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While analyzing the hovering motion of the tiny wasp
Encarsaria formosa, Weis-Fogh (1973) proposed a novel
aerodynamic mechanism that enhanced lift during flight. This
mechanism became known as the Weis-Fogh mechanism, and
the corresponding motion has been termed ‘clap and fling’.
Lighthill (1973) described analytically how this motion is
thought to augment lift using two-dimensional inviscid theory.
Later studies revealed that clap and fling is also used by insects
such as the greenhouse white-fly Trialeurodes vaporariorium
(Weis-Fogh, 1975), thrips (Ellington, 1984) and butterflies
(Srygley and Thomas, 2002). Although most, if not all, tiny
insects use ‘clap and fling’, the majority of insects do not
(Ellington, 1999). Moreover, clap and fling could be merely a
result of the insect maximizing stroke amplitude rather than an
independently evolved behavior to maximize lift. As a result,
clap and fling is not considered a general method of lift
generation in insect flight. There has not, however, been a

rigorous study comparing the effects of ‘clap and fling’ for
different Reynolds numbers (Re). It is not known, therefore, if
the lift-enhancing effects of clap and fling are greater for the
smallest insects in comparison to larger insects.

During clap and fling, the wings ‘clap’ together at the end
of the upstroke (ventral to dorsal) and then fling apart at the
beginning of the downstroke (dorsal to ventral). The tiny wasp
Encarsaria formosa and presumably other tiny insects fly with
their bodies inclined almost vertically (Weis-Fogh, 1973). The
wings are translated back and forth along a nearly horizontal
plane (Fig.·1A). At the beginning of the downstroke, the wings
initially fling apart by rotating about the common trailing edge
(Fig.·1B). During this rotation, large attached leading edge
vortices form on each wing (Maxworthy, 1979; Spedding and
Maxworthy, 1986). The leading edge vortex of one wing acts
as the starting vortex of the other wing. Since these vortices
are mirror images of each other, the circulation about the pair
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In this paper, we have used the immersed boundary
method to solve the two-dimensional Navier–Stokes
equations for two immersed wings performing an
idealized ‘clap and fling’ stroke and a ‘fling’ half-stroke.
We calculated lift coefficients as functions of time per
wing for a range of Reynolds numbers (Re) between 8 and
128. We also calculated the instantaneous streamlines
around each wing throughout the stroke cycle and related
the changes in lift to the relative strength and position of
the leading and trailing edge vortices.

Our results show that lift generation per wing during
the ‘clap and fling’ of two wings when compared to the
average lift produced by one wing with the same motion
falls into two distinct patterns. For Re=64 and higher, lift
is initially enhanced during the rotation of two wings when
lift coefficients are compared to the case of one wing. Lift
coefficients after fling and during the translational part
of the stroke oscillate as the leading and trailing edge
vortices are alternately shed. In addition, the lift
coefficients are not substantially greater in the two-winged
case than in the one-winged case. This differs from three-

dimensional insect flight where the leading edge vortices
remain attached to the wing throughout each half-stroke.
For Re=32 and lower, lift coefficients per wing are also
enhanced during wing rotation when compared to the case
of one wing rotating with the same motion. Remarkably,
lift coefficients following two-winged fling during the
translational phase are also enhanced when compared to
the one-winged case. Indeed, they begin about 70% higher
than the one-winged case during pure translation. When
averaged over the entire translational part of the stroke,
lift coefficients per wing are 35% higher for the two-
winged case during a 4.5 chord translation following fling.
In addition, lift enhancement increases with decreasing
Re. This result suggests that the Weis-Fogh mechanism of
lift generation has greater benefit to insects flying at lower
Re. Drag coefficients produced during fling are also
substantially higher for the two-winged case than the one-
winged case, particularly at lower Re.
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of wings remains zero. As a result, trailing edge vortices are
not needed to conserve circulation, and indeed they are not
initially formed. This is significant because both leading and
trailing edge vortices are formed by a single wing in pure
translation, resulting in smaller lift forces. This vortical pattern
leads to larger lift forces when compared to similar wing
kinematics without clap and fling (Lighthill, 1973; Sun and Yu,
2003). Towards the end of rotation, the two wings begin to
translate away from each other along a horizontal plane.

The Weis-Fogh mechanism of lift generation has been
verified by a number of experimental and computational
studies. Maxworthy (1979) confirmed the basic premise of the
Weis-Fogh mechanism using flow visualization on model
wings. Essentially, this study showed that two large leading
edge vortices are formed during fling. However, his results
showed that the magnitude of the circulation about each wing
generated during fling is much larger than that predicted by
Lighthill. This result was also confirmed by Haussling (1979)
who determined the instantaneous streamlines and vorticity
lines by solving numerically the full Navier–Stokes equations.
Spedding and Maxworthy (1986) measured the instantaneous
lift forces on model wings during fling and found that the
forces were larger than those predicted by Lighthill. Sunada et
al. (1993) characterized the effects of ‘near fling’ on lift
generation using a series of three-dimensional experiments.
Near fling describes the case where the wings are only partially
clapped together. Using computational fluid dynamics, Sun
and Yu (2003) found that lift is also enhanced for some time

during the translational phase of the stroke following a simple
fling at Re=17. They did not, however, consider this effect for
different Re.

There is reason to believe that the lift enhancing effects of
the Weis-Fogh mechanism could increase with decreasing Re.
Using two-dimensional computational fluid dynamics, we
have determined that the lift coefficients generated during
translation are lower for Re<32 than for Re>64 (Miller and
Peskin, 2004). Wu and Sun (2004) also found that lift
coefficients were greatly reduced for Re<100 in three-
dimensional simulations without clap and fling. This drop in
lift corresponds to a change in the behavior of the vortex wake.
For Re=64 and above, a leading edge vortex is formed and at
least initially remains attached to the wing. The trailing edge
vortex is formed and shed from the wing. The stability of the
attached leading edge vortex appears to vary with several
factors, one of which is the dimensionality of the flow. In two
dimensions, leading and trailing edge vortices are alternately
shed forming the von Karman vortex street (Dickinson and
Götz, 1993; Birch et al., 2004; Miller and Peskin, 2004). The
real situation of insect flight differs from the two-dimensional
model in at least two ways: the insect wing has finite span, and
its motion involves rotation about the dorsal–ventral axis of the
insect. In the three-dimensional rotating motion, the leading
edge vortex appears to remain attached for all time
(Usherwood and Ellington, 2002). Birch et al. (2004) also
observed a stable attached leading edge vortex for Re=120 and
Re=1400 using a dynamically scaled robotic insect. For Re=32
and below, both leading and trailing edge vortices are formed
and remain attached to the wing (Miller and Peskin, 2004), and
the leading edge vortex is more diffuse than the higher Re case
(Wu and Sun, 2004). The drop in lift for lower Re is related to
a loss of asymmetry in the vortical pattern behind the wing. A
similar transition has been observed for thrust generation in
flapping flight (Childress and Dudley, 2004; Vandenberghe et
al., 2004).

For these lower Re (32 and below), lift might be enhanced
during translation by ‘regaining’ vortical asymmetry through
clap and fling. In the case of pure translation, equally sized
leading and trailing edge vortices (by the principle of
conservation of vorticity) are formed at the beginning of the
stroke and remain attached to the wing until stroke reversal.
During clap and fling, two equally sized large leading edge
vortices are formed, and no trailing edge vortices are formed
initially. Presumably, trailing edge vortices will form and grow
in strength during translation, reaching the same strength as the
leading edge vortices after a sufficient amount of time.
However, transient asymmetry between the leading and trailing
edge vortices should be produced by fling. This asymmetry in
the vortical field should lead to larger lift forces than in the
case of pure translation.

