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Eulerian mean flow from an instability of convective plumes
Stephen Childressa)

Applied Mathematics Laboratory, Courant Institute of Mathematical Sciences, 251 Mercer Street,
New York, New York 10012

~Received 6 May 1999; accepted for publication 30 July 1999!

The dynamical origin of large-scale flows in systems driven by concentrated Archimedean forces is
considered. A two-dimensional model of plumes, such as those observed in thermal convection at
large Rayleigh and Prandtl numbers, is introduced. From this model, we deduce the onset of mean
flow as an instability of a convective state consisting of parallel vertical flow supported by buoyancy
forces. The form of the linear equation governing the instability is derived and two modes of
instability are discussed, one of which leads to the onset of steady Eulerian mean flow in the system.
We are thus able to link the origin of mean flow precisely to the profiles of the unperturbed plumes.
The form of the nonlinear partial differential equation governing the Eulerian mean flow, including
nonlinear effects, is derived in one special case. The extension to three dimensions is outlined.
© 2000 American Institute of Physics.@S1054-1500~00!01101-0#
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While mean flows are observed in numerous flows driven
by buoyancy forces, the origin of the stresses needed t
set up such flows is not well understood, particularly
when the system is well beyond the onset of convectiv
instability. In this paper we treat the generation of mean
flow by discrete, thin plumes. Such plumes are often ob-
served in convection at high Rayleigh numbers. To sim-
plify our analysis we focus on two-dimensional flow, and
study the stability of a periodic array of parallel plumes.
Two modes of instability are deduced, one of which is
associated with an Eulerian mean flow. By introducing a
boundary-value problem that isolates the latter mode of
instability, we treat higher-order terms in an expansions
and derive an equation for the evolution of the mean
flow. The extension of the method to three dimensions is
discussed.

I. INTRODUCTION

It is now well-established that a large-scale or me
shear flow is a natural accompaniment of many syste
driven by buoyancy or Archimedean forces. Mean flows,
either the Eulerian or Lagrangian sense, can be impor
contributors to transport, and so their origin in flows driv
by Archimedean forces is of practical importance. Here
understand an Archimedean force to be a density varia
caused by a single scalar field such as temperature or
concentration. In this paper we are concerned with the
namical processes driving these mean flows. We shall s
this problem in a very simple two-dimensional therm
model in which the basic unperturbed state is a parallel fl
driven by a horizontal gradient of temperature. We furth
assume that the horizontal scale of this basic state is s
compared to some vertical scale, presumably the dista
between two horizontal walls containing the fluid. We sh
not, however, explicitly consider the flow near these wa
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281054-1500/2000/10(1)/28/11/$17.00

ownloaded 28 Aug 2007 to 128.122.81.16. Redistribution subject to AIP lic
n
s

nt

e
n
alt
y-
dy
l
w
r
all
ce
l
.

Thus our model is focused on the ‘‘central region’’ of flow
and does not consider the interaction of the basic state
the walls. We are then able to crudely model perturbation
slender plumes, but not the processes by which the plu
are created, or the results of collisions of plumes with
boundary. We shall allow, however, for the breaking of to
bottom~TB! symmetry. An example of this symmetry brea
ing is thermal convection between constant tempera
walls, but with a fluid whose viscosity depends upon te
perature. In an isoviscous fluid the symmetry can be bro
by the boundary conditions, e.g., by introducing salt wa
into fresh at one wall with a compensating fresh water fl
at the opposite wall, or by varying the temperature horizo
tally on one wall. Since we shall be concerned only with t
central region, we adopt the simplest isoviscous model
allow the basic state to break TB symmetry.

Krishnamurti and Howard1 first observed mean flows in
classical isoviscous thermal convection, as a component
convective state consisting of tilted rolls. They also fou
that the mean Reynolds stresses driving the flow were
anced by viscous stresses of the mean flow in the ste
state, and noted the distinction between Eulerian mean fl
which can involve no net mean transport of a given flu
parcel, and Lagrangian mean flow, where, by definition, p
ticle transport occurs.

In order to understand the origin of a mean flow in th
experiment, Howard and Krishnamurti2 considered a trun-
cated system of equations, which enlarged the Lorenz mo
of convection to allow a mean-flow mode. In a thorou
study of the bifurcation structure of the resulting fiv
dimensional system, they confirmed the origin of the Eu
rian mean flow as a secondary bifurcation from the ba
conductive state, which accompanies the onset of tilting
steady rolls created by the basic Be´nard instability. A tertiary
bifurcation results in unsteady tilted rolls and the onset
Lagrangian mean flow. Tilted rolls can be viewed as prec
sors of the fully developed tilted plumes we study below.

In 2D with flow in thex2z plane,z upward, tilted rolls
© 2000 American Institute of Physics
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create a nonzero horizontal average ofuw, leading to a force
which is minus thez-derivative of the latter quantity. This
force is in equilibrium with the viscous force of the mea
flow, here the horizontal mean ofu. Many subsequent paper
have examined various aspects of mean flow structure, u
low-order ODE models or full numerical simulation in co
vection and magnetoconvection see, e.g., Refs. 3–7,14
Related Archimedean instabilities, associated with lar
scales of motion, occur in doubly diffusive systems as ins
bilities of salt fingers; see, e.g., Ref. 6. The linear stability
these fingers, with negligible diffusivity of the salt, has be
discussed in Ref. 7. There a vertically uniform unperturb
state similar to that considered below was found to be
stable, and in certain cases the mode of instability involv
horizontal mean flow.

For fluids with variable viscosity, Solomatov8 divided
the thermal convective states into three regimes. The firs
essentially isoviscous, with upwelling plume and dow
welling plumes of roughly the same properties. When
contrast is in the range 1042105 plumes of both types coex
ist, but are different in structure. For still higher contrasts
‘‘stagnant lid’’ regime is reached, where essentially isov
cous convection by upwelling plumes occurs below a lid
very viscous fluid, where the transport is mainly by condu
tion. Recent computations have gone as high as 105 ~Ref. 9!
and 106 ~Ref. 10!, and observed strong mean flows at Ra
leigh numbers up to 104.

