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We construct a valveless pump consisting of a section of elastic tube and a section of rigid tube
connected in a closed loop and filled with water. By periodically squeezing the elastic tube at an
asymmetric location, a persistent flow around the tubes is created. This effect, called the Liebau
phenomenon or valveless pumping, has been known for some time but is still not completely
understood. We study the flow rates for various squeezing locations, frequencies, and elastic tube
rigidities. To understand valveless pumping, we formulate a simple model that can be described by
ordinary differential equations. The time series of flow velocities generated by the model are
qualitatively and quantitatively similar to those seen in the experiment. The model provides a
physical explanation of valveless pumping, and it allows us to identify the essential pumping
mechanisms. © 2008 American Institute of Physics. �DOI: 10.1063/1.2890790�

I. INTRODUCTION

Beginning in 1954, Liebau published a series of papers
describing a novel kind of water pump.1–3 One version of his
pump consisted of two tubes, one relatively elastic and one
relatively rigid, connected in series to form a closed loop and
filled with water. When the elastic tube was squeezed peri-
odically at an asymmetric location along its length, a flow
around the tubes developed. The direction of the flow de-
pended on the location of the squeezing; the flow always
traveled from the longer portion of the elastic tube toward
the shorter portion.

This effect became known as the Liebau phenomenon,
and the pump became known as a valveless pump. It is not
immediately clear why such a pump would create a flow, nor
is it clear why the flow would go in the observed direction.
Traditional pumps use valves to restrict the fluid motion to
one direction or, by peristalsis, push the fluid in one direc-
tion. The tube walls in a valveless pump move normal to the
flow and do not select a preferred direction. Moreover, the
motion of the tube walls is symmetric in time, so that if one
direction of flow is preferred during closing, the opposite
direction ought to be preferred during opening, so that on
average, there is no obvious preferred direction.

In this paper, we describe a valveless pump similar to
that used by Liebau. We use a mechanical forcing mecha-
nism to squeeze the elastic tube at various locations and fre-
quencies, and we also test elastic tubes of different rigidities.
Our observations are generally consistent with those of Lie-
bau. At high frequencies, a large mean flow is generated in
the rigid section in the direction observed by Liebau. Gener-
ally, the flow strength increases with frequency and with dis-
tance of the forcing mechanism from the center of the elastic
tube. We observe resonances at some frequencies and flow

direction reversals at low frequencies. A diagram showing
our experimental setup can be seen in Fig. 1 in Sec. II. The
arrows in this diagram indicate the flow direction that Liebau
observed.

This paper also describes a simple model of valveless
pumping. In the model, the pump is conceived as consisting
of four discrete regions: The section of the rigid tube, the
section of the elastic tube that is squeezed, and the two elas-
tic sections on either side of the squeezed section. The states
of these regions are given by scalar variables such as fluxes,
volumes, and pressures. These states evolve according to
coupled linear ordinary differential equations that we derive
from the fluid equations and from basic assumptions. All
parameters are measured experimentally or derived from
physical principles. Though some of our approximations are
crude, this simple model produces a flow in the loop as a
function of time that is remarkably similar to that seen in the
experiment for a wide range of frequencies, forcing posi-
tions, and elastic tube rigidities. A deficiency of the model is
that it does not produce the resonances seen in the experi-
ment.

The model includes several small nondimensional pa-
rameters, which allow us to perform an asymptotic analysis
in a distinguished limit. This analysis reveals the leading
behavior of the four regions of the pump and produces an
approximate expression for the average flow in terms of the
parameters of the model. We define a measure of efficiency
for the pump, and we find that at large Reynolds numbers, a
valveless pump can be more efficient than a traditional
pump, but that it is otherwise inefficient. We also identify the
essential physical mechanisms that create flow and select the
preferred direction.

Our model is valid in the regime where the time required
for waves to travel the length of the elastic tube is much
shorter than the pumping period. In this regime, we can ef-a�Electronic mail: bringley@cims.nyu.edu.
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fectively average over the dynamics of individual waves by
considering the regions of the elastic tube as having uniform
pressures that represent the effects of the waves. Our experi-
ments fall into this regime. If the pumping frequency were
much greater, the elastic tube much longer, or the wave
speed, which is proportional to the square root of the tube’s
rigidity, much slower, our model would break down and a
one-dimensional or higher model including wave dynamics
would be needed.

While a higher-dimensional model could also be used
for the regime of our experiment, we show that a far simpler
model is sufficient to capture much of the behavior of the
pump. Although relatively low dimensional, our model �1�
accurately reproduces experimental results, �2� provides a
closed-form expression for the flux through the pump, and
�3� admits a clear physical explanation for valveless pump-
ing in the regime tested.

Liebau was motivated by his interest in the human cir-
culatory system. The human heart has very efficient valves
which ensure that blood flows from the heart into arteries
and is returned by veins. Liebau was interested in patients
with malfunctioning aortic valves but who could still circu-
late blood.1–3 Arteries are much less compliant than veins;4

analogously, the shorter portion of the elastic tube is more
resistant to changes in volume than the longer portion. If this
analogy holds, the observations of Liebau suggest that the
contraction of the heart, even without valves, would generate
a circulation from veins to arteries, the desired direction.

There are other possible applications related to blood
circulation. The thoracic pump theory of cardiopulmonary
resuscitation �CPR� proposes that the valves of the heart are
inoperative and the heart acts as a passive conduit during
CPR. Valveless pumping could act as the mechanism that
creates circulation. A summary of this theory and competing
theories along with references can be found from Jung and
Peskin.5 In the early stages of development, the human fetus
has a functioning circulatory system, though its heart has not
yet formed chambers or valves. It is commonly thought that
blood is circulated by a peristaltic mechanism, though recent
experiments in living zebra fish embryos show evidence that
valveless pumping plays a role.6

Valveless pumping may have applications in engineering
as well. Rinderknecht et al. have constructed a successful
valveless micropump similar to that described above.7 Mi-
cropumps are thought to be a promising application of valve-
less pumping because valveless pumps are easy to construct
and require few moving parts.

Since Liebau, valveless pumping has generated much
interest. Further experiments confirming the observations of
Liebau were performed by Kilner8 and Hickerson et al.9 The
latter, using a somewhat different experimental setup, found
resonances and flow reversals at high frequencies. Jung and
Peskin used the immersed boundary method to create two-
dimensional numerical simulations of a valveless pump.5

They also observed resonances and flow reversals.
One-dimensional models of valveless pumps have been

used by Thomann,10 Ottesen,11 Manopoulus et al.,12 Borzì
and Propst,13 and Auerbach et al.14 Hickerson and Gharib
recently proposed a model that reduces the dynamics to mo-

tion of discrete waves in the elastic tube that impart momen-
tum to the fluid in the rigid tube such that a net flow is
created.15

A zero-dimensional model of a valveless pump similar to
our model was proposed by Moser et al.16 Our model differs
from theirs in that ours is derived from basic fluid equations
and includes extra terms that come from the nonlinearity in
these equations. Our analysis shows that these terms are es-
sential for flow creation, meaning that valveless pumping is a
truly nonlinear phenomenon. This is a fundamental differ-
ence between their results and ours, which we will not try to
reconcile in this paper.

The structure of this paper is as follows. In Sec. II, we
describe the experiment and present its results in Sec. III. In
Sec. IV, we construct the model. The model is integrated
numerically, and the results are described in Sec. V. We ana-
lyze the model in Sec. VI and, in Sec. VII, we interpret the
model physically.

II. DESCRIPTION OF THE EXPERIMENT

The experimental apparatus is a closed, fluid-filled loop.
The loop consists of two sections: A short flexible tube and a
long rigid tube. It is constructed by connecting two pieces of
relatively rigid polyvinyl chloride �PVC� tubing of equal
length to both a section of latex tubing and a section of
transparent rigid plastic tubing, as shown in Fig. 1. This loop
is filled completely with water. The setup is built with lateral
symmetry, so that pumping results from asymmetry in the
forcing, not the apparatus. Some important physical dimen-
sions of our setup are listed in Table I.