In this paper, a two-dimensional version of clap and fling is
studied for Re ranging from 8 to 128, using the immersed
boundary method. Two motions are considered: ‘clap’ and
‘fling’. Clap was modeled as a motion similar to that of
Fig.·1A, and was divided into three stages: acceleration from
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Fig.·1. ‘Clap and fling’ (redrawn from Weis-Fogh, 1973). The three-
dimensional motion (top) and the corresponding two-dimensional
approximation (bottom). In this drawing, the insect flies with its body
oriented almost vertically, and the wings move in a horizontal plane.
At the beginning of the upstroke (A), the wings move from the ventral
to the dorsal side of the body, and rotate together about the leading
edges. At the beginning of the downstroke (B), the wings rotate apart
about the trailing edges. Towards the end of rotation, the wings
translate away from each other.
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rest at constant angle of attack, translation, and rotation about
the leading edge. Fling was modeled as a motion similar to that
of Fig.·1B, and was divided into two stages: rotation about the
trailing edge and translation. The first set of simulations
corresponds to fling and the downstroke. The second set of
simulations corresponds to the upstroke, clap, fling, and the
subsequent downstroke. The lift forces generated per wing for
each Re were compared to the lift forces generated in the case
of one wing moving with the same motion.

Materials and methods
The basic design of this study is similar to that of our previous

computational work (Miller and Peskin, 2004), which was
modeled after a physical experiment of Dickinson and Götz
(1993). In this particular experiment, Dickinson and Götz
immersed a robotic wing in sucrose solution to study flight
dynamics similar to that of Drosophila melanogaster. This
experiment was dynamically scaled such that the Re of the model
was approximately equal to that of Drosophila melanogaster
flight. The Re basically describes the ratio of inertial to viscous
forces in fluid flow and is given by the equation:

where ρ is the density of the fluid, µ is the dynamic viscosity
of the fluid, ν is the kinematic viscosity of the fluid, l is a
characteristic length of the immersed structure, and U is a
characteristic velocity of the flow. In our case, l is the chord
length of the wing (c), and U is the velocity of the wing
during the translational phase of the motion. The parameters
in our computational study were chosen to match those of the
Dickinson and Götz experiment, except that we varied the
velocity of the wing to change the Re. Their experiment used
an aluminum wing with a chord of 5·cm immersed in a
sucrose solution with a dynamic viscosity of 0.0235·N·s·m–2,
about 20 times that of water. The two dimensions of the
experimental tank relevant to our two-dimensional
simulations were 1·m in length � 0.4·m in width. In our
simulations, the size of the computational fluid domain was
increased to 1·m in length � 1·m in width. This was done to
reduce wall effects, which become more significant at lower
Re.

The full ‘clap and fling’ motion studied here is a two-
dimensional idealization of one complete three-dimensional
stroke. The wings are translated towards each other from rest
at a constant angle of attack during the initial translational
phase. Near the end of this initial half-stroke, the wings rotate
along the leading (upper) edge and are nearly clapped
together. A distance of 1/6 chord lengths is left between the
wings, however. This half-stroke is called the upstroke since
its three-dimensional counterpart describes the motion of the
wing from the ventral to the dorsal side of the body. At the
beginning of the downstroke, the wings are held parallel and
then rotated apart about the trailing (lower) edge. By
convention, the downstroke is defined as the motion of the

wing from the dorsal to the ventral side of the body. The
translational phase of the motion, which begins towards the
end of the rotational phase, is defined as the translation of the
wings away from each other along the horizontal axis. In a
three-dimensional version of this simulation, the translational
phase would correspond to the motion of the wings from the
dorsal to the ventral side of the body. In the case of ‘fling’
(downstroke only) the wings translate through a distance of
about 4.5 chord lengths. In the case of ‘clap and fling’ (one
entire stroke) the wings translate through a distance of about
3.5 chord lengths.

At present, no detailed quantitative description of the clap
and fling motion in small insects is available in the literature.
Therefore, a ‘reasonable’ fling motion was constructed based
on the normalized angular velocities and translational
accelerations used to model the flight of Drosophila
melanogaster. To construct a smooth motion with positive lift
generated throughout the stroke, wing rotation began before
wing translation ended during the upstroke. This motion was
constructed such that translation ended halfway through the
first rotational phase. The wings were rotated at the end of
the upstroke about the leading edges (clap). At the beginning
of the downstroke, the wings were rotated apart about the
trailing edges (fling). The translational phase of the
downstroke also began halfway through the second rotational
phase.

The kinematics of the left wing are described here. The right
wing (when present) was the mirror image of the left wing at
all times during its motion. The translational velocities over
time were constructed with a set of equations describing the
acceleration and deceleration phases of wing translation
(Fig.·2). The translational velocity during the acceleration
phases of the wing is given by:

τ = tV/c , (3)

where V is the maximum translational velocity during the
stroke, v(τ) is the translational velocity at dimensionless time
τ defined by Eq.·3, t is the actual time, c is the chord length of
the wing, τaccel is the dimensionless time when translational
acceleration begins, and ∆τaccel is the dimensionless duration
of translational acceleration. After acceleration, the
translational velocity of the wing is fixed as V. The
translational velocities during deceleration are given as:

where τdecel is the dimensionless time when translational
deceleration begins, and ∆τdecel is the dimensionless duration
of translational deceleration. In these simulations, the
dimensionless duration of an entire clap and fling stroke was
taken to be 10.8 (this gives a translational distance of about 3.5
chord lengths). The dimensionless duration of a fling half-
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stroke was taken to be 6 (this gives a translational distance of
about 4.5 chord lengths), τaccel and τdecel were taken to be 0.86,
∆τaccel and ∆τdecel were taken to be 1.3, and V ranged from
about 0.00375 to 0.06·m·s–1.

The angles of attack were similarly defined using a set of
equations describing the angular velocity during the
rotational phase of the stroke. Let α be defined as the angle
of attack of the wing relative to the horizontal plane. In all
fling simulations, the wings were rotated from α=90° to
α=45° at the beginning of the downstroke. After rotation, the
angle of attack was held constant for the remainder of the
stroke. In all clap and fling simulations, the wings were
translated at constant angle of attack of 45° during the
upstroke and rotated to 90° at the end of the upstroke. The
downstroke was constructed exactly as the fling case. Let θ
be defined as the angle between the left wing and the positive
x-axis (the origin is defined as the intersection of the wing
with the x-axis at the initial time). The angular velocity of the
left wing during the rotational phase at the end of the upstroke
is given by:

and

where ωrot is a constant determined by the total angle of
rotation and by the duration of the rotational phase in Eq.·6,
ω(τ) is the angular velocity as a function of dimensionless time,
τturn is the dimensionless time wing rotation begins, ∆τrot is the
dimensionless duration of the rotational phase, and ∆θ is the
total angle through which rotation occurs. Unless otherwise
noted, ∆θ was set to π/4 and ∆τrot was set to 1.74 in all

simulations. Rotation at the beginning of the downstroke was
constructed similarly.

The numerical method

For the simulations presented here, a ‘target boundary’
version of the immersed boundary method was used to
calculate the flow around the wing. Basically, we wanted the
wing to move with small deformations in a prescribed motion.
To achieve this, a target boundary that does not interact with
the fluid is attached with virtual springs to the actual immersed
boundary. This target boundary moves with the desired
motion, and the spring attachments apply a force to the actual
boundary which is proportional to the distance between
corresponding points of the two boundaries. In other words, an
external force is applied that is proportional to the distance
between the wing and its desired trajectory. The force applied
to the actual immersed boundary by the target boundary and
the deformation of the actual boundary are then used to
calculate the force applied to the fluid.

