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Abstract: We propose a formula for calculating the implied
volatility of index options based on the volatility skews of the op-
tions on the underlying stocks and on a given correlation matrix
for the basket. The derivation uses the steepest-descent approx-
imation for the multivariate probability distribution function of
forward prices. A simple financial justification is provided. We
apply the formula to compute the implied volatilities of liquidly-
traded options on exchange-traded funds (ETFs) across different
strikes. Our theoretical results are found to be in very good agree-
ment with contemporaneous quotes on the Chicago Board of Op-
tions Exchange (CBOE) and American Stock Exchange (AMEX).
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1 Local volatility of indices and the method
of steepest descent

Quantitative modeling in finance and option pricing theory have focused, by
and large, on models with few underlying risk-factors. This shortcoming is
apparent when considering the subject of this paper: the pricing of index
options on baskets of 20 to 100 stocks in relation to the values of the options
on the component stocks. Despite the theoretical and practical importance
of the question, few techniques are available in the current literature (for a
review, see [Ro]). Due to the large number of stocks involved in a typical
exchange traded fund (ETF) or index, this problem lies beyond the scope
of PDE techniques and requires sophisticated Monte Carlo simulation. In
this paper, we analyze the valuation of equity index options in relation to
the volatilities of the components using the method of steepest-descent for
diffusion kernels (see [V] [A] [B]). In this approximation, the calculation
of certain conditional expectations — a key step needed to characterize the
local volatility function of the index — is replaced by the evaluation of a
function at the most likely price configuration associated with a given index
level. This procedure is based on mathematically rigorous asymptotics. It
provides, in our opinion, powerful new insight on valuation of index products.
Furthermore, it gives excellent results in terms of matching market quotes
by “reconstructing” the implied volatility of an option on a basket using
information on the underlying stocks and their options.

We consider a basket of n stocks described by their price processes S; =
S;(t),i=1,...,n and an index or ETF on these stocks which consists of w;
shares of the i*" stock. The price of the index is

B = i ’lUiSi,
i=1

with the w;’s constant.

Adopting a standard one-factor model for pricing options on stocks in the
presence of a volatility skew (see [Ru] [D] [DKK]), we assume a risk-neutral
diffusion measure for each component,

where o, (S;,t) is a local volatility function associated with the i stock and
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p; is the drift associated with the cost of carry. We assume that Z; = Z; (t)
are standard Brownian motions which satisfy

where p;; is given. For simplicity, we assume that p;; is constant, since this
is the most likely situation when correlations are estimated using historical
data®.

An important element of our analysis is the stochastic volatility function
associated with the index viz., o = o (S,t), S = (51, ..., Sn) , which is given
by

0'?3 = é Z pijai(rjwiijiSj.
ij=1
This expression depends on the individual stock prices and not just on the
index level. A local volatility function for the index (i.e. which depends only
on the spot price of the index) can be obtained by calculating the expectation
of 0% conditional on the value of the index. More precisely, we claim that
the function o j0c = 0p10c (B, 1), given by

UQB,ZOC = E{O—QB’B(t):B}

1 n
- {ﬁ S pyiosmanyS, (1) 5, (1)

ij=1

is such that the one-dimensional diffusion process

dB
B 0B joc (B, ) dW + ppdt

(with pj representing the cost-of-carry of the ETF), returns the same prices
for European-style index options as the m-dimensional model based on the
dynamics for the entire basket.

To see this, we note that op (S, t) can be viewed as a stochastic volatility
process that drives the index price B (t). The above formula then expresses

3The results presented here apply to more general correlation/volatility structures,
including, for instance the case of multivariate stochastic volatility/stochastic correlation
models.



a well-known relation between the stochastic volatility of a process and its
local volatility (see [DKK] [BN] [G] [L]).

To provide a tractable expression for o jo., we rewrite the latter equation
formally as

o _Bloho(B() D) "
e E{6(B(t) - B)}
where ¢ () is the Dirac delta function, and use asymptotic analysis to de-
termine an approximate value for 07, in the limit 7t < 1.*

The main mathematical tool for carrying out this calculation is Varad-
han’s Formula [V] [A] [B]. We introduce the change of variables ' =
W, and introduce the diffusion matrix of the process x = (z?, ..., 2")
,a¥ = 0,0 p;;- Notice that F; = S; (0) e is the forward price of i the stock
for delivery at time ¢.We consider the inverse of a/, which we denote by g,
and the associated Riemmanian metric

In

ds? = Z gijdz'da’. (2)

ij=1
Let 7 (xg, to; X, t) denote the probability density function associated with the
process (z!,...,2"), i.e.

