STEADY INTERFACIAL WAVES OVER A NON-FLAT BOTTOM
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ABSTRACT. In this paper, we consider the existence of two-dimensional steady waves on the in-
terface between two immiscible fluids where the lower fluid is taken to lie above an impermeable,
non-flat boundary. We construct an asymptotic model to investigate the case where the bottom
is not identically flat. Using Implicit Function and Bifurcation theoretic arguments, we prove the
existence of a family of stationary solutions to the approximate model that are of small amplitude
and small circulation. We also provide some numerical results.
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1. INTRODUCTION

Stokes [4] study of periodic water waves in a region of infinite depth heralded much interest in
the field of steady waves. In the early twentieth century, Nekrasov [3] and Levi-Civita [2] first
proved, rigorously, the existence of these waves. Struik [5] later extended the results of Nekrasov
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and Levi-Civita to regions with an impermeable, flat bottom. Since then, the majority of research
in the field of steady waves has continued to be focused on the case where the bottom is flat.

In this paper, we extend these classical results by studying the case when the lower boundary
of the fluid domain need not be flat. Specifically, we investigate the existence of two-dimensional
steady waves on the interface between two immiscible incompressible, and irrotational fluids where
the lower fluid is taken to lie above an impermeable boundary. This scenario arises naturally in
the study of various physical phenomenon such as waves in lee of a mountain and current flow over
non-flat ocean bed.

Let us state the problem mathematically. We define the Cartesian coordinates (z,y) such that the
z-axis lies in the direction of wave propagation and the y-axis points vertically upward. Additionally,
we assume the free surface between the two fluids is given as the graph of a function n(z) and lies
about y = 0 while the impermeable bottom, y = ((x), lies about y = —h. Under this coordinate
system, the less dense fluid with density p; occupies the domain €2y where

O = {(z,y) : y > n(x)}
and the denser fluid with density ps occupies the domain €2y where

Qg == {(z,y) : ((x) <y <n(x)}.
Figure 1 provides a useful graphical representation of the above system.
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FIGURE 1. Domain with non-flat bottom and non-flat free surface

The steady Euler’s equations for incompressible and irrotational flow govern the motion in our
two-fluid system. Within the region ; (for i = 1,2), we have:

(1.1a) Opu; + Oyv; = 0
(1.1b) @,ui — 835%‘ =0
(1.1¢) u;Opu; + V;0yu; = —lﬁxPi
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(11d) v;0zu; + Uiayvi = _;8y-Pi +9
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where u; is the i-th fluid velocity in the horizontal x-direction, v; the velocity in the vertical y-
direction, P; the pressure, and g the gravitational constant of acceleration. In addition, we have
Bernoulli’s law which states that:

(1.2) u? + v} + 2g9piy + 2P = Qs

where @; is an arbitrary constant, throughout the fluid. On the boundary, we have:
(1.3a) Pi=P ony=n

(1.3b) Vi = Uiy ONnY =1

(1.3c) v =usl, ony=7C_

(1.3d) up = U asy— oo.

is the dynamic boundary condition which requires that the pressure, in the absence of
surface tension, be continuous across the free-surface. ((1.3b)) is the kinematic boundary condition
that necessitates that a particle which starts on the free-surface stays there. and
encapsulate the zero normal-flow conditions at y — ¢ and as y — oo.

Altogether, Euler’s equations in f are a complicated system that involves multiple
unknowns. With some manipulation — which we flesh out in Section [3| — Euler’s equations can
be rewritten in a more tractable form. First, the incompressibility condition, u, + v, = 0, permits
us to introduce the pseudo relative stream function, v, defined, up to a constant, as

Yz = \/pv and Py = —v/pu.
In terms of the stream function, our original system in ([1.1)—(1.3) is equivalent to:

(1.42) Apr=0 inQ

(1.4b) Ay =0 in Q

(1.4¢) LUV~ [9a?) + g(p1 —p2ln=Q ony =1
(1.4d) Yr=v2=C ony=n

(1.4e) By = /iU as y — 00

(1.4f) Yy =0 ony=(

where U is the horizontal velocity of the fluid in the upper region as y — oo and ) and C are
arbitrary constants.

Second, we observe that while the homogeneous Laplace equations in is well posed, we do
not know, a priori, the domains €y and 3. To get around this difficulty, we would like to push
the problem to the free-surface and hence restate the system in terms of n and C' — the trace of
1 on y = 1. Thus, to further simplify , we can introduce the Dirichlet-Neumann operators,
M:XXxR—ZR,)Y)and Na: X xR — Z(R,Y), defined as:

o oy
Ni(n,U)C := B

Here, X and Y denote the Banach spaces:
X := {C*™™(R), 27-periodic, even functions}

(1.5) Y := {C'*(R), 27-periodic, even functions},
3
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¥, solves the system:
AV; =0 in
(1.6) UV, =C ony=n
Oy = /pU asy— o0,
and W, solves the system:
AUy =0 in
(1.7) Vo=C ony=n
OyV¥e = /pU asy— 0.
is, in turn, equivalent to:

1
(1.8) SN0, U)CP = INa(n, Q)CI) + g(p1 = p2)n = Q.
Therefore, in order to prove the existence of steady waves, we seek solutions:
n,¢,U,C,Q) e X x X xRxR xR

such that (1.8]) holds.

In line with the classical problem, our first theorem proves the existence of steady waves in
regions with a non-flat free-surface and flat bottom:

Theorem 1.1 (Existence of small amplitude flows in a region with a non-flat free surface and a
flat bottom). Consider the case where the impermeable bottom is identically flat: ( = —h. There
exists § > 0 and a C' curve of solutions, parametrized by C, given by:

C={(n(C),C,Q(0)):C e (Ci—6,Ci+68)}C X xRxR.
bifurcating from the trivial solution at (0,Cy, Q(Cy)) such that (1.8]) holds.