The two-dimensional incompressible Navier–Stokes
equations describing the motion of the fluid are as follows:

and

where u(x,t) is the fluid velocity, P(x,t) is the pressure, F(x,t)
is the force per unit area applied to the fluid by the immersed
wing, ρ is the density of the fluid, and µ is the dynamic
viscosity of the fluid. The independent variables are the time t
and the position vector x=[x,y]. Note that bold letters represent
vector quantities.

The interactions between the fluid and the boundary are
described by the following equations:

and

where f(r,t) is the force per unit length applied by the wing to
the fluid as a function of Lagrangian position (r) and time (t),
δ(x) is a two-dimensional delta function, X(r,t) gives the
Cartesian coordinates at time t of the material point labeled by
the Lagrangian parameter r. Eq.·9 describes how the force is
spread from the boundary to the fluid. Eq.·10 evaluates the
local velocity of the fluid at the boundary. In this numerical
scheme, the boundary is moved at the local fluid velocity at
each time step, and this enforces the no-slip condition. Each of
these equations involves a two-dimensional Dirac delta
function δ, which acts in each case as the kernel of an integral
transformation. These equations convert Lagrangian variables
to Eulerian variables and vice versa.
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Fig.·2. Dimensionless translational and angular velocities of the wing
as a function of dimensionless time for one ‘clap and fling’ stroke.
The total motion was used for all ‘clap and fling’ simulations. For
‘fling’ simulations, the angular and translational velocities follow the
second half of the graph. Note that the wing begins to rotate before
the end of translation during the upstroke (first half-stroke).
Translation during the downstroke (second half-stroke) also begins
before wing rotation has ended.

THE JOURNAL OF EXPERIMENTAL BIOLOGY



199Clap and fling

The equations that describe the force the boundary applies
to the fluid are given as:

and

Eq.·11 describes the external force applied to the fluid that is
proportional to the distance between the boundary and its desired
trajectory. ftarg(r,t) is the force per unit length, ktarg is a stiffness
coefficient, ctarg is a damping coefficient, and Y(r,t) is the
prescribed position of the target boundary. Eq.·12 describes the
force applied to the fluid by the boundary as a result of its elastic
deformation in bending. fbeam(r,t) is the force per unit length and
kbeam is a stiffness coefficient. Eq.·13 describes the force applied
to the fluid as a result of the resistance to stretching of the
boundary [fstr(r,t)]. kstr is the corresponding stiffness coefficient
in tension or compression. Finally, Eq.·14 describes the total
force applied to the fluid per unit length [f(r,t)] as a result of both
the external force and the deformation of the boundary.

The system of differentio-integral equations given by
Eqns·9–14 was solved on a rectangular grid with periodic
boundary conditions in both directions, as described by Peskin
and McQueen (1996). In this case, a skew symmetric operator
was used to discretize the nonlinear term in the Navier–Stokes
equations (Lai and Peskin, 2000). The velocity near the outer
boundary of the domain was kept near zero on the edges of the
domain by inserting four walls that were 30 spatial steps away
from the edges of the fluid domain. The Navier–Stokes
equations were discretized on a fixed Eulerian grid, and the
immersed boundaries were discretized on a moving
Lagrangian array of points. Unless otherwise stated, the fluid
domain was 1230� 1230 mesh widths in all simulations. At
this mesh width, the two wings were separated by 10 mesh
widths at their closest approach. The wings were each
discretized into 120 spatial steps.

Lift and drag forces were calculated as functions of time by
taking the opposite sign of the force applied to the fluid by
one wing at each time step. By convention, lift and drag
coefficients were calculated as follows:

and

where CL is the lift coefficient, CD is the drag coefficient, FD

is the drag force per unit spanwise length, FL is the lift

force per unit spanwise length, S is a characteristic area
(chord length of the wing multiplied by unit length), U is
the speed of the wing, and ρ is the density of the fluid. In
these definitions, ‘spanwise’ refers to the direction
perpendicular to the plane for two-dimensional simulations.
Since these definitions are designed for the high Re case
(Re>>1), CD and CL become functions of Re for intermediate
values of Re.

Validation of the method

To test for the convergence of the numerical method, two
simulations were considered: one at the mesh width used for
all of the simulations presented in the Results and the other
at half that mesh width. For the convergence test, the size of
the fluid domain was reduced in both cases from 1·m�1·m
to 0.5·m�0.5·m in order to make the fine grid
computation practical. This pair of simulations modeled a
two-winged fling half-stroke at Re=128. The particular wing
kinematics used here are the same as those described in the
case of a fling half-stroke. The resulting lift and drag
coefficients are plotted as functions of dimensionless time in
Fig.·3. In general, there is good agreement between the two
mesh widths. Small deviations appear during rotational fling.
This does not appear to introduce error for the rest of the
stroke.

Comparison to experimental and numerical data for one-
winged strokes

In order to check the method against recent experimental and
numerical data, four sinusoidal one-winged flapping strokes
similar to that of Wang et al. (2004) were modeled. The
equations of motion of the wing are as follows:

and

where A0 is stroke amplitude, x(t) describes the horizontal
position of the center of the wing as a function of time, and
α(t) describes the angle of attack relative to the x-axis as a
function of time, φ sets the timing of rotation and β sets the
change in angle of attack during stroke reversal. Basically, the
wing flaps back and forth along a horizontal plane with a
frequency of f. In this case, A0/c was set to 2.8, φ was set to 0,
and β was set to π/2. This provides a symmetric stroke with a
minimum angle of attack of 45°. In order to obtain Re=75, f
was set equal to 75ν/πcA0. Lift and drag coefficients were
normalized in the same manner as the two-dimensional elliptic
wing described in Wang et al. (2004).

Lift and drag coefficients as functions of time for all cases
are shown in Fig.·4. The green lines show the results of the
immersed boundary simulation, the blue lines represent
numerical data for a two-dimensional elliptic wing, and the
red lines describe the experimental data for a three-
dimensional model wing (Wang et al., 2004). There is
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excellent agreement between the two-dimensional immersed
boundary simulation and the numerical simulation of a rigid
elliptic wing given by Wang et al. (2004). In both simulations,
the leading edge vortex did not appear to separate during wing
translation, and lift coefficients agree well with the three-
dimensional experiment. The small differences between our
simulation and that of Wang et al. (2004) are probably due to
a combination of differences in design (a flexible plate vs. a
rigid ellipse) and numerical error. Differences between the
simulations and the experiment are most likely due to
differences in two and three dimensions as well as
experimental and numerical error.

Comparison to experimental and numerical data for two-
winged fling

In order to check the method for accuracy in describing
wing-wing interactions, fling simulations similar to those
described by experimentally by Spedding and Maxworthy
(1986) and numerically by Sun and Yu (2003) were performed.
At the beginning of the simulation, two wings were held
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(solid line) has a mesh width of about 4.17�10–4·m. The two grid
sizes show good agreement with small deviations occurring during
the rotational part of fling.
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Fig.·5. Rotational motion Φ(t) of two wings during fling and the
corresponding lift forces. (A) The broken line represents the motion
used in the clap and fling experiments of Spedding and Maxworthy
(1986). The solid line represents the rotational motion of the wings
used in the immersed boundary simulation. The motion used by Sun
and Yu (2003) is nearly identical. (B) The dotted line represents the
lift forces measured over time in Spedding and Maxworthy’s
experiment at a Reynolds number (Re) of about 3�103. The solid line
represents the lift forces calculated by Sun and Yu at the same Re.
The broken line represents the scaled lift forces calculated over time
in the immersed boundary simulation at Re=128.
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Fig.·6. Flow visualization and streamline plots of rotational fling at five points in time. The wing motion used in each case is shown in Fig.·5A.
(A) Flow visualization of fling captured by Spedding and Maxworthy (1986) at a Reynolds number (Re) ~3�103. (B) Streamline plots of fling
calculated numerically for two rigid elliptic wings by Sun and Yu (2003) at Re ~3�103. (C) Streamline plots of fling calculated from immersed
boundary simulations at Re ~128. In all cases, two large leading vortices form and appear to remain attached to each wing during rotation.
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parallel to each other at an angle of attack α=90°. The angle
between the two wings, Φ, was initially set to 0°, and the
distance between the wings was set equal to 0.10c. The wings
were then rotated apart along their trailing edge until Φ=180°.
Spedding and Maxworthy measured lift forces during this
simplified fling motion at Re=3.0�103. This Re is well above
those considered in this paper (8<Re<128), and is beyond the
range for which the immersed boundary method provides
reasonable results. To make a comparison between the
immersed boundary simulation and the experiment, the
simulation was performed at Re=128. The forces were scaled
up to Re=3.0�103 by calculating the lift coefficient as a
function of time, and setting the scaled force equal to
Fscaled=1/2ρCDSU2

