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a b s t r a c t

We study the dynamics of a layer of viscoelastic fluid, in the Stokesian regime, that is driven from below
by a 4 � 4 checkerboard pattern of rotating and counter-rotating disks. At low disk rotation rate (low
Weissenberg number) the fluid flow response is slaved to the geometry of this forcing and divides into
many steadily rotating cells, each contained within invariant manifolds issuing from hyperbolic stagna-
tion points. As the rotation rate increases these fluid cells begin to oscillate periodically in a synchronized
fashion. At a yet higher rotation rate, this temporally periodic flow disappears and is replaced by a richer,
‘‘turbulent’’ dynamics where the flow is delocalized from the forcing and has fluid cells that are contin-
uously destroyed and reformed.

Published by Elsevier B.V.
1. Introduction

Newtonian fluids in the low Reynolds number limit (i.e. Stoke-
sian) have a linear response to external forcing, and can only display
steady flow in response to steady forcing. Hence, a Stokesian New-
tonian fluid cannot develop any intrinsic dynamics or flow instabil-
ities as would be associated with turbulence at high Reynolds
number. Turbulent flow is associated with the convective terms in
the Navier–Stokes equations which introduce nonlinearity and de-
stroy the reversibility of the Stokesian case. Simple models of visco-
elastic polymer solutions, such as the Oldroyd-B or FENE models [1],
show that viscoelasticity reintroduces convective nonlinearity
through polymer stress transport, even in the Stokesian case, and
that the storage and release of elastic stress destroys flow reversibil-
ity. Thus, the possibility of having rich dynamics despite the absence
of fluid inertia motivated experimental studies of the response of
viscoelastic fluids to rotational shear or to flow through wavy chan-
nels [2,3]. These studies showed that even at low Reynolds numbers
viscoelastic fluids can exhibit some aspects of turbulence such as
unpredictability and convective fluid mixing (see [1] for related ear-
lier work on nonlinearity and flow unsteadiness).

Viscoelastic fluids in a laboratory setting are typically composed
of Newtonian solvents containing a suspension of polymers. These
polymers can be stretched and reoriented, particularly by exten-
sional flows near hyperbolic stagnation points [4], and can display
stretch-coil transitions [5,6]. Likely related to this are observations
of symmetry breaking and spontaneous oscillation of viscoelastic
fluids in micro-fluidic channels [7–9]. Simulations of a viscoelastic
B.V.
fluid under a ‘‘four-roll-mill’’ forcing show transitions to flow
asymmetry, followed by transition to a complex dynamics with
multiple frequencies of oscillation, coherent structures, and fluid
mixing [10,11]. Similar transitions to temporal oscillating states
has been observed in a two-dimensional Kolmogorov flow geome-
try [12].

Here, in an experimental study most closely related to the the-
oretical studies of Thomases et al. [10,11], we consider the dynam-
ics of a viscoelastic fluid evolving over a checker-board array of
rotating and counter-rotating disks. We find that at low to moder-
ate rotation rates the flow transits from being an array of steadily
rotating fluid cells to a set of oscillating, synchronized cells with a
complex temporal phase arrangement. At yet higher rotating rate
this synchronized state is destroyed and is replaced by a turbulent
roiling dynamics with flow patterns delocalized from the regular
forcing background.
2. Experimental setup

