Calculus III Part 2

Name: Solutions

. (cf Cal3 exam part 1 problem 6) Normal (1,1,1), so planez +y+2 =1

. (cf Cal3 exam part 1 problem 7) We solve

W —z2=0
ylz —y*) =0
Critical points: (0,0), (1,41). Test
Jazfyy — fiy = 144(3zy? — 22 — %)
frz = —12z
So (1,£1) are local maxima, and (0,0) is inconclusive.

. (i) The integral is evaluated in polar

2 oo oo
/ dH/ e Prdr = 27r/ e " 2d(r?)2) = 2
0 0

0

(ii) So

/ e 24y = \/</ e‘xQ/Qda;> </ e‘y2/2dy> =V2r

. Fundamental theorem for line integrals says the path from point A to point B

B
/A Vf-di = f(B) - f(A)

Let’s see why this makes sense.

Recall fundamental theorem of calculus of one variable is that

[ (Y= 50~ s

We can approximate the integral on the left by
daf
— | A
() ar
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Since df /dx is the slope of the tangent, (%) Az = Af, and adding all the A f gives f(b)— f(a).
Graphically

For line integral, let’s approximate the integral as

B
/ Vi-dirm Y (Vf) AT
A
Recall in Cal3 exam part 1 problem 6, we said that

gAx + aijAy + %Az =(Vf) A7

Al =5, 0 9z

so adding all the Af (they are all scalar now) gives

B
[ VEdrs S AF = 1(B) - £

For our problem
x

y*+1

f is unique up to an additive constant, independent of z,y and z. So

F=Vf f= +e¥* + 22

/ﬁ-d?— £(1,0,27) — £(1,0,0) = 47>

ygﬁ-df’://curlﬁdg
C A

where A is any area whose boundary is C.

. Stokes says

If C lies entirely on the zy plane, then A can be chosen to be on the zy plane, so ds is along

Z direction only, so only the Z component of curl F matters. Therefore

. F, OF
F-sz//(y— ”")ds
y% 4\ Oz oy

which is the Green’s theorem. We don’t have to memorize Green, for it is a special case of
Stokes.

However Stokes is derived from Green, because assuming Green is correct, then for any given

C and A, we just project them onto the zy plane, yz plane, and zz plane, we get 3 Green



equations. Adding the 3 equations, the area integrand becomes curl of F , and the 3 equations

turn into dot product, which in turn gives Stokes.

Let’s see why Green makes sense. Suppose C is on the xy plane, and let A be the area enclosed
by C on zy plane and assume that we can chop S into many and many tiny rectangles with
sides Az, Ay.

==
E]EJEV%
pult i i i i
pult i sl e i sl
] i} sl
)

Let us look at one of the tiny rectangles whose four corners are (x,y), (x + Az, y), (z,y+ Ay),
and (r + Az, y + Ay).

(z,y+Ay) . (T+ Az, y+Ay)
a_Js
(z.y) * (z+Az,Y)

Let us compute SEtmyD F - dF for this tiny rectangle counterclockwise. Denote ﬁa, ﬁb, ﬁc, ﬁd

to be the vector F on the four sides (and Fj,; means the x component of ﬁa, etc.), then

yﬁ F-di = Fulz+ FyAy — FopAz — FyyAy
tiny O

= (Faz — Feo) Az + (Fyyy — Fyy) Ay
0F, oF,

- _ -y
= 9y AyAz + o AxAy
oF, 0F,
= (=2 - AzA
( dr  dy > Y

Now summing all tiny rectangles on S,

- oF, OF,
F.dr= Ty _ ””) AzA
Z%myD Z( Ox 8y Y

The left hand side becomes
55 F . dF
C

because all internal line integrals cancel, for internal edges of the rectangles are common edges

of the two adjacent rectangles, and the line integrals are running in opposite directions. Only



the boundary C survives; while the right hand side gives

dF, OF,
//A <ax‘ ay>dS

showing Green is right.

For our problem, the integral is

1 3
//2ydA:2/ dx/ ydy = 16
-1 1

. Question: Shall we use Stokes or Gauss’s?
e Let us see the Stokes” way.

Consider

surface area of A = // h-dS
A

where A is the surface 22 + 32 + z = 2 above the zy plane, and 7(z,y, ) is the unity vector

whose direction is equal to ds , i.e.