max, where S is the surface area of the
experimental wing (0.03·m2), Umax is the maximum velocity at
the midpoint of the wing (0.018·m·s–1), and ρ is the density of
the fluid (1030·kg·m–3). The numerical simulation of Sun and
Yu was also performed at Re=3.0�103, using two elliptic
wings with a thickness of 0.04c and placed 0.08c apart.

The exact wing motion used in this simulation and the
experiment of Spedding and Maxworthy (1986) is shown in
Fig.·5A. The wing motion used by Sun and Yu (2003) is nearly
identical. The lift forces as functions of time for the immersed
boundary simulation (broken line), the numerical simulation of
Sun and Yu (solid line), and the physical experiment of
Spedding and Maxworthy (dotted line) are shown in Fig.·5B.
There is reasonable agreement between all three methods, and
there is excellent agreement between the two-dimensional

numerical simulations. Flow visualization and the
corresponding streamline plots of the numerical simulations
are shown at five stages during fling in Fig.·6. In all cases, two
large leading edge vortices form and appear to remain attached
to each wing during rotation. A second pair of small vortices
also forms along the trailing edge.

Results
Fling

In order to determine the effect of Re on the lift generated
during fling, simulations using either one wing or two wings
following the motion described in Materials and methods were
performed for Re ranging from 8 to 128. The Re was varied by
changing the velocity of the wing and holding all other
parameters constant.

The streamlines of the flow around two wings and one wing
at Re=8 and two wings at Re=128 performing the same fling
motion are shown at six selected times in Fig.·7. The
streamlines are curves which have the same direction at each
point in the fluid as the instantaneous fluid velocity u(x,t). The
density of the streamlines in each plot is proportional to the
speed of the flow. For more details on how the plots were
generated see Miller and Peskin (2004). Normalized force
vectors at each point in time were also drawn on the wing to
display the direction of the force that the fluid applies to the
wing.

In the two-winged case with Re=8 (Fig.·7A), the streamlines
of the flow during wing rotation are qualitatively similar to
those described by Lighthill (1973), calculated numerically by
Haussling (1979), and observed experimentally by Maxworthy
(1979), as shown in Fig.·7D. As the wings rotate apart along
the trailing edge, two large leading edge vortices are formed
on each wing (Fig.·7Ai–iii). No trailing edge vortices are
formed until the wings begin to translate apart. At the
beginning of translation, two weak trailing edge vortices begin
to form on each wing (Fig.·7Aiii–iv). As the wings continue to
translate away from each other, the attached trailing edge
vortices grow in strength (Fig.·7Aiv–vi). The strengths of the
trailing edge vortices, however, are much less than the
strengths of the leading edge vortices throughout the entire
stroke considered here. Fig.·7D shows flow visualization of
fling and subsequent translation at Re about 32 given by
Maxworthy (1979). Similar to the numerical results, two large
leading edge vortices form during rotation, and two smaller
trailing edge vortices form and grow during translation. Both
sets of leading and trailing edge vortices do not appear to
separate from the wing. The streamline plots at Re=16 and
Re=32 are similar to those described here.

In the one-winged case with Re=8, both a leading and a
trailing edge vortex are formed at the beginning of rotation
(Fig.·7Bi–iii). This phenomenon is consistent with the
principle of total vorticity conservation. Consider an infinite
fluid domain with a finite number of immersed solids that are
a finite distance apart. If the fluid and solid bodies are initially
at rest, then the total vorticity in the system (including the solid

Fig.·7. Streamlines of the fluid flow around two wings (A) and one wing
(B) at a Reynolds number of 8 and around two wings (C) at a Reynolds
number (Re) of 128 for a fling half-stroke. The arrow on the left wing
shows the direction of the normalized force acting on the wing at each
time (i–vi). The wings begin at an angle of attack of 90° and rotate about
the trailing edge to an angle of attack of 45°. (A) During rotation, attached
leading edge vortices are formed on each wing and no trailing edge
vortices are formed (i–iii). When translation begins, small attached
trailing edge vortices begin to form (iii–v). As the trailing edge vortices
grow in size relative to the leading edge vortices, lift is reduced. The
leading edge vortices, however, remain larger than the trailing edge
vortices for most of the half-stroke (v–vi). (B) In the one wing case,
attached leading edge and trailing edge vortices are formed during
rotation (i–iii). When translation begins, equally sized leading and trailing
edge vortices are attached to the wing, creating substantially lower lift
forces in comparison to the two-winged case (iii–vi). (C) At a Reynolds
number (Re) of 128, attached leading edge vortices are formed on each
wing and no trailing edge vortices are formed initially (i–iii). When
translation begins, however, the leading edge vortices are shed, and
trailing edge vortices are formed (v–vi). The trailing edge vortex grows
in size and is subsequently shed from the wing as a new leading edge
vortex begins to form. (D) Flow visualization of fling at Re=30 by
Maxworthy (1979). Similar to case A, a pair of large leading edge
vortices is formed and remains attached to the wing during rotation. A
smaller pair of trailing edge vortices is formed and grows during
translation. (E) Flow visualization of fling at Re=1.3�104. Similar to case
C, a pair of large leading edge vortices (1) forms during rotation and is
shed during translation. A new pair of leading edge vortices forms during
translation (2).
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bodies) must remain zero for all time. In this case, the leading
and trailing edge vortices spin in opposite directions during
rotation and translation. Since the wings are infinitely thin, we
can consider vorticity only within the fluid domain, and the
principle of vorticity conservation demands that leading and
trailing edge vortices cancel so that the total vorticity in the
system is zero. This implies that the leading and trailing edge
vortices are of equal and opposite strength. During translation,
these two vortices remain attached to the wing until wing
reversal (Fig.·7Biv–vi). This situation is markedly different
from the two-winged case: leading and trailing edge vortices
are formed during rotation in the one-winged case, while two
leading edge vortices and no trailing edge vortices are formed
in the two-winged case. During translation, leading and trailing
edge vortices of equal strength are attached to the wing in the
one-winged case, while a strong leading edge vortex and a
weak trailing edge vortex form and remain attached to each
wing in the two-winged case.