The present paper was motivated by recent experim
in glycerol, a common working fluid with a significant de
pendence of viscosity upon temperature.11,12 In these experi-
ments the mean center~or interior! temperature was mea
sured and a mean flow observed in an 18 cm cube
Rayleigh numbers 1062109 and Prandtl numbers 102

2103, with a modest viscosity contrast;200. A shadow-
graph of the plume structure, clearly showing a mean fl
~in fact, a cellular flow across the diagonal plane! is shown in
plate I.

Note that there is a small but noticeable difference in
boundary-layer structure and the plume geometry of the
and bottom walls. The thickness of the thermal layers d
fered by a factor;3 in these experiments. In Ref. 11,
model allowing calculation of the average center tempe
ownloaded 28 Aug 2007 to 128.122.81.16. Redistribution subject to AIP lic
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ture, well outside the thin thermal boundary layers on ea
wall, was deduced from a boundary-layer analysis of the w
region.

These experiments suggested that an analysis of the
set of mean flow in fully-developed convection might b
possible by taking slender plumes as the underlying ste
flow, in the place of marginally convective Be´nard cells. The
relative ease of setting up the mean flow in the presenc
top–bottom asymmetry suggested a parallel investigation
the influence of TB symmetry on the Reynolds stresses
sponsible for the mean flow. In such an approach marg
stability can still be investigated, but about a state quite d
ferent from that of marginal convection.1 Even at high Ray-
leigh numbers, it is observed that convective flows may
may not drive mean flows, so a criterion based upon
properties of plumes is of some interest.

There seems to be little hope of finding useful exa
solutions of the nonlinear equations, and the simplifi
model proposed below, where wall effects are neglected,
comes attractive. We shall formulate a 2D model and disc
the unperturbed plumes in Sec. II. In Sec. III a basic inva
ance of slender plumes associated with a horizontal shif
their positions is discussed, and shown to be unrelated to
generation of an Eulerian mean flow. In Sec. IV the me
flow instability is identified as a degenerate bifurcation of t
solutions of the linear stability problem, at a zero eigenva
of geometric multiplicity two. In Sec. V the form of the
linear mean-flow equation is derived, and the mechanism
shown by an example to lead to instability in a case with
symmetry.

Some properties of the partial differential equation go
erning the mean flow are given in Sec. V, including the fo
of the nonlinear terms and the role of breaking the TB sy
metry. Finally, in Sec. VI we outline an extension of th
theory to three dimensions.

We shall deal in this paper only with the onset of Eu
rian mean flow. This is analogous to studying the addition
a parallel flow@U(z),0# to the two-dimensional cellular flow
of the form (u,w)5(cz ,2cx),c5sin(ax)sin(by), where,
since thin plumes are considered, we would takeb!a. The
mean flow causes the ‘‘channels’’ to develop between
cells, where transport of scalar and vector fields is enhan
see, e.g., Ref. 13. In a real flow, plume creation is a rand
process and transport would be chaotic in both space
time. Our purpose in the present investigation is to indic
how mean flow is generated in the simplest periodic geo
etry, with the understanding that the same dynamical effe
would apply for irregular patterns. The averaging proce
needed in that case is discussed briefly in Sec. VI.

II. FORMULATION OF THE MODEL

We shall deal here with thermal convection betwe
horizontal planesz50,H. We consider the customary equ
tions of thermal convection of a Boussinesq fluid of const
viscosity. In a fluid of constant viscosity and isotherm
walls, the Boussinesq approximation leads to equati
which possess the top–bottom symmetry mentioned ab
Indeed, the equations are invariant under a shift of origin
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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the temperature scale, so we may assume that the wall
peratures satisfyT252T1 . Then the equation and bounda
conditions are invariant under the transformationz,w,T
→2z,2w,2T wherew is the vertical velocity component
In such a fluid, regardless of the Rayleigh and Prandtl nu
bers, the convective fields associated with the top and bot
walls are effectively indistinguishable. As mentioned in t
Introduction, we shall here allow top–bottom symmetry
be broken, although this will be introduced through t
choice of the unperturbed state of model flow. We shall
this without reference to whatever boundary conditions at
wall might cause the broken symmetry; see Sec. II B.@The
presence of the walls will appear in one way only, as a c
dition of zero net vertical mass flux, see~15!.#

The equations of motion are then

qt1q"“q1
1

r
“p2n ¹2q5gaTiz , ~1!

] tT1q"“T2kT ¹2T50, ~2!

“"q50. ~3!

All symbols are conventional,a being the coefficient of ther
mal expansion of the fluid andkT the thermal diffusivity.

A. Dimensionless variables

We now convert~1!–~3! to suitable dimensionless form
We shall be dealing with temperature fields whose horizo
scale of variation, measured by a lengthL, is small compared
to H, L/H!1. At the same time we shall exploit a hig
Prandtl number limit to neglect the diffusion of temperatu
and adjust the Rayleigh number~based on the horizonta
scale! to allow the nonlinear inertial terms to be neglected
first order. With those goals a reference scale of velocity
suggested by the balance between the viscous force as
ated with a horizontal scaleL and the buoyancy,

U ref5gaTrefL
2n. ~4!

HereTref is a reference temperature which will be fixed lat
With q5(u,w), we define dimensionless variables,

~x* ,y* !5~x/L,z/H !, t* 5tL/U ref , u* 5uH/~LU ref!,
~5!

w* 5w/U ref , T* 5T/Tref , p* 5pH/~rU refn!.

Dropping stars, the dimensionless equations become

d~ut1uux1wuz!1px2uxx2l2uzz50, ~6!

d~wt1uwx1wwz!1l2pz2wxx2l2wzz5T, ~7!

Tt1uTx1wTz5d21Pr
21~Txx1l2Tzz!, ~8!

ux1wz50. ~9!

Hered is a Reynolds number based uponlU ref , L, andn,
Pr is the Prandtl number based uponn, andl is a slender-
ness parameter:

d5gaL4Tref /~Hn!5U refLl/n, ~10!

l5H/L, Pr5n/kT . ~11!

The parameterd may also be expressed, in terms of t
Rayleigh numberRa , as
ownloaded 28 Aug 2007 to 128.122.81.16. Redistribution subject to AIP lic
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d5l4Ra /Pr , Ra5gaH3Tref /~nkT!, ~12!

wherekT is the ~constant! thermal diffusivity.
We shall assume that

d!1, l!1, dPr@1. ~13!

