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The advection and diffusion of a passive scalar is investigated for a map of the 2-torus. The map is
chaotic, and the limit of almost-uniform stretching is considered. This allows an analytic
understanding of the transition from a phase of constant scalar varigmcehort time$ to
exponential decagfor long times. This transition is embodied in a short superexponential phase of
decay. The asymptotic state in the exponential phase is an eigenfunction of the advection—diffusion
operator, in which most of the scalar variance is concentrated at small scales, even though a
large-scale mode sets the decay rate. The duration of the superexponential phase is proportional to
the logarithm of the exponential decay rate; if the decay is slow enough then there is no
superexponential phase at all. @03 American Institute of Physic§DOI: 10.1063/1.1568833

A crucial problem involving fluids in the physical sci- The existence of such eigenfunctions of the advection—
ences is to understand the nature of mixing—its effi- diffusion operator was demonstrated convincingly via a nu-
ciency and thoroughness. Examples range from the mun- merical approach for the inhomogeneous baker's fap.
dane (cream in coffed, to the utilitarian (temperature in Sukhatme and Pierrehumb¥riexplained that the discrep-
room), the industrial (mixing in chemical reactors), and  ancy is not due to a failure of the local approaches, but
the planetary (mixing of ozone in the extratropical strato-  because they assume that the initial scale of variation of the
sphere). If the flow is not turbulent, mixing can neverthe-  passive scalar is much smaller than the system size.
less be very efficient, due to a phenomenon called chaotic Here we propose to use a diffeomorphism of the 2-torus
advection. In that case, the flow appears regular, but in- (an extension of Arnold’s cat m&D to further investigate
dividual fluid trajectories are very complicated and lead  aspects of the decay of variance and provide some analytical
to a stretching and folding action that greatly enhances results. We find that, when the map is close to uniformly
mixing. Here we discuss mixing for a simple map, and stretching, the decay rate is much faster than indicated by the
show that a large-scale, coherent pattern is created that distribution of Lyapunov exponents, as was also found in the
dominates the diffusive process. inhomogeneous baker's mapn Feredayet al! and labora-
tory experiments? a slower decay was also observed, but far
from the uniformly stretchinghomogeneousregime.
I. INTRODUCTION The paper is organized as follows. In Sec. Il we intro-
It has recently been suggestédhat estimates of the duce the map and derive basic expressions for the effect of
decay rate of the variance of a passive scalar under the effe@flvection and diffusion on a passive scalar. We then analyze
of advection and diffusioit® do not yield satisfactory results the superexponentiglSec. Il) and exponentialSec. V)
when applied to some simple maps, such as the inhomog@hases of diffusion. The spectrum of variance for the expo-
neous baker's map:? This also seems to be the case in nential eigenfunction is derived in Sec. V, followed by a
laboratory experiments on periodic flodfst! where the de- discussion of the results in Sec. VI.
cay rate is observed to be about an order of magnitude
slower than the decay rate based on local arguments, such UADVECTION-DIFFUSION IN A MAP
the distribution of Lyapunov exponentsPart of the reason We consider a diffeomorphism of the 2-torus?
for this is that in chaotic advectioh(i.e., smooth flows with  =[0,1?,
chaotic Lagrangian trajectorigsfar from the highly turbu-
lent regime, the presence of slowly decaying eigenfunctions M) =M-x+ ¢(x), @
dominates the long-time decay rdte™*'®(For the experi- where M is a 2x2 nonsingular matrix with integer coeffi-
ments, the presence of regular islands and barriers is alssients andg(x) is periodic in both directions with unit pe-
crucial, but we shall not address this complicated and poorlyiod. We choosé\l to have unit determinant, with an eigen-
understood issue here. It suffices to observe that the concenalue larger than one and the other less than one, so that even
tration field clearly attains an eigenfunction like regifie. in absence of thep term M is still chaotic. Specifically, we

take
dpPresent address: Department of Mathematics, Imperial College London, 2 1 K |sin2mwx
SW7 2AZ, United Kingdom. Electronic mail: jeanluc@mailaps.org M= ’ X) = _( : 1 : (2)
PElectronic mail: childress@cims.nyu.edu 1 1 2\ sin 2mwX,
1054-1500/2003/13(2)/502/6/$20.00 502 © 2003 American Institute of Physics

Downloaded 28 Aug 2007 to 128.122.81.16. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



Chaos, Vol. 13, No. 2, 2003

so thatM-x is the Arnold cat map an@ is a wave term
usually associated with the standard map. The mdpis
area preserving, and fé¢=0 the stretching of phase-space
elements is uniform in space. The map is always chdtie
largest Lyapunov exponent is positjvéd-or smallK, there

are no barriers to transport, such as islands, often encour®

tered in realistic flows.

