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Eulerian mean flow from an instability of convective plumes
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The dynamical origin of large-scale flows in systems driven by concentrated Archimedean forces is
considered. A two-dimensional model of plumes, such as those observed in thermal convection at
large Rayleigh and Prandtl numbers, is introduced. From this model, we deduce the onset of mean
flow as an instability of a convective state consisting of parallel vertical flow supported by buoyancy
forces. The form of the linear equation governing the instability is derived and two modes of
instability are discussed, one of which leads to the onset of steady Eulerian mean flow in the system.
We are thus able to link the origin of mean flow precisely to the profiles of the unperturbed plumes.
The form of the nonlinear partial differential equation governing the Eulerian mean flow, including
nonlinear effects, is derived in one special case. The extension to three dimensions is outlined.
© 2000 American Institute of PhysidsS1054-150000)01101-7

While mean flows are observed in numerous flows driven Thus our model is focused on the “central region” of flow,
by buoyancy forces, the origin of the stresses needed to and does not consider the interaction of the basic state with
set up such flows is not well understood, particularly the walls. We are then able to crudely model perturbations of
when the system is well beyond the onset of convective slender plumes, but not the processes by which the plumes
instability. In this paper we treat the generation of mean  are created, or the results of collisions of plumes with a
flow by discrete, thin plumes. Such plumes are often ob- boundary. We shall allow, however, for the breaking of top—
served in convection at high Rayleigh numbers. To sim-  bottom(TB) symmetry. An example of this symmetry break-
plify our analysis we focus on two-dimensional flow, and ing is thermal convection between constant temperature
study the stability of a periodic array of parallel plumes.  walls, but with a fluid whose viscosity depends upon tem-
Two modes of instability are deduced, one of which is perature. In an isoviscous fluid the symmetry can be broken
associated with an Eulerian mean flow. By introducing a by the boundary conditions, e.g., by introducing salt water
boundary-value problem that isolates the latter mode of into fresh at one wall with a compensating fresh water flow
|nstab|l|ty, we treat higher-ordel’ terms in an eXpanSionS at the Opposite Wa”, or by Varying the temperature horizon-
and derive an equation for the evolution of the mean ta|ly on one wall. Since we shall be concerned only with the
flpw. The extension of the method to three dimensions is  central region, we adopt the simplest isoviscous model but
discussed. allow the basic state to break TB symmetry.

Krishnamurti and Howarldfirst observed mean flows in
classical isoviscous thermal convection, as a component of a
convective state consisting of tilted rolls. They also found

It is now well-established that a large-scale or meanthat the mean Reynolds stresses driving the flow were bal-
shear flow is a natural accompaniment of many systemanced by viscous stresses of the mean flow in the steady
driven by buoyancy or Archimedean forces. Mean flows, instate, and noted the distinction between Eulerian mean flow,
either the Eulerian or Lagrangian sense, can be importanyhich can involve no net mean transport of a given fluid
contributors to transport, and so their origin in flows drivenparcel, and Lagrangian mean flow, where, by definition, par-
by Archimedean forces is of practical importance. Here weicle transport occurs.
understand an Archimedean force to be a density variation |n order to understand the origin of a mean flow in their
caused by a single scalar field such as temperature or salkperiment, Howard and Krishnamdritonsidered a trun-
concentration. In this paper we are concerned with the dycated system of equations, which enlarged the Lorenz model
namical processes driving these mean flows. We shall studyf convection to allow a mean-flow mode. In a thorough
this problem in a very simple two-dimensional thermalstydy of the bifurcation structure of the resulting five-
model in which the basic unperturbed state is a parallel flovgimensional system, they confirmed the origin of the Eule-
driven by a horizontal gradient of temperature. We furtherjan mean flow as a secondary bifurcation from the basic
assume that the horizontal scale of this basic state is smalngyctive state, which accompanies the onset of tilting of
compared to some vertical scale, presumably the distancgeady rolls created by the basicred instability. A tertiary
between two horizontal walls containing the fluid. We shallyifcation results in unsteady tilted rolls and the onset of
not, however, explicitly consider the flow near these Wa”S-Lagrangian mean flow. Tilted rolls can be viewed as precur-
sors of the fully developed tilted plumes we study below.
dElectronic mail: childres@math3.nyu.edu In 2D with flow in thex—z plane,z upward, tilted rolls

I. INTRODUCTION
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create a nonzero horizontal averageaiof, leading to a force ture, well outside the thin thermal boundary layers on each
which is minus thez-derivative of the latter quantity. This wall, was deduced from a boundary-layer analysis of the wall
force is in equilibrium with the viscous force of the mean region.

flow, here the horizontal mean of Many subsequent papers ~ These experiments suggested that an analysis of the on-
have examined various aspects of mean flow structure, usirggt of mean flow in fully-developed convection might be
low-order ODE models or full numerical simulation in con- Possible by taking slender plumes as the underlying steady
vection and magnetoconvection see, e.g., Refs. 3—7,14,180w, in the place of marginally convective Bard cells. The
Related Archimedean instabilities, associated with largefélative ease of setting up the mean flow in the presence of
scales of motion, occur in doubly diffusive systems as instalOP—Pottom asymmetry suggested a parallel investigation of
bilities of salt fingers; see, e.g., Ref. 6. The linear stability ofthe influence of TB symmetry on the Reynolds stresses re-

these fingers, with negligible diffusivity of the salt, has beensponsible for the mean flow. In such an approach marginal

discussed in Ref. 7. There a vertically uniform unperturbecftablllty can still be |nve§t|gated, bUt. about a sta.te quite dif-
o . erent from that of marginal convectidrEven at high Ray-
state similar to that considered below was found to be un;

stable, and in certain cases the mode of instabilit involveéeigh numbers, it is observed that convective flows may or
e y may not drive mean flows, so a criterion based upon the
horizontal mean flow.

