
Calculus III Part 1

Name: Solutions

1. (a) u× v =
〈
−
√

2,
√

2, 0
〉

(b) u · v = 2

(c) Let θ ∈ [0, π] be the angle between the two vectors

cos θ =
u · v
|u||v|

=
2

2
√

2
=⇒ θ = 450

(d)
u · v
|v|2

v = v

(e)
|(u× v) · 〈1, 0, 0〉 | =

√
2

2. (a) j

(b) −i

(c) 0

(d) i

(e) −j + k = 〈0,−1, 1〉

3. Unit tangent vector, T , gives the direction of the velocity, and unit normal vector, N , gives
the direction of the normal acceleration which is responsible for the change of the direction of
the velocity.

Recall there are two parts of acceleration: tangential acceleration ~aT changes the magnitude
of the velocity only, and it is parallel to the velocity; and normal acceleration ~aN changes the
direction of the velocity only (that is the reason why T has to be normalized).

Here is a picture that illustrates ~aT and ~aN . Suppose the motion is circular, and we can look
at velocities at two instances, ~v(t) and ~v(t+ ∆t), separated by time ∆t.
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To find the difference of two velocities, we shift ~v(t) and ~v(t + ∆t) so that the two tails are
coincide, so the blue line

−−→
BC = ~v(t + ∆t) − ~v(t) ≈ ~a∆t. Now mark a point D on AC such

that AD = AB = |~v(t)|. Now we find that ∆POQ ∼ ∆BAD, because both are isosceles and
∠POQ = ∠BAD. That is because OP ⊥ AB and OQ ⊥ AD.

Let ∆t → 0, hence ∠BAD → 0, so ∠DBA → π/2, i.e. BD ⊥ AB, so BD ‖ OP , i.e. BD is
in the normal direction. Since

−−→
BC =

−−→
BD +

−−→
DC and clearly |

−−→
DC| = |~v(t+ ∆t)| − |~v(t)|, it is

natural to define ~aT and ~aN so that

~a = ~aT + ~aN

and
−−→
DC = ~aT∆t

−−→
BD = ~aN∆t

Since ~aN is perpendicular to the motion, centripetal forces do no work, i.e. ~aN doesn’t con-
tribute to the change of the speed.

Furthermore if the particle moves in a circular motion with constant speed, i.e. CD = 0, using
∆POQ ∼ ∆BAD, we get

OP

PQ
=
AB

BD
=⇒ v∆t

r
=
a∆t

v
=⇒ a =

v2

r

For arbitrary “smooth” motion in 3D, we can always approximate the trajectory at every
instance by circle with radius, 1/curvature. And T is tangent to the circle, N radially points
to the center of the circle, and B gives the normal direction of the plane in which the circle
lies. We take B = T ×N but not N × T because under right hand rule B also gives the
direction of the rotation of the particle. Two for the price of one.

One way to memorize the formula for curvature κ is to think the special case above: uniform
circular motion.

We learned for uniform circular motion with constant speed v and radius r, the magnitude of
the acceleration is given by

a =
v2

r
= κv2

and

~a =
d~v

dt
= v

d~T

dt
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so it is natural to define κ as

κ =
|d~T/dt|

v
=

∣∣∣∣∣d~Tds
∣∣∣∣∣

The presentation given above is of course not a proof, but a good trick to use on a exam.
Special cases help memorizing formulas.

(a)

~T ′ =

〈
4t

(t2 + 2)2
,− 4t

(t2 + 2)2
,−2(t2 − 2)

(t2 + 2)2

〉
~N =

〈
2t,−2t,−(t2 − 2)

〉√
8t2 + (t2 − 2)2

=

〈
2t,−2t,−(t2 − 2)

〉
t2 + 2

(b)

κ =

∣∣∣〈 4t
(t2+2)2

,− 4t
(t2+2)2

,−2(t2−2)
(t2+2)2

〉∣∣∣
1
2 t

2 + 1
=

2
(t2+2)2

(t2 + 2)

1
2 t

2 + 1
=

4

(t2 + 2)2

(c)
~B(t = 0) = 〈0, 1, 0〉 × 〈0, 0, 1〉 = î

4. (a) No

(b) Yes

(c) Should read ∂z
∂t not dz

dt . ANS yes

(d) Yes

(e) Should read f(x, y) is a non-constant function... ANS yes (cf problem 6 below)

5. (a) Clearly
f(0, 0) = f(0, x) = f(0, y) = 0

so all points on the x and y axes give the same value, so (a) goes with (4).

(b) Similarly f(0, y) = 0 for all y, and we already used (4), so (b) goes with (8).

(c) For fixed f , if f > 0, the level curve is

y2

(
√
f)2
− x2

(
√
f)2

= 1

If f < 0
x2

(
√
−f)2

− y2

(
√
−f)2

= 1

So (c) goes to (1)

(e) f is invariant under x→ x+ a, and y → y + a, for any a, so the contour plot has to have
this property, i.e. symmetric under shifting the plot by the vector 〈1, 1〉, so (e) goes to (7).
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(d) We can do the following transformationx+ y = u

x− y = v

then
f =

x− y
x2 + y2 + 1

=
v

u2 + v2 + 1

which is almost (b).

