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We study in this paper the semi-classical expansion of the Schrédinger equation,
using a probabilistic approach based on the Wiener measure. Using almost-analytic
extensions, we exhibit a probabilistic ansatz for the wave function. We show that
this ansatz approximates very well the wave function in the semi-classical regime,
and gives the semi-classical expansion under mild hypothesis on the potential at
infinity, and no analyticity conditions. In this paper, the study takes place before
the caustics. © 1996 Academic Press, Inc.

1. INTRODUCTION

We give in this paper a new probabilistic approach to the semi-classical
approximation of the Schrodinger equation, ie. the behavior when the
Planck’s constant / tends to zero, of the solution &(t, x) of

oD h?
h—+—AD — VP =0
i 8t+2 V

@(0, x) = f(x) /M

where f, s, V' are smooth functions.
This is indeed an old question, and with no claim of completeness, we
can quote the following references in the physics literature, starting from
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Van Vleck (°28) [23], Feynman (’45) [10], Voros [24], and two recent
surveys in the books of Schulman [20] and Giitzwiller [13].

In the mathematical literature, one can distinguish two different
approaches. The first one, for which a good source could be the books of
Guillemin & Sternberg [ 127, and of Robert [ 19], is purely analytical. This
approach is very complete and efficient, but very far from the physical
picture given by the path integral formalism. The second one tries to stay
closer to this physical intuition and is probabilistic in nature. One can
distinguish there two different lines of attack: the first one is to build
rigorously a Feynman integration, and has been pursued by Albeverio &
Hoegh-Krohn [3], Elworthy & Truman [9], Kallianpur, Kannan &
Karandikar [15], and more recently by Albeverio & Brzezniak [2]. The
intrinsic limitation of the scope of these results seems to be on the class of
potentials ¥ that can be handled, i.e. V" should be a quadratic form, plus
the Fourier transform of a signed measure. This very global hypothesis is
necessary for the rigorous Feynmann integral formalism developed by
Albeverio & Hoegh-Krohn.

The second line is to extend analytically the Feynman—Kac formula for
solutions of the heat equation. The general opinion about this very appeal-
ing strategy is resumed by Berezin & Shubin [7] when they say that “it
runs into practically insurmontable difficulties”. We want here to show that
this strategy based on Wiener measure, can indeed be implemented for
general smooth potentials. It must be noticed that if one is ready to assume
very strong analyticity hypothesis on the potentials, this strategy has been
successfully used by Doss [ 8], and by Azencott & Doss [5]. Our trick to
avoid these analyticity assumptions is to use the almost-analytic machinery
introduced by Melin & Sjostrand [ 18], to complexify the Feynman—-Kac
formula. This almost-analytic extension of the Feynman-Kac formula
does not give an exact probabilistic representation of the wave function,
but it enables us to give a probabilistic ansatz which, although it does not
solve the Schrodinger equation, gives a very good approximation of its
solution; and to which the available stationary phase results on Wiener
space proved in [6], can be applied to get semi-classical expansions in any
Sobolev norm, or uniform norm.

The error between the ansatz and the true solution is of order O(4*) in
L?’-norm with no assumption on V, except smoothness and essential self-
adjointness of the operator —#2/2 A+ V. To get estimates in better norms
is a purely analytical problem. We propose some results in H'-norm, and
uniform norm, which are certainly not optimal. But it should be noticed
that our ansatz gives the semi-classical approximation in a given norm as
soon as the problem is “semi-classically localizable” in this norm, which is
a necessary condition for the expansion to be valid (see the discussion of
Section 4.4).
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Our discussion is for this paper, limited to the short time problem, i.e.
before caustics. We expect to extend this approach after caustics in a
forecoming paper.

2. A PROBABILISTIC ANSATZ USING ALMOST-ANALYTIC EXTENSIONS

The following assumptions will be made throughout the paper.

H1. f, V,s are € from R’ to R.
H2. fhas compact support K in R?.
H3. The classical motion defined by V is complete.
Assumption H3 is not essential. It simply avoids to consider explosion
times for the classical trajectories. But it is easy to see that all our results

will be true if we remove H3, and if we limit the study before these explo-
sion times.

2.1. Description of the Probabilistic Ansatz

For each >0, and each xe R let us consider the classical mechanics
system

T+ VV(y,) =0,  Vs<t
Yo=X (¢7)
Vot VS()),) =0

where VIV and Vs stand for the gradient of the functions " and s, and y is
a continuous path from [0, ¢] to R?

PROPOSITION 2.1. Let V be a smooth potential from RY to R, such that
the classical motion associated to V is complete. Let K be a compact set
in R K,={xeR (¢7) has a solution ending at time t in K} is a compact
set of R?. Moreover, there exists Tx> 0 such that for all t < Ty, for all x in
some open neighborhood O, of K,, (¢7) has a unique solution y;(s). This
solution is € in x, €' in t, and ends in K (i.e. y}(t) € K), whenever xe K,.

Though classical, we give the proof of Proposition 2.1 in Appendix 1.
Let £, V, § be some almost-analytic continuations of f, V, s. Thus f, V, §
are ¥~ functions from C“ to C satisfying

o Vlga=V, flgi=f, §lgi=s;

e VK compact of RY, VkeN, Va, fe N¢ such that |B|=37_,8;>1,
3C >0, such that Vxe K, Vye R,
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|D(zx,/}‘)]7(x+iy)| <Clyl*
|D(<x,/;)l7(x+iJ’)| <Clyl*
|D(<x“/f)§(x+iy)| <C |y|/C

where D, g =010z 0230020+ 024, z =X, + iy,

The reader is referred to [22] for the definition, existence and elemen-
tary properties of almost-analytic continuations. We just want to underline
that almost-analytic continuations are not unique. Two almost-analytic
continuations differ one from the other by a smooth function, which is flat
on the real axis (i.e. in x), but whose behavior in y near oo is free. For this
reason, it can be assumed that £, §, ¥ are null for |y|>r, for some r>0.
Moreover, since f has compact support, f can be taken with compact sup-
port in C%.

From now on, the same notations will be used for f,s, V' and their
almost-analytic continuations. Moreover, ¢ will denote %. Using these
almost-analytic extensions, we guess that the function ¥(z, x) defined
(whenever it is possible) by

w0 =E| i+ V) ew - )
where H is defined by
H(t, x, eB) = —is(y}(1) + /ieB,) +i j V(y3(s) + /ieB,) ds
0
i ! 53X _i ! 5X 2
+ﬁj0y,<s)5<883) 5| ) ds (3)

should be a good approximation of the solution to Schrodinger equation.
Before explaining to what extent this assertion is true, we would like to tell
where this ansatz comes from.

Under analyticity assumptions for s, f, ¥, and additional assumptions for
which we refer the reader to [8], H. Doss has proved in [8] that

E (fei.r/ez)(x + \/isB,) exp (821 JI V(x+ \ﬁsB_v) dsﬂ (4)

o

is a solution of the Schrodinger equation.

Extending analytically the Cameron—Martin formula, R. Azencott &
H. Doss ([5]) have shown that (4) is equal to (2), which is the natural
expression to obtain semi-classical approximations.
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In our context, where the analyticity assumptions are removed, the
analytical extension of Cameron—Martin formula is no longer valid, so that
(2) and (4) are no longer equal. Our goal being here to obtain semi-classi-
cal expansions, we have chosen to work directly on (2).

2.2. Equation Satisfied by the Probabilistic Ansatz

ProrosiTioN 2.2. 1. 3T">0 such that ¥ can be defined on
[0, T'[ x RY and is €= on this space (that is €' in t, and €* in x). For
all t<T", Y(t,-) has compact support in K.

2. W satisfies the equation

v & 14 :
Vi< T, iE—F%A&U—?Y’=E[Z(t,x,3,63)exp’“/”')H”*x""B)] (5)

where
(a) H is defined by (3), and

(b) Z(t,x,e,eB)= ) &YZ,(t,x,¢B). (6)

j=—10,1

Z(t, -, w) has compact support in K', and satisfies Vk e N, 3C > 0, such that

J

Ve<T’,

sup sup |Z;(s,x, )| <C loff,  as (7)

s<t xe R4

where |||, denotes the uniform norm in €([0, t], RY).

