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Abstract
The cellular cytoskeleton is an activematerial, driven out of equilibriumbymolecularmotor proteins.
It is not understood how the collective behaviors of cytoskeletal networks emerge from the properties
of the network’s constituentmotor proteins andfilaments. Here we present experimental results on
networks of stabilizedmicrotubules inXenopus oocyte extracts, which undergo spontaneous bulk
contraction driven by themotor protein dynein, and investigate the effects of varying the initial
microtubule density and length distribution.We find that networks contract to a similar final density,
irrespective of the length ofmicrotubules or their initial density, but that the contraction timescale
varies with the averagemicrotubule length. To gain insight intowhy thismicroscopic property
influences themacroscopic network contraction time, we developed simulations wheremicrotubules
andmotors are explicitly represented. The simulations qualitatively recapitulate the variation of
contraction timescale withmicrotubule length, and allowed stress contributions fromdifferent
sources to be estimated and decoupled.

1. Introduction

Activematter is a class ofmaterials held out of equilibriumby the local conversion of energy from a reservoir
intomechanical work at the scale of the system’s components [1]. Activematter can exhibit emergent behaviors,
such as collectivemotion and pattern formation, on lengthscalesmuch larger than the size of the system’s
constituents.

Here we consider cytoskeletal networks, which are living, active systems [2] composed of polar polymeric
filaments and held out of equilibriumbymolecularmotor proteins which convert chemical energy into
mechanical work. Cytoskeletal networks are responsible for a number of cell biological processes, including cell
division and chromosome segregation. The active behaviors of cytoskeletal networks have been experimentally
investigated in both simplified purifiedmixtures [3–6] and in complex systems in cells and cell extracts [7–10].
However, it remains poorly understood how the dynamics and architecture of these networks are shaped by the
properties of their constituent filaments andmotors.

The past several years have seen several studies of the dynamics andmechanics ofmicrotubule (MTs) /
motor protein suspensions (see [11] for a review). A predominant thread of experiments have focused on dense,
nematically aligned phases ofMTbundles and immersed layers which showdynamics driven by extension of
material along the direction of orientational order [12]. It is believed that this extensilemotion is driven by the
polarity sorting of anti-alignedMTs bymultimeric kinesinmotors. Theoreticalmodeling of thematerial stresses
produced by polarity sorting indeed yields active stress tensors that are anisotropic, and arise from ensemble
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averages of terms of the form app, where p is anMTorientation vector, and a < 0 gives extensile flows along
the p direction [13]. Different dynamics can follow fromdifferentMT interactions, and clustering ofMT ends is
a genericmechanism leading to contraction [14]. This has been previously explored in other purified systems
containing kinesinmotor proteins [15, 16]. In this work, as in our earlier work of stabilizedMTs inmeiotically-
arrestedXenopus oocyte extracts [7] and in several related studies [17–19], we consider a spontaneously formed
MTnetworkwhose dynamics is driven byminus-end bundling by dyneinmotors. This leads to an apparently
isotropic contraction, andwe proposed a continuummodel [7], which quantitatively reproduced the
experimental results. Crucially, themodel helped explainwhy networks contract to a preferred final density
regardless of sample geometry andmotor concentration. The continuummodel assumed that the active
material stress tensors were isotropic and of the form r( )If , with <f 0 a combination of contractilemotor
stresses and repulsive steric stresses.

Here, we explore the same system as in our previous work [7] further by varying the initialMTdensity and
the length distribution ofMTs andmeasuring the resulting effects on the contraction process. Consistent with
the predictions of our activefluidmodel, wefind that thefinal network density varies little across awide range of
conditions. Intriguingly, we alsofind a correlation between the timescale of the contraction process and the
average length ofMTs in the system. To gain insight into how thismicroscopic parameter influences the
macroscopic contraction timescale, we developed simulations of the contraction process. These simulations
recapitulatemany key aspects of the experimental results, including the variation of contraction timescale with
MT length, and allow access tomany aspects of the systemdifficult tomeasure experimentally, such as the spatial
distribution and nature of thematerial stress tensors. Taken together, these results further support the
underlying assumptions and key predictions of our activefluidmodel, and provide a framework for future
studies.

2.Methods

2.1. Preparation ofXenopus extracts
Extracts were prepared from freshly laidXenopus oocytes as described previously [20]. Fresh extracts were
sequentiallyfiltered through 2.0, 1.2, and 0.2μm filters before beingflash frozen in liquid nitrogen and stored at
−80 °Cuntil use.

