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An important but missing component in the application of the kernel independent 
fast multipole method (KIFMM) is the capability for flexibly and efficiently imposing 
singly, doubly, and triply periodic boundary conditions. In most popular packages such 
periodicities are imposed with the hierarchical repetition of periodic boxes, which may 
give an incorrect answer due to the conditional convergence of some kernel sums. Here 
we present an efficient method to properly impose periodic boundary conditions using 
a near-far splitting scheme. The near-field contribution is directly calculated with the 
KIFMM method, while the far-field contribution is calculated with a multipole-to-local 
(M2L) operator which is independent of the source and target point distribution. The M2L 
operator is constructed with the far-field portion of the kernel function to generate the 
far-field contribution with the downward equivalent source points in KIFMM. This method 
guarantees the sum of the near-field & far-field converge pointwise to results satisfying 
periodicity and compatibility conditions. The computational cost of the far-field calculation 
observes the same O(N) complexity as FMM and is designed to be small by reusing the 
data computed by KIFMM for the near-field. The far-field calculations require no additional 
control parameters, and observes the same theoretical error bound as KIFMM. We present 
accuracy and timing test results for the Laplace kernel in singly periodic domains and the 
Stokes velocity kernel in doubly and triply periodic domains.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Since its invention in the 1980s [1], the Fast Multipole Method (FMM) has been applied in many areas of computational 
science, with its popularity due to its O(N) complexity, efficient arithmetic intensity in implementation [2], and better 
scalability compared to competing methods like FFT in performing the N-body sum:

qt
i =

∑
j

K (xi, y j)φ
s
j, ∀i, j ∈ {1,2, ..., N}, (1)

where qt
i is the potential located at xi , φs

j is the source intensity located at y j , and K (xi, y j) is the kernel function. The 
original version of FMM utilizes multipole expansions, and triple periodicity (TP) can be implemented with an explicit Ewald 
sum of the multipole basis functions [3]. However, performing Ewald sums on-the-fly is expensive and some FMM packages 
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simply approximate periodic boundary conditions by including the nearest image of the original box [4]. Also, single and 
double periodicity (SP and DP) implementations are not as straightforward as the TP case because the Ewald summation of 
the basis functions may involve special functions which are difficult to evaluate to high precision [5,6].

Kabadshow [7] proposed a periodizing method based on splitting the near and far-field contributions of the Laplace 
kernel. Contributions from periodic images adjacent to the original box B0 are considered ‘near-field’, and contributions 
from all other periodic image boxes are considered ‘far-field’. The far-field contributions are from boxes well-separated 
from B0 and can be approximated by multipole expansion. The far-field contributions are precomputed to high precision 
as a multipole-to-local (M2L) operator applied on multipole basis functions. With this scheme, SP, DP and TP boundary 
conditions can be calculated efficiently without invoking Ewald after the precomputing stage, as long as the corresponding 
M2L operators are properly evaluated. However, this is an explicit summation method which relies on a specific order of 
summing the periodic images of the multipole basis functions, and is hard to generalize to kernel independent FMM in the 
absence of multipole basis functions.

The kernel independent fast multipole method (KIFMM) [8] reformulated the FMM into a ‘method of fundamental solu-
tions’ (MFS) form, by replacing the multipole expansion with a set of ‘equivalent sources’. In this way, the same code can 
be used for different kernel functions K (x, y). Some recent implementations of KIFMM have used a Hierarchical Repetition 
(HR) method, to hierarchically ‘copy-and-paste’ the original box into a rectangular tiling with (Nx, N y, Nz) periodic images 
in (x, y, z) directions, where (Nx, N y, Nz) is usually taken to be a cube. The copy is hierarchical in the sense that, for a 
k level hierarchy, Nx ∼ 2k . This method reuses the adaptive octree (or quadtree in 2D) structure built for the original box 
B0, and is very efficient because the hierarchical repetition sum of all equivalent sources can be precomputed and stored 
for reuse as an M2L translation operator. However, this method does not always give the correct answer for typical kernels 
with 1/r decay, like the Laplace or the Stokes kernel. This is because the periodic sum of such 1/r kernels is conditionally 
convergent, which makes their results subject to the order of summation. For example, a cubic sum with Nx = N y = Nz

and a rectangular sum Nx = 2N y = 2Nz give different answers due to the conditional convergence, and both results are not 
correct. A recent implementation [9] of HR method resolved this conditional convergence by removing the net monopole 
and net dipole moments in the original box B0 in the hierarchical sum. With this method, finite results can be achieved 
but the physical compatibility conditions are often not satisfied. In most physical applications the conditional convergence 
problem is resolved with the well-known Ewald sum [5,10]. The Ewald sum imposes the exact periodicity by starting from 
a Fourier expansion of the field in the original box B0, and therefore is free from the conditional convergence error arising 
from particular orders of summation.

Recently, methods have been proposed to circumvent the conditional convergence problem for both FMM and KIFMM 
by directly imposing periodicity on a set of check points placed on a chosen surface [11,12]. These methods also follow 
the idea of near-far splitting, where the near-field is directly calculated by FMM, and the far-field is solved for on a set of 
‘equivalent sources’ instead of being summed as developed by Kabadshow [7]. The locations of the equivalent sources are 
usually on a surface outside the original box, and are chosen according to a high-accuracy quadrature rule suitable for the 
dimension and geometry. Gumerov and Duraiswami [12] demonstrated the application of this idea in the triply periodic 
electrostatic problem in 3D space. In more recent work, Barnett et al. [11] systematically analyzed the method in a doubly 
periodic domain for both the Laplace and Stokes kernels in 2D space. However, partial periodicities (SP and DP in 3D space) 
are not easy to impose because imposing the partial periodicity on the check points is sometimes not sufficient to guarantee 
the periodicity in the entire periodic box, and the ‘zero in infinity’ condition in non-periodic directions must be supplied to 
determine the solution.

In this work, we develop a simple method to compute the periodic kernel independent FMM for singly, doubly and triply 
periodic boundary conditions. The method follows the idea of near-far splitting and the M2L operator, but keeps the KIFMM 
formulation. The method is an improvement of the methods discussed above and is designed to:

• Reuse the data already calculated by KIFMM.
• Minimize the modification of the underlying KIFMM code.
• Converge close to machine precision with known error analysis.
• Keep the O(N) complexity of KIFMM and minimize MPI communication.
• Add no extra control points, equivalent sources, or tweaking parameters to KIFMM.

We describe our general method in Section 2, and present accuracy and timing results for the Laplace kernel in SP ge-
ometry and the Stokes velocity kernel in DP and TP geometries in Section 3. Finally in Section 4 we discuss the possible 
optimization, extensions and applications of this method.

2. Methodology

2.1. The general idea

Before diving into the formulation of KIFMM, we first describe the general idea of our algorithm by comparing it with 
previous work [11,12], in which the periodicity is solved from a linear system. As a simple example, consider a unit rectangle 
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[0, 1)2 in 2D space, with its left, right, top and bottom boundary denoted as L, R, T , B . A doubly periodic function u(x, y)

satisfies a Poisson equation with sources φk located at rk and periodic boundary conditions:

∇2u =
∑

φkδ(r − rk), (2)

u(x + 1, y) = u(x, y), ∀x, y, (3)

u(x, y + 1) = u(x, y), ∀x, y. (4)

Barnett et al. [11] showed that the solution to this equation is unique up to a constant. This constant can be later determined 
by some other physical information of the problem, like a fixed temperature at some point. Therefore after adding the 
equivalent sources to the system, the strength of the equivalent sources can be determined uniquely to approximate the far 
field. Gumerov and Duraiswami [12] used a similar formulation in 3D, except that the periodicity is checked for points on a 
spherical (in 3D) surface instead of on the L, R, T , B boundaries of the domain. Similar uniqueness argument is also proved 
in the work by Barnett et al. [11] for doubly periodic Stokes problems on 2D domains.

When the above method is extended to partial periodicity, uniqueness is no longer guaranteed by simply imposing the 
periodic boundary condition. When periodicity in the y direction is removed from the above equation, we have a general 
solution to the 2D Laplace equation with single periodicity in x-direction with any integer k:

uS P = a0 + b0 y +
∑
k �=0

ck exp (2kπ ix)exp (2kπ y) . (5)

With any real a0, b0 and ck , uS P satisfies the partially periodic Laplace equation:

∇2u = 0, u(x + 1, y) = u(x, y), ∀x, y. (6)

For any solution u to Eq. (2) with periodicity in x direction only, u + uS P is still a solution. Therefore, extra conditions 
must be supplied in the y direction to solve for the constants a0, b0 and ck to maintain the uniqueness of the above 
method, otherwise the strength of the added equivalent sources cannot be determined. For Helmholtz kernels such decaying 
conditions can be determined as y → ±∞ as demonstrated in [13], and systems with Laplace/Stokes kernels could be 
similarly solved. Similar families of uS P are also straightforward to construct for the Stokes equations by taking a Fourier 
expansion in the periodic directions Eq. (5).