The last condition is essential, for we shall be neglecting
diffusion of temperature throughout.

A third small parameter, the amplitudee of the pertur-
bation of the basic state, is introduced below. The relat
ordering of the assumed small parameters is not immedia
obvious and will be discussed below. We usee as the basic
ordering parameter.

B. The unperturbed plumes

We define thereduced systemto be ~6!–~9! with l
5d21Pr

2150. This simpler system, which we be used
discuss perturbations of slender nonconductive tempera
fields, is then

d~ut1uux1wuz!1px2uxx50,

d~wt1uwx1wwz!2wxx5T, ~14!

Tt1uTx1wTz50, ux1wz50.

We shall sayS5(u,w,p,T) is admissibleprovided that~a!
S solves~14!, ~b! S is periodic with period 2 inx, and~c! w
has zero net vertical mass flux,

^w&[E
0

2

w dx50. ~15!

An unperturbed plumewill be an admissibleS5S0 of the
form „u0 ,w0 ,p0 ,T0)5(0,w0(x),Gz,T0(x)…. Thus T0(x)
may be chosen to be any periodic function with period 2 a

G2d2w0 /dx25T0~x!, w0~x12!5w0~x!,
~16!E

0

2

w0 dx50.

The constant pressure gradientG is needed to balance an
net buoyancy of the assumed temperature profile, and
allow condition~15! to be satisfied. In fact, we see immed
ately upon integration over an interval of periodicity that

G5
1

2E0

2

T0 dx. ~17!

We remark that, in particular cases discussed below, we
impose additional restrictions on the positions of the criti
points wherew0 vanishes. This is because perturbations c
change the plume streamline topology near such points.

A simple example of aT0 is the ‘‘top-hat’’ temperature
profile:

T0~x!5H 1, if 0<uxu,m,

0, if m<uxu,1.
~18!

Here m,0,m,1, is the half-width of the upward plume o
temperatureTref , as a fraction of the period. HereG5m and
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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2d2w0 /dx25H ~12m!, if 0<uxu,m,

2m, if m<uxu,1.
~19!

Solving with the conditions~16!, the unique continuously
differentiable solution is

w05H ~m21!x2/21C, if 0<uxu,m,

m~x21!2/21m~m21!/21C, if m<uxu,1,
~20!

where

C5m~m21!~m22!/6. ~21!

We note that herew0(m)[wm5m(m21)(2m21)/3. If m
,1/2, w0 vanishes at 12A(12m2)/3.m, while if m
.1/2, w0 vanishes atAm(22m)/3,m.

The top-hat profile is very useful for explicit comput
tions, as we shall see below. Note that~18! is a case of
broken TB symmetry, except for the special casem51/2.
That case is special in another way, for then the discontin
of temperature occurs at the zero ofw0 .

A more general plume configuration is the ‘‘double-ha
profile,

T05H 1, if 0<uxu,m,

0, if m<uxu,12n,

2a, if 12n<uxu,1,

~22!

where 0,m,n,1. Herea is a second parameter. It is con
venient to denote the top-hat profile byT0

(1)(x;m) and then
write ~22! as

T0
(2)5T0

(1)~x;m!2aT0
(1)~x21;n!. ~23!

Thus

w0
(2)5w0

(1)~x;m!2aw0
(1)~x21;n!, ~24!

The explicit form is

w05H ~m2an21!x2/21A, if 0<uxu,m,

~m2an!x2/21Bx1C, if m<uxu,12n,

~a1m2an!~x21!2/21D, if 12n<uxu,1,

~25!

where

A5m3/62an3/62m/61an/61m~12m!/2,B52m,
~26!

C5A1m2/2, D5A1m~m21!/21an~n21!/2.

The case of TB symmetry isa51,n5m:

w05H 2x2/21m~12m!/2, if 0<uxu,m,

2m~x21/2!, if m<uxu,12m,

1~x21!2/22m~12m!/2, if 12m<uxu,1.

~27!

We point out that the double-hat profile provide a model o
convective field combining what can be described as dist
up- and down-plumes.

C. Remarks concerning instabilities of plumes

In the subsequent analysis we study instabilities o
slender plume. We shall show that two distinct instabilit
ownloaded 28 Aug 2007 to 128.122.81.16. Redistribution subject to AIP lic
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are of interest. The first will be termed a ‘‘shift’’ instability
since it will result in a horizontal displacement of all flui
particles, equally at the same value ofz. A new steady state
obtained from a shift instability would have streamlin
which are equivalent under parallel displacement inx, and
cannot involve any Eulerian mean flow. However, we sh
then identify a second instability which is associated with
Eulerian mean flow. In a new steady state obtained from
second instability, streamlines of upward moving and dow
ward moving particles have opposite deflections. This can
understood by considering a simple combination of a plu
„0,w0(x)… and a small mean flowe sin 2pz. The perturbed
streamline passing through (x0,0) is given by

x5e@2pw0l ~x0!#21 sin 2pz, ~28!

provided thatw0(x0)Þ0. Note that, in the vicinity of any
zero of a zero ofw0(x), ‘‘cat’s-eye’’ regions of closed
streamlines are formed~see Fig. 2 below!. Our object is to
discuss both kinds of instability and see how they may
combined to understand the emergence of a mean flow f
a perturbed plume.

III. SHIFTED SOLUTIONS

A. Shift invariance

A key ingredient in our analysis, for admissible solutio
of ~14!, is a property of the plumes derived from the sle
derness assumption. It is analogous to a well-known ‘‘sh
invariance’’ of Prandtl’s two-dimensional boundary-lay
equations. These latter equations are

ut1uux1vuy1px2uyy50, p5p~x,t !, ux1vy50.
~29!

It is easily seen that, if„u(x,y,t),v(x,y,t)… solves~29! then
so does

us5u~x,ys ,t !, vs5v~x,ys ,t !1h t1u~x,ys ,t !hx ,
~30!

ps~x,t !5p,

whereys(x,y,t)5y2h(x,t), h being an arbitrary function.
The proof uses the chain rules,

] tux,y5] tux,ys
2h t]ys

ux,t , ]xu t,y5]xu t,ys
2hx]ys

ux,t .
~31!