2.2. Preparation ofmicrofluidic devices
Microfluidic device templates were designed usingAutoCAD360 and Silhouette Studio software. Device
templates were cut from125μmtape (3MScotchcal)using a Silhouette Cameo die cutter, and adhered to petri
dishes to create amaster. PDMS (Sylgard 184,DowCorning)wasmixed at the standard 10:1 ratio, poured onto
masters, degassed under vacuum, and cured overnight at 60 °C.The cured devices were then removed from the
masters and inlets and outlets were created using biopsy punches. Devices and coverslips were treatedwith air
plasma using a corona device, bonded, and loadedwith passivationmix composed of 5 mgml−1 BSA and 2.5%
(w/v)Pluronic F-127 before overnight incubation at 12 °C.

2.3. Bulk contraction assay
The bulk contraction assaywas performed as previously described [7]. Briefly, Alexa-647 labeled tubulinwas
added to 20μLXenopus extract at afinal concentration of»1μM.Then, 0.5μL of taxol suspended inDMSO
was then added to the extract to the indicated final concentration. Extracts were then loaded into passivated
microfluidic devices, sealedwith vacuumgrease, and imaged using spinning disk confocalmicroscopy (Nikon
TE2000-Emicroscope, YokugawaCSU-X1 spinning disk,Hamamatsu ImagEMcamera, 2× objective,
Metamorph acquisition software). The time t=0 corresponds towhen imaging begins, typically<1 min after
taxol addition. Imageswere analyzed using ImageJ and customMATLAB software. The  ( )t curves werefit
using time points when  >( )t 0.1.

2.4. Initial andfinal density estimation
In order to estimate network densities, we first assume that Alexa-647 labeled tubulin uniformly incorporates
intoMTs, and the overall concentration of tubulin is taken to be constant and equal to the previouslymeasured
value of 18μM [21]. From this we can take,
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whereMi is the tubulinmass in pixel i,β is a constant conversion factor between concentration inmicromolar
andfluorescence intensity,ℓ is the depth of the sample,A is the area of the pixel, = ℓV Ai is the volume
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corresponding to pixel i,N is the total number of pixels, Ii is themeasured intensity of pixel i,A is the area of pixel
i, and á ñI N is themeasured intensity averaged over all pixels in the channel. From this we can infer,
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The intensity at each pixel in the network contains a contributionNi frompolymerized tubulin and a
contributionBi frommonomeric, unpolymerized tubulin. The signal frommonomeric tubulin is assumed to be
constant and homogeneous throughout the channel. Thus, at the given time point where the background and
network intensities aremeasured, the average concentration of polymerized tubulin in the network is given by,
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whereNnetwork is the number of pixels in the network at the time point, and á ñI network is the intensity averaged
over all pixels in the network.

To estimate the network density, the frame at the time closest to t= +t Tc was selected, where τ is the
characteristic contraction time andTc is the lag time between the beginning of imaging and the beginning of
network contraction [7]. This framewas corrected for inhomogeneous illumination and the camera’s dark
current, and analyzed as above tofind r tá ñ +( )Tc . Aswe assume that noMTs are created, destroyed, or added
to the network during the contraction process, the totalmass ofMTs in the networkmust be conserved. Thus,

r r t r= á ñ = á ñ = + = á ñt+( )M V t T V V ,c T F Fnetwork 0 0 c

where t+V V V, ,T F0 c
are the volume of the network at the beginning, at time t+Tc , and at thefinal state. Then,
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whereW H L, , are thewidth, height and length of the network at different times, denoted by the subscripts as
with the volume.We assume that, as the network is pinned at the channel’s inlet and outlet, there is no change in
volume along the channel’s length, and thus = t+L LT0 c

. Combining equations (1) and (2) in results,
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We further assume that the change in the network’s height follows the same functional form as the change in
width and thus,
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For thefinal density of the network, similar reasoning can be used to show,
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2.5.Measurement ofMT length distributions
StabilizedMTswere dissociated frommotor proteins andfixed as previously described [22].MTswere allowed to
assemble at room temperature for 30min (unless otherwisenoted)before 5μl of extractwas diluted into 50μl of
MTdissociation buffer (250mMNaCl, 10 mMK-HEPES, pH7.7, 1mMMgCl2, 1mMEGTA, and20μMtaxol).
After a 2min incubation, 100μl of FixBuffer (0.1%glutaraldehyde in60%glycerol, 40%BRB80)was added and
incubated for 5min. 1mlofDilutionBuffer (60%glycerol, 40%BRB80)was added todilute the sample, and 2μl of
thediluted samplewas spread between a slide and a 22×22mm2 coverslip. Afterwaiting 30min to allow theMTs
to adhere to the coverslip,MTswere imagedusing spinning disk confocalmicroscopy (NikonTE2000-E
microscope, YokugawaCSU-X1 spinning disk,Hamamatsu ImagEMcamera, 60×objective,
Metamorph acquisition software). Active contourswerefit to individualMTs using the ImageJ plugin JFilament
[23], andMT lengthswere determined from the contours using customMATLABsoftware. For each taxol
concentration, distributions ofMT lengthswerefit to a log-normal distribution tofind the location parameter,μ,
and the scale parameter,σ. In each case, themodemicrotubule length for the log-normal distribution is given by
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3. Results