In our experiment, the forcing lattice is composed of 4 � 4 iden-
tical rotating disks (Fig. 1) and the lattice spacing is fixed at
19.1 mm. Two sets of disks with different radius r (3.2 mm and
6.4 mm) are used in the experiment, with the separations between
adjacent disks L being 12.7 mm and 6.4 mm respectively. Each disk
is driven by a rotary shaft that is kept vertical by a pair of embed-
ded ball bearings. Each shaft is coupled to their immediate neigh-
bor by spur gears, and all driven together by one stepper motor. In
this way, all the disks rotate at the same frequency f (as the stepper
motor), and any pair of adjacent disks rotate in opposite directions.
Over the rotating disks lays a 1 cm thick layer of fluid. The Rey-
nolds number is defined as Re = qf r2/g, where q is the fluid density
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Fig. 1. Experimental setup. A layer of fluid is driven from below by a 4 � 4 array of
rotating disks. The fluid is illuminated from above using a two-way mirror through
which a top view of the flow pattern is also captured by an overhead high speed
camera.
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Fig. 2. Surface morphology and flow pattern of a Newtonian fluid above the 4 � 4
array of rotating disks. (a) Rotating fluid ‘‘cells’’, seen as dark circles in the surface
reflection, result from disk rotation. These cells have depressed centers above each
rotating disk, as illustrated in a side-view schematic (a0). (b) The spatially averaged
strain rate h _ei near the free surface as a function of disk rotation frequency. Two sets
of rotating disks of different sizes (r = 3.2 mm and r = 6.4 mm) are used with fixed
distance between adjacent disk centers (L = 19.1 mm). The depth of the fluid h is
fixed at 11 mm. The solid lines are linear fits to the experimental data. (c) An
example of the flow pattern at an extensional stagnation point as represented by
the streamlines (curves).
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and g the shear-viscosity of the fluid. The viscoelastic fluids we use
here are typical Boger fluids [13], which are elastic but with nearly
constant shear-viscosity. In our experiment, Re never exceeds 0.3,
so that the inertia of fluid is negligible. The viscoelasticity of the
fluid is characterized by a dimensionless Weissenberg number,
Wi ¼ _cs, where _c is the characteristic shear-rate of the flow, and
s is the relaxation time of the fluid.

Bulk flow patterns and stresses can be partially characterized by
the surface morphology. The free surface bulges upwards where
the internal stress is compressive (e.g., near the hyperbolic stagna-
tion points in the Newtonian case), and downwards where the
internal stress is extensive (e.g., at the center of Newtonian flow
eddies). Surface morphology can be revealed by capturing the
reflection of a diffusive light source, stronger in the center but
gradually weaker toward the edges, shining from above (see
Fig. 1). In our set-up, a high-speed video camera captures light re-
flected at nearly zero angle-of-reflection where a spatial overlap
between the camera view and the light source is accomplished
by using a two-way mirror oriented 45� away from the horizontal.
The inclination of the fluid surface is shown by the intensity of re-
flected light: the darker the image, the more inclined the free sur-
face, and vice versa. The ambiguity between a valley and a peak of
the surface (both have strong reflection) can be resolved by any
side-view of the fluid surface.

We find that at low to moderate rotation rates the driven fluid
flow is close to being two-dimensional, though it is in fact weakly
three-dimensional due to the forcing geometry. To characterize the
nature of the flow field, we use the typical resident time of tracer
particles (�0.05 mm in size) that appear within the illumination
sheet. From this time scale tres and the thickness of the light sheet
d (�0.55 mm), we obtain a typical speed in the vertical direction
w = d/tres. The dimensionless ratio of the surface flow speed
[U = (v2 + u2)1/2] to the vertical speed, Q = U/w, serves as a rough
indicator of the two-dimensional quality of the flow field. We refer
to the quantity Q as the ‘‘2D-quality factor.’’

In each flow setting (at given fluid viscosity and Wi), at least
three tracer particles were used to compute the resident time tres

and consequently the 2D-quality factor Q. The particles are se-
lected at different distances from the center of rotating disks, so
that our characterization is not location specific. When the rotation
frequency of the disks is low (f = 2 Hz) or when the free fluid sur-
face deformation is small, we find that Q is large, typically around
200. For a Stokesian Newtonian fluid, the amount of surface defor-
mation is determined by the competition between spatial stress
due to viscosity, � gf, and gravity, �qgh (where q is the fluid
density, g the acceleration due to gravity, and h the fluid depth).
Therefore, the greater the ratio qgh/(gf), the greater the 2D-quality
factor Q.