Instead of imposing periodicity by solving the governing PDEs with periodicities, which relies on the uniqueness of 
solutions, we choose to directly start from the periodic Green’s function K P for those PDEs. Those periodic Green’s functions 
are usually explicitly known as absolutely convergent series, because they are usually derived by the Fourier analysis of the 
corresponding PDE. With those K P , the following summation automatically satisfy the conditions in both periodic and 
non-periodic directions:

qt
i =

∑
j

K P (xi, y j)φ
s
j, ∀i, j ∈ {1,2, ..., N}. (7)

However evaluating K P for every pair of source–target is usually expensive, and our objective is to use the freespace kernel 
K with KIFMM, and to ensure the results converge pointwise to Eq. (7). To achieve this, we split the periodic infinite domain 
into a small near field and a far field. The near field is easy to calculate with KIFMM because it is simply a finite system 
with open boundary conditions. The effect of periodicity is added by letting the far field generate the remaining piece of a 
true periodic solution. The contributions from far field are smooth on the original domain, which allows us to approximate 
the solution with a few equivalent sources, following the idea of KIFMM.

To apply the method presented in this work to a new kernel K , we need to know its periodic form K P explicitly. In 
this work K P is constructed with Ewald methods for convenience, because Ewald methods have been extensively used for 
simulations of Laplace and Stokes systems. However, the Ewald methods are not the only choice. K P can also be constructed 
by direct sums in either real space or Fourier space if the convergence is rapid. For example for the fast decaying Yukawa 
potential exp(−κr)/r with a real κ , a direct summation of several image boxes in real space is often sufficient (depending on 
the value of κ ). For the biharmonic equation in 3D space, a series summation in Fourier space is also sometimes sufficient 
because the Green’s function converges as 1/k4 in Fourier space. If K P is not easy to find analytically, the method of Barnett 
et al. [11] can be used if the uniqueness is guaranteed as discussed above. The Hierarchical Repetition method in [9] is also 
applicable if the far-field is properly fixed to satisfy the physical compatibility condition. The central idea of our method is 
to construct the near & far field converging pointwise to Eq. (7) when summed together so that the periodicity and physical 
compatibility condition are automatically satisfied by K P . We do so efficiently by reusing the KIFMM data for near field to 
construct the far field.

2.2. Formulation and algorithm

Consider the following formulation of the periodic FMM problem:
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Problem. Given T target points, S source points each with strength φs in a box B0 = [0, Lx) × [0, L y) × [0, Lz), and a kernel 
function K (xt , ys), evaluate the potential on each target point with periodic BC:

qt =
∑
p∈P

K (xt, ys + p)φs. (8)

Here t ≤ T and s ≤ S are the indices for target and source points, xt is the location of target points, ys is the location of 
source points, and repeated the index s implies a summation over all s ∈ S . P is the set of all periodic vectors. For example, 
for a unit cubic box periodic in z direction: P = {p ∈ Z

3 : px = 0, p y = 0, pz ∈ Z}.
We will assume for simplicity that all target and source points are distributed in a unit cubic box B0 = [0, 1)3, which we 

will call the “original box”. All other periodic boxes (with p �= 0) are called “image boxes”.
We follow the original KIFMM notations [8]:

Bi a box in the ith level of the octree
N B the near-field of B , including B itself
F B =Rd/N B the far-field of B , where d is the spatial dimension
I B

s the set of indices of source points inside B
I B
t the set of indices of target points inside B

φB,s the strength of source points inside B
qB,t the potential at target points inside B
yB,u the upward equivalent surface of B
φB,u the upward equivalent density of B
xb,u the upward check surface of B
qB,u the upward check potential of B
yB,d the downward equivalent surface of B
φB,d the downward equivalent density of B
xB,d the downward check surface of B
qB,d the downward check potential of B
p the number of grid points per cube edge for the discretization of equivalent surfaces
s the maximum number of source (or target) points allowed in a leaf box
N the total number of source and target points

We choose to follow the original KIFMM notation [8] to ease the comparison. This is in contrast to more standard 
notations, say where q means charge and φ means potential. For each cubic box in the octree, its equivalent and check 
surfaces are cubic surfaces enclosing the octree box as defined in [8]. The equivalent and check surfaces for the root box 
are illustrated in Fig. 1. The discretization in 3D space is a regular grid on the cube surface of equivalent densities, and p
includes the cube vertices. N B includes boxes adjacent to B , within a distance of � times B ’s edge length. Following the 
definition of Ying et al. [8], N B includes boxes in the same level of B in the octree. For example, in this work B0 = [0, 1)3

refers to the unit cubic original box, and N B0 (� = 1) includes 2 neighboring image boxes in a singly periodic geometry and 
26 neighboring image boxes in a triply periodic geometry. In the case of � = 2, N B0 (� = 2) includes 4 and 124 neighboring 
boxes in those two cases respectively. Depending on the boundary conditions, the number of neighboring boxes in N B may 
be different from N B0 for a leaf box B in the octree. For example, in a doubly periodic system N B is smaller than N B0 , for 
a leaf box B at the open boundary.

The fundamental idea in KIFMM is that for a set of target points in B , the field due to source points far away (from F B ) 
is smooth enough to be approximated by an equivalent source surface enclosing the target points. The strength distribution 
on the equivalent surface can be calculated by matching the field strength from the source points and from the equivalent 
surface on another check surface. The density φB,u on yB,u approximates the effect of source points in the box B (φB,s with 
s ∈ I B

s ) to all far away target points, and is checked on xb,u . The density φB,d on yB,d approximates the effect of all far away 
source points on the potential of target points in the box B (qB,t with t ∈ I B

t ), and is checked on xb,d . Application of this 
formulation within an adaptive octree structure leads to the following five crucial steps of KIFMM:

• S2M: The Source to Multipole operation evaluates φB,u with φB,s in a leaf box B .
• M2M: The Multipole to Multipole operation transforms φB,u of a box’s children to its own φB,u .
• M2L: The Multipole to Local operation transforms φB,u of a box to the φB,d of a non-adjacent box.
• L2L: The Local to Local operation transforms the φB,d of a box’s parent to its own φB,d .
• L2T: The Local to Target operation evaluates qB,t with known φB,d .

Besides these five steps, for leaf boxes not well separated, S2T operations are directly applied on every pair of source and 
target points in those boxes to calculate the contributions to qt .

We follow the idea of KIFMM, and split the periodic geometry into the near-field N B0 and the far-field F B0 , with an 
adjustable splitting layer number �:
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qt(xt ∈ B0) =
∑

p∈N B0

K (xt, ys + p)φs

︸ ︷︷ ︸
near-field: qt

N

+
∑

p∈F B0

K (xt, ys + p)φs

︸ ︷︷ ︸
far-field: qt

F

, (9)

where qt
N is a finite sum for a well defined ‘free-space’ kernel function K , and is straightforward to calculate with KIFMM. 

As demonstrated in Section 3.6 we found that adjusting � has almost no effect on the accuracy and timing of the algorithm, 
and so we fix � = 2 for results in this work. Also, due to the periodic structure, the octree and multipoles can be built 
and calculated for B0 only, and then we can ‘copy-and-paste’ to include all image boxes in N B0 . This costs much less than 
directly building an octree and evaluating multipoles for the extended domain N B0 , and this ‘copy-and-paste’ method is 
usually already implemented in most KIFMM packages performing hierarchical repetition calculations.1

Because F B0 is well separated from B0, the far-field contribution qt
F can be approximated by the equivalent densities2:

qt
F =

∑
p∈F B0

K (xt, yB0+p,u)φB0+p,u =
∑

p∈F B0

K (xt, yB0+p,u)φB0,u, (10)

where we utilized the periodicity of B0: φB0+p,u = φB0,u , and φB0,u is already calculated in the KIFMM calculations for qt
N . 