To further investigate the dynamics of contractingMTnetworks inXenopus oocyte extracts, we added taxol to
the extracts to stabilizeMTs, as previously described [7]. Extracts were loaded into rectangularmicrofluidic
devices (figure 1(A)), sealed at the inlet and outlet using vacuumgrease to prevent evaporation, and imaged at
lowmagnification (methods).Withinminutes of taxol addition, theMTnetworks were found to undergo a
spontaneous bulk contraction as shown in our previous work [7] (figure 1(B), movie 1 available online at stacks.
iop.org/NJP/19/125011/mmedia). The size of the network along thewidth of the channel,W(t), wasmeasured
by identifying the pixels with high intensity (belonging to the network) and recorded as a function of time. Then
the fraction contracted  ( )t was calculated, defined as

 =
-( ) ( ) ( )t

W W t

W
, 10

0

whereW0 is thewidth of the channel, typically 0.9 mm. This process was repeated for varying final
concentrations of taxol, and the  ( )t curves for each taxol conditionwere averaged together to producemaster
curves for each condition (figure 1(C)). The  ( )t curves werewell fit by a saturating exponential function,

 = -¥
- t

-( )( ) [ ] ( )t 1 e , 2
t Tc

where ¥ is thefinal fraction contracted,τ is the characteristic contraction time, andTc is a lag timebetween the
beginning of imaging and thebeginning of the the contractionprocess. Equation (2)wasfit to the  ( )t curves for each
experiment to extract values for the characteristic time,τ, and thefinal fraction contracted, ¥. Values ofτ and ¥
were averaged for each taxol condition (figure 1(D)). The characteristic timescale,τ,was found to increasewith
approximate linearity for taxol concentrations m>2.5 M,while thefinal fraction contracted, ¥, decreased slightly
with increasing taxol concentration.

Wenext investigatedhowchanging taxol concentration influencedboth the initial density of theMTnetwork, rI ,
and thefinal density of theMTnetwork, r0. In systemsofpurified tubulin, the concentrationof tubulinpolymerized
intoMTshasbeen shown to increasewith increasing taxol concentration [24]. Fluorescence intensitywasused as a
proxy for tubulin concentration, andwas calibratedusing previouslymeasured values for the total tubulin
concentration inXenopus extracts (methods).While the initial density of theMTnetwork, rI ,monotonically
increasedwith increasing taxol concentration, thefinal density of theMTnetworkdisplayednoobvious trend
(figure 1(E)), and values of thefinal networkdensity vary fromthemeanfinal density of r m= 49.6 M0 by less than
25%.This is consistentwithprevious results arguing that contractingMTnetworks inXenopus extracts contract to a

Figure 1.Microtubule networks undergo spontaneous bulk contraction. (A) Schematic showing characteristic dimensions of the
microfluidic chamber. (B)Timecourse ofMTnetwork contractionwhen 10 μMtaxol is added (scale bar: 500 μm). (C)Curves showing
the fraction contraction, ò(t) as a function of time for varying taxol concentration. Curves aremean±s.e.m. (D)Characteristic time, τ,
andfinal fraction contraction, ¥, as a functionof taxol concentration. (E) Initial networkdensity, rI , (blue line) andfinal network
density, r0, (red line) as a functionof taxol concentration.The red dashed line denotes the average value of r0 = 49.6μM.
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preferredfinal density [7]. Also, the increase of initialMTdensity, rI , with increasing taxol concentration appears to
saturate for large taxol concentrations.Considering the three largest taxol concentrations investigatedhere (5, 10, and
25μM), the initialMTdensitieswas found to vary from themeanvalue byonly 14% (std/mean), far less than the
≈2.5×increase seen in the characteristic contraction timescale,τ, over this same range. Thus,τdoesnot scale
proportionally to the initial density ofMTs, rI , and the change in contraction timescalemust come fromsomeother
effect of changing taxol concentration.

Previously, it has been shown in clarifiedXenopus extracts that the size ofmotor-organized taxol-stabilized
MT assemblies, termed ‘pineapples’, decreasedwith increasing taxol concentration, presumably due to a
decrease in the average length ofMTs [22]. Thus, we next sought tomeasure the length distribution ofMTs in
our system for varying taxol concentrations.We used a previously describedmethod to dissociate andfixMTs
[22] (methods). Briefly,MTswere allowed to assemble for 5min after taxol addition before being diluted into a
dissociation buffer containing 250mMNaCl, which dissociatesmotor proteins and otherMAPs from theMTs.
After a 2min incubation, thismixwas diluted again into afixation buffer containing glutaraldehyde.MTswere
fixed for 5min, further diluted, and thinly spread between a slide and a 22mm2 coverslip.MTswere allowed to
adhere for 30min before imaging. An active contourwas fit toMTs in the images [23], and the length of the
active contourwas used as ameasure for theMT length. This process was repeated for each taxol concentration.

