
J. Fluid Mech. (2018), vol. 849, pp. 1043–1067. c© Cambridge University Press 2018
doi:10.1017/jfm.2018.446

1043
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We explore the rotational stability of hovering flight in an idealized two-dimensional
model. Our model is motivated by an experimental pyramid-shaped object (Weathers
et al., J. Fluid Mech, vol. 650, 2010, pp. 415–425; Liu et al., Phys. Rev. Lett.,
vol. 108, 2012, 068103) and a computational ∧-shaped analogue (Huang et al.,
Phys. Fluids, vol. 27 (6), 2015, 061706; Huang et al., J. Fluid Mech., vol. 804,
2016, pp. 531–549) hovering passively in oscillating airflows; both systems have
been shown to maintain rotational balance during free flight. Here, we attach the
∧-shaped flyer at its apex in oscillating flow, allowing it to rotate freely akin to a
pendulum. We use computational vortex sheet methods and we develop a quasi-steady
point-force model to analyse the rotational dynamics of the flyer. We find that the
flyer exhibits stable concave-down (∧) and concave-up (∨) behaviour. Importantly, the
down and up configurations are bistable and co-exist for a range of background flow
properties. We explain the aerodynamic origin of this bistability and compare it to
the inertia-induced stability of an inverted pendulum oscillating at its base. We then
allow the flyer to flap passively by introducing a rotational spring at its apex. For
stiff springs, flexibility diminishes upward stability but as stiffness decreases, a new
transition to upward stability is induced by flapping. We conclude by commenting on
the implications of these findings for biological and man-made aircraft.

Key words: aerodynamics, flow-structure interactions, swimming/flying

1. Introduction

Stability is as essential to flight as lift itself. Flyers, living and non-living, are
often faced with perturbations in their environment. After a perturbation, a stable
flyer returns to its previous orientation passively. An unstable one requires active
control (Vogel 2009). The issues of stability and control were indispensable to
the development of man-made aircrafts (Wright & Wright 1906) and are pertinent to
both the origin of animal flight and the subsequent evolution of flying lineages (Vogel
2009).

† Email address for correspondence: kanso@usc.edu
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1044 Y. Huang, L. Ristroph, M. Luhar and E. Kanso

The intrinsic stability of flying organisms varies across species. Most birds and
insects sacrifice intrinsic stability for gains in manoeuvrability and performance (Vogel
2009; Huang, Nitsche & Kanso 2015). This trade-off is enabled by sensory
feedback and neuromuscular control mechanisms. To identify the sensory circuits
and control strategies employed by insects, several approaches have been used. This
includes pioneering behavioural experiments as well as anatomical and aerodynamic
studies (Fry, Sayaman & Dickinson 2003; Taylor & Krapp 2007; Ristroph et al. 2010;
Sun 2014).

Insects have also been a source of inspiration for building miniature flying
machines; see, for example, Ma et al. (2013), Graule et al. (2016), Chen et al. (2017)
and references therein. Most designs imitate the flapping motions of insect wings. The
aerodynamics of these flapping motions has been clarified by numerous experimental
and computational models; see, for example, Ellington et al. (1996), Dickinson,
Lehmann & Sane (1999), Sane (2003), Wang, Birch & Dickinson (2004), Wang
(2005) and references therein. However, stabilization and control of such biomimetic
machines remains a challenge; it requires fast responses to unsteady aerodynamics at
small length scales. It is therefore advantageous to invent new engineering designs
that are intrinsically stable. To this end, Ristroph & Childress (2014) proposed a
jellyfish-inspired machine that required no feedback control to achieve stable hovering
and vertical flight. The aerodynamic principles underlying this stable hovering are
fundamentally linked to a previous experimental model by the same research team
where a pyramid-shaped object pointing upward was shown to hover and maintain
balance passively, without internal actuation, in vertically oscillating airflows of
zero mean (Childress, Vandenberghe & Zhang 2006; Weathers et al. 2010; Liu
et al. 2012). Building on these efforts, Huang et al. (2015), Huang, Nitsche &
Kanso (2016) analysed the aerodynamics and stability of the pyramid-shaped flyer
using a two-dimensional computational model based on the inviscid vortex sheet
method. Fang et al. (2017) applied a similar approach to examine the stability of the
jellyfish-inspired hovering machine. Details of the vortex sheet method can be found
in Krasny (1986), Nitsche & Krasny (1994), Jones (2003), Jones & Shelley (2005),
Shukla & Eldredge (2007), Alben (2009).

Stable hovering in oscillating flows of zero-mean velocity is enabled by the
pyramid’s geometric asymmetry and the unsteady vortex structures shed from its
outer edges. Liu et al. (2012) combined experimental observations with a quasi-steady
force theory to estimate the effect of this asymmetry without ever solving for the
coupled fluid–flyer interactions. They reported that, contrary to intuition, pyramids
with higher centre of mass are more stable. Coupled fluid–flyer interactions were
computed by Huang et al. (2015, 2016) in the context of a two-dimensional ∧-shaped
flyer free to undergo translational and rotational motions in oscillating flows. These
computational studies provided valuable insight into the background flow conditions
necessary for hovering and into hovering stability. In particular, a transition from
stable to unstable, yet more manoeuvrable, hovering was reported as a function of
the flyer’s opening angle and background flow acceleration.

As an extension of the research reported in Huang et al. (2015), Huang & Kanso
(2015), Huang et al. (2016), we consider here the rotational stability of a heavy
∧-shaped flyer that is attached at its apex, but free to rotate, in a vertically oscillating
background flow. As in a simple pendulum, in the absence of flow oscillations, the
∧-configuration is stable and the ∨-configuration is unstable. We first consider rigid
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Bistability in the rotational motion of rigid and flexible flyers 1045

Bound vortex sheet

Free vortex sheet(a) (b)

FIGURE 1. (Colour online) (a) Schematic of the two-dimensional ∧-shaped flyer in
oscillatory fluid. (b) Depiction of the vortex sheet model used for calculating the
aerodynamic forces and torques on the flyer.

flyers and examine the stability of these two configurations in oscillating flows using
both a vortex sheet model and a quasi-steady point-force model. We then introduce
a rotational spring at the apex of the flyer and allow it to flap passively under
background flow oscillations. We examine the difference in stability between the rigid
and elastic flyers. We conclude by summarizing the main findings of this study and
commenting on its utility for directing future research on flight stability.

2. Problem formulation

The flyer consists of two flat ‘wings’ connected rigidly at their apex to form a
∧-flyer, as shown in figure 1(a). The opening angle of the flyer is 2α. The wings
are made of rigid plates of homogeneous density ρs, length l and thickness e that is
small relative to l. The mass per unit depth of each wing is given by ms = ρsle. The
flyer is suspended at its apex O but free to rotate about O at an angle θ measured
counterclockwise from the vertically up direction. The flyer is placed in a background
flow of density ρf oscillating vertically at a velocity U(t) = πfA sin(2πft) with zero
mean. Here, f is the oscillation frequency and A is the peak-to-peak amplitude.

