
J. Fluid Mech. (2018), vol. 836, pp. 304–323. c© Cambridge University Press 2017
doi:10.1017/jfm.2017.816

304

Bistability in the synchronization of
actuated microfilaments

Hanliang Guo1, Lisa Fauci2, Michael Shelley3,4 and Eva Kanso1,3,†
1Aerospace and Mechanical Engineering, University of Southern California,

Los Angeles, CA 90089, USA
2Department of Mathematics, Tulane University, New Orleans, LA 70118, USA

3Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
4Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA

(Received 4 August 2017; revised 8 October 2017; accepted 6 November 2017;
first published online 11 December 2017)

Cilia and flagella are essential building blocks for biological fluid transport and
locomotion at the micrometre scale. They often beat in synchrony and may transition
between different synchronization modes in the same cell type. Here, we investigate
the behaviour of elastic microfilaments, protruding from a surface and driven at their
base by a configuration-dependent torque. We consider full hydrodynamic interactions
among and within filaments and no slip at the surface. Isolated filaments exhibit
periodic deformations, with increasing waviness and frequency as the magnitude of the
driving torque increases. Two nearby but independently driven filaments synchronize
their beating in-phase or anti-phase. This synchrony arises autonomously via the
interplay between hydrodynamic coupling and filament elasticity. Importantly, in-phase
and anti-phase synchronization modes are bistable and coexist for a range of driving
torques and separation distances. These findings are consistent with experimental
observations of in-phase and anti-phase synchronization in pairs of cilia and flagella
and could have important implications on understanding the biophysical mechanisms
underlying transitions between multiple synchronization modes.

Key words: biological fluid dynamics, low-Reynolds-number flows, nonlinear dynamical systems

1. Introduction

Cilia and flagella exhibit synchronous motion. The biflagella of the alga
Chlamydomonas often beat symmetrically at the same frequency but opposite phase
(Rüffer & Nultsch 1985, 1987; Goldstein, Polin & Tuval 2009, 2011; Polin et al.
2009). Sperm cells tend to synchronize their tail beating in-phase when they are in
close proximity (Gray 1928; Woolley et al. 2009). Motile cilia in aquatic organisms
and in mammalian tissues coordinate their collective beating in a wavelike pattern
(Brennen & Winet 1977; Fulford & Blake 1986; Brumley et al. 2012).

The origin of this synchronous behaviour is attributed to mechanical coupling
between the cilia, either at the cell base (Quaranta, Aubin-Tam & Tam 2015; Wan

† Email address for correspondence: kanso@usc.edu
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& Goldstein 2016) or through hydrodynamics (Brumley et al. 2014). In the latter,
the flagella of isolated cells exhibit synchronous beating through hydrodynamics only.
Theoretical models also suggest that synchronization can arise from hydrodynamic
coupling between flagella (Guirao & Joanny 2007; Golestanian, Yeomans & Uchida
2011; Mettot & Lauga 2011; Uchida & Golestanian 2011, 2012), assisted by flagellar
elasticity (Elfring & Lauga 2011; Goldstein et al. 2016). Existing models are based
either on low-order representations of flagella and cilia in the form of ‘bead–spring’
oscillators (Niedermayer, Eckhardt & Lenz 2008; Kotar et al. 2010; Golestanian
et al. 2011; Bruot et al. 2012) or on more realistic models of hydrodynamically
coupled elastic filaments (Kim & Netz 2006; Osterman & Vilfan 2011; Goldstein
et al. 2016). These models primarily reproduce one mode of synchrony: anti-phase,
in-phase or metachronal coordination. Flagellar synchrony is more complex: flagella
and cilia can exhibit multiple synchronization modes even within a single cell type
or organism. For example, the flagella of the algae Chlamydomonas stochastically
switch between anti-phase and in-phase synchrony (Leptos et al. 2013; Wan, Leptos
& Goldstein 2014). Cilia in mammalian brain ventricles periodically change their
collective beat orientation, providing a cilia-based switch for redirecting the transport
of cerebrospinal fluid at regular intervals of time (Faubel et al. 2016). The origins
of these transitions, whether abrupt and stochastic (Chlamydomonas biflagellates) or
gradual and periodic (ependymal cilia), are currently unknown.

In models that represent flagella as hydrodynamically coupled oscillators driven
by a configuration-dependent force, the functional dependence of this force on
configuration needs to be altered in order for the system to exhibit a different
mode of synchrony – see Bruot & Cicuta (2016) for review. The need to modify
the functional form of the drive, and consequently the landscape of the associated
potential field, makes implicit assumptions on the mechanisms responsible for different
modes of synchrony. It assumes that these mechanisms induce a fundamental change
in the internal machinery that drives the flagellum or cilium beyond what can be
captured by rescaling the intensity of the drive. In this study, we present a theoretical
model of flow-coupled elastic filaments that exhibits bistable in-phase and anti-phase
synchronization at the same drive level, suggesting that the aforementioned assumption
is not required to achieve multiple synchronization modes.

The synchronization of filaments in a viscous fluid has been studied since the
seminal work of Taylor (1951), where he showed that travelling waves in two
parallel infinite sheets have the least viscous dissipation when synchronized in-phase.
These results were later extended to include waveform compliance (Elfring & Lauga
2011) and three-dimensional (3D) beating (Mettot & Lauga 2011). Olson & Fauci
(2015) considered elastic sheets and filaments of finite length and computationally
showed that neighbouring sheets and filaments with symmetric beating patterns always
synchronize in-phase. In-phase synchrony was also predicted by Goldstein et al.
(2016). A model of cilia that accounted for internal actuation also demonstrated that
neighbouring cilia, coupled only through hydrodynamics, quickly synchronize their
beat (Yang, Dillon & Fauci 2008).