3. When the functions f, s, V, are analytic on a strip around the real
axis, then 3ry>0 such that Z,(t, x, ®) 1,,<,,=0 ae.

<ro

Remark 2.3. Using property (7), one can therefore expect E(Ze /%)

to be O(¢&") for all k, ie. the remainder term to be “small”. This is actually
the case, and will be proved in Section 4.

Proof of Proposition 2.2.

Proof of Proposition 2.2.1.  We first prove that y is well defined, at least
for small times. Let K be the (compact) support of fin C?~ R*". Then K
is a subset of {x+iy, xe K, |y|<r}. Let us define

K'={xeR% 3IxeK, |x—F|<r}

K" is a compact set in R?, and we associate to K" the time 7", and the sets
K’ and O, in the same way as in Proposition 2.1, the time Tx and the
sets K, and O, were associated to K. Whenever yX(¢)¢ K’, ¥(t, x)=0.

t
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Therefore, the support of P(z, -) is included in K. Moreover, for all 1 <T"
and all xe K7,

SO0 +/ieB,) exp( (1) +/ieB,) jo' V(yf<s>+ﬁeBs>ds>

1 t .
|f|kexp< : oms|,<> exp <8 sup [ V<x+ﬁy>|>
Iyl<y2r

\EU\<1K

where | f|lg=sup..z | /(2)l.
But, when ¢t < + o0, (J,<, K’ is compact. Therefore,

fly —i—\/eB exp< +\/83 + j )+\ﬁsBs)ds>

is bounded, and expression (2) makes sense for all t< 77, and all xeR?
(when x ¢ K’, (2) is taken equal to 0).

Let us now study the differentiability of ¥. Let X, denote the
Hamiltonian vector field associated to V,

X, RYxRY—> RYx R?
(¢, p)—(p, —VV(q))

Let ¢,q, p) denote the Hamiltonian flow, that is the flow of diffeo-
morphisms of R*? associated to X, and 7 denote the first projection 7:

RYx RY - R“.
(¢, p)—q.

Let us define ¢ (¢, p) =n-¢,(q, p), and

G(t,q,p) =E{F(¢(q,p) +./icB) exp <— fol ¢4, p) 0B,

1
Ji
| I
szl oda. P e )| )
where for all continuous path o from [0, ] to C?,

Fo)=fl) exp (Lsto) 5[ Vo) s ). ©)

Then ¥(¢, x)=G(¢t, x, y;(0)). The differentiability of G in ¢ is an easy con-
sequence of It6 formula. The differentiability of G in (g, p) follows from the
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differentiability of ¢ and its derivatives in (g, p), and from the smoothness
of the coefficients £, s, V. Proposition 2.1 enables us to conclude that before
the caustics, ¥ is €' «.

Proof of Proposition 22.2. Before computing i(0¥/0t) + (¢%/2) AW —
(V/e*) ¥, we introduce some notations.

o VzeCY |z|2=|Re z|*— |Im z|> + 2i(Re z, Im z),
o W,;={continuous paths from [0, 7] to R’},
o W,(C)={continuous paths from [0, 7] to C}.

#, and #,(C) are endowed with the uniform convergence topology,
denoted by |- ,.

Denote for every function F: #,(C)— R Fréchet differentiable (with
derivative dF'), for all we #,(C), and all he ¥;,

D,F(w)h=dF(w)-h, D, F(w) h=dF(w) - (ih)
DF=%(D,F—iD,F), DF=5(D,F+iD;F).

Finally, let ® be a bounded domain in R”, and (g,(0), s<t) a path in
#,(C), depending smoothly on 8 € ®. We define for all ke N and all p>1,
the space

75 (0)= {F :W(C)— R, k-times Frechet differentiable, such that

S sup [1dDF(g(0) +/ieB) s, < +oo}

I<k 0@
where |-| s denotes the Hilbert—Schmidt norm.
We have then the following lemma:
LeMMA 2.4. Let (g(0),s<t) a path in #,(C), depending smoothly on

O0e O, and 2-times continuously differentiable in s. Assume that F is in
9% .(0) for some k =2, and some p>1. Let us define

1 1
G(1,0) =E[F<g(0> +/ieB) exp <—ﬁg [e@on—=[ e ds)} .

Then G is (k —1)-differentiable in O, and Vje {1, ..n}, Y0€ O,

0 ) b dg" 0dg. dg' Og
G(ze) KDrF 26 20 2" 080 g+go>>

a0, 20, 20, T (1D DE- (ae ~ a0, 80, 0,

i

1 1 .
xexp( ﬁgjgxéB ) |g,‘,|§ds>} (1)
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where
1. the derivatives of F are evaluated at g(0) + \ﬁsB;
2. g and its derivatives are evaluated at 0,
3. 0gy/00; (I=r, i) denotes the constant path in R?: s 0g{/00,.

The reader is referred to Appendix 2 for the proof of Lemma 2.4. From
Lemma 2.4, we get

LEMMA 2.5.
oY & Vv 0G &2 Vv
| — +—AVY ——=V=i—+—4 G——G+E| Z —— 12
ST &’ "o T ATt { exp< gﬂ (12)

where Z satisfies (6) and (7), and G is defined by (8).
Proof of Lemma 2.5. A simple computation yields

oY & Vv
IE-FEAT—? 4
0G ¢&? V &2 0G oG 0y7(0)
= i—4—A G—— ——A4 770 j— . —L
i 7440 g0t 5, AT +ig =5
0°G 0y7(0) &2 0°G 0y~(0) [ 0y~(0)\'
ZT 14 *T - - 14 I3
+¢&* Trace <8q op ox >+ 5 Trace <5p2 T < o > >
where
0*G _< 0*G > E?ZG_< 0°G >
0q Op a%apj i,j, apz 5p,-5pj i,j,
492G oG <5G>
A4,G= -—, —=|=,
! igl aq? ap ap./' J
9y7(0) <5V'f’i(0)> . L 0%57(0)
= A 97(0) = .
ax ax] ,-/-’ th( ) igl axlz

In order to compute 0G/0p, let us apply Lemma 2.4 with n=2d, 0 =(q, p),
F defined by (9), and the real path g(8) = ¢(q, p). It is clear that F is in
all the spaces 27 ,(0}) (remember that f((pu—i—\ﬁeBu), s((p,,—i—\ﬂeBu),
V(p,+./ieB,) are null whenever |¢B,|>./2r). Since @o(q,p)=g, (11)
leads to

Z—G (¢, x, 77(0))=F [exp <—12 H(t, x, 8B)> M, (t, x, ¢, eB)}
P 4 '

J
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where H is defined by (3) and

[ L2 L (2 2o 1 20,

0z dp, e\ 0z 0Op, 0z 0p;

In the preceding expression, s, f and their derivatives are evaluated at

y¥(2) +\/i8B,; the derivates of V at y7(s) + \/isB and the derivatives of ¢

at (x, 77(0)). Moreover, the notation (0f/02) - r stands for Y¢_, (3f/0z,) r;.
Thus, the almost-analyticity of f, s, J enables us to conclude that

aG 82 (R ay(t\f(o) 7(1/1:2)1-1 82 X ay;(o)
ap<2Axy,(0)+z o )-E{exp Z(zdxy,(OH-z o >]

with Z satisfying (6) and (7).

The same kind of arguments holds for the terms involving 9>G/dq Op,
and 0°G/0p>. They also have the form E[exp(—(1/¢*) H) Z], with Z more
complicated than previously, but involving only oO-derivatives of f, s, V.
This completes the proof of Lemma 2.5. ||

It remains now to compute i(0G/0t) + (¢°/2) 4,G — (V/e*) G. It is done in

LEMMA 2.6.

0G & vV
E-ﬁ- A4 G—G-E[Zexp(—gﬂ

where Z satisfies (6) and (7).

Proof of Lemma 2.6. To prove Lemma 2.6, we introduce the process
(X(q.p, 2, 9)),<,» defined by

X;=9,q,p)

X:=9¢,q.p)

X=z+9¢,qp q+\/£B

4 __ 7i 3 o 2 L s 212
Xi=y 62] (X3) du JX&B > fO|Xu| du

\/g 62

(X,) is an homogeneous diffusion process with value in RYx RYx C?x C,
and with initial condition (¢, p, z, ).
For all suitable function r: R?x R?x C¥x C — R, define

11,r(q,p,z, y) =E[1(X\(q, p, 2, ¥))].



