Stability for chaotic sigma delta quantization

Lauren Bandklayder

October 15, 2010
Analog-to-digital (A/D) conversion

Goal: Represent audio signals by a sequence of bits, or by a sequence of ± 1.

- Audio signals can be modeled as a sequence of their sample values $f_n = f(t_n) \in [-1, 1]$ at time t_n.

![Figure: the phrase "hi, how are you", at two time scales](image-url)
Quantization schemes

- **Pulse Code Modulation (PCM):** Replace each sample f_n by $(q_j)_{j=1}^M$ the first M bits in its binary expansion,
 \[f_n \approx \sum_{j=1}^{M} q_j 2^{-j} \]

- **Sigma delta ($\Sigma\Delta$) quantization:** Sample audio at higher rate, then replace each sample f_n by a single value $q_n \in \{-1, 1\}$ or $q_n \in \{-1, 0, 1\}$ such that f_n is approximated by local averages of the q_n,
 \[f_n \approx \sum_{j=n-M}^{j=n+M} c_{j-n} q_j \]
The standard second-order $\Sigma\Delta$ scheme can be reformulated as a dynamical system; set $u_0 = v_0 = 0$ and iterate for $n \geq 1$:

$$q_n = Q(u_{n-1} + \gamma v_{n-1}),$$
$$u_n = u_{n-1} + f_n - q_n,$$
$$v_n = v_{n-1} + u_n$$

- **One-bit quantization** $q_n \in \{-1, 1\}$, $Q(x) = \text{sign}(x)$
- **Tri-level quantization**: $q_n \in \{-1, 0, 1\}$,

$$Q(x) = \begin{cases}
-1, & x < -0.5, \\
0, & -0.5 \leq x \leq 0.5, \\
1, & x > 0.5
\end{cases}$$
Idle tones in $\Sigma\Delta$ quantization

- **Problem:** Periodicities in the output q_n often occur in $\Sigma\Delta$ schemes, producing audible idle tones.
- One proposed solution: Modify the standard $\Sigma\Delta$ scheme by adding amplification to break up periodicities: fix $\lambda > 1$, and consider

\[
q_n = Q(u_{n-1} + \gamma v_{n-1}), \\
u_n = \lambda u_{n-1} + f_n - q_n \\
v_n = v_{n-1} + u_n,
\]

- This modification is called *chaotic* $\Sigma\Delta$ quantization in practice. So far a proof of stability was missing. By stability, we mean that the iterates (u_n, v_n) do not blow up.
Output of quantization scheme

- Here is a sample of a sequence of points \((u_n, v_n)\) when the input sequence \(f_n\) is constant.

Figure: Output of standard scheme (left) versus chaotic scheme (right).
Proof of stability

- Ozgur Yilmaz proved the standard second-order $\Sigma \Delta$ scheme was to be stable within a specific convex region, as shown below.
- If $(u_n, v_n) \in S_\alpha$ and $|f_n| < \alpha$, then $(u_{n+1}, v_{n+1}) \in S_\alpha$.

Figure: Γ_{B_1} and Γ_{B_2} are the graphs of two quadratic functions, symmetric about the origin.
Proof of stability

- Restricting the input sequence \((f_n) \) to \(|f_n| \leq \alpha < 1 \), then
 \(\delta_n = |f_n - q_n| \) can take values from \(L = 1 - \alpha \) to \(H = 1 + \alpha \),
 where \(|f_n| \leq \alpha < 1 \), we can rewrite the system:

\[
(u_n, v_n) = \begin{cases}
(\lambda u_{n-1} - \delta_n, \lambda u_{n-1} + v_{n-1} - \delta_n); & \text{if } q_n = 1, \\
(\lambda u_{n-1} + \delta_n, \lambda u_{n-1} + v_{n-1} + \delta_n); & \text{if } q_n = -1
\end{cases}
\]

(1)

- To extend this, we suppose \(|f_n| \leq \alpha' < \alpha < 1 \), where
 \(\alpha' = \alpha - \epsilon(\alpha) \), for \(\epsilon \) a small nonnegative value dependent on \(\alpha \).

- If \((u_n, v_n) \in S_\alpha \), and \(|f_n| \leq \alpha' < \alpha \), then \((u_{n+1}, v_{n+1}) \in S_\alpha \).
Bounds on expansion parameter λ

- Previous constraints on C imply that our stability results will only hold for $\lambda \leq 1 + \frac{\epsilon L}{2H}$. However, in practice, values of lambda could hypothetically be much larger than this.

Figure: Lambda as a function of α for fixed ϵ.
Extensions of the chaotic $\Sigma\Delta$ scheme

- **Trilevel Quantizer**: A slight adjustment to the conditions on C, λ, and γ allowed us to extend the proof of stability of the system to the case where q_n can take values of 0, 1, or -1.

- **Finite Memory Quantizer**: We similarly extended the proof to the "leaky" scheme, described by

 $$(u_n, v_n) = (\beta \lambda u_{n-1} + f_n - q_n, \beta v_{n-1} + \beta \lambda u_{n-1} + f_n - q_n)$$

 where $\beta \leq 1$.
Open problem

- There is still no rigorous proof that the second order $\Sigma\Delta$ scheme with expansion parameter $\lambda > 1$ is chaotic.