

H1,p
W (M,N) = {u : u ∈W 1,p (M,N) , there exists a sequence ui ∈ C

∞ (M,N)
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such that ui ⇀ u in W 1,p
(
M,Rl̄

)
}.

Obviously we have

(1.2) H1,p
S (M,N) ⊂ H1,p

W (M,N) ⊂W 1,p (M,N) .

Whether the above inclusions in (1.2) are strict or not is a difficult question and
has been studied by various authors. For the case M = B3, N = S2 and p = 2, it
was shown in [BBC] that H1,2

W

(
B3, S2

)
= W 1,2

(
B3, S2

)
. On the other hand, it is

easy to check H1,2
S

(
B3, S2

)
6= W 1,2

(
B3, S2

)
. In fact, in [Be1], Bethuel gave a char-

acterization of maps in H1,2
S

(
B3, S2

)
. Recently, Hardt and Rivière [HR] proved a

necessary and sufficient condition of maps inH1,3
S

(
B4, S2

)
in terms of certain quasi-

mass of “minimal connections”. For general manifolds M and N , some remarkable
results were first established in [Be2] (see [Ha] for an alternative approach of the
main result of [Be2] under some additional topological conditions). Recently some
interesting progresses were made in [PR] for sequentially weak closure of smooth
maps and geometric control on the so called “minimal connections”. In general, it
does not seem to be feasible to construct such “minimal connections” with geomet-
ric and analytic controls. Indeed, there is a global topological obstruction. More
precisely we have (see Proposition 5.2 and Theorem 7.1)

Theorem 1.2. Assume 1 ≤ p < n, u ∈ W 1,p (M,N), and h : K → M is a
Lipschitz rectilinear cell decomposition. Then u can be connected to a smooth map
by a continuous path in W 1,p (M,N) if and only if u#,p (h) is extendible to M with
respect to N . This topological condition on u#,p (h) is also a necessary condition

for u to be in H1,p
W (M,N).

For the meaning of “u#,p (h)” and “extendible to M with respect to N” one
should refer to Definition 2.2 and Remark 4.1. As a consequence of Theorem 1.2,
we have (see Corollary 5.4 and the statement after Theorem 7.1)

Corollary 1.3. Assume 1 ≤ p < n. Then every map in W 1,p(M,N) can be
connected by a continuous path in W 1,p(M,N) to a smooth map if and only if M
satisfies the ([p] − 1)-extension property with respect to N . The latter topological

condition is also a necessary condition for H1,p
W (M,N) to be equal to W 1,p(M,N).

For the meaning of “([p]− 1)-extension property with respect to N”, one should
refer to Definition 2.3. In particular, we have (see Remark 5.1)

Corollary 1.4. Assume N is connected and 1 ≤ p < n. If either [p] = 1 or [p] ≥ 2
and πi (N) = 0 for [p] ≤ i ≤ n−1, then every map in W 1,p (M,N) can be connected
to a smooth map.

We note that theorem 0.5 of [BL] follows from the Corollary 1.4. As for coun-
terexamples to the conjecture 1 of [BL] and to the sequential weak density of
C∞ (M,N) in W 1,p (M,N) we have (see Corollary 5.5, Remark 5.2, and the dis-
cussions after Theorem 7.1)

Corollary 1.5. Assume m1,m2 ∈ N, m2 < m1.

• If 3 ≤ p < 2m2+2, then there are maps in W 1,p (CP
m1 ,CP

m2) which cannot
be connected to any smooth map by continuous paths in W 1,p (CP

m1 ,CP
m2).

In addition H1,p
W (CP

m1 ,CP
m2) 6= W 1,p (CP

m1 ,CP
m2);
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• If 2 ≤ p < m2 +1, then there are maps in W 1,p (RP
m1 ,RP

m2) which cannot
be connected to any smooth map by continuous paths in W 1,p (RP

m1 ,RP
m2).

In addition H1,p
W (RP

m1 ,RP
m2) 6= W 1,p (RP

m1 ,RP
m2).

In connection with Theorem 1.2 and Corollary 1.3, we have the following (see
Conjecture 7.1)

Conjecture 1.1. Assume 2 ≤ p < n, p ∈ N, and h : K → M is a Lipschitz recti-
linear cell decomposition of M . If u ∈W 1,p(M,N) such that u#,p (h) is extendible

to M with respect to N , then u ∈ H1,p
W (M,N).

One may also conjecture that if 2 ≤ p < n, p ∈ N, and M satisfies the (p − 1)-

extension property with respect to N , then H1,p
W (M,N) = W 1,p(M,N).

Finally we come to the question of strong density of smooth maps inW 1,p (M,N).
The following result was proved in [Be2].

Theorem ([Be2], pp153–154) Let 1 ≤ p < n. Smooth maps between Mn and Nk

are dense in W 1,p(Mn, Nk) if and only if π[p](N
k) = 0 ([p] represents the largest

integer less than or equal to p).

Here we find this result has to be corrected. We have (see Theorem 6.3)

Theorem 1.3. Let 1 ≤ p < n. Smooth maps between M and N are dense in
W 1,p(M,N) if and only if π[p] (N) = 0 and M satisfies the ([p] − 1)-extension
property with respect to N .

We note that without the ([p]− 1)-extension property of M with respect to N ,
the strong density of smooth maps in W 1,p(M,N) is definitely false as seen from
the cases W 1,3

(
CP

3,CP
2
)

and W 1,2
(
RP

4,RP
3
)

by Corollary 1.5 (see also [HnL1]).
Theorem 1.3 has two interesting consequences (see Corollary 6.2 and Corollary 6.3)

Corollary 1.6. Assume M and N are connected, 1 ≤ p < n, k is an integer such
that 0 ≤ k ≤ [p]− 1 and πi (M) = 0 for 1 ≤ i ≤ k, πi (N) = 0 for k + 1 ≤ i ≤ [p].

Then H1,p
S (M,N) = W 1,p (M,N).

Corollary 1.7. Assume N is connected, 1 ≤ p < n, πi (N) = 0 for [p] ≤ i ≤ n−1.

Then H1,p
S (M,N) = W 1,p (M,N).

Part (a) of theorem 1 in [Ha] is a special case of Corollary 1.6.
The present paper is written as follows. In Section 2, we introduce various

basic concepts and notations for the topological aspects of our problem. One of
the very crucial facts we used repeatedly in our proof is the homotopy extension
theorem (property). We also discuss briefly k-homotopy of maps and a problem
from obstruction theory. In the last part of Section 2 we discuss how a continuous
homotopy can be replaced by a Lipschitz homotopy. Repeatedly applications of
Fubini (and mean value) type theorems are used in the study of generic slices of
Sobolev mappings in Section 3. Some quantitative controls of W 1,p norm of maps
when they are restricted to generic k-dimensional rectilinear cells are obtained.
Some fine properties of Sobolev mappings such as approximately continuity and
approximately differentiability (Federer-Ziemer, Calderon-Zygmund theorems) as
well as area and co-area formulas are also briefly discussed. In Section 4, we discuss
the k-homotopy property of W 1,p (M,N) maps for 0 ≤ k ≤ [p]. These issues were
first studied carefully by B. White in [Wh1], [Wh2]. Here we use somewhat different
arguments to obtain the main conclusions of [Wh2] as well as some generalizations.



TOPOLOGY OF SOBOLEV MAPPINGS II 5

We have included this part of proof here not only to make the discussion clear and
complete but also to facilitate our arguments in later sections. In Section 5, we
first establish the equivalence between u ∼p v and that u is ([p]− 1)-homotopic
to v (cf. Theorem 5.1). This leads to the proof of conjecture 2 and 2′ of [BL]
as well as results which generalize those in [BL]. We also derive a necessary and
sufficient condition for a map u ∈ W 1,p (M,N) to be connected to a smooth map
by a continuous path in W 1,p(M,N). Thus we see the connection between the
classical topological obstruction theory and the problem of connecting a Sobolev
map to a smooth map in the Sobolev spaces W 1,p (M,N). Section 6 is devoted
to prove a corrected version of strong density theorem. To do so, we have to
give another proof of the fact ([Be2], p154, theorem 2) that maps with canonical
singularities (Rp,∞(M,N)) are always strongly dense in W 1,p(M,N) (see Theorem
6.1). Our proof is somewhat different from the one in [Be2]. This modification
becomes necessary because we have troubles with the original proof, given in [Be2],
with regarding to matching the boundary values when patching cubes for the case
n − p > 1. Moreover in studying the problem whether a specific map can be
approximated in the strong topology by a sequence of smooth maps, we need the
explicit construction in our proof of Theorem 6.1. As a consequence we know that
for 1 ≤ p < n, if p /∈ Z or p = 1 or 2 ≤ p < n but p ∈ Z and πp(N) = 0,

then H1,p
S (M,N) = H1,p

W (M,N) (see [Be2], Theorem 7.2 and [Hn]). The case
2 ≤ p < n, p ∈ Z and πp(N) 6= 0 is much more subtle. On the other hand, we

have (see Theorem 7.2), for 1 ≤ p < n, H1,p
S (M,N) = W 1,p (M,N) if and only

if π[p] (N) = 0 and H1,p
W (M,N) = W 1,p (M,N). Our proof of Theorem 6.1 also

relies on various analytical estimates, some of which were obtained in the earlier
work of Bethuel [Be2]. The proof of the main theorem in Section 6 (Theorem 6.3)
uses in a crucial way certain new deformations from the so-called dual skeletons,
which is obviously motivated by the well known work of Federer and Fleming on
normal and integral currents(see [Fe], in particular chapter 4). The construction of
such deformations with the right analytical estimates is the key point of the whole
proof. We note that the previously constructed deformations due to B. White
[Wh1] (or that in [Ha]) do not seem to work for our purpose. Finally in Section
7, we discuss weak sequential density of smooth maps in Sobolev spaces. Several
technical estimates concerning generic slices of Sobolev maps as well as estimates
relative to the deformations constructed in Section 6 are included in the appendixes.

The present paper treats only compact manifolds without boundary. Essentially
all the results discussed here can be generalized to the case that M has a smooth
nonempty boundary ∂M . We shall return to these in a future article.

Acknowledgement. Both authors wish to thank S. Cappell and F. Bogomolov for
valuable discussions and suggestions concerning the obstruction theory and coun-
terexamples in Corollary 5.5 and Remark 5.2. The second author also wishes to
thank H. Brezis and Y. Y. Li for sending him the preprint [BL] and for their interest-
ing lectures. The research of the first author is supported by a Dean’s Dissertation
Fellowship of New York University. The research of the second author is supported
by a NSF grant.

2. Some preparations

For concepts of rectilinear cell complex and simplicial complex, we use those from
[Whn] (see appendix II of [Whn], the notion of rectilinear cell complex used in this
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paper means the complex defined on p357 of [Whn]). [Mu] is also an excellent
reference for basics in differential topology, but one needs to be careful with some
small differences in definitions (the name rectilinear cell complex comes from [Mu],
but the notion of rectilinear cell complex defined on p70 of [Mu] is different from
the definition of complex on p357 of [Whn], the notion in [Mu] does not allow any
subdivision of the proper face of any cell, but the notion in [Whn] does allow it,
even though this kind of complex is not used in [Whn], see p357 of [Whn]). If after a

rotation and a translation, a rectilinear cell is of the form
∏d

i=1

[
0, ai

]
, ai ≥ 0, then

we say it is a cube. We have cubic complexes similar to simplicial complexes. By
mimicking the notion of smooth triangulation of a manifold, we have the concepts
of smooth cubeulation and smooth rectilinear cell decomposition of a manifold. In
addition, if M is a smooth compact manifold, possibly with boundary, K is a finite
simplicial complex, h : |K| →M is a bi-Lipschitz map, then we say h : K →M is
a Lipschitz triangulation of M . Here |K| is the polytope of K, that is, the union of
all simplices in K. Similarly we have Lipschitz cubeulation and Lipschitz rectilinear
cell decomposition of a smooth compact manifold.

2.1. Homotopy extension property. Homotopy extension theorem will play a
crucial role in several of our proofs. We start with the following

Definition 2.1. Let (X,A) be a topological pair and Y be a topological space. If
every continuous map

H0 : (X × {0}) ∪ (A× [0, 1])→ Y

has a continuous extension to H : X × [0, 1]→ Y , then we say (X,A) satisfies the
homotopy extension property with respect to Y (HEP w.r.t. Y).

If a topological pair (X,A) satisfies the homotopy extension property with respect
to any topological space Y , then we say (X,A) satisfies the homotopy extension
property (HEP).

For a general discussion of HEP (cofibration), one may refer to chapter I of [Hu]
and chapter 6 of [Ma]. For basics in CW complex theory, one may refer [LW] and
[Whd]. The following fact is well known and its proof may be found on p68 of [LW].

Proposition 2.1. Let X be a CW complex and A be a subcomplex. Then (X,A)
satisfies the homotopy extension property.

Another version, which is more analytical, is also important to us (cf. p14 of
[Hu]).

Proposition 2.2. Let Y ⊂ Rn be a retraction of an open subset V ⊂ Rn. Suppose
X is a topological space such that X × [0, 1] is normal, and A ⊂ X is a closed
subset, then (X,A) satisfies the homotopy extension property with respect to Y .

Since we will need to use the construction in the proof of this latter proposition,
we present the arguments here.

Proof of Proposition 2.2. Given a continuous map

H0 : (X × {0}) ∪ (A× [0, 1])→ Y,

by Tietze extension theorem we may find a continuous map G : X×[0, 1]→ Rn such
that G (x, 0) = H0 (x, 0) for x ∈ X , G (a, t) = H0 (a, t) for a ∈ A and 0 ≤ t ≤ 1.
Now U = G−1 (V ) is open and A× [0, 1] ⊂ U , hence there exists an open set W ⊃ A
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such that W × [0, 1] ⊂ U . Choose η ∈ C (X, [0, 1]) such that η|A = 1, η|X\W = 0.
Let r : V → Y be the retraction map. Define H(x, t) = r (G (x, tη (x))) for x ∈ X ,
0 ≤ t ≤ 1. Then H is the needed extension. �

Later on we also need the following

Definition 2.2. Let A, X and Y be topological spaces, i : A→ X be an embedding.
Assume (X, i (A)) satisfies the HEP with respect to Y . Given α, a homotopy class
of maps from A to Y . If for any representative f of α, f ◦ i−1 has a continuous
extension to X, then we say α is extendible to X with respect to Y .

2.2. k-Homotopic maps and problems from obstruction theory. We review
now several basic definitions and facts concerning k-homotopy theory which has a
lot to do with our main results.

Let X and Y be two topological spaces, f, g ∈ C (X,Y ). If f is homotopic to g
as maps from X to Y , then we write f ∼ g as maps from X to Y . When it is clear
what X and Y are, we simply write f ∼ g.

Lemma 2.1. Assume X and Y are topological spaces, X1 and X2 are CW com-
plexes, f, g ∈ C (X,Y ), φi : Xi → X is a homotopy equivalence for i = 1, 2, k ∈ Z,
k ≥ 0. If f ◦ φ1|Xk

1
∼ g ◦ φ1|Xk

1
, then f ◦ φ2|Xk

2
∼ g ◦ φ2|Xk

2
. Here Xk

i means the

k-skeleton of Xi.

Proof. Assume ψi : X → Xi is a homotopy inverse of φi. By the cellular approx-
imation theorem (see p77 of [Whd]), we may find a cellular map ϕ ∈ C (X2, X1)
such that ϕ ∼ ψ1 ◦ φ2. Then we have

f ◦ φ2|Xk
2
∼ f ◦ φ1 ◦ ψ1 ◦ φ2|Xk

2
∼ f ◦ φ1 ◦ ϕ|Xk

2
∼ g ◦ φ1 ◦ ϕ|Xk

2

∼ g ◦ φ1 ◦ ψ1 ◦ φ2|Xk
2
∼ g ◦ φ2|Xk

2
.

�

SupposeX is homotopy equivalent to some CW complexX0, and let φ : X0 → X
be a homotopy equivalence. Given f, g ∈ C(X,Y ). We say f and g are k-homotopic
as maps from X to Y , if (f ◦ φ)|Xk

0
∼ (g ◦ φ)|Xk

0
. Lemma 2.1 says the choice of

X0 and φ plays no role. Usually we write f ∼k g as maps from X to Y or simply
f ∼k g when it is clear what X and Y are. It is easy to see that k-homotopicity
between maps is an equivalence relation.

Similar to homotopy equivalence, we have k-homotopy equivalence between spe-
cial topological spaces. Indeed, let X and Y be two topological spaces. Assume
both X and Y are homotopy equivalent to some CW complexes, and k ∈ Z is given
with k ≥ 0. If we can find φ ∈ C(X,Y ), ψ ∈ C(Y,X) such that ψφ ∼k idX and
φψ ∼k idY , then we say X and Y are k-homotopy equivalent.

The classical obstruction theory deals with the extension problem for maps. The
following problem is closely related to our discussion.

Let X be a CW complex, Y be a topological space, k ∈ Z, k ≥ 0.
Given a f ∈ C

(
Xk+1, Y

)
. We want to know whether there exists

a g ∈ C (X,Y ) such that g|Xk = f |Xk , that is whether f |Xk has a
continuous extension to the whole X.

We have the following
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Lemma 2.2. Let X, Y and Z be topological spaces, X and Y be endowed with
CW complex structures

(
Xj
)
j∈Z

and
(
Y j
)
j∈Z

respectively, k ∈ Z, k ≥ 0. If X

is (k + 1)-homotopy equivalent to Y and for every f0 ∈ C
(
Xk+1, Z

)
, f0|Xk has a

continuous extension to the whole X, then for any f ∈ C
(
Y k+1, Z

)
, f |Y k has a

continuous extension to Y .

Proof. We may find φ ∈ C (X,Y ) and ψ ∈ C (Y,X) such that ψφ ∼k+1 idX ,
φψ ∼k+1 idY . By the cellular approximation theorem, we may assume φ and ψ
are both cellular. Let i be the map from Y k to Y k+1 such that i (y) = y for every
y ∈ Y k.

