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We explore the stability of flapping flight in a model system that consists of a pyramid-shaped object

hovering in a vertically oscillating airflow. Such a flyer not only generates sufficient aerodynamic force to

keep aloft but also robustly maintains balance during free flight. Flow visualization reveals that both

weight support and orientational stability result from the periodic shedding of vortices. We explain these

findings with a model of the flight dynamics, predict increasing stability for higher center of mass, and

verify this counterintuitive fact by comparing top- and bottom-heavy flyers.
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While airplane flight relies on the force generated
by a steadily translating airfoil, insect flight is driven by
flapping wing motions. This unsteady flow-structure inter-
action offers mechanisms of force generation that are
not described by fixed-wing aerodynamics [1–4].
Experimental [5–7] and theoretical [8–11] studies have
revealed the importance of vortices as a signature of un-
steady mechanisms. For example, the attachment of a
leading-edge vortex enhances lift on the wings of some
insects [5,6], and vortex shedding indicates force produc-
tion in others [9]. The role of unsteady effects in flapping
flight stability is less explored. Insects certainly employ
active feedback control during flight [12,13], although it
is unclear if such systems are indispensable. Some
simulations of insect flight indicate that body orientation
is intrinsically unstable [14,15] while others predict
neutral stability [16] and even passive stability [17].
Unfortunately, experiments that directly assess the intrinsic
stability of insects are difficult or perhaps impossible to
perform.

As an alternative approach, we consider an inanimate
flyer that shares important features with its biological coun-
terpart but is amenable to a rigorous stability analysis. Our
model flapping flight system consists of upward-pointing
pyramid-shaped objects, or ‘‘bugs,’’ made to hover in a
vertically oscillating column of air [18,19]. Tethered flight
experiments have shown that the interaction between this
asymmetric shape and reciprocal flow results in an upward
force capable of supporting bodyweight [19]. Qualitatively,
the force can be understood in terms of differential drag,
with the upward flow inducing greater drag than the down-
ward flow. Quantitatively, however, the force produced
defies such an accounting by quasisteady aerodynamics,
and thus unsteady flow effects are critical to force genera-
tion. In this work, we observe the unrestricted hovering of
such bugs, thus enabling a direct assessment of free flight
stability. In addition, we use flow visualization to reveal the
importance of unsteady aerodynamic effects in both force
generation and flight stabilization. The mechanisms

discerned here are in principle available in other modes of
flapping flight.
Our system consists of a low-frequency loudspeaker

(‘‘subwoofer’’) that is directed upwards, capped, and fitted
with a clear test section of 15 cm in both diameter and
height. The speaker is driven with a signal generator and
amplifier to produce a sinusoidal vertical airflow of tunable
frequency and amplitude, typically f ¼ 10–50 Hz and
A ¼ 1–5 cm (peak to peak). Previous work has shown
that this chamber produces high-quality laminar flow
[18,19]. We examine the free flight of hollow pyramid-
shaped bugs of height L ¼ 1–5 cm and mass 0.1–0.5 g
constructed from either letter paper or tissue paper with
carbon fiber supports. The Reynolds number is typically
Re ¼ fAL=�� 103, where � ¼ 1:5� 10�5 m2=s is the
kinematic viscosity of air.
For sufficiently high frequency and amplitude, a bug

hovers with its apex pointing up and also displays remark-
ably robust stability. In Fig. 1(a), we overlay snapshots
captured from high-speed video of a bug in hovering flight
[20]. While aloft, it is often tilted to the side but quickly
recovers the upright orientation. Flight can last as long as
thousands of oscillation periods, eventually ending in a
collision with the chamber walls. From many videos, we
extract the pyramid’s tilt angle �, and sample trajectories
are shown in Fig. 1(b). The angle is defined with respect to
the vertical and thus is always non-negative with � ¼ 0
corresponding to the upright orientation. The pyramid
occasionally experiences large excursions, � > 30 deg ,
but reliably recovers. Our observation of such long-lived
flight for pyramids and also cones of various opening
angles and sizes suggests that body orientation is generi-
cally stable.
To quantify these observations, we formulate an aerody-

