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DIRECTED MIGRATION OF MICROSCALE SWIMMERS BY AN
ARRAY OF SHAPED OBSTACLES: MODELING AND SHAPE

OPTIMIZATION\ast 

JIAJUN TONG\dagger AND MICHAEL J. SHELLEY\dagger \ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Achieving macroscopic directed migration of microscale swimmers in a fluid is an
important step towards utilizing their autonomous motion. It has been experimentally shown that
directed motion can be induced, without any external fields, by certain geometrically asymmetric
obstacles due to interaction between their boundaries and the swimmers. In this paper, we propose
a kinetic-type model to study swimming and directional migration of microscale bimetallic rods in
a periodic array of posts with noncircular cross-sections. Both rod position and orientation are
taken into account; rod trapping and release on the post boundaries are modeled by empirically
characterizing curvature and orientational dependence of the boundary absorption and desorption.
Intensity of the directed rod migration, which we call the normalized net flux, is then defined and
computed given the geometry of the post array. We numerically study the effect of post spacings on
the flux; we also apply shape optimization to find better post shapes that can induce stronger flux.
Inspired by preliminary numerical results on two candidate posts, we perform an approximate analysis
on a simplified model to show the key geometric features that a good post should have. Based on
this, three new candidate shapes are proposed which give rise to large fluxes. This approach provides
an effective tool and guidance for experimentally designing new devices that induce strong directed
migration of microscale swimmers.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . microscale swimmer, directed migration, shaped obstacle, boundary absorption
and desorption, shape optimization, Gauss--Bonnet theorem

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 35Q93, 49Q10, 65K10, 74F10, 82C21, 82C70

\bfD \bfO \bfI . 10.1137/17M1147482

1. Introduction. Microscale swimmers, such as bacteria or chemically active
colloids, move autonomously in a fluid by converting energy in the local environment
into mechanical work [10, 9]. Possible applications of synthetic microswimmers include
drug delivery [25, 2], cargo transport [32], and environmental remediation [30]. One
important task in manipulating microswimmers is to achieve their directed macro-
scopic motion, as opposed to their long-time isotropic motion, which results from a
combination of ballistic swimming and angular diffusion [13, 24]. Directed migration
can be easily induced by externally imposed fields, such as chemical gradient [3, 21] or
electromagnetic fields [1, 12, 36, 34]. A different approach is to place obstacles in the
environment. It has been demonstrated that obstacles can dramatically change the
motion of microswimmers. Due to hydrodynamic or steric interactions [31, 6, 14, 20]
of swimmers with obstacles, swimmers can aggregate [17, 18, 4], slide [36, 31, 33],
hover [35], or even reverse swimming direction [5]. There is a developing body of
works investigating boundaries of obstacles guiding microswimmers, using flat walls
[36], v-shaped funnels [11, 16], spherical obstacles [31, 33, 28], or teardrop-shaped
posts [40].

In a series of recent works, microscale bimetallic segmented rods composed of gold

\ast Received by the editors September 14, 2017; accepted for publication (in revised form) June 18,
2018; published electronically September 6, 2018.

http://www.siam.org/journals/siap/78-5/M114748.html
\bfF \bfu \bfn \bfd \bfi \bfn \bfg : This work was partially supported by NSF grant DMS-1463962.

\dagger Applied Mathematics Lab, Courant Institute, New York University, New York, NY 10012
(jiajun@cims.nyu.edu, shelley@cims.nyu.edu).

\ddagger Flatiron Institute, Simons Foundation, New York, NY 10010.

2370

D
ow

nl
oa

de
d 

03
/2

9/
19

 to
 1

28
.1

22
.8

0.
15

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/siap/78-5/M114748.html
mailto:jiajun@cims.nyu.edu
mailto:shelley@cims.nyu.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MIGRATION OF MICROSWIMMERS 2371

Fig. 1. (a) Sketch of bimetallic microscale Au-Pt rods swimming and interacting with an array
of teardrop-shaped posts. These rods swim, due to self-electrophoresis, primarily along the bottom
of the posts. They move along their axes with the Pt-end leading; their positions and orientations
are subject to random fluctuations. After encountering a post, swimming rods tend to travel along
the post boundary and preferentially depart from its tip. (b) Experimental observation of two typical
trajectories of swimming rods when interacting with a teardrop-shaped post. The pictures are adapted
from our recent experimental paper [40].

and platinum (Au-Pt) have been experimentally studied as a prototype of artificial
microswimmers [33, 26]. These rods, typically 2\mu m in length and 300 nm in diameter,
move autonomously in aqueous solutions of hydrogen peroxide (H2O2), with the Pt
end leading, due to self-electrophoresis which generates a slip flow along the rod
surface [23, 38]. They move with a constant speed along their axes while their positions
and orientations are subject to random fluctuations. As they are much denser than
water, the Au-Pt rods swim primarily along the microscope coverslip or the obstacles.
It is demonstrated in our paper [33] that these swimming rods can be captured by
solid spheres resting on a horizontal plane, and orbit closely around them with little
change in their speed, until they are released due to angular diffusion. An uneven
spatial distribution of the rods near the spheres and statistics of trapping time are
obtained. In a more recent study [40], we show that when the rods swim in a periodic
array of teardrop-shaped posts, they interact with the vertical walls of the posts in a
similar way; yet the rods preferentially leave the posts at the post's sharp tips due to
large boundary curvature there, rendering a statistically biased swimming over long
times. See Figure 1 for a sketch of the rods swimming and interacting with an array
of teardrop-shaped posts, as well as a picture from the experiment showing typical
motion of rods when they encounter a post [40]. It has been experimentally confirmed
that the rods are most likely to migrate through the array in the direction pointed by
the tips of the teardrop-shaped posts [40].

In this paper, we shall present a kinetic-type model of Au-Pt rods swimming in a
periodic array of posts with noncircular cross-sections, such as teardrop-shaped posts,
and thus generating directed migration over a long time. Position and orientation of
the rods are both taken into account, as well as the effect of thermal fluctuation. Trap-
ping and release of the rods on the post boundary are modeled via empirically defined
rate functions and angular distributions, accounting for curvature and orientational
dependence of the boundary absorption and desorption, respectively. Distributions
of the rods in the free space and on the post boundary are found through numerical
simulations; the intensity of the directed migration is then defined and calculated.

The degree of directed migration crucially relies on many features of the array,
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2372 JIAJUN TONG AND MICHAEL J. SHELLEY

such as the spacings and shapes of the posts in it. We study the effect of post spacing
by numerical simulation. We also perform numerical shape optimization to investigate
how to choose the shape of posts judiciously so that stronger directed migration of the
swimming rods is achieved. General theory of shape optimization is well established
from an analysis point of view [29, 7, 27], while numerous applications can be found
in many areas of applied mathematics and physics, such as problems involving swim-
ming [15, 39] and fluid motion [37, 22]. In our study, a mathematical derivation of
the shape optimization is presented in the supplementary material, together with an
iterative optimization method based on an explicitly preconditioned steepest ascent
method. We apply shape optimization to two candidate post shapes and observe a
significant increase in directed migration. To better understand the optimization re-
sults, we propose a simplified model that well explains the geometric features arising
in the optimized shape. This enables us to empirically determine the key geometric
ingredients of designing posts. We conclude by giving three new post shapes designed
on these ingredients, which does give rise to a significantly stronger directed migration
than naive choices.

The rest of the paper is organized as follows. In subsection 2.1, we present the
model for Au-Pt rods swimming in a periodic rectangular array of posts and define
the quantity that measures the intensity of the directed migration. The numerical
method to compute the ensemble distributions of rod positions and orientations as
well as the intensity of the directed migration appear in the supplementary material.
In subsection 2.2, we formulate the optimization problem seeking better designs of the
array so that it induces stronger directed migration. A formal overview of the shape
optimization theory, a full derivation of equations involved, and numerical methods
for solving these equations and performing shape optimization are also left to the
supplementary material. Dimensionless parameters and rates are specified in section 3,
while numerical results are presented in section 4 to study the effects of post spacings
and optimization of post shape. To understand the key geometric features that a
good post should have, we perform an approximate analysis to a simplified model in
section 5. Based on that, three new post designs inducing strong directed migration
are proposed in section 6. We conclude the paper with a brief discussion in section 7.

2. Theory.

2.1. Modeling microscale swimming rods in a periodic array of posts.
With the typical swimming pattern of the rod described in section 1 and sketched in
Figure 1, we shall build a kinetic-type model for rods swimming in a periodic array of
posts. The model will be presented in a dimensionless manner; the nondimensionali-
zation will be left to section 3. We start by modeling the environment in which the
rods are swimming.

Consider a rectangular periodic array of posts printed on the microscope coverslip.
The posts are solid cylinders which neither fluid nor the rods can penetrate [40]. A
dilute suspension of the Au-Pt rods in the aqueous hydrogen peroxide solution is
then placed on the coverslip, so that the rods can autonomously swim in the complex
landscape. Note that since the rods always swim in a quasi-two-dimensional fashion
along the bottom, it suffices to consider the system in two dimensions. Assume
the two-dimensional unit cell of the periodic array of the posts has dimensionless
size a and b in x1- and x2-directions, respectively. We denote the unit cell to be
Y =

\bigl[ 
 - a

2 ,
a
2

\bigr] 
\times 

\bigl[ 
 - b

2 ,
b
2

\bigr] 
. See Figure 2. The following discussion also applies to unit

cells in other shapes with minor modification. For example, for a staggered periodic
array, hexagonal unit cells can be more convenient choices than rectangular ones.
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MIGRATION OF MICROSWIMMERS 2373

(a) (b)

Fig. 2. (a) A periodic array of teardrop-shaped posts. Its unit cells, separated by solid lines,
have width a and height b; here a = b = 1. Domains occupied by the posts are depicted as gray. (b)
An enlarged view of one unit cell in (a). O denotes the gray domain occupied by the post; \omega denotes
the exterior domain filled with fluid; \gamma denotes the boundary of \omega between them.

