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Abstract. Let n(2, k) denote the largest integer n for which there exists a set

A of k nonnegative integers such that the sumset 2A contains {0, 1, 2, . . . , n −

1}. A classical problem in additive number theory is to find an upper bound

for n(2, k). In this paper it is proved that lim sup
k→∞

n(2, k)/k2 ≤ 0.4789.

1. An extremal problem for finite bases

Let N0 and Z denote the nonnegative integers and integers, respectively, and let

|A| denote the cardinality of the set A.

Let A be a set of integers, and consider the sumset

2A = {a + a′ : a, a′ ∈ A}.
Let S be a set of integers. The set A is a basis of order 2 for S if S ⊆ 2A.

The set A is called a basis of order 2 for n if the sumset 2A contains the first n

nonnegative integers, that is, if A is a basis of order 2 for the interval of integers

[0, n− 1] := {0, 1, 2, . . . , n− 1}. We define n(2, A) as the largest integer n such that

A is a basis of order 2 for n, that is,

n(2, A) = max{n : [0, n − 1] ⊆ 2A}.
Rohrbach [6] introduced the extremal problem of determining the largest integer

n for which there exists a set A consisting of at most k nonnegative integers such

that A is a basis of order 2 for n. Let

n(2, k) = max{n(2, A) : A ⊆ N0 and |A| = k}.
Rohrbach’s problem is to compute or estimate the extremal function n(2, k). The

set A is called an extremal k-basis of order 2 if |A| ≤ k and n(2, A) = n(2, k).

For example, n(2, 1) = 1 and n(2, 2) = 3. The unique extremal 1-basis of order

2 is {0}, and the unique extremal 2-basis of order 2 is {0, 1}. For k = 3 we have

n(2, 3) = 5, and the extremal 3-bases of order 2 are {0, 1, 2} and {0, 1, 3}. If k ≥ 2

and A is an extremal k-basis of order 2, then 0, 1 ∈ A. If A is a finite set of k

nonnegative integers and n(2, A) = n, then n 6∈ A. If a ∈ A and a > n, then the set

A′ = (A \ {a}) ∪ {n} has cardinality k, and n(2, A′) ≥ n + 1 > n(2, A). Therefore,

if A is an extremal k-basis of order 2 and n(2, k) = n, then

{0, 1} ⊆ A ⊆ {0, 1, 2, . . . , n − 1} ⊆ 2A.

2000 Mathematics Subject Classification. Primary 11B13.

Key words and phrases. Additive bases, segment bases, sumsets.
The work of S.G. was supported in part by NSF grant DMS 0219072. The work of M.B.N. was

supported in part by grants from the NSA Mathematical Sciences Program and the PSC-CUNY

Research Award Program.

1
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If A is an extremal k-basis for n, then |A| = k and A ⊆ {0, 1, 2, . . . , n − 1}.
Rohrbach determined order of magnitude of n(2, k). He observed that if A is a

set of cardinality k, then there are exactly
(

k+1
2

)

ordered pairs of the form (a, a′)

with a, a′ ∈ A and a ≤ a′. This gives the upper bound

n(2, k) ≤
(

k + 1

2

)

=
k2

2
+ O(k).

To derive a lower bound, he set r = [k/2] and constructed the set

A = {0, 1, 2, . . . , r − 1, r, 2r, 3r, . . . , (r − 1)r}.
We have

|A| = 2r − 1 ≤ k

and {0, 1, . . . , r2} ⊆ 2A. Then

n(2, A) ≥ r2 + 1 ≥ (k − 1)2

4
+ 1 =

k2

4
+ O(k)

and so

n(2, k) ≥ k2

4
+ O(k).

Thus,

lim inf
n→∞

n(2, k)

k2
≥ 1

4
= 0.25

and

lim sup
n→∞

n(2, k)

k2
≤ 1

2
= 0.5.

It is an open problem to compute these upper and lower limits. Mrose [5, 1] proved

that

lim inf
n→∞

n(2, k)

k2
≥ 2

7
= 0.2857 . . . ,

and this is still the best lower bound. Rohrbach used a combinatorial argument to

get the nontrivial upper bound

lim sup
n→∞

n(2, k)

k2
≤ 0.4992.

Moser [3] introduced a Fourier series argument to obtain

lim sup
n→∞

n(2, k)

k2
≤ 0.4903,

and subsequent improvements by Moser, Pounder, and Riddell [4] produced

lim sup
n→∞

n(2, k)

k2
≤ 0.4847.

Combining Moser’s analytic method and Rohrbach’s combinatorial technique, Klotz [2]

proved that

lim sup
n→∞

n(2, k)

k2
≤ 0.4802.

In this paper, we use Fourier series for functions of two variables to obtain

lim sup
n→∞

n(2, k)

k2
≤ 0.4789.
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We note that Rohrbach used a slightly different function n(2, k): He defined

n(2, k) as the largest integer n for which there exists a set A consisting of k + 1

nonnegative integers such that the sumset 2A contains the first n + 1 nonnegative

integers. Of course, Rohrbach’s function and our function have the same asymp-

totics.

2. Moser’s application of Fourier series

In this section we describe Moser’s use of harmonic analysis to obtain an upper

bound for n(2, k). Let A be an extremal k-basis of order 2. Let r2,A(j) denote the

number of representations of j as a sum of two elements of A, that is,

r2,A(j) = card ({(a1, a2) ∈ A × A : a1 + a2 = j and a1 ≤ a2}) .