FIG. 1. Diagram of the experimental setup. An elastic tube is connected to
a rigid tube as shown. R.S. indicates rigid sections. The tubes are filled with
water. A cylinder depresses the elastic tube periodically. The movement of
flow visualization particles in a transparent section of the rigid tubing is
captured by a video camera. The illuminated portion of the transparent sec-
tion is indicated by the dashed line. The arrows in the rigid sections indicate
the direction of flow observed by Liebau, which we confirm to be the pri-
mary flow direction.
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To periodically compress the tube, we use a cylinder
attached to a lever arm, as shown in Fig. 2. The lever is
supported by a spring and is periodically pushed down onto
the elastic tube by a motor. The spring, under compression,
ensures that the lever is in contact with the motor at all times.
The mechanism is configured so that the cylinder, at its low-
est point, closes off the elastic tube completely. At its highest
elevation, it is above the elastic tube, so that for approxi-
mately half of each cycle, the cylinder is not in contact with
the tube. The forcing is characterized by its frequency f and
the horizontal distance of the center of the forcing cylinder
from the center of the latex tube, Lf, hereafter called the
forcing offset.

Forcing with a nonzero offset results in time dependent
flow in the rigid part of the tube. This flow is laminar and we
use particle tracking to measure the flow speed in the rigid
section. Small �57 �m� neutrally buoyant particles are added
to the fluid. We illuminate the central vertical plane of the
tube �as shown by the dashed line in Fig. 1� and we record
the motion of these particles. We use a custom-written par-
ticle tracking program to measure the velocity at the center
of the tube u�t�, the instantaneous flux Q�t�, the time aver-
aged central velocity over one period ū, and the time aver-

aged flux Q̄. Additional details are provided in an endnote.17

III. RESULTS

In an experimental run, we start with the fluid at rest and
allow the pump to run until it reaches a quasisteady, periodic
state, after which we perform measurements. We vary the
frequency of the forcing and the forcing offset, and we use
two different latex tubes with different rigidities, character-
ized by the tube’s wall thickness h0.

Two representative plots of u�t� for different parameters
can be seen in Fig. 3. Positive velocities indicate flow in the
counterclockwise direction in Fig. 1, which is the direction
of the flow observed by Liebau. Negative velocities indicate
clockwise flow. Both plots show a high degree of periodicity
in the flow.

The plot on the left is for f =1.91 Hz and Lf =5.66 cm.
The average velocity is positive, though u�t� is sometimes
negative. In each period, an acceleration is followed by a
rapid deceleration and then a damped oscillation. The fre-
quency of the damped oscillation is about 19 Hz.

The plot on the right is for f =3.49 Hz and Lf =3.27 cm.
The average velocity is nearly zero, though instantaneous
velocities are large in both the positive and negative direc-
tions. Again, an acceleration is followed by a rapid decelera-
tion and then a damped oscillation, but here the period of
acceleration and deceleration seems to match the frequency
of the oscillation. Specifically, the time between the final
peak of the damped oscillation and the peak velocity after
acceleration is similar to the oscillation period. Also, the time
between the most negative velocity after deceleration and the
first trough of the damped oscillation is similar to the oscil-
lation period. The period of deceleration lasts somewhat
longer than half a period. We refer to this phenomenon as a
resonance. We will see that, for each elastic tube rigidity,
resonances occur at a particular frequency for all values of
the forcing offset. These resonances greatly affect the aver-
age velocity.

Figure 4 shows how the instantaneous velocity corre-
sponds to the phase of the forcing. The solid line shows u�t�
as a function of time for f =1.91 Hz and Lf =5.66 cm. The
dashed line shows the height of the forcing mechanism as a
function of time, scaled to vary between zero and 1 and
shifted so that it fits on this plot. The motion of the forcing

TABLE I. Physical constants and parameters used throughout the paper.

Symbol Value Parameter indicated

� 1.0 gm /cm3 Density of water

� 0.01 gm /cm s Viscosity of water

Ar 2.85 cm2 Cross-sectional area of the rigid tube

Lr 124.2 cm Total length of the rigid tube

A0 2.85 cm2 Rest cross-sectional area of the elastic tube

h0 0.051 and 0.081 cm Wall thicknesses of the elastic tubes

E 0.99 MPa Young’s modulus of the elastic tubes

Y 0.0063 MPa s Damping parameter of the elastic tubes

Lp 2.22 cm Length of the pumping region

Lf Various Forcing offset

L1 8.7 cm+Lf −Lp /2 Length of elastic region 1

L2 8.7 cm+Lf −Lp /2 Length of elastic region 2

f Various Forcing frequency

FIG. 2. Diagram of the forcing mechanism. A motor drives the periodic
motion of a lever, to which a cylinder is attached, so that the cylinder
compresses the elastic tube. A spring keeps the lever in contact with the
motor at all times. A potentiometer at the base of the lever measures its
phase within a driving period �not shown�.
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FIG. 3. Experimental results showing the velocity in the rigid section as a
function of time. Left: Plot of u vs time for the tube with thickness h0

=0.051 cm, forcing frequency f =1.91 Hz, and forcing offset Lf =5.66 cm.
Right: Plot of u vs time for h0=0.051 cm, f =3.49 Hz, and Lf =3.27 cm. This
plot shows a resonance.
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mechanism is nearly sinusoidal, and the dotted line shows
the height at which it first comes into contact with the elastic
tube.

Four points of interest are labeled with capital letters on
the plot of u�t�. At point A, the beginning of the acceleration
of the flow corresponds to the time when the forcing mecha-
nism first comes in contact with the elastic tube. The flow
accelerates as the tube is compressed until point B, when the
tube is nearly closed. Then, the flow decelerates until point
C, when the tube has begun to open but is still mostly closed.
The flow accelerates again as the tube opens until point D,
when the forcing mechanism disengages from the elastic
tube. The flow then undergoes a damped oscillation until the
forcing mechanism comes down again.

Figure 5 shows ū as a function of the forcing frequency
for different forcing locations and different elastic tube ri-
gidities. The plot on the left shows the full range of frequen-
cies we test. The plot on the right zooms in on the low
frequencies. Higher frequencies tend to result in greater ve-
locities and the shapes of the velocity curves are convex.
Above a frequency of about 1 Hz, ū is always positive, so

that the average flow goes in the direction observed by Lie-
bau. For low frequencies, however, the average velocity
tends to be in the opposite direction.

Using the less rigid elastic tube, we see resonances at
3.5 Hz for all choices of the forcing offset. The resonances
decrease the magnitude of the average velocity, sometimes
dramatically. We do not observe that resonances cause the
average velocity to ever become negative. It may be that a
sort of resonance accounts for the drop in velocity when the
frequency increases from 5 to 6 Hz, but visual evidence is
inconclusive.

We observe resonances when using the more rigid tube
as well. These occur at approximately 2.5 Hz. We do not
observe a drop in velocity between 5 and 6 Hz. Other than
differences in the resonances, using the more rigid elastic
tube has little affect on the average velocity, decreasing the
magnitude slightly at low frequencies.

Forcing closer to the center of the elastic tube, which
corresponds to decreasing Lf, decreases the magnitude of the
average velocity substantially at low frequencies and some-
what at high frequencies. Figure 6 shows ū as a function of
Lf for the more rigid elastic tube and for fixed frequencies.
At high frequencies, the velocity increases as Lf increases. At
lower frequencies, the behavior of the velocity is not mono-
tonic. At very low frequencies, the average velocity actually
changes direction as the forcing position varies. The velocity
is positive for small Lf and becomes negative for large Lf. In
the plot on the right, one can see that the 2.48 Hz curve lies
mostly below the 1.93 Hz curve, an effect of resonance.