We claim that φψ ∼ i as maps from Y k to Y k+1. In fact since φψ ∼k+1 idY , we
may find a continuous mapH0 from Y k+1×[0, 1] to Y , such thatH0(y, 0) = φ(ψ(y)),
H0(y, 1) = y for any y ∈ Y k+1. By the cellular approximation theorem we may find
a cellular map H from Y k+1 × [0, 1] to Y such that H(y, 0) = φ(ψ(y)), H(y, 1) = y
for any y ∈ Y k+1. Since H

(
Y k × [0, 1]

)
⊂ Y k+1, the claim follows. Next, for any

given f ∈ C
(
Y k+1, Z

)
, we define f0 (x) = f (φ (x)) for x ∈ Xk+1. Then we may

find g0 ∈ C (X,Z) such that g0|Xk = f0|Xk . Set g = g0 ◦ ψ, by the above claim
we see g|Y k ∼ f |Y k . It follows from Proposition 2.1 that f |Y k has a continuous
extension to Y . �

Now let us introduce the following

Definition 2.3. Let X and Y be topological spaces where X possesses some CW
complex structure, and k ∈ Z, k ≥ 0. If for some CW complex structure

(
Xj
)
j∈Z

of X, every f ∈ C
(
Xk+1, Y

)
, f |Xk has a continuous extension to X, then we say

X satisfies the k-extension property with respect to Y .

By Lemma 2.2, we see the k-extension property does not depend on the particular
choice of CW complex structure on X . This fact will be useful to us later in
constructions of various examples. In other words, it suffices to check this property
for a particular CW complex structure of X .

2.3. From continuous maps to Lipschitz maps. Let X be a compact metric
space with metric denoted as d. For any function f : X → R, we set

|f |∞,X = sup
x∈X
|f (x) |, [f ]Lip(X) = sup

x1,x2∈X, x1 6=x2

|f (x1)− f (x2) |

d (x1, x2)
.

We simply write |f |∞ and [f ]Lip when it is clear what X is. Define

Lip (X,R) =
{
f : X → R : [f ]Lip(X) <∞

}
,

it is a Banach space under the norm

|f |Lip(X) = |f |∞,X + [f ]Lip(X) .

It is always convenient to replace usual continuous homotopies by Lipschitz homo-
topies when the image spaces are compact smooth manifolds as in present article.
We describe a few elementary results below which will be sufficient for our purposes.

Lemma 2.3. Let X be a compact metric space. Then Lip (X,R) is dense in
C (X,R) under the uniform convergence topology.
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Proof. Indeed this follows easily from Stone-Weierstrass theorem. But we may also
give a direct proof. Given a f ∈ C (X,R). For any a ∈ R, a > 0, define

fa (x) = min
y∈X

(f (y) + a · d (x, y)) for any x ∈ X.

We easily check [fa]Lip ≤ a and |fa − f |∞ → 0 as a→∞. �

Proposition 2.3. Let X be a compact metric space. Then we have

(1) Lip (X,N) is dense in C (X,N) under the uniform convergence topology.
(2) For any f ∈ C (X,N), there exists a g ∈ Lip (X,N) such that f ∼ g.
(3) For any f, g ∈ Lip (X,N), if f ∼ g, then there exists a continuous path

in Lip (X,N), namely H ∈ C ([0, 1] , Lip (X,N)), such that H (0) = f ,
H (1) = g. Usually we write the latter statement as f ∼Lip g.

Proof. Choose ε > 0 small enough such that

V2ε =
{
y : y ∈ R

l̄, dist (y,N) < 2ε
}

is a tubular neighborhood of N . Let π : V2ε → N be the nearest point projection
map, which is smooth because of the smallness of ε.

Given any f ∈ C (X,N). By Lemma 2.3 we may find fj ∈ Lip
(
X,Rl̄

)
such

that fj converges to f uniformly. For j large enough, we have fj (X) ⊂ Vε. Let
gj = π ◦ fj . Then gj ∈ Lip (X,N) and gj converges uniformly to f . This proves
(1).

Given any f ∈ C (X,N), choose a g ∈ Lip (X,N) such that |f − g|∞ ≤ ε. Let

H (x, t) = π ((1− t) f (x) + tg (x)) for x ∈ X, 0 ≤ t ≤ 1.

Then H is a homotopy from f to g. This proves (2).
Given f, g ∈ Lip (X,N) such that f ∼ g, let G : X × [0, 1]→ N be a continuous

map such that G (x, 0) = f (x), G (x, 1) = g (x) for x ∈ X . Choose δ > 0 small
enough such that for x1, x2 ∈ X , t1, t2 ∈ [0, 1], we have |G (x1, t1)−G (x2, t2) | ≤

ε
8

when d (x1, x2) + |t1 − t2| ≤ δ. Let Gt : X → N be defined by Gt (x) = G (x, t)
for x ∈ X . Choose m ∈ N such that 1/m < δ. For 1 ≤ k ≤ m − 1, choose
Lk/m ∈ Lip (X,N) such that |Lk/m (x) − Gk/m (x) | ≤ ε

8 for any x ∈ X . Set

L0 = f , L1 = g. For any 0 ≤ k ≤ m− 1, t ∈
[

k
m ,

k+1
m

]
, x ∈ X , set

L (t) (x) = (k + 1−mt)Lk/m (x) + (mt− k)L(k+1)/m (x) ,

Clearly L ∈ C
(
[0, 1] , Lip

(
X,Rl̄

))
. Let H (t) (x) = π (L (t) (x)) for x ∈ X , 0 ≤

t ≤ 1. Then clearly

(2.1) |H (t2)−H (t1) |∞ ≤ c (N) |L (t2)− L (t1) |∞.

On the other hand, π|Vε clearly has a smooth extension π : R
l̄ → R

l̄, which satisfies
π (y) = 0 for all y outside a big ball. For 0 ≤ t1, t2 ≤ 1, x1, x2 ∈ X , we have

(2.2) | (H (t2) (x2)−H (t1) (x2))− (H (t2) (x1)−H (t1) (x1)) |

= |π (L (t2) (x2))− π (L (t2) (x1))− π (L (t1) (x2)) + π (L (t1) (x1)) |

= |

∫ 1

0

π′ ((1− s)L (t2) (x1) + sL (t2) (x2)) (L (t2) (x2)− L (t2) (x1)) ds

−

∫ 1

0

π′ ((1− s)L (t1) (x1) + sL (t1) (x2)) (L (t1) (x2)− L (t1) (x1)) ds|
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≤ c (N) [L (t2)− L (t1)]Lip d (x1, x2) + c (N) [L (t2)]Lip |L (t2)− L (t1) |∞d (x1, x2) .

Inequalities (2.1) and (2.2) together implies H ∈ C ([0, 1] , Lip (X,N)) and hence
we get (3). �

3. Generic slices of Sobolev functions

One of the technical steps in our proofs involves restrictions of given Sobolev
maps to various lower dimensional skeletons in general positions. Thus we have to
obtain analytic controls on generic slices of Sobolev functions.

Let K be a finite rectilinear cell complex, 1 ≤ p <∞. Then we define

W1,p (K,R) =
{
f : f : |K| → R is a Borel function such that f |∆ ∈W

1,p (∆,R)

and the trace T (f |∆) = f |Bd(∆), for any ∆ ∈ K
}
.

Here Bd (∆) denotes the boundary of ∆. We also write

|f |W1,p(K) =
∑

∆∈K

|f |∆|W 1,p(∆).

If f ∈ W1,p (K,R), k ∈ Z, 0 ≤ k < p, then there exists a unique g ∈ C
(
|Kk|,R

)

such that for any ∆ ∈ Kk, we have f |∆ = g|∆ Hd a.e. on ∆, with d = dim (∆).
Here Kk is the complex of all cells in K with dimension less than or equal to k.
We also remark that, whenever necessary, we use the following equivalence relation
for Borel functions f, g : |K| → R, that is, f and g are equivalent if and only if for
any ∆ ∈ K, f |∆ = g|∆ Hd a.e. on ∆, here d = dim (∆).

In the future, we also need a similar function space as follows. Let K be a finite
rectilinear cell complex, m = dimK, 1 ≤ p <∞. Assume K satisfies

|K| =
⋃

∆∈K,dim(∆)=m

∆.

If f : |K| → R is a Borel function such that

• f |∆ ∈W 1,p (∆,R) for any ∆ ∈ K with dim (∆) = m;
• For any Σ ∈ K with dim (Σ) = m − 1, Σ ⊂ Bd (∆i), dim (∆i) = m for
i = 1, 2, we have T (f |∆1) |Σ = T (f |∆2) |Σ,

then we say f lies in W̃ 1,p(K,R), and we write

|f |fW 1,p(K)
=

∑

∆∈K,dim(∆)=m

|f |∆|W 1,p(∆).

For convenience, we also make a convention that, whenever necessary, we always
fix a suitable representative of an equivalence class of measurable functions.

Lemma 3.1. Assume 1 ≤ p <∞, and u ∈W 1,p (Bm
1 ,R) with the trace T (u) = f ∈

Lip (∂B1,R). Then there exists a sequence ui ∈ Lip
(
B1,R

)
such that ui|∂B1 = f

and ui → u in W 1,p (B1,R).

Proof. This is a well known fact, but because the way it is proved is going to be
used many times in the future, we present it here. For any 0 < δ < 1, we define

uδ (x) =

{
u (x/ (1− δ)) , for |x| ≤ 1− δ;
f (x/|x|) , for 1− δ ≤ |x| ≤ 1.

Then uδ ∈ W 1,p (B1) and uδ → u in W 1,p (B1) as δ → 0+. Hence we may assume
for some δ ∈ (0, 1), u (x) = f (x/|x|) for 1 − δ ≤ |x| ≤ 1. Choose η ∈ C∞

c (B1,R)
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such that η|B1−δ/2
= 1, η|B1\B1−δ/3

= 0 and 0 ≤ η ≤ 1. Choose a mollifier

ρ ∈ C∞
c (Rm,R) such that ρ ≥ 0, ρ|Rm\B1

= 0 and
∫

Rm ρ (x) dx = 1. Let ρε (x) =
1

εm ρ
(

x
ε

)
. For ε > 0 small enough, let vε be defined on B1−δ/4 by vε(x) =

∫
B1
ρε(x−

y)u(y)dy. Now set wε(x) = η(x)vε(x) + (1 − η(x))u(x). Then clearly we have
wε ∈ Lip

(
B1,R

)
and wε → u in W 1,p (B1,R) as ε→ 0+. �

Let ∆ be a rectilinear cell, y ∈ Int (∆). Then for any x ∈ ∆, we set

(3.1) |x|y,∆ = inf{t : t > 0, x ∈ y + t (∆− y)}.

This is the usual Minkowski functional of ∆ with respect to y. When it is clear
what y is, we simply write |x|∆ instead of |x|y,∆.

Lemma 3.2. Assume K is a finite rectilinear cell complex, 1 ≤ p <∞. Then,

• Lip (|K|,R) is dense in W1,p (K,R).
• Define a space E =W1,p (K,R) ∩ C (|K|,R) with norm

|f |E = |f |W1,p(K) + |f |∞,|K|.

Then Lip (|K|,R) is dense in E.

Proof. We use induction to prove the first assertion. In fact, it is clearly true when
dimK = 0. Assume it has been proved for dimK = m − 1 for some m ≥ 1.
Now assume dimK = m. Given any u ∈ W1,p (K,R), we may find a sequence of
maps fi ∈ Lip

(
|Km−1|,R

)
such that fi → u||Km−1| in W1,p

(
Km−1,R

)
. For any

∆ ∈ K\Km−1, we pick up a point y∆ ∈ Int (∆). Since ∆ is bi-Lipschitz to Bm
1 by

the obvious map, from the proof of Lemma 3.1 we may assume for some δ ∈ (0, 1),
for each ∆ ∈ K\Km−1, one has

u (x) = u

(
y∆ +

x− y∆
|x|∆

)
for x ∈ ∆ with 1− δ ≤ |x|∆ ≤ 1.

Choose a η ∈ C∞ (R,R) such that 0 ≤ η ≤ 1, η|(−∞,1−δ/2] = 1, η|[1−δ/3,∞) = 0.
Let ui be defined as

ui (x) =

{
fi (x) , x ∈ |Km−1|;

η (|x|∆)u (x) + (1− η (|x|∆)) fi

(
y∆ + x−y∆

|x|∆

)
, x ∈ ∆,∆ ∈ K\Km−1.

Then clearly ui ∈ W1,p (K,R) and ui → u in W1,p (K). By using Lemma 3.1 on
each ∆ ∈ K\Km−1 we get ui can be approximated in W1,p(K) by functions in
Lip(|K|,R), hence so is u. The proof of the second assertion is exactly the same as
the first one. �

Henceforth till the end of this section we shall assume M is a n-dimensional
Riemannian manifold without boundary, Ω ⊂M is a domain with compact closure
and Lipschitz boundary. Assume the parameter space P is a m-dimensional Rie-
mannian manifold, Q is a d-dimensional Riemannian manifold without boundary
and D ⊂ Q is a domain with compact closure and Lipschitz boundary, and the
dimensions satisfy d+m ≥ n.

Given a map H : D × P →M , we assume H satisfies

(H1) H ∈ Lip(D× P ) and [H(·, ξ)]Lip(D) ≤ c0 for any ξ ∈ P .

(H2) There exists a positive number c1 such that the n dimensional Jacobian
JH (x, ξ) ≥ c1,H

d+m a.e. (x, ξ) ∈ D × P .
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(H3) There exists a positive number c2 such that Hd+m−n
(
H−1 (y)

)
≤ c2 for

Hn a.e. y ∈M .

For convenience we use Hx and Hξ to denote maps defined by Hx (ξ) = Hξ (x) =
H (x, ξ).

Lemma 3.3. Given a map H : D×P →M satisfying (H1), (H2) and (H3). Then

for any Borel function χ : M → R̃ = R ∪ {±∞} with χ ≥ 0, we have
∫

P

dHm (ξ)

∫

D

χ (Hξ (x)) dHd (x) ≤ c−1
1 c2

∫

M

χ (y) dHn (y) .

Especially for any Borel subset E ⊂M , we have
∫

P

Hd
(
H−1

ξ (E)
)
dHm (ξ) ≤ c−1

1 c2H
n (E) .

If in addition Hn (E) = 0, then Hd
(
H−1

ξ (E)
)

= 0 for Hm a.e. ξ ∈ P .

Proof. By the coarea formula (see p258 [Fe] or section 10 and 12 of [Si]) we have
∫

P

dHm (ξ)

∫

D

χ (Hξ (x)) dHd (x) ≤ c−1
1

∫

D×P

χ (H (x, ξ)) JH (x, ξ) dHd+m (x, ξ)

= c−1
1

∫

M

χ (y)Hd+m−n
(
H−1 (y)

)
dHn (y) ≤ c−1

1 c2

∫

M

χ (y) dHn (y) .

Note here we need condition (H1) to insure the validity of coarea formula quoted
above. Though the coarea formula is true for a larger class of Sobolev maps (see
[MSZ]), the present form is sufficient for our purposes. �

Lemma 3.4. Assume 1 ≤ p <∞, f ∈W 1,p (Ω,R), and H : D× P → Ω ⊂M is a
map satisfying (H1), (H2) and (H3). Then

(1) There exists a Borel set E ⊂ P such that Hm (E) = 0 and for any ξ ∈ P\E,
(i) f ◦Hξ ∈W 1,p (D);
(ii) f is approximately differentiable at Hξ (x) for Hd a.e. x ∈ D, in

addition,

dap (f ◦Hξ)x = dapfHξ(x) ◦ (Hξ)∗,x for Hd a.e. x ∈ D,

here (Hξ)∗,x denotes the tangent map of Hξ at x.

(2) If fi ∈ Lip
(
Ω,R

)
satisfies fi → f in W 1,p (Ω), then there exists a sub-

sequence fi′ and a Borel set E ⊂ P such that Hm (E) = 0 and for any
ξ ∈ P\E, fi′ ◦Hξ → f ◦Hξ in W 1,p (D).

(3) If we define f̃ by f̃ (ξ) = f ◦Hξ for any ξ ∈ P , then f̃ ∈ Lp
(
P,W 1,p (D)

)
,

in addition

|f̃ |Lp(P,W 1,p(D)) ≤ c|f |W 1,p(Ω),

here c depends only on p, c0, c1 and c2.

Proof. From p233 of [EG] or p214 of [Fe] we know there exists a Borel set X0 such
that Hn (X0) = 0 and for any x ∈ Ω\X0, f is approximately differentiable at x, fi

is differentiable at x. For x ∈ Ω\X0, d
apf (x) and dfi (x) has already been defined.

For x ∈ X0, we simply set dapf (x) = 0, dfi (x) = 0. From Lemma 3.3 we may find
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a Borel set E1 ⊂ P such that Hm (E1) = 0 and Hd
(
H−1

ξ (X0)
)

= 0 for ξ ∈ P\E1.

On the other hand, from Lemma 3.3 we know
(3.2)∫

P

dHm (ξ)

∫

D

(
|fi (Hξ (x))− f (Hξ (x)) |p + | (dfi)Hξ(x) − d

apfHξ(x)|
p
)
dHd (x)

≤ c−1
1 c2

∫

Ω

(
|fi (y)− f (y) |p + | (dfi)y − d

apfy|
p
)
dHn (y)→ 0 as i→∞.

Hence we may find a subsequence fi′ and a Borel set E2 ⊂ P such that Hm (E2) = 0
and for any ξ ∈ P\E2,

(3.3)

∫

D

(
|fi′ (Hξ (x))− f (Hξ (x)) |p + | (dfi′)Hξ(x) − d

apfHξ(x)|
p
)
dHd (x)→ 0.

Then for any ξ ∈ P\ (E1 ∪ E2), we have fi′ ◦Hξ → f ◦Hξ in Lp (D), also for Hd a.e.
x ∈ D, f is approximately differentiable at Hξ (x), fi′ is differentiable at Hξ (x)
and dfi′ |Hξ( · ) → dapf |Hξ( · ) in Lp (D), which clearly implies (dfi′)Hξ( · ) ◦ (Hξ)∗, · →

dapfHξ( · )◦(Hξ)∗, · in Lp (D). Hence we have f◦Hξ ∈ W 1,p (D) and fi′◦Hξ → f◦Hξ

in W 1,p (D), dap (f ◦Hξ)x = dapfHξ(x) ◦ (Hξ)∗,x for Hd a.e. x ∈ D. This implies

f̃i′ → f̃ Hm a.e. on P , and hence f̃ is Lebesgue measurable. In addition, we have

(3.4)

∫

P

|f̃ (ξ) |pW 1,p(D)dH
m (ξ)

=

∫

P

dHm (ξ)

∫

D

(
|f (Hξ (x)) |p + |dapfHξ(x) ◦ (Hξ)∗,x |

p
)
dHd (x)

≤ c

∫

Ω

(|f (y) |p + |dapfy|
p) dHn (y) ,

here c depends only on p, c0, c1 and c2. This clearly implies Lemma 3.4. �

Corollary 3.1. Let 1 ≤ p < ∞, f ∈ W 1,p (Ω,R), K be a finite rectilinear cell
complex, H : |K|×P → Ω ⊂M be a map such that H |∆×P satisfies (H1), (H2) and
(H3) for any ∆ ∈ K. Then there exists a Borel set E ⊂ P such that Hm (E) = 0

and for any ξ ∈ P\E, we have f ◦ Hξ ∈ W1,p (K), in addition, the map f̃ ∈

Lp
(
P,W1,p (K)

)
, where f̃ (ξ) = f ◦Hξ for ξ ∈ P .