We introduce the generating function

fA(q) =
∑

a∈A

qa.

Then

k = fA(1) = |A|
and

fA(q)2 + fA(q2)

2
=
∑

j∈2A

r2,A(j)qj .

If [0, n− 1] ⊆ 2A, then r2,A(j) ≥ 1 for all 0 ≤ j ≤ n− 1. Hence there exist integers

δ(j) ≥ 0 such that

fA(q)2 + fA(q2)

2
= 1 + q + q2 + · · · + qn−1 +

∑

j∈2A

δ(j)qj ,

where

δ(j) =

{

r2,A(j) − 1 if j ∈ {0, 1, . . . , n − 1},
r2,A(j) otherwise.

Let

∆(q) =
∑

j∈2A

δ(j)qj .

Then ∆(q) ≥ 0 for q ≥ 0, and

(1)
fA(q)2 + fA(q2)

2
= 1 + q + q2 + · · · + qn−1 + ∆(q).

Evaluating the generating function identity (1) at q = 1, we obtain

(2)
k2 + k

2
= n + ∆(1).

Since ∆(1) ≥ 0, we have

n ≤ k2

2
+ O(k).

The strategy is to find a lower bound for ∆(1) of the form

∆(1) ≥ ck2 + O(k)
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for some c > 0, and deduce

n ≤
(

1

2
− c

)

k2 + O(k).

One obtains a simple combinatorial lower bound for ∆(1) by noting that if

a1, a2 ∈ A and n/2 ≤ a1 ≤ a2, then a1 + a2 ≥ n. Let ` denote the number of

elements a ∈ A such that a ≥ n/2. Then

(3) ∆(1) ≥
∑

j≥n

δ(j) =
∑

j≥n

r2,A(j) ≥ `(` + 1)

2
≥ `2

2
.

Let

ω = e2πi/n

be a primitive nth root of unity. Let r be an integer not divisible by n. Then

1 + ωr + ω2r + · · · + ω(n−1)r = 0

and so

fA(ωr)2 + fA(ω2r)

2
= 1 + ωr + ω2r + · · · + ω(n−1)r +

∑

j

δ(j)ωjr = ∆(ωr).

Applying the triangle inequality, we obtain

∆(1) ≥ |∆(ωr)| =

∣

∣fA(ωr)2 + fA(ω2r)
∣

∣

2
≥ |fA(ωr)|2 − k

2
.

Let

M = max{|fA(ωr)| : r 6≡ 0 (mod n)}.
Then

(4) 0 ≤ M ≤ k

and

(5) ∆(1) ≥ M2 − k

2
.

It is also possible to obtain an analytic lower bound for ∆(1). For all integers r

not divisible by n, we have

M ≥ |fA(ωr)| =

∣

∣

∣

∣

∣

∑

a∈A

e2πira/n

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

a∈A

cos(2πra/n) + i sin(2πra/n)

∣

∣

∣

∣

∣

,

and so
∣

∣

∣

∣

∣

∑

a∈A

cos(2πra/n)

∣

∣

∣

∣

∣

≤ M

and
∣

∣

∣

∣

∣

∑

a∈A

sin(2πra/n)

∣

∣

∣

∣

∣

≤ M.

Let ϕ(t) be a function with period 1 and with a Fourier series

ϕ(t) =

∞
∑

r=0

ar cos(2πrt) +

∞
∑

r=1

br sin(2πrt)
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whose Fourier coefficients converge absolutely, that is,

∞
∑

r=0

|ar| +
∞
∑

r=1

|br| < ∞.

Define C = C(n) by

C =

∞
∑

r=0
n|r

|ar|.

For any integer a we have

∑

a∈A

ϕ
(a

n

)

=
∑

a∈A

∞
∑

r=0

ar cos(2πra/n) +
∑

a∈A

∞
∑

r=1

br sin(2πra/n)

=

∞
∑

r=0

ar

∑

a∈A

cos(2πra/n) +

∞
∑

r=1

br

∑

a∈A

sin(2πra/n)

=

∞
∑

r=0
n-r

ar

∑

a∈A

cos(2πra/n) +

∞
∑

r=1
n-r

br

∑

a∈A

sin(2πra/n) + k

∞
∑

r=0
n|r

ar,

and so
∣

∣

∣

∣

∣

∑

a∈A

ϕ
(a

n

)

∣

∣

∣

∣

∣

≤ M
∞
∑

r=1
n-r

(|ar| + |br|) + kC.

Let α1 and α2 be real numbers such that

ϕ(t) ≥ α1 for 0 ≤ t < 1/2

and

ϕ(t) ≥ α2 for 1/2 ≤ t < 1.

Recall that ` denotes the number of elements a ∈ A such that n/2 ≤ a ≤ n − 1.

Then
∑

a∈A

ϕ
(a

n

)

≥ (k − `)α1 + `α2 = kα1 − (α1 − α2)`.

We obtain the inequality

(6) kα1 − (α1 − α2)` ≤ M

∞
∑

r=1
n-r

(|ar| + |br|) + kC.

In this way, the function ϕ(t) produces a lower bound for M , which, by (5), gives

a lower bound for ∆(1).