Example histograms ofMT lengths for each taxol concentration are shown infigure 2(A). Visually, the peak
of the distribution shifts towards smaller values ofMT length for increasing taxol concentration. Empirically, we
find that the distributions ofMT lengths arewellfit by a log-normal distribution (figure 2(A), inset). Asfitting
log-normal distributions to themeasured histograms allows amore robust estimate of themodeMT length than
using a purely empirical estimate, wefit theMT length distributions for each taxol concentration in order tofind
μ andσ, the two parameters of the log-normal distribution, and used these parameters to estimate themodeMT
length for each condition. ThemodeMT lengthwas found to decrease with increasing taxol concentration,
varying by a factor of≈1.7 across the taxol conditionsmeasured (figure 2(B)).

One potential concern is that theMT length distributionmay vary over the 45 min timescale of the
contraction experiments. Potentially, this could be due to a number of factors, includingMTdepolymerization,
severing ofMTs, or other causes. To address this issue, we repeated our length distributionmeasurement where
MTdissociation and fixation began 45 min after taxol addition.Wefind close agreement between theMT length
distributionsmeasured either 5min or 45 min after taxol is added, indicating that the length distribution is
approximately constant over the timescale of the contraction experiments (figure 2(C)).

4.Model and simulation

Our experimental results suggest that the change in contraction timescale observed for changing taxol
concentrationsmaybedue to changes in theMT lengthdistribution.While our earlier continuumactive gel theory
forMTnetwork contractions [7] captures the global contractile behavior of the network accurately, understanding
thedependence of its parameters onmicroscale properties, such asMT length, is beyond the scopeof themodel. To
resolvemicroscale changes and study their effects on thenetwork’s emergent properties, and to test the dependence
of contraction timescale onMT lengths,we turn to simulation.Our simulation tracks the behavior of a suspensionof
fixed lengthMTs actuatedbydyneinmotorswhich actively crosslink themanddrag them through thefluid.

Figure 2.Microtubule length distributions varywith taxol concentration. (A)Histograms ofMT lengthsmeasured for differing taxol
concentrations. Inset: example distrubution for 2.5 μMtaxol with log-normal fit (red line). (B)ThemodeMT length decreases with
increasing taxol concentration. (C)Example histograms for 2.5μMtaxol, whereMTnetworkswere dissociated and fixed at either 5
min or 45min after taxol addition.
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4.1.Model description
In ourmodeling, we representMTs as rigid spherocylinders that interact sterically and throughmotor protein
coupling. In principle thefluid inwhichMTs are suspended couples their dynamics globally. Since solving the
full Stokes problemnumerically is prohibitively expensive we here neglect hydrodynamicmany-body couplings.
Insteadwe approximate the effects of thefluid by a local drag, that is, eachMTacts as if itmoved through a
quiescent fluid.Note that for a dense and highly percolated network, one expects long range hydrodynamic
interactions to be screened and hencewe argue that they can be safely ignored for our purposes.

Suspensions of passive Brownian spherocylinders are well understood in both theory and simulation, and
our numerical framework (in appendix A) is based onwell-knownwork [25–27].What sets our simulations
apart from the previous work is the presence ofmotor proteins, which have been previously consideredwith
other simulation tools [28].Wemodel dyneinmotors as having a non-moving, fixed crosslinking end and a
moving crosslinking endwith stochastic binding and unbinding behaviors. The two ends are assumed to be
connected by aHookean springwith a rest length l 40 nmD

0 , which is the size of a force-free dynein. Collisions
amongst dyneins or between dyneins andMTs are ignored for simplicity. In ourmodel, dyneins have onefixed
end, which stays rigidly attached to oneMT throughout the simulation, and onemotor endwhich stochastically
binds, unbinds, andwalks along otherMTs. Thefixed end represents the p150 subunit of the dynactin complex,
which contains a non-motormicrotubule binding domainwhich attaches tomicrotubules [29, 30].When the
motor end is free, the dynein is transportedwith theMTbound to itsfixed endwithout applying any force to it.
Given themotor’s small size, the orientation of such amotor is dominated by Brownianmotion, i.e. is random.
If a freemotor head is closer than a characteristic capture radius rcap to anotherMT, it binds with a probability

t= DP tb b, whereDt is the time step size, and tb is the characteristic binding time. Should a free end be close
enough to severalMTs to bind them, its total binding probability Pb stays the same, and one of the candidate
MTs is chosen randomly. Finally, for the binding locationwe choose the perpendicular projection of the dynein
center onto the targetMT. Boundmotor ends walk towards theminus end of theMT they bind to, and exert a
spring force and torque ( k= -( )F el lmotor

