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Chaotic mixing in a torus map
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The advection and diffusion of a passive scalar is investigated for a map of the 2-torus. The map is
chaotic, and the limit of almost-uniform stretching is considered. This allows an analytic
understanding of the transition from a phase of constant scalar variance~for short times! to
exponential decay~for long times!. This transition is embodied in a short superexponential phase of
decay. The asymptotic state in the exponential phase is an eigenfunction of the advection–diffusion
operator, in which most of the scalar variance is concentrated at small scales, even though a
large-scale mode sets the decay rate. The duration of the superexponential phase is proportional to
the logarithm of the exponential decay rate; if the decay is slow enough then there is no
superexponential phase at all. ©2003 American Institute of Physics.@DOI: 10.1063/1.1568833#
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A crucial problem involving fluids in the physical sci-
ences is to understand the nature of mixing—its effi-
ciency and thoroughness. Examples range from the mun
dane „cream in coffee…, to the utilitarian „temperature in
room…, the industrial „mixing in chemical reactors…, and
the planetary „mixing of ozone in the extratropical strato-
sphere…. If the flow is not turbulent, mixing can neverthe-
less be very efficient, due to a phenomenon called chaoti
advection. In that case, the flow appears regular, but in-
dividual fluid trajectories are very complicated and lead
to a stretching and folding action that greatly enhances
mixing. Here we discuss mixing for a simple map, and
show that a large-scale, coherent pattern is created tha
dominates the diffusive process.

I. INTRODUCTION

It has recently been suggested1,2 that estimates of the
decay rate of the variance of a passive scalar under the e
of advection and diffusion3–6 do not yield satisfactory result
when applied to some simple maps, such as the inhom
neous baker’s map.7–9 This also seems to be the case
laboratory experiments on periodic flows,10,11 where the de-
cay rate is observed to be about an order of magnit
slower than the decay rate based on local arguments, su
the distribution of Lyapunov exponents.12 Part of the reason
for this is that in chaotic advection13 ~i.e., smooth flows with
chaotic Lagrangian trajectories!, far from the highly turbu-
lent regime, the presence of slowly decaying eigenfuncti
dominates the long-time decay rate.1,2,14–16~For the experi-
ments, the presence of regular islands and barriers is
crucial, but we shall not address this complicated and po
understood issue here. It suffices to observe that the con
tration field clearly attains an eigenfunction like regime.14!
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The existence of such eigenfunctions of the advectio
diffusion operator was demonstrated convincingly via a n
merical approach for the inhomogeneous baker’s map1,2

Sukhatme and Pierrehumbert17 explained that the discrep
ancy is not due to a failure of the local approaches,
because they assume that the initial scale of variation of
passive scalar is much smaller than the system size.

Here we propose to use a diffeomorphism of the 2-to
~an extension of Arnold’s cat map18! to further investigate
aspects of the decay of variance and provide some analy
results. We find that, when the map is close to uniform
stretching, the decay rate is much faster than indicated by
distribution of Lyapunov exponents, as was also found in
inhomogeneous baker’s map.1 In Feredayet al.1 and labora-
tory experiments,12 a slower decay was also observed, but
from the uniformly stretching~homogeneous! regime.

The paper is organized as follows. In Sec. II we intr
duce the map and derive basic expressions for the effec
advection and diffusion on a passive scalar. We then ana
the superexponential~Sec. III! and exponential~Sec. IV!
phases of diffusion. The spectrum of variance for the ex
nential eigenfunction is derived in Sec. V, followed by
discussion of the results in Sec. VI.

II. ADVECTION–DIFFUSION IN A MAP

We consider a diffeomorphism of the 2-torusT 2

5@0,1#2,

M~x!5M•x1f~x!, ~1!

whereM is a 232 nonsingular matrix with integer coeffi
cients andf~x! is periodic in both directions with unit pe
riod. We chooseM to have unit determinant, with an eigen
value larger than one and the other less than one, so that
in absence of thef termM is still chaotic. Specifically, we
take

M5S 2 1

1 1D , f~x!5
K

2p
S sin 2px1

sin 2px1
D ; ~2!

n,
© 2003 American Institute of Physics
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so thatM•x is the Arnold cat map andf is a wave term
usually associated with the standard map. The mapM is
area preserving, and forK50 the stretching of phase-spac
elements is uniform in space. The map is always chaotic~the
largest Lyapunov exponent is positive!. For smallK, there
are no barriers to transport, such as islands, often enc
tered in realistic flows.

