

Calculus III Part 1

Name: Solutions

1. (a) $\mathbf{u} \times \mathbf{v} = \langle -\sqrt{2}, \sqrt{2}, 0 \rangle$

(b) $\mathbf{u} \cdot \mathbf{v} = 2$

(c) Let $\theta \in [0, \pi]$ be the angle between the two vectors

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|} = \frac{2}{2\sqrt{2}} \implies \theta = 45^\circ$$

(d)

$$\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2} \mathbf{v} = \mathbf{v}$$

(e)

$$|(\mathbf{u} \times \mathbf{v}) \cdot \langle 1, 0, 0 \rangle| = \sqrt{2}$$

2. (a) \mathbf{j}

(b) $-\mathbf{i}$

(c) 0

(d) \mathbf{i}

(e) $-\mathbf{j} + \mathbf{k} = \langle 0, -1, 1 \rangle$

3. Unit tangent vector, \mathbf{T} , gives the direction of the velocity, and unit normal vector, \mathbf{N} , gives the direction of the normal acceleration which is responsible for the change of the direction of the velocity.

Recall there are two parts of acceleration: tangential acceleration \vec{a}_T changes the magnitude of the velocity only, and it is parallel to the velocity; and normal acceleration \vec{a}_N changes the direction of the velocity only (that is the reason why \mathbf{T} has to be normalized).

Here is a picture that illustrates \vec{a}_T and \vec{a}_N . Suppose the motion is circular, and we can look at velocities at two instances, $\vec{v}(t)$ and $\vec{v}(t + \Delta t)$, separated by time Δt .

To find the difference of two velocities, we shift $\vec{v}(t)$ and $\vec{v}(t + \Delta t)$ so that the two tails are coincide, so the blue line $\vec{BC} = \vec{v}(t + \Delta t) - \vec{v}(t) \approx \vec{a}\Delta t$. Now mark a point D on \vec{AC} such that $\vec{AD} = \vec{AB} = |\vec{v}(t)|$. Now we find that $\Delta POQ \sim \Delta BAD$, because both are isosceles and $\angle POQ = \angle BAD$. That is because $\vec{OP} \perp \vec{AB}$ and $\vec{OQ} \perp \vec{AD}$.

Let $\Delta t \rightarrow 0$, hence $\angle BAD \rightarrow 0$, so $\angle DBA \rightarrow \pi/2$, i.e. $\vec{BD} \perp \vec{AB}$, so $\vec{BD} \parallel \vec{OP}$, i.e. \vec{BD} is in the normal direction. Since $\vec{BC} = \vec{BD} + \vec{DC}$ and clearly $|\vec{DC}| = |\vec{v}(t + \Delta t)| - |\vec{v}(t)|$, it is natural to define \vec{a}_T and \vec{a}_N so that

$$\vec{a} = \vec{a}_T + \vec{a}_N$$

and

$$\vec{DC} = \vec{a}_T \Delta t \quad \vec{BD} = \vec{a}_N \Delta t$$

Since \vec{a}_N is perpendicular to the motion, centripetal forces do no work, i.e. \vec{a}_N doesn't contribute to the change of the speed.

Furthermore if the particle moves in a circular motion with constant speed, i.e. $\vec{CD} = 0$, using $\Delta POQ \sim \Delta BAD$, we get

$$\frac{\vec{OP}}{\vec{PQ}} = \frac{\vec{AB}}{\vec{BD}} \implies \frac{v\Delta t}{r} = \frac{a\Delta t}{v} \implies a = \frac{v^2}{r}$$

For arbitrary “smooth” motion in 3D, we can always approximate the trajectory at every instance by circle with radius, 1/curvature. And \mathbf{T} is tangent to the circle, \mathbf{N} radially points to the center of the circle, and \mathbf{B} gives the normal direction of the plane in which the circle lies. We take $\mathbf{B} = \mathbf{T} \times \mathbf{N}$ but not $\mathbf{N} \times \mathbf{T}$ because under right hand rule \mathbf{B} also gives the direction of the rotation of the particle. Two for the price of one.

One way to memorize the formula for curvature κ is to think the special case above: uniform circular motion.