At Re=128 (Fig.·7C), the aerodynamics during the two-
winged fling differ from the corresponding cases at Re=32 and
below. At the beginning of the half-stroke, two strong leading
edge vortices are formed during wing rotation (Fig.·7Ci–ii). As
the wings translate apart, weak trailing edge vortices are
formed and begin to grow (Fig.·7Ciii–iv). Unlike the low Re
case, the leading edge vortices are shed at the beginning of
translation (Fig.·7Civ–v). During translation, a second pair of
leading edge vortices are formed and begin to grow. This same
phenomenon was observed by Maxworthy (1979) at higher Re

(Fig.·7E). Two large leading edge vortices (1) are formed
during rotation. As translation begins, the pair of rotational
leading edge vortices is shed, and a second pair of leading edge
vortices (2) is formed. In the immersed boundary simulation,
the trailing edge vortices are shed as translation continues
(Fig.·7Cv–vi). The alternate vortex shedding at higher Re
corresponds to the formation of the von Karman vortex street.
It is important, however, to note that in three-dimensional
insect flight at higher Re, alternate vortex shedding does not
occur (Birch et al., 2004). Instead, the leading edge vortex
remains attached to the wing until wing reversal and the
trailing edge vortex is initially shed. Presumably, the leading
edge vortex would remain attached to the wing during three-
dimensional clap and fling at higher Re, generating larger lift
coefficients for both the two- and one-winged cases.

The lift coefficients as functions of dimensionless time
(fraction of stroke) for the one- and two-winged cases at Re=8
are plotted in Fig.·8. The bar at the top of the graph shows the
number of chord lengths traveled. The first peak in the lift
coefficients corresponds to the large lift forces generated
during wing rotation. The second peak in the lift coefficients
corresponds to the period of translational acceleration. The
average lift per wing generated during wing rotation in the two-
winged case is about twice that generated in the one-winged
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Fig.·8. Lift coefficients per wing at a Reynolds number of 8 are plotted
as functions of time for the fling half-strokes shown in Fig.·7A,B. The
bar at the top of the graph shows the number of chord lengths traveled.
The first peak in the lift coefficients corresponds to the large lift forces
generated during wing rotation. The second peak in the lift
coefficients corresponds to the period of translational acceleration.
The lift forces per wing are on average about 35% greater during
translation after clap and fling than during the steady translation of a
single wing with no clap and fling (this average was taken over the
fraction of the stroke from 0.37 to 1, after rotation had finished).
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Fig.·9. Lift coefficients are plotted as functions of time for a two-
winged clap and fling half-stroke. The bar at the top of the graph
shows the number of chord lengths traveled. The letters i–vi along the
x axis correspond to the times the streamlined plots labelled i–vi in
Fig. 7A,C were drawn. The angles of attack during pure translation
were set to 45°. Reynolds number (Re) was varied by changing the
translational velocity of the wing from 0.00375 to 0.06·m·s–1. The first
peak corresponds to the lift generated during wing rotation, and the
second peak corresponds to the lift generated during translational
acceleration. The lift enhancing mechanisms of fling decrease with
increasing Re. For Re=32 and below, lift coefficients decrease during
translation after fling as the trailing edge vortex grows in strength. For
Re=64 and above, lift coefficients fall as the leading edge vortices
separate from the wings. 
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case. In addition, the lift forces are about 70% greater in the
two-winged case than in the one-winged case at the beginning
of constant translation. Lift forces per wing in the two-winged
case are on average about 35% higher than in the one-wing
case during the entire 4.5 chord length translation. Another
interesting phenomenon seen in the one-winged case is that lift
is slow to develop over the first couple chord lengths of
translation. This is most likely due to the Wagner effect, in
which the proximity of the trailing edge vortex to the wing
transiently reduces the lift until it moves sufficiently
downstream of the wing. This idea is supported by the fact that
the phenomenon is not observed in the two-winged case where
the trailing edge vortices are initially absent. Both one- and
two-winged lift forces approach the same steady lift values at
the end of translation. These force traces are very similar to
those calculated by Sun and Yu (2003) at Re=17 using a
similar two-winged fling motion. The wings in their
simulation were 0.08 chord lengths apart at the beginning of
the stroke rotated at a faster angular velocity. The average lift
coefficient over the entire 3-chord-length half stroke (rotation
and translation) in their simulation was 2.4 for two wings and
1.0 for one wing.

Lift coefficients for a range of Re are plotted as functions of
dimensionless time for two-winged fling in Fig.·9. The first
peak corresponds to the lift generated during wing rotation, and
the second peak corresponds to the lift generated during
translational acceleration. For Re=32 and below, the different
cases are similar. Lift coefficients decrease during translation

as the trailing edge vortex grows. Lift is also enhanced for
longer periods of time at lower Re (the relative difference in
strength between the attached leading and trailing edge vortices
persists longer for lower Re). The growth of the trailing edge
vortex during translation and resulting drop in lift was also
observed by Sun and Yu (2003) at a Re=17. For Re=64 and
higher, the leading edge vortex is shed at the beginning of
translation, and lift forces subsequently drop. Lift forces grow
again as a new leading edge vortex is formed and the trailing
edge vortex is shed. This may not be obvious in Fig.·9, but the
growth in lift followed by force oscillations become apparent
when longer periods of time are plotted. As stated earlier, the
three-dimensional case of flight at higher Re does not involve
oscillating lift forces since alternate vortex shedding does not
occur. It is also important to note that the leading edge vortex
is shed after about 1 chord length of travel. Other studies,
including a two-dimensional experiment (Dickinson and Götz,
1993) and a two-dimensional numerical simulation (Wang et
al., 2004), show that the separation of the leading edge vortex
and subsequent lift drop does not occur until about 2.5–3.5
chord lengths of travel. Flow visualization by Maxworthy
(1979), as well as these simulations, show that the leading edge
vortex is shed near the beginning of translation after fling at
higher Re. This suggests that the separation of the leading edge
vortex from the wing could depend upon wing-wing
interactions and the kinematics of rotation.

Lift coefficients for a range of Re are plotted as functions of
dimensionless time for one-winged fling in Fig.·10. The first
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Fig.·10. Lift coefficients are plotted as functions of time for a one-
winged fling half-stroke. The letters i–vi along the x axis correspond
to the times the streamlined plots labelled i–vi in Fig. 7B were drawn.
The angle of attack during pure translation was set to 45°. The
Reynolds number (Re) was varied by changing the translational
velocity of the wing from 0.00375 to 0.06·m·s–1. The first peak in lift
corresponds to the lift forces generated during wing rotation. The
second peak corresponds to the lift forces generated during
translational acceleration. For Re=64 and above, lift coefficients fall
as the leading edge vortices separate from the wings. 
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Fig.·11. Drag coefficients are plotted as functions of time for a two-
winged fling half-stroke. The letters i–vi along the x axis correspond
to the times the streamlined plots labelled i–vi in Fig. 7A,C were
drawn. The angles of attack during pure translation were set to 45°.
Reynolds number (Re) was varied by changing the translational
velocity of the wing from 0.00375 to 0.06·m·s–1. The first large peak
corresponds to drag generated during wing rotation. The second
smaller peak corresponds to drag forces generated during translational
acceleration. Drag coefficients increase with decreasing Re. This
inverse relationship is particularly significant during the initial wing
rotation. 
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peak corresponds to the lift forces produced during wing
rotation, and the second peak corresponds to the lift forces
generated during translational acceleration. Lift coefficients
for periods of rotation and acceleration are higher at lower Re.
This phenomenon might be due to the larger effect of added
mass at lower Re. As the Re decreases, the width of the
boundary layer around the wing grows, and the mass of the
fluid ‘entrained’ by the wing is larger. Lift coefficients are also
substantially lower at all times and for all Re considered when
compared to the respective two-winged cases (note the
difference in scales between Figs·9 and 10). For Re=64 and
higher, lift begins to drop after about 2.5 chord lengths of travel
during translation due to the separation of the leading edge
vortex. Presumably, translational lift forces would be higher in
three-dimensional flight since the leading edge vortices would
not be shed.

Drag coefficients for a range of Re are plotted as functions
of dimensionless time for two-winged fling in Fig.·11. The first
peak in each of the drag coefficient plots corresponds to the
large drag forces produced as the two wings are rotated apart.
The maximum drag coefficient produced during rotation
increases significantly as the Re is decreased. The smaller
second peak in drag coefficients corresponds to the forces
generated during the translational acceleration of the wings at
the beginning of the half-stroke. This translational drag
coefficient also increases with decreasing Re, but the effect is
substantially smaller than that produced during wing rotation.