We construct, in Section [6 an approximate model to investigate the case where the bottom is
not identically flat. Following the method of Duchéne [I], we let ¢ = —h + () and perform an
asymptomatic expansion on AVs. We obtain an approximate expression:

1 \/ \ &
(1.9) 5 (N1, U)CP? = INGPP (1, Q)CI%) + g (o1 = p2)in = Q.
where /\72a PP is a linear in ¢ approximation of N5 near ¢ = —h. See Section |§| for details.

Theorem 1.2 (Non-existence of small-amplitude flows with non-flat bottom and flat free surface).
Consider the approximate problem in a two-fluid region that consists of a flat free interface and a
non-flat bottom, and extends infinitely above. There does not exist any steady, incompressible and
irrotational flow in such region.

Theorem 1.3 (Existence of small amplitude flows in a region with a non-flat free surface and a
non-flat bottom). There exists small amplitude steady waves in a region with a non-flat free surface
and non-flat bottom. More precisely, there exist a § > 0 and a curve of solutions (C,n(C)) such
that holds for all C € (—0,9).

Looking ahead, the structure of this paper is as follows. In Section [2, we first acquaint the
reader with the mathematical background necessary to understanding the rest of this paper. Next,
in Section |3 we prove the equivalence among —, , and and, in Section [4] flatten
the domains 2; and €2, to a strip. At this point, we have all the required tools to furnish the proof
of Theorem we do so in Section We also presents some numerical results in this section.
Moving on, we derive our approximate model in Section [6] Finally, we provide, in Section [7] the

proofs of our Theorems and
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2. MATHEMATICAL BACKGROUND

This section provides a brief overview of the key concepts covered in this paper.

2.1. Banach spaces.

Definition 2.1. (Convergent and Cauchy sequences). Let V' be a normed vector space, x € V' and
a{zp} CV be a sequence in V.

(1) We say that {x,} converges to x in norm provided that, for all € > 0, there exists N > 0
such that ||z, —z|| < e for alln > N. A sequence {x,} C V is said to be convergent if there
exists x € V that {x,} approaches in norm.

(2) A sequence {x,} CV is said to be Cauchy provided that, for all € > 0, there exists N > 0
such that |x, — x| < € for all m,n > N.

Definition 2.2. (Banach Spaces) A normed vector space in which every Cauchy sequence is con-
vergent is called o Banach space.

Definition 2.3. (Maps between Banach spaces) If X and Y are Banach spaces with norms || - || x
and || - ||y, respectively, then a function F : X — Y is said to be continuous if for every xi,z9 € X,
and every € > 0, there exists § > 0 such that

lx1 — x2l|x <0 implies |F(z1) — F(z2)|ly <e.
This is denoted CY(X;Y) for a set of continuous mappings from X to Y.
2.2. The Fréchet derivative.

Definition 2.4. (The Fréchet derivative) Let X andY be Banach spaces and let F € C(X;Y) be
given. We say that F is Freéchet differentiable at x € X provided that there exists a bounded linear
operator L, : X — Y such that

N F @+ h) = Fx) = Lo(h)|ly

lim =0,
h—50 |\ Rl x
where || - || x and || - ||y are the norms on X and Y, respectively, and we denote (DF)(x) := Ly or

sometimes Dy F (x). If F is differentiable at every x € X, we say that it is Fréchet differentiable.
If, for each x € X, the derivative D, F(z) is continuous, we say that F € C1(X;Y).

2.3. Implicit Function Theorem.

Theorem 2.1 (Implicit function theorem on Banach spaces). Let W, X and Y be Banach spaces
and F € CL(W x X;Y). Suppose that for some (wo,zo) € W x X we have

F(wo, xg) =0, and D, F(wo,x) is bijective.
Then there exists an open set O C W with wg € O, and a C function ¢ : O — X such that
p(wo) = z0,

and

F(w,p(w)) =0, for allw € O.

Moreover, if F(w,x) =0 and w € O, then x = p(w).
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2.4. Bifurcation theory.

Definition 2.5. Let X and Y be Banach spaces and suppose that L : X — Y is a bounded linear
operator. Suppose that

dim A (L) < oo, dimZ(L)° < oo,

where A (L) is the null space and % (L)€ is the complement of the range. If we also know that the
range is a closed set in Y, then we say that £ is a Fredholm operator.

Definition 2.6. Let L be a bounded linear operator between Banach spaces. If L is Fredholm, we
define the index of L, denoted ind L, to be the integer

ind £ := dim A (L) — cod Z(L).

Theorem 2.2 (Crandall-Rabinowitz). Let X and Y be Banach spaces and let F : R x X —Y be
a Fredholm operator of index 0. Suppose that for all X,

F(A,0) =0,
and that there exists Ao such that
N (DgF(Xo,0)) is one-dimensional.
If
DDy F (Ao, 0)u & % (D2 F (Mo, 0)),
for any u € N(DyF(\o,0)), then, there exists e > 0 and a C' curve
¢ ={(A\z(\):Ae (N —€eX+e)} CRxX,
such that x(0) =0 and F(A\,z) =0 for each (A, x) € €. Moreover, x(\) # 0 for A # Ao.

3. EQUIVALENT FORMULATION OF THE PROBLEM

As previously discussed, Euler’s equations in 1.3) are an unwieldy system to work with.
Instead, it is more convenient to conduct our analy51s on 1- Thus, in this sectlon we prove the
equivalence among Eulers equations in . the stream functlon system in , and the
formulation in terms of the Dirichlet- Neumann operators in . The blueprint for this section
is as follows We Wﬂl Show, separately, the equivalence between — and , and that
between and Combined, these two results prove the equivalence among the three
different formulatlons of the problem.