The equation governing the rotational motion of the flyer is obtained from the
conservation of angular momentum about point O of the two-wing system subject to
gravitational and aerodynamic effects,

2
3 msl2θ̈ =−(ms −mf )gl cos α sin θ + T1 + T2. (2.1)

Here, g is the gravitational constant, mf = ρf le is the mass of displaced fluid and
(ms − mf )g is the net weight of each wing counteracted by the buoyancy effects.
The aerodynamic torques on the left and right wings respectively are denoted by
T1 and T2, resulting in a total aerodynamic torque T = T1 + T2 about the flyer’s
point of suspension O. If these torques were zero, (2.1) reduces to the equation
θ̈ = −(g/lp) sin θ governing the rotational motion of a simple pendulum of length
lp = (2ms/3(ms −mf ))(l/cosα).

For the flexible flyers, we introduce elasticity into the model in the form of a
torsional spring of stiffness Ke placed at the base point connecting the two rigid wings.
For this case, in addition to the rotational dynamics in (2.1), the shape of the flyer,
represented by the half-opening angle α, changes in time. The equation of motion
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1046 Y. Huang, L. Ristroph, M. Luhar and E. Kanso

Dimensional quantities Dimensionless parameters
A f l ρs Ke β κ m ke

m Hz m kg m−3 N m no units

0.001–0.1 1–10 0.01–0.1 10–300 3.10−8–30 0.1–1 0.01–1 0.074–2 10–1000

TABLE 1. Dimensional versus dimensionless quantities. The dimensionless ranges
considered here lie within observed values for insects and small birds in dimensional terms.
Constant parameters are ρf = 1.225 kg m3, g= 9.81 m s−1. Wing thickness-to-length ratio
is assumed to be e/l= 0.01.

governing the shape evolution is obtained by balancing the angular momentum for
each wing separately and subtracting the resulting two equations. This yields

2
3 msl2α̈ =−(ms −mf )gl sin α cos θ − (T1 − T2)− 4Ke(α − αr). (2.2)

Here, αr is the rest half-angle of the torsional spring.
To make the equations of motion (2.1) and (2.2) dimensionless, we scale length by

l, time by 1/f and mass by the wing’s added mass ρf l2. The number of independent
parameters is then reduced to five dimensionless quantities: the amplitude β and
acceleration κ of the background flow and the mass m, rest angle αr and stiffness ke
of the flyer,

β =
A
l
, κ =

2msAf 2

3(ms −mf )g
, m=

2ms

3ρf l2
, αr, ke =

4Ke

ρf l4f 2
. (2.3a−e)

For the rigid flyer, ke =∞ and α = αr for all time. The range of dimensional and
dimensionless parameter values used in this study are listed in table 1 and lie within
observed values in insects and small birds (Ellington et al. 1996; Dickinson et al.
1999; Spedding, Rosén & Hedenström 2003; Thomas et al. 2004; Warrick, Tobalske
& Powers 2005). Dimensionless counterparts to (2.1) and (2.2) can be written as

mθ̈ =−
mβ
κ

cos α sin θ + (T1 + T2),

mα̈ =−
mβ
κ

sin α cos θ − (T1 − T2)− ke(α − αr).

 (2.4)

Here, the aerodynamic torques T1 and T2 are considered to be dimensionless. The
dimensionless background flow is given by U(t)=πβ sin(2πt).

3. The vortex sheet method
We apply an inviscid vortex sheet model to calculate the aerodynamic forces and

torques exerted on the flyer by the surrounding fluid. A detailed description of the
vortex sheet method can be found in Huang et al. (2016) and references therein.
Huang et al. (2016) presented a careful comparison between the numerical results
obtained using our implementation of the vortex sheet model and the results obtained
by Jones (2003) and Jones & Shelley (2005) for a flat plate. Here, we provide a brief
outline of the method. In this treatment, the wing system is modelled as a bound
vortex sheet of zero thickness and the vorticity shed at each edge is represented as
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Bistability in the rotational motion of rigid and flexible flyers 1047

a free vortex sheet, as shown in figure 1(b). Vorticity is distributed along the free
and bound vortex sheets with sheet strength γ (s, t), as a function of the arc length
s and time t. We define the total circulation of the left and right vortex sheets as
Γl =

∫
sl
γ (s, t) ds and Γr =

∫
sr
γ (s, t) ds respectively. Here, sl and sr are used to

denote the arc lengths along the left and right vortex sheets. The distribution of the
bound sheet strength at each time step is solved by satisfying the normal boundary
conditions on the wings and Kevin’s circulation theorem. The Kutta condition gives
the shedding rates at the two outer edges as

dΓl

dt

∣∣∣∣
sb=−l

= −
1
2
(u2
−
− u2

+
)

∣∣∣∣
sb=−l

,
dΓl

dt

∣∣∣∣
sb=l

=
1
2
(u2
−
− u2

+
)

∣∣∣∣
sb=l

, (3.1a,b)

where sb is the arc length along the bound vortex sheet (sb=−l and sb= l denote the
arc lengths of the left and right edges separately) and u± are the slip velocities above
and below the flat wings, namely the tangential velocity difference between the fluid
and the wing. Under unfavourable shedding conditions, such as when the background
flow opposes vortex shedding (Jones & Shelley 2005), we halt the shedding of a new
vortex element as done in Alben (2010). It is important to point out that no vorticity
is shed from the apex; the model therefore ignores some of the physics when shedding
from the apex is expected such as when the wedge is oriented orthogonal to the
oncoming flow.

Once the vorticity distribution is computed, the pressure difference across the wings
can be obtained from Euler’s equation. To this end, we get

[p]−
+
(sb, t)= p−(sb, t)− p+(sb, t)=−

dΓ (sb, t)
dt

−
1
2
(u2
−
− u2

+
), (3.2)

where Γ (sb, t)= Γl +
∫ sb

−l γ (s, t) ds. The fluid force is due to pressure only; the force
and torque acting on each wing with respect to the attachment point O are given by

Fx =

∫ l

−l
[p]−
+

nx ds, Fy =

∫ l

−l
[p]−
+

ny ds,

T =
∫ l

−l
[p]−
+
((xb − xo)ny − (yb − yo)nx) ds.

 (3.3)

Here, nx and ny are the x- and y-components of the unit vector normal to the wings,
(xb, yb) is the position of the bound vortex sheet along the wings, and (xo, yo) is the
fixed position of the attachment point. Both (xb, yb) and (nx, ny) are functions of arc
length.

