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We study in this paper the semi-classical expansion of the Schro� dinger equation,
using a probabilistic approach based on the Wiener measure. Using almost-analytic
extensions, we exhibit a probabilistic ansatz for the wave function. We show that
this ansatz approximates very well the wave function in the semi-classical regime,
and gives the semi-classical expansion under mild hypothesis on the potential at
infinity, and no analyticity conditions. In this paper, the study takes place before
the caustics. � 1996 Academic Press, Inc.

1. Introduction

We give in this paper a new probabilistic approach to the semi-classical
approximation of the Schro� dinger equation, i.e. the behavior when the
Planck's constant � tends to zero, of the solution 8(t, x) of

{i�
�8
�t

+
�2

2
28&V8=0

8(0, x)=f (x) e(i��) s(x)

where f, s, V are smooth functions.
This is indeed an old question, and with no claim of completeness, we

can quote the following references in the physics literature, starting from
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Van Vleck ('28) [23], Feynman ('45) [10], Voros [24], and two recent
surveys in the books of Schulman [20] and Gu� tzwiller [13].

In the mathematical literature, one can distinguish two different
approaches. The first one, for which a good source could be the books of
Guillemin 6 Sternberg [12], and of Robert [19], is purely analytical. This
approach is very complete and efficient, but very far from the physical
picture given by the path integral formalism. The second one tries to stay
closer to this physical intuition and is probabilistic in nature. One can
distinguish there two different lines of attack: the first one is to build
rigorously a Feynman integration, and has been pursued by Albeverio 6
Hoegh-Krohn [3], Elworthy 6 Truman [9], Kallianpur, Kannan 6
Karandikar [15], and more recently by Albeverio 6 Brzez� niak [2]. The
intrinsic limitation of the scope of these results seems to be on the class of
potentials V that can be handled, i.e. V should be a quadratic form, plus
the Fourier transform of a signed measure. This very global hypothesis is
necessary for the rigorous Feynmann integral formalism developed by
Albeverio 6 Hoegh-Krohn.

The second line is to extend analytically the Feynman�Kac formula for
solutions of the heat equation. The general opinion about this very appeal-
ing strategy is resumed by Berezin 6 Shubin [7] when they say that ``it
runs into practically insurmontable difficulties''. We want here to show that
this strategy based on Wiener measure, can indeed be implemented for
general smooth potentials. It must be noticed that if one is ready to assume
very strong analyticity hypothesis on the potentials, this strategy has been
successfully used by Doss [8], and by Azencott 6 Doss [5]. Our trick to
avoid these analyticity assumptions is to use the almost-analytic machinery
introduced by Melin 6 Sjo� strand [18], to complexify the Feynman�Kac
formula. This almost-analytic extension of the Feynman�Kac formula
does not give an exact probabilistic representation of the wave function,
but it enables us to give a probabilistic ansatz which, although it does not
solve the Schro� dinger equation, gives a very good approximation of its
solution; and to which the available stationary phase results on Wiener
space proved in [6], can be applied to get semi-classical expansions in any
Sobolev norm, or uniform norm.

The error between the ansatz and the true solution is of order O(��) in
L2-norm with no assumption on V, except smoothness and essential self-
adjointness of the operator &�2�2 2+V. To get estimates in better norms
is a purely analytical problem. We propose some results in H1-norm, and
uniform norm, which are certainly not optimal. But it should be noticed
that our ansatz gives the semi-classical approximation in a given norm as
soon as the problem is ``semi-classically localizable'' in this norm, which is
a necessary condition for the expansion to be valid (see the discussion of
Section 4.4).
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Our discussion is for this paper, limited to the short time problem, i.e.
before caustics. We expect to extend this approach after caustics in a
forecoming paper.

2. A Probabilistic Ansatz Using Almost-Analytic Extensions

The following assumptions will be made throughout the paper.

H1. f, V, s are C� from Rd to R.

H2. f has compact support K in Rd.

H3. The classical motion defined by V is complete.

Assumption H3 is not essential. It simply avoids to consider explosion
times for the classical trajectories. But it is easy to see that all our results
will be true if we remove H3, and if we limit the study before these explo-
sion times.

2.1. Description of the Probabilistic Ansatz

For each t>0, and each x # Rd, let us consider the classical mechanics
system

#� s+{V(#s)=0, \s�t

{#0=x (C x
t )

#* t+{s(#t)=0

where {V and {s stand for the gradient of the functions V and s, and # is
a continuous path from [0, t] to Rd.

Proposition 2.1. Let V be a smooth potential from Rd to R, such that
the classical motion associated to V is complete. Let K be a compact set
in Rd. Kt=[x # Rd, (C x

t ) has a solution ending at time t in K] is a compact
set of Rd. Moreover, there exists TK>0 such that for all t<TK , for all x in
some open neighborhood Ot of Kt , (C x

t ) has a unique solution #x
t (s). This

solution is C� in x, C1 in t, and ends in K (i.e. #x
t (t) # K ), whenever x # Kt .

Though classical, we give the proof of Proposition 2.1 in Appendix 1.
Let f� , V� , s~ be some almost-analytic continuations of f, V, s. Thus f� , V� , s~

are C� functions from Cd to C satisfying

v V� |R d=V, f� |R d=f, s~ |R d=s;

v \K compact of Rd, \k # N, \:, ; # Nd such that |;|=�d
i=1 ;i�1,

_C>0, such that \x # K, \y # Rd,
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|D(:, ;) f� (x+iy)|�C | y |k

|D(:, ;)V� (x+iy )|�C | y |k

|D(:, ;) s~ (x+iy )|�C | y |k

where D(:, ;)=�|:| +|;|�(�z: 1
1 } } } �z: d

d �z� ; 1
1 } } } �z� ; d

d ), zk=xk+iyk .

The reader is referred to [22] for the definition, existence and elemen-
tary properties of almost-analytic continuations. We just want to underline
that almost-analytic continuations are not unique. Two almost-analytic
continuations differ one from the other by a smooth function, which is flat
on the real axis (i.e. in x), but whose behavior in y near � is free. For this
reason, it can be assumed that f� , s~ , V� are null for | y |�r, for some r>0.
Moreover, since f has compact support, f� can be taken with compact sup-
port in Cd.

From now on, the same notations will be used for f, s, V and their
almost-analytic continuations. Moreover, =2 will denote �. Using these
almost-analytic extensions, we guess that the function 9 (t, x) defined
(whenever it is possible) by

9 (t, x)=E _ f (#x
t (t)+- i=Bt) exp \&

H(t, x, =B)
=2 +& (2)

where H is defined by

H(t, x, =B)=&is(#x
t (t)+- i=Bt)+i |

t

0
V(#x

t (s)+- i=Bs) ds

+
1

- i |
t

0
#* x

t (s) $(=Bs)&
i
2 |

t

0
|#* x

t (s)| 2 ds (3)

should be a good approximation of the solution to Schro� dinger equation.
Before explaining to what extent this assertion is true, we would like to tell
where this ansatz comes from.

Under analyticity assumptions for s, f, V, and additional assumptions for
which we refer the reader to [8], H. Doss has proved in [8] that

E _( feis�=2
)(x+- i=Bt) exp \&i

=2 |
t

o
V(x+- i=Bs) ds+& (4)

is a solution of the Schro� dinger equation.
Extending analytically the Cameron�Martin formula, R. Azencott 6

H. Doss ([5]) have shown that (4) is equal to (2), which is the natural
expression to obtain semi-classical approximations.
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In our context, where the analyticity assumptions are removed, the
analytical extension of Cameron�Martin formula is no longer valid, so that
(2) and (4) are no longer equal. Our goal being here to obtain semi-classi-
cal expansions, we have chosen to work directly on (2).

2.2. Equation Satisfied by the Probabilistic Ansatz

Proposition 2.2. 1. _T r>0 such that 9 can be defined on
[0, T r[_Rd, and is C1, � on this space (that is C1 in t, and C � in x). For
all t<T r, 9 (t, } ) has compact support in K r

t .

2. 9 satisfies the equation

\t<T r, i
�9
�t

+
=2

2
29&

V
=2 9=E[Z(t, x, =, =B) exp&(1�=2) H(t, x, =B)] (5)

where
(a) H is defined by (3), and

(b) Z(t, x, =, =B)= :
j=&1, 0, 1

=2jZj (t, x, =B). (6)

Zj (t, } , |) has compact support in K r
t , and satisfies \k # N, _C>0, such that

\t<T r,

sup
s�t

sup
x # Rd

|Zj (s, x, |)|�C &|&k
t , a.s (7)

where &|&t denotes the uniform norm in C([0, t], Rd ).

3. When the functions f, s, V, are analytic on a strip around the real
axis, then _r0>0 such that Zj (t, x, |) 1&|& t�r0

=0 a.e.

Remark 2.3. Using property (7), one can therefore expect E(Ze&H�= 2
)

to be O(=k) for all k, i.e. the remainder term to be ``small''. This is actually
the case, and will be proved in Section 4.

Proof of Proposition 2.2.

Proof of Proposition 2.2.1. We first prove that � is well defined, at least
for small times. Let K� be the (compact) support of f in Cd

tR2d. Then K�
is a subset of [x+iy, x # K, | y |�r]. Let us define

Kr=[x # Rd, _x~ # K, |x&x~ |�r]

Kr is a compact set in Rd, and we associate to Kr the time T r, and the sets
Kr

t and Or
t , in the same way as in Proposition 2.1, the time TK and the

sets Kt and Ot were associated to K. Whenever #x
t (t) � Kr, 9 (t, x)=0.
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Therefore, the support of 9 (t, } ) is included in K r
t . Moreover, for all t<T r

and all x # K r
t ,

} f (#x
t (t)+- i=Bt) exp \+

i
=2 s(#x

t (t)+- i=Bt)&
i
=2 |

t

0
V(#x

t (s)+- i=Bs) ds+ }
�& f &K� exp \ 1

=2 &Im s&K� + exp \ t
=2 sup

x # � s�t Kr
s

| y |�- 2r
|Im V(x+- iy)|+

where & f &K� =supz # K� | f (z)|.
But, when t<+�, �s�t K r

s is compact. Therefore,

f (#x
t (t)+- i=Bt) exp \&

1
i=2 s(#x

t (t)+- i=Bt)+
1

i=2 |
t

0
V(#x

t (s)+- i=Bs) ds+
is bounded, and expression (2) makes sense for all t<T r, and all x # Rd

(when x � K r
t , (2) is taken equal to 0).