We consider the effect of iterating the map and apply
the heat operator to a scalar distributionu ( i 21)(x),

u ( i )~x!5Heu
( i 21)~M 21~x!!, ~3!

wheree is the diffusivity, and the heat operatorHe and ker-
nel he are

Heu~x!ªE
T 2

he~x2y!u~y! dy,

~4!

he~x!5(
k

exp~2p ik•x2k2e!.

We Fourier expandu ( i )(x),

u ( i )~x!5(
k

ûk
( i )e2p ik•x, ~5!

so that~3! becomes

û ( i )~x!5(
q

Tkqûq
( i 21) , ~6!

with the transfer matrix,

TkqªE
T 2

exp~2p i~q•x2k•M~x!!2eq2! dx. ~7!

We may regardq as the ‘‘initial’’ wave number, andk as the
‘‘final’’ one, with a nonzeroTkq denoting a transfer of con
centration fromq to k under one application of the map.

For the form of the map given by~1! and ~2!, we have

Tkq5e2eq2E
T 2

exp@2p i~q2k•M!•x

2 i~k11k2!K sin~2px1!# dx. ~8!

The integral inx2 gives a Kronecker delta, and thex1 inte-
gral is readily written as a Bessel function; we thus have

Tkq5e2eq2
d0,Q2

iQ1JQ1
~~k11k2!K !, Qªk•M2q, ~9!

where theJQ is a Bessel function of the first kind.
In the absence of diffusion (e50), the variance

s ( i )
ªE

T 2
uu ( i )~x!u2 dx5(

k
sk

( i ) , sk
( i )
ªuûk

( i )u2, ~10!

is preserved by~3! ~we assume the spatial mean ofu is zero!,
and for e.0 the variance decays~Fig. 1!. We consider the
casee!1, of greatest practical interest. For smallK, there
are three phases:~i! the variance is initially constant~if the
initial scale of variation of the scalar concentration is w
above the diffusive scale, as assumed here!; ~ii ! it then un-
dergoes a rapid superexponential decay; and~iii ! it ulti-
mately decays exponentially at a fixed rate, independent oe,
ase→0. In the first phase, the map has not yet created
ownloaded 28 Aug 2007 to 128.122.81.16. Redistribution subject to AIP lic
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dients large enough for the small diffusion to act. In t
second phase, there is a rapid exponential cascade to s
scales and an associated exponential diffusion, leading
superexponential decay. As the variance is depleted by
fusion, eventually the system settles into an eigenfunct
that sets the exponential decay rate in the final phase.

The existence of these three phases is w
known,1–3,19,20 but the exponential phase is poorly unde
stood, at least for the case of smooth flows and maps.
discuss the superexponential phase briefly in Sec. III, an
Sec. IV we describe the exponential phase. We will see
if the eigenfunction of the exponential phase decays slo
enough, then there is no superexponential phase at all.

III. THE SUPEREXPONENTIAL PHASE

Initially, the variance is essentially constant because
tiny diffusivity can be neglected. However, there is a casc
of the variance to larger wave numbers under the action
M 21 in ~3!. @In this phase, for smallK, we can neglect the
f term in ~1!, so that the mapM is Arnold’s cat mapM•x.#
This is the well-known ‘‘filamentation’’ effect in chaotic
flows: the stretching and folding action of the flow caus
rapid variation of the concentration across the folds. Th
after a number of iterationsi 1.11(loge21/logL2),21 where
L5(31A5)/2.2.618 is the largest eigenvalue ofM21, the
diffusion can no longer be neglected. Fore51025, we have
i 1.6 ~this is always an overestimate!. We now describe
what happens to the variance after diffusion sets in.