In what follows, for convenience we will interchangeably use the notion of a post
and its cross-section. Let O denote the domain occupied by the post inside Y , and
let \omega = Y \setminus O be the domain filled with fluid, in which the rods can swim freely. The
interior and exterior boundaries of \omega are denoted by \gamma = \partial O and \partial Y , respectively;
see Figure 2(b).

To study the statistical behavior of the swimming rods, we look at the spatial and
orientational distribution of an ensemble of rods in the bulk and on the boundary. We
assume that the rod concentration is so small that their interactions are negligible.
We also treat the rods as points with orientation but no size.

The motion of the rods is modeled as swimming in the bulk \omega and swimming along
the boundary \gamma . For a single rod swimming in the bulk, we use Xt \in \omega and 2\pi \Theta t

to denote its position and orientation, respectively. The latter is the angle between
the swimming direction of the rod and the positive x1-axis; see Figure 3. Here Xt is
defined up to a natural periodicity on the exterior boundary of \omega , while \Theta t \in [0, 1)
defined in the modulus of 1. We assume that the rod deterministically swims in its
axial direction with velocity v0, while both its position and orientation are subject to
random fluctuations. The stochastic dynamics of (Xt,\Theta t) is then written as follows:

dXt = v0(cos(2\pi \Theta t), sin(2\pi \Theta t))
T +

\sqrt{} 
2DtdW

(2)
t ,

d\Theta t =
\sqrt{} 

2DrdW
(1)
t .

(2.1)

Here Dt and Dr are scalar (dimensionless) translational and rotational diffusion co-
efficients, respectively; they are assumed to be constant throughout the state space

\Omega \triangleq \omega \times [0, 1]. W
(1)
t and W

(2)
t are the standard Brownian motions in one and two

dimensions, respectively; they are independent of each other. Let p(x, \theta , t) \geq 0 be the
distribution of rods in \Omega , where x \in \omega and 2\pi \theta \in [0, 2\pi ]. The evolution of p is then
governed by the following Fokker--Planck equation associated with (2.1):
(2.2)
\partial tp(x, \theta , t) = Dt\Delta xp(x, \theta , t) +Dr\Delta \theta p(x, \theta , t) - v0(cos 2\pi \theta , sin 2\pi \theta )

T \cdot \nabla xp(x, \theta , t).

Here (x, \theta ) \in \Omega ; \Delta x = \partial x1x1
+ \partial x2x2

, and \Delta \theta = \partial \theta \theta ; \nabla x = (\partial x1
, \partial x2

)T is the gradient
operator in spatial components only. The term  - v0(cos 2\pi \theta , sin 2\pi \theta )

T \cdot \nabla xp represents
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2374 JIAJUN TONG AND MICHAEL J. SHELLEY

Fig. 3. We use x \in \omega and 2\pi \theta , with \theta \in [0, 1), to represent position and orientational angle
of a swimming Au-Pt rod, respectively. The enlarged picture in the big dashed box shows the state
(x, \theta ) of the rod in the small dashed box, which is swimming away from the post. The red arrow
represents its orientation, given by the direction of its Pt end (white block); the dashed line is the
positive x1-axis. Note that rods are modeled as points with orientation but no size, although we
have drawn a white-yellow rod in the picture for the sake of clarity. In the right half of the figure,
with abuse of notation, a rod hitting the post boundary \gamma at x with relative angle \beta is shown. The
shaded side of \gamma is occupied by the post. The black arrow is the normal vector of \gamma at x, denoted by
n(x) = (cos\alpha (x), sin\alpha (x)), while the red arrow again represents the rod orientation. The (signed)
angle between them is the relative angle \beta . (Color available online.)

convection in \Omega due to the directed swimming in the axial direction.
For rods moving along the boundary \gamma , we assume they always swim tangentially

to \gamma ; thus only the rod position along \gamma needs to be considered. We also assume
that rods swim at the constant speed v0 [33] and can never switch swimming direc-
tion before leaving the boundary. This assumption is suitable for bimetallic swim-
ming rods, but might not be true for some biological swimmers [5]. For x \in \gamma , let
p+B(x, t), p

 - 
B(x, t) \geq 0 be the boundary distributions of rods that swim counterclock-

wise and clockwise, respectively. The evolution of p\pm B 's is given by

(2.3) \partial tp
\pm 
B(x, t) = Dt\Delta \gamma p

\pm 
B(x, t)\mp v0\partial \gamma p

\pm 
B(x, t) + F\pm 

in (x, t) - F\pm 
out(x, t), x \in \gamma ,

where \Delta \gamma and \partial \gamma are the Laplace operator and the derivative along \gamma with respect
to its arclength. Here \gamma is parameterized counterclockwise. On the right-hand side
of (2.3), Dt\Delta \gamma p

\pm 
B is the spatial diffusion along \gamma ; for simplicity, we assume the same

diffusion coefficient Dt as in the free space. The term \mp v0\partial \gamma p
\pm 
B(x, t) comes from

the deterministic swimming along \gamma . F\pm 
in (x, t) and F\pm 

out(x, t) are rod absorption and
desorption fluxes at x on and off the boundary \gamma , respectively. They depend on the
local geometry of \gamma and how rods hit or leave the boundary.

To model this pair of fluxes, we need some notation. Let \kappa (x) be the curvature
of \gamma at x, and let \alpha (x) be the orientation of the outer normal of \gamma at x with respect
to \omega ; i.e., the normal vector is given by (cos\alpha (x), sin\alpha (x))T . When a rod appears at
a boundary point x \in \gamma with orientational angle 2\pi \theta , we define its relative angle with
respect to \gamma to be \beta = 2\pi \theta  - \alpha (x) (mod 2\pi ); see Figure 3. To this end, we introduce
empirical rate functions rin(\kappa ) and rin(\kappa ), and angular functions \rho \pm (\beta ) and \tau \pm (\beta ), to
be explained later, and write

F\pm 
in (x, t) = rin(\kappa (x))

\int 1

0

p(x, \theta , t)\rho \pm (2\pi \theta  - \alpha (x)) d\theta , x \in \gamma ,(2.4)

F\pm 
out(x, t) = rout(\kappa (x))p

\pm 
B(x, t)

\int 1

0

2\pi \tau \pm (2\pi \theta  - \alpha (x)) d\theta , x \in \gamma .(2.5)

Here rin(\kappa ) and rout(\kappa ) are called absorption and desorption (Poisson) rates, respec-
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MIGRATION OF MICROSWIMMERS 2375

(a) (b)

Fig. 4. \rho \pm (\beta ) and \tau \pm (\beta ). The black curve represents \gamma , and the shaded side is occupied by
the post. The black arrow is the normal vector n(x) of \gamma at x, while the red arrow represents the
direction in which the rod hits \gamma , or the potential direction in which the rod is going to leave \gamma . (a)
When the rod hits \gamma with relative angle \beta , it will have probabilities \rho +(\beta ) and \rho  - (\beta ), respectively,
of swimming counterclockwise and clockwise afterwards along \gamma . (b) When a rod is going to leave
\gamma , its relative angle \beta with respect to \gamma is determined via the distributions \tau \pm (\beta ). The subscripts
indicate its original swimming direction before leaving \gamma . (Color available online.)

tively, which are assumed to be functions of curvature only. In fact, experiments have
shown that at least the desorption rate also depends on the rod speed [40]. However,
our assumption is valid since the rod speed is fixed to be v0. The functions rin(\kappa (x))
and rout(\kappa (x)) then characterize how fast the boundary \gamma can absorb and desorb rods
at x \in \gamma , respectively. Their precise characterization will be clear after we choose the
characteristic scales and do nondimensionalization in section 3. The functions \rho \pm (\beta )
account for the orientation dependence in the absorption. We assume that rods hit-
ting \gamma with relative angle \beta will have probabilities \rho +(\beta ) and \rho  - (\beta ) of subsequently
swimming counterclockwise and clockwise along \gamma , respectively; see Figure 4(a). To
make sense of (2.4), we note that rods hitting x \in \gamma can come from the bulk in all
directions; the function rin(\kappa (x))p(x, \theta , t)\rho +(2\pi \theta  - \alpha (x)) is the amount of rods getting
absorbed at x with angle 2\pi \theta , and sliding counterclockwise along \gamma afterwards. The
function rin(\kappa (x))p(x, \theta , t)\rho  - (2\pi \theta  - \alpha (x)) can be interpreted similarly. If we take an
integral over all possible orientations of the incoming rods, we obtain the absorption
fluxes.

Similarly, for desorption, rods that are leaving \gamma are assumed to leave at a random
angle, with its probability distribution characterized by \tau \pm (\beta ), where \beta is the relative
angle defined before. The subscripts \pm indicate the rods originally move counter-
clockwise or clockwise before leaving \gamma ; see Figure 4(b). We argue as before to obtain
(2.5). Via \beta and the tangent direction of \gamma , the initial orientational angle of the rod
when it returns to the bulk can be determined. This will be useful in deriving the
boundary condition of p below.

To summarize, the assumptions on rin, rout, \rho \pm , and \tau \pm are as follows:
1. rin(\kappa ), rout(\kappa ) \geq 0;
2. \rho \pm (\beta ) \geq 0 and \rho +(\beta ) + \rho  - (\beta ) \leq 1;
3. \tau \pm (\beta ) \geq 0 and

\int \pi 

 - \pi 
\tau \pm (\beta ) d\beta = 1;

4. \rho +(\beta ) = \rho  - ( - \beta ) and \tau +(\beta ) = \tau  - ( - \beta ), by symmetry.
Since \tau \pm 's are normalized, (2.5) reduces to F\pm 

out = routp
\pm 
B .