. . . . . . properties of plumes is of some interest.
For fluids with variable viscosity, Solomatowivided There seems to be little hope of finding useful exact

the the_rmal _con\_/ective sta_ltes into three regimes. The first iSy| tions of the nonlinear equations, and the simplified
essentially isoviscous, with upwelling plume and down-mqqe| proposed below, where wall effects are neglected, be-
welling plumes of roughly the same properties. When theomes attractive. We shall formulate a 2D model and discuss
contrast is in the range 16 10° plumes of both types coex- the unperturbed plumes in Sec. II. In Sec. Il a basic invari-
ist, but are different in structure. For still hlgher contrasts agnce of slender p|umes associated with a horizontal shift of
“stagnant lid” regime is reached, where essentially isovis-their positions is discussed, and shown to be unrelated to the
cous convection by upwelling plumes occurs below a lid ofgeneration of an Eulerian mean flow. In Sec. IV the mean-
very viscous fluid, where the transport is mainly by conduc-flow instability is identified as a degenerate bifurcation of the
tion. Recent computations have gone as high &s(Ref. 9 solutions of the linear stability problem, at a zero eigenvalue
and 16 (Ref. 10, and observed strong mean flows at Ray-of geometric multiplicity two. In Sec. V the form of the
leigh numbers up to 70 linear mean-flow equation is derived, and the mechanism is
The present paper was motivated by recent experimenghown by an example to lead to instability in a case with TB
in glycerol, a common working fluid with a significant de- Symmetry.
pendence of viscosity upon temperatthé? In these experi- Some properties of the partial differential equation gov-
ments the mean centéor interion temperature was mea- €rning the mean flow are given in Sec. V, including the form
sured and a mean flow observed in an 18 cm cube Rf the nonlinear terms and the role of breaking the TB sym-
Rayleigh numbers £6-10° and Prandtl numbers 20 metry. Finally, in Sec._VI we outline an extension of the
—10°, with a modest viscosity contrast200. A shadow- (heory to three dimensions.

graph of the plume structure, clearly showing a mean flow, We shall deal i_n fchis paper only with the onset Of. Eule-
(in fact, a cellular flow across the diagonal plaigshown in rian mean flow. This is analogous to studying the addition of
plate | ’ a parallel flow] U(z2),0] to the two-dimensional cellular flow

of the form U,w)=(v,,— ,),¥=sin@xsinpy), where,
since thin plumes are considered, we would thkea. The
mean flow causes the “channels” to develop between the
cells, where transport of scalar and vector fields is enhanced,;
see, e.g., Ref. 13. In a real flow, plume creation is a random
process and transport would be chaotic in both space and
time. Our purpose in the present investigation is to indicate
how mean flow is generated in the simplest periodic geom-
etry, with the understanding that the same dynamical effects
would apply for irregular patterns. The averaging process
needed in that case is discussed briefly in Sec. VI.

I. FORMULATION OF THE MODEL

We shall deal here with thermal convection between
horizontal planeg=0H. We consider the customary equa-
Note that there is a small but noticeable difference in th&jons of thermal convection of a Boussinesq fluid of constant
boundary-layer structure and the plume geometry of the topiscosity. In a fluid of constant viscosity and isothermal
and bottom walls. The thickness of the thermal layers dif-walls, the Boussinesq approximation leads to equations
fered by a factor~3 in these experiments. In Ref. 11, a which possess the top—bottom symmetry mentioned above.
model allowing calculation of the average center temperaindeed, the equations are invariant under a shift of origin of
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the temperature scale, so we may assume that the wall tem- §=\*R,/P,, R,=gaH3T/(vk7), (12
peratures satisf§f,= —T,. Then the equation and boundary
conditions are invariant under the transformatioyw,T
——2z,—w,—T wherew is the vertical velocity component.
In such a fluid, rggardless of thE{ Raylei_gh and Prandtl num-  s<1, \<1, &P,>1. (13
bers, the convective fields associated with the top and bottom o _ )
walls are effectively indistinguishable. As mentioned in the The last condition is essential, for we shall be neglecting the
Introduction, we shall here allow top—bottom symmetry todiffusion of temperature throughout.
be broken, although this will be introduced through the A third small parameter, the amplitudeof the pertur-
choice of the unperturbed state of model flow. We shall ddPation of the basic state, is introduced below. The relative
this without reference to whatever boundary conditions at th@rdering of the assumed small parameters is not immediately
wall might cause the broken symmetry; see Sec. [Be obvious and will be discussed below. We usas the basic
presence of the walls will appear in one way only, as a conordering parameter.
dition of zero net vertical mass flux, sé€&5).]

The equations of motion are then

where k7 is the (constant thermal diffusivity.
We shall assume that

1 B. The unperturbed plumes
. —_— —_— 2 = I
Gt a-Va+ pr vVea=gaTi,, (1) We define thereduced systento be (6)—(9) with A
o =5‘1Pr_1=0. This simpler system, which we be used to
HT+0-VT—xr VIT=0, 2 discuss perturbations of slender nonconductive temperature
V-q=0. 3y fields, is then
All symbols are conventionaly being the coefficient of ther- S(Ug+ Ul +WUZ) + Py— Uy, =0,

mal expansion of the fluid and; the thermal diffusivity. S(Wy U+ WW,) — Wi =T (14)
t X z XX~ 1

A. Dimensionless variables
T+uT,+wT,=0, u,+w,=0.

We now conver{1)—(3) to suitable dimensionless form.
We shall be dealing with temperature fields whose horizontayVe shall say> = (u,w,p,T) is admissibleprovided that(a)
scale of variation, measured by a lengttis small compared > solves(14), (b) % is periodic with period 2 ir, and(c) w
to H, L/H<1. At the same time we shall exploit a high has zero net vertical mass flux,
Prandtl number limit to neglect the diffusion of temperature, 2
and adjust the Rayleigh numbébased on the horizontal <W>EJ w dx=0. (15
scale to allow the nonlinear inertial terms to be neglected to 0
first order. With those goals a reference scale of velocity isAn unperturbed plumavill be an admissibleX =3, of the
suggested by the balance between the viscous force assofirm (ug,Wq,Po,To) =(0Wo(X),G2Z To(X)). Thus To(x)

ated with a horizontal scale and the buoyancy, may be chosen to be any periodic function with period 2 and
Urer=gaT el ?v. (4) G—d?wo/dxX®=Ty(X), Wo(X+2)=wg(x),
HereT . is a reference temperature which will be fixed later. 2 (16)
With g=(u,w), we define dimensionless variables, j wo dx=0.
0