The far-field sum can then be written as an ‘exact periodic’ part and an ‘near-field’ part:

qt
F =

∑
p∈P

K (xt, yB0+p,u)φB0,u −
∑

p∈N B0

K (xt, yB0+p,u)φB0,u (11)

= K P (xt, yB0,u)φB0,u −
∑

p∈N B0

K (xt, yB0+p,u)φB0,u, (12)

where the periodic kernel K P is defined with the free-space kernel K :

K P =
∑
p∈P

K (xt, ys + p). (13)

We can further define a far-field periodic kernel:

K P ,F (xt, ys) = K P (xt, ys) −
∑

p∈N B0

K (xt, ys + p), (14)

and the far-field contribution is simplified:

qt
F = K P ,F (xt, yB0,u)φB0,u. (15)

For the Laplace kernel K = 1/|xt − ys|, K P is well-known as the Ewald summation, and its singly, doubly and triply 
periodic formulations in 3D space are given by Tornberg [5]. For Stokes kernels for velocity, pressure, stress, etc., the Ewald 
sums for K P are also well-known [10,14–17] and can also be calculated by a transform from the Laplace kernel to the 
Stokes kernel [18]. For more general form of kernels, they can usually be expressed by a combination of 1/rn with different 
n, or as a sum of spherical multipole basis functions [19–21].

The existence of K P usually depends on some compatibility conditions, related to the physical setting. Such a compati-
bility condition usually manifests itself as requiring the convergence of K P . For example, for an electrostatics problem the 
net charge in the original box B0 must be zero, otherwise the periodic sum of potentials is divergent. For Stokes problems, 
the compatibility condition is different for different periodic geometries, and will be discussed later in Section 3. In general, 
the compatibility condition usually takes either (or both) of the two following forms:

Neutrality:
∑
s∈S

φs = 0, (16)

Specified net field integration:
∫
B0

qt(x)d3x = C, (17)

where C is a given constant and is usually 0. In some cases the above two conditions may be modified to fit the physical 
setting, and one example is given in Section 3.3.

With known K P for a given K , we can evaluate the periodic FMM with the following algorithm:

1 Some minor modifications to the hierarchical repetition routines may be necessary because N B0 always includes an integer � of images of B0 in every 
periodic direction, instead of possibly fractional copies in the hierarchical repetition routines.

2 In the following K (xt , yu)φu and K (xt , yd)φd should be understood as an integration over the surfaces yB,u and yB,d .
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Algorithm 1. Evaluate periodic FMM (8) with near-far splitting method

a). Call KIFMM to calculate qt
N .

b). Read φB0,u from the KIFMM routine.
c). Calculate qt

F with Eq. (11) and add it to qt
N .

This algorithm is straightforward to implement, but is far from optimal because the evaluation of qt
F requires frequent 

calls to K P , which is usually very expensive although in practice K P is always calculated with some accelerated methods 
like Particle Mesh Ewald or Spectral Ewald [14,17].

In fact, step c) can be accelerated with the M2L translation operation, as KIFMM does for all well separated boxes. The 
operation is to solve a first-kind integral equation on the downward equivalent and check surfaces, to find the equivalent 
density generating fields in B0 matching the periodic image boxes in F B0 :

∀x ∈ xB0,d :
∫

yB0,d

K (x, y)φB0,d(y)d y =
∫

yB0,u

K P ,F (x, yB0,u)φB0,ud y. (18)

With the discretization of equivalent and check surfaces, we have a linear equation:

AφB0,d = KP ,F φB0,u, (19)

where the matrices A and KP ,F will be explicitly demonstrated in the next section. The solution is a linear M2L translation 
operator TM2L =A†KP ,F on arbitrary φB0,u :

φB0,d = TM2Lφ
B0,u . (20)

Here we use the pseudo-inverse A† because A would be numerically usually singular. We discuss this further in Section 3.1.
This operator depends only on K , K P , and the check and equivalent surfaces, and is independent of the source and 

target point distributions in the box B0. With given locations and discretizations of the upward and downward equivalent 
surfaces, TM2L need be calculated only once for all simulations. With this method, we propose an algorithm much faster 
than Algorithm 1:

Algorithm 2. Evaluate periodic FMM (8) with a near-far splitting method and TM2L operator
Stage 1. Precomputing.

a). Calculate TM2L by solving Eq. (18).

Stage 2. KIFMM Evaluation.

a). Call KIFMM to calculate qt
N .

b). Read φB0,u from the KIFMM routine.
c). Calculate φB0,d(y) = TM2Lφ

B0,u .
d). Evaluate qt

F = K (xt , yB0,d)φB0,d and add it to qt
N .

Stage 1 is illustrated in Fig. 1. This is much faster than Algorithm 1 because it involves only the free-space kernel K
in the evaluation stage. The two stages of Algorithm 2 are similar to the method proposed by Gumerov and Duraiswami 
[12], but Algorithm 2 is much faster because it requires no extra control points and reuses the octree data for near-field 
calculations. In fact Algorithm 2 can be further accelerated with proper modifications of the underlying KIFMM code, by 
replacing step d) with a downward pass of L2L and L2T operations through the octree. However as shown in Section 3.5 the 
cost of step d) is already small and we choose to keep the underlying KIFMM code as simple as possible, without applying 
this optimization.

The discretization and locations of the check and equivalent surfaces are the key component of this method. In this 
work we follow the choice of the original KIFMM method [8] and the high-performance KIFMM package PVFMM [9,22]. For 
the original box B0 = [0, 1)3, the locations of yB,u and xB,d are identical, with both being a cube with edge length 1.05
centered at (0.5, 0.5, 0.5). The locations of xB,u and yB,d are also identical, being a cube with edge length 2.95 also centered 
at (0.5, 0.5, 0.5). The discretization is chosen to be a regular mesh uniformly distributed on the 6 surfaces of a cube. On 
each edge p points (including two vertices) are uniformly distributed, and in total 6(p − 1)2 + 2 points are distributed on 
the cube surface.

2.3. The method to solve for TM2L

The theory about approximating TM2L with Eq. (18), with rigorous error analysis, is well understood in terms of both 
integral equation theory and for the KIFMM method [8]. In the following we briefly describe the structure of TM2L and the 
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Fig. 1. A graphical representation of Algorithm 2 for the singly periodic boundary condition. N B0 is chosen with � = 1 layer of image boxes. The top figure 
shows the downward check and equivalent surfaces, and the bottom figure shows the downward check surface of B0 and all upward equivalent surfaces 
of periodic image boxes belonging to F B0 . The algorithm is to find a set of (discretized) downward equivalent sources φB0,d

j to match the field in B0

generated by all φu
j ∈ F B0 . Imposing periodicity gives all φu

j ∈ F B0 equal to φB0,u
j , which is calculated by FMM for N B0 . In this figure the surfaces yB0,u

and xB0,d are plotted as not overlapping with each other, but in real calculations they are usually chosen to be identical.

method to solve for it. For a general kernel function K : Rks → Rkt , ks is usually termed as the source dimension of K , 
and kt is usually termed as the target dimension. For example, the Laplace kernel is defined on R →R, the Stokes velocity 
kernel on R3 → R3, and the Stokes pressure kernel on R3 → R. With a chosen discretization of p points per cube edge, 
the operator TM2L takes a block column form:

TM2L =
[
T B0,d

1 ,T B0,d
2 , · · · ,T B0,d

n

]
∈ Rksn×ksn, (21)

where n = 6(p − 1)2 + 2 is the total number of discretization points on the equivalent surface. Each T B0,d
j , 1 ≤ j ≤ n, has a 

block row structure:

T B0,d
j =

[
φ

B0,d
1 j ,φ

B0,d
2 j , · · · ,φ

B0,d
nj

]T
, (22)

where each small square block φB0,d
i j ∈ Rks×ks , and denotes the strength of a source needed at location i on the downward 

equivalent surface of B0, due to the source with unit strength at location j on the upward equivalent surface of B0.
Each block column vector T B0,d

j is solved for through a linear equation,

AT B0,d
j = QB0,d

j , (23)

where QB0,d
j also has a row block structure:

QB0,d
j =

[
qB0,d

1 j ,qB0,d
2 j , · · · ,qB0,d

nj

]T
, (24)

∀i, qB0,d
i j = K P ,F

(
xB0,d

i , yB0,u
j

)
. (25)

Each block qB0,d
i j , having dimension (kt , ks), denotes the far-field potential induced on check point i by equivalent source j. 

It is worth noting that while the upward equivalent surface yB0,u is chosen to overlap with the downward check surface 
xB0,d , the blocks qB0,d

ii (here the repeated index i does not mean summation) are not singular because K P ,F sums only the 
far-field contributions from F B0 .