T (X0, to; X, t) de = P{x (t) € B (z;|dz|) |x (t9) = %0}

where B (x;7) is the Euclidean ball with center x and radius r.
Varadhan’s Formula states that

2(0,x _@?d%0.x)
T (070,X,t) ~ 6_% =e 2(5)%t (3)
where
1 n
d2 O,X = inf / i (X (s 70 xli]ds 4
(02 = g g | 259500().0 o

“Here 7 denotes a characteristic volatility level associated to the equity basket. For
example, in the case of DJX (Dow Industrial Average), the index volatility in 2001 ranged
between 20% and 25% approximately. Taking & = 0.20 as the typical level, we find that a
6-month option has (E)2 t ~ 0.02. This regime produces distributions that have very low
variance in dimensionless units.



Here x is the time-derivative of x. The asymptotics in Varadhan’s Formula
are understood in the sense that the ratio of the logarithms of the two terms
tends to 1 as 72t < 1. The expression d? (0,x) can be interpreted as the
distance between the points 0 and x in the metric (2).

According to the method of steepest descent, the probability density func-
tion 7 (0, 0;x,t) is strongly peaked near the points x where d? (0,x) is min-
imal, for @2t < 1. Therefore, we can obtain an approximate expression for
the ratio of expectations in (1) by setting

Thioe ™ ) 4(X") 0% (x7,1), (5)

x*eM

where M is the set of points on the hypersurface

I's = {X :Zn:wiF,-e“’; = B}
i=1

which have the shortest distance to the origin in the metric d.> The numbers

q (x*) are positive weights that satisfy »_ ¢ (x*) = 1. They are proportional
x*eM
to the curvature of the metric at the minimizer. Generically, i.e. barring

symmetries and isolated points, there is a unique minimizer x* with ¢ (x*) =
1.

Formula (5) expresses a relation between the local volatility of the index,
the correlation matrix and the local volatilities of the component stocks. It
admits a simple interpretation. Notice that the surfaces

Os = {x:d(0,x) = 6}

correspond approximately to the level sets of the probability density func-
tion of the multivariate price process. The vector(s) x* which produces the
minimum value of the distance to the “price manifold” I'g correspond there-

fore to the most probable vector(s) S = (S, ...,.S,) such that > w;S; = B.
=1

Thus, the method of steepest-decent equates the local volatility of the index at
a given level to its stochastic volatility evaluated at the most probable price
configuration S conditional on reaching that level.

®We committed a slight abuse of notation in (5), writing o5 (x*, ) instead of o5 (S*,) .



2 Computing the most likely configuration

Let us concentrate on the case where the minimizer x* is unique, since
this is the generic case. Abusing somewhat the notations, for simplicity
we denote by o;(z%) = o;(Fe”,0) and 0510.(T) = 0pc(B(0)e”,0), T =
In (B/ (B(0)ets")) the local volatilities of the underlying assets (resp. the
basket), at time to maturity 0, as a function of log-moneyness.

With these notations (5) reads

Tt = O, Pioi (x7) 0 () ps (x*) py (x7) (6)
ij=1
where
Fe®iw;
pi(x) == (7)
Z erkak:
k=1

represents the percentage of stock i represented in the index when S; = Fje*:.
In order to obtain useful formulas, we need to characterize x*. Notice that
the metric satisfies

Zgij (x,0)3'3! = Z (Pf )Z'j o; () oy ()

1,] 4,

Introducing the change of variables

xl

i_/ du
y_ O'Z'(U)’
0

we obtain from (4) the simple problem of calculus of variations

1 n

Z (p_l)z.j y'y’ds = minimum
0 =1

subject to the nonlinear constraint
n . .
S wke () = B ®)
i=1
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Given the simple structure of this problem, the solution is such that y is
constant. The Fuler-Lagrange first order conditions for a minimum can be
expressed in the form