We check for hysteresis in the valveless pump by raising
the frequency very high, then dropping it and waiting until a
periodic steady state is reached. These experiments show no
evidence of hysteresis. We also check to see if our setup is
symmetric by switching the forcing to the opposite side of
the tube. The resulting average velocities are very nearly the
opposite of the original ones, as expected. We confirm Lie-
bau’s observation that forcing in the center of the elastic tube
produces no net flow. We check the stability of this result by
perturbing the initial flow and then forcing in the center.
Even at the highest frequencies, we find that the pump
quickly settles to a state of zero net flow.

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

3

Time (s)

V
el

oc
ity

(c
m

/s
)

A

B

C

D

FIG. 4. Solid line: Plot of experimentally measured u vs time for h0

=0.051 cm, f =1.91 Hz, and Lf =5.66 cm. Dashed line: Scaled, shifted
height of the forcing mechanism. Dotted line: Height at which the forcing
mechanism contacts the elastic tube. At point A, the forcing mechanism
contacts the elastic tube and acceleration begins. At point B, the elastic tube
is nearly closed by the forcing mechanism and the flow decelerates rapidly.
At point C, the elastic tube opens and the flow accelerates again. At point D,
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cillation begins.
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FIG. 5. Experimental results showing the average velocity in the rigid sec-
tion as a function of forcing frequency. Left: Plot of ū vs forcing frequency
comparing results for different rigidities and forcing offsets. Right: Zoom-in
of the lower frequency portion of the plot on the left.
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IV. A SIMPLE MODEL

We present a model of the valveless pump described
above. We intend to make our model as simple as possible
while still capturing the qualitative features of the experi-
ment. Remarkably, our model is in reasonable quantitative
agreement with the experiment as well. The simplicity of our
model makes it accessible to analysis, and, by taking advan-
tage of small parameters, we are able to derive an expression
for the steady-state average flux in the pump. Analysis of the
model also leads to a physical explanation of the mechanism
that creates valveless pumping.

The model has four components: The rigid tube, the
“pumping region” of the elastic tube, and the regions of the
elastic tube to the left and right of the pumping region, re-
ferred to respectively, as regions 1 and 2.

The state of the rigid tube is described by its flux Qr.
That of the pumping region is described by its volume Vp, its
flux from region 1, Q1, and its flux to region 2, Q2. Our
model treats the elastic regions as reservoirs that store fluid
and that are at uniform pressure. We ignore wave propaga-
tion, and we do not keep track of the fluid velocity in these
regions. The state of region 1 is described solely by its vol-
ume V1 and pressure p1; that of region 2 is described by its
volume V2 and pressure p2. See Fig. 7 for a diagram showing
the configuration of the four components. We now derive the
equations of the model.

Mass conservation implies

V̇1 = Qr − Q1, V̇2 = Q2 − Qr,

�1�
V̇p = Q1 − Q2.

The dot signifies a time derivative. We supply the forcing to
the system externally, so Vp is taken to be a given function of
time.

To derive equations for the fluxes, we use the following
equations for one-dimensional, incompressible flow in a
long, thin tube:

At + �Au�x = 0, �2�

ut + uux +
px

�
=

�

�A
. �3�

The variable x specifies the direction around the tube. The
tube has cross-sectional area A�x , t�, average �over a cross

section� velocity u�x , t�, and average pressure p�x , t�. The
fluid density is �. The boundary stress is ��x , t�.

These equations represent conservation of volume and
momentum, respectively. They may be derived as an
asymptotic limit of the full three-dimensional Navier–Stokes
equations assuming that the flow is nearly unidirectional and
uniform across the cross section of the tube, that A is a
slowly varying function of x, and also that the radius of the
tube is small in comparison with its length and its radius of
curvature. A derivation is given by Ottesen.11

These equations may be used to model elastic tubes by
specifying a relationship between p and A. We, however,
treat the rigid tube and the pumping region as having speci-
fied cross-sectional areas A�x , t�. We must select a model for
�. To avoid introducing additional complication, we crudely
approximate � by its value for a parabolic flow profile which
is −8��u, where � is the fluid viscosity. This approximation
is crude because the Womersley number18 in our experi-
ments, given by �2fAr� /�, is of order of 30, so we expect
the instantaneous flow profiles to differ significantly from
parabolic profiles. We feel, however, that this approximation
for � works sufficiently well for our simple model. A more
realistic description, particularly in the pumping region
which undergoes rapid, dramatic changes of shape, would
likely involve introducing additional dynamic variables or
dimensions. Even some one-dimensional models of valveless
pumping use a similar prescription as ours11,13 or use an in-
viscid fluid.10,14

Equation �3� is a conservation law for the velocity in the
tube, where the velocity flux is u2 /2+ p /�. In the case of no
boundary stress, the integral of the velocity in the tube is
conserved. If the stress acts as a drag, the average velocity
will tend to decay. This represents a potential problem for
one-dimensional models that use these equations everywhere
if boundary conditions are not handled carefully. We shall
make use of this conservation of velocity to analyze the
model.

We use the tube equations to derive a dynamic equation
for the flux in the rigid tube. Here, the assumptions under
which the tube equations are valid are justified by our ex-
perimental observations. We assume that the pressures felt at
the endpoints of the rigid tube are the pressures of regions 1
and 2. The rigid tube has length Lr and uniform cross-
sectional area Ar. Because Ar is a constant, Eq. �2� implies
that the velocity is constant in x and equal to Qr /Ar. Equa-
tion �3� can then be integrated over the length of the tube to
find an equation for Qr,

Q̇r = Ar
p2 − p1

�Lr
−

8��

Ar
Qr. �4�

The constant � is the kinematic viscosity. The fluid in the
rigid tube is accelerated by pressure differences and is simul-
taneously decelerated by viscous drag.

We also use the tube equations to derive an equation for
the fluxes in the pumping region. The assumptions used in
deriving the tube equations are probably far from valid in the
pumping region, where the flow is not likely to be unidirec-
tional and perhaps will be turbulent. Nevertheless, the equa-

FIG. 7. Diagram showing the components and variables in our model.
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tion we derive seems to work reasonably well. A more de-
tailed characterization of the pumping region and the
boundary conditions could improve this model but may be
difficult to achieve without introducing additional complica-
tions.

We treat the pumping region as if it moves in a specified
manner, so that its cross-sectional area Ap�x , t� is explicitly
given. It is convenient to let x=0 be the center of the pump-
ing region. We assume that Ap is a symmetric function of x,
so that the shape of the pumping region does not have a
directional bias. We use the tube equations to find an equa-
tion for Q1 and Q2. Integrating Eq. �2� in the pumping re-
gion, we obtain

u =
Qp�t�

Ap
−

1

Ap
�

0

x

�tAp�x�,t�dx�, �5�

where Qp�t� is the integration constant. Matching fluxes at
the endpoints of the pumping region,

Q1 = Qp + �
−Lp/2

0

�tApdx� = Qp + V̇p/2,

Q2 = Qp − �
0

Lp/2

�tApdx� = Qp − V̇p/2,

where Lp is the length of the pumping region. We recognize
Qp as the average flux through the pumping region,

Qp =
Q1 + Q2

2
. �6�

We derive an equation for the dynamics of Qp by inte-
grating Eq. �3� over the pumping region and inserting the
expression for u in Eq. �5�. See the Appendix for details of
the derivation. The resulting equation is

Q̇p = 2��t�
V̇p

Vp
Qp +

Vp

��t��Lp
2 �p1 − p2� − ��t�

8��Lp

Vp
Qp,

�7�

where �, �, and � are dimensionless geometric factors that
depend only on the “shape” of the pumping region. They are

��t� = �Ap��Ap
−1� ,

��t� = ��Ap
−2��Ap

−1�−2, �8�

��t� =
�Ap�

2�Ap
−1���tAp�

	− ��tAp
−1� +

��tAp�
Ap�Lp/2,t�2
 ,

where the brackets denote an average over x in the pumping
region.

