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Growth of anti-parallel vorticity in Euler flows
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Abstract

In incompressible Euler flows, vorticity is intensified by line stretching, a process that can come either from the action of shear, or from
advection with curvature. Focusing on the latter process, we derive some estimates on the maximal growth of vorticity in axisymmetric flow
without swirl, given that vorticity support volume or kinetic energy is fixed. This leads to consideration of locally 2D anti-parallel vortex structures
in three dimensions. We exhibit a class of line motions which lead to infinite vorticity in a finite time, with only a finite total line stretching. If the
line is replaced by a locally 2D Euler flow, we obtain a class of models of vorticity growth which are similar to the paired vortex structures studied
by Pumir and Siggia. We speculate on the mechanisms which can suppress the nonlinear effects necessary for the finite-time singularity exhibited
by the moving line problem.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The question of the global regularity of three-dimensional
solutions of the incompressible Euler equations continues to
be of considerable interest to both mathematicians and fluid
dynamicists, see e.g. the papers of Constantin, Gibbon, and Hou
in this volume. According to the seminal Beale–Majda–Kato
criterion, singularity formation must be accompanied by infinite
(integral of) maximum vorticity, which in turn requires that
some vortex tubes stretch to zero cross-section. The question
of global regularity thus depends upon how fast vorticity can
grow through line stretching.

In the present note, we re-examine anti-parallel vortex
structures as a mechanism for the self-stretching of vorticity.
We will also be interested in the existence of Euler flows which
maintain quasi-two-dimensionality even as vorticity grows. In a
perfect fluid, vortex lines are material and therefore move with
the velocity created by the self-same vorticity, as described by
the Biot–Savart law. Let us consider a curve C(t), restricted for
simplicity to a plane, moving in the plane with velocity u(ζ0, t).
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Here ζ0 is a Lagrangian parameter of the line, here arc length is
measured from a reference point at t = 0.

Resolving u into tangential and normal components relative
to the curve, a point x(ζ0, t) of C moves according to

∂x
∂t

∣∣∣∣
ζ0

= u(ζ0, t)n + w(ζ0, t)t, (1)

where (n,b, t) is the orthonormal triad of normal, tangent, and
binormal vectors to the curve. As is well known, the equations
of motion of the curve can be expressed for given u, w as a pair
of equations for the Jacobian J =

∂ζ
∂ζ0
(ζ0, t) and the curvature

κ(ζ,t), where ζ is the current arc length:

∂ J

∂t

∣∣∣∣
ζ0

= wζ J − Juκ, (2)

∂κ

∂t

∣∣∣∣
ζ0

− wκζ − κ2u − uζ ζ = 0. (3)

Note that it is derivatives in ζ , not ζ0, which occur in (3). The
two terms on the right of (2) we may call, in order, the shear
stretching and the expansive stretching terms.

Since shear stretching involves the tangential component w,
it can be caused by the global vorticity only if the nearby lines

http://www.elsevier.com/locate/physd
mailto:childress@cims.nyu.edu
http://dx.doi.org/10.1016/j.physd.2008.02.028


1922 S. Childress / Physica D 237 (2008) 1921–1925
are suitably skew to the line to be stretched. Shear-induced
stretching can play a significant role in the amplification of
vorticity, as was recognized by Pelz, see e.g. [1]. Expansive
stretching is available to locally parallel but curved vortex lines.
It is the basis for much of the line stretching in numerical
experiments utilizing paired anti-parallel vortex structures, see
e.g. [2–4].

We here focus on the intensification of vorticity by expansive
stretching. We shall first consider stretching of vorticity in the
simplest of 3D Euler flows, namely axisymmetric flow without
swirl. In that case we may formulate and solve a maximization
problem under global constraints on volume and energy. Next,
we set w = 0 in (2), (3) and close the system with an
equation for u. The resulting equations of motion of a line by its
normal are solved, and it is found that finite time singularities,
involving only finite total stretching, may occur. If we regard
the line as the locus of a locally 2D three-dimensional Euler
flow, we make contact with the calculations in [3]. We discuss
an attempt to formulate this problem in terms of generalized
partial differential equations, and the limitations on growth of
vorticity for more general quasi-2D flows. We shall omit most
details and refer to [12] for supporting calculations.