Proof. Choose a sequence fi ∈ Lip
(
Ω,R

)
such that fi → f in W 1,p

(
Ω
)
. Then we

may find a Borel set E ⊂ P and a subsequence fi′ such that Hm (E) = 0 and for
any ξ ∈ P\E, we have

• f ◦Hξ |∆ ∈ W 1,p (∆) for any ∆ ∈ K;
• fi′ ◦Hξ |∆ → f ◦Hξ|∆ in W 1,p (∆), for any ∆ ∈ K.

Since T (fi′ ◦Hξ|∆) = fi′ ◦ Hξ|Bd(∆), by taking a limit we get T (f ◦Hξ |∆) =
f ◦Hξ|Bd(∆). �

We also have the following interpolation inequality for the curve-linear case,
which is an easy consequence of the classical Gagliado-Nirenberg-Sobolev’s inequal-
ity.
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Lemma 3.5. Assume H : D × P → Ω ⊂ M is a map satisfying (H1), (H2) and
(H3), d < q < p <∞, and f ∈ W 1,p(Ω,R). Then

(∫

P

|f ◦Hξ |
p
L∞(D)dH

m(ξ)

) 1
p

≤ c
(
|df |

q
p

Lp(Ω)|f |
1− q

p

Lp(Ω) + |f |Lp(Ω)

)
.

Here c is a positive constant depending only on p, q,D, c0, c1 and c2.

Proof. By the usual Sobolev inequality, for any φ ∈ Lip(D,R), we have

(3.5) |φ|L∞(D) ≤ c(q,D)
(
|dφ|Lq(D) + |φ|Lq(D)

)
.

Since p/q > 1, for any φ ∈ Lip(D,R), applying (3.5) to |φ|
p
q , we get

|φ|
p
q

L∞(D) ≤ c(p, q,D)
(
||φ|

p
q −1dφ|Lq(D) + |φ|

p
q

Lp(D)

)
.

Taking qth power on both sides and applying Holder’s inequality to the right hand
side, we get

(3.6) |φ|pL∞(D) ≤ c(p, q,D)
(
|dφ|qLp(D)|φ|

p−q
Lp(D) + |φ|pLp(D)

)
.

A simple approximation procedure shows (3.6) is also true for φ in W 1,p(Ω,R). It
follows from Lemma 3.4 and (3.6) that for Hm a.e. ξ ∈ P ,

|f ◦Hξ|
p
L∞(D) ≤ c(p, q,D)

(
|d(f ◦Hξ)|

q
Lp(D)|f ◦Hξ|

p−q
Lp(D) + |f ◦Hξ |

p
Lp(D)

)

≤ c(p, q,D, c0)
(
|(df)Hξ(·)|

q
Lp(D)|f ◦Hξ|

p−q
Lp(D) + |f ◦Hξ||

p
Lp(D)

)
.

Integrating both sides with respect to ξ, and using Holder’s inequality, we get∫

P

|f ◦Hξ|
p
L∞(D)dH

m(ξ)

≤ c

(∫

P

|(df)Hξ(·)|
p
Lp(D)dH

m(ξ)

) q
p
(∫

P

|f ◦Hξ|
p
Lp(D)dH

m(ξ)

)1− q
p

+c

∫

P

|f ◦Hξ|
p
Lp(D)dH

m(ξ)

≤ c
(
|df |qLp(Ω)|f |

p−q
Lp(Ω) + |f |pLp(Ω)

)
.

Here c depends on p, q,D, c0, c1 and c2. In the last inequality above, we have used
Lemma 3.3. �

4. Homotopy of Sobolev mappings

Let X and Y be topological spaces, we use [X,Y ] to denote the set of all ho-
motopy classes of continuous maps from X to Y . Given any f ∈ C (X,Y ), we use
[f ]X,Y to denote the homotopy class corresponding to f as a map from X to Y .

When it is clear what X and Y are, we simply write [f ] instead of [f ]X,Y .
For ε0 > 0, denote

V2ε0 (M) =
{
y : y ∈ R

l, dist (y,M) < 2ε0
}
.

We assume ε0 is small enough such that V2ε0 (M) is a tubular neighborhood of
M and denote πM : V2ε0 (M) → M as the nearest point projection map, which is
smooth because of the smallness of ε0. Given any map h : A → M , we define the
corresponding H : A × Bl

ε0
→ M by H(a, ξ) = πM (h(a) + ξ). If ∆ is a rectilinear

cell, and h : ∆→M is a Lipschitz map, then it is easy to see (H1),(H2) and (H3)
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in Section 3 are satisfied by H . For reader’s convenience, we write down the proof
of (H3). Let d = dim(∆). Given any y ∈ M . Denote My as the tangent space of
M at y. Define a map

ψ : ∆× {ζ ∈ R
l : ζ ⊥My, |ζ| ≤ ε0} → ∆× R

l

by ψ(x, ζ) = (x, y + ζ − h(x)). Then clearly H−1(y) ⊂ im(ψ). It follows from the
area formula that Hd+l−n(H−1(y)) ≤ Hd+l−n(im(ψ)) ≤ c(d, l, [h]Lip(∆),M). This
verifies (H3). Often we write hξ instead of Hξ . The notations V2ε0 (N) and πN are
defined similarly. When no confusions would occur, we write π instead of πM and
πN . We start with a few simple facts.

Lemma 4.1. Let X be any topological space, u0 and u1 be continuous maps from
X to N . If |u0 − u1|∞,X ≤ ε0 = ε0(N), then u0 ∼ u1 as maps from X to N .

Proof. Simply take H (x, t) = πN ((1− t)u0 (x) + tu1 (x)) for x ∈ X , 0 ≤ t ≤ 1 as
the homotopy. �

Lemma 4.2. If X is a compact metric space, then [X,N ] is countable.

Proof. This follows from Lemma 4.1 and the fact C (X,R) has a countable dense
subset. �

The next lemma is concerned with certain topological classes introduced by a
given Sobolev map when it is restricted to a lower dimensional set.

Lemma 4.3. Assume 1 ≤ p ≤ n, u ∈ W 1,p (M,N), K is a finite rectilinear
cell complex, the parameter space P is a m-dimensional Riemannian manifold,
H : |K| ×P →M is a map such that H |∆×P satisfies (H1), (H2) and (H3) for any
∆ ∈ K. Then there exists a Borel set E ⊂ P such that Hm (E) = 0 and u ◦Hξ ∈
W1,p (K,N) for any ξ ∈ P\E. Assume either k = 1 or k is an integer with 0 ≤
k < p. Define a map χ = χk,H,u : P →

[
|Kk|, N

]
by setting χ (ξ) =

[
u ◦Hξ ||Kk|

]
.

Then χ is Lebesgue measurable, that is, χ−1 ({α}) is Lebesgue measurable for any
α ∈

[
|Kk|, N

]
. Here Kk is the finite rectilinear cell complex defined by

Kk = {∆ ∈ K : dim(∆) ≤ k}.

Proof. The existence of such an E follows from Lemma 3.3 and Corollary 3.1. Note
that Lemma 3.3 is needed because we only know u(x) ∈ N for Hn a.e. x ∈M . But
by the second half of Lemma 3.3, we conclude that for Hm a.e. ξ ∈ P , for each
∆ ∈ K with d = dim(∆), u ◦ Hξ takes values in N , Hd a.e. on ∆. The Sobolev
embedding theorem implies that χ is pointwise well defined away from E. Note that
k = 1 is special because aW 1,1 function on a closed interval is absolutely continuous
after a modification on a measure zero set, but in general one does not have this
for a W 1,k function on a k dimensional disk for k > 1. Instead we will handle this
issue in Lemma 4.6. Define ũ(ξ) = u ◦Hξ for ξ ∈ P\E. It follows from Corollary
3.1 that ũ ∈ Lp(P,W1,p(K,N)). By the Lusin’s theorem, we see the function ũ is
continuous on the whole parameter space P away from an arbitrary small measure
set. Using Sobolev embedding theorem and Lemma 4.1, one concludes that the
corresponding χ is locally constant away from such small measure sets. This along
with Lemma 4.2 implies the measurability of χ. �

The next result is useful for the critical case p ∈ N, p ≥ 2, which is not covered
by the previous Lemma 4.3 (see Lemma 4.6 below).
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Lemma 4.4. Assume m is a natural number, and u ∈W 1,m (Bm
1 , N) such that the

trace T (u) = f ∈ W 1,m (∂B1, N) ⊂ C (∂B1, N). Then for any ε > 0, there exists
a v ∈ W 1,m (B1, N) ∩ C

(
B1, N

)
such that |v − u|W 1,m(B1) ≤ ε and v|∂B1 = f . In

addition, there exists an ε = ε (m,u,N) > 0 such that if v1, v2 ∈ W
1,m (B1, N) ∩

C
(
B1, N

)
satisfy vi|∂B1 = f and |vi − u|W 1,m(B1) ≤ ε for i = 1, 2, then we have

v1 ∼ v2 relative to ∂B1, that is, during the homotopy, the value on ∂B1 is always
fixed.

Proof. As in the proof of Lemma 3.1, we may assume for some δ ∈ (0, 1), u (x) =
f (x/|x|) for 1 − δ ≤ |x| ≤ 1. Choose a η ∈ C∞

c (B1,R) such that 0 ≤ η ≤ 1,
η|B1−δ/2

= 1 and η|B1\B1−δ/3
= 0. For ε > 0 small enough, we set vε (x) = −

∫
Bε(x)

u

for x ∈ B1−δ/4. Then we define

wε (x) = (1− η (x)) f

(
x

|x|

)
+ η (x) vε (x) for x ∈ B1.

Clearly wε ∈ W 1,m
(
B1,R

l̄
)
∩ C

(
B1

)
and wε → u in W 1,m (B1). For x ∈ B1−δ/2,

from Poincaré inequality we have

−

∫

Bε(x)

|u (y)−−

∫

Bε(x)

u|dy ≤ c
(
m, l̄

)
(∫

Bε(x)

|∇u|m

) 1
m

,

hence dist (vε (x) , N) → 0 uniformly for x ∈ B1−δ/2, this implies the same thing
is true for wε on B1−δ/2 because vε|B1−δ/2

= wε|B1−δ/2
. On the other hand from

uniform continuity of f we know wε (x)−f (x/|x|)→ 0 uniformly for x ∈ B1\B1−δ/2

as ε → 0+. Hence dist (wε (x) , N) → 0 uniformly for x ∈ B1 as ε → 0+, from
which we deduce that π ◦wε → u in W 1,m (B1) as ε→ 0+, π ◦wε ∈ W 1,m (B1, N)∩
C
(
B1, N

)
and π ◦ wε|∂B1 = f . The first half of Lemma 4.4 follows. To prove

the second half, clearly we may assume u (x) = v1 (x) = v2 (x) = f (x/|x|) for
1/2 ≤ |x| ≤ 1. Choose a η ∈ C∞

c (B1,R) such that 0 ≤ η ≤ 1, η|B2/3
= 1,

η|B1\B3/4
= 0. For δ > 0 small, we define

(4.1) (vi)δ (x) = (1− η (x)) f

(
x

|x|

)
+ η (x)−

∫

Bδ(x)

vi,

for x ∈ B1 and i = 1, 2. From the continuity of f we know (vi)δ (x)− f (x/|x|)→ 0
uniformly for 2/3 ≤ |x| ≤ 1. On the other hand, for |x| ≤ 2/3, we have (vi)δ (x) =
−
∫

Bδ(x) vi, hence

(4.2) dist ((vi)δ (x) , N) ≤ −

∫

Bδ(x)

|vi −−

∫

Bδ(x)

vi| ≤ c
(
m, l̄

)
(∫

Bδ(x)

|∇vi|
m

)1/m

≤ c
(
m, l̄

)

ε+

(∫

Bδ(x)

|∇u|m

)1/m

 ≤ ε0/4

when 0 < δ ≤ δ0
(
m, l̄, u

)
and c

(
m, l̄

)
ε ≤ ε0/8. In addition we may assume

δ0
(
m, l̄, u

)
is small enough so that

(4.3) | (vi)δ (x)− f (x/|x|) | ≤ ε0/4 for 2/3 ≤ |x| ≤ 1, 0 < δ ≤ δ0
(
m, l̄, u

)
.
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(4.2) and (4.3) tell us

(4.4) dist ((vi)δ (x) , N) ≤ ε0/4 for x ∈ B1, 0 < δ ≤ δ0
(
m, l̄, u

)
.

Note that for 1 ≥ |x| ≥ 2/3, (v1)δ0
(x) = (v2)δ0

(x). For |x| ≤ 2/3, we have

(4.5)

| (v1)δ0
(x)−(v2)δ0

(x) | ≤ −

∫

Bδ0
(x)

|v1−v2| ≤

(
−

∫

Bδ0
(x)

|v1 − v2|
m

)1/m

≤ c
(
m, l̄

) ε
δ0
.

By taking ε = ε (m,u,N) small enough, we have

(4.6) | (v1)δ0
(x)− (v2)δ0

(x) | ≤ ε0/4 for x ∈ B1.

From (4.4) and (4.6) we see easily that π◦(v1)δ0
∼ π◦(v2)δ0

relative to ∂B1, indeed

the map H (x, t) = π
(
(1− t) (v1)δ0

(x) + t (v2)δ0
(x)
)

is the needed homotopy. On

the other hand it is easy to see that vi ∼ (vi)δ0
relative to ∂B1 for i = 1, 2, the

second half of Lemma 4.4 follows. We should mention that for this part one may
also use the so called VMO space theory by [BN]. �

Corollary 4.1. Assume m ∈ N, and u ∈W 1,m(Bm
1 , N) such that the trace T (u) =

f ∈ W 1,m(∂B1, N) ⊂ C(∂B1, N). Then there exists an ε1 = ε1(m,u,N) > 0 such
that, for any v0, v1 ∈ C(B1, N) ∩ W 1,m(B1, N) with f0 = v0|∂B1 , f1 = v1|∂B1 ∈
W 1,m(∂B1, N), if |vi − u|W 1,m(B1) ≤ ε1 and |fi − f |W 1,m(∂B1) ≤ ε1 for i = 0, 1,
then |f0(x) − f1(x)| ≤ ε0(N) for any x ∈ ∂B1 and we may find a homotopy v(·) ∈
C([0, 1], C(B1, N)) such that, v(0) = v0, v(1) = v1 and v(t)(x) = πN ((1− t)f0(x) +
tf1(x)) for x ∈ ∂B1 and 0 ≤ t ≤ 1.

Proof. By Sobolev embedding theorem, we may take ε1(m,u,N) small enough such
that |fi − f |∞,∂B1 ≤ ε0(N)/4 for i = 0, 1. Let

u(x) =

{
u(2x), x ∈ B1/2;
f(x/|x|), x ∈ B1\B1/2.

Also for i = 0, 1 denote

vi(x) =

{
vi(2x), x ∈ B1/2;
πN ((2− 2|x|)fi(x/|x|) + (2|x| − 1)f(x/|x|)), x ∈ B1\B1/2.

A simple computation shows

|vi − u|W 1,m(B1) ≤ c(m,u,N)
(
|vi − u|W 1,m(B1) + |fi − f |W 1,m(∂B1)

)
.

Hence it follows from Lemma 4.4 that if we pick ε1(m,u,N) small enough, then we
may find a map H ∈ C(B1 × [0, 1], N) such that H(x, 0) = v0(x), H(x, 1) = v1(x)

for x ∈ B1 and H(x, t) = f(x) for x ∈ ∂B1, 0 ≤ t ≤ 1. Let us define a map H̃ on
∂(B1 × [0, 1]) by

H̃(x, t) =





v0(x), x ∈ B1, t = 0;
πN (3tf(x) + (1− 3t)f0(x)), x ∈ ∂B1, 0 ≤ t ≤ 1/3;
f(x), x ∈ ∂B1, 1/3 ≤ t ≤ 2/3;
πN ((3− 3t)f(x) + (3t− 2)f1(x)), x ∈ ∂B1, 2/3 ≤ t ≤ 1;
v1(x), x ∈ B1, t = 1.
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Then it is clear that H |∂(B1×[0,1]) ∼ H̃ . On the other hand, if we set

H(x, t) =





v0(x), x ∈ B1, t = 0;
πN ((1− t)f0(x) + tf1(x)), x ∈ ∂B1, 0 ≤ t ≤ 1;
v1(x), x ∈ B1, t = 1,

then, clearly |H − H̃ |∞,∂(B1×[0,1]) ≤ ε0(N). By Lemma 4.1, we know H ∼ H̃ on

∂(B1× [0, 1]). Hence H ∼ H |∂(B1×[0,1]). It follows from Proposition 2.2 that H has

a continuous extension to B1× [0, 1] which takes value in N . The extension map is
the needed homotopy. �

Lemma 4.5. Let m be a natural number. K be a finite rectilinear cell complex with
dimK ≤ m. Given any u ∈ W1,m(K,N). Choose a v ∈ C(|K|, N) ∩ W1,m(K,N)
such that u||Km−1| = v||Km−1| and |u − v|W1,m(K) ≤ ε(m,K,N, u), a very small
number. Define Θ(u) ∈ [|K|, N ] by Θ(u) = [v]. Then Θ is a well defined map from
W1,m(K,N) to [|K|, N ]. In addition, Θ is a locally constant map.

Proof. The existence of v and the well-definedness of Θ(u) follow from Lemma 4.4.
Note that in Lemma 4.4, the homotopy between two approximation maps preserves
the boundary value. This helps in patching the homotopy of all m dimensional cells
into a global homotopy. The fact Θ is a locally constant map follows from Corollary
4.1. Again one just needs to apply Corollary 4.1 to m dimensional cells. �

The conclusion of Lemma 4.5 is in the same spirit as degree theory for VMO
maps as studied in [BN]. By Lemma 4.5, Lemma 4.3 and its proof, one can easily
deduce the following

Lemma 4.6. Assume p ∈ N, 2 ≤ p ≤ n, and K,P,M are the same as in Lemma
4.3. Then there exists a Borel set E ⊂ P such that Hm (E) = 0 and for any
ξ ∈ P\E, we have u ◦Hξ ∈ W1,p (K,N). Define a map χ = χp,H,u : P → [|Kp|, N ]
by setting χ(ξ) = Θ(u ◦Hξ||Kp|) (here Θ is the map defined in Lemma 4.5). Then
χ is Lebesgue measurable.