Let us now study the differentiability of 9. Let XH denote the
Hamiltonian vector field associated to V,

XH : Rd_Rd � Rd_Rd

(q, p) [ ( p, &{V(q))

Let ,s(q, p) denote the Hamiltonian flow, that is the flow of diffeo-
morphisms of R2d associated to XH , and ? denote the first projection ?:

Rd_Rd � Rd.

(q, p) [ q.

Let us define .t(q, p)=? b ,t(q, p), and

G(t, q, p)=E _F(.(q, p)+- i=B) exp \&
1

- i= |
t

0
.* s(q, p) $Bs

&
1

2i=2 |
t

0
|.* s(q, p)| 2 ds+& (8)

where for all continuous path | from [0, t] to Cd,

F(|)=f (|t) exp \ i
=2 s(|t)&

i
=2 |

t

0
V(|s) ds+ . (9)

Then 9 (t, x)=G(t, x, #* x
t (0)). The differentiability of G in t is an easy con-

sequence of Itô formula. The differentiability of G in (q, p) follows from the
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differentiability of , and its derivatives in (q, p), and from the smoothness
of the coefficients f, s, V. Proposition 2.1 enables us to conclude that before
the caustics, 9 is C1, �.

Proof of Proposition 2.2.2. Before computing i(�9��t)+(=2�2) 29&
(V�=2)9, we introduce some notations.

v \z # Cd, |z| 2
c =|Re z| 2&|Im z| 2+2i(Re z, Im z),

v Wt=[continuous paths from [0, t] to Rd],

v Wt(C)=[continuous paths from [0, t] to Cd].

Wt and Wt(C) are endowed with the uniform convergence topology,
denoted by & }&t .

Denote for every function F : Wt(C) � R Fre� chet differentiable (with
derivative dF ), for all | # Wt(C), and all h # Wt ,

DrF(|) h=dF(|) } h, DiF(|) h=dF(|) } (ih)

DF= 1
2 (DrF&iDiF ), D� F= 1

2(DrF+iDiF ).

Finally, let 3 be a bounded domain in Rn, and ( gs(%), s�t) a path in
Wt(C), depending smoothly on % # 3. We define for all k # N and all p>1,
the space

Dg
p, k(3)={F : Wt(C) [ R, k-times Frechet differentiable, such that

:
l�k

sup
% # 3

&|d (l )F(g(%)+- i=B)|HS&L p<+�=
where | } |HS denotes the Hilbert�Schmidt norm.

We have then the following lemma:

Lemma 2.4. Let ( gs(%), s�t) a path in Wt(C), depending smoothly on
% # 3, and 2-times continuously differentiable in s. Assume that F is in
Dg

p, k(3) for some k�2, and some p>1. Let us define

G(t, %)=E _F(g(%)+- i=B) exp \&
1

- i= |
t

0
g* s(%) $Bs&

1
2i=2 |

t

0
|g* s(%)| 2

c ds+& .

Then G is (k&1)-differentiable in 3, and \j # [1, ...n], \% # 3,

�G
�%j

(t, %)=E _\Dr F }
�gr

0

�%j
+DiF }

�gi
0

�%j
+(1+i ) D� F } \�gr

�%j
&

�gr
0

�%j
&

�gi

�%j
+

�gi
0

�%j++
_exp \&

1

- i = |
t

0
g* s $Bs&

1
2i=2 |

t

0
| g* s | 2

c ds+& (11)
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where

1. the derivatives of F are evaluated at g(%)+- i=B;

2. g and its derivatives are evaluated at %;

3. �gl
0 ��%j (l=r, i ) denotes the constant path in Rd : s [ �gl

0 ��%j .

The reader is referred to Appendix 2 for the proof of Lemma 2.4. From
Lemma 2.4, we get

Lemma 2.5.

i
�9
�t

+
=2

2
29&

V
=2 9=i

�G
�t

+
=2

2
2q G&

V
=2 G+E _Z exp \&

H
=2+& (12)

where Z satisfies (6) and (7), and G is defined by (8).

Proof of Lemma 2.5. A simple computation yields

i
�9
�t

+
=2

2
29&

V
=2 9

=i
�G
�t

+
=2

2
2q G&

V
=2 G+

=2

2
�G
�p

2x #* x
t (0)+i

�G
�p

}
�#* x

t (0)
�t

+=2 Trace \ �2G
�q �p

�#* x
t (0)
�x ++

=2

2
Trace \�2G

�p2

�#* x
t (0)
�x \�#* x

t (0)
�x +

t

+
where

�2G
�q �p

=\ �2G
�qi �pj + i, j

,
�2G
�p2 =\ �2G

�pi �pj+ i, j
,

2qG= :
d

i=1

�2G
�q2

i

,
�G
�p

=\�G
�pj+ j

,

�#* x
t (0)
�x

=\�#* x, i
t (0)
�xj + i, j

, 2x#* x
t (0)= :

d

i=1

�2#* x
t (0)

�x2
i

.

In order to compute �G��p, let us apply Lemma 2.4 with n=2d, %=(q, p),
F defined by (9), and the real path g(%)=.(q, p). It is clear that F is in
all the spaces D.

p, k(Or
t) (remember that f (.u+- i=Bu), s(.u+- i=Bu),

V(.u+- i=Bu) are null whenever |=Bu |�- 2 r). Since .0(q, p)=q, (11)
leads to

�G
�pj

(t, x, #* x
t (0))=E _exp \&

1
=2 H(t, x, =B)+ Mj (t, x, =, =B)&
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where H is defined by (3) and

Mj=(1+i ) _� f
�z�

}
�.t

�pj
+

f
i=2 \&

�s
�z�

}
�.t

�pj
+|

t

0

�V
�z�

}
�.s

�pj
ds+& .

In the preceding expression, s, f and their derivatives are evaluated at
#x

t (t)+- i=Bt ; the derivates of V at #x
t (s)+- i=Bs ; and the derivatives of .

at (x, #* x
t (0)). Moreover, the notation (� f��z� ) } r stands for �d

i=1 (� f��z� i ) ri .
Thus, the almost-analyticity of f, s, V enables us to conclude that

�G
�p \

=2

2
2x#* x

t (0)+i
�#* xt (0)

�t +=E _exp&(1�=2) HZ \=2

2
2x#* x

t (0)+i
�#* x

t (0)
�t +&

with Z satisfying (6) and (7).
The same kind of arguments holds for the terms involving �2G��q �p,

and �2G��p2. They also have the form E[exp(&(1�=2) H ) Z], with Z more
complicated than previously, but involving only �� -derivatives of f, s, V.
This completes the proof of Lemma 2.5. K

It remains now to compute i(�G��t)+(=2�2) 2q G&(V�=2) G. It is done in

Lemma 2.6.

i
�G
�t

+
=2

2
2q G&

V
=2 G=E _Z exp \&

H
=2+&

where Z satisfies (6) and (7).

Proof of Lemma 2.6. To prove Lemma 2.6, we introduce the process
(Xs(q, p, z, y))s�t , defined by

{
X 1

s =.s (q, p)

X 2
s =.* s(q, p)

X 3
s =z+.s(q, p)&q+- i=Bs

X 4
s =y&

i
=2 |

s

0
V(X 3

u) du&
1

- i= |
s

0
X 2

u$Bu&
1

2i=2 |
s

0
|X 2

u | 2 du

(Xs) is an homogeneous diffusion process with value in Rd_Rd_Cd_C,
and with initial condition (q, p, z, y).

For all suitable function r: Rd_Rd_Cd_C � R, define

6sr(q, p, z, y)=E[r(Xs(q, p, z, y ))].
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For r(q, p, z, y)=f (z) exp(+(i�=2) s(z)) exp( y ), we get

6t r(q, p, z, y).ut(q, p, z) e y (13)

G(t, q, p) exp( y)=6t r(q, p, q, y) (14)

so that

G(t, q, p)=ut(q, p, q). (15)

Itô formula (applied in R4d+2) gives us the Meyer decomposition of the
process (6t&s r(Xs), s�t). But, from the Markov property, (6t&s r(Xs),
s�t) is a martingale. Writing that its bounded variation part is null for
s=0, yields

&
�6t r

�t
+

�6t r
�q

} p&{V(q) }
�6tr

�p
+

�6t r
�z

} p+
�6tr

�y
} \ 1

i=2 V(z)&
1

2i=2 | p| 2+
+

�6tr
�z�

} p+
�6tr

�y�
} \&

1
i=2 V� (z)+

1
2i=2 | p| 2++

i=2

2
2z6tr&

i=2

2
2z� 6t r

+=22z, z� 6t r+
| p| 2

2i=2

�26t r
�y2 &

| p| 2

2i=2

�26tr
�y� 2 +

| p| 2

=2

�26t r
�y �y�

&
�26t r
�y �z

} p

+i
�26tr
�y �z�

} p&i
�26tr
�y� �z

} p&
�26t r
�y� �z�

} p=0 (16)

where 2z=�d
i=1 �2��z2

i , 2z� =�d
i=1 �2��z� 2i , 2z, z� =�d

i=1 �2��zi �z� i , �2��y �z=
(�2��y �zi ) i , and so on...