This can also be expressed by a transformation on the str
function, since (us ,vs)5(]ycs ,2]xcs) where cs5c(x,y
2h,t)2*h t dx.

We then have

usx1vsy52uy~x,y2h,t !hx1uy~x,y2h,t !hx1C50,
~32!

ust1ususx1vsusy1psx2usyy

52uy~x,ys ,t !~h t1u~x,ys ,t !hx!

1uy~x,ys ,t !~h t1u~x,ys ,t !hx!1M uy5ys
50, ~33!

where C5ux1vy and M5ut1uux1vuy1px2uyy , each
evaluated atx,ys ,t, which completes the proof.

The functionh(x,t) determines a vertical shift of the
entire flow field . The shifted boundary layer may be thoug
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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of as essentially parallel at any instant to a curvey
5h(x,t), away from its base positiony50. This shift in-
variance expresses the thinness of the boundary laye
physical variables, as well as the fact that the only visc
stress in the problem derives from the cross-stream varia
of the velocity. This property figures prominently in th
analysis of boundary-layer separation; see Ref. 14.

We shall state a corresponding result for~14!. Since our
plumes are vertical the shift will now be in the horizont
coordinatex.

Theorem: Let S5(u,w,p,T) be any admissible solu
tion of the reduced equations (14). ThenSs

5(us ,ws ,ps ,Ts) is also a solution, where

us5u~x2j,z,t !1j t1w~x2j,z,t !jz ,
~34!

ws5w~x2j,z,t !,

ps5]xus1dE Gs dx, Ts5T~x2j,z,t !, ~35!

wherej is a function of z,t and

Gs5] tus1us ]xus1ws ]zus , ~36!

provided thatj(z,t) satisfies

j tt1„x~z,t !jz…z50,
~37!

x~z,t !5^w2&[E
0

2

w2~x,z,t !dx.

This result states an invariance property under the condi
~37! on j, and therefore goes further than Prandtl bound
layer shift by including a constraint imposed by th
x-momentum balance.

To prove the theorem we again may verify that t
shifted solutionSs is a solution of the system, by substitutio
using formulas analogous to~31!. The last three equations o
~14!, expressed in the new variables, may be shown to h
as in the shift of the Prandtl boundary layer. The new feat
is the calculation ofps , which enforces a condition thatGs

have zero horizontal mean. We then have

^Gs&5^u& t1^uw&z1j tt1^wjz& t1^j tw&z1~^w2&jz!z50.
~38!

SinceS solves~14!, the average of the reducedx-momentum
equation yields ^u& t1^uw&z50. Since w satisfies ~15!,
^wjz& t5^j tw&z50. These expressions imply~37! and estab-
lish the theorem.

B. Shift instability

Applying Theorem 1 to an unperturbed plumeS0 yields
the following result: To linear terms inj, ~37! yields

j tt1^w0
2&jzz50, ~39!

sincew0 is independent ofz. Thus, withj5eikz1st we ex-
tract an instability having growth ratess5ukuA^w0

2&. The
growth of s with k indicates a poorly posed initial-valu
problem, which will have to be resolved outside the reduc
equations. We note in passing one way which this can
done. Suppose that we take~6! in its entirety for the
x-momentum equation of the ‘‘reduced system,’’ while st
ownloaded 28 Aug 2007 to 128.122.81.16. Redistribution subject to AIP lic
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omitting all other terms inl2. This is of course not a fully
consistent procedure but it slightly enlarges the reduced
tem. Then Theorem 1 again obtains with an additional te
in Gs and an altered equation forj:

j tt1^w0
2&jzz2gjzzt50, g5l2/d. ~40!

In this case the shift instability has the growth rate

ss~k!5 1
2@2k2g1Ak4g214^w0

2&#, ~41!

which grows monotonically from 0 tôw0
2&/g as uku in-

creases from 0, thus making the initial-value problem w
posed.

Since we shall be investigating the linear instability
an unperturbed plume, we note that, ifS'S01S8 is the
linear approximation in powers ofj, we have

S85S j t1w0jx ,2w0xj,w0xjz

1E ~2w0jzt1w0
22w̄0

2!dx,2T0xj D , ~42!

given thatj satisfies~37!.
Since our aim in this paper is an understanding of

origin of mean flow in this model, it is important to observ
that the mean flow in the shift instability,j t , is a transient
which disappears if and whenj becomes stationary.

IV. LINEAR ANALYSIS AND THE MEAN-FLOW
INSTABILITY

In this section we shall discuss a bifurcation from t
unperturbed plumes which is not a shift instability. We e
amine this by linearizing~6!–~9!. Let the expansion ine for
fixed d,l be S5(u,w,p,T)5S01eS81 . . . , e!1. The
linearized equations are then, dropping primes,

d~ut1w0uz!1px2uxx2l2uzz50,
~43!

d~wt1w0wz1u dw0 /dx!1l2pz2wxx2l2wzz5T,

Tt1w0Tz1u dT0 /dx50, ux1wz50.

If we setd5l50 in ~43! we have the limiting system

px2uxx50, 2wxx5T, w0Tz1u dT0 /dx50,
~44!

ux1wz50.

We shall now consider in some detail the solutions of~44!.
Since, from ~44!, we have 2w0wxxz5w0uxxx5w0Tz

52Tt2u dT0 /dx and2d2w0 /dx25T0 , u,w satisfy

w0uxxx5wxxt1uw0xxx , ux1wz50. ~45!

Thus we see that the linearized shift solutionu5j t(z,t)
1jz(z,t)w0(x), w52j(z,t)w0x , T52j(z,t)T0x is one
solution of ~45!. We now seek other solutions, under th
additional assumption that they do not depend upont, so that
~45! provides a single equation foru,

w0uxxx5uw0xxx . ~46!

In other words, we now seek linear instability modes on
time scale long compared to the natural time scale of
shift instability, the latter given by the solutionu52jzw0 .
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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The question we ask is, are there any other solutions of~46!?
In order to eliminate additive solutions of the for
(u,w,p,T)5„0,f (x),0,2 f xx… we shall in what follows
specify the perturbation to have a mean inz which is zero.

A. Specific cases

The answer to the last question depends upon the ch
of w0 , so we first examine some cases explicitly. Consi
first the top-hat profile~18!. Here~46! takes the form

w0uxxx5u@d~x2m!2d~x1m!#, 21<x,11. ~47!

