
Algebra and Calculus Final

Name: Solutions

Problem 1

a. Sketch y = |x|+ 2. First draw

|x| =

x x ≥ 0

−x x < 0

so |x| is a piecewise function, then draw |x| + 2 by moving the plot |x| up by 2 units. Recall
graph translation: suppose a > 0, changing x to x−ameans to shift the plot to x+ direction by
a units; while changing x→ x+a means to shift the plot to x− direction by a units. Similarly
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changing y to y−a means to shift the plot to y+ direction by a units; while changing y → y+a

means to shift the plot to y− direction by a units. Here we have y−2 = |x| so we move y = |x|
in y+ direction by 2 units.

b. Sketch y = (x− 1)2. First draw y = x2, then move the graph to the left by 1 unit.

c. Sketch y = x−2
x−3 . First write

x−2
x−3 = 1 + 1

x−3 , so draw 1/x then move the graph to the left by 3
units and then up by 1 unit.

d. Sketch y =
√
x. First recognize that the domain of the function is x ≥ 0. Draw y = x2 then

exchange the roles of x and y, so y = x2 becomes x = y2. To do so, we can relabel the original
x axis to y axis and relabel the original y axis to x axis, or more conventionally instead of
relabeling axes, we flip the graph about the 450 line, i.e. y = x line. Now we have the graph
of x = y2, which is identical to

√
x = y if we restrict y to be non negative, hence we should

erase the part of y < 0 portion of x = y2, so we get the desired graph.
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Problem 2

a. This is sinusoidal curve. Remember sin 0 = 0 so it passes through the origin and the period,
T , is defined to the smallest positive number such that sinx = sin(x+ T ), so T = 2π.

b. First draw x3 and remember the differences between x3 and x2: x3 increases faster than x2 so
x3 is steeper than x2. And x3 is odd function while x2 is even.

c. exponential function grows like a “exponential”, i.e. faster than any polynomials. When x < 0,
think ex as

1

e−x

so e−x still grows to infinity but 1/infinity goes to 0, so for x < 0 the curve is bounded by the
x axis.

d. Do the inversion, i.e. flip the graph of ex about the 450 line. (cf problem 1(d) above)
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Problem 3

a. Complete the square
f = −2(x− 3)2 + 11

Graphically f is a concave down parabola with the top point at (3, 11) so max value of f is 11.

Or algebraically since −2(x− 3)2 is always non positive for any value of x. Adding something
non positive always makes things smaller, hence the maximum value is 11.

b. We have
3g + 1 = ln(x+ 3)

exponentiate both sides
e3g+1 = x+ 3

Hence
x = e3g+1 − 3

The function is invertible because the original function is one to one and onto.

c. Let f(t) be the function of balance of the account in t years after initial deposit. So in our
case the base year f(0) = 10000.

If it is compounded annually, we know that the rate of annual growth

f(t+ 1)− f(t)

1
= 0.03f(t)

or equivalently
f(t+ 1) = f(t) + 0.03f(t) = 1.03f(t)

where 0.03f(t) is the interest being calculated and added to the principal in one year.

So by recursion and trace back to the base year, we have

fannual(t) = (1.03)tf(0)
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If it is compounded bi-annually, we know that the bank will calculate and add internet to the
principal every half year, sof(t+ 1

2) = f(t) + 0.03
2 f(t) = (1 + 0.03

2 )f(t)

f(t+ 1) = (1 + 0.03
2 )f(t+ 1

2)

Hence
f(t+ 1) = (1 +

0.03

2
)2f(t)

• Note that if it were non-compounding (called simple interest), then at the half year (with
bi-annual interest rate 0.03/2) interest

0.03

2
f(t)

is paid but not added to the principal, and at the end year another (with bi-annual
interest rate 0.03/2) interest

0.03

2
f(t)

is paid, so after all total annual interest is

0.03

2
f(t) +

0.03

2
f(t) = 0.03f(t)

which is the same amount as if interest is paid annually. Because of this consistency
requirement, bi-annual interest rate is 1/2 of the annual interest rate. The same logic
applies to quarter rate, monthly rate, etc.

