Calculus II: Final Exam

December 19, 2008

Omit one question. When you are done, write "omitted number ____" on the front of the exam book. Otherwise, #11 will not be graded. The questions are to be answered in order. Leave space if you want to delay answering a question.

Calculators and cell phones are not to be in sight.

$$\int e^x \cos x \ dx =$$

2.
$$\int \frac{x^2}{(4-x^2)^{\frac{3}{2}}} \ dx =$$

$$\int \frac{2x}{x^2 + 2x + 5} \ dx =$$

- 4. Find the volume of the solid obtained by rotating about the y-axis the region bounded by $y^2 = x$ and x = 2y.
- 5. Solve for y: $\frac{dy}{dx} = \frac{\cos x}{v^2}, \qquad y(0) = 1.$
- 6. Convergent or divergent? Indicate the test that you have used.

(a)
$$\sum_{n=0}^{\infty} \frac{n^2 + 1}{n^4 + 2}$$

(b)
$$\sum \frac{2^n}{n!}$$

7. Find a power series expansion at x = 0 for $\frac{x}{4+x^2}$. What is the radius of convergence? What is the interval of convergence?

- 8. Evaluate the indefinite integral $\int \frac{\sin x}{x} dx$ as an infinite series.
- 9. Find the first 3 non-zero terms of the Taylor series of $\frac{x}{\cos x}$ at x=0.
- 10. For the polar curve $r = 1 + 2\cos\theta$:
 - (a) Find the cartesian coordinates of the point where $\theta = \frac{3\pi}{4}$.
 - (b) Find the slope of the tangent line at $\theta = \frac{\pi}{4}$. (Note: $\cos \theta = \sin \theta = \frac{\sqrt{2}}{2}$ for $\theta = \frac{\pi}{4}$.)
- 11. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for the parametric curve $x = 1 + t^2$, $y = t t^3$.

List of Formulae

$$\frac{d}{dx}\tan x = \sec^2 x$$

$$\frac{d}{dx}\cot x = -\csc^2 x$$

$$\frac{d}{dx}\sec x = \sec x \cdot \tan x$$

$$\sin^2 x = \frac{1 - \cos(2x)}{2}$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$