The next proposition is in the same spirit as Lemma 4.5. It says the homotopy
classes we defined are stable under the weak and strong convergences of Sobolev
mappings.

Proposition 4.1. Assume 1 ≤ p ≤ n, k ∈ Z, K,P,H are the same as in Lemma
4.3, and ui, u ∈ W 1,p (M,N). If either 0 ≤ k ≤ p and ui → u in W 1,p (M,N) or
0 ≤ k < p and ui ⇀ u in W 1,p (M,N), then after passing to subsequence we have
χk,H,ui′

→ χk,H,u Hm a.e. on P .

Proof. It follows from Lemma 4.3 and Lemma 3.4 that we may find a Borel set
E1 ⊂ P such that Hm(E1) = 0, for any ξ ∈ P\E1, u ◦Hξ, ui ◦ hξ ∈ W1,p(K,N)
for every i. In addition, for ξ ∈ P\E1, ∆ ∈ K, d = dim(∆), we have ui and u are
approximately differentiable at Hξ(x) for Hd a.e. x ∈ ∆, and

dap(ui ◦Hξ)x = dap(ui)Hξ(x) ◦ (Hξ)∗,x, dap(u ◦Hξ)x = dapuHξ(x) ◦ (Hξ)∗,x

for Hd a.e. x ∈ ∆.
First assume 0 ≤ k ≤ p and ui → u in W 1,p(M,N). It follows from the proof

of Lemma 3.4 that after passing to a subsequence ui′ , there exists a Borel set
E ⊂ P , with E1 ⊂ E, Hm(E) = 0 such that for any ξ ∈ P\E, ui′ ◦Hξ → u ◦Hξ

in W1,p(K,N). If k < p, it follows from Sobolev embedding theorem (applied to
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every cell with dimension less than or equal to k) and Lemma 4.1 that χk,H,ui′
(ξ)→

χk,H,u(ξ). If k = p, the same conclusion follows from Lemma 4.5.
Now assume 0 ≤ k < p and ui ⇀ u in W 1,p(M,N). Fix a q ∈ (k, p). Given any

∆ ∈ K with dim(∆) ≤ k. It follows from Lemma 3.5 that
∫

P

|ui ◦Hξ − u ◦Hξ|
p
L∞(∆)dH

m(ξ)

≤ c(p, q,∆, l, c0, c1, c2)
(
|dui − du|

q
Lp(M)|ui − u|

p−q
Lp(M) + |ui − u|

p
Lp(M)

)
.

Summing up, using the condition ui ⇀ u, we get
∫

P

∑

∆∈K,dim(∆)≤k

|ui ◦Hξ − u ◦Hξ |
p
L∞(∆)dH

m(ξ)→ 0,

as i → ∞. After passing to subsequence ui′ , we may find a Borel set E ⊂ P such
that E1 ⊂ E, Hm(E) = 0 and for any ξ ∈ P\E,

∑

∆∈K,dim(∆)≤k

|ui′ ◦Hξ − u ◦Hξ|
p
L∞(∆) → 0

as i′ →∞. This together with Lemma 4.1 implies χk,H,ui′
(ξ)→ χk,H,u(ξ). �

In the rest of this section, we want to present some results closely related to B.
White’s paper [Wh2]. These results will be needed later on. The following lemma
says that W 1,p maps have well defined ([p]− 1)-homotopy classes. The reader
should compare it with Lemma 4.3 and Lemma 4.6.

Lemma 4.7. Assume 1 ≤ p ≤ n, u ∈ W 1,p (M,N), K,P,H are the same as in
Lemma 4.3 and P is connected, k ∈ Z, 0 ≤ k ≤ [p]−1, χ = χk,H,u. Then χ ≡ const
Hm a.e. on P .

Proof. By standard arguments, we only need to show that when P = Bm
4 , one has

χ ≡ const Hm a.e. on Bm
1 .

Define a new rectilinear cell complex K̃ by

K̃ = {∆× {0},∆× {1},∆× [0, 1] : ∆ ∈ K} ;

Then |K̃| = |K| × [0, 1].
We claim the following fact. For any ζ ∈ Bm

2 , there exists a Borel set Eζ ⊂ Bm
2

such that Hm (Eζ) = 0 and for any ξ ∈ Bm
2 \Eζ , we have u ◦ Hξ , u ◦ Hξ+ζ ∈

W1,p (K,N) and u◦Hξ||Kk| ∼ u◦Hξ+ζ ||Kk| as maps from |Kk| to N . To show this

fact, we define H̃ : |K̃| ×B2 = |K| × [0, 1]×B2 →M by H̃ (x, t, ξ) = H (x, ξ + tζ).
First assume k + 1 < p. Then by Lemma 4.3, we may find a Borel set Eζ ⊂

B2 such that Hm (Eζ) = 0 and u ◦ H̃ξ ∈ W1,p
(
K̃,N

)
for any ξ ∈ B2\Eζ . By

Sobolev embedding theorem we may assume u ◦ H̃ξ is continuous on |K̃k+1|. Since

u
(
H̃ξ (x, 0)

)
= u (Hξ (x)), u

(
H̃ξ (x, 1)

)
= u (Hξ+ζ (x)), and |Kk|×[0, 1] ⊂ |K̃k+1|,

we get u ◦Hξ||Kk| ∼ u ◦Hξ+ζ ||Kk|. If k + 1 = p, then we only need to note that
by Lemma 4.4, for the above chosen Eζ , given any ξ ∈ B2\Eζ , we may find a

continuous map ψ : |K̃k+1| → N such that for any ∆ ∈ K̃ with d = dim(∆) ≤ k,

ψ and u ◦ H̃ξ are Hd a.e. equal on ∆. This clearly implies the needed homotopy.
Let E0 be the measure zero set on which χ is not defined. If χ is not constant

Hm a.e. on B1\E0, since
[
|Kk|, N

]
is countable (by Lemma 4.2), we may find
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two different elements α1, α2 ∈
[
|Kk|, N

]
such that Hm(Ei) > 0, where Ei =

χ−1 ({αi}) ∩ B1, i = 1, 2. Choose a density point ξi ∈ Ei, that is

lim
r→0+

Hm (Br (ξi) ∩ Ei)

Hm (Br (ξi))
= 1.

Let ζ = ξ1 − ξ2 ∈ B2. Then χ (ξ) = χ (ξ + ζ) for ξ ∈ B2\E3, where E3 =
Eζ ∪ E0 ∪ (E0 − ζ), Hm (E3) = 0. Because ξ1 is a density point for both E1 and
ζ + (E2\E3), we have (ζ + (E2\E3)) ∩ E1 6= ∅. Choose ξ̄1 ∈ E1, ξ̄2 ∈ E2\E3 such
that ξ̄1 = ζ + ξ̄2. Then χ

(
ξ̄1
)

= χ
(
ξ̄2
)
, that is α1 = α2, contradiction. �

Remark 4.1. Assume 1 ≤ p ≤ n, u ∈ W 1,p (M,N), K is a finite rectilinear
cell complex, h : |K| → M is a Lipschitz map. Denote the corresponding H :
|K| × Bl

ε0
→ M as H (x, ξ) = π (h (x) + ξ). Then χ[p]−1,H,u ≡ const a.e. on Bl

ε0
,

we denote this constant as u#,p (h).

The next two lemmas say the object u#,p(h) we defined in Remark 4.1 is indeed
well behaved topologically.

Lemma 4.8. Assume 1 ≤ p ≤ n, u ∈ W 1,p (M,N), K is a finite rectilinear cell
complex, h0, h1 : |K| → M are Lipschitz maps and h0 ∼ h1 as maps from |K| to
M . Then u#,p (h0) = u#,p (h1).

Proof. Let K̃ be the same rectilinear cell complex as in the proof of Lemma 4.7.

Then |K̃| = |K|× [0, 1]. We may find a g ∈ Lip (|K| × [0, 1] , N) such that g(x, 0) =
h0(x), g(x, 1) = h1(x) for any x ∈ |K|. Indeed the homotopy constructed in the
proof of Proposition 2.3 (3) satisfies this requirement. It follows from Lemma 4.3
that there exists a Borel set E ⊂ Bl

ε0
with Hl(E) = 0 and for any ξ ∈ Bε0\E,

u ◦ gξ ∈ W1,p(K̃,N). Observing u ◦ gξ(x, 0) = u ◦ (h0)ξ(x) and u ◦ gξ(x, 1) = u ◦
(h1)ξ(x) for x ∈ |K|, it follows from the proof of Lemma 4.7 that u◦ (h0)ξ ||K[p]−1| ∼
u ◦ (h1)ξ ||K[p]−1|. This clearly implies u#,p(h0) = u#,p(h1). �

Remark 4.2. Assume 1 ≤ p ≤ n, u ∈ W 1,p(M,N), and K is a finite rectilinear
cell complex. Given any α ∈ [|K|,M ], choose a f ∈ Lip(|K|,M) with [f ] = α, then
we write u∗,p (α) = u#,p (f). By Proposition 2.3 and Lemma 4.8, we see this gives

us a well defined map from [|K|,M ] to
[
|K [p]−1|, N

]
.

Lemma 4.9. Assume 1 ≤ p ≤ n, u, v ∈ W 1,p(M,N), K is a finite rectilinear
cell complex, and h : |K| → M is a Lipschitz map. If h is a homeomorphism and
u#,p(h) = v#,p(h), then for any finite rectilinear cell complex L, any Lipschitz map
g : |L| →M , we have u#,p(g) = v#,p(g).

Proof. Without losing of generality, we may assume dimL ≤ [p]−1. By the cellular
approximation theorem, we may find a g0 ∈ C(|L|,M) such that g ∼ g0 as maps
from |L| to M and g0(|L|) ⊂ h

(
|K [p]−1|

)
. Then h−1 ◦ g0 ∈ C

(
|L|, |K [p]−1|

)
. Since

|K [p]−1| is a Lipschitz neighborhood retractor in the corresponding Euclidean space,
we may find a φ ∈ Lip

(
|L|, |K [p]−1|

)
such that φ ∼ h−1 ◦ g0 as maps from |L| to

|K [p]−1|. Hence h ◦ φ ∼ g0 as maps from |L| to h
(
|K [p]−1|

)
. It clearly follows

from Remark 4.1 that u#,p (h ◦ φ) = v#,p (h ◦ φ), this plus Lemma 4.8 tells us
u#,p (g) = v#,p (g). �

We note that Lemma 4.9 implies in particular that if 1 ≤ p ≤ n, u, v ∈
W 1,p (M,N), hi : Ki →M are Lipschitz rectilinear cell decompositions for i = 0, 1,
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and u#,p (h0) = v#,p (h0), then u#,p (h1) = v#,p (h1). Hence we introduce the
following

Definition 4.1. Assume 1 ≤ p ≤ n, u, v ∈ W 1,p (M,N). If for any Lipschitz
rectilinear cell decomposition h : K →M , we have u#,p (h) = v#,p (h), then we say
u is ([p]− 1)-homotopic to v.

It is easy to see the relation of ([p]− 1)-homotopy is an equivalence relation on
W 1,p (M,N) for the M,N, p in Definition 4.1. The following result, which was
proved by B. White in [Wh2], plays important role in our future arguments. With
the new concept W1,p(K) and its properties in Section 3, we may use the classical
Sobolev embedding theorem and Poincaré inequality on the unit ball instead of
somewhat more complicated ones in section 2 of [Wh1] and section 1 in [Wh2].
This makes our proof technically simpler.

Theorem 4.1. If 1 ≤ p ≤ n, u, v ∈ W 1,p (M,N), and A > 0, then there exists a
positive number ε = ε (p,A,M,N) such that

|du|Lp(M), |dv|Lp(M) ≤ A and |u− v|Lp(M) ≤ ε =⇒ u is ([p]− 1) homotopic to v.

Proof. Indeed this theorem follows from Proposition 4.1 and a simple compactness
arguments. Since the details of the proof below would be quite helpful for under-
standing the subsequent materials, we present it here. Fix a smooth triangulation
of M , namely h : K →M . By Remark 4.1 we may find a Borel set E1 ⊂ Bl

ε0
such

that Hl (E1) = 0 and for any ξ ∈ Bε0\E1, we have u ◦ hξ, v ◦ hξ ∈ W
1,p (K,N) and[

u ◦ hξ||K[p]−1|

]
= u#,p (h),

[
v ◦ hξ||K[p]−1|

]
= v#,p (h). Let m be a natural number

which will be determined later. From Lemma 3.3 and Lemma 3.4 we know, for any
∆ ∈ K, d = dim (∆), we have

(4.7) −

∫

Bl
ε0

dHl (ξ)

∫

∆

|u (hξ (x))− v (hξ (x)) |pdHd (x)

≤ c (M)

∫

M

|u (y)− v (y) |pdHn (y) ≤ c (M) εp

and

(4.8) −

∫

Bl
ε0

dHl (ξ)

∫

∆

|dap (u ◦ hξ |∆)x − d
ap (v ◦ hξ|∆)x |

pdHd (x)

≤ c (M)

∫

M

|dapu (y)− dapv (y) |pdHn (y) ≤ c (p,A,M) .

This implies

(4.9) Hl

({
ξ ∈ Bl

ε0
:

∫

∆

|u (hξ (x))− v (hξ (x)) |pdHd (x) ≥ mc (M) εp

})

≤
Hl
(
Bl

ε0

)

m
,

(4.10)

Hl

({
ξ ∈ Bl

ε0
:

∫

∆

|dap (u ◦ hξ|∆)x − d
ap (v ◦ hξ |∆)x |

pdHd (x) ≥ mc (p,A,M)

})

≤
Hl
(
Bl

ε0

)

m
.
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From (4.9), (4.10), Lemma 3.3, Lemma 3.4 and Corollary 3.1 and by taking m
large enough (depends only on M), we may find a Borel set E2 ⊂ Bl

ε0
such that

Hl (E2) > 0 and for any ξ ∈ E2, the followings are true

• u ◦ hξ, v ◦ hξ ∈ W1,p (K,N);
• For any ∆ ∈ K, denote d = dim (∆), we have u and v are approximately

differentiable at hξ (x) for Hd a.e. x ∈ ∆; dap (u ◦ hξ|∆)x = dapuhξ(x) ◦

(hξ)∗,x, dap (v ◦ hξ|∆)x = dapvhξ(x) ◦ (hξ)∗,x for Hd a.e. x ∈ ∆;

• For any ∆ ∈ K, d = dim (∆), we have
∫

∆

|u (hξ (x))− v (hξ (x)) |pdHd (x) ≤ m · c (M) εp = c (M) εp,

∫

∆

|dap (u ◦ hξ|∆)x − d
ap (v ◦ hξ|∆)x |

pdHd (x) ≤ m · c (p,A,M) = c (p,A,M) .

Hence for any ∆ ∈ K [p]−1, d = dim (∆),

(4.11) |u ◦ hξ|∆ − v ◦ hξ|∆|L∞(∆) ≤ c (p,A,M) ε1 + c (p,M) ε
− pd

p−d

1 ε.

Choose ε1 = ε1 (p,A,M,N) such that c (p,A,M) ε1 ≤ ε0/2, then choose ε =

ε (p,A,M,N) small enough, such that c (p,M) ε
− pd

p−d

1 ε ≤ ε0/2, by (4.11) we easily
see

(4.12) |u ◦ hξ||K[p]−1| − v ◦ hξ ||K[p]−1||∞ ≤ ε0.

By Lemma 4.1, (4.12) implies u ◦ hξ||K[p]−1| ∼ v ◦ hξ||K[p]−1| as maps from |K [p]−1|
to N . Choosing a ξ ∈ E2\E1, we conclude Theorem 4.1. �

5. Path connectedness of spaces of Sobolev mappings

We use the same notations as in Section 4. Recall for u, v ∈W 1,p (M,N), if there
exists a continuous path in W 1,p (M,N) connecting them, then we write u ∼p v.
We have the following

Theorem 5.1. Assume 1 ≤ p < n, and u, v ∈ W 1,p(M,N). Then u ∼p v if and
only if u is ([p]− 1)-homotopic to v.

Before we proceed, we note that if p ≥ n, then by the Sobolev embedding
theorem and Poincaré inequality (see [SU] or [BN]), one easily deduces that the
path connected components of W 1,p(M,N) corresponds bijectively to [M,N ] by a
natural map.

We need some simple observations before proving Theorem 5.1.

Observation 5.1. Assume m ∈ N, 1 ≤ p < ∞, and u ∈ W 1,p (Bm
1 , N) such that

the trace T (u) = f ∈W 1,p(∂B1, N). For 0 < t ≤ 1, define

w (t) (x) =

{
u (x/t) , for |x| ≤ t;
f (x/|x|) , for t ≤ |x| ≤ 1.

Then w ∈ C
(
(0, 1] ,W 1,p (B1, N)

)
with w (1) = u. Note that usually we cannot

extend w continuously to t = 0 if p ≥ m.

Observation 5.2. Assume m ∈ N, 1 ≤ p < m, and u ∈ W 1,p (Bm
1 , N) such that

the trace T (u) = f ∈ W 1,p (∂B1, N). For 0 ≤ t ≤ 1, define

w (t) (x) =

{
u (x/t) , for |x| ≤ t;
f (x/|x|) , for t ≤ |x| ≤ 1.
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Then w is a continuous path in W 1,p (B1, N) with w (0) (x) = f (x/|x|), w (1) =
u and T (w (t)) = f for any 0 ≤ t ≤ 1. Especially this gives us the following
important boundary determination principle, for any u, v ∈ W 1,p (B1, N), if T (u) =
T (v) = f ∈W 1,p (∂B1, N), then we may find a continuous path w in W 1,p (B1, N)
connecting u and v with T (w (t)) = f for any 0 ≤ t ≤ 1.

Observation 5.3. Assume m ∈ N, 1 ≤ p < m and f is a continuous path in
W 1,p (∂Bm

1 , N). Define f̃ by f̃ (t) (x) = f (t) (x/|x|) for 0 ≤ t ≤ 1 and x ∈ Bm
1 .