• Note that one can also see that the effective annual growth rate for compounded bi-
annually is

f(t+ 1)− f(t)

1
= [(1 +

0.03

2
)2 − 1]f(t) = [0.03 + (

0.03

2
)2]f(t)

Comparing this to the annual growth rate of compounded annually, there is an addition
interest (0.03

2 )2f(t) , due to the additional interest added to the principal at the half year.

Similarly by recursion, we get

fbi−annual(t) = [(1 +
0.03

2
)2]tf(0)
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If it is compounded monthly, i.e. 12 times a year

f(t+ 1
12) = f(t) + 0.03

12 f(t) = (1 + 0.03
12 )f(t)

f(t+ 2
12) = (1 + 0.03

12 )f(t+ 1
12)

...

f(t+ 1) = (1 + 0.03
12 )f(t+ 11

12)

That is
f(t+ 1) = (1 +

0.03

12
)12f(t)

so
fmonthly(t) = (1 +

0.03

12
)12tf(0)

Therefore it is easy to see the pattern that if the bank calculates and adds interest to the
balance N times a year (N is any arbitrary number), we claim that

f(t+ 1) = (1 +
0.03

N
)Nf(t)

Or
fcomponudedN times per yr(t) = (1 +

0.03

N
)Ntf(0)

Now suppose the bank chops the time interval to infinitely small ∆t and adds interest every
∆t instance, i.e. compounded continuously. Or equivalently the bank pays interest infinitely
many times in a year, so N is infinitely large in the equation above, we claim that

(1 +
0.03

N
)N ≈ e0.03

Let us show why this is true.

Let’s prove for the general case
(1 +

x

N
)N ≈ ex

for N infinitely large and x is any number, not necessary 0.03.

Recall the definition of ex is that e0 = 1 and the instantaneous rate of ex is ex, namely

ex+∆x − ex

∆x
= ex

for ∆x infinitely small. Now let’s show (1 + x
N )N has these two properties,

(1 +
0

N
)N = 1N = 1
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and we need to compute the rate

(1 + x+∆x
N )N − (1 + x

N )N

∆x

Using aN − bN = (a− b)[aN−1 + aN−2b+ ...+ abN−2 + bN−1︸ ︷︷ ︸
N terms

], the rate is

1

∆x
(
∆x

N
)[(1 +

x+ ∆x

N
)N−1 + (1 +

x+ ∆x

N
)N−2(1 +

x

N
)...+ (1 +

x

N
)N−1]

Since ∆x � N (N is infinitely large), we pretend that ∆x/N ≈ 0. The N terms in the sum
are the same, so the rate becomes

1

∆x
(
∆x

N
)N(1 +

x

N
)N−1 = (1 +

x

N
)N−1

Now we consider
(1 + x

N )N

(1 + x
N )N−1

= 1 +
x

N

Since x� N , we pretend that x/N ≈ 0, hence

(1 + x
N )N

(1 + x
N )N−1

≈ 1

So
(1 +

x

N
)N−1 ≈ (1 +

x

N
)N

Putting everything together, the rate of (1 + x
N )N is

(1 + x+∆x
N )N − (1 + x

N )N

∆x
≈ (1 +

x

N
)N

hence
ex ≈ (1 +

x

N
)N

Therefore
fcompounded cont(t) = e0.03tf(0)

For this problem we want
e0.03t = 2

or
t =

ln 2

0.03

d.
f(3)− f(1)

3− 1
=

1

2
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Problem 4

a. From lnx and ln(x+ 3) terms, we need x > 0 and x+ 3 > 0, so x > 0.

b.

f = ln
2x2

x+ 3

with domain x > 0.