(22,2y,1)

Vax? +4y? +1

n =

Now we put curl F = for some F. We have

surface area of A = // curl F - dS = 55 F.di
A C

where C' = {(z,y, 2)|z? + y> = 2,2 = 0}.

%F’)-df':// curl F - dS
C !

where A’ is any area whose boundary is C'. For convenience we choose A’ = {(z,y, )|z +y? <
2,z =0}. We find

We know from Stokes

r

1 V2
= ds = 27r/ —dr =
/A’ VAar? + 492 + 1 0o V4r2+1

surface area of A = // f-dS

Everything looks good except this is not correct. It is not correct because there is no such F

so that
(21,2y,1)

Vidz? +4y? + 1

To see why, let’s take divergence to both sides

curl F =n =

—

V- (VxF)=V-p
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Since divergence of curl is identically equal to zero, but

222 + 292 + 1

V.n—4
" (422 + 4y2 + 1)3/2

£0

What can we do? Stokes is certainly not applicable. We should have checked that if
V-n=0
before we went on to do all the calculations. Fortunately as we’ll see, most of the hard
calculations above are recyclable in Gauss’s way. We now switch to Gauss’s way.
o Gauss’s way

We take a closed surface

Au A

where A is the surface 22 +y%+2z = 2 above the 2y plane, and A’ = {(x,y, 2)|2?+y? < 2,2 = 0},

as defined earlier.

Applying Gauss to AU A’, we get

# ﬁ~d§:///(v n)dV
AUA’ \%4

where 7 is also defined earlier.

Left hand side is

surface area of A + // f - dS = surface area of A —

The minus sign in the front of 7 is due to the fact that we define outward normal flux to be
positive as in Gauss’. (We will show in the next problem why this is a natural way to define

the direction of a closed surface.)

Right hand side is computed in cylindrical coordinate

2ﬂ 2p% 4+ 1 10
p°+ 10w
8”/ pdp/ W20 3

surface area of A = 13{

So

In summary

(a) We have seen that 3 A such that B = curl A iff divB = 0, then we can apply Stokes
to the vector field B. (Those who have taken general physics II may have recognized

that the physical prototype here is that B is the magnetic field, and A is the vector



potential. That div B=0is equivalently to say there is no magnetic monopole (i.e. no
free stand positive or negative magnetic charges) so magnetic field lines are always closed,
i.e. curly looking.) Important to notice, closed vector lines (such as magnetic fields) have
0 divergence, however 0 divergent fields may not consist of closed lines, nor it contains
any curly lines. cf. problem 9(viii)

Here is a parallel statement to above, that 3 a scalar function ¢ such that E = Vo iff
curl E = 0. (One may have recognized that the physical prototype for E is the electro-
static field, and ¢ is the electrostatic potential. So E is conservative, and electrostatic
field lines are always coming out of positive charges and ending at negative charges, so
if we put the negative charges at oo, the field produced by a single positive charge looks
likes diverging to oc.)

We now show the connection between the fundamental theorem for line integrals, Stokes’

and Gauss’. Say starting from Gauss’

y%‘ﬁ.dﬁz///v(v-ﬁ)dv,

we change F to F + F' for any arbitrary vector field F” such that V - F/ = 0. The right
hand side of Gauss is clearly unchanged, but what about the left hand side? The LHS is

now
#ﬁ-d§+# F'-dS
A A

Because F' = curl A for some vector A, (by (a) above) Applying Stokes to the second

term shows it is zero.

Physically this means that in computing the flux, adding some other flux F’ , which has
V - F’ = 0 inside of V', makes no difference. Because that V - F’ = 0 inside of V means
no sources or sinks that produce or terminate F’ are inside of V, all fluxes that go into
V must come out of V. (divergence of magnetic field is always zero everywhere means

there is no magnetic charges.)

Recall in the solution to problem 6, we first calculated

// h-dS=mn

in the Stokes way, but then we did the same calculation in Gauss way, we got

// h-dS = —m

This flip of sign is what makes Stokes’ and Gauss’ consistent to each other.