The matrix A in Eq. (23) also has a block structure based on the free-space kernel K :

Ai j = K
(

xB0,d
i , yB0,d

j

)
. (26)

Usually the check and equivalent surfaces, xB0,d and yB0,d , are discretized with the same discretization parameter p in 
KIFMM implementations, and A is block square. Some work in the literature suggests using a finer discretization on the 
check surface and performing least squares [12] to solve for QB0,d instead of solving Eq. (23). We have found no benefit in 
j
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Table 1
Conditioning of the matrix A. The condition number grows approximately exponentially with increasing p, as is well known in the MFS (Method-of-
Fundamental-Solutions) community [23]. We identify singular values less than εsmax dimA as indicating rank deficiency, where smax is the largest singular 
value and dimA is the matrix dimension. ε = 2−52 is the floating point relative accuracy, which is defined as the distance from 1.0 to the next larger 
double precision number. This threshold is the default setting of both numpy and MATLAB, and also appears in [24].

p 6 8 10 12 14 16

Stokes κ 2.34E10 1.26E13 4.35E16 3.57E19 3.60E20 1.39E21
r/dimA 456/456 881/888 1320/1464 1609/2184 1822/3048 1977/4056

Laplace κ 1.13E9 3.61E12 1.19E16 4.20E19 3.64E19 1.75E20
r/dimA 152/152 296/296 444/488 550/728 628/1016 688/1352

accuracy from oversampling, and always use the same p for check and equivalent surfaces, at least for the results reported 
in this work. For kernels with dimension kt < ks , oversampling may be necessary to maintain the square shape of A. It is 
well-known that A can be numerically nearly singular with large condition number [23], and we shall discuss briefly the 
method to solve for it in Section 3.1.

2.4. Cost and error

With a chosen discretization parameter p, the cost of each stage of Algorithm 2 can be estimated. In the precomputing 
stage, TM2L is a matrix of O((6(p − 1)2 + 2)2) ∼ O(p4) entries, and solving for it requires the pseudo-inverse of a matrix 
of the same dimension. The theoretical cost of forming pseudo-inverses is well-known and we skip its discussion. The 
computation usually completes within 100 seconds and uses less than 1 GB of memory, and we give more details about the 
precomputation cost in Section 3.7. However this cost is unimportant because we only need to do it once for the chosen p
for a given kernel. In the evaluation stage, step a) has the usual O(N) complexity of KIFMM, and takes slightly more time 
compared to free-space KIFMM, because the near-field evaluation requires S2T direct summation of interactions across the 
periodic boundaries. This extra cost scales as O(sNB), where s is the maximum number of points allowed in one leaf box 
in the adaptive octree, and NB is the number of points located in the leaf boxes adjacent to the periodic boundary in the 
octree. The value of NB depends on the distribution of source and target points. Step b) takes negligible time because φB0,u

is simply an array of O(p2) elements. Step c) is a simple matrix–vector multiplication with a O(p4) cost, which is fast as 
usually p < 20. Step d) has a O(T p2) cost where T is the number of target points in B0, but we found this cost still much 
smaller than the cost of step a). Timing results are reported in Section 3.5.

Algorithm 2 is straightforward to implement with multi-threading utilities like OpenMP, because the pattern of step c) 
and step d) are ‘embarrassingly parallel’, requiring no communication. In the case of a distributed memory cluster with MPI, 
no modification to the algorithm is necessary. In fact, all inter-node communications are handled by the underlying KIFMM 
package in step a). Step c) has little cost and is easy to calculate on every node, and in step d) every node only needs to 
calculate a subset of qt

F located on its own memory.
The error of the periodizing method observes the same theoretical error estimates found for the original KIFMM work 

[8] because we designed the algorithm to reuse the data calculated by KIFMM, and the calculation of TM2L uses the same 
KIFMM formulation. Also, the K P ,F is straightforward to evaluate to machine precision by the Ewald method with its 
well-known error analysis [14], or by direct summation, depending on the geometry. There is no need to repeat the error 
analysis in this work, and we show in Section 3 that we achieved the same error as the underlying PVFMM package.

In the following we show accuracy and timing results for the Laplace kernel and the Stokes velocity kernel3:

K = 1

|xt − ys|
, (27)

K = 1

8π

(
I

|xt − ys|
+ (xt − ys)(xt − ys)

T

|xt − ys|3
)

. (28)

3. Results

3.1. The backward stable solver for TM2L

The matrix A in Eq. (23) is well-known to be numerically rank-deficient with increasing p in the method of fundamental 
solutions (MFS) [23]. Table 1 shows the condition number κ and numerical rank of A for the Laplace and Stokes velocity 
kernels, where r denotes the numerical rank of A, and dimA ∝ 6(p −1)2 +2 represents the dimension of the square matrix 
A. The check and equivalent points are located on a cube with edge length 1.05 and 2.95, respectively. The rank-deficiency 
problem was initially ameliorated with Tikhonov regularization [8]. In PVFMM [9], a backward stable solver is used to 
improve the accuracy from ∼ 10−9 to ∼ 10−14 without regularization.

3 It is sometimes referred to as the Stokes single layer kernel in the boundary integral method.
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The backward stable solver is well-known to the numerical analysis community, but perhaps less so for more general 
readers. We find that backward stability is crucial, otherwise the accuracy may stagnate at 10−7 (or worse due to the large 
condition number of A). To assist in implementing the method proposed in this paper, we include here a brief description 
of the backward stable solver, and in Appendix B a brief comparison of open-sourced implementations. The solver works as 
follows for Eq. (23):

1. Construct A, and calculate its SVD: A = U S V T .
2. Calculate the approximate pseudoinverse S+

ε of S , by inverting all non-zero singular values in S whose absolute value 
is greater than εS V D , and setting all others to zero.

3. Calculate φB0,d
j for each j in the order implied by the parenthetical nesting: φB0,d

j = (
V S+

ε

)(
U T qB0,d

j

)
, or φB0,d

j =
V

((
S+
ε U T

)
qB0,d

j

)
.

The main point is to avoid the explicit construction of the approximate pseudoinverse matrix A+
ε = V S+

ε U T which yields a 
significant loss of accuracy.

There is a simple explanation as to why high accuracy can be achieved despite the numerical rank deficiency of matrix A. 
Equation (23) means the density T B0,d

j should be determined to match the condition on the check surface, and an almost 
singular A means the solution is (numerically) not unique. However, to generate the field we need, there is no need 
to distinguish between possible solutions. As long as Eq. (23) is accurately satisfied, the T B0,d

j does equally well for the 
ensuing potential calculations. The backward stability of the solver guarantees that any solution given by the solver satisfies 
Eq. (23) to machine precision, and therefore any solution will do. In this sense, the operator TM2L is not, nor need be, 
unique. As a consequence, there is no need to use the same solver in the precomputing of TM2L and the actual KIFMM 
calculation, as long as they are both backward-stable. For example, one can solve for TM2L conveniently in MATLAB with 
the backslash operator and safely use the results with PVFMM.

3.2. Laplace Kernel: the Madelung constant for a 1D crystal

Here we report accuracy test results for computing the 1D Madelung constant. This is a simple example but we include 
more details on our implementation of Algorithm 2.

First, the compatibility condition should be considered. For a general singly periodic Laplace problem, the compatibility 
condition is simply the neutrality condition in Eq. (16). The second step is to solve Eq. (18). Usually this step is done by first 
calculating the periodic Ewald kernel K E and subtracting the N B0 contributions. However, K E for singly periodic Laplace 
geometry involves an incomplete modified Bessel function of the second kind [5] L(u, v) = ∫ ∞

1 exp (−ut − v/t)/tdt , which 
is very hard to evaluate uniformly to machine precision for any u, v , though there are attempts in the literature [6,25].

Instead of invoking Ewald summation, we note that due to the neutrality condition the naive direct sum of n periodic 
images in singly periodic geometry converges as 1/n2. By direct summation we can reach an error ∼ 10−10 with n = 105, 
which poses no problem on modern hardware.4 The periodic kernel K P ,F is then converted to a direct summation:

K P ,F =
∑

�<pz<n

1

|xt − ys − p| + 1

|xt − ys + p| (29)

where we assume the periodic condition is imposed in the z direction, p = (0, 0, pz), and the two terms with ±p means 
the image at positive and negative z directions. It is worth noting that for a given target/source pair (xt , ys), K P ,F scales as 
the harmonic series 

∑n
j=l

1
j , and is slowly divergent as log n. When we attach this far field to the near field, we effectively 

approximate the true periodic system with a finite chain of n images on both sides of B0. Since a real system satisfying 
charge neutrality condition converges as 1/n2, we can use n = 106 to get convergent results and the divergent K P ,F does 
not matter. In general when K P ,F � 1, truncation error may occur due to finite floating point precision. However, this is 
not a problem in this case because when n = 106, K P ,F is only on the order of 10. TM2L is found with the backward stable 
solver for different p ∈ [6, 16]. In this example, we demonstrate the accuracy and convergence of Algorithm 2 by calculating 
the Madelung constant M1D for a 1D crystal in 3D space. It is defined as the potential generated by a periodic chain of 
equispaced alternating ±1 unit charges on one charge in the chain. Mathematically it is given as a series summation:

M1D =
∑

i∈Z/0

(−1)i

i
= −2 ln 2 = −1.386294361119890 · · · (30)

We place 4 charges in the unit cubic cell and assume the unit cubic cell is periodic in z direction: φs = {1, −1, 1, −1}, 
ys = {(0.5, 0.5, 0.125), (0.5, 0.5, 0.375), (0.5, 0.5, 0.625), (0.5, 0.5, 0.875)}, and we evaluate the potential at the two positive 
charges q1 and q3: xt = {(0.5, 0.5, 0.125), (0.5, 0.5, 0.625)}. In this case, the analytical solution at xt is −8 ln 2 = 4M1D .