252 BEN AROUS AND CASTELL

For r(q, p, z, y) =f(z) exp(+(i/e?) s(z)) exp(y ), we get

I,r(q,p,z,y)=ulq,p,z)e” (13)
G(t, q,p) exp(y)=11,r(q, p, 4, y) (14)

so that
G(1, 4, p)=u/lq, p, q). (15)

Itd formula (applied in R**2) gives us the Meyer decomposition of the
process (I1,_.r(X,), s<t). But, from the Markov property, (I1,_,r(X,),
s<t) is a martingale. Writing that its bounded variation part is null for
s=0, yields

8H,r+617,r VIq) OHtr+8Htr +8H,r <1 Viz)— 1 | |2>
J— . —_— . . . — Z
ot 0q r a4 op oz ¥ oy \ig? 22 P
oIl,r +8H,r < 1 P(2) + = 1] > 2A I ing .
: == — — A I,y ——A_I,r
oz P %5 2 P 27F 2 e
|p|* O, r @azn,r |pl?o*,r 0°M,r
2ig* dy*  2ie* 0j° e dyody 0yoz P
62Hr L0, r 0> ,r
l . —
Hyer P ez P ez

ie 2!8

+&d. dlr+7 5

p=0 (16)

where A.=39_ | 9%/0z2, A.=Y1_,0%/0z7, A. .=37_, 0%/0z,0z;, 0*/0y 0z =
(0%/0y 0z,);, dnd SO on..
Equation (13) implies that dI1,r/0y =0, and 0I1,r/0y =11,r. (16) reads
then
Ou, 0u, ou, 1
75_{_57 prV(q) -a-f- P V(z) u,
a . 2 . 2
v+ 2 b S A~ Au 124, u,=0. (17)
0z 2 2 ’

Using (15), it follows that

0G &2 Vv
'l 4,6-2G
15t+2 g &2

ou 0 2
_za— -p—iVV(q)- a—up'—i-;A u+e’d, u,+¢e4, u,

0
+(—1+i)%~p+82115u,+(1+i)£2AZ)Eu,. (18)
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But u,(q, p, z) = E[F(z + (¢, p) — g +/ieB)

1 1o
—— | ¢q.p) 0B, —5= | 16,4, 2d>]
ew( M%wap) bgLMNqMIS

Apply Lemma 24 with n=4d, 0=(q,p,z)e RxRIxC9 and g(0)=
z—I— @(q, p) —q. Since 0g}, /0p,= 0g(,/0p; =0, 0g(/0q,= g} /0q,=0, the terms

n (18) involving ou,/dp, ou,/Oq, A,u,, A, .u,, 4, .u,, have the form
E[exp_”*z”Z] with Z satisfying propertles (6) and (7) of Proposition 2.2.
From 0gg /02 —6g0/6zj— ', and 6g0/6z]—6g6/52;=0, we obtain

u,

E| DF < ! ft'éB : jW'|2d>
—_—= - @ X _— —_ . A) .
65j 4 P \ﬁé’ 0 s s 2i82 0 s

This ends the proof of Lemma 2.6. |

Proof of Proposition 2.2.3. When the functions f, s, V" are analytic on a
strip around the real axis, their almost-analytic continuations can be
chosen analytic around the real axis. In this case, assertion 3 is satisfied,
since Z, is a function of the O-derivatives of £, V, s.

This ends the proof of Proposition 2.2. |

3. SEMI-CLASSICAL EXPANSION OF THE PROBABILISTIC ANSATZ

The aim of this section is to obtain the semi-classical expansion of ¥.
Since ¥ has the form E[ Z exp( —H/¢?)], this will be done by the station-
ary phase method in the Wiener space. For this reason, section 3.1 is
devoted to the study of the critical points of the phase function.

3.1. Critical Points of Phase Function

We denote by # the space of continuous paths from [0, 7] to R, start-
ing from 0, absolutely continuous with respect to Lebesgue measure on
[0, ¢], and whose derivative is square integrable. #; is an Hilbert space,
with respect to inner product {4, k) ,, = §g h,-k,ds.

Let us then consider the phase function

Frro—C

h— —is(yX(1) +\/h +1j (yf(s)-i-\ﬂhs)ds

) hds—2 [ s P ds+ [ R Pds (19)
yls 5 S 2 o yls S 2 0 s A

-
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The superscript r in F"" recalls the dependence of s and V on r. Therefore,
iF}" is just the classical action defined by

ST A —-R

t 1t . 20
hHs(x+h,)—j V(x+hs)ds+§f |2 ds (20)
0 0

taken on the complex path y + \/ih. When S7 is considered as an operator
acting on real paths, it is a well-known fact that its critical points are the
classical mechanics trajectories, and that before the caustics, S} has a
unique critical point, which is a non degenerate minimum of S7. The ques-
tion is now to prove that this remains true, when the paths are allowed to
visit a neighborhood of the real axis in the complex domain. This is the
object of

PROPOSITION 3.7. Let K be the compact support of f in RY Let us fix
t<Tg. Then, Ir >0 such that
. t<T"<Tg;
2. VxeK', h=0 is the unique critical point of the phase function ",
and this critical point is non degenerate.

3. VxeK’, h=0 is the unique minimum of the real part of F}', and
this minimum is non degenerate.

Proof of Proposition 3.7. The first part of Proposition 3.7 is trivial.
Actually, it is sufficient to note that, when r - 0, K" decreases to K, and
thus T increases to Tg.

Let us prove the second assertion of the proposition. Let 4 and k be
elements of ;. Denoting by / the complex path y7 + \ﬂh, we have

DF>(h)-k=—i\/i0s(1) k,—i/78s(,) k
+i\ﬁf V(L) -k, ds+zfj GV(L) -k, ds
0

1 t . ..
b j §5(s) K, ds + f Rk, ds
0 0

Ji
1
=—lf —i0) s(1, —
f
—Hff ) -k ds—
= —i/i [l,+(0—i0)s(1)] -k,
+zfj [F+(8—id) V()] k. ds.

7i(0) ke, + hk,

s) k. ds— jhkds

L
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Thus, & is a critical point of the phase function F7" if and only if /=
vy + ﬁh is solution to

I +(@—i0)V(l)=0, Vs<t (21)
ly=x (22)
I[,+(0—id)s(l,)=0. (23)

From the almost analyticity of 7 and s, it follows that Vze RY 0V(z)=
0s(z) =0, and that dV(z) = VV(z), ds(z) = Vs(z). It is then equivalent to say
that #=0 is a critical point, and that y} satisfies (%47).

Let us look at the degeneracy of 0 as a critical point. A straightforward
computation leads to

DAF} ) h) =" (30 s ) = [ VG0 ) ds [ V|2 ds

=D’S(y; —x)(h, h) (24)

where the operator S7 is the classical action, defined by (20).

But it is a well-known fact that before the caustics (i.e. < T'x), the classi-
cal trajectories are non degenerate minima of the action, so that 0 is a non
degenerate critical point of F"".