- 1 i P i\ Oz (y’)
Z(P )ijy] = Aw;Fie () dy'

= )\wiFie‘”i(y)(ri (x’) ,

i=1

where \ is a Lagrange multiplier associated with the price constraint (8). At
this point, it is convenient to recast the Lagrange multiplier A as A\/B since
it then becomes dimensionless. Using this redefinition and multiplying both
sides of the equation by the correlation matrix p, we obtain

3wy Fye” gy, ()

B

= )‘ij pz]UJ ) :

o= A=

Now, since ¢° is constant, it is equal to its average over the interval (0, 1),
so that 3* = y°.
We have just established the following result.

Link between index and stocks local volatilities

e In the limit 52t < 1 the local volatility of the index is given by

O-QB,loc Z nggz ) Di ( )pj (X*) ) (9)

1,j=1

where p; is defined in (7) and x* is the solution of the nonlinear system



% du - . . ,
/ . = )\Zpijpj(x Joj(z3), Yi=1,...,n
(10)

Z pi(x)e” i = 1.

L i=1

3 From local volatilities to Black-Scholes im-
plied volatilities

We translate formulas (9)-(10) into a relation between the Black-Scholes im-
plied volatilities of the index option and the implied volatilities of the op-
tions on individual stocks. For this, we take advantage of a recent result
by Berestycki, Busca and Florent [BBF1] [BBF2| which states that the im-
plied volatility is the “harmonic mean” of the local volatility function in the
steepest-descent approximation. More precisely we have:

= —1
1 [*  du
L) == S — 11
75(7) (T/o UB,Zoc(U)> -
and, conversely,

oi(z') = (diy (%),wi)l’ Vi=1,...,n. (12)

Equations (9), (10) together with (11) and (12) provide a direct link
between the Black-Scholes implied volatilities of the index and the underlying
assets.

To derive tractable formulas, we consider a linear approximation to the
price constraint (8), namely

Z pi(0) (1 + Ao (0) Z pi;p;(0)a;(0) — x) ~1, (13)



n
which is exact to first order in |z;|. Noting that T ~ Z pk(0)zy, this yields
i=1

x

03(0)2

(14)

and, from (10)
x

(0)? sz’jpj(o)ai(o)aj(o)' (15)

*
~Y
T, =

0B

foralli=1,...,n.

To simplify the relations (9)-(10)-(11)-(12), we use the fact that the
harmonic-mean relation between implied and local volatilities (11) and (12)
give rise to the approximations

T p1oc (T) + 013 (0)
2 )

(16)

oh (T) ~
and
o (2') = 20] (2') — 0l (0), Vi=1,...,n, (17)

which, again, are valid to first-order for |z;| << 1. Relation (16) is referred
sometimes as the “1/2-slope rule”, see [G]. Thus (9) reduces to

Tnioe = | D pipi (x*) p; (x*) (20] (27) — o (0)) (20} (2}) — 0} (0)), (18)

1,5=1

which, together with (16) and (15) provides a convenient approximate link
between implied volatilities.®

4 The formula in terms of relation between
Black-Scholes Deltas

In this section, we express the correspondence between index volatilities and
component volatilities in a more transparent way. To do this, we express

bSince these calculations are exact to first order in |z;| for small values of the parameter,
it follows that the above relation gives an exact formula for the “slope” of the index
volatility function at |z = 0.



the most probable configuration for stock prices at time ¢ in terms of their
log-moneyness normalized by volatility.

Notice that (with all functions evaluated at s = 1), the components of
the vector y*satisfy

i zt B 1 15
V7T olx) T el(she) F

Recall also that the Black-Scholes formula for the Delta of a call option with
strike K is A = N (dy), with N (z) = (2m) 2 [*__exp(—y?/2)dy where

1 F
dl = a—\/%ln? —i—O(O'\/E)

We conclude that the Delta of a call option on the i** underlying stock with
strike S* = Fje® is given, to leading order as ov/t — 0, by

which provides an alternative interpretation for the vector y*. A similar ap-
proximation holds for the Delta of a call option with strike B. Using equation
(14) we find that