4 Stokes velocity kernel observes the same convergence rate. Therefore for singly periodic problems we do not need to deal with the special function 
L(u, v) if precomputation time is not a concern.
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Fig. 2. Absolute error for the potentials q1 and q3 evaluated for the two positive charges, compared to the analytical solution M1D . PVFMM Ref refers to 
the error achieved by PVFMM package at the same p [9], although PVFMM is not used in this calculation. For n = 105, εabs stagnates at ∼ 10−11, while for 
n = 106, close to machine precision is achieved.

Since it is a tiny problem of only 4 points, there is no need to invoke FMM. qt
N is evaluated as a direct sum and φB0,u

is evaluated separately. The accuracy results are reported as the absolute error εabs = |qt + 8 ln 2| in Fig. 2, where n is the 
number of periodic images directly summed in K P ,F . In all tests the splitting between near and far-field is chosen at � = 2
layers of image boxes. PVFMM Ref refers to the error achieved by PVFMM package at the same p [9], although PVFMM is 
not used in this calculation. For n = 106, close to machine precision is achieved. There is a systematic error for different n, 
where q3 − q1 stagnates beyond some p. This is because we constructed the TM2L with a finite n, which approximate the 
true periodic system with a finite chain. Due to the asymmetric charge distribution in B0, which is related to the net dipole 
moment of B0, q1 and q3 do not feel exactly the same environment in this finite chain of 2n + 1 periodic boxes. We can 
calculate that q3 − q1 ≈ − 1

2n2 , neglecting the 4π factor for Laplace kernel. However, since fixing this error does not improve 
the order of magnitude of accuracy, we neglect it.

All calculations for TM2L with n = 105 complete within ∼ 15 minutes on an Intel Xeon E5-2697 v3 with 14 cores at 
2.60 GHz. For single precision accuracy, p = 6 is enough and in this case the total number of equivalent points is only 
6(p − 1)2 + 2 = 152. Accuracy close to the double precision limit can be achieved with large p and n = 106, and the 
calculation takes less than 2 hours. TM2L takes this long is a special case due to the inapplicability of 1D Ewald formula. In 
general the computation for TM2L completes within 10 ∼ 100 seconds. We discuss the precomputation cost in more detail 
in Section 3.7.

3.3. Stokes Kernel: doubly periodic geometry in 3D space

In this section, we present results for 3D Stokes flows, using the velocity kernel in Eq. (27), in B0 with periodicity in the 
x–y plane. Here, the compatibility condition takes the neutrality form if we require the fluid velocity u to approach finite 
values as z → ±∞ [10]. More precisely, the net force in B0 must be zero. In this case the simple direct sum in Eq. (29) is 
not tenable as the planar periodic summation of force-neutral cells converges very slowly, sometimes as slow as 1/

√
n [26], 

where n is the number of cells summed. In this case, a doubly periodic Ewald sum must be invoked to calculate TM2L . We 
skip the details about implementing a pairwise Ewald sum, which has been thoroughly discussed in the literature [10].

With the pairwise Ewald formulation, we have:

K P ,F = K E wald −
∑

−�≤pz≤�

K (xt, ys + p), (31)

where the splitting between N B0 and F B0 is still chosen as � = 2. K E wald is calculated by splitting the sum into real and 
wave space by the splitting parameter ξ , and then the real and wave space sums are both truncated at the desired accuracy. 
In our calculation of TM2L the splitting parameter ξ and truncation parameters are taken such that the accuracy is close to 
machine precision, independent of the Ewald parameters. Several methods are available to accelerate the Ewald evaluation 
using the FFT [27], but we follow a simple pairwise scheme because we need only evaluate Ewald sums from the equivalent 
surfaces to check surfaces in Eq. (18), and only in the precomputing stage to solve TM2L . TM2L is determined for p ∈ [6, 16].

A physical consequence of the compatibility condition is that the net flux of flow across the periodic x–y plane must be 
zero: ∫

B0

uz(x)d3x = 0. (32)
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Fig. 3. Accuracy test results for two point forces placed in B0, for induced flows periodic in the x–y plane. The red symbols are accuracy results with 
different error measurements, the green symbols are the reference error achieved by PVFMM [9]. The black symbols are for the net flow in the z direction. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Therefore, this can be used as a measurement of numerical error. However, a direct numerical evaluation of unet
z is non-

trivial because u(x) is not smooth in B0. If a point force i is placed at yi , u(yi) is singular. To circumvent this singularity 
problem, we calculate the following surface integral as a physically equivalent measurement of error:

unet
z =

∫
Sz

uz(x)dSz = 0, Sz = {(x, y, z)|x ∈ [0,1], y ∈ [0,1], z = 0} (33)

The surface S is chosen to be at z = 0, away from all point forces inside B0, so that uz(x) is smooth on S . unet
z therefore 

can be accurately integrated with a simple quadrature rule, and can be used as an error measurement.
To assess accuracy we place two unit point forces f 1, f 2 in B0, with f 1 + f 2 = 0 imposed because the conver-

gence in doubly periodic geometry requires a zero net forcing in B0. We fix x1 = (0.7, 0.6, 0.5), f 1 = (1, 2, 3)/
√

14, 
x2 = (0.2, 0.8, 0.7), f 2 = − f 1 so that all the following accuracy tests are generated with the same forcing. This particu-
lar choice of point force has no effect on the accuracy test results. f 1 and f 2 generate the velocity field of a force dipole 
in the far field of B0. The induced flow velocity u is evaluated at a set of target points xi jk = (ci, c j, ck) ∈ B0. The source 
points are the Clenshaw–Curtis (Chebyshev) quadrature points mapped to the range [0, 1]. As illustrated in Fig. 5, 97 points 
are placed in each dimension, and the total number of target points is 973 = 912673. The surface integration of net flow is 
approximated as a discretized tensorial sum, where wi, w j are the numerical integration weights:

unet
z =

∫
Sz

uz(x)dSz ≈
∑
i, j

u(xi j,k=0)wi w j (34)

Errors are calculated by comparing u(xi jk) with the ‘accurate’ result calculated by the direct pairwise Ewald sum. To ease 
the comparison with results in the literature, we report errors based on four different definitions:

Maximum absolute error: maxεabs = max
i∈dim U

|Ui − U E wald
i |, (35)

Average absolute error: 〈εabs〉 = 1

dim U

∑
i

|Ui − U E wald
i |, (36)

Root mean square error: εRM S =
√

1

dim U

∑
i

(Ui − U E wald
i )2, (37)

Relative L2 error: εL2 =‖U − U E wald‖2/‖U E wald‖2, (38)

where U is the large vector consists of all ui jk , i.e., U = (u000, u001, · · · ). With this definition, the above errors are actually 
defined in the sense of per velocity component. The results are reported in Fig. 3. These results show the same level of 
accuracy as the PVFMM package used to evaluate qt

N . In comparison, the Spectral Ewald method [14] can achieve εRM S →
10−14, and our method can be very close in accuracy without the large cost of the 3D FFT mesh. The net flow condition 
unet

z = 0 is also properly imposed.

3.4. The Stokes kernel: unit point force in a triply periodic geometry

As in the last section, we start from the compatibility condition. For triply periodic Stokes flow the sum of all point 
forces need not be zero in the periodic box. The net forcing is balanced by a pressure gradient governed by the Stokes 
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Fig. 4. Accuracy test results for the triply periodic boundary condition test case. The red symbols are accuracy results using different error measurements, 
the green symbols are the reference error achieved by PVFMM [9]. max|unet | is the maximal component of unet .

equation, which is usually chosen such that the net flow of material in space is zero. The physical explanation behind this 
zero net flow condition is that, the numerical solution is describing an experiment in an infinitely large fixed container, 
where no material flows in or out of it. A more detailed discussion about convergence can be found in [28]. The zero net 
flow condition is imposed by setting the constant C = 0 in Eq. (16):∫

B0

u(x)d3x = 0. (39)

To guarantee this condition, especially for the case of non-zero net forcing, an Ewald sum must be used where the above 
zero-flow condition is guaranteed by removing the k = 0 term in the wave space sum. In this case, K P ,F is still calculated 
as Eq. (31) where � = 2 is fixed. We follow the well-known Hasimoto convention of K E wald [14,29].