(X*,y*)=(x/L,zIH), t*=tL/Uy, u*=uH/(LUy, -
(5) The constant pressure gradigatis needed to balance any

W*=W/Ust, T*=T/T, p*=pH/(pUw). net buoyancy of the assumed temperature profile, and thus
allow condition(15) to be satisfied. In fact, we see immedi-

Dropping stars, the dimensionless equations become . . ) -2
ately upon integration over an interval of periodicity that

S(Ug+ Ul +WU,) + Py— Uyy— A2U,,=0, (6) Lo
S(Wy+ UWy+WW,) + N 2P, — Wy — N2W,,=T, 7 G= EL Todx. 17)

_ s1p-1 2
THUT A WT, =6 P, (T + \2T,,), ) We remark that, in particular cases discussed below, we will

Ut W.=0 (9) impose additional restrictions on the positions of the critical
X . z points wherew, vanishes. This is because perturbations can
Here 6 is a Reynolds number based upbll,¢f, L, andv,  change the plume streamline topology near such points.

P, is the Prandtl number based upenandX\ is a slender- A simple example of & is the “top-hat” temperature
ness parameter: prof”e:
5=gal*T e/ (Hv)=U &L\ v, (10 1, if 0<|x|<pu,
To(X)= . 18
A=HIL, P,=viks. (11) o(X) 0, if w<|x|<1. (18

The parameterd may also be expressed, in terms of theHere u,0< <1, is the half-width of the upward plume of
Rayleigh numbeR,, as temperaturd s, as a fraction of the period. Hefgé= x and
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(1—pw), if Os|X|<u,
-, if us|x|<Ll.

Solving with the conditiong16), the unique continuously
differentiable solution is

—d?w,/dx?= (19

(p—1)x22+C, if 0<|x|<p,
Wo=| y(x—1)22+ w(p-1)2+C, if p=|xl<1, O
where

C=u(p—1)(n—-2)/6. (21

We note that herevo(u)=w,=u(pn—1)(2u—-1)/3. If u
<1/2, wy vanishes at +(1—u?)/3>u, while if u
>1/2, wg vanishes at/u(2—u)/3< .

The top-hat profile is very useful for explicit computa-
tions, as we shall see below. Note thHaB) is a case of
broken TB symmetry, except for the special case 1/2.

Instability of convective plumes 31

are of interest. The first will be termed a “shift” instability,
since it will result in a horizontal displacement of all fluid
particles, equally at the same valuezofA new steady state
obtained from a shift instability would have streamlines
which are equivalent under parallel displacemenk,rand
cannot involve any Eulerian mean flow. However, we shall
then identify a second instability which is associated with an
Eulerian mean flow. In a new steady state obtained from the
second instability, streamlines of upward moving and down-
ward moving particles have opposite deflections. This can be
understood by considering a simple combination of a plume
(Owo(x)) and a small mean flove sin 27z. The perturbed
streamline passing througl{,0) is given by

(28)

provided thatwy(Xq) # 0. Note that, in the vicinity of any
zero of a zero ofwy(x), “cat’'s-eye” regions of closed

x= e[ 2wl (Xo)]~ ! sin 27z,

That case is special in another way, for then the discontinuitptreamlines are formetsee Fig. 2 beloy Our object is to

of temperature occurs at the zeroveg.
A more general plume configuration is the “double-hat”
profile,

1, if 0s|x|<u,
To=4 0, if us|x|<1l-v, (22
—a, if 1-v<|x|<1,

where 0K u<v<1. Herea is a second parameter. It is con-
venient to denote the top-hat profile B‘)ﬁgl)(x;u) and then
write (22) as

TE=TOxp)— aTH(x—1;5v). (23
Thus
W =w(x; 1) — awP(x—1;v), (24)
The explicit form is
(u—av—1)X22+A, if 0<|x|<u,
Wo=1{ (u—av)x?2+Bx+C, if u<|x|<1-v», (25
(a+p—av)(x—1)%2+D, if 1—v<|x|<1,
where

A= u316— av®16— wl6+ av/6+ u(l—u)/2B=—u,
C=A+u?2, D=A+u(u—1)2+av(v—1)/2. 29
The case of TB symmetry is=1,v=pu:
=2+ u(1—p)/2,
—u(x—=1/2), if u<|x|<1l—p,
+(x—1)212— pu(1—w)/2, if 1—p<|x|<1.

if 0<|x|<u,

(27)

WOZ

We point out that the double-hat profile provide a model of a
convective field combining what can be described as distinct

up- and down-plumes.

C. Remarks concerning instabilities of plumes

In the subsequent analysis we study instabilities of a

discuss both kinds of instability and see how they may be
combined to understand the emergence of a mean flow from
a perturbed plume.

I1l. SHIFTED SOLUTIONS
A. Shift invariance

A key ingredient in our analysis, for admissible solutions
of (14), is a property of the plumes derived from the slen-
derness assumption. It is analogous to a well-known *“shift
invariance” of Prandtl's two-dimensional boundary-layer
equations. These latter equations are

Uit uu,+ouy+p,—uy,,=0, p=p(xt), u+v,=0.