To emulate the effect of fluid viscosity, we follow Huang et al. (2015, 2016) and
we introduce a dimensionless time parameter τdiss, such that the point vortices shed at
time t− τdiss are manually removed from the fluid at time t. Here, we set τdiss = 0.6.
Note that this approach indirectly introduces dissipation because each vortex removal
amounts to adding a small dissipative force to the force balance on the wedge. This
dissipative force is small, as long as the value of τdiss is sufficiently far from the
oscillation period of the background flow. The dissipative force introduced by the
method is quantified for fixed and pitching plates in background flow in the Appendix.
A complete description of the variation in dissipation with τdiss is outside the scope
of the present study. However, we note that the value chosen here, τdiss = 0.6, is far
from any potential resonances.
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1048 Y. Huang, L. Ristroph, M. Luhar and E. Kanso

Given that the dissipation time imitates viscosity, we anticipate the dimensional
dissipation time τ ∗diss to scale as τ ∗diss ∼ δ

2/ν, where δ is the characteristic thickness
of the vortex sheet and ν is kinematic viscosity. This scaling argument can be used
to obtain an estimate of the Reynolds number, Re= Afl/ν = Aflτ ∗diss/δ

2
≈ 0.6Al/δ2. In

our simulations, the regularized thickness of the vortex sheet δ/l is of order 10−2.
Consequently, for the range of parameter values listed in table 1, one gets Reynolds
numbers ranging from 600 to 6000.

4. Results: rigid flyers
The concave-down (∧) and concave-up (∨) configurations of the flyer are

equilibrium solutions of (2.4). This result follows directly from symmetry about
the vertical direction. In the absence of flow oscillations, as in a simple pendulum,
the ∧-configuration is stable and the ∨-configuration is unstable. Here, we examine
the stability of these two configurations in oscillating flows by solving the nonlinear
system of equations for the coupled fluid–flyer model. For concreteness, we consider
perturbations of the flyer’s initial orientation θ(0) while keeping θ̇ (0) = 0. For the
elastic flyer discussed in § 5, we additionally set α(0)− αr = α̇(0)= 0.

4.1. Bistable behaviour
We impose non-zero initial perturbations θ(0) and we solve (2.4), coupled to the
vortex sheet model, for each initial perturbation. Figure 2 shows the rotational motion
θ(t) of a flyer of mass m = 1 and half-opening angle α = π/6 for four sets of
flow parameters (β, κ) = (0.6, 0.15), (0.6, 0.3), (1.2, 0.15) and (1.2, 0.3). Figure 3
shows snapshots of the flyer and its unsteady wake for these four cases. Two distinct
nonlinear behaviours are observed: stable behaviour where the flyer gravitates to the
concave-down ∧-configuration for all initial perturbations (figure 2a) and bistable
behaviour where the flyer tends to either the concave-down ∧- or concave-up
∨-configuration depending on the initial perturbation (figure 2b). We further
distinguish three types of bistable behaviour: asymptotically stable behaviour where
θ converges to either 0 or π (figure 2b), bounded ‘chaotic-like’ oscillations about 0
or π (figure 2c) and ‘quasi-periodic’ oscillations about 0 or π (figure 2d). Similar
bounded oscillations were observed in the stable behaviour about the concave-down
∧-configuration, the time trajectories of which are omitted for brevity.

Stabilization of the flyer in the concave-up ∨-configuration is fundamentally due
to unsteady aerodynamics. Snapshots of the flyers and their unsteady wakes are
shown in figure 3. The flyer is subject to gravitational and aerodynamic forces only.
The torque −mβκ−1 cos α sin θ induced by the gravitational force tends to align
the flyer with θ = 0 for all orientations. Thus, it has a destabilizing effect on the
concave-up ∨-configuration. Later in this paper we analyse the aerodynamic forces
Fx and Fy and torque T acting on the flyer and explain the aerodynamic origin of
the bistable behaviour. First, we map the flyer’s stable and bistable behaviour onto
the two-dimensional parameter space (β, κ) of flow amplitudes and accelerations.

Figure 4 shows the (β, κ)-space in log–log scale for six distinct flyers: three flyers
of increasing opening angle α = π/12, π/6 and π/4 and same mass m = 0.074
(figure 4a), and three flyers of the same angle α=π/6 and increasing mass m= 0.5,
1 and 2 (figure 4b). Specifically, we vary β from 0.1 to 1 and κ from 0.01 to 1.
Stable behaviour about the concave-down ∧-configuration is represented by the open
symbols ‘@’ ‘6’ and ‘E’, corresponding to asymptotically stable behaviour (θ → 0),
bounded chaotic-like and periodic oscillations about θ = 0, respectively. The filled
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Bistability in the rotational motion of rigid and flexible flyers 1049

3010 20 400

t
3010 20 400

t

Chaotic-like
bistable

Quasi-periodic
bistable

(a) (b)

(c) (d )

FIGURE 2. Rotational behaviour of a rigid flyer (m = 1, α = π/6) in oscillatory flows.
Flow parameters are (a) β = 0.6, κ = 0.15, (b) β = 0.6, κ = 0.30, (c) β = 1.2, κ = 0.15
and (d) β = 1.2, κ = 0.30. Initial perturbations are set to θ(0) = π/6 and θ(0) = 5π/6.
Figure 3 shows snapshots of the flyer’s wake at the time instants highlighted by vertical
dashed lines.

symbols ‘p’ ‘f’ and ‘u’ are used to denote bistable behaviour. The best-fit line
for the points at which the transition from asymptotically stable to asymptotically
bistable behaviour is first observed is highlighted by a dashed red line, with bistable
behaviour observed for values of β and κ values that satisfy

β/κa > b. (4.1)

The slope a of the transition line and threshold value b above which the transition
occurs depend on the flyer’s shape α and mass m, as detailed in table 2. The slope a
increases as α increases but is relatively insensitive to changes in mass. Meanwhile,
the threshold b decreases with α but increases with m. Taken together, these results
indicate that wider flyers, which amplify the aerodynamic torque, tend to transition
to bistable behaviour at lower values of flow amplitude β and acceleration κ than
narrower flyers. They also indicate that heavier flyers require larger values of β and
κ to make this transition.