By the Schwarz inequality, �	1, with equality when Ap

is a constant function of x. This is the case when the pump-
ing region is a cylinder. Then, �=1 and �=1 also. The de-
gree to which �, �, and � differ from 1, in a way, indicates
the degree to which the pumping region is not cylindrical. By
the convexity of x2, �	�, with equality, again, when the
pumping region is cylindrical. If �tAp is of one sign, then �

0. When Ap approaches zero somewhere in the pumping

region, as it does in our experiment, �, �, and � may di-
verge. We discuss the consequences of this divergence later
in this paper.

In light of Eq. �6�, Eq. �7� relates the variables in our
model. The average flux Qp is accelerated by pressure differ-
ences across the tube and is simultaneously retarded by drag.

The second term, 2��V̇p /Vp�Qp, is unusual. It has two pieces,
corresponding to the two terms in Eq. �8� for �. The first
comes from the increase or decrease of flux in the pumping
region that results from an increase or decrease in its cross-
sectional area at fixed fluid velocity at the endpoints. The
second comes from the nonlinear term in the momentum
equation. To see how, notice that in the simplifying case
when the pumping region is a cylinder, the nonlinear term

�Apuux�=−��tAp��u�=−�V̇p /Vp�Qp. The effect of these two
pieces is that Qp will tend to accelerate when the tube is
opening and that Qp will tend to decelerate when the tube is
closing. As we shall see, leaving out the second piece that
comes from the nonlinear term in the momentum equation
results in the pump having an average flow of precisely zero.

We specify an Ap in the pumping region that mimics that
imposed experimentally. In the experiment, the elastic tube,
at rest, is a cylinder of radius r0. The forcing mechanism is
also a cylinder of radius Lp /2= :r1
r0 oriented orthogonally
to the elastic tube. Let z�t� be the shortest distance between
the centerlines of the two cylinders. Then, we let Ap�x , t� be
the cross-sectional area of the section of the elastic tube that
does not intersect the forcing mechanism. The result is

Ap�x,t� = �r0
2��/2 + sin−1 h/r0� + h�r0

2 − h2, − r0 � h � r0

�r0
2, r0 � h ,

�
�9�

where h�x , t�=z−�r1
2−x2. A short derivation of this result is

shown in Fig. 8 and explained in its caption.
We let z vary sinusoidally between its minimum value

r1−r0, which is when the forcing mechanism closes the
pump completely, and its experimentally measured maxi-
mum value, which is r1+2.7r0.

Finally, in a thin walled cylindrical elastic tube of a
Hookean elastic material, the circumferential stress in the
elastic material is equal to the pressure in the fluid multiplied
by the tube radius and divided by the wall thickness. Accord-
ing to Hooke’s law, this circumferential stress is proportional

FIG. 8. Left: The elastic tube, represented by the horizontal lines, is im-
pacted by the forcing mechanism, represented by the circle. At position x, h
is the vertical distance from the center of the elastic tube to the forcing
mechanism. Right: Cross section of the elastic tube at position x. The un-
shaded area is that which intersects the forcing mechanism, and we let
Ap�x , t� be equal to the total shaded area. The first term in Eq. �9� corre-
sponds to the area of the lightly shaded region, and the second term corre-
sponds to the area of the darkly shaded region.
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to the change of diameter of the tube. Linearizing about the
rest area A0, we get that the pressure p=k�A−A0� with k
=Eh0 / �2r0A0�. In the present case, we add a viscoelastic cor-
rection to account for losses in the elastic material and we
use the relation

p = k�A − A0� + nAt

with n=Yh0 / �2r0A0�, where Y is an intrinsic property of the
viscoelastic material and is measured experimentally in a
separate miniexperiment. Thus, we obtain equations for the
two elastic regions,

p1 = k	V1

L1
− A0
 + n

V̇1

L1
, �10�

p2 = k	V2

L2
− A0
 + n

V̇2

L2
. �11�

Many have focused on one-dimensional wave phenom-
ena in these regions to explain valveless pumping. By treat-
ing the elastic regions as reservoirs, we do not capture the
effects of individual waves and instead assume a uniform
pressure. We claim that this approximation is justified in the
regime tested in our experiment. The linearized wave speed

in the elastic tube is �kA0 /�, which is more than 5 m /s even
for the less rigid elastic tube. Thus, the time required for a
wave to travel the length of the elastic tube, which is only
17.4 cm, is much less than the pumping periods we test in
the experiment. Our simple treatment of the elastic regions is
an adiabatic approximation which averages over the contri-
butions of the individual fast-moving waves. This approxi-
mation will break down if the pumping frequency is much
higher than those we test, if the elastic tube is much longer,
or if the elastic tube is much more flexible. The frequency
required for the pumping period to match the time for a wave
to travel the length of the elastic tube is approximately
30 Hz, much higher than we are able to test in the experi-
ment.

A problem with our model is that the time scale for the
oscillation of fluid between regions 1 and 2 via the pumping
region is on the order of the wave time scale. As a result of
ignoring delay times associated with finite wave speed, the
frequency of this oscillation is too high. This effect causes
the oscillation to be incorrectly overdamped. We believe that
this problem also accounts for the failure of our model to
reproduce the resonances. We do not, at present, know a way
to correct this problem in the context of our model. A one-
dimensional or higher model including wave dynamics is
likely needed to be fully accurate. Nevertheless, our model
reproduces most of the phenomena seen in the experiment.

V. MODEL RESULTS

We now have a complete set of equations, Eqs. �1�, �4�,
�6�, �7�, �10�, and �11�, and that Vp is given. We can combine
them into a system of three differential equations for the
variables Qr, Qp, and

Vd = 1
2 �V1 − L1A0 − V2 + L2A0� .

Physically, Vd is the difference in the excess volumes of elas-
tic regions 1 and 2. The sum of these excess volumes is
known because of mass conservation.

The evolution of this quantity is

V̇d = Qr − Qp. �12�

Using conservation of mass,

V1 − L1A0 = 1
2 �Vp,0 − Vp� + Vd,

V2 − L2A0 = 1
2 �Vp,0 − Vp� − Vd,

where Vp,0 is the rest volume of the pumping region. Using
Eqs. �10� and �11�,

p1 − p2 = 	 1

L1
+

1

L2

�kVd + nV̇d�

+
1

2
	 1

L1
−

1

L2

�k�Vp,0 − Vp� − nV̇p� . �13�

Equations �4�, �7�, and �12�, along with relation �13�,
make up our system of differential equations. These are lin-
ear and inhomogeneous with nonconstant, periodic coeffi-
cients.

We integrate the expression for Ap, given in Eq. �9�,
using the trapezoidal rule to calculate Vp�t�. We analytically
differentiate Eq. �9� in time and integrate using the trapezoi-

dal rule to find V̇p. The factors �, �, and � are calculated
similarly. When z approaches its minimum value, r1−r0, �,
�, and � diverge, creating problems for our ordinary differ-
ential equation integrator. We actually let z vary sinusoidally
between its maximum value and r1−r0+ where 
0. We
found that the results converge as  approaches zero, and, in
practice, we use =0.0005 cm. To improve efficiency, we

precalculate and tabulate values of Vp, V̇p, �, �, and � for
many values of t in a single pumping period. Their values at
arbitrary t are found using periodicity and linear interpola-
tion.

Starting from rest, we integrate the system of differential
equations using MATLAB’s ODE45. For the values of the
physical constants used, see Table I. We integrate until the
system reaches a periodic steady state; then we calculate the

average flux Q̄ by taking an average of Qr over an integral
number of pumping periods.

Figure 9 shows fluxes in the rigid tube, Qr, as functions
of time for various frequencies, forcing offsets, and elastic
tube rigidities. Results from the model are shown in black.
Those from the experiment are shown in gray. The phases of
the two results have been synchronized, so that the forcing
mechanism is at its minimum height at coinciding times for
both model and experiment. We emphasize that no param-
eters of our model were chosen to fit the experimental data.