Last, the boundary condition of p on \Gamma \triangleq \gamma \times [0, 1], the inner curved part of \partial \Omega ,
is derived from the conservation law, which gives

(2.6)

Dt
\partial p

\partial n\Gamma 
(x, \theta , t) - v0p(x, \theta , t) \cdot (cos 2\pi \theta , sin 2\pi \theta , 0) \cdot n\Gamma (x)

= rout(\kappa (x))[p
+
B(x, t) \cdot 2\pi \tau +(2\pi \theta  - \alpha (x)) + p - B(x, t) \cdot 2\pi \tau  - (2\pi \theta  - \alpha (x))]

 - rin(\kappa (x))p(x, \theta , t)[\rho +(2\pi \theta  - \alpha (x)) + \rho  - (2\pi \theta  - \alpha (x))].
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2376 JIAJUN TONG AND MICHAEL J. SHELLEY

Here (x, \theta ) \in \Gamma , and n\Gamma (x) = (cos\alpha (x), sin\alpha (x), 0)T is the unit outer normal vector
of \Gamma with respect to \Omega . The left-hand side of (2.6) represents the boundary flux at
(x, \theta ) \in \Gamma generated by the spatial diffusion and the swimming; it is balanced by the
flux coming into the bulk due to desorption and absorption on the right-hand side.
Using the formula for n\Gamma , (2.6) is simplified to be

Dt
\partial p

\partial n\Gamma 
(x, \theta , t) - v0p(x, \theta , t) cos\beta = 2\pi rout(\kappa (x))[p

+
B(x, t)\tau +(\beta ) + p - B(x, t)\tau  - (\beta )]

 - rin(\kappa (x))p(x, \theta , t)[\rho +(\beta ) + \rho  - (\beta )],

with \beta = 2\pi \theta  - \alpha (x). For the outer flat surfaces of \partial \Omega , i.e., \partial \Omega \setminus \Gamma , we assign periodic
boundary conditions for p.

In this paper, we shall only consider the steady-state solution. Indeed, thanks to
the diffusions in the model, the initial distribution will converge to the steady-state
solution after a relatively short transient stage; see section 3 for further discussion
on the time scale. We omit the t-dependence in (2.2) and (2.3), and the equations
become

Dt\Delta xp(x, \theta ) +Dr\Delta \theta p(x, \theta ) - v0(cos 2\pi \theta , sin 2\pi \theta )
T \cdot \nabla xp(x, \theta ) = 0, (x, \theta ) \in \Omega ,

(2.7)

 - Dt\Delta \gamma p
\pm 
B(x)\pm v0\partial \gamma p

\pm 
B(x) =

\int 1

0

f\pm (x, \theta ) d\theta , x \in \gamma ,

(2.8)

Dt
\partial p

\partial n\Gamma 
(x, \theta ) - v0p(x, \theta ) cos\beta + f+(x, \theta ) + f - (x, \theta ) = 0, (x, \theta ) \in \Gamma ,

(2.9)

p satisfies periodic boundary condition on \partial \Omega \setminus \Gamma ,
(2.10)

where \beta = 2\pi \theta  - \alpha (x) and

(2.11) f\pm (x, \theta ) = rin(x)\rho \pm (\beta )p(x, \theta ) - rout(x) \cdot 2\pi \tau \pm (\beta )p\pm B(x), (x, \theta ) \in \Gamma .

Since we are describing the probability distribution of rods, the following normaliza-
tion condition is needed:

(2.12) N(\Omega ) \triangleq 
\int 
\Omega 

p(x, \theta ) dxd\theta +

\int 
\gamma 

[p+B(x) + p - B(x)] d\gamma = 1.

Note that if (2.12) is not assumed, then (p, p+B , p
 - 
B) being a solution of (2.7)--(2.11)

implies that (\lambda p, \lambda p+B , \lambda p
 - 
B) is also a solution \forall \lambda > 0.

Suppose we have obtained a nontrivial solution (p, p+B , p
 - 
B) to (2.7)--(2.11) (obvi-

ously (0, 0, 0) is a trivial solution which is not interesting), without necessarily sat-
isfying (2.12). We wish to characterize the intensity of the spontaneous directed
migration of the rods induced by the post in some particular direction, say the posi-
tive x2-direction. In our model, it is exactly the probability flux crossing the part of
\partial \Omega where x2 = b/2. The unnormalized net flux is defined to be

(2.13) F (\Omega ) =

\int 
\partial \Omega \cap \{ x2=b/2\} 

 - Dt
\partial p

\partial x2
+ v0p sin 2\pi \theta dA.
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MIGRATION OF MICROSWIMMERS 2377

The first term comes from the spatial diffusion of rods, while the second is due to the
directed swimming, where the rod orientation plays a role. Since this flux is generated
by an amount of rods given by N(\Omega ), the normalized net flux is thus defined to be
E(\Omega ) \triangleq F (\Omega )/N(\Omega ). E(\Omega ) will be the key quantity in the rest of the paper.

The numerical method for solving the coupled system (2.7)--(2.11) and computing
E(\Omega ) will be given in the supplementary material.

2.2. Seeking stronger directed migration of the rods. It is clear that the
intensity of the directed migration of the rods is governed by many geometric features
of the array, such as the sizes of gaps between neighboring posts, and the shapes of
posts. An interesting and practical question to ask is how one might make the directed
migration stronger by cleverly designing the array and post shapes. In our model,
this could be formulated as the following optimization problem: given the functions
rin(\kappa ), rout(\kappa ), \rho \pm (\beta ), and \tau \pm (\beta ), find Y =

\bigl[ 
 - a

2 ,
a
2

\bigr] 
\times 

\bigl[ 
 - b

2 ,
b
2

\bigr] 
and \omega \subset Y , such that

E(\Omega ) is maximized.
This is an infinite-dimensional optimization problem, and finding the actual max-

imizer would be very hard. We are only able to pose it formally. Our strategy here is
as follows. First, we shall study how the spacings of the posts affect E(\Omega ), simply by
fixing the shape of the post and tuning a and b to see how E(\Omega ) changes. Second, we
would like to look for a better post shape. Using the theory of shape optimization, we
develop a numerical method that evolves \gamma in an iterative manner, so that the corre-
sponding E(\Omega ) keeps increasing with each iteration. The mathematical formulation
of the shape optimization problem is exceedingly long. We shall leave an overview
of the theory of shape optimization, a complete derivation of the equations for the
shape optimization, and an introduction of the associated numerical method to the
supplementary material.

3. Model choices. Before presenting numerical results, we specify the dimen-
sionless parameters and rates used in the simulations.

We take the characteristic length scale in the model to be the typical size of the
unit cell in the experiment [40], which is L = 45\mu m. We use the angular diffusion of
the rods to determine the characteristic time scale. In the experiments, the typical
angular diffusion scale is 0.5 rad/s. Hence, we take the characteristic time scale to be
T = 4\pi s. In this way, the dimensionless angular diffusion coefficient is Dr = 1; note
that it is 2\pi \theta instead of \theta that represents the rod orientation.

With the above choice, we take the dimensionless parameter in the model as fol-
lows: Dt = 0.002, Dr = 1, and v0 = 1. Indeed, this corresponds to the case where the
spatial diffusion of rods is approximately 0.002 \cdot [45\mu m]2/[4\pi s] \approx 0.322\mu m2/s; the an-
gular diffusion is 0.5 rad/s; and rods swim with approximate speed 1 \cdot [45\mu m]/[4\pi s] \approx 
3.58\mu m/s. All of these agree qualitatively with the measurements in the typical ex-
periments [40]. It is also worthwhile to remark that the experiments usually last
10--20 minutes, which is significantly longer than the characteristic time scale T . This
implies that even if the initial rod distribution is not the steady-state solution, the
transient stage would be relatively short; after that, the system is well characterized
by the stationary model.

There exists little systematic measurement of rin(\kappa ), rout(\kappa ), \rho \pm (\beta ), and \tau \pm (\beta ).
We shall take them to be functions that qualitatively agree with the existing experi-
mental observations or physical intuition.

We take rin(\kappa ) = 1, which implies that the efficacy of the post boundary absorbing
rods does not depend on the curvature. More precisely, given the unit density of rods
(one rod per unit cell, i.e., 1

452 rod/\mu m
2) in the vicinity of the post boundary, there
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2378 JIAJUN TONG AND MICHAEL J. SHELLEY

is on average one absorbing event occurring over a boundary section with arclength
45\mu m every 4\pi s \approx 12.6 s, which is on the right scale.

The function rout(\kappa ) is experimentally defined as the inverse of the expected trap-
ping time of rods sliding along a circular boundary with the constant dimensionless
curvature \kappa . Existing experiments indicate that for swimming Au-Pt rods [40] or
swimming Janus particles [28], rout(\kappa ) is an increasing function of \kappa . In other words,
the efficacy of the boundary releasing rods should be higher where its curvature is
larger (more convex). We take

(3.1) rout(\kappa ) =
10

\pi 
arctan

\biggl( 
\kappa  - 20

4

\biggr) 
+ 5

as a convenient choice; see Figure 5(a). Note that here rout(\kappa ) saturates as \kappa \rightarrow +\infty ;
it is not a necessary feature but it can make the simulations more tractable. We shall
also discuss this in subsection 4.2. To give a sense of the choice of rout(\kappa ), we have
rout(20) = 5, which implies that when a rod is sliding along the boundary of a circular
post with radius 2.25\mu m = [45\mu m]/20, the expected sliding time is 4\pi 

5 s \approx 2.51 s. In
other words, the Poisson rate of a rod leaving a circular boundary with radius 2.25\mu m
is about 0.398 s - 1, which agrees qualitatively with the experimental data [40].