An estimate of the transition from stable to bistable behaviour can be obtained
by noting that upward stability occurs when the aerodynamic torque balances the
gravitational torque. Considering a quasi-steady drag formulation, the aerodynamic
force in dimensional form is proportional to ρf l(Af )2 and the aerodynamic torque
to ρf l2(Af )2. In dimensionless form, one has T ∼ ρf l2(Af )2/ρf l4f 2

= β2. From (2.4),
the gravitational torque scales as mβκ−1 cos α. Thus, the ratio of aerodynamic to
gravitational torque is given by β/κ−1m cos α, yielding β/κ−1 > m cos α for upward
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FIGURE 3. (Colour online) Snapshots of the flyers and their wakes at the time instants
highlighted by vertical dashed lines in figure 2.

stability. The threshold to bistability increases with m and decreases as α increases
from 0 to π/2, which is consistent with the numerical results in figure 4 and table 1.
However, a direct comparison of the condition β/κ−1 > m cos α obtained from such
scaling argument with equation (4.1) implies that a = −1 whereas the values listed
in table 1 based on the vortex sheet method lie within −1< a< 0. This discrepancy
indicates that the simple scaling argument based on quasi-steady drag does not
quantitatively capture the aerodynamic torques generates by the unsteady flow. This is
not too surprising since the quasi-steady scaling arguments presented above essentially
assume a constant drag coefficient. In unsteady flows, the effective drag coefficient is
known to depend strongly on the ratio β of oscillation amplitude to object size (the
so-called Keulegan–Carpenter number proposed in Keulegan & Carpenter (1958)). In
general, the aerodynamic forces and torques can be decomposed into fast and slow
components: the fast component oscillates with the background flow while the slow
component is defined as the time average over the fast oscillations. A more complete
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(a) (b)

FIGURE 4. (Colour online) Stable and bistable behaviour of rigid flyers mapped onto the
(κ , β) for (a) α=π/12,π/6 and π/4 and m= 0.074 and (b) α=π/6 and m= 0.5, 1, 2.
Grey boxes are used to highlight the four sets of parameters used in figure 2. The open
symbols ‘@’ ‘6’ and ‘E’ correspond to stable concave-down ∧-configuration, with ‘@’
representing asymptotically stable behaviour (θ→0) and ‘6’ and ‘E’ representing bounded
chaotic-like and periodic oscillations about θ = 0, respectively. The filled symbols ‘p’ ‘f’
and ‘u’ are used to denote bistable behaviour.

model for the time-averaged (slow) aerodynamics that describes the origin of the
observed bistable behaviour is presented in § 4.6.

4.2. Comparison to the inverted pendulum
The bistable behaviour observed here is reminiscent to the behaviour of a classic
pendulum undergoing rapid vertical oscillations about its point of suspension, with
negligible aerodynamic forces. A classic pendulum of length lp = (2ms/3(ms −

mf ))(l/cosα) equivalent to the submerged flyer can be stabilized about the inverted

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 N

YU
 S

ch
oo

l o
f M

ed
ic

in
e,

 o
n 

29
 M

ar
 2

01
9 

at
 1

9:
28

:2
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
44

6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.446


1052 Y. Huang, L. Ristroph, M. Luhar and E. Kanso

Figure 4(a) Figure 4(b)
α π/12 π/6 π/4 m 0.5 1 2

a −0.63 −0.45 −0.37 a −0.52 −0.57 −0.55
b 0.23 0.17 0.16 b 0.18 0.22 0.23

TABLE 2. Transition from stable to bistable behaviour first occurs at β/κa > b where a
and b are obtained from linearly fitting the lower boundary of the bistable (green) region
in figure 4.

(vertically up) configuration by an inertia-induced torque provided that the frequency
fp and amplitude Ap of the base oscillations satisfy A2

p(2πfp)
2 > 2glp (Butikov (2001,

equation (7))). The inertia-induced torque responsible for this bistability can be
best explained in a non-inertial frame of reference that is oscillating with the
base point of the pendulum. The acceleration of this frame induces an inertial
torque that must be added to the torque of the gravitational force. Such torque is
absent in the flyer equations because the flyer’s base point is fixed. To compare
the classic pendulum to the flyer, we rewrite the condition A2

p(2πfp)
2 > 2glp for

inertia-induced bistability in terms of the dimensionless amplitude β = Ap/l and
acceleration κ = (2ms/3(ms −mf ))Apf 2

p /g defined according to (2.3); we obtain

β/κ−1 >
1

2π2 cos α

(
2ms

3(ms −mf )

)2

. (4.2)

Comparing (4.1) and (4.2), a is always equal to −1 for the classic pendulum,
reinforcing that a of the flyer is affected by the flyer’s shape due to aerodynamics.
Meanwhile, the threshold b for the transition to upward stability depends on both
mass and shape, but unlike the trend observed in table 1 for the flyer, b for the
inverted pendulum increases as α increases from 0 to π/2.

For a quantitative comparison, consider the flyer with α = π/6 and m= 1 (middle
panel of figure 4b). The aerodynamic-induced transition occurs for β/κ−0.57 > 0.22.
If we vary the mass ratio ms/mf from 1.2 to 4, the dimensionless quantity
(2ms/3(ms − mf )) decreases from 4 to 8/9 and the threshold value b for the
inertia-induced transition decreases by an order of magnitude from 0.23 to 0.05.
At ms/mf = 1.52, the inertia- and aerodynamic-induced transitions have the same
value b = 0.22. In this case, for accelerations 0 < κ < 1, the flyer transitions to
upward stability at smaller oscillation amplitude β than the classic pendulum. By
the same token, for a given amplitude β, this transition requires smaller κ and
consequently smaller oscillation frequency.

4.3. Basins of attraction of ∧- and ∨-configurations
What is the value of the initial perturbation θ(0) beyond which the flyer stabilizes in
the concave-up configuration? To answer this question, we vary the initial perturbation
θ(0) from 0 to π by increments 1θ = π/18, keeping track of the flyer’s long-term
behaviour (concave-down or concave-up). The results are reported in figure 5 for flow
parameters β = 0.5 and κ = 0.5 and flyers of mass m= 1 and angle α ranging from
π/18 to 4π/9. The basin of attraction of the concave-up configuration increases as α
increases, allowing for a stable concave-up configuration with perturbations from the
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10 200
t

FIGURE 5. (Colour online) Basins of attraction for the (blue) downward ∧- and (red)
upward ∨-stable configurations for flyers of opening angle α ranging from π/18 to 4π/9
by the increment of π/36. Initial orientation θ(0) increases from π/18 to 17π/18 by π/18
while the initial angular velocity is θ̇ (0) = 0. Parameters are set to m = 1, κ = 0.5, and
β = 0.5. The open symbols ‘@’ correspond to stable concave-down ∧-configuration while
the filled symbols ‘p’ denote bistable behaviour.

upward direction as large as π/2. Figure 5 also shows the time evolution of θ(t) given
two initial conditions θ(0)=π/2 and θ(0)=π/2+π/18 for a representative example
of α =π/3. The flyer converges to θ = 0 in one case and θ =π in the other.

For the classic inverted pendulum with β and κ satisfying the condition in (4.2), the
limiting value θo of initial perturbations, averaged over the rapid vertical oscillations,
above which the pendulum is stable in the inverted configuration is given by (Butikov
2001, equation (9)),

cos(θo)=−
1

2π2βκ cos α

(
2ms

3(ms −mf )

)2

. (4.3)

For κ = β = 0.5 as in figure 5 and ms/mf = 4, as α increases from π/18 to 4π/9, the
angle θo marking the boundary of the basin of attraction between the downward stable
and upward stable configurations increases from 0.55π to 0.87π. Unlike the flyer, the
basin of attraction of the inverted pendulum decreases as α increases.