Proposition 3.1. Euler’s equations in (1.1)—(1.3)) are equivalent to (|1.4])
Proof. We first show that (1.1)—(L.3|) imply (1.4). (1.4a) and (1.4b]) arise because of the irrotation-

ality condition which necessitates that

1
Oyt + 0pv; = —Av; = 0.
Yy \/E

Rewriting Bernoulli’s law in ({1.2]) in terms of the pseudo sream function, we have:
1
§W¢1|2 +gpin—Q1=—-P ony=mn

1
§W¢2|2 +gpan—Q2=—FPo ony=n.
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Coupled with the dynamic boudary condition, P; = P», we can readily check that (1.4c|) holds,
with @ = Q1 — Q2. Moreover, once we state (1.3b))—(1.3d)) in terms of the stream function:

Optpy = —0ythin, ony=rn
ax¢2 = - waCx ony= C
Oyt1 — /p1U  as y — o0,

it becomes evident that ); must be constant on the free-surface and at bottom; we can pick
constants such that (1.4d)) — (1.4f) hold.

We next show that (1.4]) implies ((1.1)—(1.3). Suppose we begin with a solution 1; to the system
in (1.4) and define the velocity field by (u,v) = %V%ﬁ. Moreover, we can define the gradient of
its pressure to be:

pi(ui0pu; + v;0yu;) = =0, F;
pl(vza:pU'L + Uiayvi - g) = _ayf)i-

Then, we can confirm that the irrotationality condition and Euler’s momentum equations follow
directly from the homogeneous Laplace equation. In addition, we can always pick constants () in
such that the dynamic boundary condition, P; = P», and Bernoulli’s law hold. Lastly, to
dervive the remaining boundary conditions in 7, we take tengential derivatives of the
traces of 1; on the respective boundaroes.

The above results prove the equivalence betwwen Euler’s equations and the stream function
system. We refer the reader to Yih [6] for a more detailed discussion on the pseudo relative stream
function. |

Proposition 3.2. The system in (L.4)) is equivalent to ((1.8)).

Proof. We can decompose the trace VV; on the interface n into its normal and tangential compo-
nents:

where n is the outward unit normal vector and t is the unit tangent vector. Now consider (|1.4c).
Because ¥; = C' on 7, the tangential component of its gradient vanishes, and thus

V&> = |VT; -n> ony=n
which in turn allows us to rewrite ((1.4d|) as:

1
S (VU1 nf? — [V - 0f?) + g(p1 — p2)y = Q.
The equivalence of this to ((1.8)) follows from our definitions of the Dirichlet-Neumann operators. W

Remark 1. On occasion, it is more convenient to work with the non-normalized Dirichlet-Neumann
operator

G)C =1 +n2N(n)C.

4. FLATTENING THE DOMAIN

It is difficult to obtain expressions for NV (n, U) and Na(n, {) as the systems in and are
unwieldy to solve for general i and (. It is therefore convenient to introduce a change in coordinates
to flatten the domain to a strip. Before we proceed with this flattening, it is helpful to observe that
the systems in and are independent and we can, thus, flatten the respective domains
separately.
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4.1. Fluid in the upper region. To simplify the problem in (1.6)), we let £ = ¥ + /p1Uy and
observe that the original problem is equivalent to

AE=0 in Q

(4.1) {=C++/piUn ony=n
§& =0 asy— oo.

Let w = z and z = y —n. With this change of variables, we note that the set {y = n(z)}
corresponds to the set {z = 0}. We aim to rewrite the system in ([1.6) in terms of the new
variables. Calculating the partial derivatives, we have, by the chain rule:

Op = Oy — N0, and 0, = 0.
Thus,
(4.2) Ay = 8120 + 33 — 2000z — Nwwd» + 7712”33.

We denote the operator in (4.2]) as £;.
Therefore, (4.1) written in the (w, z)-variables is:

LiwnE=0 inQ
(4.3) E=C+/pUn onz=0
gZ:O as z — 00

where 5 is a function in the new w and z variables.
Also, the Dirichlet-Neumann operator. Gi(n,U), written in our new variables is:

g~1 (77’ U)C = [an(:c,y)\ljlhyzn(x)
(=7 (0w + nw0-) + 8Z)\ijl]|z:0
= [(=1w (0w + 1nw0:) + 82)(5 —VpU(z + 77))]|z:0-

4.2. Fluid in the lower region. Let w =2 and 2z = —%. With this change of variables,
we note that the sets {y = n(x)} and {y = ((z)} correspond to the sets {z = 0} and {z = —h}
respectively. We rewrite the system in in terms of the new variables. Calculating the partial
derivatives, we have, by the chain rule:

b — 2(Cw — Nw) h
Op = Oy + d, and 0, =-—-———0,.
¢—n Y (=
Thus,
(4.4) A —ma<+m“_2@w_m”af+w——ﬁ—af
' ey = 00 ¢—n : C—n "
We denote the operator in (4.5) as Ls.
Therefore, our system in ([1.7)) reduces to:
LoT =0 inQ
(4.5) U=C onz=0

U=0 onz=—h

where U is ¥ expressed in the new (w, z)-variables.
8



Also, the Dirichlet-Neumann operator. Ga(n, ¢), written in our new varibles is:
g~2(777 C)C = [an(m,y)\lehy:n(x)

h 2 — w\Sw — Tfw —h T,
= [(_nwaw — 2w — 20 C(S - L ) 8z)\Il2]|z:0-

5. EXISTENCE OF SMALL AMPLITUDE FLOWS IN A REGION WITH A NON-FLAT FREE SURFACE
AND A FLAT BOTTOM

In this section, we investigate the classical case where the region 25 lies above an impermeable

flat bottom, ¢ = —h (See Figure 1). To simplify our analysis, we consider the single fluid case (i.e.
p1 = 0). Under this scenario, (1.8) reduces to:
1 -
(5.1) N2, =R)CI* + gpan = Q.
With this in mind, it is useful to define a function, F, as
1 -~
(5.2) Fn,C,Q) = §|N2(?7a —h)CP* + gpan — Q

whose zero set corresponds to the solution set, {(n,C,Q) € X x R x R}, of (5.1)).
When 7 = 0, we note that there exist trivial laminar flows. By (&.5)), ¥y = O(’";:rz) and, hence,
No(0, —h)C = % Therefore, the set of trivial solutions is given by:

{(0,C,Q(C)) € X xR x R},
where Q(C) = % We would like to show that there exist small amplitude flows such that n # 0.