As a convenient choice, \rho \pm (\beta ) are taken to be

(3.2) \rho \pm (\beta ) = \mp 1

\pi 
\beta +

1

2
, \beta \in [ - \pi /2, \pi /2],

and \rho \pm (\beta ) \equiv 0 for \beta \in [ - \pi , \pi /2) \cup (\pi /2, \pi ), which are plotted in Figures 5(b) and
5(c). This implies that when a rod hits the boundary perpendicularly (\beta = 0), it has
equal probability of going in either direction along the boundary. When it approaches
in the tangent directions (\beta = \pm \pi /2), it will go forward in the very direction with
probability 1. When a rod reaches the boundary with its orientation pointing away
from the boundary (\beta \in [ - \pi , \pi /2) \cup (\pi /2, \pi )), it will not get absorbed. Indeed, the
last case can arise when spatial diffusion pushes the rod to the boundary even though
its orientation points away.

In our earlier study [33], a model based on lubrication theory indicates that the
swimming rods are unlikely to leave the surface with small takeoff angles (i.e., the
unsigned angle between the boundary and the rods)---in such a case, the rod tends to
be pushed back towards the wall instead of detaching. A threshold value of \pi /9 of the
takeoff angle is also taken in a subsequent stochastic simulation to fit the experimental
distribution of the trapping times. To incorporate these facts, we take

(3.3) \tau +(\beta ) =

\Biggl\{ 
3
2 cos(3\beta ) for \beta \in [ - 5\pi /6, - \pi /2],

0 for \beta \in [ - \pi , - 5\pi /6) \cup ( - \pi /2, \pi ),

and \tau  - (\beta ) = \tau +( - \beta ), which are plotted in Figures 5(d) and 5(e), respectively. In
this setting, rods can detach with the takeoff angle ranging from 0 to \pi /3 (\beta \in 
[ - 5\pi /6, - \pi /2] for rods originally sliding counterclockwise on \gamma , or \beta \in [\pi /2, 5\pi /6]
for rods sliding clockwise). The most likely takeoff angle is \pi /6 (\beta =  - 2\pi /3 for rods
sliding counterclockwise, or \beta = 2\pi /3 for rods sliding clockwise).

4. Numerical results. With implementation details now behind us, in this
section, we shall present numerical results concerning how post spacings and post
shapes can affect the normalized net flux E(\Omega ).
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(b) (c)

(e)(d)

(a)

Fig. 5. Functions rout(\kappa ), \rho \pm (\beta ), and \tau \pm (\beta ) used in the simulations. (a) The graph of
rout(\kappa ) = 10

\pi 
arctan

\bigl( 
\kappa  - 20

4

\bigr) 
+ 5. It is positive, increasing in \kappa , and bounded as \kappa \rightarrow +\infty . (b)--(e)

The graphs of functions \rho \pm (\beta ) and \tau \pm (\beta ). The insets illustrate the situations where these functions
come into play; see (3.2), (3.3), and Figure 4 for more details. \tau \pm are normalized in the sense that\int \pi 
 - \pi \tau \pm (\beta ) d\beta = 1.

4.1. The effect of post spacings. Our first numerical simulation is devoted
to investigating how post spacings affect the normalized net flux E(\Omega ). To be more
precise, we fix the shape of the post specified later, and change the size of the unit
cell specified by a and b, to see how E(\Omega ) changes correspondingly. Note that the set
\Omega implicitly depends on both a and b.

The post used in this simulation has a teardrop-shaped cross-section, defined by
two circular arcs smoothly connected by two straight lines; see Figure 2(b). Under
the nondimensionalization, the radii of the larger and the smaller circular arcs are
0.192 and 0.0154, respectively. Their corresponding dimensionless curvatures \kappa are
5.21 at the large end and 65.1 at the small tip, respectively. The angle between the
two straight sides is 48 degrees. The tip of the post points to the positive x2-direction.
The dimensionless size of the post is approximately 0.642 in the vertical direction and
0.384 in the horizontal direction. Its perimeter is approximately 1.59.

In Figure 6, we show how E(\Omega ) changes as we vary the dimensionless width a and
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2380 JIAJUN TONG AND MICHAEL J. SHELLEY

(a) (b)

Fig. 6. The normalized net flux E(\Omega ) depending on the dimensionless width a and the height
b of the unit cell. (a) With b = 1, E(\Omega ) decreases as a increases. The red dashed line indicates
the minimum possible width amin = 0.384. The inset shows a log-log plot of E(\Omega ) depending on
the dimensionless horizontal gap, a  - amin. The black dashed line in the inset has slope  - 1. (b)
With a = 1, E(\Omega ) decreases as b increases. The red dashed line indicates the minimum possible
height bmin = 0.642. The inset is a log-log plot of E(\Omega ) depending on the dimensionless vertical gap,
b - bmin. The black dashed line in the inset has slope  - 2. (Color available online.)

height b of the unit cell. These results are obtained by solving the model (2.7)--(2.11)
for each pair of (a, b) and calculating the corresponding E(\Omega ). In Figure 6(a), we
fix b = 1 and vary a. It shows that E(\Omega ) decreases as a increases. The red dashed
line indicates the minimum a (amin = 0.384) we can possibly achieve, in which case
the neighboring teardrop-shaped posts will touch each other. As a approaches amin,
E(\Omega ) converges to a finite value. The inset of Figure 6(a) shows a log-log plot of E(\Omega )
versus a - amin. The black dashed line in the inset has slope  - 1, which implies that
when a is large, E(\Omega ) decays like (a - amin)

 - 1 or, equivalently, as a - 1. In Figure 6(b),
we take a = 1 and vary b. E(\Omega ) decreases as b increases. The red dashed line again
indicates the minimum b (bmin = 0.642) we can achieve, when the teardrop-shaped
posts in two neighboring rows will touch each other. When b approaches bmin, E(\Omega )
apparently diverges to infinity. The inset of Figure 6(b) shows a log-log plot of E(\Omega )
versus b - bmin. The black dashed line in the inset has slope  - 2. In other words, when
b is large, E(\Omega ) decays like (b - bmin)

 - 2 or, equivalently, b - 2.
The above results agree with the intuition that the open-space swimming away

from the boundary smears out the anisotropy or bias [40] in the swimming direction
induced by the boundary shape, thus making E(\Omega ) weaker. As a result, E(\Omega ) should
get boosted if we compress the open space by shrinking the gaps between neighboring
posts in both directions. Indeed, shrinking b might be particularly effective due to
the unboundedness of the graph in Figure 6(b) when b \rightarrow bmin. However, we should
remark that making the gaps too narrow is not always favored in practice. Swimming
rods can run into each other or even cause traffic jams in very narrow gaps, which
impairs their mobility and makes the directed migration weaker. Narrow gaps may
significantly change the swimming behavior of the self-propelled rods, which is not
considered in our model. For example, experiments show that active rods can increase
speed by up to five times in confining channels with a ceiling [19]. Further, the size
of the rods, which is ignored in our model, becomes important when they swim in
confined spaces like narrow gaps.
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With this in mind, we study the net flux under a different normalization by nor-
malizing the number of rods per unit area instead of one unit cell. This is more useful
in practice, since we may use suspensions of swimming rods with some particular
concentration to do experiments, and so the number of rods in the unit area is ap-
proximately given. In addition, we may want to compute the net flux per unit width
of array, since that characterizes the efficacy of the whole device in transporting rods
within horizontal cross-sections of unit length. The net flux under this new normal-
ization is thus given by \~E(\Omega ) = abE(\Omega )/a = bE(\Omega ), which is the net flux over unit
horizontal cross-section with the rod concentration normalized.

From the discussion above, it is known that when a or b is large, \~E(\Omega ) should
decay like a - 1 or b - 1, respectively. This can be justified by the following formal
analysis.

1. When b is fixed and a is large, posts in different vertical columns function
almost independently as they are so far away. That a gets doubled is almost
equivalent to removing half of the posts in one row, which will naturally
decrease \~E(\Omega ) by one-half. This implies that \~E(\Omega ) will decay like a - 1 when
a is large.

2. When a is fixed and b is large, posts in different rows are now far away from
each other. If a rod leaves a post and swims into the open space towards
posts in another neighboring row, then midway its orientation is already
randomized. An important length scale here is v0/Dr = 1, which is the
characteristic distance a rod can travel away from the post before it forgets
its initial direction when leaving the boundary. Therefore, p(x, \theta ) should have
little \theta -dependence when the distance between x and any posts in the array
is significantly larger than 1. As a result, when b is large, the motion of the
rods midway between two rows can be characterized by an enhanced isotropic

diffusion with the effective diffusion coefficient Deff = Dt +
v2
0

4Dr
[13]. Instead

of (2.7), one can solve Deff\Delta \~p(x) = 0 for the spatial distribution of rods,
while the orientational distribution of rods there should be almost uniform in
all directions. From the far-field point of view, the effect of one post can be
modeled as a dipole in the positive x2-direction, since it effectively sucks rods
from one end (the larger end) and releases them from the other (the smaller
tip). The dipole magnitude is insensitive to b, since we have normalized the
rod concentration instead of the number of rods per unit cell. Hence, the far-
field spatial density of rods \~p(x) induced by one single dipole at the origin,
up to an additive constant, can be approximated by \~p(x) \sim Cx2

x2
1+x2

2
. Here C is

a constant depending on Deff and the dipole magnitude.
We align such a dipole in an array with horizontal spacing a and vertical
spacing b and calculate the net flux crossing the segment \{ (x1, x2) : x1 \in 
[ - a/2, a/2], x2 = b/2\} . We start from one row of posts all centered at
x2 = 0. The spatial density in a neighborhood of the line x2 = b/2 contributed
by this row should be well approximated, up to an additive constant, by
\~p0(x) =

\sum 
k\in \BbbZ \~p(x1 + ka, x2). By (2.13), the net flux contributed by this row

is given by

\~E0 =

\int 
\partial \Omega \cap \{ x2=b/2\} 

 - Dt
\partial \~p0
\partial x2

+ v0\~p0 sin 2\pi \theta dA.