In the viscoelastic case (with g � 1 Pa s) and at moderate
Weissenberg number (e.g., Wi = 1.28), we find Q � 54. At higher
Weissenberg number (e.g., Wi = 8.42), Q decreases to around 18.
More specifically, in the Newtonian case, we observe that tracer
particles spiral inwards toward the axis of the disk – above which
one finds the trough of the free surface – indicating a secondary
flow that moves downward. Similarly, in the viscoelastic case we
find that a secondary flow moves up near the disk’s center. Since
factor Q is always greater than 18, the secondary flow velocity in
the vertical direction never exceeds 6% of the horizontal flow
velocities.

3. Observations

As a first test we introduce a Newtonian fluid, here a layer of
99% glycerol of depth h � 1 cm. The fluid layer displays a steady
flow pattern when driven by the steadily rotating disks. The flow
develops and saturates almost immediately (within 10 ms) with
onset of disk rotation. As shown in Fig. 2a, there is a vortex sitting
above each disk, with the set aligning perfectly with the forcing lat-
tice. The free surface is depressed above each disk, marking the low
pressure centers of the rotating fluid. The fluid eddies meet at rel-
atively high ridges. The flow pattern is stable during the experi-
ment. Once the disks cease rotation, the free surface relaxes
almost immediately.
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Fig. 3. Surface morphology and flow patterns of a viscoelastic fluid (200 ppm PAA
in 97% glycerol) above the rotating disk array, with Weissenberg number Wi = 4.9.
(a) The fluid initially forms a square lattice. The free surface of the fluid develops an
inverted geometry [illustrated by a side-view (a0)] as compared to the Newtonian
case, within a small time interval (t < 0.5 s). (b) As polymer stress builds, the fluid
cells evolve and become misaligned relative to the forcing lattice. (c) When the
disks stop rotating, the cells do not relax instantly, but are instead sustained by the
residual stress for a few seconds. (d) The surface reflectivity averaged over the
entire lattice as a function of time. The stages shown in (a), (b), and (c) are indicated
by the annotated arrows.
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With disk rotation the resultant flow depends upon disk size
and their rotation rate. Other geometric factors, such as the ratios
L/r and h/r, also play roles. Despite the presence of device bound-
aries, the flow patten can be well-described as an array of vortices
and extensional stagnation points. The extensional strain rates
near the free surface, defined as _e ¼ 1

2
@v
@y � @u

@x

�
�
�

�
�
�, are obtained by Par-

ticle Image Velocimetry (PIV) measurement. Here, u and v are the
two components of fluid velocity ~V along directions x̂ and ŷ,
respectively. The flow is time-independent in the Newtonian,
low-Re case with the strain rate depending on the intensity and
geometry of the forcing. The flow pattern is invariant, despite vary-
ing the strain rate, if the same geometric factors are maintained. As
shown in Fig. 2b, the mean strain rate h _ei (spatially averaged over
the middle four fluid cells) is linearly proportional to the rotation
frequency f for a given size of the rotating disks. This demonstrates
that the fluid inertia is negligible within our tested regimes. The
strain rate is sensitive to the geometric factors. By varying the rota-
tion frequency and disk size r (with the geometric factors L/r and h/
r varying accordingly), we can adjust the mean strain rate h _ei by a
factor of two decades (from 0.1 s�1 to 10 s�1). A typical flow pat-
tern, from the PIV measurement, at a hyperbolic stagnation point
is shown in Fig. 2c.