Moser applied inequality (6) to the function

ϕ(t) =
1

2
cos(4πt) + sin(2πt),

whose nonzero Fourier coefficients are a2 = 1/2 and b1 = 1. Then C = 0 for n ≥ 3,

and
∣

∣

∣

∣

∣

∑

a∈A

ϕ
(a

n

)

∣

∣

∣

∣

∣

≤ 3M

2
.
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The function ϕ(t) satisfies the inequality

ϕ(t) ≥
{

1
2 for 0 ≤ t < 1/2

− 3
2 for 1/2 ≥ t < 1,

and so
∑

a∈A

ϕ
(a

n

)

≥ k − `

2
− 3`

2
=

k − 4`

2
.

This implies that

M ≥ 2

3

∣

∣

∣

∣

∣

∑

a∈A

ϕ
(a

n

)

∣

∣

∣

∣

∣

≥ k − 4`

3
.

Defining λ = l/k and µ = M/k, which both lie in [0, 1], we obtain the constraint

4

3
λ + µ ≥ 1

3
.

Recalling the combinatorial lower bound (3) and the analytical bound (5), we next

obtain
2∆(1)

k2
≥ max

(

λ2, µ2 − 1

k

)

≥ max(λ, µ)2 − 1

k
.

It is now easy to see that

max(λ, µ) ≥
4
3λ + µ
4
3 + 1

≥ 1

7
,

hence we obtain

∆(1) ≥ k2

98
− k

2
.

Inserting this into inequality (2), we obtain

k2 + k

2
= n + ∆(1) ≥ n +

k2

98
− k

2
,

and so

n ≤
(

1

2
− 1

98

)

k2 + k ≤ 0.4898k2 + k,

which, in fact, has a slightly better constant than derived by Moser originally. The

constant in this estimate can be further improved by optimizing the function ϕ.

In the next section we shall employ a more general method using Fourier series

in two variables that ultimately yields an even better lower bound for ∆(1).

3. Fourier series in two variables

We use the same notation as in the previous section. In particular, ` denotes

the number of integers a ∈ A such that a ≥ n/2. Let L denote the number of pairs

(a1, a2) ∈ A × A such that a1 + a2 ≥ n. Then L ≥ `2, and k2 −L is the number of

pairs (a1, a2) ∈ A×A such that a1 + a2 ≤ n− 1. We have the combinatorial lower

bound

(7) ∆(1) ≥
∑

j≥n

r2,A(j) =
L + `

2
≥ L

2
.
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Let ϕ(t1, t2) be a function with period 1 in each variable and with a Fourier

series

ϕ(t1, t2) =
∑

r1∈Z

∑

r2∈Z

ϕ̂(r1, r2)e
2πir1t1e2πir2t2

whose Fourier coefficients converge absolutely, that is,
∑

r1∈Z

∑

r2∈Z

|ϕ̂(r1, r2)| < ∞.

We choose ϕ(t1, t2) with zero mean, that is,

ϕ̂(0, 0) =

∫ 1

0

∫ 1

0

ϕ(t1, t2)dt1dt2 = 0.

Let

R1 = {(t1, t2) ∈ [0, 1)× [0, 1) : t1 + t2 < 1}
and let

R2 = {(t1, t2) ∈ [0, 1)× [0, 1) : t1 + t2 ≥ 1}
If a1, a2 ∈ A and a1 + a2 ≤ n − 1, then (a1/n, a2/n) ∈ R1. If a1 + a2 ≥ n, then

(a1/n, a2/n) ∈ R2.

Let α1 and α2 be real numbers such that

ϕ(t1, t2) ≥ α1 for (t1, t2) ∈ R1

and

ϕ(t1, t2) ≥ α2 for (t1, t2) ∈ R2.

We choose the function ϕ(t1, t2) such that

α1 > α2.

Then

(8)
∑

a1∈A

∑

a2∈A

ϕ
(a1

n
,
a2

n

)

≥ (k2 − L)α1 + Lα2 = α1k
2 − (α1 − α2)L.

We can rewrite this sum as follows:
∑

a1∈A

∑

a2∈A

ϕ
(a1

n
,
a2

n

)

=
∑

a1∈A

∑

a2∈A

∑

r1∈Z

∑

r2∈Z

ϕ̂(r1, r2)e
2πir1a1/ne2πir2a2/n

=
∑

r1∈Z

∑

r2∈Z

ϕ̂(r1, r2)
∑

a1∈A

e2πir1a1/n
∑

a2∈A

e2πir2a2/n

=
∑

r1∈Z

∑

r2∈Z

ϕ̂(r1, r2)fA(ωr1)fA(ωr2).

Consider the partition of the integer lattice Z2 = S0 ∪ S1 ∪ S2:

S0 ={(r1, r2) ∈ Z2 : r1 ≡ r2 ≡ 0 (mod n)}
S1 ={(r1, r2) ∈ Z2 : r1 ≡ 0 (mod n), r2 6≡ 0 (mod n)}

∪ {(r1, r2) ∈ Z2 : r1 6≡ 0 (mod n), r2 ≡ 0 (mod n)}
S2 ={(r1, r2) ∈ Z2 : r1 6≡ 0 (mod n), r2 6≡ 0 (mod n)}.