We consider the effect of iterating the map and applying

the heat operator to a scalar distributiét 2(x),
00 () =H "M (X)), (3

wheree is the diffusivity, and the heat operatdf, and ker-
nelh, are

He0(X) = Lzhf(x—y) 6(y) dy,
(4)
hf(x):; exp(2mik - x—k2e).

We Fourier expand)(x),

a(i)(x):; 'é(ki)eZﬂ'ik-X’ (5)

so that(3) becomes

0000 =2 Tgb§ ™, (6)
q

with the transfer matrix,

qu:J , XA 2mi(q-x—k- M(x))— €g?) dx. (7)

T

We may regard) as the “initial” wave number, andt as the

“final” one, with a nonzeroT, denoting a transfer of con-

centration fromg to k under one application of the map.
For the form of the map given bil) and(2), we have

qu:e—quJ exd 2mi(q—k-M)-x
T2

—i(ky+ko)K sin(2mx,)] dx. ®)

The integral inx, gives a Kronecker delta, and tixg inte-
gral is readily written as a Bessel function; we thus have

Tiq=e ¥ 800,i%Jg (ki +k)K), Qi=k-M—q,  (9)

where thelg is a Bessel function of the first kind.
In the absence of diffusione& 0), the variance

"(i)’:JTzle‘”<x>|2dX=§ o, o=801% (10

is preserved by3) (we assume the spatial meanéit zero,
and for e>0 the variance decay#ig. 1). We consider the
casee<1, of greatest practical interest. For smidll there
are three phasesi) the variance is initially constariif the

initial scale of variation of the scalar concentration is well

above the diffusive scale, as assumed hei® it then un-
dergoes a rapid superexponential decay; @iid it ulti-
mately decays exponentially at a fixed rate, independeat of
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variance,

iteration, %

FIG. 1. Decay of total variance for varying diffusivitzandK =1073. The
onset time of decay is logarithmic in the diffusivity, but the asymptotic
exponential decay rate becomes independent of the diffusiviey-a8. The
dashed curve shows the exact superexponential soluonQ) for e
=10"%, and the dotted line is the single-mode value from @d).

dients large enough for the small diffusion to act. In the
second phase, there is a rapid exponential cascade to small
scales and an associated exponential diffusion, leading to a
superexponential decay. As the variance is depleted by dif-
fusion, eventually the system settles into an eigenfunction
that sets the exponential decay rate in the final phase.

The existence of these three phases is well
knownl=31%20pyt the exponential phase is poorly under-
stood, at least for the case of smooth flows and maps. We
discuss the superexponential phase briefly in Sec. Ill, and in
Sec. IV we describe the exponential phase. We will see that
if the eigenfunction of the exponential phase decays slowly
enough, then there is no superexponential phase at all.

lll. THE SUPEREXPONENTIAL PHASE

Initially, the variance is essentially constant because the
tiny diffusivity can be neglected. However, there is a cascade
of the variance to larger wave numbers under the action of
M ~Yin (3). [In this phase, for smak, we can neglect the
¢ term in(1), so that the map\ is Arnold’s cat map\l-x.]
This is the well-known “filamentation” effect in chaotic
flows: the stretching and folding action of the flow causes
rapid variation of the concentration across the folds. Thus,
after a number of iteratiorig =1+ (log e ¥/log A?),%* where
A=(3+/5)/2=2.618 is the largest eigenvalue f *, the
diffusion can no longer be neglected. For 10™°, we have
i1=6 (this is always an overestimateWe now describe
what happens to the variance after diffusion sets in.

For smallK and k, we haveJy((ki+ky)K)>J,((kq
+ky)K), so we retain only th€);=0 term in the transfer
matrix (9),

Tig=€ o0t O((Ky+kp)2K?). (11)

Hence, the nonvanishing matrix elementsTofhave k=q
-M~1. If initially the variance is concentrated in a single

ase—0. In the first phase, the map has not yet created grawvave numben (i.e., cr(ko)=0 unlessk=qg), then after one
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iteration it will all be inqqy-M™1, after two ingy- M2, etc. 0
This amounts to the length @f being multiplied by a factor 2t
A>1 at each iteration. But at each iteration the variance is |
multiplied by the diffusive decay factor expReg?), with g -
getting exponentially larger. The total variance is given by -6f
o =c® exp —2€|qgo- M 712 -8}
=@ exp(—2¢l|qq| A% Y), (12