The upper left plot shows results obtained using the
more rigid elastic tube, f =0.81 Hz, and Lf =5.66 cm. The
model and experiment agree very well. As in the experiment,
Qr accelerates when the pumping region starts to close. As
the forcing mechanism reaches its minimum point, Qr decel-
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erates rapidly, then accelerates as the pumping region re-
opens. Qr is roughly constant when the forcing mechanism is
not in contact with the pumping region, decreasing slightly
in magnitude because of viscous drag. While the two fluxes
are in phase during the deceleration as the tube is closed, the
experiment’s periods of acceleration and damped oscillation
slightly precede the corresponding periods of acceleration
and constant velocity of the model. At low frequencies, the
motion of the forcing mechanism fails to be sinusoidal be-
cause of the strain caused by compressing the elastic tube. As
a result, the downstroke takes longer and the upstroke
shorter, which accounts for the phase discrepancies. The
most glaring difference between the model and experimental
results is the lack of damped oscillations in the model. Our
approximation of the behavior of the elastic regions results in
these oscillations being overdamped in the model, as de-
scribed above in Sec. IV.

The upper right plot shows results obtained using the
less rigid elastic tube, f =1.91 Hz, and Lf =5.66 cm. Again,
the model and experiment are in good qualitative and quan-
titative agreement. At this larger frequency, there are only
small differences in the phase over the entire pumping pe-
riod. Again, the model does not capture the damped oscilla-
tions in Qr. The lower left plot is for the less rigid elastic
tube, f =3.49 Hz, and Lf =3.27 cm. The experiment shows a
resonance at this frequency �discussed in Sec. III� that is
characterized by a decreased mean flow and a phase locking
of the forcing and damped oscillation. This resonance is not
captured by the model, which predicts fluxes much greater
than those observed in the experiment. The lower right plot
shows results when we increase the frequency slightly to
4.09 Hz leaving other parameters unchanged. The model and
experimental results are once again in reasonably good
agreement. The damped oscillation in the experiment is now
large compared to the features predicted by the model, but
the latter can still be identified. At even larger frequencies,

which we do not picture, the damped oscillation becomes the
dominant feature in the experimental data.

We now investigate whether the average flux obtained
by the model agrees with the experiment as we vary the
elastic tube rigidity, the forcing offset, and the forcing fre-

quency. Figure 10 shows Q̄ as a function of frequency for the
less rigid elastic tube. In the plot on the left, Lf =5.66. In the
plot on the right, Lf =3.27. The solid lines show the model
results, and the dashed lines show the experimental results.
In both plots, the model is in good qualitative and quantita-
tive agreement with the experiment. In both, increasing the
frequency increases the average flux, and both curves are
convex. At small frequencies, both model and experiment
have negative average fluxes. The model does not capture the
dip at the resonance frequency of 3.5 Hz. It also does not
capture the irregularity observed at large frequencies that
may be the result of resonances.

Figure 11 shows the average flux as a function of forcing
offset for the more rigid elastic tube. In the plot in the upper
left, f =0.81 Hz; in the upper right, f =1.38 Hz; in the lower
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FIG. 9. Plots of Qr vs time. The black lines show model results. The gray
lines show the experimental results. Upper left: h0=0.081 cm, Lf =5.66 cm,
and f =0.81 Hz. Upper right: h0=0.051 cm, Lf =5.66 cm, and f =1.91 Hz.
Lower left: h0=0.051 cm, Lf =3.27 cm, and f =3.49 Hz. Lower right: h0

=0.051 cm, Lf =3.27 cm, and f =4.09 Hz.
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FIG. 10. Plots of Q̄ vs forcing frequency for the less rigid elastic tube. The
solid lines show the model results. The dashed lines show the experimental
results. Left: Lf =5.66 cm. Right: Lf =3.27 cm.
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FIG. 11. Plots of Q̄ vs forcing offset for the more rigid elastic tube. The
solid lines show the model results. The dashed lines show the experimental
results. Upper left: f =0.81 Hz. Upper right: f =1.38 Hz. Lower left: f
=2.48 Hz �the resonance frequency�. Lower right: f =3.55 Hz.
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left, f =2.48 Hz; and in the lower right, f =3.55 Hz. For all
frequencies, the model captures the qualitative behavior of
the average flux as a function of Lf. At 0.81 Hz, the average
flux in the model, like the experiment, is positive for small Lf

and negative for larger Lf. At 1.38 Hz, the model’s average
flux increases, levels off, and then decreases as Lf increases.
At the resonance frequency of 2.48 Hz, the model’s average
flux is well above that of the experiment, indicating that the
model does not capture the resonance effects. Finally, at
3.55 Hz, the agreement is again very good.

VI. ANALYSIS OF THE MODEL

Our model produces results that, under a broad range of
conditions, agree well with the experimental data. We now
attempt to analyze the model so as to identify the physical
mechanisms that generate the pumping and to produce a
closed-form expression for the average flux. We make use of
the fact that some nondimensional parameters in the model
are small in the regime tested in the experiment.

We use nondimensional variables to identify the small
parameters. The independent variables in the model equa-
tions are fluxes and volumes, so to nondimensionalize, we
need to identify a volume scale and a time scale. We scale
time so that the pumping period is 1. We scale volume so that
the volume of fluid ejected from the pumping region is 1. Let
�V=max�Vp,0−Vp�. Then, the dimensionless variables are
defined as

t =
1

f
t̃, Vd = �VṼd,

Qr = f�VQ̃r, Qp = f�VQ̃p.

We also nondimensionalize Vp by defining � to be Vp /Vp,0,
so that 1−�V /Vp,0���t��1.

Rewriting the equations of the model in dimensionless
variables and dropping the tildes produces

V̇d = Qr − Qp,

Q̇r = − ��Vd + �V̇d − ��1 − � − ��t�� − �rQr, �14�

Q̇p = 2���t/��Qp + ���/����Vd + �V̇d − ��1 − � − ��t��

− ��/���pQp.

The dimensionless constants are defined by

� =
Ark

�Lrf
2	 1

L1
+

1

L2

, � =

Vp,0

�V

Lf

L1 + L2
,

� =
nf

k
, � =

ArLp
2

Vp,0Lr
,

�r =
8��

Arf
, �p =

8��Lp

Vp,0f
.

See Table II for representative values of these constants for
our experiments.

The constant � is the dimensionless rigidity of the elastic
regions. The constant � is the dimensionless asymmetry of
the forcing divided by the fraction of the pumping region’s
volume that is ejected. The constant � is the ratio of the
response time of the elastic regions to the pumping period.
For given pressures in the elastic regions, � is the ratio of the
acceleration of the fluid in the rigid tube to acceleration of
the fluid in the pumping region. When, as in our case, the
rest cross-sectional areas of the two regions are the same, � is
the length of the pumping region divided by the length of the
rigid tube. Finally, �r and �p are ratios of the pumping pe-
riod to the viscous decay times in the rigid tube and pumping
region, respectively.

To perform asymptotics, we make use of the fact that �
and �r=�p are small parameters. That � is small is of no
consequence. In the limit as � approaches zero with other
constants fixed, pressure differences in the elastic region ac-
celerate fluid in the pumping region much faster than in the
rigid tube, so the fluid in the rigid tube remains static and
there is no pumping. In the limit as �r=�p approach zero
with other constants fixed, no viscous force damps the flow,
which will accelerate to larger and larger speeds. We identify
the distinguished limit of �, �r, and �p approaching zero at a
fixed ratio. The small deceleration due to viscosity balances
the small acceleration in the rigid tube, and the solution con-
verges to a finite answer in the limit.

We thus scale �r=��r
0 and �p=��p

0. We expand our so-
lution as a power series in � of the form Vd=Vd

0+�Vd
1+¯ and

likewise for Qr and Qp. We insert these expansions into the
nondimensionalized equations �Eq. �14�� and equate powers
of �. We know that the model, from rest, approaches a peri-
odic steady state, so we look for a solution that is periodic in
time. We assume for now that �, �, and � are of order 1. We
later comment on what happens when these quantities be-
come large, as they do when using the expression for Ap

specified in Eq. �9�. We also assume that Vp does not become
very small so that � is bounded away from zero.