%ﬁ-dfz//curlﬁ-dg
C A

Now we write down Stokes



and add F’ to F for any arbitrary F’ such that curl F/ = 0, then the RHS is clearly
unchanged, while the LHS is also unchanged due to the fundamental theorem for line
integrals, because F' = Vf for some scalar function f. (see (b) above) Physically this

means that the additional work done by F’

5513’-#
C

is zero, because F’ is conservative.

[Extra Credits for those who know surface parametrization: calculate the surface area, using

the following parametrization
Y(u,v) = {ucosv,usinv,2 —u?) u € [0,v2], v e 0,27

and compute
Fus Vos [Fu X ol
Then compute
surface area of A = /dv / du| Yy X ol

Should give the same answer, and much faster.|

. Let’s see why Gauss’ makes sense. The discussion is almost parallel to Green’s. Suppose V is
the volume in Gauss’ and assume that we can chop V into many and many tiny cubes with
sides Az, Ay, Az.

Let us look at one of the tiny cubes whose 8 vertices are (x,y, 2), (x + Az, y, 2), (x,y+ Ay, 2),
.y and (x4 Az, y + Ay, z + Az).

F - dS for this tiny cube. Denote F’l, ﬁr, ﬁu, ﬁd, ﬁf, and ﬁb
to be the vector F on the left, right, up, down, front, and back sides (and Fj, means the z

Let us compute gjsonetinycube
component of F}), and our coordinate system is chosen such that x+ to the front, y+ to the

right, and z+4 up, and choose outward normal to be the positive flux direction, then

# F.dS = (Fry — Fly) AxAz + (Fpp — Fyo) AyAz + (Fy. — Fao) AxzAy
one tiny cube

OF, 0OF, OF.
= (5 + +

o 3y 8; JAzAyAz

Notes:

(a) The end result is celebrated divergence. This shows why we choose outward normal to
be positive flux. If we chose mix direction on each side of cube, we would mess up. The

same principle applies to Stokes, where right hand rule is the right choice.

(b) In the calculation above we used one value (e.g. Fj,, etc ) for each face. You may wonder

what if we use better approximation such as F,(z*) + F] (z*)Az + ... for each face, and
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do integration on each face. But the higher order corrections eventually give 4th order
correction at the end. They are not compatible to our 3rd order correction, so we don’t
have to keep them. (cf Cal3 exam part 1 solution problem 7 b). The same logic applies

to our "proof” of Stokes.

Now summing all tiny cubes in V,

= = oF, O0F, OF
F-dS = . Y ) AzAyA
Z#@netinycnbe a5 Z( Ox + 8y + 82) roysz

The left hand side becomes

#ﬁ.dﬁ
A

because all internal flux integrals cancel, for internal faces of the rectangles are common faces

of the two adjacent cubes, and the flux integrals are running in opposite directions. Only the

boundary A survives; while the right hand side gives

M(vﬁ)w

showing Gauss is right.

Notes:

(a)

In the "proof” above, to greatly simplify the left hand side, we use a quite peculiar
argument that the internal flux integrals cancel, only boundary survives. Because of this
argument, we can easily extend Gauss to region V not a solid, but has holes in it, and we
just have to do additional flux integral evaluation on the boundary of the internal holes.
The same principle applies to Stokes and Greens, where regions A, not necessary simple

connected, with holes, are too allowed.

However there are examples like M6bius strip and Klein bottle. We can chop the region
into many and many tiny loops/cubes (the main idea of Calculus) and we are able to
define the direction of positive line/flux integral for each little element, but what happens
at the local level may not descent the global structure of the shape. Mdbius strip does not
work in Stokes, because it has no well-defined orientation. We know the functioning of
right hand rule is crucial for the internal line integrals to cancel (see our ”proof” above).
For Klein bottle, we cannot distinguish the internal and external, i.e. the direction of
outward normal positive flux is not well-defined, but we need this for the internal Gauss

flux integrals to cancel.

On the right hand side, the step where we turn Z(%l;x + 8@7]} + 85?2 )JAzAyAz into is very

z
common, but if we pause for a minute to think about it, we see that the step going from

AxAyAz — dV

is too very interesting. Because AzAyAz, (as well as our "proof”) refers to Cartesian



coordinates, but dV' has no explicit reference to any coordinates, namely we can evaluate

///V(v-ﬁ)dv

in any coordinates we like. The same principle applies to Stokes.