Cilia and flagella are driven into oscillatory motion by an intricate internal structure
of microtubules and molecular motors. Although the components of this structure are
known, the mechanisms that regulate the activity of the internal motors, causing
them to produce oscillatory motions are not well understood. A prominent hypothesis
assumes a geometric feedback from mechanical deformations to molecular activity
(Brokaw 1971, 2009; Riedel-Kruse et al. 2007; Sartori et al. 2016). In its simplest
form, this hypothesis supports the view that the internal forces and moments produced
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(a) (b) (c)

FIGURE 1. (a) Elastic filament actuated by a motor at its base with configuration-
dependent bending moment Mb. The moment switches direction when the tangent to the
base reaches predefined target angles ±Θ . (b) Discretization of the elastic filament into
N + 1 spheres of diameter a. (c) Low-order model of a shape-dependent oscillator driven
by an applied force F that switches directions once the oscillator reaches a predefined
oscillation amplitude |x| = Xs.

by the molecular motors switch ‘on’ and ‘off’ depending on the shape of the
flagellum.

Inspired by this switching behaviour, Kotar et al. (2010) and Bruot et al. (2012)
proposed optically driven colloidal oscillators as a model system for studying
synchronization between cilia and flagella. In these systems, the colloidal particle
is constrained to move on a linear trajectory under the influence of a driving force
that switches direction once the particle approaches predefined target positions,
hence the name ‘geometric switch’. Here, we extend the geometric switch model
to finite microfilaments submerged in viscous fluid and driven at their base by an
active bending moment, of constant magnitude, that switches direction at predefined
orientations of the tangent at the filament’s base. This model of internal actuation
is a simplification of the biological system where actuation is applied along the
filament’s centreline. Yet, it carries some common features such as feedback from
filament shape to internal drive. It is also reminiscent to the model used in Kim
& Netz (2006) (although conceived independently), who applied a non-constant
drive moment to induce asymmetry in the filament’s beat pattern for studying
metachronal wave coordination of neighbouring filaments. Our study focuses on
the existence of multiple modes of synchronization at constant drive magnitude.
We find that single filaments exhibit time-periodic deformations that seem to be
insensitive to the initial configuration of the filament, and we quantify the consequent
frequency of these deformations. We then show that two hydrodynamically coupled
filaments can achieve in-phase and anti-phase synchronizations that are bistable for
a range of parameter values. To highlight the main physical mechanisms responsible
for these synchronization modes, we introduce a low-order particle model that
accounts for elasticity and shape changes. The simpler model indicates that bistable
synchronizations emerge as a result of hydrodynamic coupling, shape changes and an
internal restoring moment due to filament elasticity. We conclude by commenting on
the relevance of these results to understanding the biophysical mechanisms underlying
transitions between multiple synchronization modes in flagella and cilia.

2. Continuum model

Consider a nearly inextensible elastic filament of length ` and diameter a rooted
at the origin O of a Cartesian coordinate system (x, y, z). Let {e1, e2, e3} be the
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corresponding orthonormal basis. The filament is free to deform in the half-space
fluid domain z > 0, where z = 0 corresponds to a no-slip solid wall (see figure 1).
The centreline of the filament is denoted by the position vector r(s, t), where s and t
represent the arclength and time, respectively. The balance of forces and moments on
a cross-section of the filament are given by Kirchhoff’s equations for an elastic rod
(Audoly & Pomeau 2010)

N′ − f = 0, M′ + t̂×N= 0. (2.1a,b)

Here, the prime (·)′ = ∂(·)/∂s denotes differentiation with respect to arclength s, t̂=
r′/|r′| is the tangent unit vector along the filament centreline, N and M are the internal
force and bending moment, respectively, and −f is the drag force per unit length
exerted by the surrounding fluid on the filament (f is the force per unit length exerted
by the filament on the fluid). The Hookean constitutive relation between the bending
moment M and the bending deformation (curvature) of the filament is given by
M = B t̂ × t̂′, where B is the bending rigidity. The internal force N consists of a
bending force and a constraint tension force that enforces the inextensibility condition.
The constraint is satisfied in a weak form by considering an elastic filament with
large tensile stiffness.

The filament is free at its tip s = ` and is actuated by an internal motor at its
base s = 0 that produces a torque M(0, t) =Mb. The torque Mb is a configuration-
dependent torque that switches direction when the base angle θb(t) of the filament,
defined as θb= arcsin(e3× t̂(0, t) · e2), reaches predefined target orientations ±Θ . More
specifically, we consider Mb=αMbe2, where Mb is a positive constant and α ∈ {−1, 1}
is a state variable that defines the torque direction; α changes from 1 to −1 at θb=Θ
and from −1 to 1 at θb=−Θ (see figure 1). This torque model can be viewed as an
extension to the geometric switch model for colloidal systems studied in Kotar et al.
(2010) and Bruot et al. (2012), and as a simplified version of the ‘geometric clutch’
model proposed in Lindemann (1994). A target angle that acts as a geometric switch
to drive elastic filaments along their entire length was used by Buchmann, Cortez &
Fauci (2017) to model the power and recovery strokes of eukaryotic cilia.