Drag coefficients for all Re gradually decrease during
translation to steady values.

Drag coefficients for a range of Re are plotted as functions
of dimensionless time for one-winged fling in Fig.·12. The first
peak in the drag coefficients corresponds to the drag forces
produced during the rotation of a single wing. These drag
forces are significantly smaller than those produced during
rotation with two wings (note the difference in scales between
Figs·11 and 12). The second peak in the drag coefficient
corresponds to the drag forces produced during the
translational acceleration of the wing. After acceleration, the
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Fig.·14. The maximum drag coefficient during the rotation of the
wings at the beginning of fling plotted against the Reynolds number
(Re). The drag coefficient significantly increases for decreasing Re.
This result suggests that relatively larger forces are needed for tiny
insects to rotate their wings and perform a ‘fling’.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time (fraction of stroke)

D
ra

g 
co

ef
fi

ci
en

t p
er

 w
in

g

Distance (chords)

 ↓ i  ↓ ii  ↓ iii  ↓ iv  ↓ v  ↓ vi

Re=8  
Re=16 
Re=32 
Re=64 
Re=128

1.0 2.0 3.0 4.0

Fig.·12. Drag coefficients plotted as functions of time for a one-
winged fling half-stroke. The letters i–vi along the x axis correspond
to the times the streamlined plots labelled i–vi in Fig. 7B were drawn.
The angles of attack during pure translation were set to 45°. Reynolds
number (Re) was varied by changing the translational velocity of the
wing from 0.00375 to 0.06·m·s–1. The first peak corresponds to the
drag forces generated during translational acceleration. Note that the
drag forces per wing generated during rotation in the one-winged case
are significantly smaller than those generated per wing in the two-
winged case (see Fig.·11). In general, drag coefficients increase with
decreasing Re. 
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Fig.·13. The average lift coefficients per wing during translation
following two-winged fling divided by the corresponding average lift
coefficients for one-winged fling vs Reynolds number (Re). The
average lift coefficients following fling were calculated as the average
lift coefficients generated after rotation and translational acceleration
and during translation at a constant angle of attack. This value
decreases with increasing Re, suggesting that the lift enhancing effects
of clap and fling are more significant at lower Re.
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Fig.·15. Streamlines of fluid flow around two wings (A) and around one wing (B) during a full clap and fling stroke at a Reynolds number (Re)
of 8 and around two wings at Re=128 (C). The arrow on the left wing shows the direction of the normalized force acting on the wing. (A) During
translation, leading and trailing edge vortices form and remain attached to the wing (i–iii). During ‘clap’, the wings rotate together at the end
of translation (iv–v). At this time, the leading and trailing edge vortices are shed. During ‘fling’, the wings rotate apart forming two new leading
edge vortices (vi). Towards the end of rotation, the wings are translated apart at a constant angle of attack and speed (vi–viii). During translation,
the leading edge vortices remain attached to the wing, and weak trailing edge vortices are formed. (B) Large leading and trailing edge vortices
are formed during the initial translation of the wing (i–iii). This pair of vortices is shed during rotation (iv–v), and a new pair of leading and
trailing edge vortices is formed during the subsequent translation (vi–viii). Note that in the two winged case, no trailing edge vortices are formed
during wing rotation, and much smaller trailing edge vortices are formed during the subsequent translation. (C) At Re=128, leading edge vortices
are formed and the trailing edge vortices are shed (i–iii). After a translation of about 2.5 chord lengths, the leading edge vortices begin to
separate from the wings (iii). During ‘clap’, the wings rotate together at the end of translation (iv–v). At this time, the leading and trailing edge
vortices are shed. During ‘fling’, the wings rotate apart. Two large leading edge vortices are formed, and no trailing edge vortices are formed
initially (v–vi). Towards the end of rotation, the wings are translated away from each other and the pair of leading edge vortices formed during
rotation is shed. A second pair of leading edge vortices begins to form near the end of translation (vi–viii).
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drag coefficients gradually decrease to steady values. Similar
to the two-winged case, drag coefficients during one-winged
fling increase with decreasing Re.

The average lift per wing generated during translation after
a two-winged fling half-stroke divided by the average lift per
wing generated during translation after a one-winged fling half-
stroke are plotted for a range of Re in Fig.·13. The average lift
coefficients per wing were calculated as the average lift after
translational acceleration and during the steady translation of
the wing at a constant angle of attack (0.37–1.0 fraction of the
half stroke). For Re=8, the average lift generated during a 4.5
chord translation after two-winged fling is on average 35%
larger than the average lift generated during translation after
one-winged fling. Lift enhancement provided by two-winged
fling decreases with increasing Re. For a Re=128, the average
lift per wing produced during translation after two-winged fling
is about equal to the average lift generated during translation
following a one-winged fling. It is important to note that these
ratios only consider the effect of lift enhancement after rotation
and acceleration.

The maximum drag coefficients produced during rotation
for two-winged fling for a range of Re are plotted in Fig.·14.
The drag coefficients produced during rotational fling sharply
increase with decreasing Re. This same phenomenon is also
true during all periods of rotation and acceleration. The Re
effect is, however, most pronounced during fling. This
relationship suggests that tiny insects must apply large forces
to the fluid to turn and rotate their wings. Perhaps flexible
wings and setal fringing reduce this Re effect.

Clap and fling

The streamlines of the flow around two wings and one wing
performing a complete clap and fling stroke at a Re=8 are
shown at eight points in time in Fig.·15A,B. In each case, the
wings accelerate from rest and move towards each other at a
constant translational speed. At a Re=8, leading and trailing
edge vortices form and remain attached to each of the wings
during the first half-stroke (Fig.·15Ai–iii). As the wings near
each other, they begin to rotate and ‘clap’ together
(Fig.·15Aiv–v). During this rotation, the leading and trailing
edge vortices are shed. The wings then rotate apart and
translate away from each other during ‘fling’ (Fig.·15Avi–viii).
This is similar to the previous case of simple ‘fling’, except
that the wings are now translating through their wakes. During
rotation (Fig.·15Avi), new leading edge vortices are formed on
each wing, and no trailing edge vortices are formed initially.
As the wings translate away from each other, they move back
through their wakes, and weak trailing edge vortices are
formed (Fig.·15Avii–viii). In the case of one wing, a pair of
leading and trailing edge vortices is formed during the initial
translation (Fig.·15Bi–iii). These vortices are then shed during
wing rotation (Fig.·15Biv–v). During the downstroke, a pair of
large leading and trailing edge vortices is formed. This is
different from the two-winged case where only two large
leading edge vortices are formed initially.

The streamlines of the flow around two wings performing a

complete clap and fling stroke at a Re=128 are shown in
Fig.·15C. The leading edge vortices are formed and the trailing
edge vortices are shed during the initial translation of the wing
(Fig.·15Ci–ii). The leading edge vortices begin to separate
from the wing after a translation of about 2.5 chord lengths
(Fig.·15Ciii). Lift drops as the wings near each other and clap
together (Fig.·15Civ–v). During this rotation of the wings, the
vortices from the first half-stroke are shed. The wings continue
to rotate apart and then translate away from each other during
‘fling’ (Fig.·15Cv–vi). Similar to the previous case of a fling
half-stroke, two large leading edge vortices are formed during
rotation, and no trailing edge vortices are formed initially
(Fig.·15Cvi). As the wings translate away from each other, the
leading edge vortices are shed (Fig.·15Cvii), and new trailing
edge vortices form and grow in strength. Later in the stroke, a
second pair of leading edge vortices forms and grows in
strength (Fig.·15Cviii).