so that the net decay is superexponential. The superexponel 12

tial solution is represented by a dashed line in Fig. 1, with 14}
the solid line showing the numerical solution for the map
M(x). The superexponential solution is valid until about the

ninth iteration?? We will revisit this breakdown of the solu-  -18}
tion in Sec. IV. _a¢f , , , ,
It is to be noted that a more complicated initial conditon 107 107 107 107" 10° 10'

also leads to superexponential decay, albeit with a less well- K

defined behavior because of the presence of several modesG. 2. Exponential decay rate lgg of the variance foe— 0, as a function
Even an isotropic |n|t|a| Condition can be expected to have @f K. The triangles de_note numerically calculated values, and the solid line
superxponential phase: the averaging as performed in Antor 1€ SmallK expressior(14).
sen, Jr.et al® is problematic for a cat map in a periodic
domain, because the slope of the stafglentracting direc-
tion is irrational, and yet thg wave vectors are confined to M=|T(o 1.0 1)|=e‘le(K)=%K+O(eK,K2). (14)
rational slopes. Hence, for finite we cannot expect the av- '
eraging to hold. However, these difficulties are of a math-Hence, for smallK the decay rate is limited by thé 1)
ematical nature specific to the present problem and do nahode. Fore— 0, the decay rate is independenteofFigure 2
shed much light on a more general physical situation. shows that the single-mode decay rate agrees very well with
the numerical results even fét close to unity. In the inho-
mogeneous baker’'s map the nearly superexponential limit is
for «—1/2, wherea is a parameter describing the inhomo-
In the superexponential phase we completely neglectefieneity of the map. For that case the transfer matrix scales in
the effect of the wave term in the m&p). We described the @ manner analogous to here as-1/2, but many more
action as a perfect cascade to large wave numbers, so that tRigodes must be retained due to the presence of discontinui-
variance was irrevocably moved to small scales and dissiies: all the matrix coefficients decay as (1/2, with none
pated extremely rapidly. There can be no eigenfunction irflearly dominating. The single-mode approximation is thus
such a situation, since the mode structure changes confar less accurate.
pletely at each iteration. This direct cascade process domi- \We can rule out the possibility that the decay is domi-
nates at first, but it is so efficient that eventually we musthated by cycles that repeat after several iteratidghat is,
examine the effect of the wave term, which is felt throughnonvanishing ") qq for N>1]: such cycles must depend on
the higher-order Bessel functions in the transfer ma@jx higher-order Bessel functions that are small compared to
Since the long-time exponential decay observed in thed1(K). However, asK is made larger higher-order cycles
numerical results of Fig. 1 requires the existence of an eigerRecome dominant and the situation is much more compli-
function, we may ask about the minimum requirement forcated.
this. Clearly if some scalar concentration is “left behind” in ~ Now that the mechanism of exponential decay is under-
a given mode at each iteration, an eigenfunction will easilystood(for smallK), we can go back and describe the condi-
form. The question is then: Is it possible for the scalar contion for breakdown of the superexponential solution dis-

IV. THE EXPONENTIAL PHASE

centration in a given wave number to be mapped back ontéussed at the end of Sec. Ill. The superexponential decay
itself? This requires that the diagona| matrix element depletes the variance very rapldly until all that is left is vari-
5 ance in the exponentially decaying mddg=(0 1). The su-
Toq=e “168,1%34,(02K), (13 perexponential phase thus ends when the variance at large

wave numbers equals that in mo#lg. Assuming that the
ie( Ongz)zgiglmvzgpsezet(:r&?riék/aets r\?v(i)tﬂe: n%fn;[/gii;%rigg amyariance resides entirely in thg mode initially, the condi-

. . . tion for this is
plitude at each iteration: these are the modes that depenc?

only on thex, coordinate. This amplitude vanishes fir w'2=exp(— €|ko- M~ (271)2), (15)
=0, sinceq,#0 (the q=0 mode is preserved, and of no
interes}. where u is the decay factor of the variance in thg mode,

For smallK, the dominant Bessel function aftéy is J,, given by Eq.(14), and the right-hand side is the superexpo-
so the decay factqu? for the variance is given by taking the nential solution (12). After substituting ||ko- M~ (2~2)]
magnitude of(13), =A'2"1 Eq. (15 must be solved numerically far,: for
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K=10 2 and e=10°, we havei,=9.2. This is in fine

ko k; ks k;
agreement with the transition from superexponential to ex-
ponential in Fig. 1. iteration i — 1 @ @ @ @
If e<1, Eq.(15) has the approximate solution

log(e tlogu 1) w ' \n !'\» !
=1+ —7——, (16) 2 ! ! !
log A I 1 | [
1 1 1 '
which givesi,=8 for K=10"2, e=10 °. Subtractingi, I I I Y
=1+log e Ylog A? the onset of the superexponential phase v v \
(Sec. II, we find that the duration of the superexponential itoration i % @ % @
phase is roughly
Iog |Og,u_1 FIG. 3. Schematic representation of the cascade of variance for an eigen-
ip—iq= >, (17 function. The solid arrows represent a direct transfer of concentration, the
log A dashed an “effective” transfer of amplitude? due to the eigenfunction

property. In our approximation, only the, mode has a direct transfer of

which is independent of (at leading order and has a weak concentration to ftself.