The fluid motion is governed by the incompressible Stokes equation for zero-
Reynolds-number flows,

−∇p+µ∇2u+F= 0, ∇ · u= 0. (2.2a,b)

Here, p is the pressure field, µ is the fluid viscosity, u is the fluid velocity field, and
F is the (Eulerian) force density exerted by the filament on the fluid. The last, F(x, t),
is related to the force per unit length f (s, t) as F(x, t)=

∫
s∈[0,`] f (s, t)δ(x− r(s, t)) ds,

where δ is the 3D Dirac δ-function and x is the position vector. These equations are
subject to the no-slip condition u= 0 at the bounding wall z= 0. We take advantage
of the small aspect ratio a/`� 1 of the filament to approximate the velocity at the
filament boundary by the velocity along its centreline,

u|filament = ṙ(s, t). (2.3)

To fully determine the filament deformation r(s, t) given the moment Mb at the
filament base, we need to solve the coupled fluid–filament system of equations
(2.1)–(2.3). It is convenient for building an efficient numerical method to (i) write
the moment equation in (2.1) in integral form and (ii) assume that the filament is
quasi-inextensible (Teran, Fauci & Shelley 2010; Chrispell, Fauci & Shelley 2013;
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Parameter Symbol Dimensional value

Filament length ` 20 µm
Fluid viscosity µ 10−3 Pa s
Bending rigidity B 800 pN µm2

Time scale T =
`4µ

B
0.2 s

TABLE 1. Characteristic scales of the system.

Olson & Fauci 2015). In particular, we integrate the moment equation in (2.1) from
the filament free end at ` to any location s along the filament, taking into account
that M(`) = 0 and that along the filament N′ = f . We get, after an integration by
parts on the second term, that

M(s)+ r×
∫ s

`

f ds̃−
∫ s

`

r× f ds̃= 0. (2.4)

We then write the force density f (s, t) applied by the filament on the surrounding
fluid as f = f⊥ + f ‖. We assume that the force component f ‖ = ( f · t̂)t̂ tangent to
the filament’s centreline can be obtained explicitly by considering a large tensile
stiffness K,

f ‖ =−K|r′|′ t̂, (2.5)

thus ensuring that the filament’s length remains almost constant. We substitute (2.5)
into (2.4) taking into account that M = B r′ × r′′ to obtain an expression for f⊥ in
terms of the position vector r(s) and its spatial derivatives. To this end, one gets
both components of the force density f = f⊥ + f ‖ in terms of the kinematic variables
r and its derivatives. We substitute these expressions for f into (2.2) and we solve
numerically subject to (2.3) to obtain the nonlinear dynamics of the filament, as
discussed next.

To obtain non-dimensional counterparts to the equations of motion, we consider
the dimensional scales associated with the fluid viscosity µ and cilium length `.
Because of the geometric switch model, the system does not have an intrinsic time
scale. To remedy this, we consider the time scale T = `4µ/B arising from balancing
the filament’s elasticity with the fluid viscosity. To this end, we consider the bending
rigidity to be of the order B = 800 pN µm2, as reported in Xu et al. (2016) for
wild-type Chlamydomonas flagella. A list of the dimensional parameters used to
scale the equations of the motion is reported in table 1. Hereafter, all quantities are
considered to be dimensionless unless otherwise stated.

3. Numerical method
We discretize the filament into a uniform chain of N+ 1 segments of length a such

that 1s= `/N = a (figure 1b). The segments are labelled from n= 0 at the filament
base to n=N at its tip. The position vector is discretized by rn= xne1+ zne3 and the
local orientation θn of the tangent vector to segment n is defined as the angle between
the z-axis and the vector 1rn = (rn+1 − rn). Equation (2.4) can be written in discrete
form as

Mn−1 −

N∑
m>n

[(rm − rn−1)× f m] = 0. (3.1)
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Here, Mn=−B[(θn− θn−1)/1s]e2 for 16 n<N whereas Mo=Mb at the no-slip wall
z= 0.

We decompose the force f n = f⊥n + f ‖n exerted by segment n on the surrounding
fluid into two components, f⊥n and f ‖n, that are perpendicular and parallel to 1rn−1 =

(rn− rn−1). We substitute into (3.1) and rearrange the term containing f⊥n to the other
side of the equation to get

1rn−1 × f⊥n =Mn−1 −

N∑
m>n

[(rm − rn−1)× f m]. (3.2)

Upon taking the cross-product with 1rn−1/‖1rn−1‖
2, the above equation becomes

f⊥n =

[
Mn−1 −

N∑
m>n

(rm − rn−1)× f m

]
×

1rn−1

‖1rn−1‖
2
. (3.3)

The parallel component f ‖n is given by the discrete analogue to (2.5). Namely, for
1 6 n<N, one has

f ‖n =−K
[
−
‖1rn‖ −1s

1s
1rn

‖1rn‖
·
1rn−1

‖1rn−1‖
+
‖1rn−1‖ −1s

1s

]
1rn−1

‖1rn−1‖
, (3.4)

whereas for n=N, one has

f ‖N =−K
(‖1rN−1‖ −1s)

1s
1rN−1

‖1rN−1‖
. (3.5)

Using (3.3) and (3.4)–(3.5), f n can be evaluated sequentially from the filament tip (by
decreasing order of n) in terms of the filament kinematic variables rm, m > n− 1.

To solve (2.2)–(2.3), we use a one-dimensional distribution of regularized stokeslets
along the centreline of the filament together with an ‘image’ distribution to impose the
no-slip boundary conditions at the z=0 plane (Cortez & Varela 2015). The regularized
stokeslets are placed at the centre rn of each segment. The strength of the regularized
stokeslet at rn is equal to the discrete force f n, and the fluid velocity generated by the
filament at an arbitrary position x in the fluid domain is given by u(x)=

∑N
n=1 G(x−

rn) · f n, where G(x− rn) is the Green’s tensor for the regularized stokeslet near a wall
(Ainley et al. 2008). We substitute this expression for the fluid velocity into (2.3),
recalling (3.3) and (3.4)–(3.5) to express f n in terms of the filament position rm. This
yields a set of coupled equations for the filament dynamics that we evolve forwards
in time using the forward Euler method. Initial conditions for this system are the
configuration of the filament r(s, t) and the state variable α =±1.