The subscripts 0 imply that this portion of the net flux comes from the row
of posts centered at x2 = 0 (i.e., \~p0). The second term in the integral above
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should vanish, since \~p0(x) does not depend on \theta . Hence,

\~E0 =  - Dt

\Biggl[ \int a/2

 - a/2

\partial \~p0
\partial x2

dx1

\Biggr] 
x2=b/2

=  - Dt

\biggl[ \int 
\BbbR 

\partial \~p

\partial x2
dx1

\biggr] 
x2=b/2

=  - Dt

\biggl[ \int 
\BbbR 
\partial x2

\biggl( 
Cx2

x2
1 + x2

2

\biggr) 
dx1

\biggr] 
x2=b/2

=
C0

b
,

where C0 is a positive constant depending on Dt, Deff , and the dipole magni-
tude. By symmetry, the net flux contributed by the row of posts centered at
x2 = b should be \~E1 = \~E0. For the rows of posts farther away from the line
x2 = b/2, their contributions to the net flux are suppressed by the screening
effect of the rows that are closer to x2 = b/2. Indeed, the probability of
a rod leaving a post centered at x2 = kb and reaching the horizontal line
x2 = b/2 without being captured by any other posts on the way should decay
exponentially as | k  - 1/2| \rightarrow \infty ; in other words, the contributions to the net
flux from these farther rows cannot be fully seen by the line x2 = b/2 due
to the existence of closer rows. Assume the screening factor to be \alpha k for the
row of posts centered at x2 = kb, with

\sum 
k\in \BbbZ \alpha k < \infty . We write the contri-

bution of the row centered at x2 = kb to the net flux crossing the segment
\{ (x1, x2) : x1 \in [ - a/2, a/2], x2 = b/2\} to be \~Ek = \alpha k

\~E0. Presumably,
\alpha k's should be independent of b, but only depend on the horizontal spacing
of neighboring posts in one row, which is fixed here. The total net flux in-

duced by the whole array then becomes \~E(\Omega ) =
\sum 

k\in \BbbZ \alpha k
\~E0 =

\~C
b , where

\~C
is a constant depending on \alpha k's, Dt, Deff , and the dipole magnitude, but
independent of b. This justifies the b - 1-decay of \~E(\Omega ) when b is large.

4.2. Optimization of post shape. In the second family of simulations, we fix
the size of the unit cell by setting a = b = 1, and we apply the shape optimiza-
tion method mentioned in subsection 2.2 to find posts that induce larger normalized
net flux E(\Omega ). See sections SM3--SM5 of the supplementary material for the com-
plete mathematical derivations of the equations involved, and see section SM6 for the
numerical methods. The parameters and rates have been chosen in section 3.

We start with the post in the convex teardrop shape introduced in subsection 4.1.
Figure 7(a) shows the comparison before and after we apply the shape optimization to
the teardrop-shaped candidate. The blue curve represents the initial shape, while the
red curve is the optimized one (the final shape). Note that the iterative optimization
gets terminated when the post gets too close (dimensionless distance \leq 0.02) to the
border of the unit cell. We observe that with shape optimization, the post swells
significantly and becomes nonconvex; the former agrees with the earlier observation
that, in general, smaller gaps between neighboring posts imply larger flux. A small
round head forms at the top, connected by a thin neck to the larger belly. The
dimensionless curvature around the head is in a narrow range [24.5, 25.5]; recall that
it is 65.1 at the tip of the initial shape. The side parts of the post, initially flat,
become slightly wavy. This can be artificial since only low-frequency modes are used
in describing the boundary evolution. Indeed, we use 240 equally spaced points to
represent the curve, but only the first 41 Fourier modes are used in the boundary
evolution. See section SM6 of the supplementary material for more details about the
numerical method. The lower half of the post largely remains a circular arc. In the
course of the shape optimization, E(\Omega ) increases almost sevenfold, from 1.24\times 10 - 2

to 8.44\times 10 - 2.
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(a) (b) (c)

Fig. 7. Performing shape optimization of a teardrop-shaped post. (a) The initial and the
optimized shapes are represented by blue and red curves, respectively. In the course of the shape
optimization, the post swells, with the sharp tip at the top evolving into a small round head. The
lower half of the post remains a circular arc, while the overall post shape becomes nonconvex. E(\Omega )
increases from 1.24 \times 10 - 2 to 8.44 \times 10 - 2. (b)--(c) The spatial concentrations of rods c(x) in the
presence of the posts with the initial and the optimized shapes in (a) are plotted in (b) and (c),
respectively. The fraction of rods captured on the post boundary is not included in these figures.
(Color available online.)

To investigate how rods are spatially distributed in the presence of posts with the
initial and optimized shapes shown in Figure 7(a), we plot in Figures 7(b) and 7(c)

their corresponding spatial concentrations of rods c(x) \triangleq 
\int 1

0
p(x, \theta ) d\theta for x \in \omega . Note

that the fraction of rods captured on the boundary is not included. Figures 7(b) and
7(c) share some common features:

1. The rod concentrations in both cases have their peaks near the top of the
posts, implying that the top parts are the sites where strong net desorption
occurs.

2. There are regions of strong depletion near the flat sides of the posts.
3. The rod concentrations around the bottoms are also relatively high, due to the

high concentrations near the tops of the posts in the next unit cells directly
below.

4. The rod concentrations in both cases have a negative normal derivative near
the bottom of the posts (i.e., c(x) decreases when we approach the bottom
from some distance away), which implies that the bottoms are effectively
absorbing rods.

These features are also seen in our earlier experiments [40, inset of Fig. 3]; in fact,
Figure 7(b) agrees particularly well with the experimental results, except that here
we do not plot the ``boundary layer"" of rods trapped along the post boundary. This
suggests that our model effectively describes the real situation.

The main difference between Figure 7(b) and 7(c) is that the area of the strong
desorption site at the top in Figure 7(c) is much larger than that in Figure 7(b),
although the curvature there (\kappa \in [24.5, 25.5]) is much smaller than that (\kappa = 65.1)
in the initial shape. This can partially explain why the optimized shape can induce a
much larger net flux.

Next, we apply the shape optimization to a new nut-shaped post. The motiva-
tion of choosing this as the new initial shape is that the head-forming process can
potentially increase E(\Omega ). It might accelerate this process if we start from an initial
shape which already has a head. In Figure 8(a), we plot the shape of post before and
after the shape optimization. Again, the blue curve represents the initial shape, while
the red curve is the final one. The normalized net flux increases from 1.81\times 10 - 2 to
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(a) (b) (c)

Fig. 8. Performing shape optimization of a nut-shaped post. (a) The initial and the optimized
shapes are represented by blue and red curves, respectively. In the course of the shape optimization,
the post swells and a small round head forms at the top, while the lower half of the post remains a
circular arc. E(\Omega ) increases from 1.81\times 10 - 2 to 7.82\times 10 - 2. (b)--(c) The spatial concentrations of
rods c(x) in the presence of the posts with the initial and the optimized shapes in (a) are plotted in
(b) and (c), respectively. Again, the fraction of rods captured on the post boundary is not included.
(Color available online.)

7.82 \times 10 - 2, which is a big improvement but not as good as the previous case. We
see that once again the shape swells to fill almost the whole height of the unit cell;
a round head and a neck forms at the top, while the lower half of the post largely
remains a circular arc. The dimensionless curvature at the head of the final shape
ranges in [24, 25.5]. Again we plot the spatial concentrations of rods corresponding to
posts with the initial and optimized shapes in Figures 8(b) and 8(c), respectively. It is
clear that the top parts of both posts are the strong desorption sites, while it is larger
in the optimized shape than in the initial shape. In addition, there are noticeably
two more sites near the post boundary with relatively high rod concentration and
positive normal derivatives of c(x). They are the ``shoulders"" of both the initial and
the optimized shapes, which refer to the curved parts on both sides of the posts; they
are also efficient in releasing rods. The bottoms of the posts are the main absorption
sites as before.

The effect of the ``shoulders"" on the net flux is unclear though. The net flux can
benefit from larger desorbing sites. On the other hand, however, the shoulders are not
as efficient desorbing sites as the heads at the top, since the shoulders are far away
from the top border of the unit cell and the rods released there may fail to reach the
top border. In this sense, the presence of the shoulders can impair the capability of
the head releasing rods at the top, and thus reduce E(\Omega ). This may explain why the
optimized shape in this case does not have as high E(\Omega ) as the one in Figure 7(a).