2. Axisymmetric flow without swirl

This special class of Euler flows, probably the simplest
allowing vortex stretching, is worth considering from the
viewpoint established above. How fast can vorticity grow in this
class of flows? Does vorticity necessarily become indefinitely
large somewhere as t → ∞? What bounds on growth can be
given?

Any axisymmetric flow having no swirl has a vorticity field
of the form (0, 0, ωθ (z, r, t)) in cylindrical polar coordinates
z, r, θ . We deal here only with flows in R3 for which the initial
vorticity is contained within a finite volume. Such a flow is
known to exist globally in time, and a very direct proof of a
bound exponential in time on the maximum vorticity is given
in [5]. The proof utilizes the constancy of the volume support
of the vorticity in an Euler flow, and also the material invariance
of r−1ωθ (x, t).

The exponential bound is not however sharp; the bound on
the growth of vorticity may be improved by making further use
of the special geometry. The sustained growth of vorticity must
involve continual expansion of a vortex ring. The expansive
stretching of this ring must be due to nearby rings. Thus, if
we want to find the fastest growth a ring can attain given the
initial vorticity field, we can, at each instant in time, assemble
the available vorticity in a kind of toroidal “cocoon” about the
selected growing ring, termed below the core ring. We remark
that, for simplicity in constructing the cocoon producing fastest
growth of the core ring, we shall in fact allow rings larger than
the core, as long as global constraints are met. The core ring
itself should be thought of as a “test” vortex tube of small cross-
section and circulation.

2.1. Construction of a t2 bound

Let the initial vorticity have a finite initial support of volume
V0. Suppose that −c1 ≤ ωθ (z, r, 0) ≤ c2 for some positive
constants c1, c2, and let the region of the support where ωθ ≥ 0
have volume V0+, that where ωθ < 0 have volume V0− =

V0 − V0+. We suppose that r−1
|ωθ (x, 0)| ≤ C .

Consider a core ring of radius r at time t , lying on the plane
z = 0. Taking the z axis as the axis of symmetry, we may
assume the ring has radius r at time t , and lies on the plane
z = 0. It is clear that to maximize the rate of growth at time t
of the ring in question, we can take rings of negative vorticity
ωθ = −Cr distributed over a volume V/2 in z ≥ 0, and rings
of positive vorticity ωθ = +Cr distributed over a volume V/2
in z ≤ 0. Indeed, we can have no stronger vorticity and any
deviation from an optimal equal partition will be sub-optimal.
Note that θ increases counterclockwise looking onto the x, y
plane from z > 0, so by the right-hand-rule a negative ωθ in
z > 0 induces a positive ur at the core ring.

Consider now the value of ur induced at the core ring by
a ring of radius ρ and cross-sectional area 2πρdA carrying
vorticity −Cρ at height z = ζ > 0. From the Biot–Savart law
one finds

ur (r, 0, t) ≤
Cρ2

|ζ |

4π

[∫
+π

−π

H−3/2dψ
]

dA (4)

where H = (r − ρ)2 + 2rρ(1 − cosψ) + ζ 2. Since 1 −

cosψ ≥ k2ψ2, ; |ψ | ≤ π, k =
√

2/π , we may make this
substitution and carry out the integral with the range extended
from [−π,+π ] to [−∞,+∞], to obtain

ur (r, 0, t) ≤
C |ζ |ρ3/2

4
√

r
((r − ρ)2 + ζ 2)−1dA. (5)

We introduce local polar coordinates in the r, z plane,
defined by ρ − r = R cos Θ, ζ = R sin Θ . Then, since

ur ≤
C | sin Θ |(r + R cos Θ)3/2dRdΘ

4
√

r

≤
C

4
| sin Θ |(r + R cos Θ)(1 + R/r)1/2dRdΘ, (6)

we seek to maximize U =
∫
A f (R,Θ)dRdΘ , where

f =
C

4
| sin Θ |(r + R cos Θ)(1 + R/r)1/2, (7)

subject to the volume constraint

V =

∫
A

g(R,Θ)dRdΘ, g = 2π(r + R cos Θ)R. (8)

Here A is a set to be determined. It can be shown that A may
be assumed to be mirror symmetric with respect to the plane
z = 0, and star-like with respect to the core ring.