It remains now to prove the uniqueness of 0 as a critical point of F",
at least for small values of r. For this purpose, it is worth to investigate the
meaning of the non-degeneracy of 0. First of all, note that

D?Fy(0)(h, k)= D2S7(y; —x)(h, k) = A3 (h, k) + Chy ko, (25)

where the operator A7 is defined on #; by
A5 (hy k) =s"(y;(0))(h, k) — JO V(77 (s))(hy, k) ds (26)

and satisfies for some constant C (depending on x and ¢),
|47 (h, k)| < C Al Ik, (27)

A7 defines thus a continuous quadratic form on the space %,([0, ¢]) of
continuous paths starting from 0, endowed with uniform convergence. It
results then from a result of L. Gross [11], that 4} is a trace operator on
H,, so that there is a basis of J#; formed by eigenfunctions of 4. The non-
degeneracy of y; means therefore that for all < 7", and all xe K/, there
exists oy > 0 such that

Vhe A, |D*Fy(0)(h, h)l = a7 Al (28)
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Moreover, the function x> o7 is lower semi-continuous. Indeed, o} —1 is
the lowest eigenvalue of A7, i.e

oy — 1= inf(A(h, h), he i, ], =1) (29)

where the extremum is reached, since A7 is a trace operator. Thus, Vr >0,
x> a7 reaches its minimum value on the compact set K. We have then
proved the following assertion:

Vr>0 such that < T", there exists a(r) >0, such that

VxeK!, Vhed, DS yi—x)h h)=a(r)|h]?. (30)

Note that the lower semi-continuity of x +— a implies that

lim inf a(r) = Min o} > 0.

r—0 xekK;

We are now going to estimate D*F"(0) on a critical point of the phase
function F7>". Using integration by parts, we can rewrite for all # in %,

DFy(0)(hy h) = (s"(73(0) o+ By hy) — jO’ (g + V" (77(s)) hy hy) ds.— (31)

When £ is a critical point of F>", each of these terms can be evaluated in
view of expressions (23) and (21).

Using a Taylor expansion of (0 —id) s(yj“(t)—kﬁh,) around p7(7) to
rewrite (23), we obtain

0="/i (h,+s"(y}(t)) h,)

+zj (1—u) &3s(y(t) +/iuh,)(h,, h,)
+j](1—u 020s(y¥(1) + </ iuh,)(h
0
—sz d0s(y(t +fuh du—i0s(y +fh ).

Thus,

b+ 5" (3 (0)) | < { (r)+| lSU%(WS(Hﬁy)I

xe K’

n |azas<x+ﬁy>|>} b, |2
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where the constant C(r) comes from the last two terms, and from the
almost-analyticity of s. We deduce then that Vr> 0 such that 1 < T”, there
exists C(r) >0 such that Vxe K, Vh e # critical point of F",

B, +5"(73(0)) b, | < C(r)lh, | (32)

Note that C(r) remains bounded when r — 0 (C(r) —— sup, . ¢ |s(x)]).

r—0

We rewrite expression (21) in the same way to obtain that Vr >0 such
that 1< T", there exists C(r)>0 such that Vxe K, Vhe #, critical point
of F¥", Vs<1,

i+ V" (p3(s)) hy) < C(r)|hy |2 (33)

Again, the constant C(r) remains bounded when r — 0.
Comparing (32), (33), and (31), it follows that there exists C,, C,>0
such that Vre ]0, 1] such that t < 77, Vx € K, Yh € 5, critical point of F"",

ID?F"(0)(h, )| < Cy |77 < Cy 115, (34)

From (30) and (34), it follows that Jou >0, 3¢ >0 such that Vre 0, 1]
such that t < T", Vx e K, Yhe ] critical point of F}*" such that |A] ,, #0,

A< C ], (35)

We need then the following lemma to conclude.

Lemma 3.8. 3C>0 such that Vre10,1] such that t<T’, VxeK’,
Vhe H, critical point of F}",

”M‘w,géﬁ

Assume that Lemma 3.8 is true, and that Vr > 0, there is a critical point
h of F}" such that |A| ,, #0. From (35) and Lemma 3.8, it results then
that a < CCr, for all re 0, 17.

Therefore, when r is sufficiently small, #=0 is the unique critical point
of F»". 1

Proof of Lemma 3.8. Let h be a critical point of F7" such that
IAll ., # 0. By integration by parts, it follows from (21) and (23) that

PR3, = —[73(0) + (2 —i0) s(y}(1) +/ih)] /ih,
+fwf(s)+(a i8) V(yi(s)+/ih)] ik ds.  (36)
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Using (%) and a Taylor expansion of (9 —id)s )+ f h,) around
y7(¢), it follows that

93(2) + (0 —i0) s(y3(t) +/ih,)|
<[l|(a i0)% s(y*(1) + /iuh,)| |h,| du

1
<[0 10— i0)2 s(y(1) + /b )| 1,y oy = /3, 1, | d

1
N | e s daii)
< C,(r) r with C,(r) bounded when r — 0.
In the same way, it is easy to prove that Vs <z,

|575(s) + (2 — id) V(y}(s) +/ihy) yr,  with C4(r) bounded.

t

Therefore,

< Ctry I+ [V ds ) <2C400 1 < €0 i

so that ||A]| ,, < C(r)r.

In order to apply stationary phase method, we have now to look at the
global minima of the real part of F>". It is done in exactly the same way
as for the critical points of F7*", so we omit the proof of the third assertion
of Proposition 3.7. |

3.2. Asymptotic Expansion of ¥

We are now able to give the asymptotic expansion when ¢ — 0, of ¥. The
result is the following

PrOPOSITION 3.9. Let t< Ty, and r be as in Proposition 3.7. For all

xeR9
2k

&
(2k)!

‘P(l,x)zexp< (1, x)> Z B2, x) + O(2V+1h) (37)

where

1. the support of B,(t, ) is included in K,.

2. Bo(t, x) =£(7(2)) det(D*S(y; —x)) ~ ' (38)
where S7 is defined by (20).



SEMI-CLASSICAL APPROXIMATIONS 259

3. S(t,x)=ST(yT—x)=s(y — o V(i) ds+ 5[4 177(s) ds

4. the remaining term O(e Z(N +1))

norm, or in € “-norm.

can be understood in any Sobolev

Remark 3.10. It should be noted that although we have given only the
expression of the first term f,, there is an explicit way of computing all the
other terms (see the remark following Lemma 3.12).

Remark 3.11. The usual expression for f, is

dy; (1)
ox

12

B, x) = ‘

To see that (38) and (39) coincide is classical (see for instance [1]).

Proof of Proposition 3.9. It would be sufficient to apply Theorem 7 of
[6] to obtain Proposition 3.9. In our context, the proof of this theorem is
much easier, so that we give it for the sake of completeness. The main fact
is the following lemma, whose proof is given in Appendix 3.

Lemma 3.12. Let t<Tg, and r be as in Proposition 3.7. Let
L: [0, T] xRYx %, > R be such that

1. VxeRY the process L(-,x,-) is progressively measurable, and
Vs<t, VxeRY, we W L(s, x, w) is €~.

2. Vs<t,YoeW,, L(s, -, ®) has compact support in K.
3- Vk € Na Supsgt SUP e rdSUP, e W HDkL(SE X, (D)H <0

where D*L denotes the k-th derivative of L in w.
Let us consider for all s<t, and all x e RY,

J.(s, x)= E|:L(S, X, £éB) exp ( —é H(s, x, sB)ﬂ .

Then,

J (s, x) =exp <;2 S(s, x)> B(s, x)+ O0(V+D) (40)

where
o The O(e*™* 1) is uniform in (s, x) e [0, t] x R%
o Bols, x)=L(s, x, 0) det ~">(D?S3(y7 — x)).

o B,(s,-) has compact support in K.
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Moreover, if there exists ro>0 such that Vs<t, Yo, |o|,<ro,
L(s, x, w) =0, then J (s, x) is exponentially small.

Remark 3.13. B ,(s, x) can be expressed as
B(s, x)=E[Z,(s, x) exp (/245 2],

where Z (s, x) is an element of the (6p)-th Wiener chaos, and A7 is defined
by (26). It is then possible to compute the expression of 8, in the following
way. Let (f7(i)) denote an orthonormal basis (in ;) of eigenfunctions of
A7 (eigenvalues (a(i))), and let (£7(7)) denote the corresponding basis of
the first Wiener chaos. If for all J=(j,, ..., j,..),

|
H,(&) =[] —= H,,(&(k))

k=1 ]k!

(where H; is the j-th Hermite polynomial), then (H (7)), —j,. i s ji<op
form a ba51s of the 6p-th Wiener chaos. Therefore, one can write 4 (8, x) =
2 <ep Co(8, x) H,(EY). The expression of f8, is then

By(s, x)=det""(DS(y; —x)) Y c,(=1)"H,(0)

J=(J1s s fm)
|/l <6p

l’;—’l Ji)|

l+oc( o)

To get the result of Proposition 3.9 in uniform norm, it is sufficient to
apply Lemma 3.12 with L(s, x, @) =f(y3(s +f iw,), which satisfies tri-
vially Assumptions 1-3.