Equation (13) implies that �6t r��y� =0, and �6tr��y=6tr. (16) reads
then

&
�ut

�t
+

�ut

�q
} p&{V(q) }

�ut

�p
+

1
i=2 V(z) ut

+(1+i )
�ut

�z�
} p+

i=2

2
2zut&

i=2

2
2z� ut+=22z, z� ut=0. (17)

Using (15), it follows that

i
�G
�t

+
=2

2
2q G&

V
=2 G

=i
�ut

�q
} p&i{V(q) }

�ut

�p
+

=2

2
2q ut+=22q, zut+=22q, z� ut

+(&1+i )
�ut

�z�
} p+=22z� ut+(1+i ) =22z, z� ut . (18)
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But ut(q, p, z)=E[F(z+.(q, p)&q+- i=B)

exp \&
1

- i= |
t

0
.* s(q, p) $Bs&

1
2i=2 |

t

0
|.* s(q, p)| 2 ds+& .

Apply Lemma 2.4 with n=4d, %=(q, p, z) # Rd_Rd_Cd, and g(%)=
z+.(q, p)&q. Since �gr

0 ��pj=�gi
0 ��pj=0, �gr

0��qj=�gi
0 ��qj=0, the terms

in (18) involving �ut ��p, �ut��q, 2q ut , 2q, zut , 2q, z� ut , have the form
E[exp&1�= 2 H Z] with Z satisfying properties (6) and (7) of Proposition 2.2.
From �gr

0 ��zr
j =�gi

0 ��zi
j=ej , and �gr

0 ��zi
j=�gi

0��zr
j =0, we obtain

�ut

�z� j
=E _D� F } ej exp \&

1

- i= |
t

0
.* s $Bs&

1
2i=2 |

t

0
|.* s | 2 ds+& .

This ends the proof of Lemma 2.6. K

Proof of Proposition 2.2.3. When the functions f, s, V are analytic on a
strip around the real axis, their almost-analytic continuations can be
chosen analytic around the real axis. In this case, assertion 3 is satisfied,
since Zj is a function of the �� -derivatives of f, V, s.

This ends the proof of Proposition 2.2. K

3. Semi-classical Expansion of the Probabilistic Ansatz

The aim of this section is to obtain the semi-classical expansion of 9.
Since 9 has the form E[Z exp(&H�=2)], this will be done by the station-
ary phase method in the Wiener space. For this reason, section 3.1 is
devoted to the study of the critical points of the phase function.

3.1. Critical Points of Phase Function

We denote by Ht the space of continuous paths from [0, t] to Rd, start-
ing from 0, absolutely continuous with respect to Lebesgue measure on
[0, t], and whose derivative is square integrable. Ht is an Hilbert space,
with respect to inner product (h, k) Ht=�t

0 h4 s } k4 s ds.
Let us then consider the phase function

F x, r
t : Ht � C

h [ &is(#x
t (t)+- iht)+i |

t

0
V(#x

t (s)+- ihs) ds

+
1

- i |
t

0
#* x

t (s) h4 s ds&
i
2 |

t

0
|#* x

t (s)| 2 ds+
1
2 |

t

0
|h4 s | 2 ds (19)
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The superscript r in F x, r
t recalls the dependence of s and V on r. Therefore,

iF x, r
t is just the classical action defined by

S x
t : Ht � R

(20)
h [ s(x+ht)&|

t

0
V(x+hs) ds+

1
2 |

t

0
|h4 s | 2 ds

taken on the complex path #x
t +- ih. When S x

t is considered as an operator
acting on real paths, it is a well-known fact that its critical points are the
classical mechanics trajectories, and that before the caustics, S x

t has a
unique critical point, which is a non degenerate minimum of Sx

t . The ques-
tion is now to prove that this remains true, when the paths are allowed to
visit a neighborhood of the real axis in the complex domain. This is the
object of

Proposition 3.7. Let K be the compact support of f in Rd. Let us fix
t<TK . Then, _r>0 such that

1. t<T r�TK ;
2. \x # K r

t , h#0 is the unique critical point of the phase function F x, r
t ,

and this critical point is non degenerate.
3. \x # K r

t , h#0 is the unique minimum of the real part of F x, r
t , and

this minimum is non degenerate.

Proof of Proposition 3.7. The first part of Proposition 3.7 is trivial.
Actually, it is sufficient to note that, when r � 0, Kr decreases to K, and
thus T r increases to TK .

Let us prove the second assertion of the proposition. Let h and k be
elements of Ht . Denoting by l the complex path #x

t +- ih, we have

DF x, r
t (h) } k=&i - i �s(lt) } kt&i - i �� s(lt) } kt

+i - i |
t

0
�V(ls) } ks ds+i - i |

t

0
�� V(ls) } ks ds

+
1

- i |
t

0
#* x

t (s) k4 s ds+|
t

0
h4 sk4 s ds

=&i - i (�&i�� ) s(lt) } kt+
1

- i
#* x

t (t) kt+h4 t kt

+i - i |
t

0
(�&i�� ) V(ls) } ks ds&

1

- i |
t

0
#� xt (s) ks ds&|

t

0
h� sks ds

=&i - i [l4 t+(�&i�� ) s(lt)] } kt

+i - i |
t

0
[l� s+(�&i�� ) V(ls)] ks ds.
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Thus, h is a critical point of the phase function F x, r
t if and only if l=

#x
t +- i h is solution to

l� s+(�&i�� ) V(ls)=0, \s�t (21)

l0=x (22)

l4 t+(�&i�� ) s(lt)=0. (23)

From the almost analyticity of V and s, it follows that \z # Rd, �� V(z)=
�� s(z)=0, and that �V(z)={V(z), �s(z)={s(z). It is then equivalent to say
that h#0 is a critical point, and that #x

t satisfies (C x
t ).

Let us look at the degeneracy of 0 as a critical point. A straightforward
computation leads to

D2F x, r
t (0)(h, h)=s"(#x

t (t))(ht , ht)&|
t

0
V"(#x

t (s))(hs , hs) ds+|
t

0
|h4 s | 2 ds

=D2Sx
t (#x

t &x)(h, h) (24)

where the operator S x
t is the classical action, defined by (20).

But it is a well-known fact that before the caustics (i.e. t<TK ), the classi-
cal trajectories are non degenerate minima of the action, so that 0 is a non
degenerate critical point of F x, r

t .
It remains now to prove the uniqueness of 0 as a critical point of F x, r

t ,
at least for small values of r. For this purpose, it is worth to investigate the
meaning of the non-degeneracy of 0. First of all, note that

D2F x, r
t (0)(h, k)=D2S x

t (#x
t &x)(h, k)=Ax

t (h, k)+(h, k)Ht (25)

where the operator Ax
t is defined on Ht by

Ax
t (h, k)=s"(#x

t (t))(ht , kt)&|
t

0
V"(#x

t (s))(hs , ks) ds (26)

and satisfies for some constant C (depending on x and t),

|Ax
t (h, k)|�C &h&t &k&t (27)

Ax
t defines thus a continuous quadratic form on the space C0([0, t]) of

continuous paths starting from 0, endowed with uniform convergence. It
results then from a result of L. Gross [11], that Ax

t is a trace operator on
Ht , so that there is a basis of Ht formed by eigenfunctions of Ax

t . The non-
degeneracy of #x

t means therefore that for all t<T r, and all x # K r
t , there

exists :x
t >0 such that

\h # Ht , |D2F x, r
t (0)(h, h)|�:x

t &h&2
Ht

. (28)
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Moreover, the function x [ :x
t is lower semi-continuous. Indeed, :x

t &1 is
the lowest eigenvalue of Ax

t , i.e.

:x
t &1=inf(Ax

t (h, h), h # Ht , &h&Ht=1) (29)

where the extremum is reached, since Ax
t is a trace operator. Thus, \r>0,

x [ :x
t reaches its minimum value on the compact set K r

t . We have then
proved the following assertion:

\r>0 such that t<T r, there exists :(r)>0, such that

\x # K r
t , \h # Ht , D2S x

t (#x
t &x)(h, h)�:(r)&h&2

Ht
. (30)

Note that the lower semi-continuity of x [ :x
t implies that

lim inf
r � 0

:(r)�Min
x # K t

:x
t >0.

We are now going to estimate D2F x, r
t (0) on a critical point of the phase

function F x, r
t . Using integration by parts, we can rewrite for all h in Ht

D2F x, r
t (0)(h, h)=(s"(#x

t (t)) ht+h4 t , ht)&|
t

0
(h� s+V"(#x

t (s)) hs , hs) ds. (31)

When h is a critical point of F x, r
t , each of these terms can be evaluated in

view of expressions (23) and (21).
Using a Taylor expansion of (�&i�� ) s(#x

t (t)+- i ht) around #x
t (t) to

rewrite (23), we obtain

0=- i (h4 t+s"(#x
t (t)) ht)

+i |
1

0
(1&u) �3s(#x

t (t)+- i uht)(ht , ht) du

+|
1

0
(1&u) �2�� s(#x

t (t)+- i uht)(ht , ht) du

&i - i |
1

0
��� s(#x

t (t)+- i uht)(ht) du&i �� s(#x
t (t)+- iht).

Thus,

|h4 t+s"(#x
t (t)) ht |�{C(r)+ sup

x # K r
| y |�- 2r

( |�3s(x+- i y)|

+|�2�� s(x+- iy)| )= |ht | 2
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where the constant C(r) comes from the last two terms, and from the
almost-analyticity of s. We deduce then that \r>0 such that t<T r, there
exists C(r)>0 such that \x # K r

t , \h # Ht critical point of F x, r
t ,

|h4 t+s"(#x
t (t)) ht |�C(r)|ht | 2. (32)

Note that C(r) remains bounded when r � 0 (C(r) ww�r � 0 supx # K |s(3)(x)| ).
We rewrite expression (21) in the same way to obtain that \r>0 such

that t<T r, there exists C(r)>0 such that \x # K r
t , \h # Ht critical point

of F x, r
t , \s�t,

|h� s+V"(#x
t (s)) hs |�C(r)|hs | 2. (33)

Again, the constant C(r) remains bounded when r � 0.
Comparing (32), (33), and (31), it follows that there exists C1 , C2>0

such that \r # ]0, 1] such that t<T r, \x # K r
t , \h # Ht critical point of F x, r

t ,

&D2F x, r
t (0)(h, h)&�C1 &h&3

t �C2 &h&3
Ht

. (34)

From (30) and (34), it follows that _:>0, _c>0 such that \r # ]0, 1]
such that t<T r, \x # K r

t , \h # Ht critical point of F x, r
t such that &h&Ht{0,

:�C &h&Ht . (35)

We need then the following lemma to conclude.

