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1. Introduction 

This article compares the efficiencies of the root-mean-square and power-divergence statistics in 
goodness-of-fit testing, giving advice on which statistics are the most appropriate for various 
distributions. The word “efficiency” here is defined to be the number of draws required to reach 
simultaneously a confidence level of 99% and a rejection rate of 99% for a distribution that 
differs from the model – a statistic is more efficient when it requires fewer draws. For 
introductions to goodness-of-fit testing and the standard power-divergence statistics, see, for 
example, [1], [2], or [3]. For an introduction to the root-mean-square statistic as used for 
goodness-of-fit testing, see [4]. For a summary of our recommendations, see the concluding 
section. 
 
Power-divergence statistics are a family of statistics defined by the following equation  

Iλ = 
ଶሺାଵሻ ∑ mY୩ ቀYౡPౡቁ െ 1൨୬୩ୀଵ  ;     λא R, 

where n is the number of bins, m is the number of draws, Y୩ is the proportion of experimentally 
observed draws falling in the kth bin, and P୩ is the probability that a draw falls in the kth bin 
according to the model distribution. I0 and I-1 are defined by limλ՜0 Iλ  and limλ՜-1 Iλ, respectively. 

Among the family of power divergence statistics, some are particularly well known. For example, 
I1 is Pearson's chi-square, I0 is the log–likelihood-ratio, I-0.5 is the Freeman-Tukey statistic, and  
I-1 is the modified log–likelihood-ratio. In this article we also compare these classic power-
divergence statistics with the ones generated by other “λ”s. 

The root-mean-square statistic is ඥ∑ mሺY୩ െ P୩ሻଶ. 

 

2. Root-mean-square statistic vs. power-divergence statistics 

As we can see from the following examples, the differences of efficiencies among power-
divergence statistics are relatively small compared to the difference between the root-mean-



square and power-divergence statistics. In this section, we compare the efficiencies of the root-
mean-square statistic and the power-divergence statistics. 

The statistics used in this section are the root-mean-square and the power-divergence statistics 
for λ= -0.9, -0.5 (Freeman-Tukey), 0 (log–likelihood-ratio), 0.5, and 1 (chi-square). 

We generated the plots using Gnuplot and Fortran 77 as described in [4]. 

 

2.1 An example where the root-mean-square is more efficient than the power-divergence 
statistics 

 

Example 1: 

Let the model distribution be 

p(1)=p(2)= 14 

p(k)= ଵଶሺ୬ିଶሻ   for k=3, 4, … , n-1, n  

and consider m i.i.d draws from the distribution 

q(1)= 38 

q(2)= 18 

q(k)= ଵଶሺ୬ିଶሻ   for k=3, 4, … , n-1, n  

The following figure plots the number of draws (m) required for each statistic to distinguish the 
actual distribution of the draws from the model distribution. The graph illustrates that the root-
mean-square requires a constant 190 draws for any number of bins, while the power-diverence 
statistics require 36% more draws when the number of bins (n) is 8. The graph also shows that 
the number of draws required for the power-divergence statistics tends to increase as n increases 
(except for the sudden drop when n=3072 with λ= -0.9, which will be discussed later). Moreover, 
the most efficient power-divergence statistic (λ=0) requires 513% more draws than the root-
mean-square when n=512, and the most efficient (λ= -0.9) requires 212% more draws than the 
root-mean-square when n=8192. 



 

In the example above, the root-mean-square is much more efficient than the power-divergence 
statistics. Other examples in which the root-mean-square is superior can be found in section 6.2, 
6.4, and 6.5 of [4]. 