We set
2x2

x+ 3
= 1 =⇒ (2x− 3)(x+ 1) = 0

So x = 3/2.
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Problem 5

Simplify to
2 sin2 x− sinx− 1 = (sinx− 1)(2 sinx+ 1) = 0

So
sinx = 1 =⇒ x = π/2, π/2 + 2π = 5π/2

The other term is hard. You should draw sinx and see that there are 4 roots. First
solve it in the usual branch [0, π].

sinx = −1/2 =⇒ sin(−x) = 1/2 =⇒ −x = π/6, and − x = π − π/6 = 5π/6

so
x = −π/6 + 2π = 11π/6

and
x = 11π/6 + 2π = 23π/6

and the other two
x = −5π/6 + 2π = 7π/6

and
x = 7π/6 + 2π = 19π/6

Hence total 6 roots
π/2, 5π/2, 7π/6, 11π/6, 19π/6, 23π/6
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Problem 6

a. Set y = 0, so 2− x = 0 or x = 2

b. Set x = 0, so y = e2 − 1

c. Shift ex to the left by 2 units, we get ex+2, then flip the graph about y axis, get e−x+2, then
move the graph down by 1 unit, get e−x+2 − 1. [note: one can also do the flipping first , i.e.
f(x) → f(−x), so ex become e−x, then there is the cache. Then shift the graph to the right,
not to the left, by 2 units, because reflection and translation don’t commute in general. We
get e−(x−2) = e2−x.]

d. [cf problem 2(c) above] f → −1

e. f →∞

f. Use (c)

g. flip (f) about the y axis
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Problem 7
f = 2 sin(2x)− 1

a. amplitude = 2, which is half of the distance of oscillation. Period = π, because

f(x+ π) = 2 sin(2x+ 2π)− 1 = 2 sin(2x)− 1 = f(x)

b. We want sin(2x) = 1/2 =⇒ 2x = π/6. Using the period of the function, we can pick two
values to be

π/12, π/12 + π = 13π/12

c. f is minimum, when sin(2x) is minimum, hence

sin 2x = −1 =⇒ 2x = −π/2

so we can pick two values to be

−π/4, −π/4 + π = 3π/4

d. Rang
[−2− 1, 2− 1] = [−3, 1]

e. Draw f = 2 sin 2x− 1
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Problem 8

a. First find out that x1 = −1 is a root. So the other two roots by the long division

(x− x2)(x− x3) =
x3 − 7x− 6

x+ 1
= x2 − x− 6

so x2 = −2 and x3 = 3.

b. Use
p(x) = (x+ 2)(x+ 1)(x− 3)

all three are simple roots, so the function goes positive/negative alternatively between the
regions separated by the roots, e.g for x > 3, all three terms are positive, so the product
p(x) > 0; for −1 < x < 3, two terms are positive and one term is negative, so p(x) < 0.

c. domain D = R/{−2,−1, 3}

d. f blows up near −2, −1, and 3 so they are the vertical asymptotes. f → 0 when x→ ±∞, so
the horizontal asymptote is x axis.

e. f switches signs between regions (−∞,−2), (−2,−1), (−1, 2), (2, 3), and (3,∞). And com-
bining the asymptotic behaviors near the poles,
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Problem 9

a. sin 200+24+3
4 π = sin 3

4π = sin π
4 = 1/2, csc(227π/4) = 2

b. Let tanx = 5, now draw a right triangle with angle x, the opposite side has length 5, and the
adjacent side has length 1, then sinx = 5/

√
52 + 1 = 5/

√
26

c. Draw a unit circle, and find a point (x, y) in the quadrant on the circle such that

y

x
= 3

since x2 + y2 = 1, we can solve for x. We get

x = −1/
√
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So
sec t =

1

cos t
=

1

x
= −
√
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d. Let tanx = a. And that x ∈ (−π/2, π/2) is required for tanx to be invertible, i.e. we have

x = arctan a

For x ∈ (0, π/2), i.e. a > 0, we already know the answer from (b)

sinx =
a√

a2 + 1

And when a becomes −a, x becomes −x, so sinx becomes − sinx, hence the above expression
works for a < 0 as well.
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