(29

It is easily seen that, ifu(x,y,t),v(x,y,t)) solves(29) then
so does

Us= U(les !t) + 77t+ U(les !t) Mx s
(30)

uS: u(x’ys ’t)l

Ps(X,t)=p,

wherey(X,y,t)=y— n(x,t), » being an arbitrary function.
The proof uses the chain rules,

at|x,y: at|x,ys_ Wt&ys|x,t ) axlt,y: ax|t,ys_ 77x‘9ys|x,t .
(31
This can also be expressed by a transformation on the stream
function, since (s,vs)=(dyis, — dxihs) Where = i(X,y

We then have

UsxTUsy= — Uy(X,Y = 7,t) 7+ Uy(X,y = ,t) 9+ C=0,
(32
Usi+ UgUgyt U sUsy T Psy— Usyy
== Uy(X,Ys, ) (7T U(X,Ys,t) 7)
+uy(XYs, (e ux,ys,t) 7)) +M|y-y =0, (33

where C=u,+v, and M=u;+uu,+vu,+p,—Uyy, each
evaluated ak,y,,t, which completes the proof.
The function (x,t) determines a vertical shift of the

slender plume. We shall show that two distinct instabilitiesentire flow field . The shifted boundary layer may be thought
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of as essentially parallel at any instant to a curye omitting all other terms in\2. This is of course not a fully
= y(x,t), away from its base positiop=0. This shift in-  consistent procedure but it slightly enlarges the reduced sys-
variance expresses the thinness of the boundary layer item. Then Theorem 1 again obtains with an additional term
physical variables, as well as the fact that the only viscousn G4 and an altered equation fgt
stress in the problem derives from the cross-stream variation

o Eut (WE)Errm vEa=0, y=)Z0. (40)

of the velocity. This property figures prominently in the
In this case the shift instability has the growth rate

analysis of boundary-layer separation; see Ref. 14.
We shall state a corresponding result fb4). Since our
e will oK) =1~ K2y VK7 + 4(wd)], (41

plumes are vertical the shift will now be in the horizontal

coordinatex. which grows monotonically from 0 tgw2)/y as |k| in-
Theorem: Let = =(u,w,p,T) be any admissible solu- creases from 0, thus making the initial-value problem well
tion of the reduced equations (14). The®s posed.
=(us,Wg,Ps, Tg) is also a solution, where Since we shall be investigating the linear instability of
Ug= U(X—£,2,8) + &+ W(X— £, 2,0, an unperturb_ed p_Ium_e, we note that, =3 ,+3’ is the
linear approximation in powers df, we have
_ (34)
WS_W(X_glzyt)y
2 '= ( §t+ WO&X y WOxfaW0x§z
Ps= dyUs+ 5f Godx, T=T(x—¢,zt), (35
2_>
where¢ is a function of zt and +f (2woézt+wy—wg)dX, = Toxé |, (42
Gs= diUsT Us dxUs+Ws d;Us, (36)  given thaté satisfies(37).
provided thaté(z,t) satisfies _ Since our aim irj thi_s paper is_ gn_understanding of the
origin of mean flow in this model, it is important to observe
éut (x(2,1)§),=0, that the mean flow in the shift instabilitg, , is a transient
(37 which disappears if and whehbecomes stationary.

2
X(Z,t)=<W2>Ef wA(x,z,t)dx.
0

[V. LINEAR ANALYSIS AND THE MEAN-FLOW

This result states an invariance property under the Co”ditioﬂ\lSTABlLlTY
(37) on &, and therefore goes further than Prandtl boundary

layer shift by including a constraint imposed by the

x-momentum balance.

In this section we shall discuss a bifurcation from the
unperturbed plumes which is not a shift instability. We ex-

To prove the theorem we again may verify that theamine this by linearizin@6)—(9). Let the expansion i for
shifted solutior  is a solution of the system, by substitution fixed §,A be %= (u,w,p,T)=3,+€>'+..., e<1. The

using formulas analogous t81). The last three equations of

(14), expressed in the new variables, may be shown to hold
as in the shift of the Prandtl boundary layer. The new feature

is the calculation ofg, which enforces a condition th&g
have zero horizontal mean. We then have

(Go)=(U)+{(UW),+ &+ (WE )+ (EW),+ (W) E,),=0.

(39)
Since, solves(14), the average of the reduc&egnomentum
equation yields{u);+(uw),=0. Since w satisfies (15),
(W& =(&w),=0. These expressions impl$7) and estab-
lish the theorem.

B. Shift instability

Applying Theorem 1 to an unperturbed plurkg yields
the following result: To linear terms ig, (37) yields

gtt+<w(2)>§zz: 0, (39

sincew, is independent of. Thus, with&=e'*?* 7t we ex-
tract an instability having growth rate=|k|\(w3). The
growth of o with k indicates a poorly posed initial-value

problem, which will have to be resolved outside the reduced

linearized equations are then, dropping primes,

S(Ug+WoUy) + Py— Uy — )\Zuzz: 0,
S(W+ WoW,+ U dWo /dX) + N2p,— Wy — N2W,,=T, (43

Ti+wT,+udTy/dx=0, u,+w,=0.

If we set6=\=0 in (43) we have the limiting system

Px—Uyx=0, —wW,, =T, woT,+udTy/dx=0,

uy,+w,=0. (44)

We shall now consider in some detail the solutiong4s).
Since, from (44), we have —WuW,,,= Wqlyy,=WqT,

=-T,—udTy/dx and — d?w,/dx?*=T,, u,w satisfy

WoUyxx= WyytT UWoyuy,  Ux+W,=0. (45)

Thus we see that the linearized shift solutiarr &(z,t)
+&,(z,t)Wo(X), w=—§&(z,t)Woy, T=—E&(z,t)To, iSs One
solution of (45). We now seek other solutions, under the
additional assumption that they do not depend upso that
(45) provides a single equation far,

Wolyyx= UWoxxx- (46)

equations. We note in passing one way which this can bén other words, we now seek linear instability modes on a

done. Suppose that we tak@) in its entirety for the

time scale long compared to the natural time scale of the

x-momentum equation of the “reduced system,” while still shift instability, the latter given by the solutian= — &,wy.
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The question we ask is, are there any other solutionid® 18 '
In order to eliminate additive solutions of the form
(u,w,p,T)=(0,f(x),0,—f,,) we shall in what follows WL
specify the perturbation to have a mearziwhich is zero.