dependence on the decay rate logJnlessu is very small

(recall that 6<u<1), the superexponential phase is very

short. In fact, for logu '<1 the decay of th€0 1) mode is

slow enough that there is no superexponential phase at all, éeration (this is denoted by a solid vertical arrpwRather,
indicated by the negative right-hand sideg17). We can thus there is aneffective(indirect transfer occurring because of
speculate that it is unlikely that the superexponential phasthe cascadg18). most of the variance in each mode is
can be observed in experiments, since thertends to be mapped to the next one down the cascade following the di-
close to unity. agonal arrows in Fig. 3.

Note thate has to be extremely small fqi7) to hold: The decrease in variance for each of the diagonal arrows
for K=10"3, e=1075, (17) givesi,—i;~1, whereas the is diffusive and is given by the factor,=exp(—2ek2). If we
unapproximatednumerical result isi,—i;=2.2. The error denote byo{’:=|6’|? the variance in modé, at theith
on (16) and(17) scales as loglog .. iteration, we have |

o)=p?el™Y, n=041,.., (19a
V. VARIANCE SPECTRUM OF THE EIGENFUNCTION " n
(i)— (i-1) _

The long-wavelength mode discussed in Sec. IV is the ~ Tkn~ Yn-1k,;» N=12.... (199
bottleneck that determines the decay rdite smallK). But  These two recurrences can be combined to give
this mode does not dominate the structure of the eigenfunc- 1
tion. In fact, a very small amount of the total variance actu- () )= In=thn-2""Y0 o0 L2e 2
ally resides in that bottleneck mode: the variance is concen- ¢ (kn)= w2n R TeX €=y m)
trated at small scales. We now derive the variance spectrum (20)

of the eigenfunction. . . . : ,
; X : where therelative variancein the nth mode is defined as
The variance is taken out of tH@ 1) mode in the same ;) M) () . .
. : ) . g'(k,)=0y’loy’ . The magnitude of the wave number is
manner as described in Sec. lll: there is a cascade from that n %o

mode to larger wave numbers through the actiordbft. ~ 9iven by the exponential recursion,
Neglecting theK term, the cascade proceeds frokg IKnll=AllKn—1ll= [Kall= A" Kol = A", (21)
=(01) toky, ky, etc., as

(01)—(—12)—(—35)—(—813—---. (18)

Thek,, become more and more aligned with the staotn-
tracting direction of the map as we proceed down the cas
cade. The amplitude of the wave number is multiplied at  o((k,)=|/k,|| 20941097 exp —2ek?/A?), (23
each step by a factok =(3+ /5)/2=2.618, the largest ei-
genvalue of\l 1,

which allows us to solve fon,
n=log|k,||/log A (22

and rewrite(20) as

where we retained only tHeﬁ,1 term of the sum in(20) and

The exponential decay rate suggests that the scalar coH-S‘a_d (2D). dThe right;jhagd Is(;de O_ff Eq23) lflorhthe relatiy €
centration is in an eigenfunction of the advection—diffusion?a/ance does ndaind should not if we really have an eigen-

operator. Assuming this to be the case, Fig. 3 illustrates thgunction) depend on the iteration number, and depends

transfer of variance between modes for an iteration of thé’nIy onn throughk,. We thus lek, be a continuous vari-

map. At each iteration, the eigenfunction property implies2?/€K: with k=Kk(cosé;sin6), and dropi; from Eqg. (23) we
that the variance in each wave number is decreased by tgen have

uniform factor u?><1. This is illustrated by the vertical ar- a(k,0)=a(K)k 18(6—6,), (24
rows in Fig. 3. The dashed arrows do not represent a dire
transfer of variance, since for smal only the variance in
the k, mode is actually mapped back onto itself after onea (k) =k? exp(—2ek?/A?), (=—logul/logA. (25)

%e spectrum of relative variance, with
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FIG. 4. Spectrum function of relative variance after 12 iterationsKor

=10"%, e=10"“. The dashed line is the theoretical curve given(B9),
and the triangles are numerical results.