We may then formulate the optimization problem as the
variational problem for the boundaryR(Θ), 0 ≤ Θ ≤ π , given
by

δ

∫ π

0

∫ R

0
( f (R,Θ)− λg(R,Θ)) dRΘ, (9)

with scalar multiplier λ.
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Fig. 1. Top: 3
C L2

dr
dt (as defined by (10)) versus r/L . Bottom: Cocoon shape for

various position of the core ring. The cocoon is mirror symmetric with respect
to the r/L line.

Fig. 2. z A−1τγ−1 versus x A−1τγ−1 for the case β = 2, γ =
1
9 (1 +

√
19).

This variational problem may be easily solved. The extremal
leads to the estimate on growth rate of r∗ = r/L , where
V = 2πL3, in the form

dr∗

dt
≤ sup U ≤

C Lr ∗
2

3
U(r∗). (10)

We show this relation in Fig. 1, along with the cocoon
boundaries at various values of r/L .

The behavior for large r∗ leads to an estimate on the
vorticity: For axisymmetric flow with initial support volume V
and initial vorticity satisfying |ωθ/r | ≤ C , there is a constant
C1 depending only upon V,C such that

sup |ωθ | ≤ C

(
C

8

√
V t + C1

)2

. (11)

Thus vorticity grows no faster than O(t2) for large time.
We remark that the 2D “vortex couple”, see [6], p. 535,
and also [15], if formed into a toroidal structure, realizes
kinematically a sub-optimal cocoon of constant volume.
2.2. Kinetic energy

In terms of basic scaling in r , the cocoon of constant
volume is characterized by J, a, ωθ ,U ∼ r, 1/

√
r , r,

√
r , a

being a transverse dimension, and the kinetic energy is of
order ra2(ω2

θa2) ∼ r . Thus the kinetic energy of the cocoon
of constant volume grows with r . This suggests that a lower
estimate of growth can be obtained by requiring that the kinetic
energy of the cocoon be fixed.

If constant kinetic energy is imposed as the side constraint
instead of constant volume, it can be seen that a, the lateral
dimension of the resulting cocoon, must scale as r−3/4. The
optimizing cocoon for large r then can be shown to yield an
O(t4/3) growth estimate for ωθ . The optimizing cocoon shrinks
in volume, behaving as 1/

√
r , and has a somewhat different

shape from the cocoon of constant volume, but remains star-
like.

What estimate can be obtained if volume and energy are
simultaneously conserved? We have studied this question in a
“thin-layer” version of the cocoon construction in the limit r →

∞. Our results suggest that an optimizing cocoon under both
volume and energy constraints consists of the cocoon under
the energy constraint, with the same estimate on growth, but
now having attached to it a filament or filaments (see Section 4)
which contain the missing volume but have negligible energy.
Thus we conjecture that a t4/3 bound on growth is the best
available from the cocoon construction. It is likely that the
exponent 4/3 can be reduced by other methods.

Since the Jacobian of the core vortex is proportional to
r , and since the speed U of the cocoon is ∼ r1/2 under
constant volume and ∼ r1/4 under constant energy, we see that
the growth is ultimately associated with quasi-2D structures
with J ∼ U 2 and J ∼ U 4 respectively. Of course these
considerations are essentially kinematic and, even in the case
of constant energy, need not have any implication for the actual
dynamics. On the other hand it is of interest to understand
what kind of growth can be realized in three dimensions under
similar kinematic constraints by quasi-2D vortex structures.
The remainder of this note will deal with this extension to three-
dimensional structure.

3. Singular motion of a line by its normal

Motivated by the results just given, we augment the system
(2), (3) (with w = 0) by

J = α′(ζ0)(−u)β . (12)

Here β ≥ 2, and we assume u < 0, i.e. the curve is moving
opposite to the direction of n. These assumptions are motivated
by the kinematics of propagating, quasi 2D vortex structures,
as will be discussed below. With (12) the equations may be
reduced to the following equation for u:

ut t + (β − 2)
u2

t

u

+
u2

βα′(ζ0)(−u)β
∂

∂ζ0

1
α′(ζ0)(−u)β

∂u

∂ζ0
= 0. (13)
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If C is initially a circle, it will remain a circle for all time. If
its radius is R(t) we see easily that dR/dt = cR1/β for some
positive constant c, and so