To get the result in % '-norm, let us consider the first derivatives of ¥.
As in Section 2.2, we write that Y(s, x) = G(s, x, y7(0)). It follows that

ow G oG op0)
ov %G (5. %, 7300 + 2 (s, x, y(0y) - 2O,
ap Ox

Applying Lemma 2.4, it appears that 0¥ /0x(s, x) can again be expressed as

) H
Y ¢E L_,-(s,x,sB)exp(—ezﬂ

j=—1,0,1
where

e Forj=—1,0,1, L,(s, x, w) satisfies Assumptions 1-3 of Lemma 3.12.
e For j=—1,1,VkeN, 3C such that Vxe K’, |[L;(s, x, 0)| < C |w] .
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Lemma 3.12 yields then the result of Proposition 3.9 in % '-norm. The same
kind of arguments holds for the other derivatives. The assertion concerning
the Sobolev norms is then straightforward, since everything happens inside
the compact K.

4. USING THE PROBABILISTIC ANSATZ TO GET SEMI-CLASSICAL
ESTIMATES ON THE WAVE FUNCTION

We prove in this section that our probabilistic ansatz is a good
approximation of the wave function @ solution of the Schrodinger equa-
tion, in various norms. We begin by the L*norm, for which the hypothesis
needed on V' is minimal (we just require the Schrodinger operator to be
essentially self-adjoint). To get better norms, we have to strengthen our
hypothesis on V. We treat the case of H'-norm, and uniform norm, but as
already said in the introduction, we do not claim here for optimality in our
hypothesis on the potential.

4.1. L>*-Estimates

We will assume in this section that

H4. The operator A = —(/h*/2) 4+ V defined on C* (that is, the set of
smooth functions with compact support in R?) is essentially self-adjoint.
Under this assumption, the Schrodinger equation has a unique solution
&(t, x) in L3R, dx).

ProrosITION 4.14. Let t<Ty and r be as in Proposition 3.7. Under
assumptions H1-4, Yk e N, 3C > 0 such that

sup [[D(s, -) — ¥ (s, ')HLZ(W,dx) < Ceh,

s<t

Therefore, the semi-classical expansion given in Proposition 3.9 is also valid
for @ in L*norm.

If the functions V, s, f are analytic on a strip around the real axis, the
L*-error between ¥ and @ is exponentially small.

Proof of Proposition 4.14. Before proving Proposition 4.14, we are
going to demonstrate the following lemma, which will be useful in the
sequel.

LemMma 4.15. Let E(x) and G(x) be two functions from R* xR? to C,
such that
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o Vs, E, and G, are in L*(R?, dx).

ih OF, (x)=AE(x)+ Gy(x)
. 0s
E\(x)=0.

Let t=sup{t,sup,, | Ell ;2(re,<o0}. Then, for all t <z,
1
hsup B, 2imny <2 [ 1G] 12w du
s<t 0
We adopt here the convention that sup = 0.
Proof of Lemma 4.15.

s 0
i B ety = i | Eg ooy + | it = 1By e i
0

</ OE s O
:j <ih E> du—j <Eu,ih > du
0 ou L2(RY) 0 ou LY(RY)

where the minus sign comes from the complex conjugation. Thus,

ih || E, Hiz([w’) = L CAE, + Gy E) 12 (gay du — Jo CE,, AE,+ G ) 12y du

= L: Gy E) p2ggay du— L; CEy, Gu) p2gay du
since 4 is a symmetric operator. Therefore, for all s <z,
BIE 2200, <2 [ 1Gul ey 1Eul e .
Taking the supremum over s, it follows that
WD E, | ) 250D 1B, ) | 1Gul s

s<t s<t

For 1<z, hsup, ., ||El ;2pe)<2 % 1G .|l 2(ga) du, and the proof of
Lemma 4.15 is complete. ||

We return now to the proof of Proposition 4.14. Define for all s <¢ the
error function E.:

RY—C
x> (s, x)—D(s, x).
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When ¢t < T A 7, Lemma 4.15 and Proposition 2.2 yield

hsup | E, | L2maey <2t sup |Gl 12a)

s<t s<t

where G, is the right-hand term in (5), that is

G,(x)= E{Z(s, X, &, eB) exp <812 H(s, x, 83))}

with Z satisfying (6) and (7). We recall that G, has compact support in K,
so that

12
sup [|G, || 2 (g, < meas < U K§> sup sup |G,(x)|

s<t s<t sS<t xe K7,

12
as<U K_’;> Y & sup |E[Z;exp ]|

s<t Jj=-—10,1 SSI,XEKI
. v)
<C(t,e,r) sup |E[exp "]
s<t,xeK;
where we have used the estimates (7) on the coefficients Z;.

Therefore, for all 1 <Tg, sup,, |G, 12me) < 0. Hence 1= Tk, and
Vi< Tk,

hsup | Egll 2ey <2t sup |G|l L2(gay-

s<t s<t

We estimate now |G|l 2ga, using Lemma 3.12.

N—j

G,(x)=exp <gl2 S(s, x)> > Y af(s, x) 2K+ 4 02N D).

j=—1,0,1k=0

The coefficients ] are defined by

E[0;(s, x,0)]

of (s, x) =

(2!
where 0°)(s, x, ¢) is the (2k)-th derivative in & of
0,(s, x, &) =Z,(s, x, eB) exp(—D’H(s, x, eB)(B - B)).

Using the estimates of Z; given in Proposition 2.2, it follows that Vj, Vk,
o (s, x)=0.

Furthermore, when f, V, s are analytic in a strip around the real axis,
Z(s, X, 0) 10, <r,=0; so it follows from Lemma 3.12 that the L-error
between @ and ¥ is exponentially small. ||
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4.2. H'-Estimates

We consider here the space H'(RY, dx) of functions f'e L*(R?, dx), which
are absolutely continuous with respect to Lebesgue measure, and whose
derivative is in L*(RY dx). Instead of H4, we assume here the stronger
condition

H5. V= —C, for some constant C,,.

Under HS5, H4 is automatically satisfied (see Theorem 1.1, Chapter 3 in
[7]) and the wave function is (as a function of x), in H! (see Proposition
1.1, Chapter 3 in [7]).

ProprosITION 4.16. Let t<Ty and r be as in Proposition 3.7. Under
assumptions H1-3, HS, Vke N, 3C >0 such that

Hé(ts : ) - gl([, . )H H (R, dx) < CSk.

Therefore, the semi-classical expansion given in Proposition 3.9 is also valid
for @ in H'-norm.

Here again, if the functions V, s, f are analytic on a strip around the real
axis, the H'-error between ¥ and @ is exponentially small.

Proof of Proposition 4.16. We use the same notations as in the proof of
Proposition 4.14.

2 52

h
5 IVE 132 = [ IVE )2 dx
hz
= _5 <AE1> Et>L2
=A=W)E,E>
< <AEM Et>L2+ CO HEtHiZ
<(Co+ I4E, || L) E, |l 2.

But, ¥(¢,-) and &(¢, -) are in the domain of the Schrédinger operator, so
that |AE,| ;> < oo. Proposition 4.16 follows then from Proposition 4.14. ||

4.3. Sobolev and € *-Estimates

The space in consideration is € “(R? C), ie. the space of functions
f:RY— C, which are infinitely differentiable. This space is endowed with
the uniform norms of f and its derivatives. We will assume that

H6. The derivatives of V' of order greater than 2 are bounded, and the
wave function @ is ¥* in x with derivatives in L*(RY, dx).



SEMI-CLASSICAL APPROXIMATIONS 265

Under H6, H4 is automatically satisfied (see Theorem 1.1, Chapter 3
in [7]).

ProrosiTiON 4.17. Let t<Ty and r be as in Proposition 3.7. Under
Assumptions H1-3, H6, Yke N, V/ie N, 3C> 0 such that

Sup [ B(s, -) = Y5, ) e, ) < Co

s<t

Therefore, the semi-classical expansion given in Proposition 3.9 is valid for @
in any Sobolev norm, and hence in € “-norm.

Here again, if the functions V, s, f are analytic on a strip around the real
axis, the H'-error between ¥ and @ is exponentially small.