It is shown in subsection 4.1 that shrinking gaps between neighboring posts,
especially the vertical gap, can effectively increase E(\Omega ). One may question whether
the increase in E(\Omega ) in the two cases above is purely due to the enlargement of the
post (and thus shrinking of the vertical gap), or whether it does benefit from the
changes in shape. To rule out the first possibility, we make up enlarged copies of the
initial teardrop-shaped and nut-shaped posts, such that they have the same height
(and thus the same vertical gaps between neighboring posts) as their corresponding
optimized shapes. We plot the boundaries of enlarged posts in Figure 9 using solid
curves, together with the corresponding optimized shapes that are plotted as dashed
curves. We calculate E(\Omega ) for the enlarged posts. The enlarged teardrop-shaped post
induces a normalized net flux 5.00 \times 10 - 2, and the enlarged nut-shaped post gives
2.58 \times 10 - 2. In both cases, the enlarged posts can generate much larger net fluxes
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(a) (b)

Fig. 9. Enlarged posts with the initial shapes (solid curves) and posts with the optimized shapes
(dashed curves). The heights of the enlarged posts are set to be the same as their corresponding
optimized posts.

Fig. 10. Dividing the post boundary \gamma into its upper (blue) and lower (red) halves in the case
of a teardrop-shaped post. The left- and rightmost points on \gamma are marked as black dots. (Color
available online.)

than the original ones, but still cannot compete with the optimized shapes. In this
way, we justify that the shape optimization does help us find better post designs.

To summarize, in addition to the overall swelling of the post in the shape opti-
mization, we empirically find different evolutions of the upper and lower halves of the
post boundary. Round heads tend to form at the top of the posts, with curvature
there being in a narrow range \kappa \in [24.5, 26]; a convex shape can evolve to become
nonconvex. By contrast, the lower half of the post always prefers to be a circular arc.

5. An approximate, but informative, analysis. To better understand our
findings and explore the possibility of designing posts with yet better shapes, we
consider a simplified model. We divide the post boundary curve \gamma into its upper and
lower halves by cutting it at the leftmost and the rightmost points on \gamma . If there
are several such points, pick the lowest one whenever necessary. See Figure 10 for an
illustration. We denote the upper and lower halves of \gamma by \gamma U and \gamma L, respectively.
Since rin \equiv 1 on \gamma , when there is no a priori information about the spatial distribution
of rods, then

FU \triangleq 
\int 
\gamma U

rout(\kappa (s)) ds

becomes a good characterization of the capability of \gamma U releasing rods. Here s is the
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arclength parameter of \gamma . Similarly,

FL \triangleq 
\int 
\gamma L

rout(\kappa (s)) ds

is the corresponding quantity for \gamma L. We naively assume that rods leaving from \gamma U are
more likely to reach the top border of the unit cell than the bottom border, while rods
released from \gamma L are more likely to cross the bottom border. By this assumption, rods
of the former type contribute positively to E(\Omega ) since they cross the border in the
positive x2-direction, while those of the latter type contribute negatively. Hence, in a
simplified manner, we use FU  - FL to characterize the overall capability of \gamma inducing
spontaneous migration in the positive x2-direction. Here we ignore the variance in po-
sition and orientation of rods when they cross either part of the boundary, and neither
do we incorporate any information about the spatial distribution of rods. Therefore,
to find a post with a good shape, we formally consider the following optimization
problem:

(5.1) max
\gamma 

(FU  - FL) = max
\gamma 

\biggl[ \int 
\gamma U

rout(\kappa (s)) ds - 
\int 
\gamma L

rout(\kappa (s)) ds

\biggr] 
.

Here rout(\kappa ) is given by (3.1), and we take maximum over all admissible curves \gamma .
By admissible, we mean \gamma that is sufficiently smooth and that does not intersect with
itself. If needed, we may also impose a constraint that the curvature of \gamma is bounded
above and below by some constants.

To formally solve the maximization problem (5.1), we first note that

(5.2) max
\gamma 

(FU  - FL) \leq max
\gamma 

\int 
\gamma U

rout(\kappa (s)) ds - min
\gamma \prime 

\int 
\gamma \prime 
L

rout(\kappa (s)) ds.

On the right-hand side, the \gamma that attains the maximum in the first term and the \gamma \prime 

that attains the minimum in the second term do not have to be the same one. The
famous Gauss--Bonnet theorem [8] will be useful in the following discussion, which
states that for any admissible \gamma in our context,

(5.3)

\int 
\gamma U

\kappa (s) ds =

\int 
\gamma L

\kappa (s) ds = \pi ,

where s is the arclength parameterizing \gamma in a counterclockwise orientation.
We first consider the maximizing problem in (5.2). We rewrite

max
\gamma 

\int 
\gamma U

rout(\kappa (s)) ds = max
\gamma 

\int 
\gamma U

rout(\kappa (s))

\kappa (s)
\kappa (s) ds.

Here rout(\kappa )/\kappa can be understood as the efficiency of utilizing the curvature to gen-
erate a desorption flux, given that (5.3) implies a fixed ``budget"" of the curvature on
both \gamma U and \gamma L. In order for the integral to be maximized, rout(\kappa )/\kappa needs to be as
large as possible when \kappa > 0 and as small as possible when \kappa < 0. It is known by (3.1)
that rout(\kappa )/\kappa \rightarrow \pm \infty as \kappa \rightarrow 0\pm . Moreover, it is easy to show that rout(\kappa )/\kappa reaches
a local maximum at \kappa max \approx 25. See Figure 11. This implies that in the upper half of
the post, the curvature tends to be close to 0 or \kappa max. This explains why the curva-
ture at the heads in both examples above lies in a narrow range close to 25 instead of
even larger values, such as \kappa = 65.1 at the tip of the initial teardrop-shaped post. In
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Fig. 11. rout(\kappa )/\kappa reaches a local maximum at \kappa max \approx 25 and a local minimum at \kappa min \approx 10.5,
marked as red dots on the curve. Note that rout(\kappa )/\kappa is the slope of straight line connecting the
point (\kappa , rout(\kappa )) with the origin. (Color available online.)

addition, it does no harm to have negative curvature in \gamma U as it potentially increases
the arclength where the \kappa max could be attained, thus improving the overall capability
of \gamma U releasing rods. This explains why convex shapes can evolve into nonconvex ones
in the shape optimization.

Now we turn to the minimization problem involving \gamma \prime 
L in (5.2). We note that

rout(\kappa )/\kappa has a local minimum at \kappa min \approx 10.5. See Figure 11. If we rule out the case
when \kappa can be very large along \gamma \prime 

L, say assuming \kappa < 80, we will find

rout(\kappa ) \geq 
rout(\kappa min)

\kappa min
\kappa \forall \kappa < 80.

Hence,

min
\gamma \prime 

\int 
\gamma \prime 
L

rout(\kappa (s)) ds \geq 
rout(\kappa min)

\kappa min

\int 
\gamma \prime 
L

\kappa (s) ds =
\pi rout(\kappa min)

\kappa min
.

Therefore, the minimum is achieved if \gamma \prime 
L is a semicircle with dimensionless curvature

\kappa min. This might not be obtained in general, because, for example, the arclength
between the leftmost and the rightmost points on \gamma \prime may not match the arclength
of the semicircle with curvature \kappa min. In such a case, \gamma \prime 

L still has to be largely a
semicircle. We can prove this under the assumption that \kappa < 20 on \gamma \prime 

L simply by
noticing that rout(\kappa ) is a convex function for \kappa < 20 and then applying Jensen's
inequality.

6. Explorations of other designs. In what follows, we shall design better
posts based on the above simulations and analysis. We have seen that the round heads
formed in Figures 7(a) and 8(a) act as strong desorption sites, which contribute a lot to
increase E(\Omega ). It is natural to believe that E(\Omega ) can benefit from putting more strong
desorption sites close to the top border of the unit cell. This inspires us to consider the
new posts plotted in Figures 12(a) and 12(c), with multiple fingers at the top. Indeed,
we choose these two shapes, such that the curvature at all fingertips satisfies \kappa \in 
[23, 26], presumably making them into strong desorption sites. In addition, we take the
lower halves of these two shapes to be largely circular arcs. We compute E(\Omega ) for these
two posts, without performing shape optimization. For the three-finger post, E(\Omega ) =
4.78\times 10 - 2; for the five-finger post, E(\Omega ) = 6.18\times 10 - 2, already close to our optimized
single-head case. The spatial concentrations of the rods corresponding to these two
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(a) (b)

(c) (d)

Fig. 12. Two new candidate post shapes with multiple fingers at the top as strong desorption
sites. All fingertips have curvature \kappa \in [23, 26] at the top, while the lower halves of the posts
are designed to be largely circular arcs. (a)--(b) The three-finger post and its induced spatial rod
concentration. In this case, E(\Omega ) = 4.78\times 10 - 2. (c)--(d) The five-finger post and its induced spatial
rod concentration. In this case, E(\Omega ) = 6.18\times 10 - 2.

candidate posts are also plotted in Figure 12(b) and Figure 12(d), respectively. It is
clear that all the finger tips in both shapes are indeed strong desorption sites that
are close to the top border of the unit cell. Efforts are being made to experimentally
study the directed migration of swimmers induced by such posts with complex shapes.

Although these multifinger posts already give strong net flux even without shape
optimization, they still cannot compete the final optimized shape we obtained in
Figure 7(a). One of the reasons is that there are still lots of open spaces between
the post and the border of the unit cell. In particular, further reducing the vertical
gap by enlarging the posts can hopefully lead to stronger fluxes. Another reason is
the suboptimality of their shapes. For example, the curvatures of the lower half of
these two posts are not close to \kappa min found before. We also note that if we change the
fingertips into small round heads with curvature close to \kappa max, the area of the strong
desorption site can increase considerably, and thus E(\Omega ) may increase as well.