We now examine how a viscoelastic fluid responds to such forc-
ing. An oft-used viscoelastic fluid is a dilute suspension of long-
chain polymers – Polyacrylamide (PAA) of 1.8 � 107 in molecular
weight (MW) – suspended in a 97% glycerol solution [14,7,9]. Here
two different concentrations of polymers are used: c = 40 and
200 ppm. The viscoelasticity of these two fluids is characterized
using a TA Instrument AR2000 Rheometer at room temperature
(T = 20 �C). These fluids are typical Boger fluids [13], even though
they slightly shear-thin. For polymer concentration of 40 ppm, its
viscosity ranges from 0.88 (at 1 s�1) to 0.79 Pa s (at 100 s�1), with
its mean g = 0.82 Pa s. For 200 ppm solutions, the viscosity ranges
from 2.17 (1 s�1) to 1.28 Pa s (100 s�1), with its mean
g = 1.48 Pa s. A Boger fluid is often described by the Oldroyd-B
model [15,16], and from this the relaxation times of the fluids s
can be estimated from the first normal stress difference coefficient
W as s = W/[2(g � gs)] [16], where gs is the viscosity of the Newto-
nian solvent, i.e., the 97% glycerol solution with gs = 0.76 Pa s. The
coefficients W are obtained by the mean of the first normal stress
difference coefficient when the shear rate is between 1 s�1 and
10 s�1, where they vary significantly less than at higher shear rates.
These coefficients W are measured to be 0.054 Pa s2 for c = 40 ppm
and 3.9 Pa s2 for c = 200 ppm, which give the approximate relaxa-
tion times of s = 0.48 s and s = 2.7 s, respectively.

Since we expect that polymer stretching will be driven primar-
ily by flows at extensional stagnation points, we define a dimen-
sionless Weissenberg number as Wi ¼ _ecs, where _ec is h _ei
calculated from measurement of the Newtonian fluid under identi-
cal forcing (as used in [10]). The Weissenberg number character-
izes how fast the flow is driven relative to its relaxation time,
and is increased either by increasing the external forcing rate or
by increasing the polymer concentration (which increases the
relaxation time s).

With the onset of disk rotation, the free surface of the viscoelas-
tic fluid is divided into cells initially aligned with the square lattice,
as shown in Fig. 3a, as is similar to the Newtonian case. Unlike the
Newtonian case, the fluid cells quickly bulge upwards, becoming
dome-like structures with convex top surfaces (shown in
Fig. 3a0). This observation of upwards bulging is reminiscent of
the well-known rod-climbing effect [17,18], and corresponds to
the temporal development of non-Newtonian stresses within the
bulk.

The fluid cells evolve in time and it takes about 10 s (somewhat
longer but on the order of s) before the internal polymer stress be-
comes fully developed (Fig. 3b). If the disks are halted the flow re-
laxes and the free surface flattens out. This time-scale reveals the
fluid viscoelasticity, and provides an estimate of the fluid relaxa-
tion time (Fig. 3c). To do this, we use the reflectivity of the fluid
surface to quantify the flatness of the free surface (a flat surface ap-
pears bright whereas an inclined surface will appear dark). As sug-
gested in Fig. 3d, the relaxation of the mean surface inclination,
which is roughly the inverted surface reflectivity, can be fitted by
a decaying exponential. The decay rate b estimates the inverse of
the fluid relaxation time s. For a suspension of 200 ppm PAA, the
decay (or relaxation) rate b = 0.42 ± 0.06 s�1, which gives a time-
scale s � 1/0.42 = 2.4 s and is consistent with the rheology mea-
surement (s = 2.7 s).

Beyond the initial transient dynamics the spatial flows exhibit
slow oscillations. To compute their time-scale Tp we compute the
autocorrelation function of the surface reflectivity in time and lo-
cate its first (and strongest) peak. Surprisingly, this time-scale
Tp = 1/fp is much longer than the rotation period of the disks (1/f),
typically by an order of 10. As the driving frequency increases,
the time-scale Tp decreases monotonically for a given viscoelastic
fluid. We attribute this slow oscillation of flow to the viscoelastic-
ity of the fluid. It is thus natural to make Tp dimensionless by nor-



