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Note: Most of the illustrations in these notes are omitted. Please draw
your own!

3. The hyperbolic plane

Remember the Euler chracteristic argument we used to show that high-
genus surfaces don’t have flat structures:

If we triangulate a manifold, then we have

E = 3F/2

and if that manifold is a surface of genus g, we have

F − E + V = 2g − 2

or
F = 4g − 4 + 2V

The average number of faces around a vertex is 3F/V (three “points” for
each vertex, divided by the number of vertices), so we get

3F

V
=

12g − 12
V

+ 6

So, a triangulation of a sphere will have fewer than 6 triangles around each
vertex on average, a torus will have an average of 6, and a genus g surface,
when g is large, will have more than 6.

If you glue equilateral triangles together with 5 to a vertex, you get an
icosahedron, which approximates one of our model spaces, the sphere. If
you glue 6 at a vertex, you get a plane. If you glue 7 at a vertex, you get
an approximation of the hyperbolic plane.

One way of saying this is that the sphere is a surface with positive curva-
ture; roughly, there’s a little less stuff around each point than in the plane
– circles are a little smaller, triangles are a little thicker, and geodesics from
a point spread out slowly and eventually intersect again.

The hyperbolic plane is the opposite; there’s a little more stuff around
each point than in the plane. We’ll see that circles are a lot bigger, triangles
are a lot thinner, and geodesics spread much more quickly than in the plane.

There are a couple of ways to make models of hyperbolic planes; you
can glue together triangles so that seven triangles surround each vertex,
or you can crochet hyperbolic planes by continuously adding stitches. If
you’ve ever tried this, though, you’ll see the problem – exponential growth.
Whenever you add on a new layer of triangles, the length of the boundary
grows by at least half, so a disc of radius r uses exponentially many tri-
angles. So it can’t really be embedded in R3 – a large hyperbolic disc is
essentially going to be a solid ball of paper.

Instead, we’ll construct a couple of models of the hyperbolic plane.
Here’s one (figure omitted, though see

• http://www.geometrygames.org/KaleidoTile/index.html
• http://bulatov.org/math/1001/index.html)
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Poincare disc model: a unit disc with metric scaled by 2
1−r2 . Note that

although this is based on the unit disc, it’s infinite in all directions.
The problem with having to view the hyperbolic plane this way is that it’s

hard to see all the symmetries. This picture has some obvious symmetries;
for instance, rotating around the center is a symmetry. But there are more
subtle ones too. These are all based on inversions.

Inversion “reflects” through a circle or line. (figure omitted) If C is the
circle of radius 1, then inversion through C is the map (in polar coordinates)

(r, θ) → (1/r, θ)

This:
• fixes the circle and swaps the inside and outside
• sends circles and lines to circles and lines
• preserves angles

Exercise: Check any of these assertions that we didn’t prove in class.
We can define inversion through any circle with the same properties,

and an inversion through a circle which is orthogonal to the unit circle is
an isometry of the hyperbolic plane. Then:

• A composition of inversions through two diameters of the plane is
a rotation fixing the center.

• A composition of inversions through two non-intersecting circles is
a “translation”

• The hyperbolic plane is isotropic – there is an isometry taking any
point and direction to any other point and direction. (Proof: It’s
enough to show that there’s an isometry taking any point to the
center. There’s a family of circles, centered on the x-axis, which
are orthogonal to the unit disc. Inversions through these take the
center to anywhere on a radius of the disc, and rotations take this
radius to the entire thing.

We can use these symmetries to describe the geodesics in the hyperbolic
plane. Remember the symmetry trick – any axis of a reflection is a geodesic.
Here, the axis of an inversion has to be a geodesic, by symmetry, and for
any point and direction, one can find a circle which is orthogonal to the
unit circle. So, in this picture, the geodesics in the hyperbolic plane are the
circles (and lines) orthogonal to the unit circle.

Knowing this, we can see that a lot of the properties of the hyperbolic
plane are the opposite of properties of the sphere: instead of no geodesics
being parallel, lots of geodesics are parallel. Instead of triangles having
larger angles than usual, they have smaller angles. Instead of circles growing
slowly and then shrinking, they grow exponentially quickly.

3.1. Hyperbolic surfaces. The surface of genus 2 is homeomorphic to an
octagon with some edges glued. (figure omitted) All eight vertices of the
octagon are glued into one vertex. That vertex is surrounded by all eight
corners of the octagon, so we can get a hyperbolic structure by constructing
a regular octagon all of whose angles are π/4. (figure omitted)

We can do the same thing with other surfaces too; a hyperbolic genus
g surface can be formed by gluing the edges of a regular 4g-gon. (Note:
As you saw in the exercises from the last section, there are lots of different
flat structures on the torus. There are also lots of different hyperbolic
structures on genus g surfaces, but that’s another course...)

In fact, this even lets us put a structure on surfaces with holes (for in-
stance, the torus with a point removed (figure omitted): if we drag vertices
all the way out to the unit circle, we get ideal triangles (figure omitted),
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which glue to give complete structures on surfaces with holes – these are
called cusped hyperbolic surfaces.

There’s another picture of the hyperbolic plane which illustrates these
cusps better: take the disc picture and invert around a circle centered at
(0, 1). This sends the unit disc to a half plane; if we translate this half-
plane so that the boundary is the x-axis, this is the upper half-plane model.
This inversion clearly distorts the metric, but the distortion is very simple:
lengths of curves at height y are scaled by a factor of y.

Most of what we’ve seen still holds true – geodesics in the disc model were
circles and lines, and inversion preserves circles and lines, so the geodesics in
this model are circles and lines orthogonal to the x-axis (that is, semicircles
centered on the x-axis an vertical lines. But new symmetries show up; for
instance, translating left or right is a symmetry of the hyperbolic plane, as
is scaling from the origin.
Exercise: Draw some ideal triangles in the upper half-plane model. Make
sure that their edges are geodesics! Can you draw an ideal triangle with an
edge which is a vertical line?
Exercise: A translation of the upper half plane to the left or right generates
a discrete, fixed-point free group of symmetries. Describe the complete
hyperbolic surface corresponding to this group? (Look up “pseudosphere”
or “tractrix” to see a piece of this surface embedded in R3.)