namic potential that describes the bug’s orientational stabil-
ity. From measurements of �, we determine the angular
acceleration and thus the net torque � / €� on the body.
Because the gravitational force acts through the center of
mass (c.m.) and thus generates no torque, � reflects only
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aerodynamic effects. Using Vð�Þ ¼ �R
�
0 �ð�0Þd�0, we

determine the potential from 16 videos, as shown by the
gray points in Fig. 1(c). For small angles, this potential is
essentially flat and thus corresponds to near neutral stability.
It rises sharply for larger angles, however, revealing that the
bug hovers in a potential well that resists excursions to large
angles.

To elucidate the fluid mechanical basis of this stability,
we investigate an analogous two-dimensional system. A
�-shaped body is fixed in a pan containing a shallow
(2 cm) layer of water, and a motor tilts the pan back and
forth about a pivot to produce an oscillating flow. The body
size of 3 cm and flow period of 1 s ensure that Re� 103. A
shadowgraph technique is used to visualize the deforma-
tions of the fluid surface, revealing flows of strong vorticity
[21]. When upright, each side of the body sheds a vortex
dipole once per oscillation [20]. As shown in Fig. 2(a), the
outer vortex of each pair is formed as the upward flow curls
around the body, and the inner vortex forms during the

downward flow. The two counterrotating vortices then shed
as a pair, forming a strong downwash [Fig. 2(b)]. This
downward transport of fluid momentum is associated
with an upward reaction force on the body itself [22].
Similarly, for a three-dimensional pyramid, we expect
that counterrotating vortex tubes first envelope the base
and are then ejected downward.
When the �-shaped body is tilted, a strong asymmetry

appears in the surrounding flow field [20]. As shown in
Figs. 2(c) and 2(d) for a rightward tilt, a downward-moving
vortex dipole is again produced on the right side of the
body, but the dipole produced on the left side is ejected
sideways. In this case, the leftward transport of fluid mo-
mentum corresponds to a rightward force. Because the line
of action of this force is below the center of mass, it
produces a torque that tends to restore the body to the
upright orientation. Indeed, if free to rotate, the body tends
to align with the flow.
These flow observations inspire a two-dimensional

model in which the average fluid forces act at the sites of
vortex emission. Further, to employ symmetry arguments,
we idealize the � shape as an equilateral triangle with all
three sides closed to the flow. First, we consider forces on
the left side of the body, which is made to protrude into the
flow under a rightward rotation, as shown in Fig. 3(a).
When upright, the force points upward and supports half
of the body weight. For � ¼ 60 deg , the configuration is
the up-down mirror-symmetric partner of � ¼ 0 and thus
the force must now point downward. Thus, as � sweeps
from 0 to 60 deg, the force vector sweeps from 0 to
180 deg. This suggests that for intermediate values of �
the angle of the force vector is about 3 times the body tilt,

FIG. 2. Vortex ejection for a �-shaped body in an oscillating
flow. A water-filled pan is rocked back and forth, and flow
structures are visualized with shadowgraphs. (a) Snapshots of
the flow around an upright �. A vortex curls around each side of
the body as the flow moves upwards (t ¼ 0), a counterrotating
vortex then forms on the downward flow, and the pair are shed
downward (t ¼ T=2). (b) Schematic of the flow field for an
upright body. (c),(d) When tilted rightward, the left side emits a
pair outward and nearly perpendicular to the body axis (t ¼ 0),
and the right side of the body emits a weaker vortex pair
downward (t ¼ T=2).