For our problem, the integral is

1
4
47‘(‘/ ridr = il
0 5

. (i) vector field on x axis is (0, —z), so it is (h);
(ii) vector field on y axis is (0, 1), so it is (b);

(iii) vector field on y axis is (0,y) and on z axis is (z,0), so it must be one of (e), (d), or (g),

but only (e) is symmetric with respect to x and y, so it is (e);

(iv) Similar to above, for large > 0 value the x component is much bigger than y component.
So it is (d);

(v) This is to change the y component of (iii) from positive to negative, so it is (f).

i) No.

ii) Yes.

iii) Yes.

(
(
(
(iv) Should read C' is a simple closed “counterclockwise” curve... ANS: Yes, by Green.
(v) Yes.

(vi) Yes.

(vii) Yes.

Let us do (ix) before (viii).

(ix) Yes, we can just compute
curl F = curl (z,—y) =0

Therefore by Green’s, taking a closed loop of any size at anywhere, the line integral is zero,

although it is no so clear just by looking.
(viii) Yes. Can we compute div F' now?

We don’t know the exact form of F , but we know it has no y component, and the x component

depends only on y, namely
F = (P(y),0)
so div F = 0.
There is an alternative way to solve this problem. In (ix), it is hard to tell line integral is zero

by looking. However it is clear that here the flux integral is zero of closed surfaces of any sizes



at anywhere. Let me be more clear what I mean by “closed surfaces” in this 2 dimensional

context.

We know Green is the 2-dimensinal version of Stokes, analogously there is a 2-dimensional

version of Gauss. Let’s see what 2-dimensional version of Gauss is.

Consider a generic 2 dimensional vector, and we elevate it to 3 dimensional

F = (P(z,y),Q(z,y),0)

Now apply usual Gauss’ to it, and choose V the volume in the integral to be a pillbox, whose
top and bottom surfaces are parallel to the zy plane. So no flux on these two surfaces, and

the flux on the side of the pillbox are constant in z.

For our problem, if we take such pillbox of any size at anywhere, then the flux integral is

clearly zero. Hence divergence is 0.
(x) No, can be saddle points.

Counterexample: find max or min of

subject to

Lagrange gives critical points z = 4+/3/5, and = = 0. The first two are local max and min,

and the last one is a saddle point.
Let’s see why Lagrange makes sense.

Warning: you are headed six pages of long proof!! You are advised not to read it if you are
pressed for time, since it is not required for Cal 3. However this proof is the most elementary
version I can show you and use only the material up to Cal 3. (That is why it is so long.) If

you wish, skip straight to the conclusion, last paragraph on the last page.

Let us consider one constraint problem
V =V(z,y)

subject to

flz,y) =0

Proof. We can parametrize the curve given by f(x,y) =0 as

10



then our task becomes to find ¢ so that V(t) = V(x(¢),y(t)) is optimal, hence

av

Vo oV ox  aVay

ow ot T ayor D

Moreover taking t derivative of the equation f(z,y) =0, we get

Gy, Ofor  0foy _

it~V = awat Tayor 0

The two equations above look very much like a system of two linear equations

annzxy +ajppre =0 (la) )

a21T1 + az9x2 =0 (1b)

where a1; = %—‘;, alg = %—Z, as] = %, a9y = g—gjj, T = %, and z9 = %. We can easily guess

that one solution to the linear system is
r1 = T2 = 0

Unfortunately this is not what we want, because we have a lot of freedom in choosing parametriza-
tion. More specifically the optimal point is independent of what parametrization is chosen.

Most of time we choose regular parametrization, namely

oxr Oy
—/ o e
7(t>—<8t,8t>

is never 0. So we insist that there must be other solutions to the linear system (1a) & (1b).

We claim that there exists other solutions to the linear system (la) & (1b), iff

(a11,a12) = A(ag1, az2) (2)

for some constant A (A could be 0).
Let’s prove equation (2).

Let us assume at least one of a9, agz is not 0. (Because if both are 0, then the constraint
f(x,y) is just a constant function, which means there is no constraint. So to optimize V is of
course to set

a1 = a2 =0
then equation (2) is automatically satisfied. This slows why Lagrange multiplier is written as
VV = AVf, not A\VV =Vf ie. Vf=0 = VV =0, not the another way around.)