Then f̃ is a continuous path in W 1,p (Bm
1 , N).

Proof of Theorem 5.1. Assume u ∼p v. Then there exists a continuous path w in
W 1,p (M,N) with w (0) = u, w (1) = v. By compactness we may find an A > 0
such that

sup
0≤t≤1

|dw (t) |Lp(M) ≤ A.

We may also find a δ > 0 such that for any 0 ≤ t1, t2 ≤ 1 with

|t1 − t2| ≤ δ =⇒ |w (t1)− w (t2) |Lp(M) ≤ ε (p,A,M,N) ,

here ε (p,A,M,N) is the number in Theorem 4.1. Choose a m ∈ N such that
1
m ≤ δ. Then for any 0 ≤ i ≤ m− 1, w

(
i
m

)
is ([p]− 1)-homotopic to w

(
i+1
m

)
, this

implies w (0) = u is ([p]− 1)-homotopic to w (1) = v.
On the other hand, suppose we are given two maps u, v ∈ W 1,p (M,N) which

are ([p]− 1)-homotopic. First let us assume p /∈ Z. For convenience we denote
k = [p] − 1. Choose a smooth triangulation of M , namely h : K → M . From
Section 3 and Section 4 we may find a ξ ∈ Bl

ε0
such that u◦hξ, v◦hξ ∈ W1,p (K,N)

and u ◦ hξ||Kk| ∼ v ◦ hξ||Kk| as maps from |Kk| to N . By Lemma 3.2 we may find

a sequence fj ∈ Lip
(
|Kk+1|,Rl

)
such that fj → u ◦ hξ||Kk+1| in W1,p

(
Kk+1,Rl

)
.

By using Sobolev embedding theorem on each simplex we see for j large enough we
have

sup
x∈|Kk+1|

|fj (x)− u (hξ (x)) | ≤ ε0.

It follows that the path w (t) (x) = π ((1− t) fj (x) + tu (hξ (x))) is continuous in
W1,p

(
Kk+1, N

)
. We extend each w (t) to a map w̃ (t) ∈ W1,p (K,N) in the fol-

lowing way, for each (k + 2)-simplex ∆, in view that w̃ (t) has already been defined
on Bd (∆), we choose the barycenter of ∆ as origin and do homogeneous degree
zero extension to get w̃ (t) on ∆. Simply by induction we finish after working with
n-simplex. It is easy to see that w̃ is a continuous path in W1,p (K,N). In addi-
tion, from Observation 5.2 and Observation 5.3 we easily deduce that w̃ (1) can be
connected to u ◦ hξ by a continuous path in W1,p (K,N). Using hξ to go from |K|
to M , we may assume u◦hξ||Kk+1| is in Lip

(
|Kk+1|, N

)
and u◦hξ is homogeneous

degree zero extension on each simplex with dimension strictly higher than k+1. A
similar procedure can also be applied to v. What we have shown so far is that we
may assume both u and v has the additional properties that after composition with
hξ, that are in W1,p (K,N), Lipschitz on |Kk+1| and homogeneous degree zero (in
the sense just described above) on any ∆ ∈ K with dim (∆) ≥ k + 2. Indeed any
u, v ∈ W1,p (M,N) can be connected by a continuous path in W 1,p (M,N) to maps
with these additional properties. Since u ◦ hξ||Kk| ∼ v ◦ hξ||Kk| as maps from |Kk|

to N , from the proof of Proposition 2.2 (HEP), we may find a f ∈ Lip
(
|Kk+1|, N

)

such that f ||Kk| = v◦hξ||Kk| and f ∼ u◦hξ||Kk+1| as maps from |Kk+1| to N . From
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Proposition 2.3, we may find a continuous path in Lip
(
|Kk+1|, N

)
connecting f

and u ◦ hξ||Kk+1|, clearly it is also a continuous path in W1,p
(
Kk+1, N

)
. Any such

f can be viewed as the restriction of a map in W1,p (K,N), still denoted by f , to
|Kk+1|. Indeed we simply define inductively for each ∆ ∈ K with dim (∆) ≥ k+ 2,
f to be the homogeneous degree zero extension (with respect to the barycenter of
∆) of its value on Bd (∆). Then we see u ◦ hξ can be connected by a continuous
path inW1,p (K,N) to f by Observation 5.3. Therefore we only need to show f can

be connected to v ◦ hξ by a continuous path in W̃ 1,p (K,N). But now f and v ◦ hξ

has one more additional property that f = v ◦ hξ on |Kk|. Applying Observation
5.1 to each (k + 1)-simplex, we may assume for any ∆ ∈ K with dim (∆) = k + 1,
we have f |∆\Bδ(c∆) = v ◦ hξ|∆\Bδ(c∆). Here c∆ is the barycenter of ∆ and δ is a
small number. Fix such a ∆, it must be the face of several k+ 2 simplices, namely
Σ1, · · · ,Σr, r ≥ 2. Now consider Ω = ∪r

i=1Ωi, where Ωi ⊂ Σi is formally equal to(
B2δ (c∆) ∩∆

)
× [0, ε], for which the product means we go in the Σi in the normal

direction by ε length, ε is another small number. Define

Ω′
i =

(
B2δ (c∆) ∩∆

)
× [0, ε/2] , Ω′′

i =
(
B2δ (c∆) ∩∆

)
× [ε/2, ε] ,

Ω′ =

r⋃

i=1

Ω′
i, Ω′′ =

r⋃

i=1

Ω′′
i .

Now consider a w defined on |Kk+2| by setting w|Ω′ = v ◦ hξ, w||Kk+2|\Ω = u ◦
hξ||Kk+2|\Ω. On each Ω′′

i we simply do homogeneous degree zero extension with

respect to a point in Int (Ω′′
i ). Clearly w ∈ W1,p

(
Kk+2, N

)
. We note that the

set Ω is starshaped with respect to c∆, the barycenter of ∆. One may use simple
radial (with the origin c∆) deformations as in Observation 5.2 to see the similar
boundary determination principle is valid for Ω. In particular, w can be connected

to f ||Kk+2| by a continuous path in W̃ 1,p
(
Kk+2, N

)
. Define w̃ inductively to be

the homogeneous degree zero extension of w on each higher dimensional simplices
∆ with dim (∆) ≥ k + 3, from its value on Bd (∆) as described before. Then for
ũ = w̃◦h−1

ξ , one has ũ ∼p f ◦h
−1
ξ ∼p u. Moreover, since ũ◦hξ||Kk+1| = v◦hξ||Kk+1|,

ũ ∼p v follows. Therefore we complete the proof of u ∼p v.
If p ∈ Z, we only need to use Lemma 3.2 and Lemma 4.4 to show the original

maps u and v can be connected by continuous paths in W 1,p (M,N) to maps with
additional property u ◦ hξ, v ◦ hξ ∈ W1,p (K,N), u ◦ hξ ||Kp| and v ◦ hξ||Kp| are
Lipschitz, u ◦ hξ ||Kp| ∼ v ◦ hξ||Kp|. The rest of the proof is the same as before. �

Now we will show how Theorem 5.1 reduces certain problems about Sobolev
mappings, which are analytical problems, to pure topology problems.

Proposition 5.1. Assume 1 ≤ p < n. For any Lipschitz rectilinear cell decom-
position of M , namely h : K → M , we set M j = h

(
|Kj |

)
for any j. Then the

following two natural maps are bijections,

C
(
M [p], N

)
/ ∼M [p]−1←− Lip

(
M [p], N

)
/ ∼M [p]−1,Lip−→W 1,p (M,N) / ∼p .

Here for f, g ∈ C
(
M [p], N

)
, f ∼M [p]−1 g means f |M [p]−1 and g|M [p]−1 are homotopic

as maps from M [p]−1 to N . For f, g ∈ Lip
(
M [p], N

)
, f ∼M [p]−1,Lip g means

f |M [p]−1 can be connected to g|M [p]−1 by a continuous path in Lip
(
M [p]−1, N

)
. The

natural map for the left pointing arrow is the obvious one. The map for the right
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pointing arrow is defined as follows, for any f ∈ Lip
(
M [p], N

)
, using h to pull f

to K [p], after doing homogeneous degree zero extension on higher dimensional cells,
we pull it to M by h and get u. Then we send the equivalence class corresponding to
f to the equivalence class corresponding to u. This map is well defined by Theorem
5.1.

Proof. It clearly follows from Proposition 2.3 that the left pointing arrow is a bijec-
tion. To prove the right pointing arrow is a bijection, first let us show it is one to one.
Assume f, g ∈ Lip

(
|K [p]|, N

)
, let f̃ and g̃ be homogeneous degree zero extension of

f and g to |K| (as we described in the proof of Theorem 5.1) respectively. Let u =

f̃ ◦ h−1, v = g̃ ◦ h−1. It is clear that u#,p (h) =
[
f ||K[p]−1|

]
, v#,p (h) =

[
g||K[p]−1|

]
.

If u ∼p v, then it follows from Theorem 5.1 that f ||K[p]−1| ∼ g||K[p]−1|. This shows

the map is one to one. On the other hand, given any map u ∈W 1,p (M,N), we may
find a ξ ∈ Bε0 such that u ◦ hξ ∈ W1,p (K,N). It follows from the proof of Theo-
rem 5.1 that after going through a continuous path in W 1,p (M,N) we may assume
u ◦ hξ||K[p]| ∈ Lip

(
|K [p]|, N

)
and u ◦hξ ∈ W1,p (K,N). Since u ◦ hξ ◦ h−1 ∼p u, we

may assume u ◦h ∈ W1,p (K,N) and u ◦h||K[p]| ∈ Lip
(
|K [p]|, N

)
. Now it is easy to

see that the equivalence class corresponding to u|M [p] is mapped to the equivalence
class corresponding to u. That is, the right pointing arrow is onto. �

Recall for any 1 ≤ q < p < ∞, we have a map ip,q : W 1,p (M,N) / ∼p→
W 1,q (M,N) / ∼q defined in the obvious way (see [BL]). An immediate consequence
of the above proposition is the following

Corollary 5.1. Assume k ∈ N, k ≤ q < p < k + 1. Then ip,q is a bijection.

Note that Corollary 5.1 gives a positive answer to conjecture 2 and 2′ in [BL].

Corollary 5.2. Assume 1 ≤ p < n, πi (N) = 0 for [p] ≤ i ≤ n. Then the two
natural maps below are bijections,

C (M,N) / ∼M←− Lip (M,N) / ∼M,Lip−→ W 1,p (M,N) / ∼p,

the notations are understood similarly as in Proposition 5.1.

Proof. By Proposition 5.1 we only need to verify the natural map C (M,N) / ∼M→
C
(
M [p], N

)
/ ∼M [p]−1 is a bijection for a smooth triangulation of M . But this

clearly follows from cell by cell extension in view of the vanishing condition of
homotopy groups of N . �

We note that Corollary 5.2 generalizes theorem 0.6 in [BL].

Corollary 5.3. Assume M and N are connected, 1 ≤ p < n. If there exists a
k ∈ Z, 0 ≤ k ≤ [p] − 1 such that πi (M) = 0 for 1 ≤ i ≤ k, and πi (N) = 0 for
k + 1 ≤ i ≤ [p]− 1, then W 1,p (M,N) is path connected.

Proof. By Proposition 5.1 we only need to verify that for a smooth triangulation
of M , C

(
M [p], N

)
/ ∼M [p]−1 has only one element, but this follows easily from

theorem 3 and the proof of theorem 3′ in [Wh1]. �

Corollary 5.3 generalizes theorem 0.2, theorem 0.3 and proposition 0.1 in [BL].
We now turn to the question whether a given Sobolev map in W 1,p(M,N) can

be connected to a smooth map by a continuous path in W 1,p(M,N). It turns out
that there is a necessary and sufficient topological condition for that to be true.
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Proposition 5.2. Assume 1 ≤ p < n, u ∈ W 1,p (M,N), and h : K → M is a
Lipschitz rectilinear cell decomposition. Then u can be connected to a smooth map
by a continuous path in W 1,p (M,N) if and only if u#,p (h) is extendible to M with
respect to N .

Proof. Assume u ∼p v for some v ∈ C∞ (M,N). Then from Theorem 5.1 we have
u#,p (h) = v#,p (h), but clearly v#,p (h) is extendible to M with respect to N .

On the other hand, if u#,p (h) is extendible to M with respect to N , then we
may find a v ∈ C∞ (M,N) such that

[
v ◦ h||K[p]−1|

]
= u#,p (h). Thus u and v are

[p]− 1 homotopic, and hence u ∼p v by Theorem 5.1. �

Corollary 5.4. Assume 1 ≤ p < n. Then every map in W 1,p (M,N) can be
connected by a continuous path in W 1,p (M,N) to a smooth map if and only if M
satisfies ([p]− 1)-extension property with respect to N .

Proof. Fix a smooth triangulation of M , namely h : K →M .
Assume every map in W 1,p(M,N) can be connected continuously to a smooth

map. For any f ∈ Lip
(
M [p], N

)
, let g be the homogeneous degree zero extension of

f ◦h||K[p]| to |K|. Then u = g◦h−1 ∈W 1,p (M,N) and u#,p (h) =
[
g||K[p]−1|

]
. Since

u can be connected continuously to a smooth map, from Proposition 5.2 we know
f |M [p]−1 has a continuous extension to M . By Proposition 2.2 and Proposition 2.3
we know M has the ([p]− 1)-extension property with respect to N .

On the other hand, assume M satisfies the [p] − 1 extension property with re-
spect to N , given any u ∈ W 1,p (M,N), after going through a continuous path
in W 1,p (M,N), we may assume there exists a ξ ∈ Bl

ε0
such that u ◦ hξ ||K[p]| ∈

Lip
(
|K [p]|, N

)
and u#,p (h) =

[
u ◦ hξ||K[p]−1|

]
. Hence by Proposition 5.2 u may be

connected continuously to a smooth map. �

Remark 5.1. Corollary 5.4 covers theorem 0.5 of [BL]. It is a particular case that
M satisfies the ([p] − 1)-extension property with respect to N . We also have the
following statements. Assume M and N are connected, 1 ≤ p < n. If either [p] = 1
or [p] ≥ 2 but πi(N) = 0 for [p] ≤ i ≤ n− 1, then every map in W 1,p(M,N) can be
connected to a smooth map. This, again, is because M has the ([p] − 1)-extension
property with respect to N .

Because of this necessary and sufficient topological condition for every map
in W 1,p(M,N) to be connected to some smooth maps by a continuous path in
W 1,p(M,N). We obtain the following corollary which provides a class of coun-
terexamples to the conjecture 1 of [BL].

Corollary 5.5. If m1,m2 ∈ N, m2 < m1, and 3 ≤ p < 2m2 + 2, then in
W 1,p (CP

m1 ,CP
m2), some maps cannot be connected to smooth maps by contin-

uous paths.

Proof. For any m ∈ N, CP
m has a natural CW complex structure as

CP
0 ⊂ CP

1 ⊂ · · · ⊂ CP
m.

In addition by considering the fibration CP
m = S

2m+1/S1, we know πi (CP
m) = 0

for 0 ≤ i ≤ 2m− 1, i 6= 2.
We claim that there is no continuous map f ∈ C (CP

m1 ,CP
m2) such that f |CP1 :

CP
1 ⊂ CP

m1 → CP
1 ⊂ CP

m2 is the identity map. To see that the claim is true,
let αi be the cohomology class in H2 (CP

mi) corresponding to CP
1 for i = 1, 2.
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We know the cohomology ring H∗ (CP
mi) is isomorphic to Z [αi] /{α

mi+1
i = 0}

(see p174 and p175 of [Vi]). If such f exists, then α1 = f∗ (α2), which implies
αm2+1

1 = 0. The latter is impossible. Next we observe that the identity map

from CP
[p/2] ⊂ CP

m1 to CP
[p/2] ⊂ CP

m2 , when restricted to CP
[(p−1)/2], has no

continuous extension by the claim above, using Corollary 5.4 we conclude the proof.
�

Remark 5.2. By considering cohomology ring with Z2 coefficients (see p175 of
[Vi]), the same proof gives us the following statement. If m1,m2 ∈ N, m2 < m1,
and 2 ≤ p < m2+1, then in W 1,p(RP

m1 ,RP
m2), there are some maps which cannot

be connected to smooth maps by continuous paths.

6. Strong density problem for Sobolev mappings

An important technique in the study of approximation problems for Sobolev
mappings is to use certain deformations with respect to the dual skeletons, which
was used in the geometrical proof of the Poincaré duality theorem and in Federer-
Fleming’s theory of normal and integral currents. We present a version for finite
rectilinear cell complex here. One should compare with section 1 of [Wh1], section
2 of [Ha] and pp143–146 of [Vi].

Let K be a finite rectilinear cell complex with dimK = m. For each ∆ ∈ K, we
pick up a point y∆ ∈ Int (∆). Denote Y = (y∆)∆∈K . Given an integer 0 ≤ k ≤
m− 1. For x ∈ |Kk|, we set |x|k = 1. For k + 1 ≤ i ≤ m, if | · |k has been defined
on |Ki−1|, then for each ∆ ∈ K with dim (∆) = i, each x ∈ ∆, we set

(6.1) |x|k = |x|∆ · |y∆ +
x− y∆
|x|∆

|k.

For the definition of |x|∆, one should see (3.1). Hence by induction, we eventually
get a function | · |k on |K|. In fact the function | · |k depends on K as well as
the choice of Y , but to avoid heavy notations, we don’t explicitly write them out.
Similar convention applies for many notations in this section, it will not cause
confusions in the practice. For 0 ≤ ε ≤ 1 we set Γk

ε = {x ∈ |K| : |x|k = ε}. Then
we may decompose |K| as

(6.2) |K| =
⋃

0≤ε≤1

Γk
ε , Γk

1 = |Kk|.

If we denote Lm−k−1 = Γk
0 , and set Lm = |K|, then we call Li as the dual i-skeleton

of K.
Now we want to define a map φk

1 : {0 < |x|k ≤ 1} → Γk
1 = |Kk|. First look at

|Kk+1|, for any x ∈ |Kk+1|, if x ∈ |Kk|, then we set φk
1 (x) = x, otherwise, there

exists a unique ∆ ∈ K with dim(∆) = k + 1 such that x ∈ Int (∆). Then we set

(6.3) φk
1 (x) = y∆ +

x− y∆
|x|∆

.