Proof of Proposition 4.17. During the proof, we will use the following
notations.

o f MeN’ M=(m,,..,m,), |M|=%¢_,m,.

o« M, LeN M®L=(m,+1,,...m,+1,).

o If M, LeN? we say that L< M iff Vje {1, .. d}, [;<m,. In this
case, we will denote M & L=(m,—1,, ..,m,—1,). Moreover, we will say
that L <M, iff L< M, and 3j€ {1, .., d} such that /;<m,.

o If MeN and fe € *(R? C), DMf=0"™Mfj(Ox7t .- x"4).

e If mleN, I<m, and fe €*(R% C),

v\ [av\i
. = pm—1 A T B MOLy
Iflw=k"=" Y % <6x1> <axd> P

M, |M|=m L,|L|=I
L<

=

12

LA =2 1l
1=0
WA= 2 111
1=0
Hence [ flllo=1/1lo=1/1 .2,
d af oV

so that 72 || f| o <A1l for 2<1. Vme N, 2™ || f ]| g < [l I, for 2 <1.
We are going to prove that all me N, 3C such that VA<1, Vs<t

hsup [ E, [, < Csup |Gl - (41)

U<s U<s
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This is done by induction on m. For m =0, (41) reduces to

hsup |E, |2 < Csup |G, ||

uU<s U<s

which has already been proved under assumption H4.
Let us assume that (41) is true for all n<m —1. Let

T, =sup{z, sup [|E ||, < oo}

s<t

We claim that
Vm>=1, 3C such that Vs<1¢, s<7,,, VA<,

h sup HEu Hm < Csup ”Gu Hm + Ch2 sup H|EuH|mf 1- (42)

U<s u<s u<s

Thus, the induction hypothesis and (42) allow one to say that Vs<z,
§<1,,, YVh<]1,

hesup [|E, Il < Csup [[ G-

U<s U<s

But, exactly in the same way as in the proof of Proposition 4.14, one can
see that V¢ < Tg, sup, <, ||G.|l,. < . Hence, 7,,> T, and (41) follows.

Let us prove (42). To this purpose, it is sufficient to show that for all
mz=1,Vi<m—1, 3C such that Vs <1, s<7,,, VA<,

h HEsH/,m < Csup HGu Hm + Chz Sup |HEL{|||I‘)171 + Ch LJ HEM HI+1,m du (43)

Indeed, we derive from (43) that VI<m —1,

h HE\ H/, m < Csup HGu Hm + Ch2 Sup |||Eu|||m71 + Ch \[ HEM Hm, m du (44)

u<s u<s 0
av\™ oV \™
Edn= ¥ |(5) - (50) &
M, M| =m X1 Xa

0 oy |m oV me
h— (| =—| ...|==| E.
i asqaxl} [axj >

[ ()
| ox, 0x, " o5

with

L2

But,
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ov ™ oV ovi]m oV
=A(| — v — E. — el —1| —h*A| E
(= I Pl RS | A R - ]
ov]m™ oV
ol = G,
—i{axl} L’jxlj ’

where [ B; A] denotes the commutator of the operators 4 and B. Now, for
all f, gin ¢°(R% C), [f, —4] g=A4fg+2 Vf-Vg. Hence, using H6,

VM revim
L A E
Haxl} {axj ol }

Lemma 4.15 then yields that Vs <7, s<7

< Chz HEsHmfl,mfl + Ch HESHM71,m'

L2

m>»

BNE, . < Csup |G, |, + Ch? sup || E, |||/7771+Chj‘ IE 01, m da.

U<s u<s

Using (43) for /=m — 1, it follows then that
.S €U G,y O SUD IE, -1+ Ch [ 1,

And Gronwall lemma leads to

h Sup HEu Hm, m < Csup ”Gu”m + ChZ sup |||Eu|||mfl

U<s U<s U<s

which together with (44), yields (42).
It remains now to show (43). We prove it first for all couples (0, m). We
have thus to estimate quantities such as 4™ |[DME| ., for |M|=

. 0 " e OE,
ih ER (DME)=D <l 2 >
=A(DME,) +[DY; V] E;+DYG,

=ADYE\)+ ) oyu(J)D"S'VD'E,+DYG,.
J<M
For |J|<|M|—2 and A<, i |DMS'VD'E |- < Ch?* ||[E ||l,—». For
|J|=m—1, W™ |DYS’'VD’E||,.:<h|E,|,,. We obtain then from
Lemma 4.15, that Vs <¢, s<rt,,, VA<,

BIE o, < CSUP G, Lot O SUP |, 2+ Ch | 1E,

U<s U<s

that is (43) for (0, m).
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Assume now (43) is true for (/—1,m) and let us prove it for (I, m).
We have now to estimate quantities such as A™ ' |(0V/0x,)"---
(0V/ox,)" DMOLE | . for |L| =1 and |M|=m.

o /[ov|h [oviu
h—(| =] ...| = | p™Mer,
s <[ axj {axj >
I lq
aV} ...[OV} in 2 prorg

:{axl ox?| " os

avin oV
1

+ Y ayeJ)DMOEENY D’ES+DMOLGS>

J<MoL
I lq I lq
=A <{6V} {aV} DM@LES>+{{6V} {OV} ; _h2A] DMGLES
ox, ox, 0x, ox,

bl h oV
+ Z aM@L(J)|: V} {} pMewen DJES

J<MOL aTc1 aXd
oV [ov)
— ... DMOLg
- [ ax1:| [ax,j @

For |J|<m—1—2, and h <1,

pm—! {aV}h..[WrDMow@J)V D’E,

- < Ch||E,]|,, -
e R Py < CHYIE -

L

For |J|<m—1—1,

li Iy
al l,,, al /DM@(L(@J)V D’E
0x, Ox, ¥

hmfl

. < Ch HEA'HIJrl,m'

L

Moreover,

hm—/

L2

HW} " {‘W} Y. _th} DMOLE
0x, Ox,] )

< Ch2 HES‘llfl,M7l + Ch HE‘\‘Hlfl,m'

By Lemma 4.15, we obtain therefore that for all s<¢, s<7,,, VA<,

BNE | < Csup |G, |+ Ch* sup | E, |l

u<s u<s

FCh [ Bt Ch [ I, 1
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The induction hypothesis implies then that Vs <1, s<r<,,, VA<1,

BIE] < Csup |G|+ Ch?sup [|E, ||,
U<s U<s

K

FCh | NE gt Ch | E, |yt

And Gronwall lemma leads to (43).
It follows from (41) that

hm+] Sup HE\ HI-I”'< Csup |||G\|||m (45)
s<t s<t

with

mok th aVld

G, =Y ¥ #' ¥ LV preg,
k=01=0 KKl =k 0x, Ox, 12
L, |L|=L L<K

But

I(@V"/oxy)--- (0V")ox,) DG, 2 < C m"*(KY) sup [|[D*CG (x)],

xek;
since G, has compact support in K’. Therefore,

NGl < P(R) sup [ Gy |l m (40)

s<t

where P(#) is a polynomial of degree lower than m. As in the proof of
Proposition 4.14, we estimate |G, ||, ~» using Lemma 3.12. We obtain that
Vk e N, 3C such that

sup |G, |l4n< Ch* (47)

s<t
(45), (46) and (47) imply the result of Proposition 4.17. ||

4.4. Localization

It is worth to notice that our probabilistic ansatz ¥ sees only the values
of ¥V on a compact set of R, so that it is unsensitive to a truncation of V.
This truncated potential trivially satisfies the assumptions H6, so that our
probabilistic ansatz is an O(#™) approximation in % “-norm to the wave
function associated to this truncated potential. This remark leads us to the
definition:



270 BEN AROUS AND CASTELL

DEerINITION 4.18. We will say that (s, V) is semi-classically localizable
in norm ||-|, if for any initial condition f compactly supported, for any 7,
there is a compact subset K, of R (depending on (s, V)), and a truncation
%7 (with support in K;), such that |®"(t,-)—®*r"(¢,-)| = O(h*), for
t<T.

®" denotes here the solution of the Schrodinger equation associated to
the potential V.