4.4. Effective rotational potential
To elucidate the fluid mechanical basis of this bistability, we examine the total torques
due to both aerodynamics and gravity for the two cases highlighted in figure 5.
The torques are shown in figure 6(a) as a function of time. The two subplots are
practically indistinguishable because of the fast oscillations in the aerodynamic torque.
We therefore average the aerodynamic torque T = T1 + T2 and orientation θ over one
period of background flow oscillations to obtain the ‘slow’ quantities,

〈T〉 =
∫ t+1

t
T(t′) dt′, 〈θ〉 =

∫ t+1

t
θ(t′) dt′, (4.4a,b)
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FIGURE 6. (Colour online) (a) Torque as a function of time for the two trajectories
highlighted in figure 5: solid (blue and red) lines denote the total torque which is
equal to the aerodynamic torque (dashed lines) and gravitational torque (solid black line).
(b,c) Time-averaged torque due to aerodynamics and gravity and corresponding rotational
potential V as a function of time-averaged orientation.

and we plot 〈T〉 versus 〈θ〉 in figure 6(b). The slow aerodynamic torque, shown in
blue for θ(0)=π/2 (∧-stable) and in red for θ(0)=π/2+π/18 (∨-stable), is always
positive, indicating that it is acting against gravity in both cases, albeit at slightly
higher values in the latter. The torque due to gravity is shown in solid black line
and the sum of both torques is shown in the right panel. As θ→π, the total torque
in the ∨-stable case becomes positive; the aerodynamic torque overcomes the torque
due to gravity.

We define an effective potential function

V(t)= V(θ(t))=−
∫ θ(t)

θ∗
T(t) dθ ′(t), (4.5)
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FIGURE 7. (Colour online) (a) Snapshots of the flyer at various orientations ranging from
θ = 0 to θ = π in a uniform flow pointing vertically up (top row) and down (middle
row). The direction of the average aerodynamic force over one cycle of flow oscillation
is depicted in the bottom row. (b) Schematic of the aerodynamic and gravitational
rotational potential.

where θ∗ = 0 for the ∧-stable case and θ∗ = π for the ∨-stable case. Figure 6(c)
shows its slow evolution 〈V〉, defined according to (4.4), as a function of 〈θ〉. The
aerodynamic component of this potential counteracts the component due to gravity
and dominates as θ approaches π in the ∨-stable case, creating a ‘dip’ in the potential
around π.

It is important to note that the results shown in figure 6(c) do not represent the
landscape of the potential function due to aerodynamic and gravitational torques. They
rather correspond to a ‘sampling’ of this landscape by two particular trajectories. To
construct the aerodynamic potential, we fix the flyer at different angles θ ranging
from 0 to π (no dynamics) and compute the aerodynamic forces and torque at each
orientation as detailed in § 4.6. Beforehand, in § 4.5, we provide simple physical
arguments to explain the origin and structure of the rotational potential.

4.5. Conceptual model
To gain physical insight into the aerodynamic forces acting on the flyer, and the effect
of these forces on the aerodynamic torque and rotational potential, we conduct the
following thought experiment. The experiment consists of examining a sequence of
snapshots of the flyer at various orientations ranging from θ = 0 to θ =π in a uniform
flow pointing vertically up or down, as illustrated in figure 7(a). One can immediately
make three key observations.

Observation 1: Due to the up–down asymmetry in flyer shape, the wake is not
symmetric upon up–down inversion of the uniform flow direction. As a result, the
instantaneous aerodynamic force depends on both flyer orientation and flow direction.
Consider, for example, the case θ = 0 (left column of figure 7a). Since the wake
downstream of the flyer is narrower when the flow is pointing down, the resulting
aerodynamic drag force is weaker. Under a simplified drag force model, the vertical
aerodynamic force Fy can be expressed in terms of a drag coefficient CD that
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depends on the direction of the uniform flow. Namely, for θ = 0, we anticipate
Fy = CUup

D (ρfAU2/2) when the flow is pointing up and Fy = −CUdown
D (ρfAU2/2)

when the flow is pointing down, with CUup
D > CUdown

D . Here, A = 2l cos α is
the horizontal projection of the wedge. When averaged over one cycle of flow
oscillation, one obtains a net upward force that scales as 〈Fy〉 ∼ 1CD(ρfAU2/2).
Here, 1CD = CUup

D − CUdown
D reflects the drag asymmetry at θ = 0, which depends on

the flyer opening angle, α. Note that the scaling presented above is consistent with
the quasi-steady drag model proposed in Weathers et al. (2010).

Observation 2: By comparing the first and last column in figure 7(a), it is evident
that up–down inversion of the wedge does not change the magnitude of the net vertical
force 〈Fy〉, only its direction. In other words, 〈Fy〉|θ=π=−〈Fy〉|θ=0. Further, at θ =π/2,
we anticipate no net vertical force, 〈Fy〉 = 0, due to the up–down symmetry in flyer
shape at this orientation (see middle column in figure 7a). Based on the flow- and
orientation dependence described in observations 1 and 2, we anticipate that 〈Fy〉 ∼

1CD cos θ .
Observation 3: The horizontal component of the force ought to be zero at θ = 0 and

θ =π due to the left–right symmetry of the flyer and negative at θ =π/2 due to the
net circulation in the wake. This observation suggests 〈Fx〉 ∼−CL sin(θ), where CL is
the lift coefficient at θ =π/2, which depends on α.

Put together, these three observations imply that, over one cycle of flow oscillation,
the net horizontal force is symmetric and the vertical force is anti-symmetric about
θ =π/2, i.e. for an up–down reflection of the wedge. These symmetries exist for all
angles α and can be easily traced back to the left–right symmetry of the flyer and
up–down symmetry of the oscillating background flow. In addition, given these scaling
laws for 〈Fy〉 and 〈Fx〉, one can posit that the net rotational torque acting on the wedge
varies with α and θ as

〈T〉 ∼ 〈Fy〉 sin θ + 〈Fx〉 cos θ ∼ (1CD −CL) sin(2θ). (4.6)

Hence, the rotational potential associated with the aerodynamic torque scales as

〈V〉 =−
∫ θ

0
〈T〉 dθ ′ ∼

1
2
(1CD −CL)[cos(2θ)− 1]. (4.7)

An important consequence of this analysis is that the rotational potential due to
aerodynamics is symmetric about θ = π/2. The up–down asymmetry in flyer shape,
and therefore, vertical force, does not translate into an asymmetry in the rotational
torque in favour of one configuration (concave-up ∨) versus another (concave-down
∧). From an aerodynamic perspective, both configurations are rotationally equivalent
in an oscillating flow, as illustrated by the aerodynamic potential in figure 7(b). This
new insight completes the picture presented in figure 1(c) of Liu et al. (2012), which
focused solely on the local stability of the hovering pyramid around θ = 0.