 

2.2 An example where the root-mean-square is less efficient than the power-divergence 
statistics 

Example 2: 

Let the model distribution be 

p(1)=  12 

p(2)=0 

p(k)= ଵଶሺ୬ିଶሻ   for k=3, 4, … , n-1, n  

and consider m i.i.d draws from the distribution 

q(1)=  12 

q(2)=0 



q(k)= ଵଶሺ୬/ଶିଵሻ = 
ଵ୬ିଶ for k=3, 4, … , 

୬ଶ , 
୬ଶ +1 

q(k)=0 for k= 
୬ଶ +2 , 

୬ଶ +3, …, n-1, n 

The following figure plots the number of draws (m) required for each statistic to distinguish the 
actual distribution from the model distribution. The graph shows that the power-divergence 
statistic is more efficient than the root-mean-square, and the required number of draws for both 
the root-mean-square and the power-divergence statistic increase as the number of bins (n) 
increases, as does the difference between the power-divergence statistic and the root-mean-
square. When n=8, the root-mean-square requires 153% more draws than the most efficient of all 
power-divergence statistics tested (the most efficient that we tested corresponds to λ= -0.7), and 
34% more than the least efficient (λ=1). When n=3072, the root-mean-square requires 1961% 
more draws than the most efficient (λ=-0.7) of all power-divergence statistics tested, and 1405% 
more than the least efficient (λ=0). 

 

 

2.3 Some remarks comparing the root-mean-square and power-divergence statistics 

Remark 1: When the probability Pk in the model distribution is small relative to maxj Pj, the chi-
square statistic tends to be more sensitive to discrepancies in the kth bin than the root-mean-
square statistic. (Recall that Pk is the probability of the kth bin in the model distribution) 



Justification of remark 1: 

The root-mean-square statistic is ඥ∑ mሺY୩ െ P୩ሻଶ, 

where n is the number of bins, m is the number of draws, Y୩ is the proportion of experimentally 
observed draws falling in the kth bin, and P୩ is the probability that a draw falls in the kth bin 
according to the model distribution. 

The confidence level determined by the root-mean-square statistic or by its square is the same, 
because the square root is monotonically increasing. Therefore we can look at the square of the 
root-mean-square instead, which is: 

X=m ∑ሺY୩ െ P୩ሻଶ. 

Also, the chi-square statistic is: χ2 ൌ  m ∑ ሺYౡିPౡሻమPౡ୬୩ୀଵ . 

Notice that 

T୦ୣ ୩౪ ୱ୳୫୫ୟ୬ୢ ୭ ଶT୦ୣ ୩౪ ୱ୳୫୫ୟ୬ୢ ୭ X  = 

ሺYౡషPౡሻమPౡሺYౡିPౡሻమ  = 
ଵPౡ . The k୲୦ summand of χ2 is much, much larger than the k୲୦ summand of X for very small P୩. ז 

 

Remark 2: When both Pk and Qk are small relative to maxj Pj or maxj Qj, the Freeman-Tukey 
statistic tends to be more sensitive to discrepancies in the kth bin than the root-mean-square 
statistic. (Recall that Pk is the probability of the kth bin in the model distribution, and Qk is the 
probability of the kth bin in the actual distribution of the draws.) 

Justification of remark 2: 

The root-mean-square statistic is ඥ∑ mሺY୩ െ P୩ሻଶ, 

where n is the number of bins, m is the number of draws, Y୩ is the proportion of experimentally 
observed draws falling in the kth bin, and P୩ is the probability that a draw falls in the kth bin 
according to the model distribution. 

The confidence level determined by the root-mean-square statistic or by its square is the same, 
because the square root is monotonically increasing. Therefore we can look at the square of the 
root-mean-square instead, which is: 

X=m ∑ሺY୩ െ P୩ሻଶ. 



Also, the Freeman-Tukey statistic is: F ൌ  4m ∑ ሺඥY୩ െ ඥP୩ሻଶ୬୩ୀଵ . 

Notice that 

T୦ୣ ୩౪ ୱ୳୫୫ୟ୬ୢ ୭ FT୦ୣ ୩౪ ୱ୳୫୫ୟ୬ୢ ୭ X = 
ସሺඥYౡିඥPౡሻమሺYౡିPౡሻమ  = 

ସሺඥYౡାඥPౡሻమ . 