0.5

A. Specific cases

= 0
The answer to the last question depends upon the choice
of wy, so we first examine some cases explicitly. Consider
first the top-hat profilg€18). Here (46) takes the form R
Wolly=U[ S(X—u) — 8(X+u)], —1sx<+1. (47
-1
It is easily seen by direct calculation that any continuously
differentiable solution of47) is a multiple ofw, and thus a
shift solution. Indeed we must hawg,,=0, X+ * u, to- T o8 s e w2 0 02 o4 o8 o8 1
gether with the jump conditions

[Uod () =u(pm)/w,, [Unl(—p)=—u(—u)/w,, FIG. 1. The normalized eigenfunctions of the double hatifer0.3.
(48)
_ -1 — ) — _ -
[-] denoting the jump from left to right and/,=wq(u) U™ UW,, "L O(X— ) = S(x+ 1= )] =0. (51)
=u(u—1)(2u—1)/3. Solving with Herew,=u(1—2u)/2. Sincew, is now odd inx aboutx

=1/2, we look for a solutiom which is evenwith respect to

A(x+1)?+B(x+1)+C, if —1<x<-—u, “—1/2. Assume

u={ DX®>+Ex+F, if —usx<u, (49) AX*+B,

if 0=x<u,
—1)2 — i
A(x—=1)*+B(x—1)+C, if p=x<1, u= C(X—l/2)2+D, if p=<X<1—pu, (52)
where we have already imposed the periodicity conditions A(x—1)2+B, if 1-p<x<1,

u(=1)=u(+1), u(=1)=u(+1), uy(—1)=u(+1),

we obtainB=E=0, and extend this as an even function about Uf—x)

=u(x),)=x<1. The conditions are that,u, be continuous

C=(u?~1)A3, D=(1-1wA, at x=pu, 1—pu, that [uul(p)=u(p)/w,, [Und(1-x)
F=(u—1)(u—2)A/3. (50  =-u(l—pu)/w,, and finally that
1
We thus find that49) is 2w,/ u, so the only steady solution f udx=U, (53
is a shift. 0
To see that this is not always true, we consider next the given number.
double-hat profile witha=1, v=pu«. The equation fou is A unigue solution of the last problem, having the form
then (52), can be found:
3U X pt u+1, if 0=x<u,
U= 550D —2(x—1/2%(2u—1)+ u+1/2, if u<x<1-—p, (54)
o —(x-1D%u+p+1, if 1—pu<x<1.
|
Let us write the equatioi51) asLu=0, and adopt thé.? 2u—1)x, if 0=x<pu,

inner product on the interval-1,1), with norm||-|. Setting
Ue1=Woq/||Wg|| andug,=u/||u||, whereu is given by(54), the
eigenspace of the zero eigenvaluelofor the symmetric —(2u—=1)(x=1), if 1-psx<1;
double hat is thus spanned by, ,u.,. Both eigenfunctions (56)
are even irx.

The adjoint operator th, L* is defined by

u=uX =1 (X=12%+u?~1/4, if p<x<l-p,

X u+upu+l, if 0sx<u,

L* U= — Uy UW,, [ 8(X— u) = 8(x+1—pu)]=0. (55) | 2 v eu- 1)+ pr 12,
u=ug,= .
Since the geometric multiplicity of the eigenvalue 0 is the . if usx<l-—upu,
same forL andL*, for the symmetric double hat we can find —(X=D)Hu+p+1, if 1—u<x<1.
two distinct eigenfunctions}; ,u, given by (57)
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Note thatu}, is odd inx anduy, is even inx, and that only
Ue2,U%, have nonzero means. We show normaliidthe
above norm eigenfunctions in Fig. 1. In Fig. 2 we show the

Stephen Childress

—d2w, /dX2—T,=—Wg dw; /9z— Uy dwg/dX,

Wo 0T,/ 02+ Uy dTy/dx=0. (58

streamlines of the perturbed symmetric double-hat plumenys

Qo+ €Q¢, With €=0.05 andU = —sinzz.
The geometric multiplicity of the eigenvalue 0 is in fact

LUy=W¢q d2Uy /9x 92— (duy/d,)dwy/dx=T,. (59)

equal to two for a family of double-hat plumes. These wereworking now in the intervalx|<1/2, we havdcf. (54)]

obtained numerically using MATLAB routines. If we fip
=0.3 and varyv,a, the profiles in Table | have multiplicity
two.

The symmetric double-hat is special in that, has a
first derivative which vanishes at=*+1/2, and this is a
condition not satisfied by, in general. If we add the con-
dition [ }/2u dx=0, we obtain, as is easily checked, a prob-
lem for perturbations of the symmetric double hat which
allows only the trivial solutioru=0. Thus we can regard the

eigensolution as “forced” by the assumed nonvanishing

=X pu+u+1, if 0<|x|<pu,

mean value. We then treat the linear problem in the reducede see that

interval |x|<1/2 with perturbationu;=U+u,, where
duy l9x(*+1/2)=0, [3u, dx=0; thenu, is found by a forced

linear problem. This opens the way to a much simpler analy-  f2=
sis than would be realized by bifurcation theory at a degen- 2u—1

%olving (59 with (62 subject to the conditionglu,/dx

erate eigenvalue. We shall term the reduced interval th
“cell” of the computation, and the resulting perturbation a
theory of the “plume-in-cell.” In effect we have isolated a
problem where a single upwelling plume may be subjected t
an arbitrary mean flow imposed on the leading perturba-
tion uy, with zero mean flow imposed on all higher-order
terms in the expansion of In this way the shift instability is

expelled from the problem. Moreover, as long as the higher

order theory focuses on the reduced equatidds, the shift
instability can be added at any time.