Assume for some k + 2 ≤ i ≤ m, φk
1 : {0 < |x|k ≤ 1} ∩ |Ki−1| → Γk

1 has been
defined. Then for x ∈ |Ki|, 0 < |x|k ≤ 1, if x ∈ |Ki−1|, then φk

1 (x) has already
been defined, otherwise, there exists a unique ∆ ∈ K such that dim (∆) = i and
x ∈ Int (∆). In the latter case we set

(6.4) φk
1 (x) = φk

1

(
y∆ +

x− y∆
|x|∆

)
.
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By induction we eventually get a map φk
1 from {0 < |x|k ≤ 1} to Γk

1 .
Next we want to define a map φk : {0 < |x|k < 1} × (0, 1) → |K| with the

property

(6.5) |φk (x, ε) |k = ε for 0 < |x|k < 1, 0 < ε < 1.

For convenience we write φk
ε (x) = φk (x, ε), hence φk (x, 1) is also defined for 0 <

|x|k ≤ 1. To define the needed φk , we first look at |Kk+1|. For any x ∈ |Kk+1|,
0 < |x|k < 1, there exists a unique ∆ ∈ K such that dim (∆) = k+1 and x ∈ Int (∆).
Then we set

(6.6) φk (x, ε) = y∆ +
ε

|x|∆
(x− y∆) for 0 < ε < 1.

Assume for some k + 2 ≤ i ≤ m, φk (x, ε) has been defined for x ∈ |Ki−1| with
0 < |x|k < 1, 0 < ε < 1. Then for any x ∈ |K i| with 0 < |x|k < 1, if x ∈ |Ki|, then
φk (x, ε) has already been defined for 0 < ε < 1. Otherwise, there exists a unique
∆ ∈ K such that dim (∆) = i and x ∈ Int (∆), then we set

(6.7) θ = 1− (1− ε)
1− |x|∆
1− |x|k

;

(6.8) φk (x, ε) = y∆ + θ ·

(
φk

(
y∆ +

x− y∆
|x|∆

,
ε

θ

)
− y∆

)
.

By induction, we eventually get the needed map φk .
In the future, we shall need a map F k

δ,ε : |K| → |K| for 0 < δ ≤ ε ≤ 1, which is
defined by

(6.9) F k
δ,ε (x) =





x, when ε ≤ |x|k ≤ 1;
φk (x, ε) , when δ ≤ |x|k ≤ ε;
φk
(
x, δ−1ε|x|k

)
, when 0 < |x|k ≤ δ;

x, when |x|k = 0.

Let 1 ≤ p < n. Then we denote

(6.10) Rp,∞ (M,N) =
{
u : u ∈W 1,p (M,N) , there exists a smooth rectilinear

cell decomposition of M, say h : K →M, and a dual (n− [p]− 1) -skeleton

Ln−[p]−1 such that u is C∞ on M\h
(
Ln−[p]−1

)}
.

The following statement was due to F. Bethuel (see [Be2], p154, Theorem 2). But
for reasons explained in the introduction we need to give a somewhat different
proof.

Theorem 6.1. Assume 1 ≤ p < n. Then Rp,∞ (M,N) is dense in W 1,p (M,N)
under the strong topology.

We need some preparations before proving this theorem.

Lemma 6.1. Let Ω be any separable Riemannian manifold without boundary (pos-
sibly noncompact, incomplete and nonconnected), and 1 ≤ p < ∞. If E is the
Banach space C (Ω,R)∩L∞ (Ω)∩W 1,p (Ω) with norm |u|E = |u|L∞(Ω) + |u|W 1,p(Ω),
then C∞ (Ω) ∩ E is dense in E.
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Proof. Fix a u ∈ E and an ε > 0, choose a locally finite open cover of Ω, say
{Uj}∞j=1 such that Uj ⊂ Ω is compact. Choose the corresponding decomposition
of unit {ζj}∞j=1 (see p10 of [Wa]). Let uj = ζju, choose vj ∈ C∞

c (Uj) such that

|vj − uj |E ≤ ε/2j . Let v =
∑∞

j=1 vj . Then v ∈ C∞ (Ω). For any V ⊂ Ω open

with V compact, we may find a m > 0 such that V ∩ Uj = ∅ for j > m. Hence
u|V =

∑m
j=1 uj , v|V =

∑m
j=1 vj , we easily see |u − v|E ≤ ε. This implies the

conclusion. �

Lemma 6.1 along with the nearest point projection πN imply in particular that,
if Ω is the same as in the lemma, then for any 1 ≤ p < ∞, any u ∈ W 1,p (Ω, N) ∩
C (Ω, N), we may find uj ∈ C∞ (Ω, N) ∩W 1,p (Ω, N) such that supx∈Ω |uj (x) −
u (x) | → 0 and uj → u in W 1,p (Ω, N).

To facilitate the proof of Theorem 6.1, we need to introduce various notions.
Given two rectilinear cell complexes K1 and K2 such that |K1| = |K2|. Let K =
{∆1 ∩∆2 : ∆1 ∈ K1,∆2 ∈ K2,∆1 ∩∆2 6= ∅}. Then K is a rectilinear cell complex
which is a subdivision of both K1 and K2, we say K is the rectilinear cell complex
generated by K1 and K2.

For any cube Q, we use KQ to denote the rectilinear cell complex defined by
KQ = {all faces of Q}. We note that Q is a face of itself.

Assume d ∈ N. If a cube in Rd is of the form
∏d

i=1

[
ai, bi

]
, ai, bi ∈ R, ai ≤ bi,

then we say it is a normal cube. If K is a finite rectilinear cell complex such that
each cell in K is a normal cube, then we say K is a normal complex. If K1 and K2

are two normal complexes such that |K1| = |K2|, then clearly the rectilinear cell
complex generated by K1 and K2 is a normal complex too.

For k ∈ Z, 1 ≤ k ≤ d, we write Hk,t = {x : x ∈ R
d, xk = t}, here xk is the k-th

coordinate of x. For a ∈ (R+)
d
, we denote Ia =

∏d
i=1

[
0, ai

]
. For any 0 ≤ t ≤ ak,

let Q1 = {x ∈ Ia : 0 ≤ xk ≤ t}, Q2 = {x ∈ Ia : t ≤ xk ≤ ak}. Then we denote
Ka,k,t = KQ1 ∪KQ2 .

The following lemma is an easy consequence of Fubini type theorem (see also
Corollary 3.1).

Lemma 6.2. Assume a ∈ (R+)
d
, K is a normal complex such that the polytope

|K| = Ia, 1 ≤ p < ∞, i ∈ Z, 1 ≤ i ≤ d. For any t ∈
(
0, ai

)
, we may use Hi,t

to slice K to form another normal complex, namely Lt, that is Lt is the normal
complex generated by K and Ka,k,t. Assume u ∈ W1,p (K,R). Then for H1 a.e.
t ∈
(
0, ai

)
, we have u ∈ W1,p (Lt).

We remark that Lemma 6.2 says almost every slice is nice, hence when we choose
generic slices in the future, we may always assume we are choosing those slices
among the nice ones.

Let a ∈ (R+)
d
. If we are given mi ∈ N, 0 = ti,0 < ti,1 < · · · < ti,mi = ai for

1 ≤ i ≤ d, then we say {Hi,tij ∩ Ia : 1 ≤ i ≤ d, 0 ≤ j ≤ mi} is a net on Ia, denote

it as N . Given 0 < δ ≤ min1≤i≤d a
i, set mi =

[
ai/δ

]
. If for some A ≥ 1, we have

δ
A ≤ ti,j+1 − ti,j ≤ Aδ for 1 ≤ i ≤ d, 0 ≤ j ≤ mi − 1, then we say N is a (δ, A)-net.
N divides Ia in to m1 · · ·md small cubes. That it is an (δ, A)-net simply means

every small cube is [0, δ]
d

after a translation and an inhomogeneous dilation. Also
the Lipschitz constants of this transformation and its inverse are dominated by A.

We note that for any net N on Ia, we have a natural normal complex KN

such that |KN | = Ia. Indeed we just take it as the normal complex generated by
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{Ka,i,tij : 1 ≤ i ≤ d, 0 ≤ j ≤ mi}. Given any face Q of Ia and any net N on Q. N
generates a normal complex KQ,N such that |KQ,N | = Q, then we define a normal
complex

KN = KQ,N

⋃
{∆ : ∆ ∈ KIa such that ∆ 6⊂ Q} .

Clearly |KN | = Ia. If we are given m faces of Ia, namely Q1, · · · , Qm, and for each
i a net Ni on Qi, then we call the normal complex generated by KN1 , · · · ,KNm as
the normal complex generated by N1, · · · ,Nm.

For any Riemannian manifold Ω, given a k-rectifiable subset S of Ω and a suitable
differentiable function u on S, 1 ≤ p < ∞, we denote Ep (u, k, S) =

∫
S
|dSu|pdHk,

here Hk is the k-dimensional Hausdorff measure. We simply write E (u, k, S) when
it is clear what p is.

The next lemma contains one of the key analytic estimates that are needed in
our proof of Theorem 6.1. We postpone the proof of it to the Appendix A.

Lemma 6.3 (Generic slicing lemma). Assume a ∈ (R+)
d
, for each face of Ia, we

pick up a net on it, all these nets together generate a normal complex K such that
|K| = Ia, 1 ≤ p < ∞, u ∈ W1,p (K,R). Then there exists an absolute constant
A ≥ 1 such that for any 0 < δ ≤ min1≤i≤d a

i, there exists a (δ, A)-net N on Ia

such that u ∈ W1,p
(
K̃
)
, here K̃ is the normal complex created from K and N ,

and we have

E
(
u, i, |K̃i| ∩

(
|Kj |\|Kj−1|

))
≤ c (d)

(
1

δ

)j−i

E
(
u, j, |Kj |

)
for 1 ≤ i < j ≤ d.

The above inequalities imply in particular that

E
(
u, i, |K̃i| ∩ |Kj |

)
≤ c (d)

j∑

k=i+1

(
1

δ

)k−i

E
(
u, k, |Kk|

)
+E

(
u, i, |Ki|

)

for 1 ≤ i < j ≤ d.

We also introduce the following map ϕN : N × R
l̄ → N , which is defined by

ϕN (x, y) =

{
π
(
x+ ε0(y−x)

|y−x|

)
for |y − x| ≥ ε0;

π(y) for |y − x| ≤ ε0.

We have Lip (ϕN |N×N ) ≤ c (N).
Finally we observe the following fact. Assume K is a finite rectilinear cell com-

plex, 1 ≤ p <∞, k ∈ Z, k ≥ 0, and u ∈ W1,p (K,R) with u||Kk| ∈ C
(
|Kk|

)
. Then

there exists a sequence ui ∈ W1,p (K,R) ∩ C (|K|) such that ui||Kk| = u||Kk| and

ui → u in W1,p (K). This fact follows from proofs of Lemma 3.1 and Lemma 3.2.
As a consequence, we have the following

Corollary 6.1. Assume K is a finite rectilinear cell complex, 1 ≤ p < ∞, k ∈ Z,
k ≥ 0, u ∈ W1,p (K,N), u||Kk| ∈ C

(
|Kk|, N

)
, and there exists a y0 ∈ N such that

u (|K|) ⊂ B l̄
ε0

(y0). Then there exists a sequence ui ∈ W1,p (K,N) ∩ C (|K|, N)

such that ui → u in W1,p (K), ui||Kk| = u||Kk| and ui (|K|) ⊂ B l̄
3ε0/2 (y0).

Proof. By the above observed fact, we may find a sequence vi ∈ W1,p
(
K,Rl

)
∩

C
(
|K|,Rl

)
such that vi||Kk| = u||Kk| and vi → u in W1,p (K). Then ui (x) =

ϕN (y0, vi (x)) is the needed sequence of maps. �
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With all these preparations, we can proceed now with the proof of Theorem 6.1.

Proof of Theorem 6.1. Define Rp (M,N) as the set similar to Rp,∞ (M,N) but re-
place C∞ by C0. By the fact we stated after the proof of Lemma 6.1, it suffices to

show Rp (M,N) = W 1,p (M,N). For convenience, we assume p /∈ Z at first. Fix a
smooth cubeulation of M , namely h : K →M such that each cube in K is normal.
Given u ∈ W 1,p (M,N), by Lemma 4.3 we may assume f = u ◦ h ∈ W1,p (K,N).
Applying Lemma 6.3 on the n-cells in an arbitrary order, we get a (δ, A)-net on
each of them. These nets together with the original K create a normal complex,
called Kn, we have f ∈ W1,p (Kn, N) and

(6.11) E
(
f, i, |Ki

n|
)
≤ c (M)

n∑

j=i

(
1

δ

)j−i

E
(
f, j, |Kj |

)

≤ c (M)

(
1

δ

)n−i

E (f, n, |Kn|) ,

for 1 ≤ i ≤ n and all sufficiently small δ.
Fix a ν ∈ (0, p), for each n-cube Q in Kn, if for every 1 ≤ i ≤ n, we have the

normalized energy

(6.12) δp−iE
(
f, i, |Ki

Q|
)
≤ δν ,

then we say Q is a good cube, otherwise we call it a bad cube. Denote G as the union
of all good cubes and B as the union of all bad cubes. Clearly we have

(6.13) Hn (B) ≤ c (M) δp−νE (f, n, |K|) ,

hence Hn (B)→ 0 as δ → 0+.
Let us first look at good cubes. Fix two positive numbers δ1 and δ2 such that

0 < δ1 � δ2 <
1
A . If Q is a good cube, from Sobolev embedding theorem we know

f |
|K

[p]
Q |

is continuous and

(6.14) osc
(
f, |K

[p]
Q |
)
≤ c (p,M) δν/p.

Choose a yQ ∈ f
(
|K

[p]
Q |
)
. By Lemma 6.3 we may find a (δ1δ, A) net N such that

f |Q ∈ W1,p
(
K̃Q, N

)
, N induces a net on each (n − 1)-face of Q and K̃Q is the

normal complex created from KQ together with all these induced nets. Moreover,
we have

(6.15) E
(
f, i, |K̃i

Q| ∩
(
|Kj

Q|\|K
j−1
Q |

))
≤ c (M)

(
1

δ1δ

)j−i

E
(
f, j, |Kj

Q|
)

for 1 ≤ i < j ≤ n. Here A is an absolute constant. This, combined with (6.12),
implies

(6.16) (δ1δ)
p−i

E
(
f, i, |K̃i

Q|
)
≤ c (δ1, p,M) δν for 1 ≤ i ≤ n.

By Sobolev embedding theorem we have f |
| eK[p]

Q |
is continuous and

(6.17) osc
(
f, |K̃

[p]
Q |
)
≤ c (δ1, p,M) δν/p.
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If we set δ to be small enough (depending on δ1) and f̂ (x) = ϕN (yQ, f (x)) for

x ∈ Q, then we have f̂ = f on |K̃
[p]
Q |. From Corollary 6.1 we may find a se-

quence f̂j ∈ W1,p
(
K̃Q, N

)
∩ C (Q,N) such that f̂j → f̂ in W1,p

(
K̃Q, N

)
and

f̂j = f̂ = f on |K̃
[p]
Q |. Set f̄ to be f̂j on Q for some j large enough, this j de-

pends on Q. Let xQ be the barycenter of Q. Then for any α ∈ (0, 1), we denote
Qα = (xQ + (1− α) (Q− xQ)). For any x ∈ Q, we define r (x) to be the unique non-
negative number such that x ∈ (xQ + r (x) (Bd (Q)− xQ)), that is r (x) = |x|Q,xQ .
Then we define a map φ : Qδ1 → Q by

(6.18) φ (x) =

{
x, x ∈ Qδ2 ;

xQ +
(
1− δ2 + (r (x)− 1 + δ2)

δ1

δ2−δ1

)
x

r(x) , x ∈ Qδ1\Qδ2 .

For any x ∈ Qδ1 , we set f̃ (x) = f̄ (φ (x)). Now we want to define f̃ on Q\Qδ1 . We
observe

(6.19) f̃ (x) = f (φ (x)) for x ∈ φ−1
(
|K̃

[p]
Q |
)
.

This relation is important for the final construction of f̃ . Assume f̃ has already
been defined on |Kn−1

n | such that for any good cube Q,

(6.20) f̃ |Bd(Q) ∈ W
1,p
(
K̃n−1

Q , N
)
, f̃ (x) = f (x) for x ∈ |K̃

[p]
Q |

and

(6.21) E
(
f̃ , i, |K̃i

Q|
)
≤ c (p,M)E

(
f, i, |K̃i

Q|
)

for [p] + 1 ≤ i ≤ n− 1.

Then we define f̃ on Q\Qδ1 as follows. First set ψ : Q\Qδ1 → Bd (Qδ1) as

(6.22) ψ (x) = xQ + (1− δ1)
x− xQ

r (x)
for x ∈ Q\Qδ1 .

Let C be a [p]-cell in K̃Q, on ψ−1 (C) we simply define f̃ (x) = f (ψ (x)). Now for

any [p] + 1 cell C in K̃Q, we observe ψ−1 (C) is Lipschitz equivalent to [0, δ1δ]
[p]+1,

where the Lipschitz constants are dominated by a constant depending only on n,
we simply do homogeneous degree zero extension on ψ−1 (C) for f̃ of its value on

Bd
(
ψ−1 (C)

)
. Inductively, we finish after we do this for (n− 1)-cell in K̃Q. We

need to emphasize that we haven’t fixed the choice of f̃ on |Kn−1
n | yet, we just need

it to satisfy (6.20) and (6.21) for good cubes up to now, so there are still lots of

freedom in choosing such a f̃ .
Next we look at bad cubes. If Q is a bad cube, for any α ∈ (0, 1/A), we may find

a (αδ,A)-net NQ such that f |Q ∈ W
1,p
(
K̃Q, N

)
, here K̃Q is the normal complex

created by NQ, moreover

(6.23) E
(
f, n− 1, |K̃n−1

Q |
)
≤
c (M)

αδ
E
(
f, n, |Kn

Q|
)

for α sufficiently small enough. Assume f̃ has already been defined on |K̃n−1
Q | such

that f̃ || eKn−1
Q | ∈ W

1,p
(
K̃n−1

Q , N
)

and in addition f̃ satisfies

(6.24) E
(
f̃ , n− 1, |K̃n−1

Q |
)
≤ c (p,M)E

(
f, n− 1, |K̃n−1

Q |
)
.
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Then on Q, we simply set f̃ as the homogeneous degree zero extension for each

n-cell in K̃Q.