According to the central limit theorem, 

Yk ൎ Qk ± 
ඥሺଵିQౡሻQౡ √୫ . The k୲୦ summand of F is much, much larger than the k୲୦ summand of X when both P୩ and Q୩ are very small. ז 

 

Remark 1 and remark 2 above compare the root-mean-square with two special power-
divergence-statistics. For more general power-divergence statistics, we have the following 
remark. 

Remark 3: The root-mean-square is not very sensitive to relative discrepancies between the 
model and actual distributions when the absolute differences are small. That is, the root-mean-

square tends to require many more draws when the relative discrepancy |1 െ Pౡ Qౡ | is sufficiently 

larger than minj {|1 െ Pౠ Qౠ |}for some k, while the absolute difference  |Pk – Qk| is sufficiently less 

than min{
Pౡ Qౡ  , Qౡ Pౡ } for every k (example 2 illustrates this). 

 

Heuristic justification of remark 3:  

The root-mean-square statistic is ඥ∑ mሺY୩ െ P୩ሻଶ, 

where n is the number of bins, m is the number of draws, Y୩ is the proportion of experimentally 
observed draws falling in the kth bin, and P୩ is the probability that a draw falls in the kth bin 
according to the model distribution. 

The confidence level determined by the root-mean-square statistic or by its square is the same, 
because the root-mean-square statistic is monotonically increasing. Therefore we can look at its 
square instead, which is: 

X=m ∑ሺY୩ െ P୩ሻଶ. 



Also, the power-divergence statistic is 

Iλ
 = 

ଶ୫ሺାଵሻ ∑ Y୩ ቀYౡPౡቁ െ 1൨୬୩ୀଵ . 

Assume without loss of generality Pk > Qk. 

Let us write  

Pk – Qk ＝ 10-a and  
Pౡ Qౡ  = b 

where a is a large positive real number, 1 << b << 10a. 

Then  

Pk = 
ୠୠିଵ 10-a, and Qk = 

ଵୠିଵ 10-a        

According to the central limit theorem, 

Yk ൎ Qk+ 
ඥሺଵିQౡሻQౡ √୫  . 

Because Qk=Pk/b, and Pk<1, Qk א ሺ0, ଵୠሻ 

ଵୠିଵ 10-a + 
ଵషమ√ୠ୫ ػYkػ ଵୠିଵ 10-a + 

ଵషమඥ୫ሺୠିଵሻ 
Let √mb = 10c, where c is large positive real number. 

Look at the kth summand in both root-mean-square statistic and power-divergence statistics. 

               The kth summand of X: 

X(k) = ሺY୩ െ P୩ሻଶ  + a-10-] ػ
ଵషమඥ୫ሺୠିଵሻ ሿ2 < (10ି మ ିୡ)2 = 10-a-2c 

               The kth summand of Iλ: 

                           Iλ(k) = 
ଶሺାଵሻ Y୩ ቀYౡPౡቁ െ 1൨ ؼ ሺ 

ଵୠିଵ 10-a + 
ሺଵషమሻ√୫ୠ  )[(

ଵୠ  √ୠିଵ ୠ√୫ 10మ)λ -1] ଶሺାଵሻ                        Oሺ10ି మ ିୡሻ 

               Therefore,
Iಓሺ୩ሻXሺ୩ሻ  > Oሺ10 మାୡ)= √mb Oሺ10 మሻ                                   （1） 



֜ Iಓሺ୩ሻXሺ୩ሻ  ටm PౡQౡ ଵPౡିQౡ >> ඨm PౡQౡ ଵQౡPౡ  = ටmሺPౡQౡሻଶ            ( 2 ) 