We define Ci = Ci(n) for i = 0, 1, 2 by

Ci =
∑

(r1,r2)∈Si

|ϕ̂(r1, r2)| .
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Recall that |fA (ωr) | ≤ M if r is not divisible by n and |fA (ωr) | = k if r is divisible

by n. Then

(9)

∣

∣

∣

∣

∣

∑

a1∈A

∑

a2∈A

ϕ
(a1

n
,
a2

n

)

∣

∣

∣

∣

∣

≤ C0k
2 + C1kM + C2M

2.

Combining inequalities (8) and (9), we obtain

α1k
2 − (α1 − α2)L ≤ C0k

2 + C1kM + C2M
2.

Since α1 > α2, we have

L ≥ (α1 − C0)k
2 − C1kM − C2M

2

α1 − α2
.

We again define

µ =
M

k
.

Since 0 ≤ M ≤ k, we have

0 ≤ µ ≤ 1.

By inequality (7), we have 2∆(1) ≥ L, and so

2∆(1)

k2
≥ L

k2
≥ (α1 − C0) − C1µ − C2µ

2

α1 − α2
.

By inequality (5), we also have 2∆(1) ≥ M 2 − k, and so

(10)
2∆(1)

k2
≥ max

(

µ2,
(α1 − C0) − C1µ − C2µ

2

α1 − α2

)

− 1

k
.

Since the series of Fourier coefficients of ϕ(t1, t2) converges absolutely and since

ϕ̂(0, 0) = 0, we can arrange the Fourier series in the form of a sum over concentric

squares
∞
∑

R=1

∑

max(|r1|,|r2|)=R

ϕ̂(r1, r2)e
2πir1t1e2πir2t2 .

For any ε > 0 there exists an integer N = N(ε) such that

∞
∑

n=N

∑

max(|r1|,|r2|)=n

|ϕ̂(r1, r2)| < ε(α1 − α2).

For all n ≥ N, we shall approximate the sums C0, C1, and C2 by 0, Caxial, and

Cmain, respectively, where

Caxial =
∑

r∈Z
r 6=0

(|ϕ̂(0, r)| + |ϕ̂(r, 0)|)

and

Cmain =
∑

r1∈Z
r1 6=0

∑

r2∈Z
r2 6=0

|ϕ̂(r1, r2)|.
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Then
∣

∣(α1 − C0) − C1µ − C2µ
2 −

(

α1 − Caxialµ − Cmainµ2
)∣

∣

=
∣

∣C0 + (C1 − Caxial)µ + (C2 − Cmain)µ
2
∣

∣

≤ |C0| + |C1 − Caxial| + |C2 − Cmain|

≤
∑

max(|r1|,|r2|)≥N

|ϕ̂(r1, r2)|

< ε(α1 − α2),

and so
∣

∣

∣

∣

(

(α1 − C0) − C1µ − C2µ
2

α1 − α2

)

−
(

α1 − Caxialµ − Cmainµ
2

α1 − α2

)
∣

∣

∣

∣

< ε.

It follows from inequality (10) that

2∆(1)

k2
≥ max

(

µ2,
α1 − Caxialµ − Cmainµ

2

α1 − α2

)

− ε − 1

k
.

Let

(11) ρ = inf
0≤µ≤1

max

(

µ2,
α1 − Caxialµ − Cmainµ

2

α1 − α2

)

.

From (10) and the definition of ρ in (11), we now have

2∆(1)

k2
≥ ρ − ε − 1

k
.

Applying identity (2), we obtain

k2 + k

2
= n + ∆(1) ≥ n +

(ρ − ε)k2 − k

2
.

Therefore, we obtain the desired estimate

(12) n ≤
(

1 − ρ + ε

2

)

k2 + k,

where the number ρ depends only on the function ϕ(t1, t2) and ε > 0 can be

arbitrarily small.

It is clear that we always have ρ ≥ 0, and that ρ > 0 if and only if α1 > 0. It

is also clear that when α1 ≥ 0, we have ρ = ξ2, where ξ is the unique solution in

[0, 1] to the quadratic equation

ξ2 =
α1 − Caxialξ − Cmainξ2

α1 − α2
,

i.e.,

(α1 − α2 + Cmain)ξ2 + Caxialξ − α1 = 0,

which yields the formula

(13) ρ =

(

−Caxial +
√

C2
axial + 4α1(α1 − α2 + Cmain)

2(α1 − α2 + Cmain)

)2

.

Hence we have an optimization problem in which we maximize ρ over all real

valued functions ϕ defined on the unit square [0, 1)2 such that ϕ has zero mean and

ϕ > 0 on R1. We do not know the optimal function for this problem, but we have
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found a simple piecewise polynomial function that improves Klotz’s upper bound

for n(2, k). Before we proceed to the main result of this paper, which also includes

the definition of this function, let us present some of the heuristics which have lead

us to our “educated guess.”

First, without loss of generality, we may assume that α1 = 1. We then necessarily

have

0 =

∫∫

R1

ϕ(t1, t2)dt1dt2 +

∫∫

R2

ϕ(t1, t2)dt1dt2 ≥ 1

2
+

1

2
α2,

hence α2 ≤ −1. We also have

Caxial ≥
∣

∣

∣

∣

∣

∑

r

(ϕ̂(r, 0) + ϕ̂(0, r))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

(ϕ(0, t) + ϕ(t, 0)) dt

∣

∣

∣

∣

≥ 2,

and

Cmain ≥
∣

∣

∣

∣

∣

∑

r

ϕ̂(r, r)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

ϕ(t, 1 − t)dt

∣

∣

∣

∣

≥ 1.