For small K and k, we haveJ0((k11k2)K)@J1((k1

1k2)K), so we retain only theQ150 term in the transfer
matrix ~9!,

Tkq5e2eq2
d0,Q1O~~k11k2!2K2!. ~11!

Hence, the nonvanishing matrix elements ofT have k5q
•M21. If initially the variance is concentrated in a sing
wave numberq0 ~i.e., sk

(0)50 unlessk5q0), then after one

FIG. 1. Decay of total variance for varying diffusivitye andK51023. The
onset time of decay is logarithmic in the diffusivity, but the asympto
exponential decay rate becomes independent of the diffusivity ase→0. The
dashed curve shows the exact superexponential solution (K50) for e
51025, and the dotted line is the single-mode value from Eq.~14!.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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iteration it will all be in q0•M
21, after two inq0•M

22, etc.
This amounts to the length ofq being multiplied by a factor
L.1 at each iteration. But at each iteration the variance
multiplied by the diffusive decay factor exp(22eq2), with q
getting exponentially larger. The total variance is given b

s ( i )5s (0) exp~22eiq0•M
2( i 21)i2!

.s (0) exp~22eiq0i2L2(i 21)!, ~12!

so that the net decay is superexponential. The superexpo
tial solution is represented by a dashed line in Fig. 1, w
the solid line showing the numerical solution for the m
M~x!. The superexponential solution is valid until about t
ninth iteration.22 We will revisit this breakdown of the solu
tion in Sec. IV.

It is to be noted that a more complicated initial conditi
also leads to superexponential decay, albeit with a less w
defined behavior because of the presence of several mo
Even an isotropic initial condition can be expected to hav
superxponential phase: the averaging as performed in An
sen, Jr.et al.3 is problematic for a cat map in a period
domain, because the slope of the stable~contracting! direc-
tion is irrational, and yet the wave vectors are confined
rational slopes. Hence, for finitek we cannot expect the av
eraging to hold. However, these difficulties are of a ma
ematical nature specific to the present problem and do
shed much light on a more general physical situation.

IV. THE EXPONENTIAL PHASE

In the superexponential phase we completely neglec
the effect of the wave term in the map~1!. We described the
action as a perfect cascade to large wave numbers, so tha
variance was irrevocably moved to small scales and di
pated extremely rapidly. There can be no eigenfunction
such a situation, since the mode structure changes c
pletely at each iteration. This direct cascade process do
nates at first, but it is so efficient that eventually we m
examine the effect of the wave term, which is felt throu
the higher-order Bessel functions in the transfer matrix~9!.

Since the long-time exponential decay observed in
numerical results of Fig. 1 requires the existence of an eig
function, we may ask about the minimum requirement
this. Clearly if some scalar concentration is ‘‘left behind’’
a given mode at each iteration, an eigenfunction will eas
form. The question is then: Is it possible for the scalar c
centration in a given wave number to be mapped back o
itself? This requires that the diagonal matrix element

Tqq5e2eq1
2
d0,q1

iq2Jq2
~q2K !, ~13!

be nonzero. We see from~13! that modes of the formq
5(0 q2) are mapped to themselves with a nonvanishing a
plitude at each iteration: these are the modes that dep
only on thex2 coordinate. This amplitude vanishes forK
50, sinceq2Þ0 ~the q50 mode is preserved, and of n
interest!.

For smallK, the dominant Bessel function afterJ0 is J1 ,
so the decay factorm2 for the variance is given by taking th
magnitude of~13!,
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m5uT(0 1),(0 1)u5e2eJ1~K !5 1
2K1O~eK,K2!. ~14!

Hence, for smallK the decay rate is limited by the~0 1!
mode. Fore→0, the decay rate is independent ofe. Figure 2
shows that the single-mode decay rate agrees very well
the numerical results even forK close to unity. In the inho-
mogeneous baker’s map the nearly superexponential lim
for a→1/2, wherea is a parameter describing the inhom
geneity of the map. For that case the transfer matrix scale
a manner analogous to here asa→1/2, but many more
modes must be retained due to the presence of discont
ties: all the matrix coefficients decay as (1/2)2a, with none
clearly dominating. The single-mode approximation is th
far less accurate.