We conclude that the kth summand of Iλ
 (power-divergence statistics) is much larger than the kth 

summand of X (root-mean-square statistic) when 
PౡQౡ is sufficiently larger than 1 and the absolute 

difference |Pk – Qk| is sufficiently less than min{
Pౡ Qౡ  , Qౡ Pౡ }.  This means the power-divergence 

statistics are much more sensitive to relative discrepancy than the root-mean-square statistic 
when absolute difference is small. ז 

 

2.4 Further explanation of remark 3 using examples 

Example 3: 

Let the model distribution be 

p(1)=  12 

p(2)=0 

p(k)= .ଽଽଶሺ୬/ଶିଵሻ  for k=3, 4, … , 
୬ଶ , 

୬ଶ +1 

p(k)= .ଵଶሺ୬/ଶିଵሻ  for k= 
୬ଶ +2 , 

୬ଶ +3, …, n-1, n 

and consider m i.i.d draws from the distribution 

q(1)=  12 

q(2)=0 

q(k)= .ଵଶሺ୬/ଶିଵሻ for k=3, 4, … , 
୬ଶ , 

୬ଶ +1 

q(k)= .ଽଽଶሺ୬/ଶିଵሻ   for k= 
୬ଶ +2 , 

୬ଶ +3, …, n-1, n 

This is another example where 
Pౡ Qౡ  is sufficiently far from 1 for some k, while |Pk – Qk| is 

sufficiently less than min{
Pౡ Qౡ  , Qౡ Pౡ } for every k.  



The following figure plots the number of draws (m) required for each statistic to distinguish the 
actual distribution of the draws from the model distribution. As can be expected from remark 3, 
power-divergence statistics are much more efficient than the root-mean-square statistic. When 
n=8, the root-mean-square requires 171% more draws than all power-divergence statistics tested. 
When n=3072, the root-mean-square requires 55764% more draws than the most efficient (λ= 1) 
of all power-divergence statistics tested, and 4520% more than the least efficient (λ= -0.7). 

 

The superiority of the power-divergence statistics over the root-mean-square in example 3 is 
more significant than that in example 2. Comparing example 3 with example 2, we get the 
following remark: 

Remark 4: When 
Pౡ Qౡ  is sufficiently far from 1 for some k, while |Pk – Qk| is sufficiently less than 

min{
Pౡ Qౡ  , Qౡ Pౡ } for all k, the superiority of the power-divergence statistics over the root-mean-

square increases as the relative discrepancy between P୩ and Q୩  increases. 

 

This remark follows directly from equation (1) in the justification of remark 3. Because  Iಓሺ୩ሻXሺ୩ሻ  > Oሺ10 మାୡ)= √mb Oሺ10 మሻ, 

as b gets larger, less number of draws m is required.  

 



Example 4: 

Let the model distribution be 

p(1)=  1516 

p(k)= ଵଵሺ୬ିଵሻ  for k=2, 4, … , n-1, n 

and consider m i.i.d draws from the distribution 

q(1)=  78 

q(k)= ଵ଼ሺ୬ିଵሻ  for k=2, 4, … , n-1, n 

 

The figure above plots the number of draws (m) required for each statistic to distinguish the 
actual distribution of the draws from the model distribution.  

The graph illustrates that the root-mean-square statistic is more efficient than the power-
divergence statistics, even though as n becomes larger, the difference becomes negligible. This 
will be discussed later. When n=8, the most efficient power-divergence statistic (λ =1) requires 
34% more draws than the root-mean-square, and when n=64, the most efficient power-
divergence statistic (λ =1) requires 79% more draws. 



In example 4, |Pk – Qk| is small for all k except for k=1, and 
Pౡ Qౡ  is sufficiently far from 1 for all 

k. The only condition of remark 3 this example fails to meet is that in this example, |P1–Q1|= ଵଵ is 

not small enough. 

Therefore, we can make the following remarks: 

Remark 5: As long as there is at least one bin for which the absolute difference between the 
actual and model probabilities is not small enough, the root-mean-square will be sensitive to that 
bin and thus will be competitive with and possibly outperform the power-divergence statistics. 