D D D
0

D, = ´T r Fmotor
D

motor), where lD, kD are the dynein’s current
length and its spring constant, respectively, eD is the direction of theHookean spring force along the direction of
dynein, and rD is a vector pointing from the center ofmass of aMT to the point where the dynein binds and
applies aHookean spring force. Consistent with earlier workwe impose a force velocity relation relation [13] and
set the velocity

= - <( ( )) ( )v v F F F F1 min , 1 iff 3M
motor stall motor stall

and v=0, otherwise. Here, vM and Fstall are themotors free velocity and stall forces, respectively.
All boundmotor ends can stochastically unbind, with a characteristic time

t t= - -( ( )) ( )F F Fexp , 4u u
0 motor stall motor

which becomes - ( )F Fexp motor stall for F Fmotor stall, see [31], and diverges for F Fmotor stall. Here tu
0 is

the force-free unbinding time. Finally, dyneins that reach theminus end do not immediately detach, but remain
at theminus end, i.e. v=0, keeping the same unbinding frequency.

4.2. Setup and parameters
For this workwe explored howkey aspects of themicroscopicmodel change the emergent behavior of the
network. In particular, we varied the number of dyneins affixed to eachMT,D/M, and the length distribution
ofMTs.

The fullmodel has a large number of parameters. However,many can befixed from estimates in the
literature.We summarize in table 1 the parameters that are kept unchanged throughout the simulations
presented here.We alsofix the number ofMTs in our simulations to be m10 M, which is the approximate initial
concentration found in experiments with 5–25 μMof taxol. Following the experimental results, theMT length
distribution is taken to be lognormal with parameters m s( ), , withσfixed at 0.5. Note that in simulationwe use
shorterMTs than in the experiments due to limitations in computational resources, see appendixD.

In the simulations presented here, eachMT carries the same number,D/M, offixed dyneinmolecules,
attached at random locations on theMT that carries them.Note that this is different from the assumptionsmade
in earlier work [7], which has dyneins allfixed to theminus ends ofMTs. This difference ismotivated by the
numerical observation that networks with all dyneins atminus endswill precipitate into asters, while networks
with dyneins randomly affixed toMTs aremore percolated and globally contract. It is unclear whether this
difference between experimental results and the simulations presented here is due to experimental complexity
not fully captured in the current simulations. Further exploring the effects ofmotor localization on the dynamics
and organization ofmicrotubule networks is a future research direction.
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All of our simulations are performed in a simulation box of size m´ ´12 8 8 m, with periodic boundary
conditions along the long direction,mimicking the experimental geometry. The initial state is a random
arrangement ofMTs, inwhich all dyneinmotor ends are unbound.

4.3. Simulation results
Figure 3 shows a representative example of the numerically observed contractions. After an initial phase of
30 s, inwhichMTs locally rearrange and cluster, bulk contraction driven by dyneins begins. It takes~100 s to
create a single, fully percolated network. The systemhas approached a steady state at500 s, where the network
has contracted to a cylindrical ribbon along the periodic direction of the simulation box.

To compare the simulations to experiments, we calculate the fraction contracted

 =
-( ) ( ) ( )t

R R t

R
, 50

0

fromour simulations. Here,R(t) is the radius of a cylinder alignedwith the periodic direction, and centered
around theMTcenter ofmass of the systemportionwhich contains 50%of the totalMTmass. By fitting  ( )t to
the saturation exponential, e.g.equation (2), we nowobtain a contraction timescale τ, and afinal fraction
contracted ¥, which can be directly compared to experiments. Aswas done forfitting the experimental results,
we ignore the very early stages of contraction  <( ( ) )t 0.1 , since theymostlymirror the initial rearrangement of
the network and not the global contraction dynamics.

Earlierwork [7]has shown thatτdependson the initial system size. Since ournumerical system is far smaller
than the experimental one,wedonot expectτ to quantitativelymatch experiments, but only to reproduce trends
with varying parameters.Using theparameters from [7]whichweremeasuredbyfitting a functional form to the
characteristic timescale versus initial systemwidth curves for systemswith 2.5μMtaxol, and a system size of 8μm,
we expect a contraction timeof t » 90 s, which is close to the time scales onwhichournumerical systemcontracts.

Table 1.The parameters fixed in simulations.