In all numerical simulations, we fix the target angles at Θ = 0.15π, we use N = 20
segments of length a= 1/20 to discretize the filament, and we set the regularization
parameter of the stokeslet to be equal to a. The tensile stiffness K = 5000 is a
numerical parameter chosen to keep the length of the filament almost constant. The
filaments are initialized in straight configuration normal to the wall. Here, the time
step is 0.2 × 10−4 and the system is integrated to T = 20, which is sufficient to
capture the long-time dynamics; see table 2 for a summary of all parameter values.
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FIGURE 2. (Colour online) Filament dynamics for (a,c,e,g,i) Mb = 1 and (b,d, f,h,j) Mb =

3. From top to bottom: snapshots of the filament deformations, configuration-dependent
moment Mb, angular velocity θ̇b, angle θb and phase φ at the base of the filament as
functions of time. Note that the frequency of oscillations is not known a priori, only the
switching angles Θ =±0.15π.

4. Deformation of a single filament
We examine the motion of a single filament actively driven at its base by

Mb = αMbe2 (α = ±1) that switches direction at Θ = ±0.15π. Figure 2 shows
the deformations and time evolution of the filament for two distinct values of the
bending moment: (a,c,e,g,i) Mb = 1 and (b,d, f,h,j) Mb = 3. In each case, the moment
Mb is constant in magnitude between switches (figure 2c,d). In response, the angular
velocity θ̇b slows down after each switching event (figure 2e, f ). This decrease in θ̇b
is induced by the internal restoring moment due to the filament elasticity, which acts
in the opposite direction to Mb.

We introduce the phase variable φ ∈ [0, 1] as a linear interpolation of θb between
the two target angles ±Θ ,

φ =
Θ + αθb

4Θ
+

1− α
4
=


Θ + θb

4Θ
, α = 1,

3Θ − θb

4Θ
, α =−1.

(4.1)
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FIGURE 3. (Colour online) Beating frequency ω and Sperm number Sp of a single
filament as a function of bending moment at the base Mb.

Parameter Symbol Dimensionless value

Number of segments per filament N 20
Segment length 1s= a 5× 10−2

Time step 1t 2× 10−5

Total integration time T 20
Target angle Θ 0.15π

Magnitude of base moment Mb 0.6–3.0
Filaments separation distance d 0.4–1.1

TABLE 2. Dimensionless parameters used in the simulations (`, µ and B are normalized
to 1).

By definition, the values of φ lie in [0, 0.5] when the base moment is positive
(α = 1) and φ ∈ [0.5, 1] when the base moment switches to negative (α =−1). Thus,
the phase variable φ is monotonic in time over one oscillation period (see figure 2i,j)
and, as a result, it can be viewed as a time reparametrization for examining the
long-term periodic behaviour of the filament. We therefore label the snapshots in
figure 2(a,b) by their phase φ.

The frequency of switching in the drive is a property of the system that depends
on the system’s parameters, including the magnitude of the base moment Mb.
Figure 2 indicates that for Mb = 1, the base angle θb takes longer time to reach
±Θ than for Mb = 3. To quantify the frequency ω of switching, we define it as
the number of left-side switching events per unit time, averaged over late-time
behaviour. Figure 3 depicts ω as a function of Mb. The frequency ω increases
monotonically with Mb as well as the waviness of the filament. For Mb larger
than 1.7, the curvature along the filament (0 < s < `) changes sign at least once,
indicating a clear travelling-wave pattern. The switching frequency can be mapped to
a Sperm number Sp= (`4ξ⊥ω/B)1/4, defined as the ratio between the filament length
and the elasto-viscous penetration length (Wiggins & Goldstein 1998; Lagomarsino,
Capuani & Lowe 2003; Eloy & Lauga 2012). Here, ξ⊥ = 4πµ/ln(2`/a) is the local
drag coefficient perpendicular to the filament direction (Lauga & Powers 2009).
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FIGURE 4. (Colour online) (a) Filament with tilted angles produce asymmetric beating
patterns. Here Mb = 3, target angles are π/4 ± Θ . The dashed line shows the
average orientation π/4. (b) The filament with Mb = 3 recovers the same beating
pattern when starting from a perturbed initial condition; the long-term beating pattern
is shown in green for comparison. Filaments with lower base moment converge to the
long-term beating pattern within fewer cycles (see supplementary movies 1–4 available at
https://doi.org/10.1017/jfm.2017.816).

The Sperm number Sp increases monotonically with Mb, ranging from 1.6 to 4.3
for Mb ∈ [0.5, 3]. This range of Sperm numbers is consistent with those observed
empirically in flagella and cilia. For example, the wild-type Chlamydomonas has a
beating frequency of 60–80 Hz (Leptos et al. 2013), which yields a Sperm number
Sp≈ 3, given the characteristic parameters listed in table 1.