Lemma 3.8. _C� >0 such that \r # ]0, 1] such that t<T r, \x # K r
t ,

\h # Ht critical point of F x, r
t ,

&h&Ht�C� r.

Assume that Lemma 3.8 is true, and that \r>0, there is a critical point
h of F x, r

t such that &h&Ht{0. From (35) and Lemma 3.8, it results then
that :�CC� r, for all r # ]0, 1].

Therefore, when r is sufficiently small, h=0 is the unique critical point
of F x, r

t . K

Proof of Lemma 3.8. Let h be a critical point of F x, r
t such that

&h&Ht{0. By integration by parts, it follows from (21) and (23) that

i &h&2
Ht

=&[#* x
t (t)+(�&i�� ) s(#x

t (t)+- i ht)] - i ht

+|
t

0
[#� x

t (s)+(�&i�� ) V(#x
t (s)+- ihs)] - ihs ds. (36)
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Using (C x
t ) and a Taylor expansion of (�&i�� ) s(#x

t (t)+- iht) around
#x

t (t), it follows that

|#* x
t (t)+(�&i�� ) s(#x

t (t)+- i ht)|

�|
1

0
|(�&i�� )2 s(#x

t (t)+- i uht)| |ht | du

�|
1

0
|(�&i�� )2 s(#x

t (t)+- i uht)| 1u |ht |�- 2r |ht | du

�C1(r) |
1

0
1u |h t |�- 2r d(u |ht | )

�C2(r) r with C2(r) bounded when r � 0.

In the same way, it is easy to prove that \s�t,

|#� x
t (s)+(�&i�� ) V(#x

t (s)+- i hs)|�C3(r) r, with C3(r) bounded.

Therefore,

&h&2
Ht

�C4(r) r \ |ht |+|
t

0
|hs | ds+�2C4(r) r &h&t�C� (r) &h&Ht

so that &h&Ht�C� (r) r.
In order to apply stationary phase method, we have now to look at the

global minima of the real part of F x, r
t . It is done in exactly the same way

as for the critical points of F x, r
t , so we omit the proof of the third assertion

of Proposition 3.7. K

3.2. Asymptotic Expansion of 9

We are now able to give the asymptotic expansion when = � 0, of 9. The
result is the following

Proposition 3.9. Let t<TK , and r be as in Proposition 3.7. For all
x # Rd,

9 (t, x)=exp \ i
=2 S(t, x)+ :

N

k=0

;k(t, x)
=2k

(2k)!
+O(=2(N+1)) (37)

where

1. the support of ;k(t, } ) is included in Kt .

2. ;0(t, x)=f (#x
t (t)) det(D2S x

t (#x
t &x))&1�2 (38)

where S x
t is defined by (20).
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3. S(t, x)=S x
t (#x

t &x)=s(#x
t (t))&�t

0 V(#x
t (s)) ds+ 1

2 �t
0 |#* x

t (s)| 2 ds
4. the remaining term O(=2(N+1)) can be understood in any Sobolev

norm, or in C�-norm.

Remark 3.10. It should be noted that although we have given only the
expression of the first term ;0 , there is an explicit way of computing all the
other terms (see the remark following Lemma 3.12).

Remark 3.11. The usual expression for ;0 is

;0(t, x)= } �#x
t (t)
�x }

1�2

f (#x
t (t)). (39)

To see that (38) and (39) coincide is classical (see for instance [1]).

Proof of Proposition 3.9. It would be sufficient to apply Theorem 7 of
[6] to obtain Proposition 3.9. In our context, the proof of this theorem is
much easier, so that we give it for the sake of completeness. The main fact
is the following lemma, whose proof is given in Appendix 3.

Lemma 3.12. Let t<TK , and r be as in Proposition 3.7. Let
L: [0, T ]_Rd_Wt � R be such that

1. \x # Rd, the process L( } , x, } ) is progressively measurable, and
\s�t, \x # Rd, | # Ws [ L(s, x, |) is C �.

2. \s�t, \| # Ws , L(s, } , |) has compact support in K r
s .

3. \k # N, sups�t supx # R d sup| # Ws &DkL(s, x, |)&<�

where DkL denotes the k-th derivative of L in |.
Let us consider for all s�t, and all x # Rd,

J=(s, x)=E _L(s, x, =B) exp \&
1
=2 H(s, x, =B)+& .

Then,

J=(s, x)=exp \ i
=2 S(s, x)+ :

N

p=0

=2p

(2p)!
;p(s, x)+O(=2(N+1)) (40)

where

v The O(=2(N+1)) is uniform in (s, x) # [0, t]_Rd.

v ;0(s, x)=L(s, x, 0) det&1�2(D2S x
s (#x

s &x)).

v ;p(s, } ) has compact support in K r
s .
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Moreover, if there exists r0>0 such that \s�t, \|, &|&s�r0 ,
L(s, x, |)#0, then J=(s, x) is exponentially small.

Remark 3.13. ;p(s, x) can be expressed as

;p(s, x)=E[Zp(s, x) exp&(1�2) As
x (B, B)],

where Zp(s, x) is an element of the (6p)-th Wiener chaos, and Ax
s is defined

by (26). It is then possible to compute the expression of ;p in the following
way. Let ( f x

s (i )) denote an orthonormal basis (in Hs) of eigenfunctions of
Ax

s (eigenvalues (:x
s (i ))), and let (!x

s (i )) denote the corresponding basis of
the first Wiener chaos. If for all J=( j1 , ..., jm),

HJ (!x
s )= `

m

k=1

1

- jk !
Hjk (!x

s (k))

(where Hj is the j-th Hermite polynomial), then (HJ (!x
s ))J=( j 1 , ..., j m); � j i�6p

form a basis of the 6p-th Wiener chaos. Therefore, one can write Zp(s, x)=
�J, |J |�6p cJ (s, x) HJ (!x

s ). The expression of ;p is then

;p(s, x)=det&1�2(D2S x
s (#x

s &x)) :

| J |�6p
J=( j 1 , ..., jm)

cJ (&1)m HJ (0)

_ `
m

k=1
� |:x

s ( jk)|
1+:x

s ( jk)
.

To get the result of Proposition 3.9 in uniform norm, it is sufficient to
apply Lemma 3.12 with L(s, x, |)=f (#x

s (s)+- i|s), which satisfies tri-
vially Assumptions 1�3.

To get the result in C1-norm, let us consider the first derivatives of 9.
As in Section 2.2, we write that 9 (s, x)=G(s, x, #* x

s (0)). It follows that

�9
�x

(s, x)=
�G
�q

(s, x, #* x
s (0))+

�G
�p

(s, x, #* x
s (0)) }

�#* x
s (0)
�x

.

Applying Lemma 2.4, it appears that �9��x(s, x) can again be expressed as

:
j=&1, 0, 1

=2 jE _Lj (s, x, =B) exp \&
H
=2+&

where

v For j=&1, 0, 1, Lj (s, x, |) satisfies Assumptions 1�3 of Lemma 3.12.

v For j=&1, 1, \k # N, _C such that \x # K r
s , &Lj (s, x, |)&�C &|&k

s .
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Lemma 3.12 yields then the result of Proposition 3.9 in C1-norm. The same
kind of arguments holds for the other derivatives. The assertion concerning
the Sobolev norms is then straightforward, since everything happens inside
the compact K r

t .

4. Using the Probabilistic Ansatz to Get Semi-classical

Estimates on the Wave Function

We prove in this section that our probabilistic ansatz is a good
approximation of the wave function 8 solution of the Schro� dinger equa-
tion, in various norms. We begin by the L2-norm, for which the hypothesis
needed on V is minimal (we just require the Schro� dinger operator to be
essentially self-adjoint). To get better norms, we have to strengthen our
hypothesis on V. We treat the case of H1-norm, and uniform norm, but as
already said in the introduction, we do not claim here for optimality in our
hypothesis on the potential.

4.1. L2-Estimates

We will assume in this section that

H4. The operator A.&(�2�2) 2+V defined on C �
c (that is, the set of

smooth functions with compact support in Rd ) is essentially self-adjoint.
Under this assumption, the Schro� dinger equation has a unique solution
8(t, x) in L2(Rd, dx).

Proposition 4.14. Let t<TK and r be as in Proposition 3.7. Under
assumptions H1�4, \k # N, _C>0 such that

sup
s�t

&8(s, } )&9 (s, } )&L 2 ( R d, dx)�C=k.

Therefore, the semi-classical expansion given in Proposition 3.9 is also valid
for 8 in L2-norm.

If the functions V, s, f are analytic on a strip around the real axis, the
L2-error between 9 and 8 is exponentially small.

Proof of Proposition 4.14. Before proving Proposition 4.14, we are
going to demonstrate the following lemma, which will be useful in the
sequel.

Lemma 4.15. Let Es(x) and Gs(x) be two functions from R+_Rd to C,
such that
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v \s, Es and Gs are in L2(Rd, dx).

v {i�
�Es

�s
(x)=AEs(x)+Gs(x)

E0(x)#0.

Let {=sup[t, sups�t &Es&L 2 (R d )<�]. Then, for all t<{,

� sup
s�t

&Es &L 2 (R d )�2 |
t

0
&Gu&L 2 (R d ) du

We adopt here the convention that sup<=0.