We haven’t finished defining f̃ yet because we still need to define f̃ on the union

of |K̃n−1
Q | for all n-cells Q in Kn. It needs to satisfies (6.20), (6.21) for good cubes

and (6.24) for bad cubes. To find such a f̃ , we introduce a new normal complex

Kn−1. Kn−1 is created from the union of K̃n−1
Q for all n-cells in Kn. In view of

Lemma 6.2 we know f ∈ W1,p (Kn−1, N). For any (n− 1)-cell Q ∈ Kn−1, let λ be
the minimal side length of Q, for any α ∈ (0, 1), we may find a (αλ,A)-net, namely

NQ, such that f |Q ∈ W1,p
(
K̃Q, N

)
and

(6.25) E
(
f, n− 2, |K̃n−2

Q |
)
≤
c (M)

αλ
E (f, n− 1, Q)

for sufficiently small α. Again if f̃ has already been defined on the union of |K̃n−2
Q |

and

(6.26) E
(
f̃ , n− 2, |K̃n−2

Q |
)
≤ c (p,M)E

(
f, n− 2, |K̃n−2

Q |
)
,

then on Q we simply put f̃ to be the homogeneous degree zero extension on each

n− 1 cell in K̃Q. We keep this procedure going until we reach K[p], on |K
[p]
[p] |, we

simply put f̃ = f . Going back we get the needed f̃ .
Let ũ = f̃ ◦ h−1. Then a careful computation shows (see also [Be2], pp170–173)

|ũ− u|W 1,p(M) ≤ β1 (δ, δ1, δ2) + β2 (δ1, δ2) + β3 (δ2) + ε,

where β1 (δ, δ1, δ2) → 0 if we fix δ1, δ2 and let δ → 0+. β2 (δ1, δ2) → 0 if we fix δ2
and let δ1 → 0+, β3 (δ2)→ 0 when δ2 → 0+. Thus in order to make ũ close to u, we
first choose ε to be very small, then choose δ2 small so that β3(δ2) will be also small.
Next for such fixed δ2, we choose δ1 even smaller so that the resulting β2(δ1, δ2) is
also very small. Finally we choose δ to be so small such that β1(δ, δ1, δ2) is small.
In this way we will be able to find a sequence of maps in Rp(M,N) converging to
u strongly, hence we get the theorem. If p = 1, the same proof goes through. If
p ∈ Z and p ≥ 2, then we only need to add the Lemma 4.4 on the p skeleton. This
completes the proof of Theorem 6.1. �

Our next goal is to show that under certain topological condition, a map in
Rp,∞(M,N) can be approximated by smooth maps. We need some more notations.
Let X and Y be two topological spaces, A be a subset of X , α ∈ [X,Y ]. Then we
may define α|A ∈ [A, Y ] by α|A = [f |A] for any f ∈ α. It is clear that [f |A] does
not depend on the specific choice of f in α.

Theorem 6.2. Assume 1 ≤ p < n, h : K → M is a Lipschitz rectilinear cell
decomposition, M i = h

(
|Ki|

)
for i ≥ 0, Ln−[p]−1 is one of the dual (n− [p]− 1)-

skeleton, and u ∈W 1,p (M,N) such that u is continuous on M\h
(
Ln−[p]−1

)
. Then

u ∈ H1,p
S (M,N) if and only if u|M [p] has a continuous extension to M . In addition,

if for some α ∈ [M,N ], we have u|M [p] ∈ α|M [p] , then we may find a sequence
ui ∈ C∞(M,N) such that [ui] = α and ui → u in W 1,p(M,N).

Proof. If u ∈ H1,p
S (M,N), then we may find a sequence ui ∈ C∞(M,N) such that

ui → u in W 1,p(M,N). Let ε0 = ε0(M) be a small positive number, H(x, ξ) =
π(h(x) + ξ) for x ∈ |K|, ξ ∈ Bl

ε0
. Then χ[p],H,ui

= [ui ◦ h||K[p]|] a.e. on Bl
ε0

. It is
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clear that for some ε1 > 0 small, χ[p],H,u = [u ◦ h||K[p]|] a.e on Bl
ε1

. By Proposition

4.1, we see after passing to a subsequence, we have [ui′ ◦ h||K[p]|] = [u ◦ h||K[p]|] for

i′ large enough. This implies that u ◦ h||K[p]| has a continuous extension to |K|,
hence u|M [p] has a continuous extension to M .

To prove the inverse, first we observe that we may assume u is smooth on
M\h

(
Ln−[p]−1

)
. Indeed if this has been proved, then the theorem follows from

the fact after Lemma 6.1.
To proceed we use the idea of the proof of theorem 1 in [Wh1], but with the new

deformations we constructed at the beginning of this section. Let k = [p]. Since k
is fixed, we shall write Γε, φ and Fδ,ε instead of Γk

ε , φk and F k
δ,ε for convenience.

For 0 < ε ≤ 1, |Kk| is a deformation retractor of {x ∈ |K| : |x|k ≥ ε}, indeed
Ft,1 for ε ≤ t ≤ 1 is the needed deformation. Choose a v ∈ C(M,N) such that
[v] = α. Let g0 = v ◦h, f = u◦h. Since f ||K[p]| ∼ g0||K[p]|, it follows that f ∼ g0 on

{x ∈ |K| : |x|k ≥ ε} and from Proposition 2.2 (homotopy extension theorem) we
conclude that there exists a g ∈ Lip (|K|, N) such that g = f on {x ∈ |K| : |x|k ≥ ε}
and g ∼ g0. For 0 < δ < ε ≤ 1/2, we set fδ,ε (x) = g (Fδ,ε (x)) for x ∈ |K|. Then
fδ,ε ∈ Lip (|K|, N) and fδ,ε ∼ g ∼ g0. In fact, we only need to consider g ◦ Fδ,t for
ε ≤ t ≤ 1 and g ◦ Fs,1 for δ ≤ s ≤ 1 to see the homotopy relation. We have the
following basic facts (see Lemma B.2, Corollary B.1, Corollary B.2 and Corollary
B.3 in Appendix B),

(P1) Hn ({x ∈ |K| : |x|k ≤ ε}) ≤ c (K,Y) εk+1 for 0 < ε ≤ 1/2;

(P2) 0 < c (K,Y)
−1 ≤ |d (| · |k) | ≤ c (K,Y) Hn a.e. on |K|;

(P3) |dFδ,ε (x) | ≤ c (K,Y) ε/|x|k for δ ≤ |x|k ≤ ε ≤ 1/2;
(P4) |dFδ,ε (x) | ≤ c (K,Y) εδ−1 for |x|k ≤ δ ≤ ε ≤ 1/2;

(P5) For 0 < δ ≤ ε ≤ 1/2, J(φδ|Γε ) ≤ c (K,Y) (δ/ε)
k Hn−1 a.e. on Γε.

It is clear that

{x ∈ |K| : fδ,ε (x) 6= f (x)} ⊂ {x ∈ |K| : |x|k ≤ ε}.

Hence to estimate |fδ,ε − f |fW 1,p(K)
we only need to control

∫

|x|k≤ε

|dfδ,ε (x) |pdHn (x) .

First of all we have

(6.27)

∫

|x|k≤δ

|dfδ,ε (x) |pdHn (x)

≤ c (p,K,Y) [g]pLip(|K|)

∫

|x|k≤δ

|dFδ,ε (x) |pdHn (x)

≤ c (p,K,Y) [g]pLip(|K|)ε
pδk+1−p (by (P1) and (P4)).

Secondly we know

(6.28)

∫

δ≤|x|k≤ε

|dfδ,ε (x) |pdHn (x)

≤ c (p,K,Y) εp

∫

δ≤|x|k≤ε

| (df) (Fδ,ε (x)) |p|x|−p
k dHn (x) (by (P3))

≤ c (p,K,Y) εp

∫

δ≤|x|k≤ε

| (df) (Fδ,ε (x)) |p|x|−p
k J|·|k (x) dHn (x) (by (P2))
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= c (p,K,Y) εp

∫ ε

δ

dr

∫

|x|k=r

r−p| (df) (φε (x)) |pdHn−1 (x) (by coarea formula)

= c (p,K,Y) εp

∫ ε

δ

dr

∫

Γε

r−p|df |pJ(φr|Γε )dH
n−1 (by change of variable formula)

≤ c (p,K,Y) ε

∫

Γε

|df |pdHn−1 (by (P5)).

Next we observe that for any 0 < t ≤ 1/2,

(6.29)

∫ 2t

t

dr

∫

Γr

|df |pdHn−1

=

∫

t≤|x|k≤2t

|df (x) |pJ|·|k (x) dHn (x) (by coarea formula)

≤ c (p,K,Y)

∫

t≤|x|k≤2t

|df (x) |pdHn (x) (by (P2)).

Hence we may find a εt ∈ [t, 2t] such that

(6.30)

∫

Γεt

|df |pdHn−1 ≤
c (p,K,Y)

t

∫

t≤|x|k≤2t

|df (x) |pdHn (x) .

The latter inequality implies

(6.31) εt

∫

Γεt

|df |pdHn−1

≤ c (p,K,Y)

∫

t≤|x|k≤2t

|df (x) |pdHn (x)→ 0 as t→ 0+.

Putting (6.26), (6.27) and (6.30) together we get

(6.32) |fδ,εt − f |fW 1,p(K,N) ≤ α1 (δ, t) + α2 (t) ,

where α1 (δ, t)→ 0+ if we fix t and let δ → 0+, α2 (t)→ 0 as t→ 0+. We conclude
that u is a strong limit of a sequence of Lipschitz maps of the form uδ,ε = fδ,ε ◦h−1

in the W 1,p (M,N). Since [uδ,ε] = α, Theorem 6.2 follows. �

Now we describe several interesting consequences of Theorem 6.2.

Theorem 6.3. Assume N is connected and 1 ≤ p < n. Then H1,p
S (M,N) =

W 1,p (M,N) if and only if π[p] (N) = 0 and M satisfies ([p]− 1)-extension property
with respect to N .

We need the following topological lemma to prove this theorem.

Lemma 6.4. Assume X and Y are two topological spaces, X can possess some CW
complex structures, Y is path connected, k ∈ N, and πk (Y ) = 0. Then X satisfies
the (k − 1)-extension property w.r.t. Y if and only if X satisfies the k-extension
property w.r.t. Y .

Proof. Fix a CW complex structure of X .
If X satisfies the (k − 1)-extension property w.r.t. Y , then given any f ∈

C
(
Xk+1, Y

)
, there exists a g ∈ C(X,Y ) such that f |Xk−1 = g|Xk−1 . Because

πk (Y ) = 0, we have f |Xk ∼ g|Xk , hence f |Xk has a continuous extension to X by
Proposition 2.1 (HEP). That is, X satisfies the k-extension property with respect
to Y .
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On the other hand, if X satisfies the k-extension property w.r.t. Y , then for any
f ∈ C

(
Xk, Y

)
, there exists a f1 ∈ C

(
Xk+1, Y

)
such that f1|Xk = f . We may find

a g ∈ C(X,Y ) such that g|Xk = f1|Xk = f , hence g is a continuous extension of
f |Xk−1 to X , that is, X satisfies the (k − 1)-extension property w.r.t. Y . Indeed
what we have proved is any f ∈ C

(
Xk, Y

)
has a continuous extension to X . �

Proof of Theorem 6.3. Assume we have H1,p
S (M,N) = W 1,p (M,N). Pick up a

smooth triangulation of M , namely h : K → M , denote M i = h
(
|Ki|

)
for i ≥ 0.

For each ∆ ∈ K, choose a y∆ ∈ Int∆. Given any f in Lip
(
M [p], N

)
, let f0 = f ◦h.

Let f1 ∈ W1,p (K,N) be the map which we get from f0 by doing homogeneous
degree zero extension with respect to y∆ on all simplices ∆ with dim (∆) ≥ [p] + 1.

Let u = f1 ◦ h−1. Then u ∈ W 1,p (M,N). Hence u ∈ H1,p
S (M,N). It follows

from Theorem 6.2 that u|M [p] = f has a continuous extension to M . Now it follows
from Proposition 2.3 and HEP that for any f ∈ C

(
M [p], N

)
, f has a continuous

extension to M , this clearly implies π[p] (N) = 0 and M satisfies the ([p]− 1)-
extension property w.r.t. N .

On the other hand, assume π[p] (N) = 0 and M satisfies ([p]− 1)-extension
property w.r.t. N . Then if follows from the proof of Lemma 6.4 that for any CW
complex of M , and f ∈ C

(
M [p], N

)
, f has a continuous extension to M . In view

of Theorem 6.1, we only need to show Rp,∞ (M,N) ⊂ C∞ (M,N), but this clearly
follows from the topological condition and Theorem 6.2. �

An easy consequence of Theorem 6.3 and the proof of Corollary 5.3 is the fol-
lowing

Corollary 6.2. Assume M and N are connected, 1 ≤ p < n, k is an integer such
that 0 ≤ k ≤ [p]−1 and πi (M) = 0 for 1 ≤ i ≤ k and πi (N) = 0 for k+1 ≤ i ≤ [p].

Then H1,p
S (M,N) = W 1,p (M,N).

We note that Corollary 6.2 implies part (a) of theorem 1 of [Ha]. The next
corollary gives another set of target manifolds N for which smooth maps from M
into N are strongly dense in W 1,p(M,N).

Corollary 6.3. Assume N is connected, 1 ≤ p < n. If πi (N) = 0 for [p] ≤ i ≤
n− 1, then H1,p

S (M,N) = W 1,p (M,N).

Proof. This follows from Theorem 6.3 and cell by cell extension. �

Remark 6.1. It follows from Theorem 6.2 and the proof of Theorem 6.1 that for a
map u ∈ W 1,p (M,N), 1 ≤ p < n, u ∈ H1,p

S (M,N) if and only if for “generic” [p]-

skeletons M [p], when p /∈ Z, u|M [p] has a continuous extension to M , when p ∈ Z,
the homotopy class corresponding to u|M [p] (because it is continuous on M [p]−1 and
in VMO on each [p]-cell, see Lemma 4.5) is extendible to M with respect to N . One
needs to understand the word “generic” as in the way we create cell decompositions
in the proof of Theorem 6.1.

7. Weak sequential density problem for Sobolev mappings

The question whether smooth maps are sequentially weakly dense in the Sobolev
space of mappings, W 1,p(M,N), turns out to be much more subtle. It becomes im-
portant in finding minimizers of suitable energy functionals defined on the Sobolev
space of mappings. Suppose 1 ≤ p < n and p is not an integer, then it was shown
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in the earlier work of Bethuel [Be2] that H1,p
W (M,N) = H1,p

S (M,N). Hence, in
this case, the problem of the weak sequential density of smooth maps reduces to
the strong density of smooth maps in W 1,p(M,N), for which we have discussed
in detail in the previous section. We also note that, in the special case p = 1,
one always has H1,1

W (M,N) = H1,1
S (M,N) due to analytical facts associated with

L1-weak convergence (see [Hn]). For general integer p’s, 1 < p < n, the space

H1,p
W (M,N) is hard to characterize. We have the following

Theorem 7.1. Assume 1 ≤ p < n, u ∈ W 1,p (M,N), h : K → M is a Lipschitz

rectilinear cell decomposition of M . If u ∈ H1,p
W (M,N), then u#,p (h) is extendible

to M with respect to N , hence u may be connected to a smooth map by a continuous
path in W 1,p (M,N).

Proof. This follows easily from Proposition 4.1 and Theorem 5.1. �

We also observe that, by Corollary 5.4 and Theorem 7.1, one has the following
statements. If H1,p

W (M,N) = W 1,p(M,N) for some 1 ≤ p < n, then M satisfies the
([p]− 1)-extension property with respect to N .

On the other hand, let m1,m2 ∈ N, m2 < m1, then

• If 3 ≤ p < 2m2 + 2, then

H1,p
W (CP

m1 ,CP
m2) 6= W 1,p (CP

m1 ,CP
m2) .

• If 2 ≤ p < m2 + 1, then

H1,p
W (RP

m1 ,RP
m2) 6= W 1,p (RP

m1 ,RP
m2) .

These conclusions are direct consequences of Corollary 5.5 and Theorem 7.1.
Thus we have obtained a necessary topological condition for smooth maps to

be weakly sequentially dense in W 1,p(M,N). In view of this and earlier works
[Be1, Be2, BBC, Ha, Hn], we make the following

Conjecture 7.1. Assume 2 ≤ p < n, p ∈ Z, and h : K → M is a Lipschitz recti-
linear cell decomposition of M . If u ∈W 1,p(M,N) such that u#,p (h) is extendible

to M with respect to N , then u ∈ H1,p
W (M,N).

Conjecture 7.1 just says the topological obstruction we stated above is the only
obstruction for the weak sequential approximability by smooth maps. In [HnL2],
we shall prove Conjecture 7.1 under the additional assumption that u ∈ Rp(M,N)
(see the beginning of the proof of Theorem 6.1 for the definition). That is, at least
for a dense subset of W 1,p(M,N), the topological condition described in Theorem

7.1 is also sufficient for the map to be in H1,p
W (M,N).

Let H̃1,p
W (M,N) be the smallest subset of W 1,p(M,N) which is closed under

the sequential weak convergence in W 1,p(M,N) and contains C∞(M,N). Then

from [GMS], chapter 3, section 4.1 we know H̃1,p
W (M,N) is equal to the successive

sequential weak limits of C∞(M,N) in W 1,p(M,N) up to the first uncountable
ordinal number. It follows from Theorem 6.1, Proposition 4.1 and the above result
from [HnL2] that for any Lipschitz rectilinear cell decomposition of M , namely
h : K →M , and any 2 ≤ p < n, p ∈ Z,

H̃1,p
W (M,N)

= {u : u ∈W 1,p(M,N), u#,p(h) has a continuous extension to M w.r.t. N}.
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On the other hand, we also see easily that H̃1,p
W (M,N) = H1,p

W (M,N). Here the
closure is taken under the strong topology. This means one suffices to take a second
time limit instead of taking limits to the first uncountable ordinal number to get

H̃1,p
W (M,N) from C∞(M,N). Conjecture 7.1 just says we only need to take one

time limits, that is H̃1,p
W (M,N) = H1,p

W (M,N) (see [HnL2] for further discussions).
One may also conjecture that if 2 ≤ p < n, p ∈ Z and M satisfies the (p − 1)-

extension property with respect to N , then H1,p
W (M,N) = W 1,p(M,N).

In addition to Theorem 7.1, we have the following two statements.

Theorem 7.2. Assume M and N are both connected, and 1 ≤ p < n. Then
H1,p

S (M,N) is equal to W 1,p (M,N) if and only if π[p] (N) = 0 and H1,p
W (M,N) is

equal to W 1,p (M,N).