At negative first order,

Vd
0 + �V̇d

0 − ��1 − � − ��t� = 0,

which allows us to solve for Vd
0,

Vd
0 = ��1 − �� + C0e−t/�.

Periodicity requires C0=0. At leading order, the fluid distrib-
utes itself so that the pressure in regions 1 and 2 is equal.

At zeroth order, the expression for Q̇r
0 becomes

TABLE II. Values of dimensionless constants for h0=0.051 cm, Lf

=5.66 cm, and f =2.5 Hz.

Constant Value

� 202.0

� 0.412

� 0.0159

� 0.0179

�r 0.0353

�p 0.0353
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Q̇r
0 = 0.

So, Qr
0 is a constant that we call Q̄0. This constant will be

determined by insisting that Qr
1 be periodic. Q̄0 is the ap-

proximation of the average flux in the rigid tube that we

seek. The expression for V̇d
0 gives

Qp
0 = Qr

0 − V̇d
0 = Q̄0 + ��t.

Now, we find Vd
1,

��

�
�Vd

1 + �V̇d
1� = Q̇p

0 − 2�
�t

�
Qp

0. �15�

Finally, we arrive at an expression for Q̇r
1,

Q̇r
1 = − ��Vd

1 + �V̇d
1� − �r

0Q̄0

= −
�

�
	Q̇p

0 − 2�
�t

�
Qp

0
 − �r
0Q̄0

=
�

�
	− ��tt + 2�

�t

�
�Q̄0 + ��t�
 − �r

0Q̄0. �16�

We integrate in time over a pumping period and use the
periodicity of Qr

1. We assume that the pumping motion is
symmetric in time, as it is approximately in our experiments,
so that the ���t /�2 term integrates to zero. Integrating the
term involving �tt once by parts,

Q̄0 =
�

�r
0�

0

1

�2� − 1��
�t

2

�2 +
�t�t

�
dt . �17�

Redimensionalizing Q̄0, we have an approximation to
the average flux in the rigid tube,

Q̄0 =
f2Ar

2LfLp
2

8���L1 + L2�Lr
Cg, �18�

where Cg is a nondimensional constant which depends only
on the shape of the pumping region over the forcing period,

Cg =
1

f
�

0

1/f

�2� − 1��
V̇p

2

Vp
2 + �t

V̇p

Vp
dt . �19�

From Eq. �18�, we see how the average flux in the pump
depends on various parameters. For fixed forcing shape, the
average flux is always in the same direction, increasing as
the square of the frequency, and increasing linearly as the
forcing position moves away from the center of the elastic
tube. The average flux is quadratic in the cross-sectional area
of the rigid tube and in the length of the pumping region. It
is inversely proportional to the viscosity of the fluid and to
the length of the rigid tube.

There is no dependence at all on either E or Y, meaning
that there is no dependence on the elastic properties of the
rigid tube. We expect this result to be valid only for elastic
tubes for which our assumptions in deriving the model are
valid. Very soft elastic tubes may have wave speeds small
enough that wave phenomena ignored by this model become
important. Also, while E and Y may not affect the steady-

state average flux, they will affect the time to reach steady
state, the fluctuations in time about the average flux, and the
mechanical efficiency of the pump.

The dependence of the average flux on the shape of the
forcing, including the dependence on �V, is encapsulated in
Cg, which depends on the forcing shape in a complicated
way. When the pumping region is a cylinder at all times with
a sinusoidally varying radius, we can calculate Cg explicitly.
In this case, �, �, and � are identically 1. Then,

Cg = 4�2	 1 − �V/2Vp,0

�1 − �V/Vp,0

− 1
 .

For small �V compared to Vp,0, Cg�2�V2 /2Vp,0
2 , so the

average flux increases as the square of �V. Cg diverges as
�V increases to Vp,0. However, in this case, our asymptotics
break down because � is not bounded away from zero. Using

this expression for Cg, Eq. �18� agrees with Q̄ obtained by
integrating the full model �with a cylindrical pumping re-
gion� with approximately 10% error over a wide range of
parameters.

When we use Ap specified in Eq. �9�, �, �, and � diverge
when the tube comes to a full close. When these factors are
large, the asymptotic analysis above is no longer valid. In a
very small interval of time, close to when the tube comes to
a full close, the viscous term in Eq. �7� dominates because �
is very large, even compared to � /�. We have not yet fully
developed an asymptotics that deals with this case. The scal-

ing of Q̄0 should be approximately the same with the other
parameters, but we cannot explicitly calculate Cg. Instead, Cg

should be thought of as some positive constant of order 1.
This claim is verified in Fig. 12, which shows the aver-

age fluxes obtained with the full model �solid lines� and
those of the asymptotic formula given in Eq. �18� �dashed
lines�. The plot on the left is for Lf =5.66 cm. To generate the
flux given by the asymptotic formula in this plot, we have
chosen Cg=2.1, which results in a very good fit. The plot on
the right is for Lf =3.27 cm. For this plot, we have chosen
Cg=3.2. While the flux has approximately the predicted be-
havior as a function of frequency, we need to adjust Cg

slightly when we change Lf because of the breakdown in our

0 2 4 6

0

10

20

30

40

50

60

Frequency (Hz)

Fl
ux

(c
m

3 /s
)

0 2 4 6

0

10

20

30

40

50

Frequency (Hz)

Fl
ux

(c
m

3 /s
)

FIG. 12. Comparison of the average flux generated by the full model
�shown by the solid lines� with that predicted by the asymptotic formula in
Eq. �18� �shown by the dashed lines�. Both plots are for the less rigid elastic
tube. Left: Lf =5.66 cm, and we have chosen Cg=2.1 in the asymptotic
formula to fit the results of the model. Right: Lf =3.22 cm, and we have
chosen Cg=3.2 to fit the results of the model.
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asymptotics when the tube comes to a full close. Note that
our asymptotic formula always predicts an average flux in
the positive direction, while the full model captures the di-
rection reversals at low frequencies.

The expression for the average flux is perhaps more in-
tuitively understood if the terms are grouped in the form

Q̄0 = �ArLpf�	 Arf

8��

	Lp

Lr

	 Lf

L1 + L2

Cg. �20�

The first term in parentheses is a flux, namely, the flux re-
quired to eject all the fluid from the pumping region in one
pumping period. The second term in parentheses is a fre-
quency Reynolds number, the third term is the fraction of the
tube that is squeezed in pumping, and the fourth term is the
dimensionless asymmetry of the pumping.

Using this expression, we can now comment on the ef-
ficiency of valveless pumping. During each period of the
forcing, a volume on the order of ArLp must be ejected from
the pumping region. A traditional pump that ejected this vol-
ume in only the desired direction over the same period would
have an average flux of ArLpf , the first term in Eq. �20�. A
measure of efficiency of valveless pumping relative to tradi-
tional pumping is the ratio of the flux produced by the former
to that produced by the latter. This ratio is given by the final
four terms in Eq. �20�. Assuming that Cg and the forcing
asymmetry are of order 1, one needs to be at a Reynolds
number larger than 1 over the fraction of the tube squeezed
for valveless pumping to be efficient. In the case of our ex-
periment, this estimate implies a Reynolds number of order
of 50–100.

Figure 13 validates this estimate. The figure shows the
experimentally measured flux as a function of Reynolds
number �solid line� for Lf =5.66 cm and the less rigid elastic
tube against the flux of a traditional pump of the same fre-
quency that displaces a volume ArLp in every period �dashed
line�. At low Reynolds numbers, the flux of a traditional
pump is well above that of a valveless pump, but at Reynolds
numbers greater than about 60, the valveless pump surpasses
the traditional pump. It seems that it is possible for a valve-
less pump to be quite efficient but only at high Reynolds
numbers. Valveless pumping does not seem to be an efficient

mechanism for fetal blood circulation or for micropumps. We
emphasize that the efficiency we consider is the total flux per
volume displaced, not traditional mechanical efficiency.