 

Remark 6: In Example 4, the difference between the root-mean-square and the power-
divergence statistics becomes negligible as n becomes large. As n becomes larger, the relative 
discrepancy in the tail (k=2, 3,…,n) remains the same while the absolute difference becomes 
smaller and a larger fraction of the bins fall in the tail. Thus, as n becomes larger, it is easier 
(requires fewer draws) for the power-divergence statistics to sense the difference. 

 

 

3. Power-divergence statistics generated by different λ’s 

In example 1 and example 3 above, not only are the efficiencies of the root-mean-square and 
power-divergence statistics different, but so are the efficiencies of power-divergence statistics 
generated by different λ’s. In this section we briefly compare the efficiencies of different power-
divergence statistics. 

The statistics used in this section are the power-divergence statistics for λ= -0.9, -0.75, -0.5 
(Freeman-Tukey), -0.25, 0 (log-likelihood-ratio), 0.5, 1 (chi-square). 

We generated the plots using Gnuplot and Fortran 77 as described in [4]. 

 

Example 5 (same distribution as used in example 1): 

Let the model distribution be 

p(1)=p(2)= 14 

p(k)= ଵଶሺ୬ିଶሻ   for k=3, 4, … , n-1, n  



and consider m i.i.d draws from the distribution  

q(1)= 38 

q(2)= 18 

q(k)= ଵଶሺ୬ିଶሻ   for k=3, 4, … , n-1, n  

The following figure plots the number of draws (m) required for each statistic to distinguish the 
actual distribution of the draws from the model distribution. The graph shows that 

(1) When λ is positive, the number of draws (m) required increases as the number of bins (n) 
increases. 

(2) When λ is negative, the number of draws (m) required first increases as n increases, then 
suddenly drops as n becomes large. 

(3) The parameter λ for the most efficient power-divergence statistic is nonpositive for all 
numbers of bins (n) tested. When n=512, chi-square (λ=1) requires 36% more draws than 
the most efficient power-divergence statistic (λ=0). When n=8192, chi-square (λ=1) 
requires 901% more draws than the most efficient power-divergence statistic (λ= -0.9). 

 

 



Example 6 (same distribution as used in example 2): 

Let the model distribution be 

p(1)=  12 

p(2)=0 

p(k)= ଵଶሺ୬ିଶሻ   for k=3, 4, … , n-1, n  

and consider m i.i.d draws from the distribution  

q(1)=  12 

q(2)=0 

q(k)= ଵଶሺ୬/ଶିଵሻ = 
ଵ୬ିଶ for k=3, 4, … , 

୬ଶ , 
୬ଶ +1 

q(k)=0 for k= 
୬ଶ +2 , 

୬ଶ +3, …, n-1, n 

The following figure plots the number of draws (m) required for each statistic to distinguish the 
actual distribution of the draws from the model distribution. The graph shows that 

(1) All power-divergence statistics for the negative λ’s tested require fewer draws than the 
ones generated by positive λ’s. 

(2) The most efficient power-divergence statistic is I-0.7 for all numbers of bins (n) tested. 
When n=512, chi-square (λ=1) requires 38% more draws than the most efficient power-
divergence statistic (λ= -0.7). When n=8192, chi-square (λ=1) requires 29% more draws 
than the most efficient power-divergence statistic (λ= -0.7). 