Lift coefficients for a range of Re are plotted as functions of
dimensionless time for two-winged clap and fling in Fig.·16.
The markers on the time axis denote the points in time that the
streamline plots in Fig.·15A,C were drawn. The lift coefficients
naturally divide into two patterns, lift coefficients for Re=64
and above and lift coefficients for Re=32 and below.
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Fig.·16. Lift coefficients as functions of time for a two-winged clap
and fling stroke. The letters i–viii along the x axis correspond to the
times the streamlined plots labelled i–viii in Fig. 15A,C were drawn.
The angle of attack during pure translation was set to 45°. The
Reynolds number (Re) was varied by changing the translational
velocity of the wing from 0.00375 to 0.06·m·s–1. In general, lift
coefficients were larger at higher Re during the initial upstroke. Lift
coefficients, however, were smaller at higher Re during fling and
subsequent translation. For Re=64 and higher, lift coefficients peak
during translational acceleration and rotation. Lift coefficients drop
when the leading edge vortices separate from the wings (vii–viii). For
Re=32 and below, lift coefficients also peak during translational
acceleration and rotation. Lift coefficients are relatively constant
during translation in the first half-stroke (i–iii). Lift coefficients are
transiently augmented during translation after fling (vi–viii).
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The lift coefficients for Re=32 and below are characterized
by relatively constant forces during translation due to the
attachment of the leading and trailing edge vortices. The first
peak in the lift coefficient corresponds to the forces produced
during wing acceleration at the beginning of the stroke (i).
During constant translation, lift coefficients initially drop and
then gradually increase as the wings approach each other
(ii–iii). Lift rapidly drops as the wings begin to decelerate (iii).
When wing rotation begins, lift forces increase again as the
wings clap together (iii–iv). Lift finally drops to about zero at
the end of rotation (v). At the beginning of the second half-
stroke (fling), lift coefficients peak as two large leading edge
vortices are formed (v–vi). The next peak in lift (vi–vii)
corresponds to the lift generated during translational
acceleration. These translational lift coefficients are larger than
those produced during the first half stroke. This lift enhancing
effect is due to the asymmetry in the vortical field produced by
the clap and fling motion.

The lift coefficients for Re=64 and above are characterized
by unsteady lift forces due to vortex shedding. The initial peak
in lift coefficients corresponds to the lift forces produced
during the translational acceleration of the wings (i). During
constant translation, the leading edge vortex begins to separate
but lift does not drop significantly until a translation of about
three chord lengths (ii–iii). Lift then drops as the two wings
decelerate at the end of the upstroke and clap together (iv–v).
At the beginning of the second half-stroke, lift is enhanced

when two large leading edge vortices are formed during
rotation (v). As the wings begin to translate away from each
other, the leading edge vortices are shed and trailing edge
vortices grow (vi). Later during translation, the trailing edge
vortices begin to separate from the wing, a new pair of leading
edge vortices begins to grow, and the lift coefficient
subsequently increases. This is consistent with the pattern of
vortex shedding and growth visualized by Maxworthy (1979)
at high Re. In Maxworthy’s flow visualization, the initial pair
of leading edge vortices is shed when translation begins, and
a second pair of leading edge vortices begins to grow during
translation.

Lift coefficients for one wing moving in a clap and fling
motion are shown in Fig.·17 for a range of Re. The initial
peak in lift corresponds to the lift forces generated during
wing acceleration from rest. During upstroke translation, lift
coefficients generally increase with increasing Re. For higher
Re, the lift forces grow during the first three chord lengths of
translation (ii–iii). The leading edge vortex then begins to
separate from the wing, and the lift forces drop as the wing
decelerates and begins to rotate (iv–v). During wing rotation,
lift coefficients are slightly higher at lower Re. During
translation, lift coefficients are higher at higher Re. For
Re=64 and above, lift drops after a translation of about 2.5
chord lengths as the leading edge vortex separates from the
wing. Dickinson (1994) measured lift forces experimentally
on a wing moving with a two-dimensional motion similar to
the motion used in this simulation. The lift coefficients
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Fig.·18. Drag coefficients as functions of time for a two-winged clap
and fling stroke. The letters i–viii along the x axis correspond to the
times the streamlined plots labelled i–viii in Fig. 15A,C were drawn.
The angle of attack during pure translation was set to 45°. The
Reynolds number (Re) was varied by changing the translational
velocity of the wing from 0.00375 to 0.06·m·s–1. In general, drag
coefficients are larger for lower Re. This inverse relationship is most
significant during periods of wing rotation (iv–vi). In general, drag
forces peak during periods of acceleration and rotation and remain
relatively constant during periods of pure translation.
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Fig.·17. Lift coefficients as functions of time for one wing moving
with the same clap and fling motion as shown in Fig.·16. The letters
i–viii along the x axis correspond to the times the streamlined plots
labelled i–viii in Fig. 15B were drawn. The angle of attack during
pure translation was set to 45°. The Reynolds number (Re) was varied
by changing the translational velocity of the wing from 0.00375 to
0.06·m·s–1. In general, lift coefficients increase with Re. The lift forces
generated during the initial upstroke are very similar to those shown
in the two-winged case (i–iii). During fling, lift coefficients during
rotation and the subsequent translation (vi–viii) are significantly less
than the two-winged case for Re=32 and below.
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measured over time in each case are remarkably similar. Lift
forces peak during rotation and acceleration, fall to values
near 1.5 during the first 2–2.5 chord lengths of translation,
and drop to values near 1 as the leading edge vortex separates
from the wing.

Drag coefficients for a range of Re are plotted as functions
of dimensionless time for two-winged clap and fling in Fig.·18.
The letter markers (i–vi) on the time axis denote the points in
time when the streamline plots in Fig.·15A,C were drawn. In
general, drag coefficients increase with decreasing Re. The first
peak in the drag coefficients corresponds to the drag forces
generated during the translational acceleration of the wing (i).
Drag coefficients remain relatively constant during the
translational phase of the first half-stroke (i–iii). The drag
coefficients drop during wing deceleration, but sharply
increase again when the wings are rotated (clapped) together
(iv). At the beginning of the second half-stroke, the drag
coefficients peak again as the wings are rotated apart (v–vi).
There is a smaller peak during translational acceleration
(vi–vii). Finally, the drag coefficients approach steady values
as the wings translate apart (vii–viii). The Re differences in
drag coefficients are most pronounced during wing rotation.

Drag coefficients for a range of Re during one-winged clap
and fling are shown in Fig.·19. In general, drag coefficients are
larger at lower Re throughout the entire stroke. In comparison
to the two-winged case, drag coefficients per wing are lower
throughout the stroke for the one-winged case at all Re. The
differences between the one and two-winged cases are greatest
during wing rotation (particularly during fling) and
acceleration at lower Re. The drag coefficients over time in
these simulations are also strikingly similar to those measured
experimentally by Dickinson (1994) using one wing moving
in a two-dimensional motion.

Fig.·20 shows the average lift and drag coefficients generated
during a fling half-stroke started from rest and a fling half-stroke
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Fig.·20. The average lift and drag coefficients generated during fling
for an entire fling half-stroke following a clap half-stoke and for an
entire fling half-stroke started from rest as a function of the Reynolds
number (Re). Force coefficients were averaged during wing rotation
and a subsequent translation of about 3.5 chord lengths. Average lift
coefficients increase slightly with decreasing Re. Average drag
coefficients increase significantly as the Re is lowered. Force
coefficients are higher for fling half-strokes that follow clap half-
strokes as the wings move back through their wakes. This ‘wake
capture’ effect decreases with decreasing Re.
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Fig.·19. Drag coefficients for one-winged fling as functions of time
for a range of Reynolds numbers (Re). The letters i–viii along the x
axis correspond to the times the streamlined plots labelled i–viii in
Fig. 15B were drawn. The angle of attack during pure translation
was set to 45°. In general, drag coefficients are smaller for higher
Re. In comparison to the two-winged case, drag coefficients are
significantly lower during ‘clap’ (the end of the upstroke) for all Re.
During wing rotation at the beginning of the downstroke, drag
coefficients are substantially lower than the two-winged case for all
Re. The difference between the one and two-winged case is greatest
at lower Re. 