To assess the accuracy, we avoid the numerical integration of Eq. (39) due to the singularities of u(x) as discussed 
in the previous subsection. Instead, we numerically integrate the following three fluxes in the x, y, z directions on the 
x = 0, y = 0, z = 0 surfaces of B0, respectively:

unet
x =

∫
Sx

ux(x)dSx = 0, Sx = {(x, y, z)|x = 0, y ∈ [0,1], z ∈ [0,1]}, (40)

unet
y =

∫
S y

u y(x)dS y = 0, S y = {(x, y, z)|x ∈ [0,1], y = 0, z ∈ [0,1]}, (41)

unet
z =

∫
Sz

uz(x)dSz = 0, Sz = {(x, y, z)|x ∈ [0,1], y ∈ [0,1], z = 0}. (42)

The same Chebyshev quadrature as in Eq. (34) is used to calculate unet
x , unet

y and unet
z numerically.

We present accuracy test results for two cases, where the target points are the same set of points as in the last subsec-
tion. The triply periodic boundary condition allows a net force in B0. Therefore, in addition to the test of two point forces 
shown before, we added a test with x = (0.7, 0.6, 0.4), f = (1, 2, 3)/

√
14. Again, this particular choice of point force is cho-

sen only to ensure the same input of all test cases to help the comparison later with different �. This choice has no impact 
on the accuracy test results. Fig. 4A shows the accuracy test results for the point force test. Fig. 4B shows the accuracy test 
results for the test of two point forces, as specified in the last subsection. The results show the same level of accuracy as in 
the last subsection.

3.5. The Stokes kernel: timings for large systems

We now provide timing results for steps a), c), and d) in Algorithm 2 for uniform and non-uniform distributions of source 
and target points. In this part, the same set of points are used for both the source and target points. The uniform points are 
chosen to be the same set of 973 points xi jk described previously, as shown in Fig. 5A. The non-uniform point distributions 
are a set of 973 points with each component of xi jk generated from a lognormal distribution with standard parameters 
(0.2, 0.5), as shown in Fig. 5B. A random point force f is placed on each source point xi jk , with each component generated 
from an uniform distribution on [−0.5, 0.5). For tests with singly and doubly periodic boundary conditions, a uniform force 
is added to each point force to guarantee the force neutrality condition.

The results reported in Table 2 and Table 3 are for uniform and non-uniform cases, respectively. Timings are reported as 
seconds of wall clock time, measured on a machine with two sockets of Intel(R) Xeon(R) CPU E5-2643 v3 @ 6 core 3.40 GHz 
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Fig. 5. Different distributions of source and target points. A: Chebyshev points xi jk = (ci , c j , ck). B: Random points xi jk , where (xi , x j , xk) are generated from 
a lognormal random distribution with standard parameters (0.2, 0.5). Only 0.1% of the points in the computations are shown in both figures A and B.

Table 2
Timing (in seconds) results for ∼ 106 Chebyshev points in Fig. 5A. SP, DP, and TP refer to singly, doubly and triply periodic boundary conditions. %cost refers 
to the cost of the far-field calculation relative to the near-field calculations, and is calculated as: %cost = τF / (τtree + τN ). τtree is independent of boundary 
condition. In reality, τM2L ∼ 10−4s for p = 6 and ∼ 10−2s for p = 16. It is much less than other parts, and so is not included in this table and is ignored in 
%cost calculations.

p Free-space SP DP TP

τtree τN τtree τN τF %cost τtree τN τF %cost τtree τN τF %cost

6 0.44 2.22 0.44 2.29 0.18 7% 0.42 2.49 0.22 7% 0.44 2.92 0.14 4%
8 0.45 3.33 0.48 3.48 0.26 7% 0.45 3.80 0.26 6% 0.45 4.32 0.26 5%
10 0.55 4.31 0.52 4.83 0.44 8% 0.55 5.23 0.59 10% 0.55 5.67 0.42 7%
12 0.66 7.89 0.62 8.47 0.70 8% 0.62 8.71 0.68 7% 0.62 9.76 0.70 7%
14 0.83 13.31 0.86 14.84 0.95 6% 0.83 16.01 0.97 6% 0.85 16.67 0.96 5%
16 0.98 26.32 1.14 28.91 1.21 4% 0.97 31.17 1.23 4% 0.98 32.60 1.24 4%

Table 3
Timing (in seconds) results for ∼ 106 non-uniform random points in Fig. 5B. SP, DP, TP and %cost are the same as Table 2. In reality, τM2L ∼ 10−4s for p = 6
and ∼ 10−2s for p = 16. It is much less than other parts, and so is not included in this table and is ignored in %cost calculations. Also in this case the near 
field of TP takes less time to compute than DP and SP is a special case depending on the point configuration. In general we should expect TP to be slower 
than DP and SP.

p Free-space SP DP TP

τtree τN τtree τN τF %cost τtree τN τF %cost τtree τN τF %cost

6 0.47 2.74 0.47 2.67 0.14 4% 0.47 2.73 0.14 4% 0.45 2.68 0.17 5%
8 0.51 4.25 0.49 4.23 0.32 7% 0.50 4.53 0.28 6% 0.53 4.53 0.27 5%
10 0.68 5.55 0.61 5.8 0.49 8% 0.63 6.00 0.49 7% 0.68 5.74 0.48 8%
12 0.73 11.75 0.68 10.37 0.67 6% 0.68 10.40 0.80 7% 0.71 10.15 0.68 6%
14 0.90 17.86 0.87 18.27 0.96 5% 0.83 17.65 0.95 5% 0.87 17.51 1.02 6%
16 1.03 33.09 1.05 35.49 1.24 3% 1.00 36.13 1.23 3% 1.07 34.67 1.23 3%

and 128 GB memory. OpenMP is enabled but Hyper-Threading is disabled to give more consistent timing measurements. 
The maximum number of points in a leaf octree box s is set to s = 1000 in the PVFMM routine, and the splitting between 
N B0 and F B0 is fixed at � = 2. τtree and τN are the FMM tree construction time and the FMM evaluation time for N B0

in step a), respectively. τM2L is the time to calculate φB0,d(y) = TM2Lφ
B0,u of step c). τF is the time to calculate qt

F and 
add it to qN t in step d). %cost is defined as the relative cost of the far-field evaluation: %cost = (τM2L + τF ) / (τtree + τN ). 
In reality, τM2L ∼ 10−4 seconds and is much less than other parts, and so is not included in Table 2 and is ignored in %cost

calculations.
The time τtree is independent of boundary condition because the octree is ‘copy-and-pasted’ for all boxes in N B0 . Such 

‘copy-and-paste’ also saves a significant amount of time in near-field evaluations because only the S2T interactions (direct 
interactions) from the leaf boxes across the periodic boundaries require additional cost compared to the free-space boundary 
conditions. Other non-leaf octree boxes can be evaluated at the precomputing stage of PVFMM for the octree data5 and 
induces a negligible cost in real calculations. Since the maximal number of points is fixed as s = 1000 in the octree, the 
S2T cost scales as O(sNB), where NB is the number of points in octree leaf boxes adjacent to the periodic boundaries in 
B0. For the randomly distributed points in Fig. 5B, NB � N and adding periodic boundary condition has little cost in τN
as shown by Table 3. By reusing the octree data of B0, the triply periodic cases only cost about 10% ∼ 40% more time than 

5 This is different from the precomputing stage of TM2L in Algorithm 2, but is also independent of the source and target locations in B0. Such precom-
puting techniques are also implemented in other KIFMM packages such as ScalFMM [30,31].
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Fig. 6. Accuracy test results for the triply periodic boundary condition with different �. The red symbols are point-wise accuracy results, the black symbols 
are the no-flux condition accuracy results, and the green symbols are the reference error achieved by PVFMM [9]. max|unet | is the maximal component of 
unet in each case. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Convergence test results for different boundary condition with different �. The source and target points are the same set of 973 Chebyshev and 
random points shown in Fig. 5 and used in the timing tests in Tables 2 and 3. The red symbols are error compared to the results given by p = 16. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the free-space cases even in high precision cases, much more efficient than the previously proposed method [12] where the 
near-field N B0 is calculated without reusing the octree for B0.