Fig. 5. Dependence of the surface morphologies on the Weissenberg number Wi. (a)
At low Wi (Wi = 0.22) fluid cells are aligned with the forcing lattice. (b and b0) At
intermediate Wi (Wi = 1.6) fluid cells become distorted, and oscillate slowly
between (b) and (b0) patterns that have left–right (or up–down) symmetries
reversed. (c) At yet higher Wi (Wi = 9.7) the individual fluid cells are less
distinguishable and fluctuate in location and in size.
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malizing it by the relaxation time s. In Fig. 4, we plot the normal-
ized oscillation frequency of the flow pattern fps against the Weiss-
enberg number Wi. We observe that for the two different polymer
concentrations, and for differing forcing geometries (determined
by disk size r and fluid depth h), all the experimental data collapse
onto a single curve. This suggests that the oscillation rate of the
flow pattern is governed solely by Wi. As shown in Fig. 4 (inset),
the flow starts to oscillate only when Wi is above a small threshold,
Wi J 0.2. The solid lines are drawn at different scales from a fit-
ting function fps ¼ 0:13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wi� 0:2
p

, suggesting a supercritical bifur-
cation from a laminar state to oscillation.

Detailed dynamics of the fluid cells depends sensitively on the
Weissenberg number. Fig. 5 illustrates how Wi demarcates differ-
ent dynamical behaviors. At extremely slow driving (Wi� 1), the
fluid approaches the Newtonian limit. The corresponding flow is
steady, with the cells aligning well with the forcing lattice
(Fig. 5a) and the deformation of the free surface relatively small.
When _ec is comparable to s�1 ( Wi � 1), fluid cells oscillate in a reg-
ular fashion. In particular, over one half of an oscillation period the
cellular flow pattern evolves to a nearly identical image except
having reversed left–right (or up–down) symmetry (Fig. 5b and
b0). The oscillation period matches the time-scale Tp obtained from
the autocorrelation analysis. With _ec further increased (Wi � 10),
the periodic oscillations disappear, the fluid cells differentiate in
size and oscillate irregularly. The flow is quite agitated and has
expanding cells that may merge with their neighbors, while
shrinking cells may eventually vanish (Fig. 5c). Moreover, the
now-roiling fluid cells are no longer easily identified with the forc-
ing lattice.

PIV measurements near the fluid surface illustrate how the flow
field reflects the dynamics of the surface morphology. The PIV
measurements are performed at DH = 1 mm below the free sur-
face. To set up the PIV measurement, a horizontal light sheet is illu-
minated from the side by a continuous laser (800 mW, k = 532 nm)
through a cylindrical lens, aligned 1 mm below the free surface.
The thickness of the light sheet is measured to be
d = 0.55 ± 0.05 mm. Polyamide particles of 50 lm in diameter
(Dantec Dynamics) are used as seeding particles. The images of
particles are viewed directly from an overhead high-speed camera,
as shown in Fig. 1.

The deformed free surface can cause error in the PIV measure-
ments due to refraction: a fluid dome acts like a lens and shifts
the location of any tracing particle. However, the deformation of
Fig. 4. The oscillation frequency of the flow pattern, fp = 1/Tp, normalized by the
fluid relaxation time s as a function of Wi. This data set is for different disk radii r,
fluid depths h, and polymer concentrations c: �, r = 6.4 mm, h = 11 mm,
c = 200 ppm; h, r = 3.2 mm, h = 5 mm, c = 200 ppm; s, r = 3.2 mm, h = 11 mm,
c = 200 ppm; 4, r = 6.4 mm, h = 11 mm, c = 40 ppm. The inset shows a zoomed-in
view near the origin. Flow patterns start to oscillate (fp > 0) when Wi J 0.2. Solid
lines are drawn from the same function fps ¼ 0:13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wi� 0:2
p