Although the Sperm number is comparable to that of cilia and flagella, the filament
deformations deviate from those observed in nature in that the amplitude of the
travelling wave decreases towards the tip. This is due to the fact that the model
considers a driving moment at the base only, while, in many biological filaments, the
moments are distributed along the whole filament. In the model, the beating pattern
is related to the choice of the target angle Θ; larger Θ produces beating patterns
with high curvature. Further, the filament deformations are symmetric because the
switching orientations ±Θ are equal and opposite. To break this symmetry, it suffices
to tilt the angle about which the geometric switch is applied by setting Θleft = 0.1π
and Θright = 0.4π as shown in figure 4(a). Hereafter, we restrict our discussion to
the symmetric case. Finally, we note that the long-term behaviour of the filament
depends on Mb but it is independent of the filament initial configuration, as illustrated
in figure 4(b).

5. Synchronization of two filaments
We consider the behaviour of two hydrodynamically coupled, elastic filaments

separated by a distance d and subject to the same moment Mb at their base. We set
the separation distance to be large enough (d> 0.4) so that the two filaments do not
intersect.

Figure 5 shows the long-term behaviour of two filaments that start in a nearly anti-
phase configuration; the left filament, referred to as filament 1, is initially straight and
moving to the right (α1(0)= 1) whereas the right filament, or filament 2, is initially
moving to the left (α2(0)=−1) such that the phase difference is equal to 1φ(0)=
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t t

FIGURE 5. (Colour online) Long-term dynamics of a pair of filaments with (a,c,e) Mb= 1
and (b,d, f ) Mb = 3 for d= 0.7 and 1φ(0)= 0.49. (a,b) Beating patterns at four different
phases (φ1=0,0.25,0.5,0.75). (c,d) Base angles θb as a function of time for 0< t<0.3 (to
highlight transient behaviour). (e, f ) Phase difference |1φ| for 0< t< 2. See supplementary
movies 5 and 6.

φ2(0)− φ1(0)= 0.49. Here, the state variables α1 and α2 and phase variables φ1 and
φ2 for filaments 1 and 2 are defined as in (4.1). This initial configuration corresponds
to a small perturbation away from the anti-phase configuration for which 1φ = 0.5.
The coupling between the two filaments is due to hydrodynamic interactions only.

The two filaments exhibit anti-phase synchronization for Mb = 1 and d = 0.7 as
shown in figure 5(a,c,e), whereas for Mb = 3 the two filaments depart from their
anti-phase initial conditions and approach in-phase synchronization as shown in
figure 5(b,d, f ). These modes of synchronization are quantified in figure 5(e, f ). In
both cases, the shapes of the filaments show no significant difference compared to
those exhibited by the single filaments.

To quantify the long-term synchronization mode between the two filaments, we
adapt the synchronization order parameter Q proposed in Kotar et al. (2010). Namely,
we let

Q=
−1

T − T∗

∫ T

T∗
α1(t)α2(t) dt, (5.1)

where T is the total integration time, and T∗ is chosen to ensure that transient
behaviour is excluded. By construction, one has −16Q6 1, where Q=−1 describes
exactly in-phase motions while Q = 1 corresponds to exactly anti-phase motions. In
the simulations, we set T∗= 15 and T = 20 time units, respectively; the filaments are
said to be in-phase if Q ∈ [−1,−0.5] and anti-phase if Q ∈ [0.5, 1].

We fix the separation distance between the filaments at d= 0.7 and investigate the
effect of the bending moment Mb on the long-term synchronization modes between
the two filaments. We consider in-phase and anti-phase initial conditions 1φ(0) = 0
and 1φ(0) = 0.5, respectively, as well as small perturbations 1φ(0) = 0.01 and
1φ(0)= 0.49 away from these configurations. Figure 6(a) depicts the synchronization
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FIGURE 6. (Colour online) Synchronization order parameter Q as a function of
(a,b) bending moment Mb and (c,d) separation distance d. (a,c) In-phase initial conditions
are shown in blue and anti-phase in red. (b,d) Mean 〈Q〉 (dotted line) and standard
deviation SD(Q) (grey error bars) corresponding to 20 random initial conditions; Q values
are shown as blue and red dots, with colour intensity proportional to the percentage of
initial conditions resulting in these values.

order parameter Q versus Mb shown in blue for 1φ(0) = 0 and 1φ(0) = 0.01 and
in red for 1φ(0)= 0.5 and 1φ(0)= 0.49. When starting at 1φ = 0.5, the filaments
always synchronize anti-phase. However, this anti-phase synchronization becomes
unstable for large Mb (dashed red line) because the filaments shift to in-phase
synchronization under a small perturbation in the initial conditions (1φ(0) = 0.49).
On the other hand, when starting at 1φ= 0 and 1φ= 0.01, the filaments synchronize
in-phase for small Mb, shift to anti-phase synchronization as Mb increases, and shift
back to in-phase synchronization as Mb increases further. For 0.6 6 Mb 6 0.9 and
2.1 6 Mb 6 2.4, the filaments exhibit both stable in-phase and stable anti-phase
synchronization depending on initial conditions. To better understand the sensitivity
of these synchronization modes to perturbations in the initial conditions, we perform
Monte Carlo simulations with initial conditions randomly chosen from a uniform
distribution function 1φ(0) ∈ U(−0.5, 0.5). Statistical results of the synchronization
modes based on 20 Monte Carlo simulations are shown in figure 6(b). Dotted
lines and error bars depict the mean 〈Q〉 and standard deviation SD(Q) of the
synchronization order parameter, respectively. Overlaid blue and red dots are the
distributions of the Monte Carlo simulations, coloured in blue and red according
to the emergent synchronization modes (blue for in-phase and vice versa). The
colour intensity of the dots represents the fraction of simulations corresponding to a
particular Q value – lighter colour means fewer simulations out of 20 total number of
simulations. The bistable regions where both red and blue dots coexist are consistent