Proof of Lemma 4.15.

i� &Es&2
L2 (R d )=i� &E0&2

L 2(R d )+|
s

0
i�

�
�u

&Eu&2
L 2 (Rd ) du

=|
s

0 �i�
�Eu

�u
, Eu�L 2( R d )

du&|
s

0 �Eu , i�
�Eu

�u �L2( R d )

du

where the minus sign comes from the complex conjugation. Thus,

i� &Es&2
L 2 (Rd )=|

s

0
(AEu+Gu , Eu) L2 (R d ) du&|

s

0
(Eu , AEu+Gu) L 2 (Rd ) du

=|
s

0
(Gu , Eu) L 2 (Rd ) du&|

s

0
(Eu , Gu) L2 (R d ) du

since A is a symmetric operator. Therefore, for all s�t,

� &Es&2
L 2 (Rd )�2 |

s

0
&Gu&L2 (R d ) &Eu &L2 (Rd ) du.

Taking the supremum over s, it follows that

�(sup
s�t

&Es&L 2 (R d ))
2�2(sup

s�t
&Es&L 2 (Rd )) |

t

0
&Gu&L 2(R d ) du.

For t<{, � sups�t &Es&L2 (R d )�2 �t
0 &Gu&L2(Rd ) du, and the proof of

Lemma 4.15 is complete. K

We return now to the proof of Proposition 4.14. Define for all s�t the
error function Es :

Rd � C

x [ 9 (s, x)&8(s, x).
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When t<TK 7 {, Lemma 4.15 and Proposition 2.2 yield

� sup
s�t

&Es&L 2 (R d )�2t sup
s�t

&Gs&L 2(R d )

where Gs is the right-hand term in (5), that is

Gs (x)=E _Z(s, x, =, =B) exp \&
1
=2 H(s, x, =B)+&

with Z satisfying (6) and (7). We recall that Gs has compact support in K r
s ,

so that

sup
s�t

&Gs &L2 (R d )�meas \.
s�t

K r
s+

1�2

sup
s�t

sup
x # Kr

s

|Gs(x)|

�meas \.
s�t

K r
s+

1�2

:
j=&1, 0, 1

=2 j sup
s�t, x # K r

s

|E[Zj exp&H�=2
]|

�C(t, =, r) sup
s�t, x # Kr

s

|E [exp&R=H�= 2
]|

where we have used the estimates (7) on the coefficients Zj .
Therefore, for all t<TK , sups�t &Gs&L 2 (Rd )<�. Hence, {�TK , and

\t<TK ,

� sup
s�t

&Es &L 2 (R d )�2t sup
s�t

&Gs&L 2(R d ) .

We estimate now &Gs&L 2(Rd ) using Lemma 3.12.

Gs(x)=exp \ i
=2 S(s, x)+ :

j=&1, 0, 1

:
N&j

k=0

: j
k(s, x) =2(k+j )+O(=2(N+1)).

The coefficients : j
k are defined by

: j
k (s, x)=

1
(2k)!

E[% (2k)
j (s, x, 0)]

where % (2k)
j (s, x, =) is the (2k)-th derivative in = of

%j (s, x, =)#Zj (s, x, =B) exp(&D2H(s, x, =B)(B } B)).

Using the estimates of Zj given in Proposition 2.2, it follows that \ j, \k,
: j

k (s, x)=0.
Furthermore, when f, V, s are analytic in a strip around the real axis,

Z(s, x, |) 1&|& s�r0
=0; so it follows from Lemma 3.12 that the L2-error

between 8 and 9 is exponentially small. K

263SEMI-CLASSICAL APPROXIMATIONS



File: 580J 284522 . By:CV . Date:07:07:07 . Time:08:57 LOP8M. V8.0. Page 01:01
Codes: 2586 Signs: 1505 . Length: 45 pic 0 pts, 190 mm

4.2. H1-Estimates

We consider here the space H1(Rd, dx) of functions f # L2(Rd, dx), which
are absolutely continuous with respect to Lebesgue measure, and whose
derivative is in L2(Rd, dx). Instead of H4, we assume here the stronger
condition

H5. V�&C0 for some constant C0 .

Under H5, H4 is automatically satisfied (see Theorem 1.1, Chapter 3 in
[7]) and the wave function is (as a function of x), in H 1 (see Proposition
1.1, Chapter 3 in [7]).

Proposition 4.16. Let t<TK and r be as in Proposition 3.7. Under
assumptions H1-3, H5, \k # N, _C>0 such that

&8(t, } )&9 (t, } )&H1 (Rd, dx)�C=k.

Therefore, the semi-classical expansion given in Proposition 3.9 is also valid
for 8 in H1-norm.

Here again, if the functions V, s, f are analytic on a strip around the real
axis, the H 1-error between 9 and 8 is exponentially small.

Proof of Proposition 4.16. We use the same notations as in the proof of
Proposition 4.14.

�2

2
&{Et&

2
L 2=

�2

2 | |{Et(x)| 2 dx

=&
�2

2
(2Et , Et)L 2

=( (A&V ) Et , Et) L 2

�(AEt , Et) L 2+C0 &Et&
2
L 2

�(C0+&AEt&L 2)&Et&L2 .

But, 9 (t, } ) and 8(t, } ) are in the domain of the Schro� dinger operator, so
that &AEt &L2<�. Proposition 4.16 follows then from Proposition 4.14. K

4.3. Sobolev and C�-Estimates

The space in consideration is C�(Rd, C), i.e. the space of functions
f : Rd � C, which are infinitely differentiable. This space is endowed with
the uniform norms of f and its derivatives. We will assume that

H6. The derivatives of V of order greater than 2 are bounded, and the
wave function 8 is C� in x with derivatives in L2(Rd, dx).
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Under H6, H4 is automatically satisfied (see Theorem 1.1, Chapter 3
in [7]).

Proposition 4.17. Let t<TK and r be as in Proposition 3.7. Under
Assumptions H1-3, H6, \k # N, \l # N, _C>0 such that

sup
s�t

&8(s, } )&9 (s, } )&H l (R d, dx)�C=k.

Therefore, the semi-classical expansion given in Proposition 3.9 is valid for 8
in any Sobolev norm, and hence in C�-norm.

Here again, if the functions V, s, f are analytic on a strip around the real
axis, the H l-error between 9 and 8 is exponentially small.

Proof of Proposition 4.17. During the proof, we will use the following
notations.

v If M # Nd, M=(m1 , ..., md ), |M|=�d
i=1 mi .

v If M, L # Nd, M�L.(m1+l1 , ..., md+ld ).

v If M, L # Nd, we say that L�M iff \ j # [1, ..., d], lj�mj . In this
case, we will denote M � L.(m1&l1 , ..., md&ld ). Moreover, we will say
that L<M, iff L�M, and _ j # [1, ..., d] such that lj<mj .

v If M # Nd, and f # C�(Rd, C), DMf.�|M| f�(�xm1
1 } } } �xmd

d ).

v If m, l # N, l�m, and f # C�(Rd, C),

& f &l, m.�m&l :
M, |M |=m

:

L�M
L, |L|=l "\

�V
�x1+

l1

} } } \ �V
�xd+

l d

DM�Lf "L2

& f &m. :
m

l=0

& f &l, m

_ f _m. :
m

l=0

& f &l .

Hence _ f _0=& f &0=& f &L 2 ,

& f &1= :
d

i=1

� " �f
�xi"L2

+ :
d

i=1
"�V

�xi
f "L 2

,

so that � & f &H 1�_ f1_ for ��1. \m # N, �m & f &H m�_ f _m for ��1.
We are going to prove that all m # N, _C such that \��1, \s�t

� sup
u�s

_Eu_m�C sup
u�s

_Gu_m . (41)
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This is done by induction on m. For m=0, (41) reduces to

� sup
u�s

&Eu&L2�C sup
u�s

&Gu&L 2

which has already been proved under assumption H4.
Let us assume that (41) is true for all n�m&1. Let

{m.sup[t, sup
s�t

_Es _m<�].

We claim that
\m�1, _C such that \s�t, s<{m , \��1,

� sup
u�s

&Eu&m�C sup
u�s

&Gu&m+C�2 sup
u�s

_Eu_m&1. (42)

Thus, the induction hypothesis and (42) allow one to say that \s�t,
s<{m , \��1,

� sup
u�s

_Eu_m�C sup
u�s

_Gu_m .

But, exactly in the same way as in the proof of Proposition 4.14, one can
see that \t<TK , supu�t _Gu_m<�. Hence, {m�TK , and (41) follows.

Let us prove (42). To this purpose, it is sufficient to show that for all
m�1, \l�m&1, _C such that \s�t, s<{m , \��1,

� &Es&l, m�C sup
u�s

&Gu &m+C�2 sup
u�s

_Eu_m&1+C� |
s

0
&Eu&l+1, m du. (43)

Indeed, we derive from (43) that \l�m&1,

� &Es&l, m�C sup
u�s

&Gu &m+C�2 sup
u�s

_Eu_m&1+C� |
s

0
&Eu&m, m du (44)

with

&Eu&m, m= :
M, |M|=m "\

�V
�x1+

m 1

} } } \ �V
�xd+

md

Eu"L 2
.

But,

i�
�
�s \_

�V
�x1&

m1

} } } _ �V
�xd&

md

Es+
=_ �V

�x1&
m1

} } } _ �V
�xd&

md

\i�
�Es

�s +
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=A \_ �V
�x1&

m1

} } } _ �V
�xd&

md

Es++__ �V
�x1&

m1

} } } _ �V
�xd&

md

; &�22& Es

+_ �V
�x1&

m1

} } } _ �V
�xd&

md

Gs

where [B; A] denotes the commutator of the operators A and B. Now, for
all f, g in C�(Rd, C), [ f, &2] g=2fg+2 { f } {g. Hence, using H6,

"__ �V
�x1&

m1

} } } _�V
�xd&

md

; &�22& Es"L 2
�C�2 &Es&m&1, m&1+C� &Es&m&1, m .