It is easily seen by direct calculation that any continuou
differentiable solution of~47! is a multiple ofw0 and thus a
shift solution. Indeed we must haveuxxx50, xÞ6m, to-
gether with the jump conditions

@uxx#~m!5u~m!/wm , @uxx#~2m!52u~2m!/wm ,
~48!

@•# denoting the jump from left to right andwm5w0(m)
5m(m21)(2m21)/3. Solving with

u5H A~x11!21B~x11!1C, if 21<x,2m,

Dx21Ex1F, if 2m<x,m,

A~x21!21B~x21!1C, if m<x,1,

~49!

where we have already imposed the periodicity conditio
u(21)5u(11), ux(21)5ux(11), uxx(21)5uxx(11),
we obtainB5E50,

C5~m221!A/3, D5~121/m!A,
~50!

F5~m21!~m22!A/3.

We thus find that~49! is 2w0 /m, so the only steady solution
is a shift.

To see that this is not always true, we consider next
double-hat profile witha51, n5m. The equation foru is
then
he
d
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uxxx2uwm
21@d~x2m!2d~x112m!#50. ~51!

Here wm5m(122m)/2. Sincew0 is now odd inx aboutx
51/2, we look for a solutionu which isevenwith respect to
x51/2. Assume

u5H Ax21B, if 0<x,m,

C~x21/2!21D, if m<x,12m,

A~x21!21B, if 12m<x,1,

~52!

and extend this as an even function about 0,u(2x)
5u(x),)<x,1. The conditions are thatu,ux be continuous
at x5m, 12m, that @uxx#(m)5u(m)/wm , @uxx#(12m)
52u(12m)/wm , and finally that

E
0

1

u dx5U, ~53!

a given number.
A unique solution of the last problem, having the for

~52!, can be found:

FIG. 1. The normalized eigenfunctions of the double hat form50.3.
u5
3U

2~2m11! H 2x2/m1m11, if 0<x,m,

22~x21/2!2/~2m21!1m11/2, if m<x,12m,

2~x21!2/m1m11, if 12m<x,1.

~54!
Let us write the equation~51! as Lu50, and adopt theL2

inner product on the interval~21,1!, with norm i•i. Setting
ue15w0 /iw0i andue25u/iui , whereu is given by~54!, the
eigenspace of the zero eigenvalue ofL for the symmetric
double hat is thus spanned byue1 ,ue2 . Both eigenfunctions
are even inx.

The adjoint operator toL, L* is defined by

L* u52uxxx2uwm
21@d~x2m!2d~x112m!#50. ~55!

Since the geometric multiplicity of the eigenvalue 0 is t
same forL andL* , for the symmetric double hat we can fin
two distinct eigenfunctionsue1* ,ue2* given by
u5ue1* 5H ~2m21!x, if 0<x,m,

~x21/2!21m221/4, if m<x,12m,

2~2m21!~x21!, if 12m<x,1;
~56!

u5ue2* 55
2x2/m1m11, if 0<x,m,

22~x21/2!2/~2m21!1m11/2,

if m<x,12m,

2~x21!2/m1m11, if 12m<x,1.
~57!
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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Note thatue1* is odd inx andue2* is even inx, and that only
ue2 ,ue2* have nonzero means. We show normalized~in the
above norm! eigenfunctions in Fig. 1. In Fig. 2 we show th
streamlines of the perturbed symmetric double-hat plu
Q01eQe2 with e50.05 andU52sinpz.

The geometric multiplicity of the eigenvalue 0 is in fa
equal to two for a family of double-hat plumes. These we
obtained numerically using MATLAB routines. If we fixm
50.3 and varyn,a, the profiles in Table I have multiplicity
two.

The symmetric double-hat is special in thatue2 has a
first derivative which vanishes atx561/2, and this is a
condition not satisfied byue1 in general. If we add the con
dition *21/2

11/2u dx50, we obtain, as is easily checked, a pro
lem for perturbations of the symmetric double hat whi
allows only the trivial solutionu50. Thus we can regard th
eigensolution as ‘‘forced’’ by the assumed nonvanish
mean value. We then treat the linear problem in the redu
interval uxu,1/2 with perturbation u15U1u1 , where
]u1 /]x(61/2)50, *0

1u1 dx50; thenu1 is found by a forced
linear problem. This opens the way to a much simpler ana
sis than would be realized by bifurcation theory at a deg
erate eigenvalue. We shall term the reduced interval
‘‘cell’’ of the computation, and the resulting perturbation
theory of the ‘‘plume-in-cell.’’ In effect we have isolated
problem where a single upwelling plume may be subjecte
an arbitrary mean flowU imposed on the leading perturba
tion u1 , with zero mean flow imposed on all higher-ord
terms in the expansion ofu. In this way the shift instability is
expelled from the problem. Moreover, as long as the high
order theory focuses on the reduced equations~14!, the shift
instability can be added at any time.

B. Linear theory of plume-in-cell: Subscript 2

We now turn to the expansion of the mean-flow mo
we have obtained above with respect tod,l;e, assuming
the flow is steady. If we expandS8 satisfying ~43! as S8
5S11dS21O(e2) we obtain

FIG. 2. Streamlines ofQ101eQe2 whereQ0 is the symmetric double-ha
profile m5n50.3, a51, e50.05, and the mean flow isU52sinpz.
ownloaded 28 Aug 2007 to 128.122.81.16. Redistribution subject to AIP lic
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2d2w2 /dx22T252w0 ]w1 /]z2u1 dw0 /dx,
~58!

w0 ]T2 /]z1u2 dT0 /dx50.

Thus

Lu25w0 ]2u1 /]x ]z2~]u1 /]z!dw0 /dx[ f 2 . ~59!

Working now in the intervaluxu,1/2, we have@cf. ~54!#

u5u15
3U

2~2m11! H 2x2/m1m11, if 0<uxu,m,

22~x21/2!2/~2m21!1m11/2,

if m<uxu,1/2.
~60!

With

w05H 2x2/21m~12m!/2, if 0<uxu,m,

2m~x21/2!, if m<uxu,1/2,
~61!

we see that

f 25H 2mx if 0<uxu,m,

2m

2m21
~x22x1m2! if m<uxu,1/2.