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 N

YU
 S

ch
oo

l o
f M

ed
ic

in
e,

 o
n 

05
 A

pr
 2

01
8 

at
 2

0:
12

:4
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

7.
81

6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.816


Bistable synchronization of microfilaments 315

Anti-phase

In-phase

Anti-phase

In-phase

B
is

ta
bl

e

B
is

ta
bl

e
B

is
ta

bl
e

B
is

ta
bl

e

B
is

ta
bl

e

B
is

ta
bl

e

(a) (c)

0

10

(b) (d)

1

0.6 1.2

0

10

0.6 1.2

2 3 0.4 0.6 0.8 1.0 1.2

d

100

0

20

40

60

80

120

100

0

20

40

60

80

120

35

45

30

40

35

45

30

40

FIGURE 7. (Colour online) Beating frequency ω as a function of (a,b) bending moment
Mb and (c,d) separation distance d. (a,c) In-phase initial conditions are shown in blue and
anti-phase in red. (b,d) Mean 〈ω〉 (dotted line) and standard deviation SD(ω) (grey error
bars) corresponding to 20 random initial conditions; ω values are shown as blue and red
dots, with colour intensity proportional to the percentage of initial conditions resulting
in these values. In all panels, the frequency of a single filament (dashed black line) is
superimposed for comparison.

with the results in figure 6(a). In the bistable regions, the synchronization mode is
sensitive to initial conditions.

To explore the effect of the separation distance d between the filaments on the
emergent synchronization modes, we fix the magnitude of the bending moment at
Mb = 2 and plot the synchronization order parameter Q versus d in figure 6(c,d).
For small d, all initial conditions lead to anti-phase synchronization. As d increases,
both in-phase and anti-phase synchronizations coexist, depending on initial conditions,
and as d increases further, only in-phase synchronization are observed. The Monte
Carlo simulations shown in figure 6(d) are consistent with these findings. In the limit
d→∞, the two filaments maintain their initial phase difference. In other words, as
d→∞, the two filaments will take an infinitely long time to synchronize.

In figure 7, we report the values of the emergent beating frequencies for the cases
considered in figure 6 and compare these values to the case of a single filament from
figure 3, which we show in black dashed lines in figure 7. The beating frequencies
for the pair of filaments are either faster or slower than the single filament depending
on their synchronization modes: anti-phase filaments beat at lower frequencies because
the two filaments ‘work against each other’, while in-phase filaments beat at higher
frequencies because they ‘work together’. In particular, in anti-phase beating, the two
fibres are compressing and extending fluid elements in the region between them; while
for in-phase beating, the fluid and the filaments move together. In the limit d→∞,
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FIGURE 8. (Colour online) Synchronization order parameter of two filaments as a function
of bending moment Mb and separation distance d for (a) nearly in-phase (1φ(0)= 0.01),
(b) nearly anti-phase (1φ(0)=0.49), and (c,d) 20 randomly chosen initial conditions. Here
〈Q〉 and SD(Q) are the mean and standard deviation of synchronization order parameter.
High SD(Q) indicates sensitivity to initial conditions. (e) In-phase, anti-phase and bistable
regions obtained by overlaying (c) and (d).

the beating frequency for the pair of filaments converges to the beating frequency of
a single filament.

Figure 8 shows the synchronization order parameter Q over the parameter space
(d, Mb); figure 8(a) shows Q for nearly in-phase initial conditions 1φ(0) = 0.01
and figure 8(b) for nearly anti-phase initial conditions 1φ = 0.49. Figures 8(c)
and 8(d) show the mean and standard deviation, respectively, of Q for 20 Monte
Carlo simulations with initial phase differences chosen from a uniform distribution
U(−0.5, 0.5). Taken together, these results imply that the parameter space can be
divided into three distinct regions: a stable anti-phase region where 〈Q〉 ∈ [0.5, 1] and
SD(Q)< 0.2; a stable in-phase region where 〈Q〉 ∈ [−1,−0.5] and SD(Q)< 0.2; and a
bistable region where 〈Q〉 ∈ [−0.5, 0.5] and SD(Q)> 0.2, in which the synchronization
states are sensitive to the initial phase differences. The three regions are illustrated
in figure 8(e).

6. Shape-dependent oscillators
In the geometric-switch model proposed by Kotar et al. (2010) and Bruot et al.

(2012), a rigid spherical particle is free to move along one direction, say the x-axis,
under the influence of a driving force F that switches direction when the particle
position reaches predefined target positions. Here, we develop a phenomenological
model, based on the geometric switch oscillator, that accounts for the filament’s
elasticity and shape changes in terms of a ‘lumped’ shape variable, which we denote
by s (not to be confused with the filament’s arclength s); see figure 1(c). We propose
the coupled position–shape system of equations

ξ(s)ẋ=−ks+ αF,

τ ṡ=−s+ αF.

}
(6.1)
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FIGURE 9. Velocity evolution ẋ versus time t of the single shape-dependent oscillator for:
(a) shape-dependent oscillator, b = 0.5, k = 0.5; (b) no restoring force, b = 0.5, k = 0;
(c) constant drag coefficient, b= 0, k= 0.5; and (d) traditional oscillator, b= 0, k= 0. In
all cases, τ = 1, ξo = 1, Xs = 1 and F= 1.