We can rule out the possibility that the decay is dom
nated by cycles that repeat after several iterations@that is,
nonvanishing (TN)qq for N.1]: such cycles must depend o
higher-order Bessel functions that are small compared
J1(K). However, asK is made larger higher-order cycle
become dominant and the situation is much more com
cated.

Now that the mechanism of exponential decay is und
stood~for smallK), we can go back and describe the con
tion for breakdown of the superexponential solution d
cussed at the end of Sec. III. The superexponential de
depletes the variance very rapidly until all that is left is va
ance in the exponentially decaying modek0ª(0 1). The su-
perexponential phase thus ends when the variance at l
wave numbers equals that in modek0 . Assuming that the
variance resides entirely in thek0 mode initially, the condi-
tion for this is

m i 25exp~2eik0•M
2( i 221)i2!, ~15!

wherem is the decay factor of the variance in thek0 mode,
given by Eq.~14!, and the right-hand side is the superexp
nential solution ~12!. After substituting ik0•M

2( i 221)i
.L i 221, Eq. ~15! must be solved numerically fori 2 : for

FIG. 2. Exponential decay rate logm2 of the variance fore→0, as a function
of K. The triangles denote numerically calculated values, and the solid
is the small-K expression~14!.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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K51023 and e51025, we have i 2.9.2. This is in fine
agreement with the transition from superexponential to
ponential in Fig. 1.

If e!1, Eq. ~15! has the approximate solution

i 2.11
log~e21 logm21!

logL2 , ~16!

which gives i 2.8 for K51023, e51025. Subtractingi 1

511 loge21/logL2, the onset of the superexponential pha
~Sec. III!, we find that the duration of the superexponent
phase is roughly

i 22 i 1.
log logm21

logL2 , ~17!

which is independent ofe ~at leading order!, and has a weak
dependence on the decay rate logm. Unlessm is very small
~recall that 0,m,1), the superexponential phase is ve
short. In fact, for logm21,1 the decay of the~0 1! mode is
slow enough that there is no superexponential phase at a
indicated by the negative right-hand side in~17!. We can thus
speculate that it is unlikely that the superexponential ph
can be observed in experiments, since therem tends to be
close to unity.

Note thate has to be extremely small for~17! to hold:
for K51023, e51025, ~17! gives i 22 i 1.1, whereas the
unapproximated~numerical! result is i 22 i 1.2.2. The error
on ~16! and ~17! scales as log loge21.

V. VARIANCE SPECTRUM OF THE EIGENFUNCTION

The long-wavelength mode discussed in Sec. IV is
bottleneck that determines the decay rate~for small K). But
this mode does not dominate the structure of the eigenfu
tion. In fact, a very small amount of the total variance ac
ally resides in that bottleneck mode: the variance is conc
trated at small scales. We now derive the variance spect
of the eigenfunction.

The variance is taken out of the~0 1! mode in the same
manner as described in Sec. III: there is a cascade from
mode to larger wave numbers through the action ofM21.
Neglecting the K term, the cascade proceeds fromk0

5(0 1) to k1 , k2 , etc., as

~0 1!→~21 2!→~23 5!→~28 13!→¯ . ~18!

Thekn become more and more aligned with the stable~con-
tracting! direction of the map as we proceed down the c
cade. The amplitude of the wave number is multiplied
each step by a factorL5(31A5)/2.2.618, the largest ei
genvalue ofM21.

The exponential decay rate suggests that the scalar
centration is in an eigenfunction of the advection–diffusi
operator. Assuming this to be the case, Fig. 3 illustrates
transfer of variance between modes for an iteration of
map. At each iteration, the eigenfunction property impl
that the variance in each wave number is decreased b
uniform factorm2,1. This is illustrated by the vertical ar
rows in Fig. 3. The dashed arrows do not represent a di
transfer of variance, since for smallK only the variance in
the k0 mode is actually mapped back onto itself after o
ownloaded 28 Aug 2007 to 128.122.81.16. Redistribution subject to AIP lic
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iteration ~this is denoted by a solid vertical arrow!. Rather,
there is aneffective~indirect! transfer occurring because o
the cascade~18!: most of the variance in each mode
mapped to the next one down the cascade following the
agonal arrows in Fig. 3.