Importantly, the asymmetry in the gravitational potential breaks the symmetry in
the aerodynamic potential (see figure 7b). If the aerodynamic potential well at θ =π
is deep enough, the resulting total potential can have a dip at θ = π that stabilizes
the concave-up ∨ configuration. In the next section, we verify these conceptual
predictions using the vortex sheet model. We also derive quantitative expressions for
the aerodynamic forces, torque and rotational potential averaged over one period of
fast oscillations. Keep in mind that the discussion above, and the presence of a well
in the aerodynamic potential at θ = 0 and θ =π, requires that CL >1CD. If the drag
asymmetry is dominant, 1CD > CL, the aerodynamic potential would have a well at
θ = π/2, i.e. aerodynamic forces would serve to stabilize the flyer in the up–down
symmetric orientation corresponding to θ =π/2.
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α A B C D

π/6 −0.613 0.161 0.196 0.434
π/4 −0.660 0.097 0.455 1.067
π/3 −0.555 0.045 0.485 2.618

TABLE 3. Coefficients of the quasi-steady model (4.8) and (4.9) for the flyers shown in
figure 8.

4.6. Aerodynamic forces and torques and slow rotational potential
In this section, we construct the landscape of the rotational potential by averaging
the unsteady aerodynamics over fast oscillations of the background flow. We begin
by fixing the flyer at different angles θ ranging from 0 to π in a fluid oscillating
with amplitude β = 0.5 and acceleration κ = 0.5. At each orientation θ , we compute
the aerodynamic forces 〈Fx〉 and 〈Fy〉 based on the vortex sheet model (see (3.3)) and
averaged over fast flow oscillations. Results are shown in figure 8(a,b) for three flyers
of half-opening angle α = π/6, π/4 and π/3. Given the left–right symmetry of the
flyer and the up–down symmetry of flow oscillations, 〈Fx〉 is symmetric about the
horizontal axis θ = π/2 while 〈Fy〉 is anti-symmetric. Importantly, for θ < π/2, 〈Fy〉

points in the opposite direction to gravity whereas for θ >π/2, 〈Fy〉 reinforces gravity.
We emphasize that we do not impose these symmetries a priori; they arise naturally
in the vortex sheet simulations. These symmetries are also consistent with physical
intuition, as discussed in § 4.5.

We postulate a slow point-force model that takes into account these symmetries as
follows

〈Fx〉 = Aθ(π− θ), 〈Fy〉 = B
(π

2
− θ
)3
+C

(π

2
− θ
)
. (4.8a,b)

Here, the constant parameters A, B and C depend on the flyer’s angle α. The
values obtained from a least-square fit between the point-force model and the forces
computed based on the vortex sheet model are listed in table 3. The expressions
in (4.8) can be viewed as Taylor series expansions about θ = π/2 of the sine
and cosine functions proposed in § 4.5, noting that sin(π/2 − θ) = cos θ and
cos(π/2 − θ) = sin θ . The ‘quasi-steady’ point-force model is superimposed on
figure 8(a,b), showing good agreement with the vortex sheet model for all flyers.

We compute the aerodynamic torque about the flyer’s point of attachment
using (3.3) and take its time average 〈T〉 over the fast flow oscillations as in (4.4);
see figure 8(c). The torque is anti-symmetric about the horizontal axis θ = π/2:
it is negative for θ < π/2 (reinforcing gravity) and positive for π/2 < θ < π. At
first glance, this seems inconsistent with figure 6(c) where the aerodynamic torques
act against gravity for all 〈θ〉 averaged over fast flow oscillations. However, this
discrepancy arises because the plots in figure 6(c) correspond to time-averaged values
obtained from dynamic trajectories where the rotational momentum varies in time.
In figure 8, the flyer is held fixed in order to extract the inherent symmetries in
the aerodynamic forces and torque induced by the oscillatory flow itself. Further,
note that this analysis is consistent with the point-force model presented in Liu et al.
(2012, figure 3) for the particular case α=π/6. In Liu et al. (2012), the aerodynamic
forces were postulated to act at the outer two edges of the flyer (at the sites of vortex
emission) and their directions and magnitudes were assumed to follow ad hoc rules
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FIGURE 8. (Colour online) (a–c) Aerodynamic forces 〈Fx〉, 〈Fy〉, torque 〈T〉 averaged over
one oscillation period as a function of θ based on the vortex sheet model (solid blue line)
and the quasi-steady point-force model (solid black line). (d) Effective rotational potential
V as a function of θ . Nominal parameter values are set to m= 1 and κ = β = 0.5.

motivated by symmetry arguments. Based on these rules, the aerodynamic torque was
computed about the flyer’s centre of mass. Here, the aerodynamic forces and torque
are computed exactly based on the vortex sheet model and the point-force model is
built accordingly with no further assumptions. As such, our force model incorporates
the unsteady aerodynamics and is applicable to flyers of any shape α.

Equations (3.3) do not reflect the location of the aerodynamic centre where the
aerodynamic forces should be applied in order to produce an equivalent aerodynamic
torque. To this end, we postulate that the force should act along the axis of symmetry
of the flyer for all θ and we write

〈T〉 =Dl cos α(〈Fx〉 cos θ + 〈Fy〉 sin θ), (4.9)
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where D is an unknown parameter that reflects the distance from the flyer’s apex
to the aerodynamic centre. The values of D listed in the last column of table 3
are obtained from a least-square fit between the values of 〈T〉 computed directly
from (3.3) and those calculated from (4.9) with forces computed from (3.3). For
α=π/6, the aerodynamic centre is close to the centre of mass of the flyer (D≈ 0.5)
as postulated in Liu et al. (2012). However, as α increases, D also increases. For
α = π/3, D is larger than five times the distance between the apex and the centre
of mass.

Lastly, we compute the rotational potential 〈V〉 due to aerodynamics such that 〈T〉=
−∂〈V〉/∂θ . Figure 8(d) shows three lines: the solid blue line is based on the vortex
sheet model; the dashed blue line is based on the force-torque model in (4.9) with
forces obtained from the vortex sheet model; the solid black line is based on (4.9)
and the quasi-steady model in (4.8). The difference between the quasi-steady and
vortex sheet models increases as the angle α of the flyer increases. For all α, the
aerodynamic potential is symmetric about π/2 and is characterized by two minima
at θ = 0 and θ = π. The potential wells around these minima are indistinguishable.
This symmetry is broken in the presence of gravity. When the rotational potential
(mβ/κ) cos α cos θ due to gravity is added, the well around θ = π becomes more
shallow and disappears altogether when gravity is dominant.