CQ

Proof of Theorem [1.1. We look for solutions to (5.1)) near n = 0, C = Cp, and Q = oz Taking

the Fréchet derivative of F with respect to 1, and evaluating it at (0,Cp, @Q(cp)), we have:
Dy F(0,Co, Q(Co))v = N (0, —=h)Co{DyN2(0, —h)Co,v) + gpav.

Here: .
u%Nxm—mq%mzqaig—%@@ﬂﬁo
where:
i, — Co(hh+ 2)

and, from (4.5)), \ifg solves the system:
2
h
\ifg =0 on 2=0

(h + 2)vy 0y 0, + 1(h + 2) Vw0, — 002 | Uy

AQQ:[ -

‘ilg =0 on z=—h.
Thus:
: Co . .
Uy = — Z 72 0% [h cosh(kz) 4+ hcoth(kh) sinh(kz) — (h + 2)] cos(kw).
k>0
In summary:

o h?] .
(5.3) D, F(0,Co, Q(Co))v = —h—g Z [k coth(kh) — gCg Uy, cos(kw).
k>0
9



h2
For Cy such that kcoth(kh) — 96'72 # 0, D,F(0,Cy, Q(Cp))v is an isomorphism. We can thus
0
conclude by Implcit Function Theorem that there exists § > 0 and a C' curve
C={(n(C),C,QC)):Ce(Cy—6Ch+d)}CcXxRxR

such that (5.1]) holds.

2
Conversely, for Cj such that kcoth(kh) — gh

C—g =0, D,F(0,Cp, Q(Cp))v fails to be an isomor-
phism and the Implicit Function Theorem, consequently, fails to prove the existence of non-trivial
solutions. In this case, we would need to use the Crandall-Rabinowitz theorem to establish the
existence of a curve bifurcating from the trivial solutions. Without loss of generality, assume that
there exists a

o - (L5)

such that (5.3) vanishes for £ = 1. Over the next three lemmas, we will verify the hypothesis of
the Crandall-Rabinowitz theorem and thus prove the existence of small amplitude flows over a flat
bottom.

Lemma 5.1. 4 (L) = span {v.}, where vy (z) = cosz.

Proof. From our definition of C, in (5.4)), and the computation of D, F in (5.3)), we see that the null
2

space of L is nontrivial because vanishes. More specifically, because it vanishes at k = 1,

coth(h)
cosz will be the null space. So, A4 (F;(0,Q0(Cx))) = Span{v}, where v,(x) = cosx. Therefore,
dim .4 (L£) = 1 since v, vanishes only at k = 1. [

Next, we show that £ is a Fredholm operator of index 0 (cf. Definition .

Lemma 5.2. The range of L is span {v*}J‘.
Proof. To identify the range of £, we want to find for which v € Y one can solve:
D, F(0,C,Qo(Cy))v=u, for uweY.

Taking the Fourier transform yields:

c: gh*\ X
(5.5) ~ 2 k coth(kh) — o ) Uk cos(kw) = Zuk cos(kw).
k>0 * k
gh* . N : L
If k coth(kh) — o7 18 mon-zero for some k£ > 0, then we can solve for 0. Since this quantity is 0 for

k =1, we have 41 = 0. If 4; # 0, then there is no v satisfying (5.5 can exist. Therefore, we can
solve for v if and only if u is orthogonal to cos(w). Therefore, the range of £ will equal span {v,}*
and we have that dimspan {v,} = 1. [ ]

Lemma implies that the Fredholm index is 0 as dimspan {v,} = cod Z = 1. Lastly, we need
to verify the transcritical condition of the Crandall-Rabinowiz Theorem which is done in the
following lemma.

Lemma 5.3. DcD,F(0,Qo(Cy))vs & Z(DyF(0,Q0(Cy))); it satisfies the transcritical condition.
10



Proof. Taking the derivative of D, F with respect to C, and then evaluating at (n = 0,Qo(Cx)) we
find:

C? pgh?\ .
Dc Dy F(0,Qo(Cy))vs = Dc 2 k coth(kh) — o2 ) Ve cos(kw)
k; *
20, h? C? h?
(5.6) =—77 (k coth(kh) — pgﬂ) Oy cos(kw) + h—; Z <’0903 . 2C*> Oy cos(kw)
k * k *
20, gh? .
=77 [(k coth(kh) — p02 ) + pg} Oy cos(kw).
k;‘ *
So by taking inner product with cos(w),
(DcDyF(0,Qo(Cx))vs, cos(w)) 2 = coth hm # 0
Hence, Do D, F ¢ %#(DyF), by Lemma [5.2| |

From our first two lemmas, we have shown that the dimension of the null space and the codi-
mension of the range both equal 1. From Definition [2.6] we have

indfL=1-1=0,

which proves that D, F(0,Qo(Cy)) is a Fredholm operator of index 0. Moreover, the transcritical
condition of the Crandall-Rabinowitz Theorem is satisfied by Lemma[5.3] Therefore, by Crandall-
Rabinowitz, there exists a curve of solutions bifurcating from 7 at (0, Qo«(Cy)). There exists § > 0
and a C! curve

C={(n(C),C,Q(C)): C € (Cy —8,C +6)} € X xR xR. m

5.1. Numerical analysis of solutions. After we have proven existence of solution for the ap-
proximate problem presented in Section |5, we show in this section what these solutions look like
by using AUTO. AUTO-07p, the newest version of AUTO, is a package that runs on Linux/Unix,
Mac OS X and Windows. After proper installation, AUTO-07p can give a bifurcation analysis for
algebraic systems. For a detailed overview of AUTO’s capabilities, please visit their website at
http://indy.cs.concordia.ca/auto/.