The cost of calculating the far field τF scales as O(T p2), and we implemented step d) in Algorithm 2 as a simple double 
loop over all target points xt and downward equivalent sources y B0,d

s , leaving the optimization work to the C++ compiler. If 
the double loop is further optimized with hand-tuned SIMD instructions including SSE, AVX and FMA instructions, further 
speed up is possible. However, since τF costs only about 5% of the total computation time, reduction in τF gives little 
benefit.

3.6. Effect of �

In previous subsections, we fixed � = 2. This is arbitrarily chosen because we found that changing � has little effect on 
both timing and accuracy. In this subsection, we provide a comparison of different � to illustrate this. All timing results here 
and in the following sections are collected on the same machine with the same settings as used in Section 3.5.

If � � 1, the precomputation time τ pre
M2L and τ pre

N may both increase as discussed in the next section, which is an 
unnecessary cost. Further, in some cases if � � 1, the error may increase, because both qt

N and qt
F may be much larger 

than 1, and when added together qt
N + qt

F may generate a large truncation error due to the finite floating point precision. 
Hence, we consider only � ∼O(1).

First, we repeated the accuracy test in Section 3.4 for � = 1, 2, 3. The results are presented in Fig. 6. It is clear that the 
accuracy results at different � are almost undistinguishable, and they all satisfy the no-flux compatibility condition.

Second, we repeated the two large tests for ∼ 106 Chebyshev and random points in Section 3.5 to compare the conver-
gence and timing for different �. The convergence error is calculated against the results with p = 16 for each setting, and 
shown in Fig. 7. Changing � or changing periodicity has no discernible effects on the convergence error.

The timing results for different � is shown in Table 4, and we also added the timing for the Hierarchical Repetition (HR) 
method, which effectively uses � = 230, from the original PVFMM package for comparison. It is worth noting that the results 
given by HR are off by a constant and do not satisfy the no-flux compatibility condition due to an unfixed constant flow 
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Table 4
Timing (in seconds) results for ∼ 106 Chebyshev points in Fig. 5A for different N sizes with 
the triply periodic boundary condition and Stokes velocity kernel. As before, τM2L ∼ 10−4 sec-
onds and is much less than other parts, and so is not included in this table. The tree con-
struction time remains unchanged from the data shown in Table 2 and is also not included 
here.

p � = 1 � = 2 � = 3 HR

τN τF τN τF τN τF

6 2.82 0.19 2.92 0.14 2.78 0.19 2.56
8 4.25 0.28 4.32 0.25 4.36 0.27 4.16
10 5.72 0.43 5.67 0.42 6.08 0.51 5.49
12 9.65 0.77 9.76 0.70 9.72 0.77 9.39
14 16.85 1.00 16.67 0.96 16.90 0.95 16.50
16 33.82 1.23 32.60 1.24 32.70 1.23 32.34

Fig. 8. A graphical representation for the precompute procedure for N B0 . A translational M2L operator is directly summed for leaf boxes within � layers of 
periodic images. The case for � = 2 is shown in the figure. This is the same idea as the precomputation for the Hierarchical Repetition method, and more 
details can be found in the description of the PVFMM package [9,22].

across the root box B0. For different �, τF remains almost constant as can be easily understood with Algorithm 2. Further, 
τN is also almost constant and independent of �, and is also equal to the HR method. This is due to the way we precompute 
the KIFMM data and ‘compress’ the near field evaluations into M2L translational operators, which originates from the HR 
method. This precomputation technique keeps τN independent of �, even for � = 230 in the HR method. We shall discuss 
more about this precomputation in the next subsection.

3.7. The precomputation of KIFMM and TM2L

With Algorithm 2, the precomputation is split into two parts: the KIFMM evaluation and determining the TM2L operator. 
The former is for calculating the near field and the latter is for the far field. The precomputation for KIFMM is thoroughly 
optimized in the original PVFMM package [9,22] for the Hierarchical Repetition method. The method directly and hierarchi-
cally sum the multipole of each neighbor image box to get a M2L translational operator, and store it for later use. In real 
calculations, the KIFMM package only needs to read the operator, apply the M2L operator to the multipoles, and then travel 
down the tree. In this work, we replaced the hierarchical part of the summation with a simple loop of summation over the 
image boxes within � layers of image boxes, as illustrated in Fig. 8.6 After the modification the precomputation for applying 
boundary conditions takes much less time compared to the HR method since � ∼ O(1).

The precomputation for TM2L is formulated in Section 2. In this work the precomputation time is not important so we 
used a pairwise Ewald method to calculate K P ,F , and a custom version of SVD. If the precomputation time for TM2L is 
important, accelerated methods such as the Spectral Ewald method [14] can be used.

The precomputation time for the Laplace kernel with double periodicity is shown in Table 5. τ pre
N is the time needed by 

PVFMM itself and τ pre
M2L is the time to construct TM2L . For double periodicity the Ewald sum contains no hard-to-evaluate 

special functions so we used the Ewald sum to construct K P ,F . This greatly reduced the time compared to the direct 
summation method used for single periodicity in Section 3.2. In general, τ pre

N ≈ τ
pre
M2L . Also τ pre

N slightly increases with 
larger �, because to sum the M2L operator for near field the number of image boxes grows quadratically with increasing �
for double periodicity. It only slightly increases because the precomputation for boundary conditions and the M2L operator 
is not the only nor the dominating component, and a detailed comparison is beyond the scope of this work.

Since KIFMM is in general known to be slow for the Laplace kernel in comparison to the classical FMM, KIFMM is usually 
applied with other kernels. Here we report, in Table 6, the precomputation timing for the Stokes velocity kernel with triple 
periodicity. τ pre

M2L is dominated by the SVD of matrix A, followed by a dense matrix–matrix multiplication (DGEMM), and 
the cost for both parts scale as O([dimA]3). Since dimA ∝ p2, we have roughly τ pre

M2L ∝ p6. In real calculations, since the 
multi-threading overhead is relatively lower for larger matrices, the data shown in Table 6 actually scales more close to p4. 
This scaling is also true for τ pre

N where SVDs and DGEMMs are also invoked. The precomputation time is compared to the 
HR method with effectively � = 230, where no TM2L is constructed. In general, the hierarchical summation takes longer, and 

6 This modification is proposed by Wen Yan and developed by Dr. Malhotra, the original author of the PVFMM package.
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Table 5
Comparison of precomputation time (in seconds) for Laplace kernel with 
double periodicity with different �.

p � = 1 � = 2 � = 3

τ
pre
N τ

pre
M2L τ

pre
N τ

pre
M2L τ

pre
N τ

pre
M2L

6 0.17 0.25 0.21 0.25 0.23 0.24
8 0.51 0.59 0.53 0.59 0.57 0.59
10 1.11 1.27 1.18 1.24 1.26 1.25
12 2.20 2.35 2.31 2.37 2.54 2.31
14 4.15 4.21 4.34 4.23 4.80 4.25
16 7.64 7.21 8.83 7.30 9.62 7.31

Table 6
Comparison of precomputation time (in seconds) between the TM2L method and the Hierarchical Repetition (HR) method for the Stokes velocity kernel 
with triple periodicity. In HR, the hierarchy is repeated 30 times, generating a summation equivalent to [230]3 images of B0. %H R = (τ

pre
N + τ

pre
M2L)/τ

pre
H R is 

the ratio of the total precomputation cost of TM2L method compared to the HR method.

p � = 1 � = 2 � = 3 HR

τ
pre
N τ

pre
M2L %H R τ

pre
N τ

pre
M2L %H R τ

pre
N τ

pre
M2L %H R τ

pre
H R

6 1.13 1.64 47% 1.18 1.69 49% 1.25 1.77 52% 5.8
8 3.32 5.59 61% 3.43 5.59 62% 3.74 5.65 64% 14.63
10 10.33 13.35 63% 11.69 13.51 66% 12.45 13.79 69% 38.00
12 26.89 28.87 45% 29.19 29.68 48% 33.37 29.99 51% 123.92
14 69.42 58.25 49% 73.30 59.64 51% 83.16 60.45 55% 259.10
16 156.21 110.04 57% 165.19 110.61 59% 181.65 114.06 64% 465.45

%H R = (τ
pre
N + τ

pre
M2L)/τ

pre
H R ≈ 60%. Besides satisfying the no-flux condition, the TM2L method also takes less time to setup, 

compared to the HR method. Further, if the precomputation time is important to applications, the pairwise Ewald can be 
replaced by Spectral Ewald method to further reduce τ pre

M2L .
The memory cost to construct TM2L is also dominated by the SVD of A, which is a dense matrix with dimension shown 

in Table 1. The memory cost scales as p4 since dimA ∝ p2. For example, for Stokes velocity kernel with p = 16, TM2L

takes about 1 GB of memory to compute. The details for this memory cost depends on the particular implementation and 
algorithm of the SVD procedure.