In summary, for θ <π/2, as α increases from α=π/6 to π/3, the ∧-configuration
gets more stable. At the same time, the aerodynamic centre gets pushed below
the centre of mass. Taken together, these two observations are consistent with the
experimental findings in Liu et al. (2012) that top-heavy flyers are more stable.
Meanwhile, For θ >π/2, the same is true about the ∨-configuration. However, force
calculations show that only the ∧-configuration and perturbations smaller than π/2
produce aerodynamic forces that can potentially sustain the flyer’s mass when released
from the attachment point, as in Weathers et al. (2010), Liu et al. (2012), Huang
et al. (2015, 2016).

The quasi-steady model presented here can be used as a predictive tool in problems
involving ∧-shaped bodies in oscillatory flows. To this end, one would have to start
from the equations of motion, such as those in (2.4), and rewrite all variables in terms
of ‘fast’ and ‘slow’ components to arrive at two sets of equations describing the fast
and slow dynamics of the system. The slow component of the aerodynamic torque
can be read directly from figure 8 or from (4.8), (4.9) and table 3. This undertaking
is beyond the scope of the present paper and will be addressed in a future study.

5. Results: elastic flyers

To examine the effect of flexibility on the flyer’s response, we introduce a rotational
spring at the apex between the two wings for a flyer of mass m= 1. We fix the rest
angle of the spring at αr = π/6 and consider four values of the stiffness coefficient:
ke=1000,100,50 and 10. Smaller stiffness implies more compliant flyer. For infinitely
large ke, we recover the rigid flyer whose parameter space (β, κ) is depicted in the
middle panel of figure 4(b). Here, we map the behaviour of the elastic flyer onto the
same parameter space (β, κ) for each value of ke; see figure 9. Similar to its rigid
analogue, the elastic flyer exhibits stable and bistable behaviour but the transition to
bistable behaviour is pushed up and to the right in the (κ, β) plane. In other words,
the bistable region is smaller for ke= 1000. The red line in figure 4(b) (middle panel)
marking the transition of the rigid flyer to bistability is overlaid onto the parameter
space of the elastic flyer for ease of comparison.
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100

10010–1 10010–1

(a)

100

(c)

(b)

(d)

FIGURE 9. (Colour online) Stable and bistable behaviour of an elastic flyer mapped onto
the (κ , β) space for decreasing spring stiffness ke = 1000, 100, 50, 10. The mass and
rest angle are set to m = 1 and αr = π/6 as in the middle panel of figure 4(b). The
open symbols ‘@’ ‘6’ and ‘E’ correspond to stable concave-down ∧-configuration, with
‘@’ representing asymptotically stable behaviour (θ → 0) and ‘6’ and ‘E’ representing
bounded chaotic-like and periodic oscillations about θ = 0, respectively. The filled symbols
‘p’ ‘f’ and ‘u’ are used to denote bistable behaviour. The symbol ‘–’ represents a new
behaviour where the elastic flyer is stable about an inclined orientation not equal to π. For
comparison, the dashed lines from figure 4 marking the transition to bistable behaviour of
the rigid flyer are overlaid.

A new behaviour is observed in flexible flyers at ke = 1000. The new behaviour
is marked by ‘−’ and highlighted in pink. It is characterized by the flyer being
stable about an inclined orientation not equal to π. For ke = 100, the new behaviour
disappears and the bistable region increases slightly relative to that at ke = 1000
but remains smaller than that of the rigid flyer. As ke decreases to 50, the new
behaviour reappears and the bistable region shrinks again, indicating that the size of
the bistable region varies non-monotonically with ke. In fact, it seems that ke= 100 is
optimal for maximizing the bistable region above the red line. Finally, for ke= 10, the
bistable behaviour about inclined orientations reappears in the upper right region of
(β, κ) space. Importantly, bistable behaviour appears in the upper left corner at high
values of β and low values of κ (region highlighted in blue). This new transition to

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 N

YU
 S

ch
oo

l o
f M

ed
ic

in
e,

 o
n 

29
 M

ar
 2

01
9 

at
 1

9:
28

:2
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
44

6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.446


Bistability in the rotational motion of rigid and flexible flyers 1061

Rigid

Rigid

Rigid

Elastic

Elastic

Elastic

Elastic
Rigid
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0

0
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t

0
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t

FIGURE 10. (Colour online) Elastic versus rigid flyers of mass m = 1 and (rest) angle
αr = π/6 for three sets of parameters highlighted in grey boxes in figure 9. (a) κ = 0.4,
β = 0.5, ke = 100, (b) κ = 0.5, β = 0.8, ke = 10 and (c) κ = 0.1, β = 0.8, ke = 10. Initial
conditions are θ(0)=π/18 and 17π/18, θ̇ (0)= 0 and α(0)− αr = α̇(0)= 0.

bistability seems unique to highly flexible flyers, and may be associated with the limit
where gravitational and elastic forces are comparable, that is to say, O(mβ/κ)∼O(ke)
in (2.4).

To shed more light on the difference in behaviour between the flexible flyer and
its rigid analogue, we show in figure 10 the time evolution of θ and α for three
representative cases highlighted in grey boxes in figure 9(b,d). Figure 10(a) shows the
flyer’s orientation θ and flapping angle α about the rest angle αr =π/6 of the spring
as functions of time for κ = 0.4, β = 0.5 and ke = 100. Here, elasticity destabilizes
the upward configuration.

Figure 10(b) shows the new behaviour highlighted in pink in figure 9. The parameter
values are set to κ = 0.5, β = 0.8 and ke = 10. The flyer stabilizes about an upward
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configuration around θ = 11π/12 rather than π. The associated shape oscillations
occur about a larger opening angle than the spring’s rest angle.

Finally, figure 10(c) shows the new transition to bistable behaviour at κ = 0.1,
β = 0.8 and ke = 10. The right panel of figure 10(c) shows the flyer’s flapping
behaviour. The inset schematics depict the range of flapping angles for the upward
and downward stable trajectories. Because the flyer is compliant, it flaps about
a much larger angle than the spring rest angle, thus increasing the effective
opening angle of the flyer and the resulting aerodynamic torque. The flyer can
therefore stabilize upward at much lower values of flow acceleration. However,
in this flexible limit, the distinction between concave-up and concave-down is not
very clear because the flyer exhibits both types of concavity over one oscillation
cycle.