Before using AUTO to find bifurcation branches, we need to simplify our equations into something
that AUTO can understand. Recall that the equation we need to solve is the following

1
§IN(77)C!2+/>977+0/€—Q:0,

where k is the mean curvature and o > 0 is the coefficient of surface tension. We include the
surface tension to simplify the numerics; and take o = 1. Multiplying both sides by 2 and writing
the Dirichlet-to-Neumann operator as its Fourier cosine series, we have
2
C O . "
— 4+ — Z k coth(kh)ny cos(kxz)| + 2pgn — 20m" —2Q =0,

h h
k=0

where —n” is the approximation of x It follows that

02 oo . oo [o.@] . N -
W 1+2 Z coth(kh)ny cos(kh) + Z Z k coth(kh)nkj coth(kh)nj cos(kx) cos(jx)
k k=0 j=0

+2pgn — 20" —2Q = 0.
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Moreover, taking inner product in L2 of the left hand side with cos(fz), and using the fact that

cos(kx) cos(jz) = % [cos(k + j)x + cos(k — j)x],

we get
(5.7)
C? 1
—3 | G0+ 20 coth(Ch)i + 5 D" kcoth(kh)j coth(jh)i; | + 2097 + 2007 — 2Qd0 = 0.
l=Fk+j
or {=|k—j]

For example, for £ = 0, we have k = 1 and 7 = 1. Thus, the above expression is the same as
C? 1 .
=l [1 + B coth?(h)7?| —2Q =0,
which is consistent with the results shown in section That is, for 71 = 0, the trivial solution
satisfies )
1C

Q=55
Moreover, for £ = 1, k = 0 and j = 1 (which gives the same outcome as k = 1 and j = 0). Then
6.7 becomes

B2
It follows that 71 = 0 and we get the trivial solution again. If we want to approximate n up to o,
then we have to solve the following system of equations
C? ) . . .
W [4 coth(2h)7 + cothQ(h)n%] +2gfy + 807y =0 forl=1+1=2
2

1
% {2 coth(h)m + 3 [2 coth(2h) Coth(h)ﬁgﬁl]} +2g9m +20m =0 ford=2-1=1

02
[ coth(h) + g + U] m = 0.

C? 1

- {1 +3 [coth? (h)i? + 4coth2(2h)ﬁ§]} —2Q=0 for{=2-2=1-1=0.
At this point, we can use AUTO-07p to analyse the above algebraic system. First, we need to
transform the system into something that AUTO-07p can understand. The input to AUTO-07p is

written in Fortran 90 and the corresponding name for the unknowns are given below.

C Uil 72 Q
PAR(1) | U(1) | U(2) | U(3)
TABLE 1.

The source code is shown below as reference.

F(1)= (PAR(1)**2)*(1.00 + (U(1)**2)/(DTANH(1DO)*%*2) + 4.00%(U(2)**2)/(DTANH(2DO0)*%*2))
- 2xU(3)

F(2)= (PAR(1)**x2)*(-2.00%xU(1)/DTANH(1DO) + U(1)*U(2)/(DTANH(2D0O)*DTANH(1D0O)))
+ 20.00%U(1) + 2.00*U(1)

F(3)= (PAR(1)*%2)*(-4.00%U(2)/DTANH(2D0) + (U(1)*%2)/(DTANH(1DO)=**2))
+ 20.00%U(2) + 8.00%U(2)
12



AUTO is then told to vary C, solve for 7)1, 72 and @, and look for bifurcation branches, starting
at C =2.5,7 =0, 172 =0, and Q = 3.1. The results are attached in the appendix.

etal
7.50e-01

13
-
5.00e-01 /

2.50e-01

1\ 9
0.00e+00

-2.50e-01

-5.00e-01

-7.50e-01
2.008+00 3.006+00 4.008+00 5.008+00

FI1GURE 2. Bifurcation diagram

We can also produce graphs of the corresponding solutions using Matlab. AUTO outputs values
of 1 and 72 along the bifurcation curve, and Figure 2 is the graph of 7; cos(z) + 72 cos(2x) for
these values. Similarly, Figure 3 shows results for the second bifurcation curve. In the appendix,
we include the computation of solutions for the three remaining curves.

FI1GURE 3. Solution Branch #1

6. APPROXIMATE MODEL

In order to investigate the case where the bottom, ¢, is not identically flat, we seek asymptotic
expansions, near 1 =0 and { = —h, for Na(n, ().
13



6.1. Approximate solutions. We look for approximate solutions of the form
garr — g0 L oy,

(It is worth noting that () is the solution when ¢ = —h.) To this end, we first expand the operators
in terms of €. Next, we plug in our approximate solution and solve for the respective orders
of € to obtain expression for each U,

We perform a Taylor series expansion of the operators in . Let ¢ = —h + (M. Hence, we
know that:

2

hnw - Z(Cw - nw)
92 = (9, 9,
2 = (Ow + e )
—(d (h + 2)77w - ZECl(vl)a ’
= (O + e o 2)
2
= (0= Gl e — s+ CV]0.) +0(€)
n
2
— (O — (hjn)z[(h + 2)(h 4w + €[(h + 2)nuCY — (h+0)2¢P118.) + O(e).