Let’s assume ag; # 0. (If in fact ag; = 0 and age # 0, we can exchange the role of as; <> agg,
x1 > xo, and a1y <> aje, so the following analysis will work exactly the same and equation (2)

will too be the same.)

11



Now replace (1a) by a new equation obtained by multiplying (1b) by a11/ag; then subtract it
to (1a)

a1121 + ajgre =0 0+ aljyze =0 3a

1121 + a1222 . 1222 (3a) 3)

a91T1 + asexe =0 ag1T1 + asexs =0 (3b)

/
where a}, = a12 — arjaze/as;.

From (3a), if ajy # 0, then zg = 0, then by (3b) since ag; # 0, 1 = 0. This shows a), = 0,
hence

aj2 — ajrag/az =0

This shows if a1 = Aag;, then aja = Aage, proving equation (2). O

Let us consider two constraint problem of three variables
V=V(z,y,z)

subject to

f(w,y,z) =0, g(l‘ay7 Z) =0

Proof. We can parametrize the interaction of f(x,y,2) =0, g(z,y,2) =0 as

(this requires that the interaction is a curve, not a surface. This in turn requires that Vf is
not parallel to Vg. This includes the case that neither Vf = 0 nor Vg = 6)

Then our task becomes to find ¢ so that V(t) = V(x(t),y(t), 2(t)) is optimal, hence

awv

Yy oVox oVoy VI _

r ot ayor 0x0t
Moreover taking ¢ derivative of f(x,y,2) =0, g(z,y,2) = 0, we get two more equations

A _0fox 0foy 0foz_ dg _dgdx  0gdy 090

=2 — = = = == = ——=0
dt ozt oyot o0t 0 dt owot oyot  0z0t
We can write above as system of three linear equations
ajnry + ajare + ajzrs =0 (4a)
az171 + agers + azzrz =0 (4b) (4)

a31T1 + azoxo + azzrs =0 (46)

Jdg oz

=9V =9 30, T1 = 5p, etc. Because we choose regular curves, there

where a11 = G, a1 = 3, a31
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must be other solutions to the linear system. We will show this implies

(a11,a12,a13) = A (ag1, a2, as3) + 1 (asi, asz, ass) (5)

for some constants A, p (either or both could be zero).
Let’s see why.

Assume ag; # 0 (because V f # 0 and likewise we can exchange the role of as; <> ago, T1 <> X2,
ajy < ajg, asy <> age if ag; = 0 and age # 0.) Then replace (4a) by a new equation obtained
by multiplying (4b) by a11/a21 then subtract it to (4a), and replace (4c) by a new equation
obtained by multiplying (4b) by as1 /a1 then subtract it to (4c)

ai1r1 + ajoxe +azrs =0 0+ a’12x2 + CL,13£C3 =0 (6@)
a2171 + azTe +azrz =0 — | a2171 + azre +azsrz =0 (6b) (6)
a31x1 + azore + aszxs =0 0+ a§52$2 + ag3x3 =0 (6¢)

where a}y = a12 — a11a22/a21, a4y = aze — ajrage/asg, ete.
Pay attention to (6a) (6¢)

aloa + dlqzs =0 (6a)

Aoy + ahrs =0 (6¢)
Clearly at least one of a4, and ajs is not 0, because Vf }f Vg. We also know x5 = 23 = 0
should not be the only solution to the linear system (6a) & (6¢), because if x9 = z3 = 0 is the
only solution, then by (6b) since az; # 0, 21 = 0, so 1 = x9 = x3 = 0 is the only solution.
That is not good. Therefore the conditions for the linear system (6a) & (6¢) agree exactly to
the hypotheses of the linear system (1la) & (1b), hence

<a’12, a’13> =V <‘1/32,a§3> (7)

for some constant v.