B. Linear theory of plume-in-cell: Subscript 2

We now turn to the expansion of the mean-flow mode

we have obtained above with respectdo.~ e, assuming
the flow is steady. If we expandl’ satisfying(43) as .’
=34 62,+0(€?) we obtain

Double hat, mu=.3,eps=.05

FIG. 2. Streamlines o+ 0+ €Q., whereQ is the symmetric double-hat
profile u=v=0.3,a=1, e=0.05, and the mean flow id= —sinzz

(6]

3uU
U=U=3 D) .( )T (2u—1)+up
if u<|x|<1/2.
(60)
With

= X212+ pw(1— )2, if O<|x|<p,

—u(x=1/2), if u<|x|<1/2,

2ux if 0<|x|<pu,
(62)

(XP=x+pu?) if u<|x|<1/2.

(+1/2)=0, fgu, dx=0, we obtainu, and can compute the
leading approximation tguwy):

(uw)~ eS(Uu,Wg)=€ Sk1(u)DU. (63

We show the functionc, /|wg||? in Fig. 3. Note that values
out to u~0.38 are positive, which will enable an instability
in the mean-flow equation. The normalization using in
this figure is dictated by the rather small valueswgf ob-
tained from the equilibrium solution, i.e., the fact thét; is

not a very good indication of the actual size of the unper-

turbed vertical velocity.

V. THE EQUATION FOR THE MEAN FLOW

We now turn to the derivation of the full expansion of
the perturbed plume-in-cell, that is, for the symmetric double
hat with zero shift, and to the calculation of the form of the
nonlinear equation governing the evolution of the mean flow.
We accordingly restrict attention to plumes with this symme-
try and to the intervalx|<1/2.

The equations are then

5(ut+uux+wuz)+px_uxx_)\zuzzzor (64)
S(W+ UWy +WW,) +N2p,— Wy — N2W, =T, (65)

THUT HWT,=6 P, H(Ty+A%T,), u+w,=0.
(66)

TABLE I. Values of v anda where the null space of the eigenvalue 0 is
two-dimensional.

a 0.5 0.7 1 1.3 15 2

v 0.41764 0.36570 0.30000 0.24984 0.22355 0.17542
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x10° TABLE II. Properties of contributing terms to the fifth-order mean-flow
equation. Herd) denotes the indefinite integral &f, andD=¢d/dz. Also
An=WoUmxz~UnWox,  Bmn=D(UpWnxtWyDwy),  Cpp= Wal(uanx

Al 1 +w,DT,). A “*"in the first column indicates that the contribution van-
ishes under integration over full period 2 by top—bottom symmetry. The
“™ indicates thatu, is odd with respect ta=0, and so gives no contribu-
sk E tion to (wou,). p, is obtained from the expansion of themomentum
equation and is not given explicitly here.

%i » Functional
& Subscript dependence
= n Order ofu,onU fi
i 1* € U 0
2 €8 DU A
ok g 3 e D(Oz) —Cy
4 ex? D?U ~P1zz7 Uixzz
5 e D2U A,
» X ) . - w ' L 6" €5 D?(U?) A3=By;;—Cip—Cy
0 0.05 0.1 0.15 213 0.25 0.3 0.35 04 7* 53 D03 _ C137 C31
8 €ON? D%U — P22z Uaxzzt As
FIG. 3. The parametet; /|w|? as a function ofu. 9 €8 D3U As
10" eA? D3(0?) ~Pazz~ Ugxzz~ C1a— Cay
11’ e D3(0?) Ag—B12B21—CyCy5—Csy
3 -~ _ _ — _ _ —
As a working hypothesis we shall takes,\ to be small and i; €0 DZ(PAZ) A= Bus Bscl C2C3 C3C2 16~ Car
of the same relative order, measured in powers.ofVe ¢ D(UY 8 o
consider the expansion through terms of formal orefer
S=Sp+ €S +€8S,+ €23+ eN,
€035t e? 535+ €33, (67)  €8U+N(U)+ Se(k,6°—\?)D?U
+eON?3gt e S g+ N3 g + e8%(kgh?+ kg?)D*U=0(€%), (69)
+ €2 %51+ €2 85 151 €3 15+ 0(€%). (68)  where
The linear theory .generates the six ter_ms Imer_:lre,mand _ N(U)=5352[K12D3(03)+Kgl)D(UDZOZ)
2, ,, have been discussed, the former introducing the vari-
able U(z,7), where we now include an as yet unspecified +D(UDU?)]. (70

slow time variabler. )
For each term we may derive a governing equatiofNOW (O obtain terms of ordes* throughout we must maké

2 2 2
Lu,=f, whereL is defined by(51), which is to be solved for &nd\ of the same order and takg 5°— A~ to be of ordere".
V2 11 dx=0, du,/ox Recall that we have established the positivity«gffor suf-

u, subject to the conditionsf~7, A ; g
(+1/2.2)=0. We are interested here in taelependence of ficiently smallu; see Fig. 3. We also seft= 7 to define the
slow time. Neglecting terms of ordef or higher, the equa-

f, as this will determine the form of the contribution(@fw) '
to the mean-field equation fay(z,7). The various forcing UoN then assumes the form
terms and the functional contribution to the mean-field equay 4 (. 020U+ 7.0U2+ v DU+ v, D3U)=0 71
tion is given in Table Il, where we now & =4,: ~+D0m & X X2 )=0, (1)
The “* indicating that the term is not present with where 7., xn are O(1) constants andy;= ke 3(5
top—bottom symmetry can be determined by summing the- \?).
numbers of andD symbols. The result must be odd if the ~ We have no knowledge of the constants(i) except
terms survives with top—bottom symmetry. The coefficientOr x1- If the instability is to be cut off at a large wavenum-
of such a term is a pseudo-scalar with respect to this symP€r to the order considered here, it is necessary hat0.
metry. The ‘™ identifies canceling symmetry with respect (Otherwise the instability can be cut off only by spatial de-
to x=0. For example, f; contains terms, such as fivatives of order six or higherlf the equation is multiplied
—u, T4y, which are even with respect 1o6=0, sou; mustbe by U and integrated vyith respect iofrom O to 2 we obtain,
odd. In determining the functional dependencebwe have  after several integrations by parts,

used the fact that, sinag,,+Dw,=0, thez dependence of 1 2 2
u, must be of the form oD of a functional ofU. Ed/drf u2dx=f x1(DU)2—x,(D?U)?