Parameter Explanation Value Reference

lD
0 Dynein free length 40 nm Estimation

Fstall Dynein stall force 1 pN Estimation [31]
kD Dynein spring constant m -1 pN m 1 Estimation [32]
rcap Dynein capture radius = l80 nm 2 D

0 Assumption

vM Dyneinmaxwalking velocity 1 μm s−1 Estimation [33]
tb Dynein binding timescale -10 s3 Assumed to be short

tu
0 Dynein unbinding timescale 10 s Estimation [17, 33]

η Fluid viscosity m - -0.02 pN m s2 1 Estimation [34]
kBT Energy scale at 300 K m´ -4.11 10 pN m3 300 K

Figure 3.Motor proteins contract theMTnetwork. The snapshots are taken at different times, for the simulation case of
m=L 2 mmean . In this simulation =D M 2whichmeans two dyneins are randomly placed on eachMT at the beginning of the

simulation. TheMTs are colored in blue, theminus ends aremarked by green, and the dyneins are colored in red. The simulation box
is set to be periodic in the x direction (the horizontal direction in thefigure), and unbounded in the y and zdirection. The simulation
box size m= ´ ´12 8 8 m, and 1365MTs and 2730 dyneins are tracked.

7

New J. Phys. 19 (2017) 125011 P J Foster et al



Thefinal fraction contracted, ¥, is easier to directly compare between experiments and simulation, since it
does not depend on system size. Encouragingly, for the case of =D M 1, the simulated contraction produces a
similarfinal fraction contracted of  »¥ 0.55, as in experiment, (figure 1(D) andfigure 4). Note that here only
taxol concentrations of 5, 10, 25μMshould be directly compared since the other conditions change the initial
density of the system to valueswhich differ significantly fromour simulations.

To further test our numericalmodel, we investigated how the contraction timescale varies with the number
ofmotors in the system. As expected from [7], increasingD/M to 2 drastically changes the contraction timescale,
with onlyminor changes in ¥ (figure 4(A)). Further increasingD/M does not significantly change either the
timescale τ, or thefinal fraction ¥.We also testedwhether ourmodel can reproduce the changes of contraction
times for different length distributions ofMTs, corresponding to different taxol concentrations, as seen in
experiment. Indeed, as themean length ofMTs is increased, the contractions speed up (figure 4(B), table 2), yet
thefinal fraction contracted does not change significantly. This is again consistent with experimental results,
(figure 1).We conclude that our simulations are consistent with key features of the experiments.

Having gained confidence in our simulation tools, we next inspect important aspects of the physics of the
MTnetworkwhich are experimentally difficult to access.Wefirst ask how the system stress changes during the
contraction process.We extract the stress fromour simulations using the expressions detailed in appendix C. In
particular, we can distinguish between the stress tensor contributions from steric collisions,Scol, and the active
stress tensor generated bymotors,Smotor.

Figure 5 showsScol,Smotor, and  ( )t , for m=L 2 mmean anddifferent numbers ofD/M, as a functionof time.
Fromthis data,wemake four keyobservations. First,weobserved that the average stress tensorsScol andSmotor are
dominatedby their diagonal components, and the three diagonal components arewithin~20% of eachother.We

report infigure 5 the average of the trace of the stress tensor:S = S + S + S( )xx yy zz
col 1

3
col col col , andSmotor is calculated

similarly. Second,wefind that at lowD/M, i.e. 1 or 2, the growthof  ( )t andof both stress contributions occur on the
same timescale.This breaksdownat largerD/M forwhich the stresses growand saturatemuch faster than  ( )t .
Third, increasingD/M leads to increasingSmotor,whileScol rapidly saturates. Fourth, asScol saturates, the overall
contraction timescale ceases todecrease (see alsofigure 4). These observations point to the local structure formation
changing significantly for largerD/M, whichwe further explore.

Figure 6 shows the spatial distributionofMTvolume fraction,motor stress, and collision stress for the =D M 2
and4 cases. At 60 swith =D M 4, theMTs are quickly draggedbydyneins intodense local clusterswhile the

Figure 4.The contraction process varies with the dynein numberD/M andMT length Lmean. Each  ( )t data curve is shownwith its
saturating exponential fit(2). The numbers ofMTs are set at the same value as the m25 M taxol case in experiments, for all simulations
discussed in this paper.More detailed setting about the parameters andMT length distribution can be found in appendices.

Table 2.Thefitted characteristic contraction time τ for
different lengths ofMTs at =D M 2. All simulations start
from the same network density as the one shown in
figure 3.

Lmean (μm) 1.618 2.007 2.297 2.511

τ (s) 68.6 39.4 33.4 28.8
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clusters havenot contractedmuch toward the center.At this stage,Scol andSmotor have significantly increasedbut
 ( )t remains low. In contrast, for =D M 2 the distibution at t=60 s ismuch less clustered.Consistently for

D M 2 the growthofScol andSmotor ismore synchronizedwith  ( )t . This observation suggests a possible
continuummodel topredict thebehavior of the entire networkbasedon an ‘equation-of-state’ relating the local
microscopic parameters and thebinding-walking-unbinding cycles of dyneins to the localmechanical stress tensors
Scol andSmotor, as the driving ‘force’of the contraction,whichwill be the subject of futurework.