Lemma 4.15 then yields that \s�t, s�{m ,

� &Es&m, m�C sup
u�s

&Gu &m, m+C�2 sup
u�s

_Eu _m&1+C� |
s

0
&Eu&m&1, m du.

Using (43) for l=m&1, it follows then that

� &Es&m, m�C sup
u�s

&Gu &m+C�2 sup
u�s

_Eu _m&1+C� |
s

0
&Eu&m, m du.

And Gronwall lemma leads to

� sup
u�s

&Eu&m, m�C sup
u�s

&Gu&m+C�2 sup
u�s

_Eu_m&1

which together with (44), yields (42).
It remains now to show (43). We prove it first for all couples (0, m). We

have thus to estimate quantities such as �m &DM Es&L 2 , for |M|=m.

i�
�
�s

(DMEs)=DM \i�
�Es

�s +
=A(DM Es)+[DM ; V] Es+DMGs

=A(DM Es)+ :
J<M

:M(J ) DM�J VD JEs+D MGs .

For | J |�|M|&2 and ��1, �m &DM�JVD JEs&L 2�C�2 _Es_m&2. For
| J |=m&1, �m &DM�JVD JEs&L 2�� &Es &1, m . We obtain then from
Lemma 4.15, that \s�t, s<{m , \��1,

� &Es&0, m�C sup
u�s

&Gu &0, m+C�2 sup
u�s

_Eu _m&2+C� |
s

0
&Eu&1, m du

that is (43) for (0, m).
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Assume now (43) is true for (l&1, m) and let us prove it for (l, m).
We have now to estimate quantities such as �m&l &(�V��x1) l1 } } }
(�V��xd ) ld DM�LEs&L2 for |L|=l and |M|=m.

i�
�
�s \_

�V
�x1&

l1

} } } _ �V
�xd&

ld

DM�LEs+
=_ �V

�x1&
l1

} } } _ �V
�xd&

ld

i�
�
�s

DM�LEs

=_ �V
�x1&

l1

} } } _ �V
�xd&

ld

\A(DM�LEs)

+ :
J<M�L

:M�L( J ) DM�(L�J )V D J Es+DM�LGs+
=A \_ �V

�x1&
l1

} } } _ �V
�xd&

ld

DM�LEs++__ �V
�x1&

l1

} } } _ �V
�xd&

ld

; &�22& DM�LEs

+ :
J<M�L

:M�L( J ) _�V
�x1&

l1

} } } _�V
�xd&

ld

DM�(L�J )V D JEs

+_ �V
�x1&

l1

} } } _ �V
�xd&

ld

DM�LGs .

For | J |�m&l&2, and ��1,

�m&l "_ �V
�x1&

l1

} } } _ �V
�xd&

ld

DM�(L�J )V D J Es"L2
�C� _Es_m&2.

For | J |�m&l&1,

�m&l "_ �V
�x1&

l1

} } } _ �V
�xd&

ld

DM�(L�J )V D J Es"L2
�C� &Es&l+1, m .

Moreover,

�m&l "__ �V
�x1&

l1

} } } _�V
�xd&

ld

; &�22& DM�LEs"L 2

�C�2 &Es&l&1, m&1+C� &Es& l&1, m .

By Lemma 4.15, we obtain therefore that for all s�t, s�{m , \��1,

� &Es& l, m�C sup
u�s

&Gu&l, m+C�2 sup
u�s

_Eu_m&1

+C� |
s

0
&Eu&l+1, m du+C� |

s

0
&Eu&l&1, m du.

268 BEN AROUS AND CASTELL



File: 580J 284527 . By:CV . Date:07:07:07 . Time:08:57 LOP8M. V8.0. Page 01:01
Codes: 2423 Signs: 1102 . Length: 45 pic 0 pts, 190 mm

The induction hypothesis implies then that \s�t, s<{m , \��1,

� &Es&l, m�C sup
u�s

&Gu&m+C�2 sup
u�s

_Eu _m&1

+C� |
s

0
&Eu& l+1, m du+C� |

s

0
&Eu &l, m du.

And Gronwall lemma leads to (43).
It follows from (41) that

�m+1 sup
s�t

&Es &H m�C sup
s�t

_Gs _m (45)

with

_Gs_m= :
m

k=0

:
k

l=0

�k&l :

L, |L|=l, L�K
K, |K |=k "�V l1

�x1

} } }
�V ld

�xd
DK�LGs"L 2

But

&(�V l 1��x1) } } } (�V l d��xd ) DK�LGs &L 2�C m1�2(K r
s) sup

x # Kr
s

&DK�LGs(x)&,

since Gs has compact support in K r
s . Therefore,

_Gs_m�P(�) sup
s�t

&Gs &C m (46)

where P(�) is a polynomial of degree lower than m. As in the proof of
Proposition 4.14, we estimate &Gs&C m using Lemma 3.12. We obtain that
\k # N, _C such that

sup
s�t

&Gs &C m�C�k (47)

(45), (46) and (47) imply the result of Proposition 4.17. K

4.4. Localization

It is worth to notice that our probabilistic ansatz 9 sees only the values
of V on a compact set of Rd, so that it is unsensitive to a truncation of V.
This truncated potential trivially satisfies the assumptions H6, so that our
probabilistic ansatz is an O(��) approximation in C�-norm to the wave
function associated to this truncated potential. This remark leads us to the
definition:
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Definition 4.18. We will say that (s, V ) is semi-classically localizable
in norm & }&, if for any initial condition f compactly supported, for any T,
there is a compact subset KT of Rd (depending on (s, V )), and a truncation
/T (with support in KT ), such that &8V (t, } )&8/TV(t, } )&=O(��), for
t<T.

8V denotes here the solution of the Schro� dinger equation associated to
the potential V.

When (s, V ) is semi-classically localizable, our probabilistic ansatz is an
O(��)-approximation of 8 in norm & }&, whenever

For all smooth f with compact support, _k, _C>0, & f &�C & f &C k (48)

In this case, our strategy can be applied to obtain the semi-classical expan-
sion of 8.

On the other side, to be semi-classically localizable in norm & }& is a
necessary condition for the semi-classical expansion to be true in norm & }&
(note that the semi-classical expansion (37) depends only on the values of
V on a compact set).

Therefore, for the norms satisfying (48), we have

(s, V ) semi-classically localizable in norm & }&

� The semi-classical expansion (37) is valid for 8 in norm & }&

� &8&9&=O(��)

To determine the class of potentials and initial conditions which are
semi-classically localizable in a given norm, is a purely analytical problem.
In this section, we have given some answers to this question, but we are
aware that these results are certainly not optimal.

APPENDIX 1: Proof of Proposition 2.1

Let XH denote the Hamiltonian vector field associated to V,

XH : Rd_Rd � Rd_Rd

(q, p) [ ( p, &{V (q)).

Let ,s(q, p) denote the Hamiltonian flow, that is the flow of dif-
feomorphisms of R2d associated to XH . To solve (C x

t ) is equivalent to look
for some initial speed p such that ,t(x, p) is in L0.[(q, &{s(q)), q # Rd].
If for all s�0, Ls.,&s(L0), we have then

Kt=[x # Rd, _p such that (x, p) # Lt and ? b ,t(x, p) # K]
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where ? is the first projection in

R2d : R2d � Rd.

(q, p) [ q.

From the diffeomorphism property of ,t , it is not difficult to see that Kt is
a compact subset of Rd.

Let us consider

TK.sup[t�0, v ?t=? |Lt is non singular on Kt.,t?&1
0 K

v ?&1
t (?Kt)=Kt].

Since L0 is projectable, a continuity argument shows that TK>0. TK

represents the time of appearance of caustics. For t<TK , there exists an
open neighborhood Ot of Kt such that

v ?t is a diffeomorphism from Ot onto Ot=?(Ot);

v ?&1
t (Ot)=Ot .

It follows from the definition of TK , that for t<TK and x # Ot , there is a
unique solution (#x

t (s), s�t) of (C x
t ), and that #x

t (t) # K, whenever x # Kt .
Let us now look at the regularity of #x

t in (t, x). The identity

? b ,&t(#x
t (t), &{s(#x

t (t)))=x

holds by construction, so that #x
t (t) is implicitly defined by

F(t, x, #x
t (t))=0, where

F(t, x, y )=? b ,&t( y, &{s( y ))&x

=?t b ,&t( y, &{s( y ))&x.

Now (�F��y )(t, x, y )=T, &t ( y, &{s( y )) ?t b T( y, &{s( y )),t is invertible for all
t<TK and all y # Ot . Therefore, #x

t (t) has the same regularity in (t, x) as
F(t, x, y ). It follows that #x

t (s)=? b ,s&t(#x
t (t), &{s(#x

t (t))) is C� in x, and
at least C1 in t. K

APPENDIX 2: Proof of Lemma 2.4

Mr
s(%).�s

0 g* r
u(%) $Bu is a Gaussian process with 0 mean and joint quad-

ratic variation

Ar(%, %$, s)=|
s

0
(g* r

u(%), g* r
u(%$)) du.
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It follows from the regularity of g that there exists a modification of
(Mr

s(%)) which is C� in % # 3, and that \: # Nn,

D:
% Mr

s(%)=|
s

0
D:

%g* r
u $Bu

(see for instance Theorem 3.1.2, or exercise 3.1.6 of [16]). The same holds
for Mi

s(%).�s
0 g* i

u $Bu . Therefore,

Zt(%).F(g(%)+- i =B) exp \&
1

- i = |
t

0
g* s(%) $Bs&

1
2i=2 |

t

0
| g* s(%)| 2

c ds+
is differentiable in %, and \ j # Nm,

�Z
�%j

(%)=L%j (F)(%, g(%)+- i=B) exp \&
1

- i = |
t

0
g* s(%) $Bs&

1
2i=2 |

t

0
| g* s(%)| 2

c ds+
where \| # Wt(C),

L% j (F)(%, |)=Dr F(|)
�gr

�%j
(%)+DiF(|)

�gi

�%j
(%)&

1
i=2 F(|) |

t

0

�g* s

�%j
(%) $|s .