In any case we are interested in the positive root ξκ,τ of the equation

κξ2 + τξ − 1 = 0

where κ = (1 − α2 + Cmain) ≥ 3 and τ = Caxial ≥ 2. Clearly, the smaller κ and τ

are, the larger this root will be. The bounds κ ≥ 3 and τ ≥ 2 already imply that

ξκ,τ ≤ 1
3 , hence ρ = ξ2

κ,τ ≤ 1
9 . In reality, α2 < −1 because equality can happen only

if ϕ is constant on both R1 and R2, in which case ϕ̂ is not absolutely summable.

This results in the heuristic that if we try to push α2 close to −1, then Caxial and

Cmain will become large, and conversely if we try to push Caxial and Cmain close to

their respective minimum values, then ϕ may not be bounded from below on R2

by a small value. The right trade-off between these two competing quantities will

result in the solution of this optimization problem.

It is interesting to note that the value of ρ is fairly robust with respect to vari-

ations in κ and τ , which we will only be able to estimate numerically and not

compute exactly. The following lemma gives an explicit estimate for this purpose:

Lemma 1. Let ξκ,τ and ξκ0,τ0 be the respective positive roots of the equations

κξ2 + τξ − 1 = 0 and κ0ξ
2 + τ0ξ − 1 = 0. Let ρ = ξ2

κ,τ and ρ0 = ξ2
κ0,τ0

. If

min(κ, κ0) ≥ 3 and min(τ, τ0) ≥ 2, then

(14) |ρ − ρ0| ≤
1

54
|κ − κ0| +

1

18
|τ − τ0|.

The proof of this lemma is given in the Appendix. Now we can state and prove

the main theorem of this paper.

Theorem 1.

lim sup
n→∞

n(2, k)

k2
≤ 0.4789.

Proof. We define the function ϕ(t1, t2) on the unit square [0, 1)2 by

(15) ϕ(t1, t2) =

{

1, (t1, t2) ∈ R1

1 − 40(1 − t1)(1 − t2)
(

1 − (2 − t1 − t2)
6
)

, (t1, t2) ∈ R2.

The graph of this function is plotted in Figure 1.
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Figure 1. Graph of the function ϕ defined in (15).

Clearly we have α1 = 1. Computation of the three other parameters used in

formula (11) for ρ yields

α2 = 1 − 15

25/3
= −3.72470 . . . ,

2.90278 ≤ Caxial ≤ 2.90289,

and

4.75145 ≤ Cmain ≤ 4.76146.

Taking κ0 = 1 + 3.72471 + 4.76146 = 9.48617, and τ0 = 2.90289, we obtain ρ0 >

0.04240, |κ−κ0| < 0.01002 and |τ − τ0| < 0.00011, so that |ρ−ρ0| < 0.0002. Hence

ρ ≥ ρ0 − |ρ − ρ0| > 0.0422.

Consequently choosing ε sufficiently small and using (12), we obtain

n ≤ 0.4789 k2 + k.

The details of the computations are in the Appendix to this paper. This completes

the proof. �

4. Open problems

A major open problem concerning the extremal function

n(2, k) = max{n(2, A) : A ⊆ N0 and |A| ≤ k}.
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is to compute lim infn→∞ n(2, k)/k2 and lim supn→∞ n(2, k)/k2, and to determine

if the limit

lim
n→∞

n(2, k)

k2

exists. We have no conjecture about the existence of this limit, nor about the values

of the lim inf and lim sup .

It is also difficult to compute the exact values of the function n(2, k).

We can generalize the extremal functions n(2, A) and n(2, k) as follows. Let A

be a finite set of integers, and let m(2, A) denote the largest integer n such that

the sumset 2A contains n consecutive integers. Let

m(2, k) = max{m(2, A) : A ⊆ Z and |A| ≤ k}.
Let `(2, A) denote the largest integer n such that the sumset 2A contains an arith-

metic progression of length n, and let

`(2, k) = max{`(2, A) : A ⊆ Z and |A| ≤ k}.
We can also define the extremal function

n′(2, k) = max{n(2, A) : A ⊆ Z and |A| ≤ k}.
Then

n(2, A) ≤ n′(2, A) ≤ m(2, A) ≤ `(2, A),

and so

n(2, k) ≤ n′(2, k) ≤ m(2, k) ≤ `(2, k).

For any integer t and set A, we have the translation A + t = {a + t : a ∈ A}.
The functions ` and m are translation invariant, that is, `(2, A + t) = `(2, A) and

m(2, A + t) = m(2, A). We also have the trivial upper bound `(2, k) ≤
(

k+1
2

)

, but

it is an open problem to obtain nontrivial upper bounds for any of the extremal

functions n′(2, k), m(2, k), or `(2, k).

Appendix

We describe here the computations.

Proof of Lemma 1. We start with the formula

ξκ,τ =
−τ +

√
τ2 + 4κ

2κ
=

2

τ +
√

τ2 + 4κ
.