By the above expression, we mean that 92 equals the operator in parenthesis plus ¢ multiplying a
bounded operator. So, dropping O(e?) terms, we have:

== Gl A el 2 (o
- 811)[;2[(}7’ +2)(h + )10 + e[(h + 2)mC™ — (b +n)2¢)))0.
(h+mn)
el 2 el — ()2
T [(h+ m)m + elnuCt™ = (h+ )¢+ 2) (0 + m)nw + €[(h+ 2)mu¢ = (B +)2¢]]0.
Expanding the expression further, we get,
_2 2 .2 L _ (1)
1 ) ,
- ww az 82
L [(h+ 2)[(h+ m)1ww + 17,1102 + 0 n>3(h +2)(h +n)ny,
R E +1 ) [(h+ 2) (owC™ + 1)) = mwz¢E) = (b +)2¢42)0-
el e = Gt el
1
gyl 20l 02+ e mg (o 2) (ot minall(h + 2)nuC = (b4 0)2G)02
2,2 2 (1) _ (1)
+ L (h+ z)(h +n)™n.,0. + e(h e (h 4+ 0)nwl(h + 2)nuC (h+n)z¢D)a,
e ¢ = (b4 )CD)(h+ 2) (B + )

(h+n)*
14



Furthermore,

Y S —
e =%
2

= [m(h‘f"’?—i‘ﬁdl))@] +0(e?)
h? 2h2
=0
han? )

Combining our above results, (4.4) becomes

(Mo +0(e).

Loy =LY +eL® +0(2)

where

L0 =92 - (hfn)Q[(h + 2) (h + 01w 0w0: — (hjmg[(h +2)[(h + 0w + 7510

G 0.+ sl )+ 02
2, 2 h? 2

+

+

2
(h+n)°
[(h+ Z)(??wa(l) + ﬁqu(ul)) - anCq(ul) —(h+n)z q(ulw]az

S[(h+ 2)0uC™ — (h+1)2¢{V)8,0 + [(h 4 2)n2¢M — (h +n)zn.¢ V)6,

(h+n)

(h+n)?
2

(h+n)*

+ [(h+ 2)(h+ n)nuw][(h + 2)17uC™ — (B +n)2¢{P)02

+ (h+ m)nw[(h + 2)9uCM — (h+n)2¢D]o,

(h+n)*

2 M —(n D](n h d 20
(h+77)4[7]w< (h+1)Cw 1(h + 2)(h + n)nwd. + (h+77)3

To solve for \i/go) and \ilgl), we plug our approximate solution into (4.5)) and consider the respective
O(€") terms. For O(1), we have:

+ ¢Waz2.

LOF =0
(6.1) I =Cc onz=0
\ilgo) =0 onz=—h

For O(e), we have:
15



5(0)@51) — Mg
(6.2) IM=0 onz=0
\ilgl) =0 onz=—h

6.2. Approximate expression for the Dirichlet-Neumann operator. Using the results from
the previous section, we now have an approximation for the Dirichlet-to-Neumann operator, Gs:

Go(n, —h + eCM)C = [0 V2] jy=n(a)
= [(—Umam + 6y)q/2}ly=n(x)

= [(=1w[0w — (hjn)z[(h +2)(h+ n)nw + e[(h + 2)nwC™ — (h+n)2¢D]]0x]

Tty

= (0 1 = (0 (1 1 z (1
= [0 B + [+ 2y + 108 — emudu B — o[+ 2y + 1J0- 95

+ Em[(h + 22D — (4 )z + h¢W]0, 0] .y + O(e?)

Define G;pp to be the operator found by taking the expression for G above and dropping the O(€?)

terms. We define N; PP analogously. The approximate model (1.9)) is found by replacing N; and G,
by the approximate operators:

7. SMALL AMPLITUDE FLOWS OVER A NON-FLAT BOTTOM

Having derived our approximate model in Section [ we are now in a position to investigate small
amplitude flows over an impermeable non-flat bottom, —h + e¢V). In order to ultimately prove the
existence of small amplitude, small circulation flows over a region bounded by a non-flat free surface
and a non flat-bottom, we first prove an auxiliary, albeit important, result: the non-existence of
small amplitude flows over a region bounded by a flat free surface and a non flat-bottom.

7.1. Non-existence of small-amplitude flows with non-flat bottom and flat free surface.

Proposition 7.1. Consider the approzimate problem in a fluid region that is bounded by a flat free
surface and a non-flat bottom, there does not exist any steady, incompressible and irrotational flow
i such region.

We will use this proposition to prove Theorem which states the non-existence of small-
amplitude flows in a two-fluid region with non-flat bottom and flat free surface. The proof for this
theorem can be found in Section The proof of the above proposition is as follows:

Proof. Suppose that free surface is flat, i.e. 7 = 0. We need only substitute n = 0 into (6.1]) and

(6.2), and we get
O =0 on {z=-h}
O = on {z =0},
16



which has a unique solution

(7.2) g0 — C(th
Also, UM solves the system
~ 2z z 2 ~
_ D [ 22) Zem 22| §o)

¥ =0 on {z=-h}
¥ =0 on {z=0}

Substituting the solution for ¥U(®) into (7.3), we get

Oz

T, (1
A(w,z)\:[l( ) = B2 Sww:

Note that the right hand side can be rewritten

~ Cz Cz
1 1 1
A(w,z)‘l’( )= ———¢) — ﬁCéz)

- h2 Sww
Cz .
= _A(w,z)ﬁg( )
Let u := UM 4 C2¢M /h?, then we have that
A(mz)u =0.

Moreover, the boundary conditions for ¥ becomes
u = —%C(l) on {z=—h}
u=0 on {z=0}.