Remark. �t
0 (�g* s ��%j )(%) $|s is defined by integration by parts, since

�g* s ��%j is continuously differentiable.

To invert expectation and differentiation, it is sufficient to prove \: # Nn,
|:|=2,

sup
% # 3

E[|D:
%Zt(%)|]<�. (49)

But, it follows from a computation of the second derivatives and from the
hypothesis on F, that _C>0 such that \: # Nn, |:|=2,

E[ |D:
% Zt(%)|]�C \1+ :

n

j=1
"exp \&Re \Mt(%)

- i= ++ |
t

0

�g* s

�%j

$Bs"Lq

+ :
n

j, k=1 "exp \&Re \Mt(%)

- i= ++ |
t

0

�g* s

�%j

$Bs |
t

0

�g* s

�%k

$Bs"Lq

+ :
n

j, k=1
"exp \&Re \Mt(%)

- i= ++ |
t

0

�2g* s

�%j �%k

$Bs"Lq
+

with 1�r+1�q=1. This implies easily (49).
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Therefore, G is differentiable in 3, and \% # 3, \j # [1, ..., n],

�G
�%j

=Ij+Jj exp \&
1

2i=2 |
t

0
| g* s | 2

c ds+ ,

with

Ij=E _\Dr F }
�gr

�%j

+Di F }
�gi

�%j
+ exp \&

1

- i= |
t

0
g* s $Bs&

1

2i=2 |
t

0
| g* s | 2

c ds+&
Jj=E _F } \&

1

- i= |
t

0

�g* s

�%j

$Bs&
1

i=2 |
t

0

�g* s

�%j

g* s ds+ exp \&
1

- i= |
t

0
g* s $Bs+&

Consider l : Wt � C, and K : Wt � Wt*
, c

| [ |
t

0

�g* s

�%j

$|s | [ exp \&
1

- i= |
t

0
g* s $|s+ l

where Wt*
, c is the dual space of Wc

t . Then, K=K r+iK i, with K r, K i # DH
�

(see [25] p. 51 for the definition of this space). If $ denotes the dual
operator of D defined in corollary of Proposition 1.9 in [25]
($ : DH

� � D�), then

$K(|)=exp \&
1

- i= |
t

0
g* s $|s+_&|

t

0

�g*

�%j

$|s&
1

- i= |
t

0

�g* s

�%j

g* s ds& .

Thus, a Malliavin integration by parts leads to

Jj=&
1

- 2i
E[( (Dr+Di) F( g(%)+- i=B), K(B))]

=
&1+i

- 2
E _(Dr+Di) F } \ �g

�%j

&
�g0

�%j
+ exp \&

1

- i= |
t

0
g* s $Bs+& .

This proves the identity of the lemma. Moreover, since �G��%j has the same
form as G, the lemma follows by induction on k.

APPENDIX 3: Proof of Lemma 3.12

We recall that forall s, Ws is the space C([0, s], Rd) endowed with the
uniform norm & }&s (associated distance ds).

Let us write

J=(s, x)=J1, =(s, x)+J2, =(s, x)
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with

J1, =(s, x)#E[L(s, x, =B) exp((&1�=2) H(s, x, =B)) 1&=B&s<\].

J2, =(s, x)#E[L(s, x, =B) exp((&1�=2) H(s, x, =B)) 1&=B&s�\].

We are going to show that J2, = is exponentially small, and that J1, = gives
the asymptotic expansion (40).

Treatment of J1, = . H(s, x, 0)=&iS(s, x), DH(s, x, 0)=DF x, r
s (0)=0,

since 0 is critical point of F x, r
s . A Taylor expansion of = [ H(s, x, =B) yields

then

J1, =(s, x)=e(i�=2) S(s, x)E[L(s, x, =B) e&A(x, s, =)1&=B&s<\] (50)

where A(s, x, =)=�1
0 (1&v) D2H(s, x, =vB)(B, B) dv, is C� in =.

Let us write now the Taylor expansion of %(s, x, =)=L(s, x, =B) e&A(s, x, =)

around ==0. We obtain

%(s, x, =)= :
N

k=0

=k

k !
Z� k(s, x)+=N+1R(s, x, =) (51)

with

Z� k(s, x)=Zk(s, x) e&A(s, x, 0)=Zk(s, x) e(&1�2) As
x(B, B)

where Zk(s, x) is a sum of terms such as C(s, x)(B, ..., B), with C(s, x) any
deterministic multilinear functional of order lower than 6k on the Wiener
space Ws . Hence, Zk(s, x) is an element of the (6k)-th Wiener chaos. The
coefficients of C(s, x) involve the derivatives of L(s, x, } ) at 0, and the
derivatives of order greater than 2 of H(s, x, } ) at 0. Using Assumption 2,
it is easily checked that for all s�t, C(s, } ) has compact support in K r

s , so
that the same is true for Z� k(s, } ), and for R(s, } , =) by (51). Moreover,
assumption 3 yields that \p�0,

sup
s�t

sup
x # Ks

r
E[|Zk(s, x)| p]<� (52)

It follows then from (50) and (51) that

e&(i�e2) S(s } x)J1, =(s, x)= :
N

k=0

=k

k !
E(Z� k (s, x))+ :

N

k=0

=k

k !
E(Z� k (s, x) 1&=B&s�\)

+=N+1E(R(s, x, =) 1&=B&s<\). (53)

The first sum gives the semi-classical expansion (40), if we put ;k (s, x)=
E(Z� k(s, x)). We have indeed already prove that ;k(s, } ) has compact
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support in K r
s . Moreover, by symmetry of Brownian motion, ;k(s, x)=0

for odd k. Let us then compute ;0 .

;0(s, x)=E(Z0(s, x) e(&1�2) As
x(B, B))=L(s, x, 0) E(e(&1�2) As

x(B, B))

Ax
s (B, B) is an element of the second Wiener chaos. Let us write its decom-

position

Ax
s (B, B)=:

k

:x
s (k) !2

k(s, x)

where (!k(s, x))k�1 are i.i.d N(0, 1) random variables, and (:x
s (k))k�1 are

the eigenvalues of the trace-class operator Ax
s (in increasing order). Since

t<T r, we have already seen that \s�t, \x # K r
s, \k # N, 1+:x

s (k)>0.
Therefore

E(e(&1�2) As
x(B, B))= `

�

k=1

(1+:x
s (k))&1�2=det&1�2(D2S x

s (#x
s &x))

since D2S x
s (#x

s &x)=Ax
s +Id. Note that this product is finite by the trace

property. For the computation of the other terms, the reader is referred to
[6].

We are now going to prove that the second sum in (53) is exponentially
small.

sup

x # K s
r

s�t
|E[Z� k(s, x) 1&=B&s�\]|

� sup

x # K s
r

s�t
|E[Zk(s, x) e(&1�2) As

x(B, B)1&=B&s�\]|

� sup

x # K s
r

s�t
E[|Zk(s, x)| p1]1�p1 sup

x # K s
r

s�t
E[e (&p2 �2) As

x(B, B)]1�p2

_P[&=B&t�\]1�p3 (54)

with 1�p1+1�p2+1�p3=1, pi>1. The first term in the right-hand side is
finite using (52). Furthermore,

P[&=B&t�\]1�p3�exp \&
\2

2p3 t=2+ .
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Thus, our goal is achieved as soon as we have found p2>1 such that the
second term in the right-hand side of (54) is finite. From the lower semi-
continuity of (s, x) [ :x

s (1), it follows that

Min
s�t

Min
x # Ks

r
:x

s (1)>&1

so that one can found p2>1, such that

Min
s�t

Min
x # K s

r
:x

s (1)>&
1
p2

>&1.

It implies that \s�t, \x # K r
s ,

E _exp \&
p2

2
Ax

s (B, B)+&= `
�

k=1

1

- 1+ p2:x
s (k)

<�

Fatou's lemma yields that the function (s, x) [ E[exp(&( p2�2) Ax
s (B, B))]

is lower semi-continuous, and reaches therefore its maximum value on any
compact set. Hence,

sup

x # Ks
r

s�t
E _exp \&

p2

2
Ax

s (B, B)+&<�

It remains now to treat E[R(s, x, =) 1&=B&s<\],

R(s, x, =)=|
1

0

(1&v)N

N !
�N+1

�=
%(s, x, =v) dv

with (�N+1��=) %(s, x, =v)=M(s, x, =vB) e&A(s, x, =v) and \p>1, sups�t, x # Ks
r

supv # [0, 1] E[ |M(s, x, =vB)| p]<�. Let us choose q such that 1<q< p2 ,
and let p be the conjugate of q.

sup

x # K s
r

s�t
|E[R(s, x, =) 1&=B&s<\]|�|

1

0

(1&v)N

N !
sup

x # Ks
r

s�t
E[|M(s, x, =vB)| p]1�p

_ sup

x # Ks
r

s�t
E[e&q Re A(s, x, =v)1&eB&s<\]1�q dv

�C sup

x # K s
r

s�t
sup

v # [0, 1]

E[e&q Re A(x, s, =v)1&=B&s<\]1�q

But A(s, x, =v)= 1
2Ax

s (B, B)+v �1
0 (1&u)2�2 D3H(s, x, =uvB)(=B, B, B) du,

so that

|Re A(s, x, =v)& 1
2 Ax

s (B, B)| 1&=B&s<\�C\ &B&2
s
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where the constant C can be chosen uniform in (s, x, v), s�t, x # K r
s ,

v # [0, 1]. Therefore,

sup

x # K s
r

s�t
sup

v # [0, 1]

E[exp(&q Re A(s, x, =v)) 1&=B&s<\]

� sup

x # K s
r

s�t, v # [0, 1]

E[e&(qp2 �p2&q)(Re A(s, x, =v)&(1�2) Ax
x(B, B))]( p2&q)�p2

_ sup

x # Ks
r

s�t
E[e&( p2 �2) As

x(B, B)]q�p2

�CE[eC\ &B&t
2
]<� as soon as \<

1
2Ct

.