1 B Aol
Ag~N|———=In— | =N|-"2 ).
? (@ﬁ“&) ( ﬁf)

Applying the inverse-normal distribution function to both sides and using the
first-order optimality conditions (15) for the most probable configuration, we
conclude that

1

n ol
N_1 (Az) ~ N_l (AB) X me (O._IJ> Dj
i=1 B

or, finally,
A, ~N|Nt (AB)Xszj U—IJ Pil s (19)
i=1 B

which gives a simple relation between the Delta of an index call option and
the deltas of the call options on the components that are used in the volatility
reconstruction formula.
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To shed light on equations (16) - (18) using equation (19), we can assume
n 1

that the expression ) p;; (Z—}B) p; in (19) is evaluated using at-the-money
j=1

implied volatilities. Equation (19) then gives, for a given value of Ap, the
corresponding vector (Aq, ..., A,) of call-option deltas corresponding to dif-
ferent strikes (S7, ..., S)) used in connection with the volatility skews of the
components. In fact, the implied volatilities (o7 (S7,t),...,0% (S:,¢)) can
then be substituted directly into equations (16) - (18) to generate a curve
of implied volatilities o, (B,t) for index options. This represents a useful
shortcut for reconstructing the implied volatility skew of an ETF option,
without having to solve problem (10).

Two limiting cases seem noteworthy. Consider first the case of perfectly

correlated stocks. In this case, from (18), we have o, ~ >~ p;of, so our
=1

results imply that the most probable point corresponds to strikes that all
have approximately the same delta as the index option. This equal-delta
approzimation for pricing index options in terms of the component volatility
skews is apparently well-known to professionals’ . Our analysis suggests that
an equal-delta approximation is indeed appropriate for ETFs which exhibit
high correlation among the components, but also indicates that it may not
be optimal for low-correlation indices.

Consider next the (more unlikely) case when all stocks are uncorrelated.
Equation (19) shows that the most probable price configuration corresponds
to a set of deltas such that

A;

[2
=2
VR
=
>
=
X
7 N
TR
N——
S
N———

For example, assume that the index option is an out-of-the-money call with

ol
Ap < 0.5. (In this case, N™!'(Ap) < 0). Since the fraction Pi%;

7 (o)*

"From a private communication with a former head of AMEX specialist firm.
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is less than unity, the deltas of the individual options associated with the
steepest-descent approximation will be higher than Apg, i.e. the relevant
strikes are closer to the money.

Finally, consider the case of an uncorrelated basket with a single, ex-
ceptionally volatile stock of > of i # 1. In this case, the most probable
configuration will have z; = 0,7 > 2, corresponding to 50-delta implied
volatilities ¢ # 1 for the low-volatilitiy stocks and a delta (or strike) for the
high-volatility stock which coincides roughly with that of the index.

5 Experimental results

We compared the results of the method of steepest descent with contempo-
raneous market quotes taken from two indices traded on U.S. markets on
March 20, 2002.

We considered options on the Dow Jones Industrial Average (CBOE, sym-
bol:DJX) as well as options on the Merrill Lynch Biotech HOLDR (AMEX,
symbol:BBH). Two short-term expirations were considered: April (front
month) and May. The experiment used historical estimates for correlations
between the index components and implied volatilities for call options down-
loaded simultaneously with the implied volatilities for the index. We used
equation (19) to derive the deltas associated with different strikes and formu-
las (16) and (18) to compute the theoretical implied volatilities of the index
call options. We used mid-market implied volatilities for the components of
the index. The results were then compared with the actual market quotes
on index options available at the same time. The results presented here are
representative of other indices that we analyzed as well.
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Figure 1: DJX April 2002 Index Implied Volatilities: Model vs. Market.
Market quotes are expressed in terms of implied volatilities (bid, offered) and
compared with the predictions of the steepest-descent method using (7a)-(7b)
and the approximation (8) for calculating the most probable configuration.
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Figure 2: DJX May 2002 Implied Volatilities: Model vs. Market
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Figure 3: BBH April Index Implied Volatilities: Model vs. Market
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Figure 4: BBH May Index Volatilities: Model vs. Market.
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Strike Bid Offered Midmarket SD