The elastic ‘particle’ is subject to a configuration-dependent force αF, where the
magnitude F is constant whereas α switches between {−1, 1} as the particle position
reaches a predefined oscillation amplitude |x| =Xs. For a rigid particle, the drive F is
balanced by a hydrodynamic drag equal to ξ ẋ, where ξ is a constant (positive)
drag coefficient. Elasticity introduces an internal restoring force that competes
with the driving force and couples the shape s to the orientation dynamics. The
elastic force is modelled via a spring with stiffness coefficient k that represents a
‘lumped’ elastic modulus of the filament. The drag coefficient ξ also depends on
shape; it should be maximum when s= 0, that is, when the filament is straight and
moving transversely to itself, and minimum when the filament reaches its maximum
deformation. It should also be symmetric under reflections from s to −s. We therefore
set ξ(s)=max(ξo− bs2, ε), where the quadratic function ξo− bs2 is maximum at and
symmetric about s = 0 and the parameter b characterizes the dependence of ξ on
shape. The lower bound ε > 0 ensures that the drag coefficient ξ remains positive at
all time.

The shape of the filament changes under the influence of the driving force but
relaxes to its original shape when it is not actuated. In (6.1), we assume that αF drives
the shape directly and that the shape s relaxes to the original shape so with constant
relaxation parameter τ . For a fixed value of α, the solution to the shape equation is of
the form s= αF+ (so − αF)e−t/τ , where s relaxes to so when F= 0. For non-zero F,
the force switches sign at ±Xs, thus coupling position and shape. An alternative form
of the shape equation in (6.1) could be written by using ẋ to drive the shape dynamics
instead of directly driving it by αF. Then, the shape equation becomes nonlinear.
We chose the linear form in (6.1) because we are mainly interested in reducing the
complexity of the dynamical system, while identifying the main physical mechanisms
at play.

Figure 9(a) shows the typical evolution of ẋ for the shape-dependent oscillator.
The dynamics resembles qualitatively the dynamics of the full filament model shown
in the second row of figure 2. Specifically, after each switch, the velocity ẋ first
experiences a sharp decrease and remains small until the next switch. This is a joint
effect of the internal restoring moment −ks due to the filament elasticity and the
shape-dependent drag coefficient ξ(s). If the restoring moment is eliminated (k = 0),
the velocity profile changes such that it first decreases then increases (figure 9b),
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FIGURE 10. (Colour online) Synchronization modes of two shape-dependent oscillators
as a function of applied force F and separation distance d for (a) nearly in-phase
(1φ(0)= 0.01), (b) nearly anti-phase (1φ(0)= 0.49), and (c,d) 20 randomly chosen initial
conditions. Here 〈Q〉 and SD(Q) are the mean and standard deviation of synchronization
order parameter. High SD(Q) indicates sensitivity to initial conditions. (e) In-phase,
anti-phase and bistable regions obtained by overlaying (c) and (d). In all simulations, τ =1,
b= 2, k= 0.1, Xs = 1 and ξo = 1.

and if the drag coefficient is held constant (b = 0), the decrease in velocity after
each switch is more gradual (figure 9c). In the case of the standard geometric switch
b= k = 0, the velocity remains constant after each switch because the applied force
considered here is constant (figure 9d).

We now consider two hydrodynamically coupled, shape-dependent oscillators,

ξ(si)[ẋi − vj(xi)] =−ksi + αiF,

τ ṡi =−si + αiF.

}
(6.2)

Subscripts i, j= 1, 2 are the oscillator indices and vj(xi)= ẋj/|xi − xj| (with i 6= j) is the
far-field approximation of the flow velocity generated by the motion of oscillator j at
xi. The state variable α1 switches between {−1, 1} once |x1| = Xs, while α2 switches
between {−1, 1} once |x2 − d| = Xs, where d is the separation distance between the
centres of the two oscillator trajectories.

If b = k = 0, the first equation in (6.2) is consistent with the geometric switch
oscillators in Kotar et al. (2010) and Bruot et al. (2012) with one major distinction:
here the applied force has constant magnitude. In their model, the applied force
depends on the particle position, which determines the type of synchronization:
the two oscillators synchronize anti-phase if the force magnitude decreases as the
oscillator approaches Xs and in-phase if the force magnitude increases. For constant
force, the two oscillators do not synchronize. Nowhere are bistable synchronizations
observed. Consistent with their findings, when the shape changes are not accounted
for (b = k = 0), the model in (6.2) exhibits no synchronization – the two oscillators
maintain their initial phase difference for all time. However, when shape changes are
considered (b 6= 0 and k 6= 0), multiple synchronization modes can arise depending on
the parameter values and initial conditions, as shown in figure 10.
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Figures 10(a) and 10(b) show the synchronization order parameter Q as a function
of the force magnitude F and separation distance d for two sets of initial conditions
1φ(0) = 0.01 and 1φ(0) = 0.49, respectively. For both initial conditions, in-phase
synchronization is favoured as F increases, albeit for different values of F. This
tendency to synchronize in-phase at larger F is consistent with the trend observed
in the full filament model. Figures 10(c) and 10(d) show the results of 20 Monte
Carlo simulations with random initial conditions taken from a uniform distribution
function: a stable anti-phase region is observed for F < 0.3, a stable in-phase region
for F> 0.7, and a bistable region for 0.3< F< 0.7. The three regions are illustrated
in figure 10(e).

The simple model in (6.2) captures some of the main features of the full filament
model. In particular, it shows the presence of regions where in-phase and anti-phase
oscillations are both stable, depending on initial conditions. This bistability is the
product of the coupling between hydrodynamic interactions and shape changes. In
fact, if the restoring force due to elasticity is eliminated (k = 0 but b > 0), the
oscillators always synchronize in phase. Meanwhile, if the dependence of drag on
shape is eliminated (b = 0 but k > 0), the oscillators always synchronize anti-phase.
The two types of synchronization modes are observed only when the two effects of k
and b are present. These findings imply that the two different synchronization modes
observed in the simplified shape-dependent oscillators and in the full filament model
are due to the interplay between elasticity, shape-dependent drag and hydrodynamic
coupling.