VII. PHYSICAL EXPLANATION

The physical mechanism that creates valveless pumping
has long been a mystery. Why is it that asymmetric forcing
creates a net flow, and why is it that the flow goes in the
observed direction? In this section, we attempt to answer
these questions using our model. This section will show that
there is a quantity that we call J which obeys a simple evo-
lution equation and which is approximately proportional to
the flux in the rigid tube. Recall that the momentum equation
for flow in a long thin tube �Eq. �3�� is a conservation law for
velocity. We let J be the integral of the fluid velocity over the
rigid section and pumping region. We will derive an evolu-
tion equation for J showing that it can increase or decrease
only in response to nonlinear advective fluxes of velocity
into and out of the pumping region. The relative magnitudes
of these fluxes determine the sign of J, and we then show
that J, and thus Qr, will be driven in the direction observed
by Liebau.

Using Eq. �5� for the velocity in the pumping region, we
find that the integral of the fluid velocity J=LrQr /Ar

+LpQp�Ap
−1�. We first claim that Qr is nearly proportional to J

with a positive constant of proportionality. The reason is that
Lp is much less than Lr, so Qr is ArJ /Lr plus a small correc-
tion. Also, the time average of Qr must equal that of Qp for a
periodic solution, so the time averages of J and Qr must, to
an even greater degree, be approximately proportional.
Therefore, if we know that J grows in a particular direction,
Qr must grow in the same direction.

Differentiating the equation for J and using Eqs. �4� and
�7�, we find a simple equation for the evolution of the inte-
gral of the velocity,

J̇ =
Q1

2 − Q2
2

2Ap�Lp/2,t�2 − 8��	 Lr

Ar
2Qr + Lp�Ap

−2�Qp
 . �21�

Ignoring viscous drag, velocity is conserved in the
pumping region and rigid section, so J can only change be-
cause of velocity fluxes at the endpoints. The pressure part of
the velocity flux into region 1 from the rigid section and that
out of region 1 to the pumping region are equal and opposite,
so they have no net effect on J. The same is true for region 2,
and all the pressure terms cancel. A pressure difference in
regions 1 and 2 does not affect the integral of the velocity.

The velocity into and out of the rigid section must be
equal, so the advective flux of velocity into the rigid section
cancels the advective flux out. The same is not true of the
pumping region, since its volume can change. The advective
velocity flux into the pumping region is �Q1 /Ap�Lp /2, t��2 /2.
The flux out is �Q2 /Ap�Lp /2, t��2 /2. The difference of these
creates or destroys velocity, increasing or decreasing J.
When the volume of the pumping region does not change,
they cancel and J is constant.

If the nonlinear term in the momentum equation �Eq.
�3�� is omitted, there will be no advective velocity flux and J
will be conserved absent viscosity. Numerical experiments
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FIG. 13. The solid line shows Q̄ vs Reynolds number for the less rigid
elastic tube and Lf =5.66 cm. The dashed line shows the flux of a traditional
pump operating at the same frequency which displaces a volume ArLp in
every period.
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confirm that there is no net flow in this case. This reinforces
our claim that this valveless pumping mechanism does not
work at small Reynolds numbers, when the nonlinear term is
negligible. We expect this result because symmetric move-
ments in a Stokes flow cannot produce locomotion or,
equivalently, pumping.19,20

We have shown that differences in the advective fluxes
of velocity into and out of the pumping region control the
growth of J, and thus Qr. This is the physical reason for flow
creation in the pump. We now show why Qr tends to grow in
the direction observed by Liebau. If Q1 tends to be of larger
magnitude than Q2, J will become increasingly positive. If
Q2 tends to be of larger magnitude than Q1, J will become
increasingly negative. The direction for the valveless pump
is selected by the fact that the magnitude of the flux to or
from the pumping region tends to be larger in the direction of
the more compliant reservoir, here meaning the longer of
regions 1 and 2. Because the pumping region tends to ex-
change fluid with the more compliant reservoir, the flow
tends to be toward the less compliant reservoir.

In the case when Lf 
0, region 1 is longer and thus more
compliant. During closing, more fluid is ejected into region
1, making Q1 more negative than Q2 is positive. During
opening, more fluid is sucked in from region 1, making Q1

more positive than Q2 is negative. Both of these effects in-
crease J. Thus, Qr becomes positive on average, which is the
direction of flow observed by Liebau and in our experiment.

The difference between Q1 and Q2 comes about because
of the different pressures created in regions 1 and 2. The
pressure differences modify the flow through the pumping
region. We saw in the asymptotics section that the details of
the pressures are irrelevant, a result confirmed by the experi-
mental observation that the thickness of the elastic tube
makes little difference �apart from resonances�. We now see
why. The magnitudes of the pressure differences do not enter
into Eq. �21�. What does matter is that these pressures affect
Q1 and Q2, so that the fluid distributes itself in a certain way,
namely, so that the pressures in the two regions are approxi-
mately equalized.

Also, details of the rigid section are unimportant, except
insofar as they affect the multiplier by which Qr can be
found from J. We expect that the valveless pump can be
connected to an arbitrary fluid circuit, even a thin capillary
tube, with similar results. A flow will be created in the direc-
tion of the less compliant region, and the strength of the flow,
in periodic steady state, will be inversely proportional to the
viscous resistance of the fluid circuit. An important require-
ment for this analysis to be valid is that the pumping region
always exchanges fluid preferentially with the more compli-
ant reservoir. If not, the results may be more complicated but
should be comprehensible by analyzing with which reservoir
the pumping region does preferentially exchange fluid.

We have so far ignored the viscous term in Eq. �21�.
When Ap is identically Ar, the viscous term is −8��J /Ar.
More generally, viscosity tends to decrease the magnitude of
J. A periodic steady state is achieved when this decay
matches the forcing described above.

Exceptions may occur when Ap departs significantly
from Ar. We think this effect accounts for the reversals of

direction that we see in the experiment and the model at low
frequencies, when the advective fluxes are weak. As the
pumping region comes to a full close, the system briefly
becomes a simple oscillator in which fluid moves between
regions 1 and 2 via the rigid tube. If the length of time during
which the pumping region is nearly closed is on the order of
the period of this oscillation �whose frequency is 20–35 Hz�,
direction reversals may occur. Since the pumping region is
nearly closed for only a fraction of the pumping cycle, we
see these direction reversals at pumping frequencies around
1 Hz.

In summary, we have used the conservation properties of
the tube equations to motivate the definition of a quantity, J,
that obeys a simple evolution equation. The equation indi-
cates that J will increase in the opposite direction with which
the pumping region prefers to exchange fluid during opening
and closing. The pumping region prefers to exchange fluid
with the more compliant reservoir, so J will be toward the
less compliant reservoir. Viscous drag creates a periodic
steady state. Knowing J, we know that Qr is approximately
proportional to and is in the same direction as J.

A final question is the source of the resonances we ob-
serve in the experiment. Evidence suggests that these are
related to the damped oscillations in Qr. First, the resonances
seem to happen when the durations of the accelerations that
occur when the pumping region is closed and opened match
a half-period of the damped oscillations, as shown in Fig. 3.
Second, the model captures all the features of the time series
of Qr except for the damped oscillations, and the model re-
sults agree well with those from the experiment except at
resonances. As a final test of this theory, we artificially create
damped oscillations in the model by decreasing Y by a factor
of 10. Results can be seen in Fig. 14. Compare with Fig. 10.
On one hand, we see that decreasing Y does not affect much
the average flux in the model. On the other hand, we see
irregularities in the flux as a function of frequency that look
very much like those caused by resonances in the experi-
ment. This is further proof that resonances are the result of
coupling of the damped oscillations with the behavior de-
scribed in the model. As mentioned before, we feel that the
failure of our model to exhibit damped oscillations is related
to the fact that the time scale of the oscillation of fluid be-
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FIG. 14. Plots of Q̄ vs forcing frequency for the less rigid elastic tube with
Y reduced from its experimentally measured value by a factor of 10. The
solid lines show the model results. The dashed lines show the experimental
results. Left: Lf =5.66 cm. Right: Lf =3.27 cm. Particularly in this second
plot, resonancelike effects can be seen in the model.
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tween regions 1 and 2 via the pumping region is on the order
of the wave time scale. It is not clear if this problem could be
corrected while maintaining the model’s simplicity and accu-
racy. A one-dimensional or higher model that fully incorpo-
rates wave dynamics in the elastic tube may be necessary.