If, in addition, we know p ∈ N, p > 1 and πp(N) = 0, then H1,p
S (M,N) =

H1,p
W (M,N).

Proof. The first fact follows from Theorem 6.3 and the statement after Theorem
7.1.

On the other hand, if we know p is an integer larger than 1, then given any
u ∈ H1,p

W (M,N), it follows from Theorem 7.1 that for a generic skeleton M p−1,
u|Mp−1 has a continuous extension to M . It follows then from the fact πp(N) = 0
and the homotopy extension theorem that the homotopy class corresponding to
u|Mp has a continuous extension to M (see the proof of Lemma 6.4). Thus by

Remark 6.1 we have u ∈ H1,p
S (M,N). �

Appendix A. A proof of the generic slicing lemma

In this appendix, we shall give the detailed proof of Lemma 6.3, that is, the
generic slicing lemma. For convenience, we first describe some notations.

Assume a ∈ (R+)
d
. Let Ia be defined as

∏d
i=1[0, a

i]. For each face of Ia,
we pick up a net on it. All these nets together generate a normal complex K
such that |K| = Ia. For 1 ≤ i ≤ k, we denote by Si the subset of [0, ai] of
all points in the above nets in the i-th direction. Si is a finite set. Let α be a
subset of {1, · · · , d}, we use |α| to denote the number of elements in α. If α = ∅,
then we set Kα = K. Otherwise, if for any i ∈ α, we have mi numbers, namely
0 = ti,0 < ti,1 < · · · < ti,mi = ai, then we denote Kα as the normal complex created
from K together with Hi,ti,j ∩ Ia for i ∈ α, 0 ≤ j ≤ mi.

Proof of Lemma 6.3. We shall do slicing in each direction inductively. In view of

Lemma 6.2, we don’t need to worry about getting u ∈ W1,p
(
K̃,R

)
, hence for

convenience we will not mention this point in the future proof.
Let us look at the first direction. For 1 ≤ i ≤ m1−1, let Ji be the closed interval

[(i− 1/8)δ, (i+ 1/8)δ], Pi = {x : x ∈ Ia, x1 ∈ Ji}. Fix a positive constant c1, which
will be determined later, we have

(A.1)

∫

Ji

E
(
u, j − 1, H1,t ∩

(
|Kj |\|Kj−1|

))
dt

≤ E
(
u, j, Pi ∩

(
|Kj |\|Kj−1

))
, for 2 ≤ j ≤ d.

If we set

(A.2) B1
j =

{
t : t ∈ Ji, E

(
u, j − 1, H1,t ∩

(
|Kj |\|Kj−1|

))
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≥ c1δ
−1E

(
u, j, Pi ∩

(
|Kj |\|Kj−1|

))}
, for 2 ≤ j ≤ d,

then it follows from (A.1) that

(A.3) H1
(
B1

j

)
≤

δ

c1
.

Let

B = S1 ∪
d⋃

j=2

B1
j .

Then from (A.3) we get

(A.4) H1 (B) ≤
d

c1
δ.

In view of (A.4), if we take c1 = c1(d) large enough, we may find a point t1,i ∈ Ji\B.
By setting t1,0 = 0, t1,m1 = a1, we getm1 numbers in the first direction. In addition,
we have
(A.5)

E
(
u, j − 1, |Kj−1

{1} | ∩
(
|Kj |\|Kj−1|

))
≤
c (d)

δ
E
(
u, j, |Kj |\|Kj−1|

)
for 2 ≤ j ≤ d.

Indeed this follows from the way we choose t1,i.
Then we switch to the second direction. For 1 ≤ i ≤ m2− 1, let Ji be the closed

interval [(i− 1/8)δ, (i+ 1/8)δ], Pi = {x : x ∈ Ia, x
2 ∈ Ji}. Fix a positive constant

c2, which will be determined later, we have

(A.6)

∫

Ji

E
(
u, j − 1, H2,t ∩

(
|Kj |\|Kj−1|

))
dt

≤ E
(
u, j, Pi ∩

(
|Kj |\|Kj−1|

))
for 2 ≤ j ≤ d,

(A.7)

∫

Ji

E
(
u, j − 2, H2,t ∩ |K

j−1
{1} | ∩

(
|Kj |\|Kj−1|

))
dt

≤ E
(
u, j − 1, Pi ∩ |K

j−1
{1} | ∩

(
|Kj |\|Kj−1|

))
for 3 ≤ j ≤ d.

Define

(A.8) B2
j =

{
t : t ∈ Ji, E

(
u, j − 1, H2,t ∩

(
|Kj |\|Kj−1|

))

≥ c2δ
−1E

(
u, j, Pi ∩

(
|Kj |\|Kj−1|

))}
for 2 ≤ j ≤ d,

(A.9) B1,2
j =

{
t : t ∈ Ji, E

(
u, j − 2, H2,t ∩ |K

j−1
{1} | ∩

(
|Kj |\|Kj−1|

))

≥ c2δ
−1E

(
u, j − 1, |Kj−1

{1} | ∩
(
|Kj |\|Kj−1|

))}
for 3 ≤ j ≤ d.

Then it follows from (A.6) and (A.7) that

(A.10) H1
(
B2

j

)
≤

δ

c2
, H1

(
B1,2

j

)
≤

δ

c2
.

Let

B = S2 ∪




d⋃

j=2

B2
j


 ∪




d⋃

j=3

B1,2
j


 .

Then

(A.11) H1 (B) ≤
c (d)

c2
δ.
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In view of (A.11), if we take c2 = c2 (d) large enough, we may find a point t2,i ∈
Ji\B. By setting t2,0 = 0, t2,m2 = a2, we get m2 numbers in the second direction.
In addition, we have

(A.12) E
(
u, j − 1, |Kj−1

{2} | ∩
(
|Kj |\|Kj−1|

))

≤
c (d)

δ
E
(
u, j, |Kj |\|Kj−1|

)
for 2 ≤ j ≤ d,

(A.13) E
(
u, j − 2, |Kj−2

{1,2}| ∩
(
|Kj |\|Kj−1|

))

≤
c (d)

δ
E
(
u, j − 1, |Kj−1

{1} | ∩
(
|Kj |\|Kj−1|

))
for 3 ≤ j ≤ d.

This follows from our choices of t2,i. In addition

(A.14) E
(
u, j − 1, |Kj−1

{1,2}| ∩
(
|Kj |\|Kj−1|

))

≤ E
(
u, j − 1, |Kj−1

{1} | ∩
(
|Kj |\|Kj−1|

))
+E

(
u, j − 1, |Kj−1

{2} | ∩
(
|Kj |\|Kj−1|

))

≤
c (d)

δ
E
(
u, j, |Kj |

)
.

We used (A.5) and (A.12) in the last inequality.
Assume this process has been done for (k − 1)-th direction for some 3 ≤ k ≤ d,

now let us look at the k-th direction. For 1 ≤ i ≤ mk − 1, let Ji be the closed
interval [(i− 1/8)δ, (i+ 1/8)δ], Pi = {x : x ∈ Ia, xk ∈ Ji}. Fix a positive constant
ck, which will be determined later, for any α ⊂ {1, · · · , k} such that k ∈ α, we have

(A.15)

∫

Ji

E
(
u, j − |α|, Hk,t ∩ |K

j−|α|
α\{k}| ∩

(
|Kj |\|Kj−1|

))
dt

≤ E
(
u, j − |α|+ 1, |K

j−|α|+1
α\{k} | ∩

(
|Kj |\|Kj−1|

))
for |α|+ 1 ≤ j ≤ d.

Define

(A.16) Bα
j =

{
t : t ∈ Ji, E

(
u, j − |α|, Hk,t ∩ |K

j−|α|
α\{k}| ∩

(
|Kj |\|Kj−1|

))

≥ ckδ
−1E

(
u, j − |α|+ 1, |K

j−|α|+1
α\{k} | ∩

(
|Kj |\|Kj−1|

))}

for k ∈ α, |α|+ 1 ≤ j ≤ d. Then it follows from (A.15) that

(A.17) H1
(
Bα

j

)
≤

δ

ck
.

Let

B = Sk ∪
⋃

k∈α,|α|+1≤j≤d

Bα
j .

Then

(A.18) H1 (B) ≤
c (d)

ck
δ.

In view of (A.18), if we take ck = ck (d) large enough, we may find a point tk,i ∈
Ji\B. By setting tk,0 = 0, tk,mk

= ak, we get mk numbers in the k-th direction. In
addition we have

(A.19) E
(
u, j − |α|, Hk,t ∩ |K

j−|α|
α\{k}| ∩

(
|Kj |\|Kj−1|

))
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≤
c (d)

δ
E
(
u, j − |α|+ 1, |K

j−|α|+1
α\{k} | ∩

(
|Kj |\|Kj−1|

))
for k ∈ α, |α|+ 1 ≤ j ≤ d.

Hence the induction gives us K{1,··· ,k}. If we set K̃ = K{1,··· ,k}, one then deduces

(A.20) E
(
u, i, |K̃i| ∩

(
|Kj |\|Kj−1|

))

≤ c (d)

(
1

δ

)j−i

E
(
u, j, |Kj |

)
for 1 ≤ i < j ≤ d.

This gives us the first estimate in Lemma 6.3. The second one follows easily from
the first one. �

Appendix B. Deformations associated with the dual skeletons

In this appendix, we shall give detailed proofs for some basic properties of the
deformations defined at the beginning of Section 6. Assume K is a finite rectilinear
cell complex with dimK = m. For each ∆ ∈ K, pick up a point y∆ ∈ Int (∆). Fix
an integer 0 ≤ k ≤ m − 1. Then we have Γk

ε as the level set of the function | · |k
which is defined inductively by (6.3). For δ, ε ∈ (0, 1), we have a natural map φk

ε |Γk
δ

from Γk
δ to Γk

ε .

Lemma B.1. For any δ, ε ∈ (0, 1), φk
ε |Γk

δ
is a bijection from Γk

δ to Γk
ε , its inverse

is φk
δ |Γk

ε
.

Proof. It follows from an induction argument that for any δ, ε ∈ (0, 1), any 0 <
|x|k < 1,

(B.1) φk
δ

(
φk

ε (x)
)

= φk
δ (x) .

Lemma B.1 follows because for any δ ∈ (0, 1), any x ∈ Γk
δ , φk

δ (x) = x. �

From now on we always assumeK is a finite rectilinear cell complex with dimK =
n and for any x ∈ |K|, there exists a ∆ ∈ K with dim (∆) = n such that x ∈ ∆.
For each ∆ ∈ K, we pick up a point y∆ ∈ Int (∆). Let Y = (y∆)∆∈K . Fix an
integer 0 ≤ k ≤ n− 1.

Lemma B.2. There exists a constant c (K,Y) > 0 such that

(B.2) 0 < c (K,Y)
−1 ≤ |d (|·|k) | ≤ c (K,Y) Hn a.e. on |K|.

Proof. This follows from an easy induction if we observe the following two facts.
First one, given any rectilinear cell ∆ with dim (∆) = m ∈ N, pick up any point
y∆ ∈ Int (∆), define a map ψ : ∆→ Bm

1 by

(B.3) ψ(x) = |x|∆ ·
x− y∆
|x− y∆|

for any x ∈ ∆.

Then ψ is a bi-Lipschitz map. Second one, given any suitably differentiable function
f on ∂B1, set u (x) = |x|f (x/|x|) for x ∈ B1. Then we have

(B.4) |du (x) |2 = |f (x/|x|) |2 + |df (x/|x|) |2.

�
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Lemma B.3. The map φk satisfies

(B.5) |∂2φ
k (x, ε) | ≤ c (K,Y) for 0 < |x|k < 1, 0 < ε < 1.

Here ∂2 means derivative with respect to ε. For derivatives with respect to x, we
have

(B.6) |dxφ
k (x, ε) | ≤ c (K,Y)

(
ε

|x|k
+

1− ε

1− |x|k

)
.

Proof. This follows from induction along with the formulas (6.7) and (6.8). Note
that for any ∆ ∈ K, x ∈ ∆, we have |x|k ≤ |x|∆. �

Corollary B.1. For 0 < δ ≤ ε ≤ 1/2, we have

(B.7) |dF k
δ,ε(x)| ≤ c (K,Y) ε/|x|k for δ ≤ |x|k ≤ ε,

(B.8) |dF k
δ,ε (x) | ≤ c (K,Y) εδ−1 for |x|k ≤ δ.

Proof. This follows from Lemma B.3 and an easy computation. �

To understand more refined properties of the map φk, we need to introduce some
notations. Given any (n− k) number εi ∈ [0, 1] for k+1 ≤ i ≤ n, we want to define
the set Υk

εk+1,··· ,εn
. This will be done inductively. For εk+1 ∈ [0, 1], we set

(B.9) Υk
εk+1

=
⋃

∆∈K, dim(∆)=k+1

(y∆ + εk+1 (Bd (∆)− y∆)) .

Clearly Υk
ε1
⊂ |Kk+1|. Assume for some k + 2 ≤ i ≤ n, Υk

εk+1,··· ,εi−1
has already

been defined as a subset of |Ki−1|. Then we set

(B.10) Υk
εk+1,··· ,εi

=
⋃

∆∈K, dim(∆)=i

(
y∆ + εi

((
∆ ∩Υk

εk+1,··· ,εi−1

)
− y∆

))
.

Eventually we get Υk
εk+1,··· ,εn

for εi ∈ [0, 1], k + 1 ≤ i ≤ n. Clearly we have

(B.11) Υk
εk+1,··· ,εn

⊂ Γk
εk+1···εn

.

The importance of Υk
εk+1,··· ,εn

lies in the following

Lemma B.4. Assume 0 < εi ≤ 1 for k + 1 ≤ i ≤ n, ε = εk+1 · · · εn < 1. Then for
any 0 < δ ≤ 1, we have

(B.12) |d
(
φk

δ |Υk
εk+1,··· ,εn

)
| ≤ c (K,Y) δε−1 Hk a.e. on Υk

εk+1,··· ,εn
.

Proof. This follows easily from an induction argument in view of the definition of
φk by (6.7) and (6.8). �

Corollary B.2. For 0 < δ ≤ ε ≤ 1/2, we have

(B.13) J“
φk

δ |Γk
ε

” (x) ≤ c (K,Y) (δ/ε)k for Hn−1 a.e. x ∈ Γk
ε .

Proof. It follows from Lemma B.3 that

(B.14) |d
(
φk

δ |Γk
ε

)
| ≤ c (K,Y)

(
δ

ε
+

1− δ

1− ε

)
≤ c (K,Y) .



TOPOLOGY OF SOBOLEV MAPPINGS II 43

On the other hand for x ∈ Γk
ε , we may find (n− k) numbers, namely εi ∈ (0, 1] for

k + 1 ≤ i ≤ n such that x ∈ Υk
εk+1,··· ,εn

. Now it follows from Lemma B.4 that

(B.15) |d
(
φk

δ |Υk
εk+1,··· ,εn

)
(x) | ≤ c (K,Y) δε−1,

which implies d
(
φk

δ |Γk
ε

)
(x) has operator norm bounded by c (K,Y) δε−1 on a k-

dimensional subspace of the tangent space of Γk
ε at x. Combining this last estimate

with (B.14), one concludes Corollary B.2. �

Corollary B.3. For 0 < ε ≤ 1/2, we have

(B.16) Hn ({x ∈ |K| : |x|k ≤ ε}) ≤ c (K,Y) εk+1.

Proof. From Lemma B.1 we know for any 0 < δ ≤ 1/2, φk
δ |Γk

1/2
is a bijection from

Γk
1/2 to Γk

δ , hence from area formula we have,

(B.17) Hn−1
(
Γk

δ

)
=

∫

Γk
1/2

J„
φk

δ |Γk
1/2

« (x) dHn−1 (x) ≤ c (K,Y) δk.

Here we use Lemma B.4 in the last step. Now for any 0 < ε ≤ 1/2, we have

Hn ({x ∈ |K| : |x|k ≤ ε}) ≤ c (K,Y)

∫

|x|k≤ε

J|·|k (x) dHn (x) (by Lemma B.2)

= c (K,Y)

∫ ε

0

Hn−1
(
Γk

δ

)
dδ (by coarea formula) ≤ c (K,Y) εk+1 (by (B.17)).

�
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[MSZ] Malý, J., Swanson, D. & Ziemer, W. P., The coarea formula for Sobolev mappings.
Preprint, 2001, arXiv:math.CA/0112008.

[Ma] May, J. P., A concise course in algebraic topology. Chicago Lectures in Mathematics.
University of Chicago Press, Chicago, IL, 1999.

[Mu] Munkres, J. R., Elementary differential topology. Princeton University Press, Prince-
ton, New Jersey, 1963.

[PR] Pakzad, M. R. & Rivière, T., Weak density of smooth maps for the Dirichlet energy
between manifolds. Preprint, 2000.

[SU] Schoen, R. & Uhlenbeck, K., Approximation theorems for Sobolev mappings. Preprint,
1984.

[Si] Simon, L., Lectures on geometric measure theory. Proceedings of the Centre for Math-
ematical Analysis, Australian National University, 3. Australian National University,
Centre for Mathematical Analysis, Canberra, 1983.

[Vi] Vick, J. W., Homology theory. An introduction to algebraic topology. Second Edition.
Graduate Texts in Mathematics, 145. Springer-Verlag, New York, 1994.

[Wa] Warner, F. Foundations of differentiable manifolds and Lie groups. Corrected Reprint
of the 1971 Edition. Graduate Texts in Mathematics, 94. Springer-Verlag, New York-
Berlin, 1983.

[Wh1] White, B., Infima of energy functions in homotopy classes of mappings. J. Diff. Ge-

ometry, 23 (1986), 127–142.
[Wh2] — Homotopy classes in Sobolev spaces and the existence of energy minimizing maps.

Acta Math., 160 (1988), 1–17.
[Whd] Whitehead, G. W., Elements of homotopy theory. Graduate Texts in Mathematics,

61. Springer-Verlag, New York, 1978.
[Whn] Whitney, H., Geometric integration theory. Princeton University Press, Princeton,

New Jersey, 1957.

Courant Institute, 251 Mercer Street, New York, NY 10012, U.S.A.. Current ad-

dress : Department of Mathematics, Princeton University, Fine Hall, Washington

Road, Princeton, NJ 08544, U.S.A.

E-mail address: fhang@math.princeton.edu

Courant Institute, 251 Mercer Street, New York, NY 10012, U.S.A.

E-mail address: linf@cims.nyu.edu