Now we propose a shape that is almost the optimal in the sense that it leaves very
little open space for the free swimming of the rods, and it almost solves the simplified
optimization problem on the right-hand side of (5.2) by putting the right curvatures
in the upper and lower halves of \gamma . We plot it in Figure 13 using solid curves in a 2\times 5
array. The dashed box represents one unit cell of the array, with a = 0.2 and b = 1.
The post within the box has a slim shape, whose height and width are 0.940 and
0.180, respectively. It has flat sides and curved top and bottom parts. The top part
consists of two semicircular arcs with \kappa \approx 23, which is close to \kappa max \approx 25; the bottom
part is a semicircular arc, with \kappa \approx 11, which is close to \kappa min \approx 10.5. There are
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Fig. 13. A 2 \times 5 array of a slim post. Its unit cell has a = 0.2 and b = 1. The post has flat
sides and curved top and bottom parts. The top part consists of two semicircles with \kappa \approx 23, while
the bottom part is a semicircle with \kappa \approx 11. There are only narrow gaps between neighboring posts
in the same row. Such an array induces a normalized net flux E(\Omega ) = 1.15\times 10 - 1.

only narrow gaps between neighboring posts. We compute its normalized net flux to
obtain E(\Omega ) = 1.15\times 10 - 1, which surpasses any other posts considered in this paper!
Note that we do not rule out the existence of even more judicious designs of posts. In
sum, we showed that using what we have learned in the numerical shape optimization
and the formal analysis above, we can design better post shapes effectively.

7. Conclusion and discussion. In this paper, we propose a kinetic-type model
to study Au-Pt rods swimming and directionally migrating in a periodic array of posts
with noncircular cross-sections. Both position and orientation of the rods are taken
into account. The absorption and desorption of the swimming rods on the post bound-
aries are modeled via empirically defined angular distributions and rate functions of
the boundary curvature. Within this model, we define and compute the normalized
net flux induced by a periodic rectangular array of posts, which characterizes the
intensity of the spontaneous directed migration of rods in the array due to the asym-
metry in geometry. We study how to design the array judiciously so that it can induce
stronger directed migration. It is shown that the net flux increases if the horizontal
and vertical spacings between neighboring posts shrink. On the other hand, we apply
the numerical shape optimization to find better shapes of posts that induce yet larger
flux. Inspired by the numerical results on two candidate posts---a teardrop-shaped
post and a nut-shaped post, we propose a simplified model to show the key geomet-
ric features a good post should have. Based on that, we come up with three new
candidate shapes that generate large fluxes. In this way, we show that the shape
optimization technique can help design good posts effectively.

Our results crucially rely on the choices of (hopefully reasonable) universal rate
functions rin(\kappa ) and rout(\kappa ), and the angular distributions \rho \pm (\beta ) and \tau \pm (\beta ), for which
little experimental measurement exists. In this paper, we choose these functions so
that they qualitatively agree with the existing experimental observations and physical
intuition. We note that our choices of \rho \pm (\beta ) and \tau \pm (\beta ) are natural and reasonable.
The numerical experience is that, even if we alter the choice of these angular distri-
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butions, the numerical results are qualitatively unchanged. By contrast, rin(\kappa ) and
rout(\kappa ) could have bigger impacts on the numerical results. It has been shown in the
simplified model in section 4 that, given rin \equiv 1, the local maximum and minimum of
rout(\kappa )/\kappa can be very crucial quantities that determine geometric features of a good
post. For example, if we alternatively take rout(\kappa ) to be e\kappa , one would expect a good
post to have very sharp tips at its top instead of small round heads or circular arcs,
since rout(\kappa )/\kappa formally achieves maximum at \kappa = +\infty . If we further choose rin(\kappa )
to be a function depending on \kappa , the situation would be more complicated and it can
hardly be characterized by our simplified model.

In the current model, the absorption and desorption of the swimming rods on
the post boundary are handled in a phenomenological manner, which is the reason
we need the functions above. It would be ideal to build up a hydrodynamic model
to fully characterize the interaction between the swimming bimetallic rods and the
curved solid boundary, from which we can hopefully derive the rate functions and
angular distributions that are needed. Previous work by Takagi et al. [33] applying
lubrication theory between a swimming rod and a flat solid boundary cannot be
immediately generalized to the case of the curved boundary, especially when the
radius of curvature of the boundary is on the same scale as or even below that of
the rod length, which is the case when a rod comes to the sharp tip of a teardrop-
shaped post. Spagnolie et al. [31] model the hydrodynamic capture and escape of
microswimmers on an obstacle by assuming the swimmers are force dipoles. However,
this analysis assumes that the swimmer can preserve its orientation when it hits the
boundary, which is not true in our case. More delicate modeling is thus needed to
understand the hydrodynamic interaction between swimmers and complex boundaries
in fluid environments.

Acknowledgments. We want to thank our colleagues at the Courant Insti-
tute and the Department of Chemistry of New York University, namely, Dr. Megan S.
Davies Wykes, Dr. Xiao Zhong, Prof. Leif Ristroph, Prof. Jun Zhang, Prof. Michael D.
Ward, Prof. Yanpeng Liu, Jinzi Mac Huang, Dr. Quentin Brosseau, Yang Wu, and
Dr. Abtin Rahimian for many inspiring discussions and for providing useful experi-
mental data.

REFERENCES

[1] J. L. Anderson, Colloid transport by interfacial forces, Annu. Rev. Fluid Mech., 21 (1989),
pp. 61--99, https://doi.org/10.1146/annurev.fl.21.010189.000425.

[2] S. Balasubramanian, D. Kagan, C.-M. J. Hu, S. Campuzano, M. J. Lobo-Casta\~non,
N. Lim, D. Y. Kang, M. Zimmerman, L. Zhang, and J. Wang, Micromachine-enabled
capture and isolation of cancer cells in complex media, Angewandte Chemie Internat. Ed.,
50 (2011), pp. 4161--4164, https://doi.org/10.1002/anie.201100115.

[3] H. C. Berg, D. A. Brown, et al., Chemotaxis in Escherichia coli analysed by three-
dimensional tracking, Nature, 239 (1972), pp. 500--504, https://doi.org/10.1038/239500a0.

[4] A. P. Berke, L. Turner, H. C. Berg, and E. Lauga, Hydrodynamic attraction of swimming
microorganisms by surfaces, Phys. Rev. Lett., 101 (2008), 038102, https://doi.org/10.1103/
PhysRevLett.101.038102.

[5] L. Cisneros, C. Dombrowski, R. E. Goldstein, and J. O. Kessler, Reversal of bacte-
rial locomotion at an obstacle, Phys. Rev. E, 73 (2006), 030901, https://doi.org/10.1103/
PhysRevE.73.030901.

[6] M. Contino, E. Lushi, I. Tuval, V. Kantsler, and M. Polin, Microalgae scatter off solid
surfaces by hydrodynamic and contact forces, Phys. Rev. Lett., 115 (2015), 258102, https:
//doi.org/10.1103/PhysRevLett.115.258102.

[7] M. C. Delfour and J.-P. Zol\'esio, Shapes and Geometries: Metrics, Analysis, Differential
Calculus, and Optimization, 2nd ed., Adv. Des. Control 22, SIAM, Philadelphia, 2011,

D
ow

nl
oa

de
d 

03
/2

9/
19

 to
 1

28
.1

22
.8

0.
15

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1146/annurev.fl.21.010189.000425
https://doi.org/10.1002/anie.201100115
https://doi.org/10.1038/239500a0
https://doi.org/10.1103/PhysRevLett.101.038102
https://doi.org/10.1103/PhysRevLett.101.038102
https://doi.org/10.1103/PhysRevE.73.030901
https://doi.org/10.1103/PhysRevE.73.030901
https://doi.org/10.1103/PhysRevLett.115.258102
https://doi.org/10.1103/PhysRevLett.115.258102


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MIGRATION OF MICROSWIMMERS 2391

https://doi.org/10.1137/1.9780898719826.
[8] M. P. Do Carmo, Differential Geometry of Curves and Surfaces, Vol. 2, Prentice-Hall, Engle-

wood Cliffs, 1976.
[9] S. J. Ebbens and J. R. Howse, In pursuit of propulsion at the nanoscale, Soft Matter, 6

(2010), pp. 726--738, https://doi.org/10.1039/B918598D.
[10] J. Elgeti, R. G. Winkler, and G. Gompper, Physics of microswimmers: Single particle

motion and collective behavior: A review, Rep. Progr. Phys., 78 (2015), 056601, https:
//doi.org/10.1088/0034-4885/78/5/056601.

[11] P. Galajda, J. Keymer, P. Chaikin, and R. Austin, A wall of funnels concentrates swimming
bacteria, J. Bacteriology, 189 (2007), pp. 8704--8707, https://doi.org/10.1128/JB.01033-07.

[12] A. Ghosh and P. Fischer, Controlled propulsion of artificial magnetic nanostructured pro-
pellers, Nano Lett., 9 (2009), pp. 2243--2245, https://doi.org/10.1021/nl900186w.

[13] J. R. Howse, R. A. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, and R. Golestanian,
Self-motile colloidal particles: From directed propulsion to random walk, Phys. Rev. Lett.,
99 (2007), 048102, https://doi.org/10.1103/PhysRevLett.99.048102.

[14] V. Kantsler, J. Dunkel, M. Polin, and R. E. Goldstein, Ciliary contact interactions
dominate surface scattering of swimming eukaryotes, Proc. Natl. Acad. Sci. USA, 110
(2013), pp. 1187--1192, https://doi.org/10.1073/pnas.1210548110.

[15] E. E. Keaveny, S. W. Walker, and M. J. Shelley, Optimization of chiral structures
for microscale propulsion, Nano Lett., 13 (2013), pp. 531--537, https://doi.org/10.1021/
nl3040477.