We next evaluate the partial derivatives of ξκ,τ with respect to κ and τ :

∂ξκ,τ

∂κ
= − 4√

τ2 + 4κ (τ +
√

τ2 + 4κ)2
,(16)

∂ξκ,τ

∂τ
= − 2√

τ2 + 4κ (τ +
√

τ2 + 4κ)
(17)

from which it follows that in the set {(κ, τ) : κ ≥ 3, τ ≥ 2}, we have
∣

∣

∣

∂ξκ,τ

∂κ

∣

∣

∣
≤ 1

36

and
∣

∣

∣

∂ξκ,τ

∂τ

∣

∣

∣
≤ 1

12 . These bounds then imply

|ξκ,τ − ξκ0,τ0 | ≤
1

36
|κ − κ0| +

1

12
|τ − τ0|.
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We then note that ξκ,τ ≤ 1
3 , which yields

|ρ − ρ0| = |ξκ,τ − ξκ0,τ0 | |ξκ,τ + ξκ0,τ0 | ≤
2

3
|ξκ,τ − ξκ0,τ0 | ,

hence the result of the lemma. �

Absolute summability of ϕ̂. While the result explained in this subsection is

elementary, we will provide a certain amount of detail in its derivation because our

main concern is more than absolute summability of ϕ̂. We would like to provide

explicit estimates on the rate of the convergence; this will be necessary later in

the section when we will analyze the accuracy of the numerical computation of the

constants Cmain and Caxial.

Lemma 2. Let f be a smooth function on [0, 1]. Then for all L ≥ 0 and n 6= 0,

the following formula holds:

(18) f̂(n) =

L
∑

k=0

f (k)(0) − f (k)(1)

(2πin)k+1
+

f̂ (L+1)(n)

(2πin)L+1
.

Proof. The case L = 0 follows from integration by parts and the general case follows

from iterating this result. �

Theorem 2. Let F be a smooth function on R2 which vanishes on the boundary

of R2, i.e.,

F (t, 1 − t) = F (1, t) = F (t, 1) = 0, for all t ∈ [0, 1].

Define

ΨF (t1, t2) =

{

0, if (t1, t2) ∈ R1,

F (t1, t2), if (t1, t2) ∈ R2.

Then the Fourier series expansion of ΨF is absolutely convergent.

Note: Later we will simply set ϕ = ΨF + 1.

Proof. We will prove this result by deriving a suitable decay estimate on |Ψ̂F (r1, r2)|,
where

Ψ̂F (r1, r2) =

∫ 1

0

e−2πir1t1

{
∫ 1

1−t1

F (t1, t2)e
−2πir2t2 dt2

}

dt1.

The case r1 = 0 or r2 = 0. Due to the symmetry on the assumptions on F , it

suffices to consider only one of these cases. Let us assume that r2 = 0. Define

J1(t1) =

∫ 1

1−t1

F (t1, t2) dt2

so that

(19) Ψ̂F (r1, 0) = Ĵ1(r1).

Clearly we have J1(0) = J1(1) = 0. Setting L = 1 and f = J1 in Lemma 2, we see

that for r1 6= 0

(20) |Ψ̂F (r1, 0)| ≤ 1

|2πr1|2
(

|J ′
1(0) − J ′

1(1)| +
∫ 1

0

|J ′′
1 |
)

= O

(

1

r2
1

)

.
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With a similar estimate for |Ψ̂F (0, r2)|, we have
∑

r 6=0

(

|Ψ̂F (r, 0)| + |Ψ̂F (0, r)|
)

< ∞.

The case r1 6= 0 and r2 6= 0. We will derive a general formula for Ψ̂F (r1, r2). To

do this, we momentarily forget that F vanishes on the boundary of R2, and for

t ∈ [0, 1], define the following functions:

g0(t) = F (t, 1 − t), h0(t) = F (t, 1),

g1(t) = (∂2F )(t, 1 − t), h1(t) = (∂2F )(1, t),

g2(t) = (∂1∂2F )(t, 1 − t), h2(t) = (∂1∂2F )(t, 1),

g3(t) = (∂1∂
2
2F )(t, 1 − t), h3(t) = (∂1∂

2
2F )(1, t).

We start with the formula for Ψ̂F (r1, r2) above. Integrating by parts in the second

variable, we obtain

Ψ̂F (r1, r2) =

∫ 1

0

dt1 e−2πir1t1

{[

e2πir2t2

−2πir2
F (t1, t2)

]t2=1

t2=1−t1

−
∫ 1

1−t1

dt2
e−2πir2t2

−2πir2
(∂2F )(t1, t2)

}

=
1

(2πi)r2

(

ĝ0(r1 − r2) − ĥ0(r1) + Ψ̂∂2F (r1, r2)
)

.

We apply the same method to Ψ̂∂2F (r1, r2), but integrate by parts in the first

variable. This results in

Ψ̂F (r1, r2) =
1

(2πi)r2

(

ĝ0(r1 − r2) − ĥ0(r1)
)

+
1

(2πi)2r1r2

(

ĝ1(r1 − r2) − ĥ1(r2) + Ψ̂∂1∂2F (r1, r2)
)

.

We repeat the first two steps in the same order, which gives us

Ψ̂F (r1, r2) =
1

(2πi)r2

(

ĝ0(r1 − r2) − ĥ0(r1)
)

+
1

(2πi)2r1r2

(

ĝ1(r1 − r2) − ĥ1(r2)
)

+
1

(2πi)3r1r2
2

(

ĝ2(r1 − r2) − ĥ2(r1)
)

+
1

(2πi)4r2
1r

2
2

(

ĝ3(r1 − r2) − ĥ3(r2) + Ψ̂∂2
1∂2

2F (r1, r2)
)

(21)

Note that from our assumptions on F , we have g0 = h0 = h1 = 0. We will have

two subcases:

(1) r1 = r2 = r. In this case, we easily see from the second formula above that

(22) |Ψ̂F (r, r)| ≤ |ĝ1(0)| + ‖Ψ∂1∂2F ‖1

4π2r2
.