and shown at different
scales.
the free surface is typically small in our experiments, up to
DH = 1 mm in height over a 20 mm horizontal span. Assuming a
perfect-dome geometry, its radius R is about 50 mm. Using the par-
axial lens equation l0 � l = (n � 1)DHl/(nR), where n is the refraction
index of the fluid, l and l0 are the real and apparent offsets of the
tracing particle measured from the dome center, respectively. Thus
the quantity l0 � l is the distortion of the particle position measure-
ment caused by refraction. When close to the worst situation
where the fluid surface is most deformed, our estimate gives
l0 � l < 0.05 mm, given that l = 10 mm and R = 50 mm (DH�
1 mm). The maximum distortion is thus comparable to the particle
size, which is about 0.05 mm in diameter. The error of PIV mea-
surements due to surface distortion is thus negligible within our
experimental regime.

Fig. 6 shows the resolved flow field above the middle four disks,
at three different values of Wi close to those used in Fig. 5. When
the strain rate is low (Wi� 1) the flow field is steady, and as is
consistent with the surface morphology shown in Fig. 5, the flow
can be divided into square fluid cells (Fig. 6a). A stagnation point
is located at the intersection of any 4 neighboring cells. When
the strain rate is sufficiently high (Wi � 1), the flow pattern is dis-
torted from the square lattice, though with the stagnation point
still close to its original location (Fig. 6b and b0). The flow pattern
is also no longer steady but shows regular oscillations. Fig. 6b
and b0 are two snapshots of the resolved flow field, taken half a per-
iod apart (typically �10 s). During each period, two vortices of the
same sign (e.g., blue1 vortices in Fig. 6b) move close to each other
while the other two (red vortices) are pushed away from the stagna-
tion point. The two vortices that move apart will eventually move
back and take over the center position (Fig. 6b0). As Wi further in-
creases the regularity of the flow breaks down and the flow becomes
unpinned from the forcing geometry (Fig. 6c). The flows that emerge
are also larger than the scale of the forcing lattice.
1 For interpretation of color in Figs. 1–4, 6, and 7 the reader is referred to the web
version of this article.



Fig. 6. Typical flow fields of the viscoelastic fluid above the middle 4 disks at
different Weissenberg numbers Wi. Stream lines are obtained through PIV
measurement. The 2D stream function w of the corresponding flows, obtained by
solving r2w = x where x is the scalar vorticity of the quasi-2D flow, is shown in
color. (a) At low Wi (Wi = 0.22) the flow pattern is nearly Newtonian with counter-
rotating vortices each centered above a disk. (b and b0) When Wi is sufficiently high
(Wi = 1.28) the strength and the position of the vortices fluctuates periodically.
Snapshots (b) and (b0) are half a period apart. (c) At even higher Wi (Wi = 8.42) the
flow field no longer follows the forcing lattice and fluctuates stochastically in space
and time.
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Fig. 7. Temporal behavior of a point velocity in the flow at various Wi. (a) An in-
plane velocity ~V at a fixed point as a function of time t near the free surface at
different Weissenberg numbers Wi. This point is arbitrarily chosen and marked by a
dark dot in the inset of (b), where the circling arrows show the directions of the
underlying rotating disks. Time t is normalized by the rotation frequency of the
disks f0, while the two components of the in-plane velocity, u and v (presented with
symbol ‘�’ and ‘�’ respectively) are normalized by the characteristic linear speed of
the rotating disks 2pf0r. For a Newtonian fluid (Wi = 0) flow is steady. At an
intermediate Wi (Wi � 1) the flow shows regular oscillations. As Wi increases
(Wi � 10) the flow speed further decreases with the periodicity of the oscillating
flow destroyed. (b) The Fourier transform of u with respect to time. With increasing
Wi (Wi = 0, 1.28, and 8.42), the distinctly different spectra show that the flow
transforms from steady state to a periodic oscillation, and thence to a multi-
frequency oscillating (or chaotic) state.
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The PIV measurements allow quantitative analysis of the flow
field. Fig. 7 shows the temporal dependencies of flow velocities
in different Weissenberg number regimes. As shown in Fig. 7a,
the two components (u, v) of the in-plane flow velocities ~V are
sampled at the same location near the free surface (shown by the
dark dot in the inset of Fig. 7b. The local velocities are normalized
by 2pf0r, the linear speed of the disks that rotate at frequency f0.
Fig. 7b shows the spectra of the u component of the local velocity.
It should be noted that very similar spectra are also observed for v
(not shown). In the Newtonian case (Wi = 0), the local velocity is
steady. The temporal independence of the flow is further con-
firmed by the spectra of u(t) (dotted curve in Fig. 7b).