~62!

Solving ~59! with ~62! subject to the conditions]u2 /]x
(61/2)50, *0

1u2 dx50, we obtainu2 and can compute the
leading approximation tôuw&:

^uw&;ed^u2w0&[e dk1~m!DU. ~63!

We show the functionk1 /iw0i2 in Fig. 3. Note that values
out to m'0.38 are positive, which will enable an instabilit
in the mean-flow equation. The normalization usingw0 in
this figure is dictated by the rather small values ofw0 ob-
tained from the equilibrium solution, i.e., the fact thatU ref is
not a very good indication of the actual size of the unp
turbed vertical velocity.

V. THE EQUATION FOR THE MEAN FLOW

We now turn to the derivation of the full expansion
the perturbed plume-in-cell, that is, for the symmetric dou
hat with zero shift, and to the calculation of the form of th
nonlinear equation governing the evolution of the mean flo
We accordingly restrict attention to plumes with this symm
try and to the intervaluxu<1/2.

The equations are then

d~ut1uux1wuz!1px2uxx2l2uzz50, ~64!

d~wt1uwx1wwz!1l2pz2wxx2l2wzz5T, ~65!

Tt1uTx1wTz5d21Pr
21~Txx1l2Tzz!, ux1wz50.

~66!

TABLE I. Values of n and a where the null space of the eigenvalue 0
two-dimensional.

a 0.5 0.7 1 1.3 1.5 2

n 0.41764 0.36570 0.30000 0.24984 0.22355 0.175
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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As a working hypothesis we shall takee,d,l to be small and
of the same relative order, measured in powers ofe. We
consider the expansion through terms of formal ordere4:

S5S01eS11e dS21e2S31el2S4

1e d2S51e2 dS61e3S7 ~67!

1e dl2 S81e d3S91e2l2S10

1e2 d2S111e3 dS121e4S131o~e4!. ~68!

The linear theory generates the six terms linear ine, and
S1,2, have been discussed, the former introducing the v
able U(z,t), where we now include an as yet unspecifi
slow time variablet.

For each term we may derive a governing equat
Lun5 f n whereL is defined by~51!, which is to be solved for
un subject to the conditions*21/2

1/2 un dx50, ]un /]x
(61/2,z)50. We are interested here in thez-dependence o
f n as this will determine the form of the contribution of^uw&
to the mean-field equation forU(z,t). The various forcing
terms and the functional contribution to the mean-field eq
tion is given in Table II, where we now letD5]z :

The ‘‘* ’’ indicating that the term is not present wit
top–bottom symmetry can be determined by summing
numbers ofˆ andD symbols. The result must be odd if th
terms survives with top–bottom symmetry. The coefficie
of such a term is a pseudo-scalar with respect to this s
metry. The ‘‘†’’ identifies canceling symmetry with respec
to x50. For example, f 3 contains terms, such a
2u1T1x , which are even with respect tox50, sou3 must be
odd. In determining the functional dependence onU we have
used the fact that, sinceunx1Dwn50, thez dependence o
un must be of the form ofD of a functional ofU.

The mean-field equation for the symmetric double h
through fourth-order terms, can thus be obtained from
following generally nonvanishing contributions to the Re
nolds stress:̂ w0un&5kn , n52,8,9,12; ^w1un&5kn

(1) , n
56; ^w2un&5kn

(2) , n53. This leads to the following form
for the mean-field equation:

FIG. 3. The parameterk1 /iwi2 as a function ofm.
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e dUt1N~U !1de~k1d22l2!D2U

1ed2~k8l21k9d2!D4U5O~e5!, ~69!

where

N~U !5e3d2@k12D
3~Û3!1k6

(1)D~ÛD2Û2!

1D~UDÛ2!#. ~70!

Now to obtain terms of ordere5 throughout we must maked
andl of the same order and takek1d22l2 to be of ordere2.
Recall that we have established the positivity ofk1 for suf-
ficiently smallm; see Fig. 3. We also sete3t5t to define the
slow time. Neglecting terms of ordere6 or higher, the equa-
tion then assumes the form

Ut1D~h1Û2DU1h2ÛU21x1 DU1x2 D3U !50, ~71!

where hm , xm are O(1) constants andx15k1e23(d2

2l2).
We have no knowledge of the constants in~71! except

for x1 . If the instability is to be cut off at a large wavenum
ber to the order considered here, it is necessary thatx2.0.
~Otherwise the instability can be cut off only by spatial d
rivatives of order six or higher.! If the equation is multiplied
by U and integrated with respect tox from 0 to 2 we obtain,
after several integrations by parts,

1

2
d/dtE

0

2

u2 dx5E
0

2Fx1~DU !22x2~D2U !2

1h1Û2~DU !22
1

3
h2U4Gdx. ~72!

Thus if the instability saturates nonlinearly we should ha
h1,0 andh2.0.

TABLE II. Properties of contributing terms to the fifth-order mean-flo

equation. HereÛ denotes the indefinite integral ofU, andD5]/]z. Also
Am5w0umxz2umzw0x , Bmn5D(umwnx1wmDwn), Cmn5w0

21(umTnx

1wmDTn). A ‘‘ * ’’ in the first column indicates that the contribution van
ishes under integration over full period 2 by top–bottom symmetry. T
‘‘ †’’ indicates thatun is odd with respect tox50, and so gives no contribu
tion to ^w0un&. pn is obtained from the expansion of thex-momentum
equation and is not given explicitly here.

Subscript
n Order

Functional
dependence
of un on U f n

1* e U 0
2 ed DU A1

3† e2
D(Û2) 2C11

4* el2 D2U 2p1zz2u1xzz

5* ed2 D2U A2

6*† e2d D2(U2) A32B112C122C21

7* e3
DÛ3 2C132C31

8 edl2 D3U 2p2zz2u2xzz1A4

9 ed3 D3U A5

10† e2l2
D3(Û2) 2p3zz2u3xzz2C142C41

11† e2d2
D3(Û2) A62B122B212C222C152C51

12 e3d D2(Û2) A72B132B312C232C322C162C61

13† e4
D(Û4) 2C332C172C71
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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VI. PLUMES IN THREE DIMENSIONS

It is of interest to examine the corresponding problem
three dimensions, when the plumes are slender cylindr
objects. The problem is technically more complicated th
the two-dimensional calculations, but the 2D model can n
ertheless serve as a useful guide. The complications c
both from the representation of unperturbed plumes and
form of the homogeneous problem for perturbations withi
plume-in-cell model. We also need to decide how to der
the latter simplification in three dimensions.