When (s, V') is semi-classically localizable, our probabilistic ansatz is an
O(h*)-approximation of @ in norm | -|, whenever

For all smooth f with compact support, 3k, IC>O0, | fI| < C | fllox  (48)

In this case, our strategy can be applied to obtain the semi-classical expan-
sion of @.

On the other side, to be semi-classically localizable in norm ||| is a
necessary condition for the semi-classical expansion to be true in norm || - ||
(note that the semi-classical expansion (37) depends only on the values of
V on a compact set).

Therefore, for the norms satisfying (48), we have

(s, V') semi-classically localizable in norm ||- ||
<> The semi-classical expansion (37) is valid for @ in norm | -||
<|®-Y¥|=0(h")

To determine the class of potentials and initial conditions which are
semi-classically localizable in a given norm, is a purely analytical problem.
In this section, we have given some answers to this question, but we are
aware that these results are certainly not optimal.

APPENDIX 1: Proor or ProposITION 2.1

Let X, denote the Hamiltonian vector field associated to V,
X, RIxRY—- RYx R?
(¢, p)— (p, =VV(q)).

Let ¢,q,p) denote the Hamiltonian flow, that is the flow of dif-
feomorphisms of R* associated to X ;. To solve (47) is equivalent to look
for some initial speed p such that ¢,(x, p) is in % ={(q, —Vs(q)), g R’}.
If for all s>0, . =¢_ (%), we have then

K,={xeR“ 3p such that (x, p)e % and n-¢(x, p) €K}
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where 7 is the first projection in
R%: R% — R
(¢.p)—4q.

From the diffeomorphism property of ¢,, it is not difficult to see that K, is
a compact subset of R,
Let us consider
Tx=sup{t=>0, e 7m,=n|,, isnon singular on #,=¢,n, 'K
o 7N nk) = ).
Since %, is projectable, a continuity argument shows that T, >0. T,

represents the time of appearance of caustics. For t < Ty, there exists an
open neighborhood ¢, of %, such that

e 7, is a difftomorphism from ¢, onto O,=n(0),);
° n:l(ot)zal-

It follows from the definition of 7'y, that for t < T and x € O,, there is a
unique solution (y7(s), s<t) of (¢7), and that y(¢) € K, whenever xe K.
Let us now look at the regularity of y7 in (z, x). The identity

med[(yi(1), =Vs(y;(1)) = x

holds by construction, so that y7(¢#) is implicitly defined by
F(t, x, y7(t)) =0, where

F(l, X,y):ﬂ0¢_,(y, —Vs(y))—x

=m,09 [y, —=Vs(y))—x.
Now (0F/0y)(t, x,¥) =Ty 1. —vsiy) ®e° Ty —vsy) @, 1s invertible for all
t<Tg and all ye O,. Therefore, y7(¢) has the same regularity in (¢, x) as
F(t, x, y). It follows that y7(s)=mod,_(y7(¢), —Vs(y}(¢))) is €~ in x, and
at least ' inz. |

APPENDIX 2: PROOF oF LEMMA 2.4

M (0)= |} g:(0) OB, is a Gaussian process with 0 mean and joint quad-
ratic variation

400,05 = [ (g1(0), .(0)) du.

0
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It follows from the regularity of g that there exists a modification of
(M'(6)) which is € in 6 € 6, and that Vae N”,

DM0)=[ Djgl 0B,

(see for instance Theorem 3.1.2, or exercise 3.1.6 of [16]). The same holds
for M'(0) =} g! 6B, Therefore,

1 t 1 t
Z,(0)= F(g(6) +/isB) exp <—fi8 [aoo8, 5[ a0 )

is differentiable in 6, and Vje N™,

0Z

1 t
(0= Lo (PX0.(0) + i) exp ~ fgjgs 8,5 [ 16002

where Yo € #(C),

g’ 1 1 0g,
)+ DiF() 35 (0) =5 Flo) | 32(0) do,.

J

og”
L, (F)0,w)=D,F(w)
0, 20,

Remark. |} (0¢,/00,)(0) dw, is defined by integration by parts, since
0g,/00; is continuously differentiable.

To invert expectation and differentiation, it is sufficient to prove Yo e N”,
|oe| =

sup E[|D3Z(0)]] < 0. (49)

Oe®

But, it follows from a computation of the second derivatives and from the
hypothesis on F, that 3C > 0 such that Yae N”, || =2,

o (242 S

n

E[|D3Z,(0)]]< C<1 + ),

Jj=1

Ly

+ Y exp< <M( )>>f ag‘é&j’ag” 5B,
Jik=1 \/8 0 00, 000, L,
n M ¢ 2-
3 () 2] )
Jk=1 \/6 000, 69k L,

with 1/r 4+ 1/¢g=1. This implies easily (49).
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Therefore, G is differentiable in @, and Y0e O, Vje {1, .., n},

oG

| L )
fei—lﬂrjjexlo <_2i52j0 1€, dS>,

with

og" og’ 1
I./ZE{(D,.F.agj—i—D,-F >exp< \/SJ g, 0B, — 82f |g| dsﬂ
1 6g\ L tag‘S . _L -
"= E[ < \/8 L 20, 5Bx_i32 J0 a0, & dS> exp< \/ie L 8 5BS>}

Consider I: #,—-C, and K:W,->W}°

10g,
0 00,

w

1 t
ow, W > exp <—f g, 5ws>l
Tk
where %} ¢ is the dual space of #°¢. Then, K= K"+ iK', with K", K'e D
(see [25] p.S1 for the definition of this space). If J denotes the dual

operator of D defined in corollary of Proposition1.9 in [25]
(0: D7 > D), then

OK(e —exp< \/J >[ jojg(s \}ELZ‘?'ds}

Thus, a Malliavin integration by parts leads to

=~ B[ ¢(D,+ D) Fg(0) + JicB), K(B

J2i
—1+i g 6g0> < | >}
= E|\(D,+D)F-| ———— — OB, ||.

This proves the identity of the lemma. Moreover, since 0G/00; has the same
form as G, the lemma follows by induction on k.

APPENDIX 3: PrROOF OF LEMMaA 3.12

We recall that forall s, #; is the space €([0, s], RY) endowed with the
uniform norm | .|, (associated distance d,).
Let us write

JE(S, X) :J],.c(sa X) +J2, a(Sa X)
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with
Ji (s, x)=E[L(s, x, eB) exp(( — 1/e?) H(s, x, eB)) 1 leBls < p -
Js (s, x) = E[L(s, x, eB) exp(( — 1/e%) H(s, x, eB)) 1 leBlls> p -
We are going to show that J, , is exponentially small, and that J, , gives
the asymptotic expansion (40).

Treatment of J, ,. H(s,x,0)=—iS(s,x), DH(s, x,0)=DF}"(0)=0,
since 0 is critical point of F}'". A Taylor expansion of ¢ — H(s, x, ¢B) yields
then

Ty, o5, x) = VSO OE[ L(s, x, 6B) ey ] (50)
where A(s, x, &) = [ (1 —v) D*H(s, x, evB)(B, B) dv, is €~ in ¢.

Let us write now the Taylor expansion of 0(s, x, &) = L(s, x, eB) e 15>
around ¢ =0. We obtain

Z (s, x)+eVTIR(s, x, &) (51)

»‘»

9(sxe=§

k=0
with
Zk(sa X) = Zk(sz X) eiA(L x0) = Zk(S9 x) (=172)4 (B, B)

where Z, (s, x) is a sum of terms such as C(s, x)(B, ..., B), with C(s, x) any
deterministic multilinear functional of order lower than 6k on the Wiener
space #,. Hence, Z,(s, x) is an element of the (6k)-th Wiener chaos. The
coefficients of C(s, x) involve the derivatives of L(s, x,-) at 0, and the
derivatives of order greater than 2 of H(s, x, -) at 0. Using Assumption 2,
it is easily checked that for all s <¢, C(s, -) has compact support in K’, so
that the same is true for Z,(s,-), and for R(s,-, &) by (51). Moreover,
assumption 3 yields that Vp >0,

sup sup E[|Z.(s, x)|?] < o0 (52)

s<t xeK::

It follows then from (50) and (51) that

N N 81( -
e (1/(2) Sts- \)‘] Z S x)) + Z E E(Zk(sa x) ﬂ H.‘:B\\x>[))
= k=0""
+eN 1E(R(s, X, &) Tyeny, < p)- (53)

The first sum gives the semi-classical expansion (40), if we put Bi(s, x)=
E(Z,(s,x)). We have indeed already prove that f,(s,-) has compact
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support in K. Moreover, by symmetry of Brownian motion, f,(s, x) =0
for odd k. Let us then compute f,.