As the flow starts to oscillate at increased Wi (Wi � 1), the mag-
nitude of the local velocity decreases as compared to the Newto-
nian case. The two components of the local velocity (u and v)
oscillate at the same frequency. The flow are surprisingly periodic
despite the fact that the oscillation is spontaneous. The spectrum
of u shows a typical periodic oscillation, where there is a peak at
a low frequency fp as compared to the driving frequency f0, with
the higher order harmonics clearly visible, as shown in solid dark
curve in Fig. 7b. For even higher Wi (e.g., Wi � 10), the magnitude
of the local velocity further decreases (Fig. 7a). As shown by its
spectrum (solid gray curve in Fig. 7b), the oscillation of the local
velocity is composed of multiple modes at various frequencies,
which contribute to the irregular oscillation state of the fluid cells
in the high Wi regime.
4. Discussion

We have demonstrated that a fluid can exhibit complex nonlin-
ear dynamics, even in the absence of fluid inertia, when viscoelas-
ticity plays a role. This is consistent with previous experiments
that used rotational shearing or driven flow through wavy chan-
nels [2,3]. Here the nonlinear dynamics arises through a transition
from steady flows very similar to the Newtonian case, to regularly
oscillating flows, and thence to roiling flows, as the Weissenberg
number is systematically increased.

There are points of similarity and difference with the numerical
studies of Thomases et al. [10,11] who used a geometrically similar
forcing to drive dynamics in a two-dimensional viscoelastic fluid
modeled by the Oldroyd-B equations. Both this study and theirs
show the appearance of oscillations that are slow relative to the
driving period. However, in their study the transition to oscilla-
tions was from a broken-symmetry steady-state which we do not
observe here but which was observed in other experiments et al.
[8,9]. Further, the transition to oscillations here occurs at a much
lower Weissenberg number than the transitions observed in Tho-
mases et al. The complex flows at high Wi regime do resemble
the multi-frequency state observed in the numerical simulations,
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where the fluid cells are delocalized from the forcing background
with the flow velocity frequently altering its directions [10,11].
Unlike the simulations, our experiment drives the fluid by a set
of disks rotating at constant angular velocity instead of through
application of a constant body force. The stresses applied by the
disks depend on the flow field that they generate, which forms a
feedback loop. It is plausible that this feedback mechanism con-
tributes to the periodic oscillation of the flow at the intermediate
Wi regime. Again, this observation is significantly different from
that of steady flows with asymmetry observed in simulations
[19,10] and in other micro-fludic experiments [8,9]. In our experi-
ment, this oscillating flow at the intermediate Wi regime could be
applied for controlled mixing when fluid inertia is negligible (see
[11] for a numerical analysis of mixing flows found in this state).
Moreover, the use of a sixteen-roll-mill (instead of a four-roll-mill)
can produce richer dynamics and enhanced mixing, as observed in
recent simulations [20]. Thus, the difference in lattice geometry
will also contribute to the observed differences between experi-
ments and simulations with a four-roll-mill.

Although the time-scale of the oscillation of fluid cells is appar-
ently set by the Weissenberg number Wi, it is likely that the ampli-
tude of the oscillation is sensitive to other viscoelastic parameters,
such as the ratio of the polymer viscosity to the solvent viscosity
gp/gs. Exploring these dependencies is the subject of future study.
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