R =

(
c(1 − 1/β)t + R(0)

β−1
β

) β
β−1

. (14)

When the curvature is not independent of ζ , more
complicated behavior, including finite time singularities may
occur. We consider here only solutions of (13) having the
similarity form

u = −τ−γ Ag(σ ), σ = α(ζ0)τ
−µ. (15)

Here A is an arbitrary constant, and

τ = −t, t < 0. (16)

We take γ for the moment as an arbitrary positive number
less than 1. The time of the hypothetical singularity is here
stipulated to be t = 0. Substituting (15) into (13) we obtain
a solution if

µ = (β − 1)γ + 1. (17)

The equation for g can then be integrated once. Applying the
conditions g(0) = 1 (given the arbitrary constant A), and
g′(0) = 0 (a symmetry condition), we obtain the following
equation for g:

µγσgβ−1
+ σ 2µ2gβ−2g′

+
1

βA2β−2

g′

gβ
= 0. (18)

A second integration gives

µβA2β−2σ 2g
2µ
γ + g

2
γ = 1. (19)

Let us regard C as oriented so that at σ = 0, t points in the
direction of the positive x-axis. We define θ as the angle made
by t with the z-axis, so that κ =

∂θ
∂ζ

. Then

∂θ

∂σ
= −Aβ−1

[gβ−1γ + µσgβ−2g′
] = 0, (20)

and so, from (18)

θ = −A1−βµ−1
∫

g−βσ−1dg. (21)

Here, from (19),

σ =
A1−β

√
µβ

g−µ/γ
√

1 − g2/γ . (22)

So

θ = γ

√
β

µ

[π
2

− sin−1(g1/γ )
]
. (23)

These formulas allow us to calculate the shape of the
curve. At large arc length the curvature tends to zero and the
asymptotes make an angle π − 2θ∞ where

θ∞ =
γπ

2

√
β

µ
. (24)
Note that θ∞ < π/2 if γ < 1. Setting β = 2 and requiring
that θ∞ = π/3 we find γ =

1
9 (1 +

√
19) = .5954. As we shall

see, it will be important for us that we take γ > 1/2. We show
in Fig. 2 the shape of C for β = 2, γ =

1
9 (1 +

√
19). When

γ = 1/2, θ∞ ≈ 52◦. Since θ∞ = π/2 when γ = 1, we restrict
this parameter to the interval (1/2, 1).

The distribution of stretching along C can be calculated, and
the total stretching experienced by the curve between some
time τ = T > 0 and τ = 0 demonstrated to be finite if
0 < γ < 1 and β ≥ 2. If we specify J (ζ0, T ) = 1 then
α0(ζ0) is determined, and the evolution of J may be calculated.
One finds that the stretching is concentrated at the tip as τ → 0,
with J → 1 at points distant from the tip.

If we regard C as the axis of a circular tube of incompressible
fluid, stretching of C is accompanied by shrinking of the area of
the cross section, and assuming this shrinkage is the same in all
lateral directions, the radius of the tube will vary in proportion
to 1/

√
J . Thus the ratio of this radius to the radius of curvature

of C varies as κ/
√

J . This is a quantity of order τ 2γ−1. If
γ > 1/2, The 3D tube has a non-self-similar development
since the two radii grow as τ−γ and τ γ−1; moreover “local
quasi-two-dimensionality” is maintained as τ → 0. Note that
nonexistence of 3D Euler singularities of self-similar form has
been established by Chae, see [13].

Of course our interest here is that the “tube” is in fact
a locally 2D Euler flow consisting of anti-parallel vortex
structures moving according to (12). There are two main
problems with such a scenario. First, the 2D propagation of
a vortex structure of unchanging form according to (12) does
not insure the same for a curved, quasi-2D variant with self-
similar cross-sections, because of the failure of conservation of
energy. A case in point is the vortex couple already mentioned
and discussed in [3]. The result must be what we shall broadly
classify as core deformation. Because of this deformation, the
distribution of vorticity changes, (12) need not be sustained in
the 3D problem, and no singularity can be inferred.