If you know the transformation x+ y = u

x− y = v

means to rotate x and y axes by 450, then you know the answer. Otherwise use the same trick

f(0, 0) = f(x, x)

so the line y = x must be one of the level curve, and we already used (1), (7), so it has to go
to (3).

6. Recall ~u = 〈∆x,∆y,∆z〉

∆f =
∂f

∂x
∆x+

∂f

∂y
∆y +

∂f

∂z
∆z =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
· 〈∆x,∆y,∆z〉

So if one chooses ~u =
〈
∂f
∂x ,

∂f
∂y ,

∂f
∂z

〉
, then ∆f is maximum, i.e. ~u = ∇f gives the direction that

maximally increases f . The direction perpendicular to ∇f gives ∆f = 0, which makes up the
tangent plane.

So the normal direction at point (1,−1, 1) is

〈2x, 4y, 2z〉 ∼ 〈1,−2, 1〉

So the equation of the plane
x− 2y + z = d

Since it passes (1,−1, 1),
x− 2y + z = 4

7. (a) 4x3 − 4y = 0

4y3 − 4x = 0
=⇒ x = y = ±1, 0

ANS (0, 0), (1, 1), (−1,−1)
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(b) We are going to apply second derivative test. Recall second derivative test says suppose f
has continuous second derivatives and at the critical points if

fxxfyy − f2
xy > 0 and fxx > 0

then that critical point is a local minimum. Let’s use a crude argument to show why this test
makes sense.

Suppose (x0, y0) is a critical point. Let us compare f(x0, y0) to its neighborhood, say f(x0 +

∆x, y0 + ∆y)

Let us use Taylor. First expand in y then expand in x, and keep up to second order terms
(because first order terms are zeros, for (x0, y0) is a critical point. Because f has continuous
second derivatives, by Clairaut’s, expanding in y then expanding in x gives the same answer
if we expand in x then expand in y, i.e. following the upper left path is the same as following
the lower right path.) We obtain

f(x0 + ∆x, y0 + ∆y) = f(x0 + ∆x, y0) +
∂f

∂y

∣∣∣∣
(x0+∆x,y0)

∆y +
1

2

∂2f

∂y2

∣∣∣∣
(x0+∆x,y0)

(∆y)2

= f(x0, y0) +
∂f

∂x

∣∣∣∣
(x0,y0)

∆x+
1

2

∂2f

∂x2

∣∣∣∣
(x0,y0)

(∆x)2

+

[
∂f

∂y

∣∣∣∣
(x0,y0)

+
∂

∂x

∂f

∂y

∣∣∣∣
(x0,y0)

∆x

]
∆y +

1

2

∂2f

∂y2

∣∣∣∣
(x0,y0)

(∆y)2

= f(x0, y0) +
1

2

∂2f

∂x2

∣∣∣∣
(x0,y0)

(∆x)2 +
∂2f

∂x∂y

∣∣∣∣
(x0,y0)

∆x∆y +
1

2

∂2f

∂y2

∣∣∣∣
(x0,y0)

(∆y)2

We want f(x0, y0) to be truly a local minimum, then the sum after f(x0, y0) had better to be
positive for any direction 〈∆x,∆y〉 we pick, i.e.

fxx(∆x)2 + 2fxy∆x∆y + fyy(∆y)2 > 0

If we view above as a parabola in variable ∆x, then we know the entire parabola lives above
the x axis iff the parabola is concave up and no real roots, so the requirements are

fxx > 0 & 4f2
xy(∆y)2 − 4fxxfyy(∆y)2 < 0

That is what we want
fxx > 0 & fxxfyy − f2

xy > 0
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And the requirements for local maximum are that the entire parabola lives below the x axis,
i.e. the parabola is concave down and no real roots.

Now we do the test on (0, 0), (1, 1), and (−1,−1)

fxx = 12x2, fxxfyy − f2
xy = 144x2y2 + 4 > 0

So (1, 1) and (−1,−1) are minimum, and (0, 0) is inconclusive by the test, so we will have to
use other methods. So we can stop here.

[If you have the luxury of time, you can work out the problem for extra credits:

Is (0, 0) a min, max or saddle point?

Hint: use the 450 rotation transformation mentioned in problem 5(d) above with proper nor-
malization (i.e. Jacobian = 1), so f is reduced into a equation with 2nd degrees in x and y,
then go to polar coordinate to find a level curve passing through the origin, then rotate 450

back to the normal xy plane.

ANS: the level curve passing through the origin is given by

r2 =
4 sin 2θ

2− sin2 2θ

Hence (0, 0) is not min nor max, is a saddle point.]
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