Consider a convecting layer with horizontal coordina
x,y, “H denoting the gradient in the horizontal. LetT0(x,y)
be some unperturbed temperature field, arbitrary but havi
horizontal average. For computations we might takeT0 as a
linear combination of Fourier modesTk5eik"r,r5(x,y),k
5(kx ,ky) over a set ofk which includes (0,0). Letw0(x,y)
be the corresponding unperturbed plume structure, satisf
@cf. ~16!# G2¹H

2 w05T0 , and having zero horizontal ave
age. The reduced system@cf. ~14!# is then, writing the veloc-
ity as (u,v,w)5(u,w),

ed~ut1u"“Hu1wuz!1“Hp2¹H
2 u50,

d~wt1u"“Hw1wwz!2¹H
2 w5T, ~73!

Tt1u"“HT1wTz50, “H•u1wz50.

To discuss the shift instability in three dimensions, we co
fine attention tod50 and the linearized steady system,

“Hp2¹H
2 u50, 2¹H

2 w5T,u"“HT01w0Tz50,
~74!

“H•u1wz50.

A shift perturbation solving~74! will have the velocity

~u,v,w!5~jzw01cy ,hzw02cx ,2jw0x2hw0y!, ~75!

where r5„j(z),h(z)… is the horizontal shift function. The
new streamfunctionc is needed to ensure that horizont
viscous forces are balanced by a pressure. Thez-component
of the curl of the horizontal momentum equation yields

¹H
4 c1~jz]y2hz]x!¹H

2 w050. ~76!

We may assume that this equation can be solved, givenT0 as
above, for a unique boundedc, and the pressure then has t
form p5jw0x1hw0y1constant.

What is of particular interest is the choice of plume-i
cell model in three dimensions, allowing a direct analysis
a mean-flow instability. The main difficulty here is of cour
the fact that 2D periodic structures such as square or hex
nal cells are somewhat awkward to treat insofar as stabilit
concerned. It is clear that the obvious approximate mode
a cylindrical cell, as in Fig. 4, the domain being 0,r 5ur u
,1 and, in the case of a top-hat temperature,T051 in 0
,r ,m and zero otherwise. If the exact field is replaced
an array of up and down plumes of this type, an approxim
averaging procedure must be devised to incorporate the
sults of the plume-in-cell calculation. This averaging can
ther can be based either on a statistical model, so the pa
eters of the cell are regarded as conditional expectat
given that attention is restricted to a single plume, or else
averaging over many cells immersed in a common vert
ownloaded 28 Aug 2007 to 128.122.81.16. Redistribution subject to AIP lic
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mean pressure gradient. We next give an example o
plume-in-cell cylindrical geometry of the latter type and su
gest that the boundary conditions are consistent in that c
putations over a range ofm indicate a unique solution of the
perturbed fields in the presence of a prescribed horizo
meanU5^u&.

Motivated by the symmetric double hat of the 2D theo
we imagine an array of equal numbers of equivalent ‘‘u
~temperature11! and ‘‘down’’ ~temperature21! top-hat
plumes in a zero vertical mean pressure gradient. In an ‘‘u
plume, for example, we assumew0 vanishes atr 51. For the
top-hat profile, we then have

w05H ~m22r 2!/42m2 ln~m!/2, if 0<r ,m,

2m2ln~r !/2, if m<r ,1.
~77!

In the present case thee-expansion with termsSn

5(un ,wn ,pn ,Tn) produces a system of the form

“Hpn2¹H
2 un5fn , ~78!

2¹H
2 wn2Tn5gn , ~79!

un•“HT01w0 ]zTn5hn , ~80!

“H•un1]zwn50. ~81!

Here the forcing termsfn ,gn ,hn are known at each stage
with un5“Hfn1“H3 izcn . Note thatun ,n>2 must in this
case have zero average over the cell, but the leading t
satisfiesuv5U to introduce the mean horizontal velocit
field. Also S is subject to other boundary conditions di
cussed below.

We now argue that the corresponding homogeneous
tem,

“Hp2¹H
2 u50, ¹H

2 w1T50, u•“HT01w0 DT50,
~82!

“H•u1Dw50,

has only the trivial solution for certain temperature profil
of physical interest. In this case we can obtain a unique
pansion similar to the 2D case, with the added feature o
dependence upon the polar angleu. We then have for the
leading term of the horizontal velocity,

u15U~z,t !1“Hf11“H3 izc1 . ~83!

Also, in ~78!–~81!, f15g150 but

FIG. 4. A 3D ‘‘up’’ plume with a top-hat profile, perturbed by a mean flow
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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h152U"“HT05U"ird~r 2m!. ~84!

Thus we setf1 ,c15 f (u,z,t)F1(r ), f u(u,z,t)C1(r ), where
f 5U"ir arises naturally from~84!. It is then seen that, for the
horizontal average over the cell we have

^“Hf11“HÃizc1&5 1
2„F1~1!2C1~1!…, ~85!

and the boundary conditions must ensure that this vanis
The boundary conditions we suggest now will model t

situation where, as in the 2D periodic cases studied ab
each up cell is bordered by down cells, so thatw changes
sign across boundaries. We impose

w5fn5cn5¹H
2 cn5¹H

2 cn50, r 51. ~86!

For the top-hat profile, we have additional regularity con
tions. Taking thez derivative of2¹H

2 w5T, and using the
continuity and temperature equations we obtain the homo
neous equation,

w0 ¹H
4 f1u"“HT050. ~87!

We then have that¹H
4 f50, except atr 5m, where the jump

conditions

@f# r 5m5@] rf# r 5m5@] r
2f# r 5m50, ~88!

and

@] r
3f# r 5m5Kur~m!, K5w0~m!21 ~89!

prevail, @Q(r )# r 5m here denotingQ(m1)2Q(m2).
Now from “HÃ(“Hp2¹H

2 u)50 we obtain¹H
4 c50,

so with ~86! we have only the trivial solutionc50 in the
homogeneous case.