5.Discussion

Herewe examinedhowthedynamicsof bulkMTnetwork contraction inXenopus extracts varywith taxol
concentration.Wefind thatusingdifferent taxol concentrations, thenetworks contract to approximately the samefinal
density, even though the initial density of thenetworks varies by a factor of≈3.6.While thefinaldensityof these
networks is constant,wefind that the timescaleof the contractionprocess increaseswith increasing taxol concentration.
In thehigh taxol regime,where the initial networkdensity variesbyonly≈14%,wefind that the timescale increasesby a
factor of≈2.5, arguing that the timescale isnot simply varyingproportionally to the initial networkdensity.The length
distributionsof theMTsweremeasured for each taxol condition, and itwas found that the averageMT lengthdecreases
with increasing taxol concentrationbya factor of≈1.7 across the tested conditions.Wepostulate that it is this change in
MTlength thatdrives the changes in contraction time, and turn to simulation to test this idea.

Webuilt a simulation tool to revealmoremicroscopic informationof thenetwork contractionprocess, and
found that byplacing dyneins randomlyon eachMT,we could simulate a contractionprocess consistentwith
experiments.We found that the characteristic contraction timescale,τ, is decreased by increasing only theMT
length,which is consistentwith the experimental result that shorterMTs at higher taxol concentration contract
slower.Wealso investigated the effect of dyneinnumber on the contractionprocess. Increasing thenumber of
dyneinperMT,D/M, from1 to 2 spedup the contraction significantly, but further increasing the dyneinnumber
didnot affect the contraction. Instead, an increase ofD/M generated a local clustering structure at the early stage of
the contraction, and then the local clusters contract. This process is clearly revealedby the spatial-temporal variations
of collision andmotor stresses, and their correlationwith the contractionprocess  ( )t . This indicates thatwe could
possibly build amicroscopic ‘equation-of-state’ to improveourprevious coarse-grainedmodel [7] to directly relate
the stress terms in themodelwithmicroscopicmotor behaviors,whichwill be the focus of futurework.

Figure 5.The correlation between  ( )t and stress varies withD/M. The fraction contracted is shown in red. Themotor stress Smotor

and the collision stress Scol are colored in dark and light blue, respectively. The stresses are calculatedwith themethod described in
appendix C,where the volumeV is the volume of the entire simulation cell of m´ ´12 8 8 m. Here the scalar stresses are calculated
as the average of diagonal components of the stress tensor: S = S + S + S( )xx yy zz

col 1

3
col col col , and Smotor is calculated similarly.
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AppendixA. Algorithm forMTnetwork simulation

The simulation program tracks themotion ofMTs driven bymotor proteins bymodelingMTs as rigid
spherocylinders andmotor proteins asHookean springs with crosslinking ends. At thismicron-sized scale the
motion of objects influid is overdamped, andMTs are trackedwith the following simple explicit Euler time
stepping, where Xi is the center ofmass and q i is the unit orientation vector ofMT i:

D = + D + D· ( ) ( )X M F F Xt , A.1i i i i i
Bmotor col

g
D = + ´ D + D( ) ( )q T T q qt

1
. A.2i

i
R i i i i

Bmotor col

The forces F motor and F col stem frommotor proteins and collisions betweenMTs, respectively,withT motor andT col

being the corresponding torques. FinallyDXB andDqB are theBrownian contributions to themotionofMTs.
Themobilitymatrix Mi describes the effect of hydrodynamic drag. In principal allMTs are fully coupled

through the Stokes equation, but in this workwe ignore this coupling.Here, the Mi of eachMT i is
approximated as if eachMT ismoving individually by itself in unboundedfluid. Mi takes a 3×3 symmetric
matrix formbecausewemodeled eachMT as an axisymmetric spherocylinder:

g g= + -- ^ ( ) ( )M q q I q q , A.3i i i i i i i
1

where I is the 3×3 identitymatrix. gi and g
^
i are the translational drag coefficients formotions parallel and

perpendicular to the axis of theMT i, depending on the fluid viscosity η, theMT length Li, and the diameterDi.
Drags are solvable from the slender-body theory [35]:

Figure 6.The spatial distributions ofMT volume fraction and stress vary with the dynein numberD/M. Snapshots are taken at
=t 60 s and =t 500 s for both cases. On the left: m=L 2 mmean and =D M 2. On the right: m=L 2 mmean and =D M 4. The

spatial distribution is calculated by spatial binningwith a regularmesh, and themesh grid size m= 0.5 m . Here the scalar stresses are
calculated asmentioned in figure 5.
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where = - +( ( ))b D L1 2 lni i i is a geometric parameter. ForMTswe have L Di i, and » ( )b L D2 lni i i , and
sowe have g g»^ 2i i

. In simulations, we used the same diameterD for allMTs.