The decrease in variance for each of the diagonal arr
is diffusive and is given by the factornn5exp(22ekn

2). If we
denote byskn

( i )
ªuûkn

( i )u2 the variance in modekn at the i th

iteration, we have

skn

( i )5m2skn

( i 21) , n50,1,... , ~19a!

skn

( i )5nn21skn21

( i 21) , n51,2,... . ~19b!

These two recurrences can be combined to give

s ( i )~kn!5
nn21nn22¯n0

m2n 5m22n expS 22e (
m50

n21

km
2 D ,

~20!

where therelative variancein the nth mode is defined as
s ( i )(kn)ªskn

( i )/sk0

( i ) . The magnitude of the wave number

given by the exponential recursion,

ikni.Likn21i⇒ikni.Lnik0i5Ln, ~21!

which allows us to solve forn,

n5 logikni / logL ~22!

and rewrite~20! as

s ( i )~kn!.ikni22 log m/ log L exp~22ekn
2/L2!, ~23!

where we retained only thekn21
2 term of the sum in~20! and

used~21!. The right-hand side of Eq.~23! for the relative
variance does not~and should not if we really have an eige
function! depend on the iteration number,i , and depends
only on n throughkn . We thus letkn be a continuous vari-
ablek, with k5k(cosu,sinu), and dropi ; from Eq. ~23! we
then have

s~k,u!5s̃~k!k21d~u2u0!, ~24!

the spectrum of relative variance, with

s̃~k!5k2z exp~22ek2/L2!, zª2 logm/ logL. ~25!

FIG. 3. Schematic representation of the cascade of variance for an e
function. The solid arrows represent a direct transfer of concentration,
dashed an ‘‘effective’’ transfer of amplitudem2 due to the eigenfunction
property. In our approximation, only thek0 mode has a direct transfer o
concentration to itself.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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The factork21d(u2u0) in ~24! reflects the alignment of the
vectorsk with the stable~contracting! direction ofM, which
is at an angleu0 . We thus have essentially a one-dimensio
spectrum. The spectrum function then satisfies

s̃~k!5E s~k,u!k du. ~26!

The spectrum function~25! is plotted in Fig. 4 and com-
pared with numerical results for smallK, showing excellent
agreement. Sincem2,1 andL.1, we conclude thatz.0
always. This implies that there is more variance at the la
wave numbers than at the slowest-decaying modek0 . The
slope of the spectrums̃(k) is considerably shallower tha
the Batchelork21 spectrum,23 consistent with the results fo
the baker’s map.1 This reflects the extreme efficiency of th
cascade, a consequence of the nearly uniform stretchin
that small scales are generated with great ease and the
trum is therefore skewed towards large wave numbers.

To know just how much more variance is at the lar
wave numbers, we find the maximum of~25!, which is at

km5L~z/2e!1/2,
~27!

s~km!5km
2ze2z5km

2zm log L.

The peak wave number thus scales ase21/2, the same scaling
as the dissipation scale. From~27!, the relative variance in
that peak wave number scales ase2z. The wave numberkm

gives an indication of the largest wave number that mus
included in a numerical calculation to capture the decay
variance correctly. However, if the truncation size is smal
the decay rate in the exponential phase is still captured p
erly, since it is determined by the~0 1! mode.

VI. DISCUSSION

We summarize the three phases of chaotic mixing
smooth flows for the case of small diffusivity. In the fir
phase the variance is approximately conserved, and the
otic flow ~or map! creates large gradients in the scalar co

FIG. 4. Spectrum function of relative variance after 12 iterations forK
51023, e51024. The dashed line is the theoretical curve given by~25!,
and the triangles are numerical results.
ownloaded 28 Aug 2007 to 128.122.81.16. Redistribution subject to AIP lic
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centration through its stretching and folding action. This
usually called thestirring phase. In the second phase, t
variance~that is, the squared amplitude of each mode w
the total mean subtracted! starts to decrease superexpone
tially, because the exponential cascade to small scale
compounded by the exponential efficiency of diffusion~Sec.
III !. This is the first of twomixing phases~superexponentia
and exponential!, where diffusion plays an important role
This superexponential phase might not occur if the expon
tial decay rate of the slowest-decaying eigenfunction is s
enough. For very small diffusivity, the duration of the supe
exponential phase is independent of diffusivity.