We have thus proved that _\0>0, such that \\�\0

J1, =(s, x)=exp \ i
=2 S(s, x)+ :

N

k=0

;k(s, x)
=k

k!
+O(=N+1) (55)

where the O(=N+1) is uniform in (s, x).

Treatment of J2, = . From now on, we fix \ such as (55) holds. Here are
some notations we use in the sequel

v When

s�t, 4s : Ws � R�

| [ {
1
2 &|&2

Hs

+�
if | # Hs

otherwise

is the rate function for the large deviations of Brownian motion. 4s is lower
semi-continuous, and the level sets of 4s are compact.

v When k>0, C s
k=[| # Ws , 4s(|)�k],

v When k>0, and $>0, C s
k($ )=[| # Ws , ds (|, C k

s )<$ ].

As being a good rate function, C s
k & [&|&s�\] is a compact subset of Ws .

Thus the lower semi-continuous function | # Ws [ Re H(s, x, w)+4s(|)
reaches its minimum value m(s, x) on C s

k & [&|&s�\]. Since s<T r,
we know by Proposition (3.7) that the unique global minimum of
Re H(s, x, } )+4s( } )=Re F x, r

s is 0. Therefore for all s�t, and all
x # K r

s , m(s, x)>0. The function (s, x) [ m(s, x) being lower semi-
continuous, _m>0 such that \s�t, \x # K r

s , \| # C k
s & [&|&s�\],

Re H(s, x, w)+4s(|)�m.
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Let us fix m~ such that 0<m~ <m. By the lower semi-continuity of
H+4s , we obtain $0>0 and '0< \ such that \$<$0 , \', '0<'<\,
\s�t, \x # K r

s , \| # C s
k($ ), &|&s�\&', Re H(s, x, |)+4s(|)�m~ . For

such ($, '), let us write

|J2, =(s, x)|�E _exp \&
Re H(s, x, =B)

=2 + 1&=B&s�\&
�E _exp \&

Re H(s, x, =B)
=2 1&=B&s>\&' 1=B # Cs

k($ )&
+E _exp \&

Re H(s, x, =B)
=2 + 1&=B&s�\ 1ds(=B, C s

k)�$& . (56)

Let us treat the second term in the right-hand side of (56)

Re H(s, x, =B)=Im s(#x
s (s)+- i=Bs)&|

s

0
ImV(#x

s (u)+- i=Bu) du

+
- 2

2 |
s

0
#* x

s (u) $(=Bu).

Therefore, _A>0 such that \s�t, \x # K r
s ,

E _exp \&
Re H(s, x, =B)

=2 + 1&=B&s�\ 1ds(=B, Cs
k)�$&

�exp \A
=2+ E _exp \&

- 2
2= |

s

0
#* x

s (u) $Bu+ 1ds(=B, Cs
k)�$&

�exp \A
=2+ E _exp \&

- 2
= |

s

0
#* x

s (u) $Bu+&
1�2

P[ds(=B, C k
s )�$]1�2

�exp \A
=2+ exp \ 1

=2 |
s

0
|#* x

s (u)| 2 du+ P[dt (=B, C k
t )�$]1�2

�exp \A�
=2+ P[=B � C k

t ($ )]1�2

where the constant A� does not depend on (s, x). C k
t ($ ) is an open set of

Wt , an the large deviations for the Brownian motion yield (for = sufficiently
small),

P[=B � C k
t ($ )]�exp \&

1
=2 Inf

| � C t
k

4t (|)+
�exp \&

k
=2+
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for $ sufficiently small. It is then sufficient to take k>A� to obtain the
exponential decay.

It remains now to treat the first term in the right-hand side of (56). Let
us choose m� , such that 0<m� <m~ , and let us define

H1 : [0, t]_Rd_Wt � R

(s, x, |) [ {Re H(s, x, |)
m� &4s(|)

if | # C s
k ($ ) and &|&s>\&'

otherwise.

Since C k
s ($ ) & [|, &|&s>\&'] is an open set of Ws , | # Ws [ H1(s, x, |)

is lower semi-continuous \s�t, \x # Rd. Moreover,

E _exp \&
Re H(s, x, =B)

=2 + 1=B # C s
k($ ) 1&=B&s> \&'&

�E _exp \&
H1(s, x, =B)

=2 +&
Using corollary 2.9 in [21] (which can be rendered uniform in (s, x)), we
obtain that \s�t, \s # K r

s , for = sufficiently small

E _exp \&
H1(s, x, =B)

=2 +&�exp \&
m�
=2+

The proof of Lemma 3.12 is thus complete.

References

1. S. Albeverio, A. M. Boutet de Monvel Berthier, and Z. Brzez� niak, Stationary phase
in infinite dimensions by finite dimensional approximations: Applications to the
Schro� dinger equation, Potential Anal. 4, No. 5 (1995), 469�502.

2. S. Albeverio and Z. Brzez� niak, Finite dimensional approximations approach to
oscillatory integrals in infinite dimensions, J. Funct. Anal. 113 (1993), 117�244.

3. S. Albeverio and R. Hoegh-Krohn, ``Mathematical Theory of Feynman Path Integrals,''
Lecture Notes in Math., Vol. 523, Springer-Verlag, Berlin�New York, 1976.

4. V. I. Arnold, ``Mathematical Methods of Classical Mechanics,'' Graduate Texts in
Mathematics, Springer-Verlag, New York, 1978.

5. R. Azencott and H. Doss, L'e� quation de Schro� dinger quand � tend vers 0. Une
approche probabiliste, in ``2eme rencontre franco-allemande entre physiciens et mathe� -
maticiens, CIRM, Marseille, 1983,'' Lecture Notes in Mathematics, Vol. 1109, pp. 1�17,
Springer-Verlag, New York�Berlin, 1985.

6. G. Ben Arous, Me� thode de Laplace et de la phase stationnaire sur l'espace de Wiener,
Stochastics 25 (1988), 125�153.

7. F. A. Berezin and M. A. Shubin, ``The Schro� dinger Equation,'' Mathematics and Its
Applications, Kluwer, Dordrecht, 1991.

279SEMI-CLASSICAL APPROXIMATIONS



File: 580J 284538 . By:CV . Date:07:07:07 . Time:08:57 LOP8M. V8.0. Page 01:01
Codes: 3040 Signs: 2421 . Length: 45 pic 0 pts, 190 mm

8. H. Doss, ``Sur une re� solution stochastique de l'e� quation de Schro� dinger a� coefficients
analytiques,'' Communications in Mathematical Physics, Vol. 73, pp. 247�264, Springer-
Verlag, New York�Berlin, 1980.

9. K. D. Elworthy and A. Truman, Classical mechanics, the diffusion (heat) equation
and the Schro� dinger equation on a Riemannian manifold, J. Math. Phys. 22 (1981),
2144�2166.

10. R. P. Feynman and A. R. Hibbs, ``Quantum Mechanics and Path Integrals,'' Mc Graw�
Hill, New York, 1965.

11. L. Gross, Abstract Wiener spaces, in ``Fifth Berkeley Symposium,'' Vol. 2, pp. 31�42.
12. V. Guillemin and S. Sternberg, ``Geometric Asymptotics,'' Mathematical Surveys,

Vol. 14, Amer. Math. Soc., Providence, RI, 1977.
13. M. C. Gu� tzwiller, ``Chaos in Classical and Quantum Mechanics,'' Springer-Verlag,

Berlin, 1990.
14. L. Ho� rmander, ``The Analysis of Partial Differential Operators,'' Vols. 1�4, Springer-

Verlag, New York, 1983�1990.
15. G. Kallianpur, D. Kannan, and R. L. Karandikar, Analytic and sequential Feynman

integrals on abstract Wiener and Hilbert spaces, and a Cameron Martin formula, Ann.
Instit. Poincare� , Probab. Theory 21 (1985), 323�361.

16. H. Kunita, ``Stochastic Flows and Stochastic Differential Equations,'' Cambridge Studies
in Advanced Mathematics, Vol. 24, Cambridge Univ. Press, Cambridge, 1990.

17. V. P. Maslov, ``Theory of Perturbations and Asymptotic Methods,'' Moskov. Gos. Univ.,
Moscow, 1965�1970.

18. A. Melin and J. Sjo� strand, Fourier integral operators with complex-valued phase func-
tions, in ``Fourier Integral Operators and Partial Differential Equations,'' Lecture Notes
in Math., Vol. 459, pp. 120�223, Springer-Verlag, New York�Berlin, 1975.

19. D. Robert, ``Autour de l'approximation semi-classique,'' Birkha� user, Bochum, 1987.
20. L. S. Schulman, ``Techniques and Applications of Path Integration,'' Wiley, New York,

1981.
21. D. Stroock, ``An Introduction to the Theory of Large Deviations,'' Springer-Verlag, New

York�Berlin, 1984.
22. F. Treves, ``Introduction to Pseudo-Differential and Fourier Integral Operators,'' Vol. 2,

The University Series in Math., Plenum, New York�London.
23. Van Vleck, Proc. Natl. Acad. Sci. U.S.A. 14 (1928), 178.
24. A. Voros, Semi-classical approximations, Ann. Inst. H. Poincare� , Sect. A 24 (1976).
25. S. Watanabe, ``Stochastic Differential Equations and Malliavin Calculus,'' Tata Institute,

Bombay�Springer-Verlag, New York�Berlin, 1984.

Printed in Belgium

280 BEN AROUS AND CASTELL