For f we must satisfy~87! and the six conditions from
~86!, ~88!, ~89!. From solutions of¹H

4 f50 in separated
form f5 f F(r ), f uu52n2f we have, ifn>1,

F5H C1r n1C2r n12, if 0<r ,m,

C3r n1C4r n121C5r 2n1C6r 22n

~or r ln r if n51!, if m<r ,1.

~90!

FIG. 5. Phase speedc vs m for various wavenumbersn, 3D top-hat profile.
ownloaded 28 Aug 2007 to 128.122.81.16. Redistribution subject to AIP lic
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The six conditions determine a matrixA(K) whose determi-
nant cannot vanish if the trivial solution is implied.

It is of interest to consider briefly the propagating wa
solutions of the corresponding linear time-dependent pr
lem,

Tt1w0Tz1u"“HT050, ~91!

so thatw02c replacesw0 in ~87!, c being the phase velocity
of the wave. In this case, sinceK appears only in the single
condition ~89!, det„A(„w0(m)2c…21)…50 is equivalent to

c5w0~m!
det„A~K !…

det„A~0!…
. ~92!

Consequently, the condition det„A(K)…Þ0 that the quasi-
steady perturbations be uniquely determined by the m
flow is the same as the condition that all traveling wa
solutions have nonvanishing wave speed, so that such w
propagate to the boundaries of the domain. We show in
5 the wave speeds as a function ofm for severaln, indicating
that the expansion is consistent for these terms, at least
substantial range ofm.

Unfortunately a general proof of uniqueness using
ergy methods does not seem possible. From~82!, ~86!, ~88!,
taking c50, we obtain

E E
r ,1

@~¹H
2 f!21qf2#dx dy50,

~93!

q5
1

2
“H•S“H¹H

2 w0

w0
D .

With conditions ~86! we have a Poincare´ inequality
**(¹H

2 f)2 dx dy>C**f2 dx dy,C.0, so that~93! implies
f50 providedq.2C for all r ,1. The last inequality does
not generally hold for profiles of interest, as can be seen
considering a smoothed approximation to the top hat,
which q can have large positive and negative values in
vicinity of the plume boundary.

We recall that the plumes shown in plate I are thre
dimensional. This picture reminds us that plumes originat
at one wall might extend only a small distance into the b
fluid before losing identity in the chaotic convective flow
Also it is clear that, to take one case, near the lower wall
expect to see mainly rising plumes. Various modifications
the plume-in-cell model can be devised to reflect these pr
erties of the flow. In calculations not presented here, we h
considered a model for a single ‘‘up’’ plume isolated in
chaotic sea of plumes of both types. Here, a cell model m
account for the average ambient temperature in the vici
of the plume. In this case we impose the conditi
dw/dr(1)50 of zero vertical stress at the outer wall~instead
of relying, as we have done above, on the equal number
identical up- and down-plumes to cancel these stresse
average!. Conditions onc,f, corresponding to neighboring
plumes being of the same type, were then imposed. For
problem we again obtained consistency of the problem in
sense of this section, for a range ofm of the top-hat profile.

VII. DISCUSSION

In general, with only a periodicity condition inx im-
posed in two dimensions, we have found that plumes of
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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type considered in this paper are always vulnerable to a s
instability. The latter produces a transient mean flow an
horizontal displacement of the fluid. In addition, steady
furcation analysis indicates that the plume is susceptible
second mode of instability, which mode carries a nonvan
ing Eulerian mean flow in the steady case. This propertie
this mean-flow instability depend very much on the detai
structure of the plume temperature profile.

In general, we can expect both modes to be pres
depending upon the boundary conditions imposed on ver
walls. The evolution of plumes allowing both instabilitie
could be studied by perturbations of codimension two. In
discussion of Sec. V we chose instead to focus on the s
metric double-hat profile, so that a boundary-value probl
could be formulated which excluded the shift instabilit
This allowed us to study the expansion in some detail
derive an equation for the mean flow. This procedure, if
stricted to the reduced systeml50, produces a solution o
the reduced equations~14!, and so we may apply Theorem
to obtain a shifted solution of the reduced system, with m
flow j t(z,t)1U(t,z). In this case~sincel50! there is no
linear cut-off at high wavenumber, and any saturation m
come from nonlinearity.

Although we have focused on the symmetric double-
plume, the plume-in-cell model might be applied to plum
which do not exhibit top–bottom symmetry. The bounda
condition applied tou is only approximate, since it does no
follow from symmetry. Up- and down-moving plumes cou
in this way be treated separately and then combined to ob
an equation for the mean flow. In this case all of the terms
Table II could appear. The lowest-order linear term is then
the formDU. It can be shown that this term can reduce t
d needed for the mean-flow instability. This suggests that
non-Boussinesq effects introduced in Refs. 11,12 might p
tially account for the ease with which mean flows were
tablished in that experiment.

The ideas developed in the two-dimensional case c
over to three dimensions, where the plume geometry
richer, and there is an analogous cylindrical plume-in-c
model for analyzing the mean-flow instability.

We have not considered time-periodic eigenfunctions
the linear problem. In the experiments reported in Re
11,12 the mean flow is observed to be almost steady and
plume formation is an irregular process~in space and time!.
Time-dependence of the plume perturbations can create
grangian mean flow, with mean horizontal migrations
ownloaded 28 Aug 2007 to 128.122.81.16. Redistribution subject to AIP lic
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fluid particles. We have studied here only the Eulerian me
flow, and shown that for slender plumes how it can ar
from an instability distinct from the shift instability.

When TB symmetry is broken, the leadingO(ed) con-
tribution to the Reynolds stress appears to be similar in so
respects to the anisotropic kinetic alpha~AKA ! effect first
studied by Frisch, She, and Sulem;15 see also Ref. 16. The
AKA instability was studied in the context of forced Navier
Stokes flows which lackparity invariance, meaning a lack of
invariance to reflection in both velocity and coordinate ve
tors. Applied to Be´nard convection, a reflection in temper
ture also occurs, and the TB invariance is then a particu
case of parity invariance. The AKA mean flow is also driv
by a force proportional to mean shear. On the other hand
AKA theory is a first-order theory, whereas we have o
tained instability at second order in flows possessing
symmetry.
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