At each timestep the Brownian displacement and rotationDXi
B andDqi

B are generated asGaussian random
vectors. Themeans are zero, while the variances are given by the localfluctuation-dissipation relation:

áD D ñ = D ( )X X Mk T t2 , A.5i
B

i
B

B i

gáD D ñ = - D( ) ( )q q I q qk T t2 . A.6
i
B

i
B

B i i i
r

We follow themethod of Tao et al [36] to generate these two random vectors.
For equation (A.1), themotor force and torque are described in themain text. The collision force Fi

col and
torque Ti

col are calculated in the simulation as detailed in appendix B.

Appendix B. Collision betweenmicrotubules

When twoMTs i and j are close to each other, the shortest distance dijbetween their axes is calculated. If dij is
smaller than themicrotubule diameterD then a collision force F col is calculatedwith aWCA-type repulsive force
to prevent them fromoverlapping and crossing each other. The originalWCApotential is stiff andposes a severe
limit on themaximum timestepDt in simulations.Weused a softenedWCApotential to enable larger timesteps:

 b
a a

= -
+

-
+

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥( )

( ) ( )
( )d D F d

k T

D d D d D
: 24

1 2
, B.1Bcol

7 13

b b b< = +
¶
¶

-b=( ) ( ) ∣ ( ) ( )d D F d F D
F

d
d D: , B.2L d D

col col
col

where ( )F dcol is a shiftedWCApotential with a shift parameterα. For a = 0, ( )F dcol becomes theusualWCA
repulsive force. ( )F dL

col is a linearized continuationof ( )F dcol for b<d D, to prevent the blow-upof collision
force at smalld. In simulationswefix a = 0.1and b = 0.95, to preserve the repulsionbetweenMTs, but enable
the simulations to completewithin reasonable simulation time.Alsodue to theuse of a soft repulsive force instead
of an accurate rigid interaction, the effective diameter ofMTs are estimated to be about~80% of the specified
diameterD [36]. Therefore in simulationsD is set to 30 nm to reproduce the truediameter 24 nmofMTs.

AppendixC. The calculation of stress and its spatial distribution

The stress canbe calculated by the binding force and collision force in equation (A.1). Since both contributions are
pairwise betweenMTs, and satisfyNewton’s third law,we can calculate the stress tensor pair-by-pairwith the virial
theorem.Also, because theMTs are thin-and-long slender cylinders, the calculation can be further simplified [37].

For twoMTs i and j, their contribution to the total system stress is a 3×3 tensor formedby theouter product:

s = - -( ) ( )( ) ( ) ( ) ( )x x f , C.1i j i j i j, ,

where = -( ) ( ) ( )r x xij i j , is the vector pointing from the forcing location ( )x j onMT j to ( )x i onMT i. ( )f i j, is the
force from j to i. For the collision force, ( )x i and ( )x j are the two collision points on eachMT. For the dynein
binding force, ( )x i and ( )x j are the two binding locations (two ends) of one dynein on the twoMTs. Ifmore than
one dyneins bind i and j, the contribution from each dynein is calculated and added independtly.

Each s( )i j, contributes to the total system stress tensor at the spatial location +( )( ) ( )x x 2i j , which is the
center of the two forcing location. For a certain volumeV in space, the average stress tensor in this volume is a
simple arithmetic average of all s( )i j, in this volume:

å ås sS S= - = -
Î Î

( )( ) ( )
V V

1
,

1
. C.2V

V

i j
V

V

i jcol , ,col motor , ,motor

AppendixD. The length distribution ofmicrotubules

The length distribution ofMTs is taken to be given by a lognormal distributionwith parametersμ andσ:

p s
= = =m s m s

-
+ -

m
s
-

( ) ( )
( ( ) )

P L
L

L L
e

2
, e , e . D.1mean

2
mode

Llog 2

2 2 2 2
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In the simulations, to detect the binding and collision events a nearest neighbor search procedure is
performed during each timestep, and longMTs significantly slow down its efficiency. Also, due to the periodic
boundary condition used in simulations, aMTwith length of the simulation box sizemay interact with its own
periodic image, and generates some unphysical results. Therefore in simulations the lognormal distribution is
clipped at Lmax, and themean length of theMTs changes:

=
m m s

s

m
s

+ - +

-

s ( )
( ) ( )

( )

( )
L

e Erfc

Erfc
. D.2

L

L
mean

log

2

log

2

2
2

max
2

max

While themode length does not changewith Lmax.
In simulationsweused m=L 4 mmax , which is half of thewidthof a simulationboxwith size m´ ´12 8 8 m.

We alsofixed s = 0.5 tomatch the experiment data, and the actual simulation settings are detailed in tableD1.
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