98 15.84 24.20 20.76 18.57
99 14.06  21.90 18.66 18.14
100 16.53 22.20 19.57 17.73
101 15.85 20.82 18.46 17.59
102 17.05 20.23 18.67 17.02
103 15.36  19.22 17.32 16.66
104 16.92 18.68 17.80 16.13
105 16.37 18.05 17.21 15.80
106 15.60 17.26 16.43 15.76
107 14.97 17.10 16.03 15.57
108 15.34 17.16 16.26 15.12
109 14.50 16.57 15.55 14.89
110 15.05 16.83 15.96 14.74
112 14.07 16.89 15.58 14.45

DJX April 2002 Implied Volatility (Spot DJX~105)

Strike Bid Offered Midmarket SD

94 15.81 23.76 20.64 19.65
95 1724 23.43 20.75 19.15
96 17.67 22.90 20.53 18.42
98 17.28 21.38 19.44 18.19
99 17.69 21.27 19.54 17.73
100 16.81 20.12 18.51 17.48
102 16.74 19.51 18.14 17.07
104 16.67 18.54 17.61 16.20
106 15.89 17.38 16.63 15.96
108 15.51 16.75 16.13 15.51
110 15.26 16.66 15.97 15.18
112 14.05 15.86 14.98 14.73
116 14.41 16.91 15.76 14.53

DJX May 2002 Implied Volatility
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Strike Bid Offered Midmarket SD

105 34.95 45.75 41.23 36.65
110 34.60 39.73 37.31 35.06
115 32.45 35.87 34.20 32.44
120 30.00 32.50 31.26 30.44
125 29.18 30.59 29.89 29.49
130 27.14 28.24 27.69 27.00
135 25.86 26.86 26.37 26.78
140 25.70  26.56 26.14 26.67

BBH April 2002 Implied Volatility (Spot BBH~125)

Strike Bid Offered Midmarket SD

100 37.56  42.50 40.19 35.79
105 35.31 40.01 37.77 35.18
110 34.25 37.67 36.00 34.01
115 32.90 3491 33.91 31.91
120 31.37 33.03 32.20 31.14
125 29.64 30.65 30.15 30.67
130 28.76  29.26 29.01 28.56
135 27.27 28.14 27.71 28.12
140 26.26 27.39 26.83 27.60
145 25.44 27.10 26.30 27.30
150 25.26 27.04 26.19 27.27

BBH May 2002 Implied Volatility

6 Conclusions

We derived a simple formula, based on the method of steepest-descent, that
links the local volatility function of an index with the local volatility functions
for the index components and a given correlation matrix. The intuition
behind the steepest descent approximation is that, if the dimensionless time
scale (7)°t is sufficiently small, the local volatility of the index should be
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determined from the most likely configuration of stock prices conditional on
arriving at a given index level.

In a second step, we propose a second approximation which operates at
the level of the implied volatilities, i.e. of option prices. This approximation
uses an estimate for the most likely configuration arising from the Euler-
Lagrange equations together with an asymptotic relation between local and
implied volatilities derived by Berestycki-Busca-Florent in [BBF1]| [BBF2]
(also in the limit 7%t < 1).

Finally, we characterized the most likely price configuration to a vector
of Black-Scholes deltas which determine which points on the volatility skews
of the component stocks contribute the most to the index implied volatility
(in this approximation). The resulting formula is useful because it can be
tested directly on market data.

The predictions of the formula, which is based on historical correlations
and the volatility skews of the components, are in very good agreement with
contemporaneous quotes for index options.

We note, however, that we have not undertaken at this point an extensive
statistical study in this direction, leaving it for a future publication. Despite
observing good agreement with the data, discrepancies from market quotes
may arise due to effects not contemplated in the model. First, we expect
that the short-dimensionless-time asymptotics will break down, or at least
be less accurate, for longer expirations. Discrepancies may also arise from an
oversimplification of the risk-neutral probability distribution governing stock
prices and from our simplistic treatment of correlations.

In this last regard, we believe that the steepest-descent model could be
useful to analyze correlation “risk-premia”’. By this we mean that observed
differences between the shape of the actual index volatility and the one pre-
dicted by the steepest-descent approximation (using, say, historical correla-
tions) can be attributed to expectations about future correlations which are
dependent on the index level — i.e to a “correlation skew” which might thus
be observable through index option prices.
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