FIG. 1. Stable hovering of a pyramid in an oscillating airflow.
(a) Snapshots from high-speed video of free flight of a paper
pyramid (mass 0.22 g and height L ¼ 3:2 cm). The flow oscil-
lates up and down with peak-to-peak amplitude A ¼ 1:9 cm and
frequency f ¼ 20 Hz (period T ¼ 0:05 s). (b) Typical traces of
the body tilt angle �, which is measured from the vertical. (c) An
aerodynamic potential is reconstructed from the tilt dynamics of
16 movies (gray points), and data for � � 0 are reflected about
the vertical to reveal a stable potential well (dashed line).
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as is consistent with the strong redirection of vortex emis-
sion seen in experiments [Figs. 2(c) and 2(d)]. Assuming a
constant force magnitude leads to the entire sequence given
in Fig. 3(a).

We use similar arguments for the force on the right side
of the body, as shown by the sequence of Fig. 3(b). For a
tilted body, flow visualization reveals that weaker vortices
are shed downward [Figs. 2(c) and 2(d)]. Thus, for � < 30,
we assume the force vector remains pointing upward but its
strength decreases linearly in �. For tilts 30< �< 60,
symmetry requires that the force vector now act on the
upper corner, point downward, and increase in strength for
larger tilts.

With the specification of the center-of-mass location, the
model is complete and contains no adjustable parameters.
For the nominal case of a � shape—with mass on the two
sides but not on the bottom—the c.m. is located halfway
between its apex and base. For all angles �, we sum the
torques about this c.m. and integrate the net torque to form
the potential. As shown in Fig. 3(c), this theoretical poten-
tial is surprisingly similar to that measured for a three-
dimensional pyramid [Fig. 1(c)]. The model accounts for
the passive stability and captures such features as the rapid
increase in the potential for � > 30 deg and even the slight
negative stability near � ¼ 0.

In addition, the model indicates that intrinsic stability
depends on being top-heavy. In particular, if the c.m. is
located higher, say at the apex, the potential walls become
tighter and steeper, further increasing stability [dashed line
of Fig. 3(c)]. If, on the other hand, the c.m. is lowered to the
base of the body, flight becomes unstable, as shown by the
dotted potential of Fig. 3(c). This prediction of increasing
stability for top-heavy bodies defies conventional wisdom
but can be rationalized by considering the force diagrams
of Fig. 3(a): the inward force leads to a restorative torque
only if the body’s c.m. is located above the line of action.
To test this prediction, we compare the flight of top- and

bottom-heavy pyramids. The c.m. is shifted by attaching a
metal weight to a thin rod that runs through the axis of the
body. These bugs are then released into the flow from a
tilted initial orientation, and the resulting dynamics offer a
clear view of the stability characteristics. Top-heavy bugs
consistently return to the upright orientation when re-
leased, as exemplified by the snapshots of Fig. 4(a). In
Fig. 4(c), we plot in black the time course of the tilt angle
for many such trials and find that the body orientation
experiences decaying oscillations. Bottom-heavy bugs,
on the other hand, often flip over when released, as shown
in Fig. 4(b). The associated trajectories show a divergence
toward large tilt angles [gray curves of Fig. 4(c)], and thus
balance is lost by lowering the c.m.
These findings show how unsteady aerodynamics and

c.m. location lead to surprising features of flapping flight
stability. Typically, flight stability can only be ensured
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FIG. 3. A point-force model of stability. Time-averaged aero-
dynamic forces (dark arrows) on a triangular body are assumed
to act at the sites of vortex emission. (a) As the body tilts, the
force vector on the left side maintains constant magnitude, and
its angle is 3 times the tilt angle �. (b) The force on the right
points upward and decreases in strength as � increases to 30 deg.
Similarly, it is directed downward and grows in strength for
30< �< 60. (c) Potential for the nominal case in which the
center of mass is midway between the apex and base, as well as
for top-heavy (dashed) and bottom-heavy (dotted) arrangements.