The mean-field equation for the symmetric double hat, 0 0
through fourth-order terms, can thus be obtained from the R 1
following generally nonvanishing contributions to the Rey- +7,U%(DU)?— = p,U%dx. (72

. _ — . — (1 3

nolds stressi{wgu,)=k,, N=2,8,9,12; (wiu,)=«y”’, n
=6; (qun):;cgz), n=3. This leads to the following form Thus if the instability saturates nonlinearly we should have
for the mean-field equation: 71<0 and 7,>0.
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VI. PLUMES IN THREE DIMENSIONS

It is of interest to examine the corresponding problem in
three dimensions, when the plumes are slender cylindrical
objects. The problem is technically more complicated than
the two-dimensional calculations, but the 2D model can nev-
ertheless serve as a useful guide. The complications come
both from the representation of unperturbed plumes and the
form of the homogeneous problem for perturbations within a
plume-in-cell model. We also need to decide how to derive
the latter simplification in three dimensions.

Consider a convecting layer with horizontal coordinates
X,y, Vi denoting the gradient in the_ horlzomal' LBJ(x,y) . FIG. 4. A3D “up” plume with a top-hat profile, perturbed by a mean flow.
be some unperturbed temperature field, arbitrary but having a
horizontal average. For computations we might tékeas a
linear combination of Fourier modeB,=e'*" r=(x,y),k
= (ky,ky) over a set ok which includes (0,0). Letvy(X,y) mean pressure gradient. We next give an example of a
be the corresponding unperturbed plume structure, satisfyinglume-in-cell cylindrical geometry of the latter type and sug-
[cf. (16)] G—Vﬁw():To, and having zero horizontal aver- gest that the boundary conditions are consistent in that com-
age. The reduced systdief. (14)] is then, writing the veloc-  putations over a range @f indicate a unique solution of the

ity as (u,v,w)=(u,w), perturbed fields in the presence of a prescribed horizontal
2 meanU=(u).
5t u-Vyu+wu,) +Vyp—Viu=0, Motivated by the symmetric double hat of the 2D theory,
S(Wy+ Uu-Vw+ww,) — VEw=T, (73y ~ Wwe imagine an array of equal numbers of equivalent “up”
(temperature-1) and “down” (temperature-l) top-hat

Ti+u-VyT+wT,=0, Vy-u+w,=0. plumes in a zero vertical mean pressure gradient. In an “up”
To discuss the shift instability in three dimensions, we conPlUme, for example, we assumg vanishes at =1. For the
fine attention tod=0 and the linearized steady system,  tOP-hat profile, we then have

Vup-Viu=0, —VEZw=T,u-V,To+woT,=0, woe (Mzz—rz)/4—u_2|n(u)/2, fosr<wm

(74) —pIn(r)/2, if usr<i.

VH'U+WZZO.
In the present case the-expansion with terms,

A shift perturbation solving74) will have the velocity = (U, W, Py, T) produces a system of the form
n» n:*'~¥ns»tn

(U,v,W)=(&Wo+ lﬂyﬂ?zWo— Py, — EWox— 77W0y)v (75 VHpn_Vaun:fnv (78
where p=(&(2),7(z)) is the horizontal shift function. The )
new streamfunction/ is needed to ensure that horizontal ~Viwn—Th=0n, (79
viscous forces are balanced by a pressure. Zt@mponent Uy Vi To+Wo 8, To=hy,, (80)
of the curl of the horizontal momentum equation yields

Vit (£ na) V=0, (79 VWUt OO (&

Here the forcing term$,,g,,h, are known at each stage,
with u,=V + Vg Xi, g, . Note thatu,, ,n=2 must in this
above, for a unique boundel and the pressure then has the case ﬂavequ;r;o a\?eraain over the ceTI, but the leading term
form p= gwoy+ nWoy + constant. _ . satisfiesuv=U to introduce the mean horizontal velocity
What IS of partpular |n'terest IS the chom;e of plume,"n'ffield. Also X is subject to other boundary conditions dis-
cell model m_three _d_lmen5|ons,_allqu|ng a dlrec_t analysis o cussed below.
a mean-flow |nstab|_l|ty_. The main difficulty here is of course We now argue that the corresponding homogeneous sys-
the fact that 2D periodic structures such as square or hexaggs
nal cells are somewhat awkward to treat insofar as stability is
concerned. It is clear that the obvious approximate model is Vup—Viu=0, Viw+T=0, u-VyTo+wDT=0,
a cylindrical cell, as in Fig. 4, the domain being<@=]|r| (82
<1 and, in the case of a top-hat temperatirg=1 in 0
<r<u and zero otherwise. If the exact field is replaced byhas only the trivial solution for certain temperature profiles
an array of up and down plumes of this type, an approximatef physical interest. In this case we can obtain a unique ex-
averaging procedure must be devised to incorporate the rgransion similar to the 2D case, with the added feature of a
sults of the plume-in-cell calculation. This averaging can ei-dependence upon the polar angleWe then have for the
ther can be based either on a statistical model, so the parareading term of the horizontal velocity,
eters of the cell are regarded as conditional expectations :
given that attention is res%ricted to a single plume, gr else on Ur=U(Z, 0+ Viyhy Vi Xz (83
averaging over many cells immersed in a common verticallso, in (78)—(81), f;=g;=0 but

We may assume that this equation can be solved, dgiyeas

V4 -u+Dw=0,
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018 : : : ' : ‘ The six conditions determine a mat#y K) whose determi-
nant cannot vanish if the trivial solution is implied.