VIII. CONCLUSION

We have constructed a valveless pump and have care-
fully measured the time series of velocities inside the loop
for various values of important parameters. We have con-
firmed the observation of Liebau that asymmetric forcing
creates a net flow around the pump. Except at low frequen-
cies, the flow is in the direction observed by Liebau. Gener-
ally, higher frequencies result in faster average velocities, but
we also observed resonances and flow reversals. We did not
observe flow reversals at high frequencies, which have been
reported by other authors in somewhat similar experiments9

and in numerical simulations.5 In our experiment, flow in the
direction observed by Liebau is robust.

We have also constructed a model that reproduces many
experimental results, both for the average flux in the pump
and also for the time series of the flux in the rigid part of the
pump. The model is derived constructively so that we know
the validity of the approximations involved, and all model
parameters are measured experimentally. The model does not
reproduce the damped oscillations seen the experiment,
which seem to be related to resonances. The model is valid in
the regime where the pumping period is much longer than
the time for a wave to travel the length of the elastic tube,
which is the regime tested by our experiment. The model
may break down if the forcing frequency is much greater or
if the elastic tube is much longer or much more flexible.

Our simple model can be solved using an asymptotic
approximation in a particular distinguished limit. This limit
corresponds to large Reynolds number and a large ratio of
the length of the rigid tube to the length of the pumping
region. An approximate expression for the average flux has
been derived, which reveals the dependence of the average
flux on the parameters of the experiment. We have found that
our valveless pump can be quite efficient at high Reynolds
number but is inefficient at low Reynolds number. Further
study is needed to determine if our results apply to the valve-
less micropump experiment of Rinderknecht et al.7 or if a
different pumping mechanism operates.

In our analysis, we have found that the key quantity to
consider is the integral of the velocity in the pump. Velocity
is approximately conserved throughout the tube ring, and the
integral of the velocity is not affected by pressure differences
that may develop. This integral may increase or decrease
because of nonlinear advection of velocity to or from the
regions to the left and right of the pumping region, where the
elastic tube is compressed. Pressure differences cause the
pumping region to exchange fluid preferentially with the
longer uncompressed portion of the elastic tube. This in-
creases the integral of the velocity in the direction of the
shorter portion, which must result in an average flow toward
the shorter portion, the observed direction.

One way to conceive of this result is that momentum is
lost as the fluid ejected from the pumping region into the
longer uncompressed region collides inelastically with the
fluid therein. Momentum is lost in the direction of the longer
uncompressed region, so the leftover momentum drives the
flow toward the shorter region. Of course, we have shown
that it is velocity, not momentum, that must be considered.

The details of the pressure differences created, as well as
the details of the rigid section, are irrelevant. We conjecture
that a similar valveless mechanism could be used as a pump
in an arbitrary fluid circuit and that the induced flow would
be toward the shorter portion of the elastic tube and have a
magnitude proportional to the viscous resistance of the fluid
circuit. �The direction could change if the squeezed region
does not preferentially exchange fluid with the longer portion
of the elastic tube, which may happen if the circuit is not
volume conserving.�

Our model shows that we can explain many of the fea-
tures of valveless pumping in the regime tested in our ex-
periment without modeling the detailed behavior of waves in
the elastic tube. This implies that valveless pumping is not
itself an effect of resonance. Resonances that modify the
behavior of the flow do occur, and wave phenomena cer-
tainly play a role in generating these resonances. The de-
tailed wave behavior will be important in the regime where
our model breaks down.

Improvements to the model could include a more realis-
tic characterization of the viscous drag in the rigid tube, a
better characterization of the pumping region and the bound-
ary conditions at the junction of the pumping region and
regions 1 and 2, and an addition of the effect of waves in the
elastic tube that create damped oscillations. We would like,
in future work, to improve the asymptotics to account for
what happens when the pumping region closes completely,
as it does in the experiment. We would also like to investi-
gate the mechanical efficiency of the pump using our model.
Experimentally, we would like to test valveless pumps in
different regimes to see if our model remains valid and, if
not, what additional mechanisms are at work. We would also
like to examine the resonances more thoroughly.

Nevertheless, we have identified an essential physical
mechanism responsible for valveless pumping. An under-
standing of this and other mechanisms can be used to deter-
mine the role of valveless pumping in biological and engi-
neering applications. The scaling relationship predicted by
our model between the average pumping flux and various
other parameters should have wide applicability. Our model
can be used to predict the exact fluxes of similar pumps with
different parameters, and can be used to designs pumps with
desired properties. Similar models may be successful in
modeling pumps with slightly different characteristics, for
instance, that used in the experiment by Hickerson et al. in
which flow reversals are seen at high frequencies.9
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APPENDIX: DERIVATION OF THE EQUATION FOR Qp

We integrate the momentum equation �3� from −Lp /2 to
Lp /2, the extent of the pumping region,

�
−Lp/2

Lp/2

utdx +
1

2
�u	Lp

2
,t
2

− u	− Lp

2
,t
2� +

p2 − p1

�

= − 8���
−Lp/2

Lp/2 u

Ap
dx .

Recall that the velocity u in the pumping region is given by
Eq. �5�,

u =
Qp�t�

Ap
−

1

Ap
�

0

x

�tAp�x�,t�dx�,

and that Ap is assumed to be an even function of x for all t.
Thus, the second term in this equation is odd for all t. We
insert this expression for u into the integrated momentum
equation to derive an equation for Qp.

We first introduce a bracket notation to represent aver-
aging over the pumping region. For a function f�x�, we de-
fine

�f� =
1

Lp
�

−Lp/2

Lp/2

f�x�dx .

Using the evenness of Ap, we find simplified expressions for
the terms in the integrated momentum equation,

�
−Lp/2

Lp/2

utdx = Lp�Qp�Ap
−1� + Qp��tAp

−1�� ,

u	Lp

2
,t
2

− u	− Lp

2
,t
2

= − 2LpQpAp�Lp/2�−2��tAp� ,

�
−Lp/2

Lp/2 u

Ap
dx = LpQp�Ap

−2� .

Inserting these expressions into the momentum equation and

dividing by Lp�Ap
−1�, so that we get an equation for Q̇p, we

find

Q̇p = 	−
��tAp

−1�
�Ap

−1�
+

��tAp�
Ap�Lp/2�2�Ap

−1�

Qp +

p1 − p2

�Lp�Ap
−1�

−
8���Ap

−2�
�Ap

−1�
Qp. �A1�

We identify dimensionless functions of time that characterize
the shape of the pumping region and that allow us to express
the coefficients in Eq. �A1� in a simple way that separates the
effects of the pumping region shape from those of its volume

Vp and the derivative of its volume V̇p,

��t� = �Ap��Ap
−1� ,

��t� = ��Ap
−2��Ap

−1�−2,

��t� =
�Ap�

2�Ap
−1���tAp�

	− ��tAp
−1� +

��tAp�
Ap�Lp/2,t�2
 .

These functions are discussed further in the text. Finally, we

arrive at the expression for Q̇p in Eq. �7�,

Q̇p = 2��t�
V̇p

Vp
Qp +

Vp

��t��Lp
2 �p1 − p2� − ��t�

8��Lp

Vp
Qp.

We have used that �Ap�=Vp /Lp and that ��tAp�= V̇p /Lp.
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