4. Discussions and conclusions

In this work we proposed a method to impose periodic boundary conditions for KIFMM at a small cost. It can be 
implemented as an efficient add-on layer for any KIFMM code, as long as N B0 within an integer � layers of neighboring 
periodic image boxes can be calculated. The add-on periodizing layer adds the contribution from F B0 to the results given by 
FMM routines, and is straightforward to implement as a simple double loop at a small cost of O(T p2) (cf. Tables 2 and 3), 
where T is the number of target points in B0. On distributed memory clusters, the add-on layer requires no inter-node 
communications and thus poses no difficulties in scalability. The method is described in Algorithm 2 and is demonstrated to 
require a small extra cost in addition to free-space KIFMM. Further optimization is possible because with some modifications 
of the underlying KIFMM routine, the evaluation of qt

F can be combined with the KIFMM itself. In fact, TM2L can be 
incorporated into the L2L steps in the downward pass of the octree data structure, and can be precalculated and stored as 
one usually does for the KIFMM octree data precalculation step. In this way, τF can be eliminated. However, since τF is 
already small, as shown in Tables 2 and 3, there is not much benefit of implementing further optimizations.

In comparison to the hierarchical repetition method, the added value of the TM2L method is properly handling of the 
compatibility condition Eq. (16). When the compatibility condition is simple as in the example of 1D Madelung constant in 
Section 3.2, the hierarchical repetition method should work equally well. However for more flexible compatibility conditions 
the TM2L method is able to handle it properly as shown in Section 3.4. Another example of a non-trivial compatibility 
condition is the well-known one-component plasma system, where positive point charges move in a background of uniform 
rigid neutralizing negative charge. In this case the neutrality condition Eq. (16) is not simply imposed on point charges, 
but includes the background also. For one-component-plasma, applying Ewald summation in TM2L gives a simple way to 
circumvent the conditional convergence of the periodic charge summation. Also in this work we presented examples where 
the periodic kernel K P is explicitly known. If not known, such periodic kernels can be constructed in the precomputing 
stage for TM2L by inserting control points [11,32]. Further, this TM2L method works not only for KIFMM. Our method works 
by adding a far field to the easy-to-calculate near field. It does not matter how the near field (B0 with its image within �
layers) is calculated. If the near field is calculated by KIFMM, we can reuse the multipoles for the root box φB0 ,u to construct 
the far field. Other methods suitable for the problem size, such as brute force summation or the Barnes–Hut tree can also 
be used. After all, the near field calculation is only a finite system with the open boundary condition, and is straightforward 
to calculate. With those alternative methods other than KIFMM, we may need to calculate φB0 ,u separately at some extra 
cost because there is no data to reuse.
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The method requires a precomputation of TM2L , which is found from the free-space kernel K , the ‘periodic’ kernel K P , 
and the known discretization and locations of check and equivalent surfaces. For typical “1/r” kernels K , such as the Laplace 
or Stokes kernels, K P is usually expressed as the Ewald form K E , and has been thoroughly discussed in the literature for 
singly, doubly and triply periodic systems. In fact, TM2L can be calculated for different far-field geometries, and so is not 
limited to periodic systems. For example, the far-field can be calculated to represent a channel with finite instead of infinite 
length, or in the presence of a reflecting wall with the method of images. If the requirement of accuracy can be relaxed, 
TM2L can be used to approximate a ring-channel geometry to study the spontaneous coherent flows created by active 
suspensions [33,34]. The flow of liquids in fractal geometries [35] is another example of interesting problems that could be 
studied.

In this work we focused on a cubic domain B0, and all shapes which fit into a cubic box B0 can be treated without 
modification, for example, a long tube with singe periodicity in the tube direction. In principal, slab geometries, where the 
size of B0 in a non-periodic direction is much larger than that in the periodic direction, can be handled with the same 
TM2L method. When the aspect ratio of B0 is of order O(1), Ewald methods can still be used. For higher but still moderate 
aspect ratios, Ewald methods may converge slowly but we can utilize the scheme in [11] to construct the periodic kernel 
K P directly without a series summation, with some tuning of the discretization of the check and equivalent surfaces to 
fit the high aspect ratio. For extremely high aspect ratio the accurate construction of the periodic kernel K P remains to 
be studied. Another important case is a cubic domain B0 sheared along one axis, which is widely used in the simulation 
of particle suspension dynamics to retrieve rheology information [17]. However, to the best of our knowledge, due to the 
complexity of building octrees there is no high performance KIFMM code available to academia that can handle a box of 
arbitrary aspect ratio and sheared deformation. Therefore, although the idea of N , F splitting and TM2L operator are still 
useful, the underlying FMM remains lacking, and this is well worth further study.

In recent years, many algorithms and applications are proposed for the algebraic variants of FMM [36–40]. The algebraic 
version utilizes the hierarchical low-rank structure of FMM matrix Mt,s: qt = Mt,sφs . The low-rank structure comes from 
the fact that for a box Bi in an octree, potentials due to the far-field F Bi can be approximated by equivalent sources with 
a small number of degree of freedom, and therefore the interaction between these two leaf boxes can be compressed by a 
low rank matrix. It is hierarchical in the sense that for all levels of boxes in the octree, corresponding low rank structures 
can be formed. With the TM2L method, the FMM matrix is split into near and far field:

Mt,s = MN B0
t,s +MF B0

t,s (43)

where MN B0
t,s is simply a FMM matrix and preserves the structure. MF B0

t,s is a low-rank matrix since it is applied through 
φB0,d and K P ,F . Therefore, our method should be compatible with the algebraic variants of FMM. Another possible extension 
is to combine Algorithm 2 with the Quadrature-by-Expansion (QBX) method [41] to evaluate near-singular kernel functions 
in boundary layer integral problems.
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Appendix A. Open-sourced implementation

An open-sourced implementation of the method described in this paper will be available at the GitHub. The modified 
PVFMM to calculate qt

N with SP, DP and TP boundary conditions will be available at the author’s fork of PVFMM. An 
implementation to calculate the periodizing operator TM2L and a wrapper library to calculate full periodic FMM for the 
Stokes velocity kernel will be available in a separate repository. A Matlab script based on Spectral-Ewald method will also 
be available to help the readers quickly implement TM2L for other Stokes and Laplace kernels with the Spectra-Ewald 
method.

Appendix B. The backward stable solver

Table B.7 compares various implementations of the backward stability solver, where A is a square matrix of di-
mension 4056 × 4056 for the Stokes velocity kernel with p = 16. It is the most challenging case for all A in Ta-
ble 1. We calculate the max absolute backward error of solving for x∗ satisfying Ax = 1: maxεabs = max|Ax∗ − 1|, 
where 1 is a vector with every entry being 1. SVDpvfmm is the SVD solver implemented in PVFMM [9]. QR is the 
fullPivHouseholderQr().solve() routine in the popular C++ linear algebra library Eigen 3.3.3. JacobiSVD is 
the JacobiSVD routine with FullPivHouseholderQRPreconditioner in Eigen. A† is the same as JacobiSVD, but 
A† is explicitly calculated. DGESDD uses the lapacke_dgesdd routine from LAPACK 3.7. DGESDD0 means the thresh-
old εS V D = 0, and in other routines εS V D is set to εm max|s|, where εm is the machine accuracy and max|s| is the max 



W. Yan, M. Shelley / Journal of Computational Physics 355 (2018) 214–232 231
Table B.7
Survey of SVD for solving Ax = 1 for the Stokes velocity kernel with p = 16.

SVDpvfmm QR JacobiSVD A† DGESDD DGESDD0

maxεabs 1.1E−13 2.5E−13 7.6E−14 2.3E−09 3.0E−14 5.5E−14

absolute value of all singular values. A Jacobi SVD routine lapacke_dgejsv is also available from LAPACK, which is 
contributed by the inventor of the algorithm [42,43].

The results in Table B.7 show that backward stability can be achieved with various SVDs with U , V stored separately. 
However, we found that the speed of those solvers vary significantly. SVDpvfmm and DGESDD are partially threaded with 
OpenMP and are the fastest. JacobiSVD from Eigen is significantly slower and is not threaded, but is still acceptable because 
we need to calculate the SVD once for all columns in TM2L . In the results presented in this work we used SVDpvfmm to 
calculate TM2L , and it is demonstrated in the accuracy tests that we achieved the bound of accuracy 10−13 .
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