By assumption, (1), and hence u, is 2r-periodic and even. Expanding both as cosine series gives

u= Zﬁ(/@, z)cos(kw) and ¢V = Z E,il) cos(kw).
k=0 k=0

Since u is harmonic, its Fourier cosine series coefficients satisfy the following ODE
—k*u(k) + Uz, (k) = 0.
It follows that w is given by
u = Ay cosh(kz) + By sinh(kz),
for some constants Ay, Br € R. Imposing the boundary conditions, we find that

u= %cseh(kh) sinh(kz)&l).

Substituting the above expression into the definition of u, we can solve for U()

o = Z %ZS) [h csch(kh) sinh(kz) — z] cos(kw).
k=0
Next, we evaluate the Dirichlet-to-Neumann operator with n = 0 and ¢ = —h 4 ¢!, and note

that the normalized Dirichlet-to-Neumann operator is the same as the non-normalized one, because
at n =0,

1
mg(O,C)C: G(0,¢)C.

17



Thus,

_ov
- On
_ov
=%

N0, —h + e

y=0

y=0

h s .
N F O A0 2
h —e¢) [\Ij"’ el ]2:0+O(6 )
— (11 S [0 4 G 2
1+ B0 +e¥D]  +0()

z=

=1+ %C(l)) {i + 62 %E,ﬁl) (khcsch(kh) — 1) cos(kw)} + O(é%).
k=0

Thus, define the approximate Dirichlet-to-Neumann operator

(7.4) NP (0, —h + 1) C = % {1 +eY kesch(kh)Cy cos(kw)} .

k=0

Substituting (|7.4]) into the approximate model gives

1+e Z k csch(k:h)acl) cos(kw)
k=0

(7.5) %

- V@

for some constants C', h and ). Since we are only interested in what happens when e is taken
sufficiently small, i.e. when

sup < 1.

w

€ Z k csch(k:h)z,(cl) cos(kw)
k=0

It follows that

1+e Z k csch(k:h)aﬁl) cos(kw) > 0.
k=0

Therefore, the equality ([7.5)) is the same the statement as
% <1 +e€ Z kcsch(kh)zlgl) cos(kw)) -y/Q=0.
k=0

Observe that the inner product in L2, of the left-hand side of the above equality with cos(jw) for
positive integers j also vanishes, i.e.

(7.6) <i (1 + ei kcsch(k:h)zl(cl) cos(kw)) -/Q, cos(jw)) =0 for >0

k=0 L2

First, consider when j = 0. Then ([7.6) becomes

/2Tr (i (1 + ei kcsch(kh)g?,gl) cos(kw)) - \/@> dw =10
0 k=0

18



Evaluating the integral gives

27TC ) 2
0= —2m\/Q + € Z k csch(kh)C cos(kw)dw

_ 2
WC — 27 \/>+27T€<0 .

It follows that
oo hy/Q —C

0 =

which equals to a constant. Next, consider when integer j > 0, (|7.6) becomes

0= <g — \/@) /027r cos(jw)dw + € Z k:csch(k‘h)f,EU /027r cos(kw) cos(jw)dw

k=0
The first integral term vanishes for all j > 0, and the second integral vanishes for all k£ # j, hence,

2
0=c¢j csch(jh)&?l) / cos®(jw)dw.
0

It follows that

(V=0 forall j>o.

Hence, only the zeroth order coefficient does not vanish for the Fourier cosine series of ¢(V), which
implies that ¢ (1) must equal some constant. [

7.1.1. Non-ezistence of small amplituder flows over region with flat interface and non-flat bottom.
See Figure 4. for a picture of the domain.

TR ™

FIGURE 4. Domain with non-flat bottom and free flat surface

Proof of Theorem[1.3. The proof is almost identical to the one-fluid case. The only difference
between the two situations is that the Bernoulli condition is now stated as

1 1
§\vq>1\2 — 5|v<1>2|2 +9(p1 — p2)n = Q.
19



Or equivalently,
N (0, U)CP = INGPP(0(n, Q)OI + 29(p1 — po)n — Q' =0,
for Q' = 2Q). Since we are considering the case in which 7 = 0, the above simplifies further to

IN1(n, U)C* = INGPP(,O)C> — Q' =0,

where /\7; PP i5 the same as the approximate form of Dirichlet-to-Neumann operator shown previ-
ously:

NEPP(0,¢) = N(0,—h + ¢ C g {1 + ei kcsch(kh)a:) cos(kw)} .

k=0

and N, for the system can be computed. For n =0, becomes
L€ =0
E=C onz=0
§~Z =0 asz— 00
Recall that € is defined in section Solving explicitly, we have
£ =Y /pU]cosh(kz) — sinh(kz)]5y, cos(kw).
k>0

Thus we get
1

V1402

Plugging the two identities into the approximate model, we get

N1(0,U)C = G1(0,U)C = G (0,U)C = —/p1U.

2

o O (1) e

0=pU* -5 1+echsch (kh)Cy” cos(kw) Q
k=0

2 202 e
=pU? - —Q —¢ <h6; k‘csch(k:h)zlil) cos(k:w)) .
k=0

Intuitively, all the Fourier modes vanish except for £ = 0 for the above equality to hold. The proof
is similar to the proof given for and is as follows. Take the inner product of both sides with
cos(lw) for [ € N, and we get

v :_ Oy tw)dw — 26€ Ook: h(kh k lw)dw
O_/o (plU —h2—Q>cos( w)dw — ——— 2 /0 Z cse )Ck cos(kw) cos(lw)

For [ = 0, we have that cos(lw) = cos(0) = 1. Then, the above becomes

CQ 202 0 27
0=2rm <p1U2 -5 Q’) Z K csch( k:h)gk / cos(kw)dw
0
2 026“
=27 <p1U2 e Q') — ZWTCO,

which implies that

Z(l) _ p1U2h3 o C2h o thS

o 2C2¢
20



is a constant. Next, for [ > 0, we have that

2 2 2, o 27
0= <p1U2 — % — Q’) / cos(lw)dw — % Z kcsch(k:h)a,il) / cos(kw) cos(lw)dw
0 =0 0

2 2m
= —f;lcsch(lh)gl(l)/ cos?(lw)dw,
0

which implies that
(V=0 forall 1>0.