7. Discussion
The main contributions of this work can be summarized as follows.

(i) We proposed a model for elastic microfilaments of finite length submerged in
viscous fluid; the filaments are attached to a wall and driven at their base by a
bending moment that is geometrically triggered to switch direction as the filament
approaches predefined target angles.

(ii) We considered full hydrodynamic interactions among and within filaments.
Isolated filaments were shown to undergo long-term periodic deformations that
are insensitive to initial conditions and whose waviness and frequency increased
with increasing the intensity of the driving moment.

(iii) Pairs of filaments exhibit stable in-phase and anti-phase synchrony that are
robust to initial perturbations; more interestingly, both in-phase and anti-phase
synchronizations stably coexist in regions of the parameter space (driving moment
versus separation distance), with in-phase synchrony associated with higher
oscillation frequencies. These multiple synchronization modes are inherently
nonlinear and cannot be captured in a linear stability analysis.

(iv) To explain the main mechanisms underlying the observed behaviour, we proposed
a low-order model of an elastic ‘particle’ that accounts for shape changes in
terms of a ‘lumped’ shape variable that is coupled to the particle’s position.
The simpler model recapitulates the behaviour observed in single and pairs of
filaments and highlights the role of each component – elasticity, shape-dependent
drag and hydrodynamic coupling – in the emergent behaviour.

Our low-order model is consistent with the geometric switch oscillators of Kotar
et al. (2010) and Bruot et al. (2012). In the latter, the driving force depends on the
particle configuration, and its functional form determines the type of synchronization:
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two oscillators synchronize anti-phase if the magnitude of the driving force decreases
as each oscillator approaches its switching positions; they synchronize in-phase if the
force magnitude increases. Shifting between different synchronization modes requires
changing the model of the driving force. In contrast, in our models, the magnitude
of the drive is independent of configuration. Stable in-phase or anti-phase as well as
bistable synchronization modes all arise without the need to change the functional
form of the drive. A transition from in-phase to anti-phase synchrony can be induced
either by varying the drive level or by perturbing the initial conditions at the same
drive level. On a more abstract level, the dynamics in our models can be thought
of as associated with one potential landscape with multiple local minima that can be
visited by changing either the parameter values or the initial conditions.

These findings – namely, the coexistence of in-phase and anti-phase synchrony
and the fact that in-phase synchrony is associated with higher frequencies and
filament waviness (travelling-wave deformations) – are consistent with experimental
observations in a Chlamydomonas biflagellate (Leptos et al. 2013). It was shown
that flagella switch stochastically between anti-phase and in-phase states, and that
the latter has a distinct waveform and significantly higher frequency (the notation
in-phase and anti-phase is reversed in Leptos et al. (2013)). In the context of our
model, such switching could occur due to random perturbations or by varying the
intensity of the internal drive. This is in contrast to alternating between different
models of the drive characterized by different modes of synchrony (Leptos et al.
2013). The distinction between these two views – keeping the same form of the drive
or alternating between different drive forms – is fundamentally linked to admissible
hypotheses on the physiological and biophysical mechanisms underlying the transition
between different synchronization modes. For example, in light of our results, it is
plausible that transitions in biflagellar synchrony are triggered purely mechanically,
say by random noise in the medium, without biochemical changes that alter the
driving forces, or physiologically by modifying either the intensity of the drive or the
compliance of the flagella, without inducing new behaviour in the internal machinery.

In the alga biflagellate Chlamydomonas, mechanical coupling at the flagella base
could be playing a role in flagellar synchronization (Friedrich & Jülicher 2012; Geyer
et al. 2013; Quaranta et al. 2015; Wan & Goldstein 2016). Importantly, in-phase and
anti-phase synchrony is also observed between a pair of pipette-held flagella of Volvox
somatic cells, where the coupling is purely hydrodynamic (Wan & Goldstein 2016,
supplementary movies 2 and 3).

The model presented here serves to demonstrate that the interplay between
elasticity, hydrodynamics and geometry-dependent actuation could give rise to multiple
synchronization modes. While, in itself, the model is not intended to faithfully
describe biological cilia and flagella, the outcomes of the model could serve to
guide future research and formulate new hypotheses regarding the mechanisms that
drive and alter synchrony in biological and physical systems. For example, it would
be interesting to revisit the pipette-held flagella of Volvox somatic cells and conduct
systematic experiments for identifying the physical parameters leading to in-phase and
anti-phase synchrony. It would also be interesting to develop experimental protocols
for gradually increasing the activity of the molecular motors in reactivated axonemes
as in Geyer et al. (2016) to gauge the effect of the actuation level on synchrony.
From the modelling standpoint, future extensions of this work will account for more
accurate models of the internal driving moments (Goldstein et al. 2016; Sartori et al.
2016), 3D filament deformations with torsion and twist (Olson, Lim & Cortez 2013;
Man, Koens & Lauga 2016) and multiple interacting filaments with application to
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metachronal coordination of cilia (Gueron & Levit-Gurevich 1999; Mitran 2007; Yang
et al. 2008; Guo et al. 2014; Guo & Kanso 2016). Meanwhile, we are working on
including mechanical coupling at the base of the filaments to emulate basal coupling
in the ciliated cell and investigate its role in filament synchronization, in the presence
and absence of fluid coupling. The low-order model also presents a rich framework in
which to explore synchronization of multi-particle oscillators as in Vilfan & Jülicher
(2006) and Uchida & Golestanian (2011).
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