(2) r1 6= r2. This case is slightly more subtle. We first note that g1(1) =

h1(0) = 0. It is also true that g1(0) = (∂2F )(0, 1). To see this, note that

(∂1F )(0, 1) = 0 and ∇F (0, 1) · (1,−1) = 0, both of which follow from the
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fact that F vanishes on the boundary of R2. The function g1 being smooth

otherwise, we conclude that

|ĝ1(r1 − r2)| ≤
|g′1(1) − g′1(0)| + ‖g′′

1‖1

4π2|r1 − r2|2
.

The estimates for g2 and h2 are simpler in nature. We use the bounds

|ĝ2(r1 − r2)| ≤
|g2(1) − g2(0)| + ‖g′

2‖1

2π|r1 − r2|
,

|ĥ2(r1)| ≤
|h2(1) − h2(0)| + ‖h′

2‖1

2π|r1|
,

as well as

|ĝ3(r1 − r2)| ≤ ‖g3‖1,

|ĥ3(r1)| ≤ ‖h3‖1,

and

|Ψ̂∂2
1∂2

2F (r1, r2)| ≤ ‖Ψ∂2
1∂2

2F ‖1.

Putting all these together, we see that

|Ψ̂F (r1, r2)| = O

(

1

|r1r2|(r1 − r2)2
+

1

|r1(r1 − r2)|r2
2

+
1

r2
1r

2
2

)

which is easily verified to be summable over all admissible values of r1 and

r2. We will return to this shortly for a more explicit estimate.

�

Explicit numerical estimates. In this subsection we will work with the specific

function ϕ in (15) for which

F (t1, t2) = −40(1− t1)(1 − t2)
(

1 − (2 − t1 − t2)
6
)

.

We will numerically estimate Caxial and Cmain using appropriate tail bounds on

their defining infinite series. This procedure is illustrated in Figure 2.

Estimating the value of Caxial. Since F is symmetric, we have ϕ̂(r, 0) = ϕ̂(0, r). We

use the formula (19) to evaluate ϕ̂(r1, 0). It is a simple calculation to show that

J1(t1) = −15(1− t1) +
240

7
(1 − t1)

2 − 20(1 − t1)
3 +

5

7
(1 − t1)

9.

Using this expression, we find that |J ′
1(0) − J ′

1(1)| = 15 and

∫ 1

0

|J ′′
1 | ≤

(
∫ 1

0

(J ′′
1 )2
)1/2

= 8
√

15.

Hence by (20), we obtain the estimate

|ϕ̂(r, 0)| = |ϕ̂(0, r)| ≤ 15 + 8
√

15

4π2

1

r2
.

If we define

(23) Caxial(N) =
∑

|r|≤N

(|ϕ̂(r, 0)| + |ϕ̂(0, r)|) ,
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r
1

r
2

Figure 2. Estimating the values of Caxial and Cmain. Circled dots

correspond to the Fourier coefficients along the diagonal for which

a separate decay estimate holds.

then it follows that

0 ≤ Caxial − Caxial(N) ≤ 15 + 8
√

15

π2

1

N
<

5

N
.

To estimate Caxial(N), we still need the actual expression for ϕ̂(r, 0), which is

given in (30). Taking N = 50000, numerical computation shows that Caxial(N) =

2.90278 . . .; hence it follows that

2.90278 ≤ Caxial ≤ 2.90289.

Estimating the value of Cmain. We shall estimate the diagonal terms first. We have

g1(t) = −240t(1− t)

from which we obtain

|ĝ1(0)| = 40,

and

|∂1∂2F (t1, t2)| =
∣

∣1200(1− t1)(1 − t2)(2 − t1 − t2)
4 + 280(2− t1 − t2)

6 − 40
∣

∣,

≤ 1200(1− t1)(1 − t2)(2 − t1 − t2)
4 + 280(2− t1 − t2)

6 + 40

from which we obtain

‖Ψ∂1∂2F ‖L1([0,1)2) ≤ 80.
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Hence by (22), we obtain the estimate

|ϕ̂(r, r)| ≤ 30

π2

1

r2

from which it follows that
∞
∑

|r|=N+1

|ϕ̂(r, r)| ≤ 60

π2

1

N
.

We next estimate ϕ̂(r1, r2) in the case when r1 6= r2. We begin by noting that

ĝ1(r1 − r2) =
120

π2(r1 − r2)2
, r1 6= r2.

We have

g2(t) = 240(1 + 5t(1 − t)),

h2(t) = −40 + 280(1− t)6,

g3(t) = 240(−12− 15t + 20t2),

h3(t) = −1680(1− t)5,

∂2
1∂2

2F (t1, t2) = 14400(2− t1 − t2)
2(5 + t21 + t22 − 5t1 − 5t2 + 3t1t2),

from which we obtain

ĝ2(r1 − r2) = − 600

π2(r1 − r2)2
, r1 6= r2,

|ĥ2(r1)| ≤ 280

π|r1|
, r1 6= 0,

|ĝ3(r1 − r2)| ≤ 3080,

|ĥ3(r1)| ≤ 280,

‖Ψ∂2
1∂2

2F ‖1 = 2800.