Hence, it is proven ¢(V) must equal some constant. Moreover, small amplitude flows do not exist
for non-flat bottom. |

7.2. Existence of small amplitude flows in a region with a non-flat free surface and
a non-flat bottom. We fix ¢ = €y, u; = U, and ¢V = {él) — where Cél) is a non-constant,
2m-periodic, even function. It is appropriate that we define a function, F(n, C, @), as

F0.C.Q) = 5 G10CE = G )CP]+ gl = p2)n = Q

whose zero set is exactly the solution to (1.9). At n =0, C =0 and @ = 0, we observe that

(7.7) F(0,0,0) =0

and hence (0,0,0) is a solution to (|1.9).

Proof of Theorem[1.3. At C' = 0, we have that, from (6.1)) and (6.2]) respectively, ‘i,go) = 0 and

\TJS) = 0. Hence, we know that \I'éo) =0 and \i/él) = 0. Therefore,

(7.8) DyF(0,0,00w = > [p1Uk + g(p1 — p2)]ok cos(kw).
k>0

Therefore, for

g(p2 — p2)
k JNFa 2 Fal
0 7é ,01U2

where kg is some arbitrary integer, D, F(0,0,0)v is a bijective mapping from X x RxR to ¥ x R xR.
Therefore, applying the Implicit Function Theorem to ([7.7]) and ([7.8)), we can conclude that there
is a curve of solutions (C,n(C), Q(C)) such that (1.9) holds for all C' € (=4, 0)

Furthermore, from Theorem we know that, for C' £ 0 and (él) = a where a is some arbitrary
constant, it is impossible to have a flat free surface, n. Thus, n(C) is not identically flat. |
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APPENDIX A. NUMERICAL RESULTS

AUTO= run{ddz

gfortran —fopenmp -0 -c dd2.f98 -0 ddZ.o

gfortran -fopenmp -0 dd2.0 -0 ddz.exe AUsers/sallieWang Desktop/Researchlz sauto 87pslibs* .0
Starting ddz ...

ER PT T%¥ LAB C L2-NOREM etal etaz 0
1 1 EF 1 2.580B88E+RA  3.1APAPE+BR  B.PEBEEE+RE B .BEPABE+BR 3 .16B08E+RE
1 7 BP 2 2.B9773E+BA  3.3741PE+BE B .0EBEEE+BE B .BEEEBE+BE  3.37418E+BE
1 16 EP 3 2.89448E+BB  4.15577E+BE B .0EBOEE+BE O .BO0EBE+BE  4.15377E+BE
1 28 UZ 4  3.080E3E+H8 4 .BAEESE+BE  B.0EBEEEE+BE O _BEEEPE+BE 4 BEBESE+BE
1 3| UL F  3.006@6E+E8E  6.12500E+88  ©.06B00E+A8  ©.BO00EE+08 6 .12508E+68
1 B UZ & 4,08682E+88  §.60007E+68 ©.00000E+A0  ©.9000EE+00 5 .00087E+08
1 g8 Uz 7 4.66681E+85  1.512FBE+H1 ©.GG000E+AA  §.9A0BEE+08  1.01258E+G1
1 188 EP £ 4.91556E+8E  1.28514E+61 ©.60000E+BA  §.9A0BEE+08  1.28514E+81
ER PT T%¥ LAE c L2-NORM etal etoz 0
2 188 EP 9  2.,B9773E+PA  1.1953BE+81  BA.PEBERE+RA  7.67EASE-B1  1.19255E+A1
ER PT T%¥ LAB C L2-NOREM etal etaz 0
2 46 BP 18 Z2.B9773E+BA 6. B3V91E+BE B .0EEEEE+RE -4 .65E26E-B1  6.52132E+B8
2 188 EP 11 2.59773E+BE  1.193V4E+B1  0.0EEEEE+BE -7 .667S8E-B1 1.1912VE+B1
ER PT T¥ LABE C L2-MNORM etal etaz u]
3 29 UZ 12 35.66@@0E+@8  5.47035E+00  2.593365E-81  1.33351E-81  B.46739E+08
3188 EP 13 3.26352E+88  1.2R694E+A1  6.02664E-A1  4.117E7E-81  1.25482E+81
ER PT T%¥ LAE c L2-NORM etal etoz 0
3 29 U2 14 3.08@088E+RA  5.47TE3BE+ER  -Z.53365E-B1  1.335351E-81  B.46739E+BEA8
3 188 EP 15 3.26382E+08  1.25694E+A1 -6.B82664E-B1  4.11757E-B1  1.25452E+P1
ER PT T%¥ LAB C L2-NOREM etal etaz 0
4 41 UZ 16 Z2.58@0EE+RE  9.62611F+BH  3.54835E-B1 -6.B6321E-B1  9.5971RE+BE
4 188 EP 17 2.3V694E+BE 1.55234E+81 6.59941E-B1 -9.36855RE-81  1.54814E+B1
ER PT T¥ LABE C L2-MNORM etal etaz u]
4 41 UZ 15 Z.56@@8E+ea  9.62611E+B@ -3.54535E-A1 -6.B46321E-81  9.59715E+E8
4 1A EP 19 Z.37624E+BA  1.BR234E+A1 -6.509941E-A1 -9.38EEEE-81  1.54814E+81
FIGURE 5. output from AUTO
01
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FIGURE 6. Solution Branch #2
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FIGURE 8. Solution Branch #4
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