Bols, x) = E(Zy(s, x) 712 AP D) = L (5, x, 0) E(e! "2 4 2)

A7Y(B, B) is an element of the second Wiener chaos. Let us write its decom-
position

AS(B, B) =}, a;(k) &(s, x)
k

where (&,(s, X)), >, are i.i.d A7(0, 1) random variables, and (a}(k)),, are
the eigenvalues of the trace-class operator A7 (in increasing order). Since
t<T', we have already seen that Vs<t, VxeK’, VkeN, 1+aj(k)>0.
Therefore

E(e =" 40.8) = [T (14 a3(k) =" = det = (DS (37 — x))

k=1

since D?S¥(yY —x)= A +1d. Note that this product is finite by the trace
property. For the computation of the other terms, the reader is referred to
[6].

We are now going to prove that the second sum in (53) is exponentially
small.

sup |E[Zk(sa x)1 \\.‘:B\h?p:||

s<t
xeK'S

< Sup |E[Zk(sax) 6(71/2) A, B)ﬂ “I:B“x2/1]|
s<t
xe Kg

< sup E[|Zy(s.x)|7]"7" sup E[¢ 72 45 0] 10

s<t s<t
xekK; xekK,
x P[lleBl, = p]'r (54)

with 1/p,+1/p,+1/p3=1, p,> 1. The first term in the right-hand side is
finite using (52). Furthermore,

2
P
Pl |eB|,>p]”m<exp<—2p =)
3
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Thus, our goal is achieved as soon as we have found p, > 1 such that the
second term in the right-hand side of (54) is finite. From the lower semi-
continuity of (s, x) > a¥(1), it follows that

Min Min (1) > —1

st \el(
so that one can found p, > 1, such that

1
Min Min a}(1) > ——> —1.

s<t xek, )22
It implies that Vs <1, Vxe K,
P2 - 1
E{exp( AY (B,B)ﬂ: ——<
2 Il 1+ prai(k)

Fatou’s lemma yields that the function (s, x) +— E[exp(—(p»/2) A}(B, B))]
is lower semi-continuous, and reaches therefore its maximum value on any
compact set. Hence,

sup E { exp <—‘DZZ AY(B, B)ﬂ <o
s<t
xng

It remains now to treat E[ R(s, x, &) 1 .5, <, 1

1 (1 —U)N aN+I
R(s, x, &) —JO i %

O(s, x, ev) dv

with (0%*1/0e) O(s, x, ev) = M(s, x, evB) e ™) and Vp> 1, sup, -, ccx’
SUpP,cro, 17 ELIM(s, x, evB)|?] < co. Let us choose ¢ such that 1 <g < p,,
and let p be the conjugate of g.

L(l=p)V
sup |E[R(s, x, &) 1.5, <, <J ( N') sup E[|M(s, x, evB)|? ]
s<t 0 s<t
xeK: xng

—q Ne A(s, x, ev) 1/q
x sup E[e € Tyenl <1 dv
s<t
xeK;

< C sup sup E[ e 1 Re A(x, s, 313)1] leBlo < p] 1/q

s<t vel[0,1]
xeK

But  A(s, x, &) =3A4%(B, B)+v |§ (1 —u)?/2 D’H(s, x, euvB)(¢B, B, B) du,
so that

[Re A(s, x, ev) — 3 A7(B, B)| 1, , < Cp | BII}
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where the constant C can be chosen uniform in (s, x,v), s<t, xe K",
ve [0, 1]. Therefore,

sup sup E[exp(—q Re A(s, x,ev)) 1.5, <,]
s<t vel0,1]
xeK:.

< sup E[ef(qu/ﬁzfq)(‘ﬁe A(s, x, ev) — (1/2) A(B, B))](pzfq)/pz

s<t,ve[0,1]
xeK;

x
X sup E[ef(pzﬂ)A.\(B, B)]q/pz
s<t
xeK:

1
< CE[e 1811 < 0 as soon as p<—.
[ ] P<3&

We have thus proved that 3p,> 0, such that Vp < p,

i N 8k
Ji (s, x) =exp <32 S(s, X)> > Bils,x) at o(e" 1) (55)
k=0 :

where the O(¢V ') is uniform in (s, x).

Treatment of J, ,. From now on, we fix p such as (55) holds. Here are
some notations we use in the sequel

e When
s<t, AW, - R

1 2 .
(2ol if we
+ oo otherwise

is the rate function for the large deviations of Brownian motion. /A is lower
semi-continuous, and the level sets of A, are compact.

e When k>0, C;={weW,, A,(w)<k},
e When k>0, and 6 >0, C{(6)={weW;, d(w, C¥)<d}.

As being a good rate function, C} N {|lw|,> p} is a compact subset of 7.
Thus the lower semi-continuous function w e ¥+ Re H(s, x, w) + A (w)
reaches its minimum value m(s, x) on Cyn{|w|,>p}. Since s<T”,
we know by Proposition (3.7) that the unique global minimum of
Re H(s, x,- )+ A,(-)=Re F" is 0. Therefore for all s<t, and all
xeK’, m(s,x)>0. The function (s, x)r>m(s, x) being lower semi-
continuous, Im>0 such that Vs<t, VxeK’., VoeCin{|owl,=p},
Re H(s, x, w) + A, () =m.
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Let us fix /m such that 0 < <m. By the lower semi-continuity of
H+ A, we obtain d,>0 and #,< p such that Vo <d,, Vn, no<n<p,
Vs<t, YxeK’, Yoe Ci(d), |ol,<p—n, Re H(s, x, w) + A ,(w) = . For
such (4, 1), let us write

Re H(s, x, ¢B)
|2, (s, x)] SE{CXP <_32> ﬂeBszp}
Re H(s, x, eB)
SE{GXP <—82 Vient,> p—n ﬂsBeCf(é)}
Re H(s, x, eB)
+E [exp <_ e > 1 IeBIl, > p ﬂdx(a:B, Cf)>(5i| . (56)

Let us treat the second term in the right-hand side of (56)
Re H(s, x, eB)=TIm s(y>(s) + \/SB I SmV(y +\/SBM

2 s
+{ fo 2u) o(cB,)

Therefore, 34 > 0 such that Vs <¢, Vxe K,

Re H(s, x, eB)
E [GXP <_62> 1 B, = p ﬂdx(eB, Cf)zo}

A
coo &)L ik
<exp <:;> {eXp< f ﬂ " Pld.(eB. CY) 5577

A I s
<exp () exo ([ |y‘§<u)|2du> PLd,(2B. C1)>0] "

<exp <A> P[eB¢ CX(6)]1"?

where the constant 4 does not depend on (s, x). C¥(J) is an open set of
#;, an the large deviations for the Brownian motion yield (for ¢ sufficiently
small),

PleB¢ CH (o)) <exp <_£12 Ifgk A,(w)>

(-2)
<exp =
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for ¢ sufficiently small. It is then sufficient to take k> A to obtain the
exponential decay.

It remains now to treat the first term in the right-hand side of (56). Let
us choose m, such that 0 <m <, and let us define

H,:[0,t]xR/x#, >R

Re H(s, x,w) if weCi(d) and |ow||,>p—n
(8, x, @) >4 :

m— A () otherwise.
Since C5(5) N {w, |w|,>p—n} is an open set of #;, we W, H (s, X, »)
is lower semi-continuous Vs <t, Vx € RY. Moreover,

9{ H ) b B
E [ exp <—e(zzxg)> Vesecto) Vieni,> pn}

&

<E{exp<—Hl(s’ > 83)”

Using corollary 2.9 in [21] (which can be rendered uniform in (s, x)), we
obtain that Vs <1, Vse K’, for ¢ sufficiently small

o 532 <on )

The proof of Lemma 3.12 is thus complete.
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