Second, the nonuniform stretching of vortex tubes leads to
an axial pressure gradient, hence to axial flow within the tubes,
and a disruption of area changes occuring during stretching.
Some preliminary results, summarized below, suggest that this
axial flow is unlikely to be a strong inhibitor of singularity
formation, although it cannot be overlooked in a singularity
construction involving quasi-2D vortex tubes.

4. Dynamics

The numerical simulations referred to above, as well as more
recent ones (see [7–10]) indicate a flattening of the vorticity
field and a kind of “tadpole” cross-section not unlike we have
described for the cocoon under constraints of volume and
energy. It is also interesting that the “vee”-shaped structure of
our singular line is similar to some of the proposed singular
flows [2]. Our estimates of growth have been essentially
kinematic, and cannot address the ultimate dynamical growth.
In [3] an attempt was made to calculate what we may refer to
here as a “dynamical cocoon”, meaning that the asymptotic
dynamical evolution of a locally anti-parallel structure, 2D



S. Childress / Physica D 237 (2008) 1921–1925 1925
to first approximation, was sought. We have made a similar
attempt for structures collapsing according to the moving
line, under the working hypothesis that a system could be
derived which would either indicate dynamically consistent
singularities, or else provide an analytic example of depletion
and extinction of the singularity.

Our approach utilized the scalings of the moving line,
and contour averaging over closed streamlines of structures
similar to the vortex couple [11]. The dominant flow is 2D,
and it is assumed that the needed propagating dipole-like
solutions exist. To first order, the transverse flow velocities
are of order τ−γ . The velocity associated with expansive
stretching and the shrinking of the cross-section of vortex tubes
is smaller, of order τ 1−γ (recall 1/2 < γ < 1). Evolution
of the structure, including presumably core deformation on
a time scale s ∼ − ln τ , is obtained from compatibility
conditions on the perturbed 2D system. The result is a system of
generalized partial differential equations. A singular flow would
be determined as a “fixed point” of the system, steady in the
time scale s.

One case that can be calculated approximately is that of
two thin anti-parallel vortex tubes. We find, using the model
of [14], a system allowing tangential vorticity and velocity to
be calculated simultaneously. On the other hand the collapse
of the two vortices toward each other under mutual self-
induction (see [6], p. 509) provides the core deformation and
will presumably arrest the process. As yet we have no examples
of a consistent fixed point solution of our system, and the non-
existence or existence of the finite-time collapse remains open.

Finally, the Fourier spectrum of a collection of identical
singularity forming vortex couples, averaged over orientation
and lifetime, yields a k−2/γ spectrum for large wavenumber k,
indicating a slope between −2 and −4. Such singular flows,
should they exist, would have no effect on the −5/3 inertial
spectrum of turbulence [16].

The ultimate fate of the vorticity in axisymmetric flow
without swirl could well be some configuration of thin anti-
parallel vortex tubes and we examine now its possible structure.
We shall assume that a thin bilayer sheet is attached to a “rim”
at position r ∼ t4/3 representing the cocoon of constant energy.
(In the estimates we omit all constants fixed by the initial
conditions.) The cocoon originates from some finite radius
r0 � V , where V is the initial cocoon volume, thereafter
sheds volume, forming the sheet. As t → ∞ the cocoon
contains negligible volume, is moving with velocity ∼t1/3, and
has a cross-section of dimension ∼t−1. As the sheet is created,
it will evolve slowly as a thin vortex layer, but we neglect
this evolution. The time rate of change of cocoon volume is
∼r−5/4 and this must balance r Hr1/4 where H is the half-
thickness of the bilayer at position r . Thus H ∼ r−5/2. This
shed vorticity carries away the volume at a negligible loss of
energy as r → ∞. The maximal sustained growth realizable
in this symmetric flow remains an open question. Although
such vortices may be rare in fully developed turbulence, general
quasi-2D anti-parallel structures and expansive stretching can
provide substantial vorticity growth in 3D Euler flows.

The key mechanism for suppression of singularity formation
in the structures studied here is a core deformation which can
alter the simple kinematic scaling given by (12). An interesting
related question, which to our knowledge has not been studied,
is the dynamical fate of dipole structures at large distance
from the axis in the flow without swirl. Finally, it would be
interesting to determine whether or not the flow with swirl,
involving the additional circulation invariant and having no
known bounds on vorticity growth, might be accessible by the
methods of this paper.
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