We learned for uniform circular motion with constant speed v and radius r , the magnitude of the acceleration is given by

$$a = \frac{v^2}{r} = \kappa v^2$$

and

$$\vec{a} = \frac{d\vec{v}}{dt} = v \frac{d\vec{T}}{dt}$$

so it is natural to define κ as

$$\kappa = \frac{|d\vec{T}/dt|}{v} = \left| \frac{d\vec{T}}{ds} \right|$$

The presentation given above is of course not a proof, but a good trick to use on a exam. Special cases help memorizing formulas.

(a)

$$\vec{T}' = \left\langle \frac{4t}{(t^2+2)^2}, -\frac{4t}{(t^2+2)^2}, -\frac{2(t^2-2)}{(t^2+2)^2} \right\rangle$$

$$\vec{N} = \frac{\langle 2t, -2t, -(t^2-2) \rangle}{\sqrt{8t^2 + (t^2-2)^2}} = \frac{\langle 2t, -2t, -(t^2-2) \rangle}{t^2+2}$$

(b)

$$\kappa = \frac{\left| \left\langle \frac{4t}{(t^2+2)^2}, -\frac{4t}{(t^2+2)^2}, -\frac{2(t^2-2)}{(t^2+2)^2} \right\rangle \right|}{\frac{1}{2}t^2+1} = \frac{\frac{2}{(t^2+2)^2}(t^2+2)}{\frac{1}{2}t^2+1} = \frac{4}{(t^2+2)^2}$$

(c)

$$\vec{B}(t=0) = \langle 0, 1, 0 \rangle \times \langle 0, 0, 1 \rangle = \hat{i}$$

4. (a) No

(b) Yes

(c) Should read $\frac{\partial z}{\partial t}$ not $\frac{dz}{dt}$. ANS yes

(d) Yes

(e) Should read $f(x, y)$ is a non-constant function... ANS yes (cf problem 6 below)

5. (a) Clearly

$$f(0, 0) = f(0, x) = f(0, y) = 0$$

so all points on the x and y axes give the same value, so (a) goes with (4).

(b) Similarly $f(0, y) = 0$ for all y , and we already used (4), so (b) goes with (8).

(c) For fixed f , if $f > 0$, the level curve is

$$\frac{y^2}{(\sqrt{f})^2} - \frac{x^2}{(\sqrt{f})^2} = 1$$

If $f < 0$

$$\frac{x^2}{(\sqrt{-f})^2} - \frac{y^2}{(\sqrt{-f})^2} = 1$$

So (c) goes to (1)

(e) f is invariant under $x \rightarrow x + a$, and $y \rightarrow y + a$, for any a , so the contour plot has to have this property, i.e. symmetric under shifting the plot by the vector $\langle 1, 1 \rangle$, so (e) goes to (7).

(d) We can do the following transformation

$$\begin{cases} x + y = u \\ x - y = v \end{cases}$$

then

$$f = \frac{x - y}{x^2 + y^2 + 1} = \frac{v}{u^2 + v^2 + 1}$$

which is almost (b).

If you know the transformation

$$\begin{cases} x + y = u \\ x - y = v \end{cases}$$

means to rotate x and y axes by 45^0 , then you know the answer. Otherwise use the same trick

$$f(0, 0) = f(x, x)$$

so the line $y = x$ must be one of the level curve, and we already used (1), (7), so it has to go to (3).

6. Recall $\vec{u} = \langle \Delta x, \Delta y, \Delta z \rangle$

$$\Delta f = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \frac{\partial f}{\partial z} \Delta z = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle \cdot \langle \Delta x, \Delta y, \Delta z \rangle$$

So if one chooses $\vec{u} = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle$, then Δf is maximum, i.e. $\vec{u} = \nabla f$ gives the direction that maximally increases f . The direction perpendicular to ∇f gives $\Delta f = 0$, which makes up the tangent plane.

So the normal direction at point $(1, -1, 1)$ is

$$\langle 2x, 4y, 2z \rangle \sim \langle 1, -2, 1 \rangle$$

So the equation of the plane

$$x - 2y + z = d$$

Since it passes $(1, -1, 1)$,

$$x - 2y + z = 4$$

7. (a)

$$\begin{cases} 4x^3 - 4y = 0 \\ 4y^3 - 4x = 0 \end{cases} \implies x = y = \pm 1, 0$$

ANS $(0, 0), (1, 1), (-1, -1)$

(b) We are going to apply second derivative test. Recall second derivative test says suppose f has continuous second derivatives and at the critical points if

$$f_{xx}f_{yy} - f_{xy}^2 > 0 \text{ and } f_{xx} > 0$$

then that critical point is a local minimum. Let's use a crude argument to show why this test makes sense.