In all three examples, the frequency of the flapping motion is equal to the frequency
of the background flow, irrespective of initial conditions and parameter values. That
is to say, the frequency of flapping α is slaved to aerodynamics rather than to
the intrinsic natural frequency associated with the flyer’s elasticity. We calculate
the intrinsic natural frequency of the flyer as follows. We linearize (2.4), with
aerodynamic torques set to zero, about the equilibrium configuration (0, α∗) of the
‘dry’ system. To this end, α∗ is given by

sin α∗ =
keκ

mβ
(αr − α

∗), (5.1)

and αr −mβ/keκ 6 α∗ 6 αr. The linear equations are

δθ̈ +

(
β

κ
cos α∗

)
δθ = 0, δα̈ +

(
ke

m
+
β

κ
cos α∗

)
δα = 0. (5.2a,b)

The first equation leads to the rotational natural frequency of the classic pendulum.
The natural frequency f αn of shape oscillations follows from the second equation,

f αn =
1

2π

√
ke

m
+
β

κ
cos α∗. (5.3)

For ke = 10, the natural frequency f αn is about 1/2.
Lastly, we examine the effect of elasticity on the ‘basin of attraction’ of the

vertically upward configuration. Figure 11 shows that, in comparison with the rigid
flyer in figure 5, the introduction of a stiff spring ke = 1000 has a small effect on
the basin of attraction of θ = π. As ke decreases, this basin seems to increase and
it is maximum at ke = 100. As ke decreases further (ke = 50), the region of bistable
behaviour decreases but not the basin of attraction. Finally, for ke = 10, both the
region of bistable behaviour and the basin of attraction of θ = π increase, certainly
due to an increase in the effective opening angle of the compliant flyer.

6. Conclusions
The main contributions of this work can be summarized as follows. We considered

the rotational stability of a ∧-flyer of half-opening angle α attached at its apex and
free to rotate in a vertically oscillating flow. We found that aerodynamic effects
stabilize the upward ∨-configuration for a range of background flow parameters,
namely, amplitude and frequency of oscillations. We compared these parameters to
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0

0 0

FIGURE 11. (Colour online) Basins of attraction for the (blue) downward ∧- and (red)
upward ∨-stable configurations vary with the spring stiffness ke = 1000, 100, 50, 10 and
the spring’s rest angle αr. Parameters are set to β = 0.5 and κ = 0.5 and m= 1. The open
symbols ‘@’ correspond to stable concave-down ∧-configuration while the filled symbols
‘p’ denote bistable behaviour.

those required to stabilize a ‘dry’ pendulum in the upward configuration via fast
vertical oscillations of its base, i.e. the classical inverted pendulum. We found that
aerodynamics can induce upward stability at lower oscillation frequency and amplitude.
Importantly, the upward configuration can be stable even under perturbations as large
as π/2. We explained the aerodynamic origin of this bistability about the downward
and upward configurations by analysing in detail the aerodynamic forces and torques
acting on the flyer. To this end, we employed the vortex sheet model and we averaged
over the fast oscillations of the background flow in order to develop a slow rotational
potential that takes into account the geometry of the flyer as well as the unsteady
aerodynamics. Lastly, we introduced an elastic spring at the apex of the flyer and
allowed it to flap passively under background flow oscillations. We found that the
flapping frequency always corresponds to the frequency of the background flow. For
the parameter ranges considered here, the intrinsic frequency of the flyer does not
play a role. Elasticity diminishes upward stability in stiff flyers. However, with further
decrease in stiffness, we observed a new transition to upward stability. This transition
is induced by large-amplitude flapping motion of the flyer.

Our force calculations show that due to up–down asymmetry, ∧-flyers can use
aerodynamic forces to support their weight only when the perturbation from the
concave-down ∧-configuration is less than π/2, in agreement with Weathers et al.
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(2010), Liu et al. (2012), Huang et al. (2015, 2016). Further, our results suggest that
stable ∧-configurations can be maintained by manipulating either the opening angle
or stiffness of the flyer. These findings will guide the development of future research
aimed at understanding the rotational stability of biological and bio-inspired flyers.
Insects use flight muscles attached at the base of the wings to flap (Pringle 2003).
Insect wings and flight muscles are thought to be stiff (Ellington 1985) but organisms
can modulate their muscle stiffness (Feldman & Levin 2009). It is therefore plausible
that, by manipulating the stiffness of their flight muscle, insects can maintain stability
in the face of environmental disturbances. The idealized model presented in this paper
overly simplifies the wing–muscle system in insects, which includes both active and
passive components. However, the model and results presented here can be used as a
first step towards developing a more accurate wing–muscle model and to incorporate
feedback control, allowing the muscle stiffness to adaptively change in response to
flow perturbations. Another future direction will be to examine the effects of the
opening angle on the stability of both gliding and flapping flight. In the latter, we
allow the flyer to oscillate in an otherwise quiescent fluid. Our preliminary results
suggest that for a flapping flyer, inertial effects akin to those present in the inverted
pendulum play a role in stabilizing the flyer. These findings will be reported in
future work.
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Appendix. Aerodynamic force as a function of dissipation time
In order to assess the effect of the dissipation time τdiss on the aerodynamic forces

acting on the flyer, we consider a slightly simpler problem of a flat plate fixed at
one end in an oncoming uniform flow. Figure 12 shows the magnitude F of the total
aerodynamic force as a function of τdiss for a plate held at a fixed angle of attack π/12.
For a given value of τdiss, there is an effective ‘dissipation’ force that is equal to the
difference between the value of F as τdiss→∞ and the value of F at τdiss. While F
increases as τdiss increases, the dissipation force decreases, in agreement with physical
intuition.

In figure 13, we consider the aerodynamic force acting on a plate undergoing
pitching oscillations in uniform flow. The wake structure and force acting on a
pitching plate were computed in Sheng et al. (2012) using three different models: a
high-fidelity Navier–Stokes simulation, a vortex sheet model, and an unsteady point
vortex model. The three models showed good agreement in the wake structure but
some deviation in the force value. Here, we restrict ourselves to the vortex sheet
model. Figure 13(a) shows the force magnitude versus time for oscillation amplitude
π/12, frequency 1 and τdiss = 1.5. The total integration time is equivalent to fifty
cycles of oscillations. Figure 13(b) shows the force magnitude averaged over the
last ten oscillation cycles versus τdiss. The force behaviour is more complicated than
that of the fixed plate: the force increases as τdiss→ nT , where T = 1 is the period
of oscillation of the plate and n is an integer. The reason is that at τdiss = nT , the
force induced by τdiss is in resonance with the frequency of oscillation of the plate.
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FIGURE 12. (Colour online) Force magnitude versus dissipation time τdiss for (a) fixed
plate at angle π/12 in an oncoming uniform flow U =−1.
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FIGURE 13. (Colour online) A pitching plate in an oncoming uniform flow U =−1. (a)
Force magnitude versus time for τdiss = 1.5 and (b) average force versus dissipation time
τdiss. The force is averaged over the last ten cycles of oscillation, highlighted in grey in
(a). The plate’s oscillation amplitude is equal to π/12 and frequency is equal to 1.

Therefore, τdiss/T should not be an integer value. It is important to note that for τdiss

away from the resonant conditions, the total force follows a similar trend to that
observed in figure 13(a) in that the force increases as the dissipation time increases,
as highlighted by the red dashed line.
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