 

 

Example 7 (same distribution as used in example 3):  

Let the model distribution be 

p(1)=  12 

p(2)=0 

p(k)= .ଽଽଶሺ୬/ଶିଵሻ  for k=3, 4, … , 
୬ଶ , 

୬ଶ +1 

p(k)= .ଵଶሺ୬/ଶିଵሻ  for k= 
୬ଶ +2 , 

୬ଶ +3, …, n-1, n 

and consider m i.i.d draws from the distribution  

q(1)=  12 

q(2)=0 

q(k)= .ଵଶሺ୬/ଶିଵሻ for k=3, 4, … , 
୬ଶ , 

୬ଶ +1 



q(k)= .ଽଽଶሺ୬/ଶିଵሻ   for k= 
୬ଶ +2 , 

୬ଶ +3, …, n-1, n 

 

The following figure plots the number of draws (m) required for each statistic to distinguish the 
actual distribution of the draws from the model distribution. The graph shows that  

(1) All statistics for the positive λ’s tested require fewer draws than the ones for negative λ’s. 
(2) The most efficient power-divergence statistic is chi-square (λ=1) for all number of bins (n) 

tested. This means the classic chi-square is more efficient than the other power-
divergence statistics tested. When n=512, power divergence statistic for λ=-0.7 requires 
291% more draws than chi-square. When n=8192, power divergence statistic for λ=-0.7 
requires 1109% more draws than chi-square. 

 

Remark 7:  

When the number of bins n is large, the power-divergence statistics for -1<λ0 tend to have the 
characteristics of both chi-square statistic and the root-mean-square statistic. In other words, for 
n large, the power-divergence statistics for nonpositive λ’s seem to draw a compromise between 
the chi-square statistic and the root-mean-square statistic. Furthermore, the power-divergence 
statistic is more like the root-mean-square statistic as λ becomes more negative. 

 



 

Several of the previous examples illustrate Remark 7: in example 1 the root-mean-square is 
much more efficient than chi-square; in example 5 with the same distribution, the λ for the most 
efficient power-divergence statistic is -0.9 for n large, which is not surprising since the power-
divergence statistic is most similar to the root-mean-square statistic when λ=-.9, at least among 
those values for λ considered in the plot. 

In example 3, the root-mean-square is much less efficient than chi-square; in example 7 with the 
same distribution, the most efficient power-divergence statistic is chi-square (λ = 1) — all other 
λ’s behave more like the root-mean-square. 

In example 2, the root-mean-square is less efficient than chi-square, but the difference is not as 
large as in example 3. In example 6, which concerns the same distribution as example 2, the λ for 
the most efficient power-divergence statistic is -0.7 for n large; this statistic can draw on the 
advantages of both the root-mean-square and chi-square. 

And in example 4, where the root-mean-square is more efficient than the power-divergence 
statistics, the differences become negligible when n becomes large. 

 

Remark 8: 

For complicated model distributions, we recommend using both the root-mean-square and the 
power-divergence statistics for -1<λ0. 

An example of a distribution for which Remark 7 is apropos is the following. 

Example 8: 

Let the model distribution be 

p(1)= ସଵ 

p(2)= ଵ ଵ 

 p(k)= ଵଶሺ୬ିଶሻ   for k=3, 4, … , n-1, n  

and consider m i.i.d draws from the distribution  

q(1)= 12 - 
ଵଶሺ୬ିଶሻ 



q(k)= ଵଶሺ୬ିଶሻ   for k=2, 3, … , n-1, n  

The two graphs below show that the root-mean-square is the most efficient when n is small, and 
the power-divergence statistic for λ= -0.9 is the most efficient when n is large.  

 

 



 

4. Conclusion 

In this article, we compared the efficiencies of the root-mean-square and the power-divergence 
statistics, and we can draw the following conclusions: 

(1) The root-mean-square statistic is not sensitive to relative discrepancies between actual 
and model distributions in bins with small absolute discrepancies. Therefore, when the 
absolute difference between the actual and model distributions is small for all bins, and 
the relative discrepancy is large for some bins, we recommend using the power-
divergence statistics. 

(2) In contrast, when an absolute difference is large and the relative discrepancies are small, 
we recommend using the root-mean-square. 

(3) For distributions that do not satisfy the criteria of either (1) or (2), we recommend using 
both the root-mean-square and the power-divergence statistics for -1<λ0. 
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