Suppose (x_0, y_0) is a critical point. Let us compare $f(x_0, y_0)$ to its neighborhood, say $f(x_0 + \Delta x, y_0 + \Delta y)$

Let us use Taylor. First expand in y then expand in x , and keep up to second order terms (because first order terms are zeros, for (x_0, y_0) is a critical point. Because f has continuous second derivatives, by Clairaut's, expanding in y then expanding in x gives the same answer if we expand in x then expand in y , i.e. following the upper left path is the same as following the lower right path.) We obtain

$$\begin{aligned} f(x_0 + \Delta x, y_0 + \Delta y) &= f(x_0 + \Delta x, y_0) + \frac{\partial f}{\partial y} \bigg|_{(x_0 + \Delta x, y_0)} \Delta y + \frac{1}{2} \frac{\partial^2 f}{\partial y^2} \bigg|_{(x_0 + \Delta x, y_0)} (\Delta y)^2 \\ &= f(x_0, y_0) + \frac{\partial f}{\partial x} \bigg|_{(x_0, y_0)} \Delta x + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} \bigg|_{(x_0, y_0)} (\Delta x)^2 \\ &\quad + \left[\frac{\partial f}{\partial y} \bigg|_{(x_0, y_0)} + \frac{\partial}{\partial x} \frac{\partial f}{\partial y} \bigg|_{(x_0, y_0)} \Delta x \right] \Delta y + \frac{1}{2} \frac{\partial^2 f}{\partial y^2} \bigg|_{(x_0, y_0)} (\Delta y)^2 \\ &= f(x_0, y_0) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} \bigg|_{(x_0, y_0)} (\Delta x)^2 + \frac{\partial^2 f}{\partial x \partial y} \bigg|_{(x_0, y_0)} \Delta x \Delta y + \frac{1}{2} \frac{\partial^2 f}{\partial y^2} \bigg|_{(x_0, y_0)} (\Delta y)^2 \end{aligned}$$

We want $f(x_0, y_0)$ to be truly a local minimum, then the sum after $f(x_0, y_0)$ had better to be positive for any direction $\langle \Delta x, \Delta y \rangle$ we pick, i.e.

$$f_{xx}(\Delta x)^2 + 2f_{xy}\Delta x \Delta y + f_{yy}(\Delta y)^2 > 0$$

If we view above as a parabola in variable Δx , then we know the entire parabola lives above the x axis iff the parabola is concave up and no real roots, so the requirements are

$$f_{xx} > 0 \text{ and } 4f_{xy}^2(\Delta y)^2 - 4f_{xx}f_{yy}(\Delta y)^2 < 0$$

That is what we want

$$f_{xx} > 0 \text{ and } f_{xx}f_{yy} - f_{xy}^2 > 0$$

And the requirements for local maximum are that the entire parabola lives below the x axis, i.e. the parabola is concave down and no real roots.

Now we do the test on $(0, 0)$, $(1, 1)$, and $(-1, -1)$

$$f_{xx} = 12x^2, \quad f_{xx}f_{yy} - f_{xy}^2 = 144x^2y^2 + 4 > 0$$

So $(1, 1)$ and $(-1, -1)$ are minimum, and $(0, 0)$ is inconclusive by the test, so we will have to use other methods. So we can stop here.

[If you have the luxury of time, you can work out the problem for extra credits:

Is $(0, 0)$ a min, max or saddle point?

Hint: use the 45^0 rotation transformation mentioned in problem 5(d) above with proper normalization (i.e. Jacobian = 1), so f is reduced into a equation with 2nd degrees in x and y , then go to polar coordinate to find a level curve passing through the origin, then rotate 45^0 back to the normal xy plane.

ANS: the level curve passing through the origin is given by

$$r^2 = \frac{4 \sin 2\theta}{2 - \sin^2 2\theta}$$

Hence $(0, 0)$ is not min nor max, is a saddle point.]