The factork = 18(6— 6,) in (24) reflects the alignment of the
vectorsk with the stablgcontracting direction of M, which

J.-L. Thiffeault and S. Childress

centration through its stretching and folding action. This is
usually called thestirring phase. In the second phase, the
variance(that is, the squared amplitude of each mode with
the total mean subtractedtarts to decrease superexponen-
tially, because the exponential cascade to small scales is
compounded by the exponential efficiency of diffusi@ec.

III. This is the first of twomixing phasegsuperexponential
and exponentia) where diffusion plays an important role.
This superexponential phase might not occur if the exponen-
tial decay rate of the slowest-decaying eigenfunction is slow
enough. For very small diffusivity, the duration of the super-
exponential phase is independent of diffusivity.

Unless the stretching is completely uniform, the super-
exponential phase comes to an end because though it rapidly
depletes any variance contained in the small scales, some is
left behind because of dispersion. What remains is the eigen-
function of the advection—diffusion operator with the largest
eigenvalue(all eigenvalues have modulus less than )pne
which then decays exponentially. The decay rate of this
eigenfunction is determined by its slowest-decaying part, in
the present case th@® 1) mode (Sec. IV). The structure
(spectrum of this eigenmode is readily described as a bal-
ance between the eigenfunction propdrodes are mapped

is at an angle,. We thus have essentially a one-dimensionalto themselves with uniform amplitufland a cascade to large

spectrum. The spectrum function then satisfies

6(k)=f o(k,0)kde. (26)
The spectrum functiof25) is plotted in Fig. 4 and com-

pared with numerical results for sma&ll, showing excellent

agreement. Sincg?<1 andA>1, we conclude that>0

wave numbergSec. V). In the present case of a map with
nearly uniform stretching, the spectrum of the eigenfunction
has most of its variance concentrated at large wave numbers,
even though the small wave number mdgfd) dictates the
rate of decay.

The decay rate of variance is outrageously fast in a map
so close to being superexponential. Nevertheless, the manner

always. This implies that there is more variance at the largén which the asymptotic regime is attained and the possibility
wave numbers than at the slowest-decaying mikgleThe  of analytic results provide insight into the formation of the

slope of the spectrurizr(k) is considerably shallower than eigenfunction through the interplay of the slowest-decaying

the Batchelok 1 spectrumz,3 consistent with the results for mode and the cascade to large wave number¥ Asmade
the baker’s map.This reflects the extreme efficiency of the |arger, the decay rates are more reasonable and a remnant of
cascade, a consequence of the nearly uniform stretching, #he mechanism presented here still applies.

that small scales are generated with great ease and the spec- The decay rate in the present case is completely unre-
trum is therefore skewed towards large wave numbers.

( _ _ lated to the Lyapunov exponent or its distribution. For small
To know just how much more variance is at the largek, the distribution of the Lyapunov exponent is peaked at

wave numbers, we find the maximum @), which is at log A and has a very narrow standard deviation. But here the

k= A(LI2€)Y2 asymptotic exponential decay ratg i_s of order Kggso the
decay becomes faster #&—0. This is due to the system
being close to the uniform stretchirigat map limit, which

is unlikely to be the case in physical situations. Any theory
as the dissipation scale. Frof@7), the relative variance in based on the distribution Lyapunov exponents cannot in this

that peak wave number scales@¥. The wave numbek, case predict the decay rate, sincglasbal moqe dominates.
gives an indication of the largest wave number that must bgor the theory Of Antonsen, Jelt al, th?re is the furthe_r
included in a numerical calculation to capture the decay Oproblem _that, as in I_Zeredagl al,” averaging over gngles IS
variance correctly. However, if the truncation size is smaIIer,nOt poss_|ble here, since for sm_t@lthe stable manifold and
the decay rate in the exponential phase is still captured proﬁhe graghent of the initial condition ha\./e- a nearly .con_stant
erly, since it is determined by th@ 1) mode. angle with respect to each other. If the initial condition itself

is taken as isotropic, then the irrationality of the slope of the
contracting direction becomes problemdigec. Il)).

Sukhatme and Pierrehumbérpoint out that what deter-
We summarize the three phases of chaotic mixing irmines the regime of decdye., eigenfunction or locais the

smooth flows for the case of small diffusivity. In the first scale of the initial scalar concentration. In our case, as we
phase the variance is approximately conserved, and the charake that initial scale smaller we find the same asymptotic
otic flow (or map creates large gradients in the scalar con-decay rate. This is due to a weak dispersidine to the

o (k) =kire ™ {=kafu®0",

(27)

The peak wave number thus scalesa%?, the same scaling

VI. DISCUSSION
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