Putting these together, we finally obtain the estimate

(24) |ϕ̂(r1, r2)| ≤
105

π4

1

|r1r2|(r1 − r2)2
+

420

π4

1

r2
1r

2
2

.

The following is a simple lemma:

Lemma 3. For any N ≥ 1, one has

(25)

∞
∑

R=N+1

∑

max(|r1|,|r2|)=R

min(|r1|,|r2|)6=0

1

r2
1r

2
2

<
4π2

3

1

N
,

and

(26)

∞
∑

R=N+1

∑

max(|r1|,|r2|)=R

min(|r1|,|r2|)6=0
r1 6=r2

1

|r1r2|(r1 − r2)2
< 4

(

π2

3
+ 1

)

1

N
.

Proof. The first inequality simply follows from

∑

max(|r1|,|r2|)=R

min(|r1|,|r2|)6=0

1

r2
1r

2
2

=
8

R2

R−1
∑

r=1

1

r2
≤ 4π2

3

1

R2
.
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For the second inequality, we first use the symmetries to write

∑

max(|r1|,|r2|)=R

min(|r1|,|r2|)6=0
r1 6=r2

1

|r1r2|(r1 − r2)2
=

4

R

R−1
∑

r=1

1

r(R − r)2
+

4

R

R
∑

r=1

1

r(R + r)2
− 1

2R4
.

Using the identity

1

r(R − r)2
=

1

Rr(R − r)
+

1

R(R − r)2
,

and Cauchy-Schwarz inequality we have

4

R

R−1
∑

r=1

1

r(R − r)2
=

4

R2

(

R−1
∑

r=1

1

r(R − r)
+

R−1
∑

r=1

1

(R − r)2

)

<
4π2

3

1

R2
.

For the remaining terms, we use the trivial estimate

4

R

R
∑

r=1

1

r(R + r)2
− 1

2R4
<

4

R2
.

Hence
∑

max(|r1|,|r2|)=R

min(|r1|,|r2|)6=0
r1 6=r2

1

|r1r2|(r1 − r2)2
< 4

(

π2

3
+ 1

)

1

R2
,

and the result follows. �

If we define

(27) Cmain(N) =

N
∑

R=1

∑

max(|r1|,|r2|)=R

min(|r1|,|r2|)6=0

|ϕ̂(r1, r2)|,

then we have

(28) 0 ≤ Cmain − Cmain(N) <

(

340

π2
+

420

π4

)

1

N
<

40

N
.

For N = 4000, numerical computation using the formulas (31) and (32) reveals

that Cmain(N) = 4.75145 . . .; hence with the above error estimate, we have

(29) 4.75145 ≤ Cmain ≤ 4.76146.

Explicit expressions for ϕ̂(r1, r2). The following formulas have been computed

using Mathematica, though it is also possible to compute them easily using the

iterative procedure based on integration by parts which was outlined in this section

earlier.

(30) ϕ̂(r, 0) =
15

4π2r2

(

1 − 6

π2r2
+

45

π4r4
− 135

π6r6

)

− i
60

7π3r3

(

1 +
63

8π2r2
− 315

8π4r4
+

945

16π6r6

)

.
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(31) ϕ̂(r, r) =
10

π2r2

(

1 − 21

π2r2
+

315

2π4r4
− 945

2π6r6

)

+ i
55

π3r3

(

1 − 126

11π2r2
+

630

11π4r4
− 945

11π6r6

)

.

(32) ϕ̂(r, s) =

− 1575

4 π8 r6 (r − s)
2 +

525

4 π6 r4 (r − s)
2 − 35

2 π4 r2 (r − s)
2 − 1575

4 π8 (r − s)
2
s6

+
225

2 π8 r (r − s)
2
s5

525

4 π6 (r − s)
2
s4

+
225

2 π8 r2 (r − s)
2
s4

+
225

2 π8 r3 (r − s)
2
s3

− 75

2 π6 r (r − s)2 s3
− 35

2 π4 (r − s)2 s2
+

225

2 π8 r4 (r − s)2 s2
− 75

2 π6 r2 (r − s)2 s2

+
225

2 π8 r5 (r − s)2 s
− 75

2 π6 r3 (r − s)2 s
+

5

π4 r (r − s)2 s

i
(

− 1575

4 π9 r7 (r − s)2
+

525

2 π7 r5 (r − s)2
− 105

2 π5 r3 (r − s)2
− 1575

4 π9 (r − s)2 s7

+
225

2 π9 r (r − s)2 s6
+

525

2 π7 (r − s)2 s5
+

225

2 π9 r2 (r − s)2 s5
+

225

2 π9 r3 (r − s)2 s4

− 75

π7 r (r − s)
2
s4

− 105

2 π5 (r − s)
2
s3

+
225

2 π9 r4 (r − s)
2
s3

− 75

π7 r2 (r − s)
2
s3

+
225

2 π9 r5 (r − s)
2
s2

− 75

π7 r3 (r − s)
2
s2

+
15

π5 r (r − s)
2
s2

+
225

2 π9 r6 (r − s)
2
s

− 75

π7 r4 (r − s)
2
s

+
15

π5 r2 (r − s)
2
s

)

.
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