It is of interest to consider briefly the propagating wave
014k 8 solutions of the corresponding linear time-dependent prob-
5 lem,

0121 7
Tt+W0TZ+ U'VHTOZO, (91)

so thatw,— ¢ replacesw, in (87), ¢ being the phase velocity
oosh 3 of the wave. In this case, sinéeappears only in the single
e condition (89), de{A((wg(x)—c)~1))=0 is equivalent to

o - detA(K))
004} | C—WO(M)W.

002} 8 Consequently, the condition d&{K))#0 that the quasi-
steady perturbations be uniquely determined by the mean
o 04 02 03 o4 05 08 07 08 09 flow is the same as the condition that all traveling wave
solutions have nonvanishing wave speed, so that such waves
FIG. 5. Phase speeglvs u for various wavenumbers, 3D top-hat profile.  propagate to the boundaries of the domain. We show in Fig.
5 the wave speeds as a functionwofor severaln, indicating
that the expansion is consistent for these terms, at least for a
. substantial range gf.
h1=—U-ViTo=U-i:0(r — ). (84) Unfortunately a general proof of uniqueness using en-
Thus we setp,, i, =1(6,2,t)D,(r),f,(6,2,t)¥(r), where €rgy methods does not seem possible. F(8@), (86), (88),
f=U-i, arises naturally front84). It is then seen that, for the taking =0, we obtain

horizontal average over the cell we have
| | _ivter+asaxay-o,
r<i

016 7

01r 4

©

(92

(Vi1 + Vi Xigh)=35(P1(1)—¥(1)), (85
and the boundary conditions must ensure that this vanishes. 1 VHVﬁwo (93)
The boundary conditions we suggest now will model the 9~ EVH' Wo :

situation where, as in the 2D periodic cases studied abov
each up cell is bordered by down cells, so thathanges
sign across boundaries. We impose

?Nith conditions (86) we have a Poincarenequality

[T (Va$)?dx dy=CJ[[¢?dxdy,C>0, so that(93) implies

¢ =0 providedg> —C for all r <1. The last inequality does
W= ==V =Vi,=0, r=1. (86)  not generally hold for profiles of interest, as can be seen by

) » ) _considering a smoothed approximation to the top hat, for
For the top-hat profile, we have additional regularity condi-\, yich q can have large positive and negative values in the
tions. Taking thez derivative Of—VE'W=T, and using the vicinity of the plume boundary.

continuity and temperature equations we obtain the homoge- \ve recall that the plumes shown in plate | are three-

neous equation, dimensional. This picture reminds us that plumes originating

onﬂ'¢+u-VHT0=O. (87) at one wall might e>_<tenq only a small di;tance intc_) the bulk
fluid before losing identity in the chaotic convective flow.

We then have thdﬁqS:O, except at = u, where the jJump  Also it is clear that, to take one case, near the lower wall we

conditions expect to see mainly rising plumes. Various modifications of

the plume-in-cell model can be devised to reflect these prop-

_ _r 2 _
[b)i=p=L0rP)r= =107 ¢1r-=0, (88) erties of the flow. In calculations not presented here, we have
and considered a model for a single “up” plume isolated in a
5 . chaotic sea of plumes of both types. Here, a cell model must
[ordlr=p=Ku(w), K=wo(x) (89 account for the average ambient temperature in the vicinity
prevail, [Q(r)],- , here denotingd(x+)—Q(x—). of the plume. In this case we impose the condition

Now from V. X(V.p—V2u)=0 we obtainV4y=0, dw/dr(1)=0 of zero vertical stress at the outer wafistead
HX(Vup= Vi) HY of relying, as we have done above, on the equal nhumbers of
homogeneous case identical up- and down-plumes to cancel these stresses on
For ¢ we must satisfy(87) and the six conditions from average Conditions ony, ¢, corresponding to neighboring

(86), (88), (89). From solutions ofV4$=0 in separated plumes being of the same type, were then imposed. For this
form b= f’<b(r) f 5= —N2f we have Hifn>1 problem we again obtained consistency of the problem in the

sense of this section, for a range @fof the top-hat profile.
n n+2 ;
Car"+Cor™%, if O<r<p, VII. DISCUSSION

+2 - 2-
D=1 Car"+Car" =+ Cor "+ Cor< " (90 In general, with only a periodicity condition ir im-
(or rinr if n=1), if usr<1. posed in two dimensions, we have found that plumes of the

so with (86) we have only the trivial solutions=0 in the
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type considered in this paper are always vulnerable to a shiftuid particles. We have studied here only the Eulerian mean

instability. The latter produces a transient mean flow and dlow, and shown that for slender plumes how it can arise

horizontal displacement of the fluid. In addition, steady bi-from an instability distinct from the shift instability.

furcation analysis indicates that the plume is susceptible to a When TB symmetry is broken, the leadif e5) con-

second mode of instability, which mode carries a nonvanishtribution to the Reynolds stress appears to be similar in some

ing Eulerian mean flow in the steady case. This properties ofespects to the anisotropic kinetic alptfaKA) effect first

this mean-flow instability depend very much on the detailedstudied by Frisch, She, and Suléfsee also Ref. 16. The

structure of the plume temperature profile. AKA instability was studied in the context of forced Navier—
In general, we can expect both modes to be presenttokes flows which lackarity invariance meaning a lack of

depending upon the boundary conditions imposed on verticahvariance to reflection in both velocity and coordinate vec-

walls. The evolution of plumes allowing both instabilities tors. Applied to Beard convection, a reflection in tempera-

could be studied by perturbations of codimension two. In theure also occurs, and the TB invariance is then a particular

discussion of Sec. V we chose instead to focus on the synease of parity invariance. The AKA mean flow is also driven

metric double-hat profile, so that a boundary-value problenby a force proportional to mean shear. On the other hand the

could be formulated which excluded the shift instability. AKA theory is a first-order theory, whereas we have ob-

This allowed us to study the expansion in some detail andained instability at second order in flows possessing TB

derive an equation for the mean flow. This procedure, if resymmetry.

stricted to the reduced systexs=0, produces a solution of

the reduced equatior{44), and so we may apply Theorem | ACKNOWLEDGMENTS
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