Vectorially if we denote the 1st row Ry = (a11,a12,a13) and similarly denote ffg, ﬁg, equation

(7) says

o a1 - o aa1 -

R1 — i1R2 =V (Rg — 31R2>

a1 a1
Or
= a a = o
R = <“ - 1/31> Ry + vRs
a1 a1

showing equation (5) is true with A = ¢1 — &L and p = v. O

Use the same idea, one can show Lagrange multiplier for any number of constraints as long as

the constraints are linearly independent and the intersection of the constraints is a curve. For

13



example
V=V(z,y,zw)

subject to

flx,y,z,w) =0, g(z,y,z,w) =0, h(z,y,z,w) =0

then Lagrange multiplier is
VV =AVf+uVg+vVh

To show this, first write down a system of 4 linear equations with 4 unknowns. Then reduce
the problem to 3 equations with 3 unknowns, and check the conditions match the hypothesis

of 3 equation with 3 unknowns of the previous problem.

Lastly let us consider problem of three variables
V =V(z,y,z2)

subject to one constraint
f(xa Y, Z) =0

Hence the constraint is not a curve but a surface.

Proof. We parametrize the surface of f(z,y,z) =0 by

S(u,v) = (@(u,v),y(u,v), 2(u,v))
Then the optimal V is reached when

ov ov
R

Take partial v and v of equation f(z,y,z) =0,

af _
ou

of

0, %—0

Hence we obtain 4 linear equations. We can view them as a system of 2 linear equations:

aj1z1 + ajare + a13rs =0 (8a) (8)

a21T1 + as9xo + aszrs =0 (Sb)

ov ov ov P f) p) ox &
where an1 = 37, a2 = G, a3 = 57, an = 9 axn = a%’ asg = %, 2 = B or &,

Io) 0 0 o)
Ty =gt or g, w3 = 5= or FE.
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Recall surface parametrization is regular, i.e. at all time

S oz 9y 92 aS oz 9y 0z
au—<au’au’au>#0’ av—<av’av’av>*°

o0 oy 02\ (o0 0y 0z
ou’ Ou’ Ou Ov’ Ov’ Ov

namely the Jacobian of the surface parametrization

and

oS oS
7X7

ou Ov

is never zero. (This is similar to the definition of regular curve parametrization, i.e. the

Jacobian of the curve parametrization“fj—z is never 0.) O

Therefore we require system of equations (8a) & (8b) to have two sets of non-0 solutions, and

the two sets are not parallel to each other. We will show this implies

(a11, @12, a13) = A (a1, a2, azy) 9)

Let us see why.

Assume ag; # 0. (because if Vf = 0, equation (9) is automatically true. So assume Vf # 0,
and likewise exchange indices if necessary), then replace (8a) by a new equation obtained by

multiplying (8b) by ai1/a2 then subtract it to (8a)

a1121 + a19x2 + ajzx3 =0 0+ a)oxs + aloxs =0 10a
1121 1272 1373 . 1272 + aj3T3 (10a) (10)
a21%1 + G222 + ag3x3 = 0 a1 71 + azrs + agsrs =0 (100)

/ /
where a}, = a12 — ar1aze/as1, ai3 = a13 — arjaz/as;.

We will show both a),, a}3 = 0. Suppose one of them is not 0, say a}y # 0.

Then ’
a
/ _a
ais a22%2 + 42373 ap, T 023
T2 = ———T3, T1 = — = - x3
Q19 a1 a21

Hence if (z1, 22, 23) and (y1,y2,y3) are two sets of non-0 solutions (i.e. 3 #0, y3 #0), then

(z1,m2,23) = v(y1, Y2, Y3)

where v = x3/y3. This violates the requirement that the two solutions are not parallel to each
other. Therefore

! o ! _
ajg =aj3 =0

Hence equation (9) is true.
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Use the same idea, one can show Lagrange multiplier for any number of constraints whose

intersection is a surface. For example
V=V(z,y,zw)

subject to
f(x’y7z7w) = 07 g(x7y727w) = 0
then Lagrange multiplier is

VV = \Vf + uVyg

To show this, first write down a system of 3 linear equations with 4 unknowns. Then reduce
the problem to 2 equations with 3 unknowns, and check the conditions match the hypothesis

of 2 equation with 3 unknowns of the previews problem.

In summary we have shown the formula of Lagrange multiplier
VV =AVf+uVg+vVh+ .. (11)

of any number of linearly independent constraints as long as the intersection of the constraints
is a regular curve, regular surface, or regular whatever. As one can see from the derivation of
Lagrange multiplier, only first derivatives are considered, so Lagrange will give local max/min

as well as saddle points. See counterexample on page 10.
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