[16] G. Lambert, D. Liao, and R. H. Austin, Collective escape of chemotactic swimmers through
microscopic ratchets, Phys. Rev. Lett., 104 (2010), 168102, https://doi.org/10.1103/
PhysRevLett.104.168102.

[17] G. Li, J. Bensson, L. Nisimova, D. Munger, P. Mahautmr, J. X. Tang, M. R. Maxey,
and Y. V. Brun, Accumulation of swimming bacteria near a solid surface, Phys. Rev. E,
84 (2011), 041932, https://doi.org/10.1103/PhysRevE.84.041932.

[18] G. Li and J. X. Tang, Accumulation of microswimmers near a surface mediated by collision
and rotational Brownian motion, Phys. Rev. Lett., 103 (2009), 078101, https://doi.org/
10.1103/PhysRevLett.103.078101.

[19] C. Liu, C. Zhou, W. Wang, and H. P. Zhang, Bimetallic microswimmers speed up in confin-
ing channels, Phys. Rev. Lett., 117 (2016), 198001, https://doi.org/10.1103/PhysRevLett.
117.198001.

[20] E. Lushi, V. Kantsler, and R. E. Goldstein, Scattering of biflagellate microswimmers from
surfaces, Phys. Rev. E, 96 (2017), 023102, https://doi.org/10.1103/PhysRevE.96.023102.

[21] J. G. Mitchell and K. Kogure, Bacterial motility: Links to the environment and a driving
force for microbial physics, FEMS Microbiol. Ecol., 55 (2006), pp. 3--16, https://doi.org/
10.1111/j.1574-6941.2005.00003.x.

[22] B. Mohammadi and O. Pironneau, Applied Shape Optimization for Fluids, Oxford University
Press, New York, 2010, https://doi.org/10.1093/acprof:oso/9780199546909.001.0001.

[23] J. L. Moran and J. D. Posner, Electrokinetic locomotion due to reaction-induced charge
auto-electrophoresis, J. Fluid Mech., 680 (2011), pp. 31--66, https://doi.org/10.1017/jfm.
2011.132.

[24] J. Palacci, C. Cottin-Bizonne, C. Ybert, and L. Bocquet, Sedimentation and effective
temperature of active colloidal suspensions, Phys. Rev. Lett., 105 (2010), 088304, https:
//doi.org/10.1103/PhysRevLett.105.088304.

[25] D. Patra, S. Sengupta, W. Duan, H. Zhang, R. Pavlick, and A. Sen, Intelligent, self-
powered, drug delivery systems, Nanoscale, 5 (2013), pp. 1273--1283, https://doi.org/10.
1039/C2NR32600K.

[26] W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St. Angelo, Y. Cao, T. E.
Mallouk, P. E. Lammert, and V. H. Crespi, Catalytic nanomotors: Autonomous
movement of striped nanorods, J. Amer. Chem. Soc., 126 (2004), pp. 13424--13431,
https://doi.org/10.1021/ja047697z.

[27] O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer Science \& Business Media,
New York, 2012, https://doi.org/10.1007/978-3-642-87722-3.

[28] J. Simmchen, J. Katuri, W. E. Uspal, M. N. Popescu, M. Tasinkevych, and S. S\'anchez,
Topographical pathways guide chemical microswimmers, Nature Commun., 7 (2016), 10598,
https://doi.org/10.1038/ncomms10598.

[29] J. Sokolowski and J.-P. Zolesio, Introduction to Shape Optimization, Springer, Berlin, Hei-
delberg, 1992, https://doi.org/10.1007/978-3-642-58106-9.

[30] L. Soler, V. Magdanz, V. M. Fomin, S. Sanchez, and O. G. Schmidt, Self-propelled
micromotors for cleaning polluted water, ACS Nano, 7 (2013), pp. 9611--9620, https:

D
ow

nl
oa

de
d 

03
/2

9/
19

 to
 1

28
.1

22
.8

0.
15

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/1.9780898719826
https://doi.org/10.1039/B918598D
https://doi.org/10.1088/0034-4885/78/5/056601
https://doi.org/10.1088/0034-4885/78/5/056601
https://doi.org/10.1128/JB.01033-07
https://doi.org/10.1021/nl900186w
https://doi.org/10.1103/PhysRevLett.99.048102
https://doi.org/10.1073/pnas.1210548110
https://doi.org/10.1021/nl3040477
https://doi.org/10.1021/nl3040477
https://doi.org/10.1103/PhysRevLett.104.168102
https://doi.org/10.1103/PhysRevLett.104.168102
https://doi.org/10.1103/PhysRevE.84.041932
https://doi.org/10.1103/PhysRevLett.103.078101
https://doi.org/10.1103/PhysRevLett.103.078101
https://doi.org/10.1103/PhysRevLett.117.198001
https://doi.org/10.1103/PhysRevLett.117.198001
https://doi.org/10.1103/PhysRevE.96.023102
https://doi.org/10.1111/j.1574-6941.2005.00003.x
https://doi.org/10.1111/j.1574-6941.2005.00003.x
https://doi.org/10.1093/acprof:oso/9780199546909.001.0001
https://doi.org/10.1017/jfm.2011.132
https://doi.org/10.1017/jfm.2011.132
https://doi.org/10.1103/PhysRevLett.105.088304
https://doi.org/10.1103/PhysRevLett.105.088304
https://doi.org/10.1039/C2NR32600K
https://doi.org/10.1039/C2NR32600K
https://doi.org/10.1021/ja047697z
https://doi.org/10.1007/978-3-642-87722-3
https://doi.org/10.1038/ncomms10598
https://doi.org/10.1007/978-3-642-58106-9
https://doi.org/10.1021/nn405075d
https://doi.org/10.1021/nn405075d


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2392 JIAJUN TONG AND MICHAEL J. SHELLEY

//doi.org/10.1021/nn405075d.
[31] S. E. Spagnolie, G. R. Moreno-Flores, D. Bartolo, and E. Lauga, Geometric capture and

escape of a microswimmer colliding with an obstacle, Soft Matter, 11 (2015), pp. 3396--
3411, https://doi.org/10.1039/C4SM02785J.

[32] S. Sundararajan, P. E. Lammert, A. W. Zudans, V. H. Crespi, and A. Sen, Catalytic
motors for transport of colloidal cargo, Nano Lett., 8 (2008), pp. 1271--1276, https://doi.
org/10.1021/nl072275j.

[33] D. Takagi, J. Palacci, A. B. Braunschweig, M. J. Shelley, and J. Zhang, Hydrodynamic
capture of microswimmers into sphere-bound orbits, Soft Matter, 10 (2014), pp. 1784--1789,
https://doi.org/10.1039/C3SM52815D.

[34] P. Tierno, R. Golestanian, I. Pagonabarraga, and F. Sagu\'es, Magnetically actuated
colloidal microswimmers, J. Phys. Chem. B, 112 (2008), pp. 16525--16528, https://doi.
org/10.1021/jp808354n.

[35] W. Uspal, M. N. Popescu, S. Dietrich, and M. Tasinkevych, Self-propulsion of a cat-
alytically active particle near a planar wall: From reflection to sliding and hovering, Soft
Matter, 11 (2015), pp. 434--438, https://doi.org/10.1039/C4SM02317J.

[36] G. Volpe, I. Buttinoni, D. Vogt, H.-J. K\"ummerer, and C. Bechinger, Microswimmers in
patterned environments, Soft Matter, 7 (2011), pp. 8810--8815, https://doi.org/10.1039/
C1SM05960B.

[37] S. W. Walker and M. J. Shelley, Shape optimization of peristaltic pumping, J. Comput.
Phys., 229 (2010), pp. 1260--1291, https://doi.org/10.1016/j.jcp.2009.10.030.

[38] Y. Wang, R. M. Hernandez, D. J. Bartlett, J. M. Bingham, T. R. Kline, A. Sen,
and T. E. Mallouk, Bipolar electrochemical mechanism for the propulsion of cat-
alytic nanomotors in hydrogen peroxide solutions, Langmuir, 22 (2006), pp. 10451--10456,
https://doi.org/10.1021/la0615950.

[39] J. Wilkening and A. Hosoi, Shape optimization of a sheet swimming over a thin liquid layer,
J. Fluid Mech., 601 (2008), pp. 25--61, https://doi.org/10.1017/S0022112008000384.

[40] M. S. D. Wykes, X. Zhong, J. Tong, T. Adachi, Y. Liu, L. Ristroph, M. D. Ward, M. J.
Shelley, and J. Zhang, Guiding microscale swimmers using teardrop-shaped posts, Soft
Matter, 27 (2017), pp. 4681--4688, https://doi.org/10.1039/C7SM00203C.

D
ow

nl
oa

de
d 

03
/2

9/
19

 to
 1

28
.1

22
.8

0.
15

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1021/nn405075d
https://doi.org/10.1021/nn405075d
https://doi.org/10.1039/C4SM02785J
https://doi.org/10.1021/nl072275j
https://doi.org/10.1021/nl072275j
https://doi.org/10.1039/C3SM52815D
https://doi.org/10.1021/jp808354n
https://doi.org/10.1021/jp808354n
https://doi.org/10.1039/C4SM02317J
https://doi.org/10.1039/C1SM05960B
https://doi.org/10.1039/C1SM05960B
https://doi.org/10.1016/j.jcp.2009.10.030
https://doi.org/10.1021/la0615950
https://doi.org/10.1017/S0022112008000384
https://doi.org/10.1039/C7SM00203C

	Introduction
	Theory
	Modeling microscale swimming rods in a periodic array of posts
	Seeking stronger directed migration of the rods

	Model choices
	Numerical results
	The effect of post spacings
	Optimization of post shape

	An approximate, but informative, analysis
	Explorations of other designs
	Conclusion and discussion
	References