FIG. 4. Center of mass (c.m.) location and flight stability.
Weights are added to the pyramid to make top- and bottom-
heavy bodies. The pyramid height is 1.7 cm in both cases, and
the c.m. is located at the apex and 1.5 cm below the base,
respectively. The objects are released into the flow with tilt � ¼
30 deg . (a),(b) A top-heavy pyramid recovers the upright ori-
entation, while a bottom-heavy body tips over. (c) Body tilt
dynamics for top- and bottom-heavy pyramids.
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through careful distribution of weight and lifting surfaces
[23,24]. In our system, on the other hand, the simplest
up-down asymmetric shapes that are able to produce lift
also lead to stability. The key element is the sensitive
dependence of the angle of vortex emission on the orienta-
tion of the body, and future studies that include computa-
tional simulations will likely provide additional insights
into the role of such unsteady flow effects.

More broadly, expressing the relevant physical factors as
dimensionless quantities offers general insights into hover-
ing. A dimensional analysis of our system reveals seven
groups of variables whose values characterize force gen-
eration and stability. Vortex shedding demands that fluid
inertia overcome viscosity and thus that the Reynolds
number be high, Re � 1. Weight support also requires
that the flow acceleration be comparable to gravitational
acceleration, Af2=g� 1. Force production has been found
to be most effective when the flow amplitude and body size
are comparable, A=L� 1 [18]. Likewise, a strong asym-
metry is needed, which is associated with a pyramid open-
ing angle of about 60 deg [19]. For free flight, three
additional parameters are introduced that relate to the
body mass, moment of inertia, and c.m. location. The
large body-to-fluid mass ratio (m=�L3 � 10, where � is
the fluid density) indicates that flyers must rely on aerody-
namic forces and not buoyancy. The moment of inertia
(I=�L5 � 10) does not affect the fluid torque nor the
potential but alters only the time scales of the dynamics,
as shown below. Finally, as we emphasize here, the c.m.
height above the base (h=L� 0:1–1) is a critical determi-
nant of stability.

Estimates for important quantities can be expressed in
terms of these parameters. The high-Re fluid force relative
to body weight can be estimated as �ðAfÞ2L2=mg ¼
ð�L3=mÞðAf2=gÞðA=LÞ � 0:1. This ratio must be unity
for hovering, of course, and the underestimate reflects
the deficiency of quasisteady calculations [19]. For stabil-
ity, recovery from a tilt is determined by fluid torques
(�mgh) overcoming body inertia, which for our system

yields a dimensionless recovery time of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I=mgh

p
=T ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðI=�L5Þð�L3=mÞðAf2=gÞðL=AÞðL=hÞ
q

� 1. Thus, stabili-

zation occurs as fast as an oscillation, as is consistent with
the dynamics of Figs. 1(b) and 4(c).

While we know of no insect that employs the particular
flight strategy studied here—by, say, symmetrically heav-
ing an asymmetric wing—the shedding of dipolar vortices
is a critical feature common to our system and insects [9].
Our results suggest that future studies might evaluate how
this shedding process is modified when an insect experi-
ences an in-flight perturbation [13]. Understanding such
unsteady flow mechanisms may help resolve the current
disagreement among models that assess the intrinsic stabil-
ity of insects. Further, a complete analysis of insect flight
stability will require knowledge of the c.m. location and, in

particular, the spatial arrangement and time variation of
fluid forces relative to this point.
Finally, the potential revealed here may be ideal for a

free-flying device. In addition to the potential well, the
region of neutral stability would not hinder the intentional
reorientation needed for maneuvering. Thus this arrange-
ment offers a simultaneous realization of the desirable
but antagonistic goals of stability and maneuverability. A
robot inspired by this work—for example, a pyramid or
cone driven to flap up and down—would represent an
alternative approach to the more literal biomimetic imple-
mentations that flap wings in a manner similar to insects
[25,26]. The lack of a direct biological analog for our
conceptual vehicle does not necessarily imply an inferior
design, but perhaps one that has not yet been explored by
evolution.
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