Unless the stretching is completely uniform, the sup
exponential phase comes to an end because though it ra
depletes any variance contained in the small scales, som
left behind because of dispersion. What remains is the eig
function of the advection–diffusion operator with the large
eigenvalue~all eigenvalues have modulus less than on!,
which then decays exponentially. The decay rate of t
eigenfunction is determined by its slowest-decaying part
the present case the~0 1! mode ~Sec. IV!. The structure
~spectrum! of this eigenmode is readily described as a b
ance between the eigenfunction property~modes are mapped
to themselves with uniform amplitude! and a cascade to larg
wave numbers~Sec. V!. In the present case of a map wit
nearly uniform stretching, the spectrum of the eigenfunct
has most of its variance concentrated at large wave numb
even though the small wave number mode~0 1! dictates the
rate of decay.

The decay rate of variance is outrageously fast in a m
so close to being superexponential. Nevertheless, the ma
in which the asymptotic regime is attained and the possibi
of analytic results provide insight into the formation of th
eigenfunction through the interplay of the slowest-decay
mode and the cascade to large wave numbers. AsK is made
larger, the decay rates are more reasonable and a remna
the mechanism presented here still applies.

The decay rate in the present case is completely u
lated to the Lyapunov exponent or its distribution. For sm
K, the distribution of the Lyapunov exponent is peaked
logL and has a very narrow standard deviation. But here
asymptotic exponential decay rate is of order logK, so the
decay becomes faster asK→0. This is due to the system
being close to the uniform stretching~cat map! limit, which
is unlikely to be the case in physical situations. Any theo
based on the distribution Lyapunov exponents cannot in
case predict the decay rate, since aglobal mode dominates.
For the theory of Antonsen, Jr.et al.,3 there is the further
problem that, as in Feredayet al.,1 averaging over angles i
not possible here, since for smallK the stable manifold and
the gradient of the initial condition have a nearly consta
angle with respect to each other. If the initial condition its
is taken as isotropic, then the irrationality of the slope of t
contracting direction becomes problematic~Sec. III!.

Sukhatme and Pierrehumbert17 point out that what deter-
mines the regime of decay~i.e., eigenfunction or local! is the
scale of the initial scalar concentration. In our case, as
make that initial scale smaller we find the same asympt
decay rate. This is due to a weak dispersion~due to the
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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wave! from the large to the small wave numbers which
lows the system to develop its preferred~slowest-decaying!
large-scale eigenfunction. The only way to get a faster rat
to completely remove the slowest-decaying eigenfunct
from the initial condition, which never happens in practic
A smaller initial scale of variation does however lead
faster overall decay because its effect is to lengthen the
tial superexponential scale. This is because the weak dis
sion needs time to build the eigenfunction to an amplitu
where it can rise above the other ambient modes.

The large-scale eigenfunctions can lead not only to fa
decay but also slower~as in Feredayet al.1!, when compared
to local, Lyapunov-exponent based approaches.3,4,6 In both
cases, it is the highly ordered nature of the system~due to the
large-scale, coherent nature of the initial scalar field a
flow, but also to periodic boundary conditions and walls! that
gives the discrepancy. We also observe a slower decay
largerK, but no analytical theory has yet been developed
adequately describe that regime.

We observe numerically that asK is made large the
spectrum of variance tends to concentrate in small w
numbers, possibly due to the presence of a strong disper
competing with the direct cascade to small scales.24 In that
limit the cascade to large wave numbers is no longer
scribed by the linear partM of the map, so there is no clea
separation between the eigenfunction property and the
cade. An investigation of the decay rate and spectrum in
largeK, wave-dominated limit will be the subject of futur
work.
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