Rn1

Rp2 Rn2

Rp1

Fig.·21. Regions of positive and negative vorticity during the
translation of two wings following ‘clap and fling’. Rn1 and Rn2
denote regions of negative vorticity, Rp1 and Rp2 denote regions of
positive vorticity. The two wings are initially clapped together and
rotate apart along their trailing edges. This rotation creates two large
leading edge vortices. Towards the end of rotation, the wings begin
to translate apart. During translation, two weak trailing edge vortices
begin to form. In this diagram, the wings are moving away from each
other at a constant speed and angle of attack. The leading edge
vortices (denoted by Rn1 and Rp1) are stronger than the trailing edge
vortices (denoted by Rn2 and Rp2). This vortical asymmetry results
in larger lift forces than in the symmetrical case without fling.
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that follows a clap half-stroke. The force coefficients were
averaged over wing rotation and subsequent translation of about
3.5 chord lengths. For all Re considered, lift and drag
coefficients were higher for fling half-strokes that followed clap
half-strokes. This ‘wake effect’ decreases with decreasing Re.

Discussion
The main result of this paper is that the lift-enhancing effects

of clap and fling are larger for lower Re than for higher Re. Not
only are large lift forces generated during wing rotation, but
they are also transiently enhanced during the translation of the
wing following fling. This can be shown by comparing the lift
forces generated by two wings to one wing performing the
same motion. In practice, the part of the translational phase
during which lift is enhanced lasts long enough to comprise
most or all of the actual wing motion. For Re=64 and higher,
clap and fling enhances lift during wing rotation, but does not
enhance lift significantly during translation. For Re=32 and
below, lift is significantly enhanced following clap and fling
when compared to the one-winged case. This lift-enhancing
effect increases with decreasing Re. Moreover, these Re
differences in lift enhancement could explain why most tiny
insects have converged upon clap and fling while the vast
majority of larger insects do not use this mechanism.

Another result of potential significance is that the relative drag
forces required to rotate the wings apart during fling increase
drastically for lower Re. In these simulations, the wings begin
fling at a distance of 1/6 chord lengths apart. In reality, the wings
are pressed together, and it is reasonable to assume that the drag
forces generated during fling would be even greater.

Some of the difference between the higher and lower Re
cases can be related to an aerodynamic transition observed in
this Re range (Childress and Dudley, 2004; Vandenberghe et
al., 2004; Miller and Peskin, 2004). For Re=64 and above in
three-dimensional strokes, lift is generated in part when an
attached leading edge vortex is formed and a trailing edge
vortex is shed during each wing stroke. This vortical
asymmetry generates negative circulation around the wing and,
consequently, creates positive lift. Lift is also produced
similarly in two-dimensional simulations at higher Re.
However, the leading edge vortex is only transiently attached
to the wing. At these high Re, lift enhancement by clap and
fling during translation is minimal (at least in two dimensions).
For Re=32 and below in two dimensions, leading and trailing
edge vortices form and remain attached to the wing during each
stroke. This vortical symmetry greatly reduces the circulation
around the wing and the lift produced when compared to the
three-dimensional case of flight at higher Re. A recent study
by Wu and Sun (2004) also suggests that lift is greatly reduced
at these lower Re in three dimensions. During clap and fling,
two large attached leading edge vortices are formed on each
wing, and no trailing edge vortices are formed initially. When
the wings begin to translate away from one another, two weak
trailing edge vortices are formed on each wing and grow during
translation. The leading edge vortices, however, are much

stronger than the trailing edge vortices throughout the stroke.
This vortical asymmetry produced by clap and fling recovers
some of the lift lost from this transition.

To understand the aerodynamic mechanism of lift
generation, consider the case of fling shown in Fig.·21. The
two wings were rotated apart along their trailing edges and are
now translating away from each other along a horizontal plane.
By convention, positive motion is defined from right to left so
that the circulation around the left wing is negative and the lift
is positive. During rotation, two large leading edge vortices
(Rn1 and Rp1) of equal strength and opposite sign were formed
and remain attached to the wing. During translation, two small
trailing edge vortices of equal strength and opposite sign begin
to form and grow in strength (Rn2 and Rp2). Let the rest of the
fluid domain (Rf) be of negligible vorticity. Note that the
subscript n denotes regions of negative (clockwise) vorticity,
and p denotes regions of positive (counterclockwise) vorticity.
In the following discussion, an Eulerian frame of reference will
be used. The total lift acting on both wings can then be defined
as follows using a general viscous aerodynamic theory
developed by Wu (1981):

where �ω� is the absolute value of the vorticity. The vortices in
each pair are convected in opposite directions with each wing
as the wings are translated apart. In an Eulerian framework, the
vortices defined by Rn1 and Rp2 move with negative velocity
(the vortices are pulled leftward with the wing). The vortices
defined by Rp1 and Rn2 move with positive velocity (the
vortices are pulled rightward with the wing). The equation for
total lift in this case can be rewritten as follows:

This equation basically states that the total lift on both wings
is proportional to the difference between the magnitude of the
time rate of change of the first moment of vorticity associated
with the leading edge vorticity and the time rate of change of
the first moment of trailing edge vorticity. Therefore, vortical
asymmetry produced by clap and fling will transiently enhance
lift forces during translation.
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Ao stroke amplitude
c chord length of wing
ctarg damping coefficient
CD drag coefficient
CL lift coefficient
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f flapping frequency
f(r,t) force per unit length applied by the wing to the fluid
fbeam force per unit length applied to fluid due to bending 

stiffness
fstr force per unit length applied to fluid due to 

stretching stiffness
ftarg force per unit length applied to fluid due to the 

target boundary
F(x,t) total force per unit area applied to the fluid
FD drag force
FL lift force
Fscaled scaled lift force
kbeam bending stiffness coefficient
kstr stiffness coefficient in tension/compression
ktarg stiffness coefficient of target boundary
l characteristic length
P(x,t) fluid pressure
r Lagrangian position
Rf two-dimensional fluid space
Rn region of negative vorticity
Rp region of positive vorticity
S characteristic surface area
t time
u(x,t) fluid velocity
U characteristic speed
Umax maximum velocity during rotation at the wing’s 

midpoint
U(x,t) velocity of the boundary
v(τ) translational velocity at dimensionless time ?
V maximum translational velocity
x position vector
x(t) horizontal position of the center of the wing
X(r,t) position vector of boundary at Lagrangian position r
Y(r,t) position vector of target boundary at Lagrangian 

position r
α angle of attack
β parameter to set change in angle of attack
δ(x) delta function
∆θ total angle through which rotation occurs
∆τaccel dimensionless duration of translational acceleration
∆τdecel dimensionless duration of translational deceleration
∆τrot dimensionless duration of rotational phase
θ angle between wing and positive x-axis
µ dynamic viscosity
ν kinematic viscosity
ρ fluid density
τ dimensionless time
τaccel dimensionless time when translational acceleration 

begins
τdecel dimensionless time when translational deceleration 

begins
τturn dimensionless time when wing rotation begins
ϕ parameter for the timing of wing rotation
Φ angle between two wings
ω vorticity
⎥ ω⎥ absolute value of vorticity

ω(τ) angular velocity at dimensionless time ?
ωrot rotational constant
φ parameter to set timing of rotation
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